|
|
### Description
|
|
|
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Pellentesque eu lorem eu tellus tempor eleifend. Morbi suscipit eu neque sollicitudin posuere. Suspendisse vel imperdiet velit. Aliquam nibh lectus, viverra sagittis ullamcorper at, molestie a dui. Vestibulum nec nulla elit. Sed mollis lacinia bibendum. Aenean tortor odio, varius non placerat eu, sodales in ipsum. Praesent finibus nisl eget hendrerit euismod. Morbi sit amet libero eget ante blandit lobortis. Nullam porttitor ac quam sed mattis. Aliquam id varius nulla.
|
|
|
VS2N [^1] (**V**isualization tool for **S**piking **N**eural **N**etworks) is an interactive web-based tool. It is designed to analyze and visualize the activity we collect from SNN simulators.
|
|
|
|
|
|
Nam sagittis augue vel imperdiet rutrum. Ut ornare est quis feugiat placerat. Praesent lacus massa, posuere non diam accumsan, posuere sollicitudin purus. Fusce pharetra nunc quis dolor gravida, ut faucibus enim venenatis. Nam ultricies ex ac risus tincidunt pellentesque. Nam facilisis dui quis leo porta mollis. Curabitur a feugiat ipsum. Suspendisse potenti. Fusce suscipit sem nec placerat vehicula. Suspendisse mauris diam, imperdiet ac suscipit quis, semper ac sem. Vivamus porta, dolor vel mattis rutrum, nisi lorem sodales eros, id congue dolor erat sit amet lectus. Sed vitae quam eu magna aliquam iaculis sit amet et justo. Nam scelerisque laoreet justo, ac mattis est finibus sed.
|
|
|
We can use VS2N to:
|
|
|
- Follow the evolution of our network during training.
|
|
|
- Validate hypotheses.
|
|
|
- Debug any newly implemented component.
|
|
|
|
|
|
VS2N is a module-based tool written in Python, those modules concern
|
|
|
defined questions or elements to visualize, and it is possible to add
|
|
|
new modules. Each module contains different visualizations.
|
|
|
|
|
|
Initial requirements for contributions :
|
|
|
- Python (Flask)
|
|
|
- Dash Plotly (to implement different visualizations)
|
|
|
- Apache Spark (for any heavy pre-calculations if needed)
|
|
|
- MongoDB (to store and read data)
|
|
|
|
|
|

|
|
|
|
|
|
Aenean purus nunc, cursus nec purus sit amet, pharetra rhoncus ligula. Curabitur feugiat sed nulla eu semper. Nulla eget ipsum sit amet metus lacinia lacinia. Aenean imperdiet enim mauris, nec pellentesque mauris iaculis sed. Ut accumsan quam vel congue egestas. Nullam pretium diam vel sagittis maximus. Etiam vestibulum suscipit facilisis. Nulla id iaculis neque. Fusce leo elit, vulputate et risus et, consequat venenatis metus. Praesent ultrices ligula quis faucibus viverra. Duis pretium tellus metus, non egestas nulla condimentum ut. Cras tincidunt mauris eget aliquet faucibus. Duis at ex id ligula iaculis tristique et a nulla. Proin hendrerit pellentesque dolor, sit amet ultrices est venenatis nec. Duis vehicula ligula sit amet vehicula viverra. Sed facilisis tellus dolor, a molestie libero iaculis vel.
|
|
|
### Installation
|
|
|
|
|
|
## Useful Scripts
|
|
|
#### 1- Install MongoDB
|
|
|
|
|
|
Use the following [link](https://docs.mongodb.com/manual/administration/install-community/) to install MongoDB.
|
|
|
|
|
|
#### 2- Install Apache Spark and other dependencies
|
|
|
|
|
|
Execute this command to install the needed libraries
|
|
|
|
|
|
```console
|
|
|
pip install -r requirements.txt
|
|
|
```
|
|
|
#### Execution
|
|
|
|
|
|
1. If you want to add authentication to VS2N (optional):
|
|
|
|
|
|
- Generate users credentials (Email/Password) using `python manageUsers.py`
|
|
|
|
|
|
<!-- Examples of simulations using this tool are available here:
|
|
|
2. Rename `default.config.py` to `config.py`
|
|
|
|
|
|
3. If a password protects MongoDB:
|
|
|
|
|
|
- Add MongoDB credentials in `config.py`
|
|
|
|
|
|
|
|
|
4. Using Python >= 3.0 (**make sure MongoDB is running**), run `python VS2N.py` to start VS2N. If everything is fine, the web interface should appear automatically.
|
|
|
|
|
|
### Docker image
|
|
|
You can also use a docker image to run VS2N : https://hub.docker.com/r/helbez/vs2n
|
|
|
|
|
|
<!--## Useful Scripts
|
|
|
|
|
|
Examples of simulations using this tool are available here:
|
|
|
|
|
|
- [Example](#Usefull-Scripts)
|
|
|
- [Example](#Usefull-Scripts)
|
... | ... | @@ -17,4 +60,9 @@ Aenean purus nunc, cursus nec purus sit amet, pharetra rhoncus ligula. Curabitur |
|
|
|
|
|
## Official Documentation
|
|
|
|
|
|
## References |
|
|
\ No newline at end of file |
|
|
VS2N Documentation: \
|
|
|
https://gitlab.univ-lille.fr/bioinsp/VS2N/-/wikis/home
|
|
|
|
|
|
## References
|
|
|
|
|
|
[^1]: H. Elbez, M. K. Benhaoua, P. Devienne and P. Boulet, "VS2N : Interactive Dynamic Visualization and Analysis Tool for Spiking Neural Networks," 2021 International Conference on Content-Based Multimedia Indexing (CBMI), pp. 1-6, 2021 |
|
|
\ No newline at end of file |