Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BigData
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simon Majorczyk
BigData
Commits
bf3c78c8
Commit
bf3c78c8
authored
3 months ago
by
Simon Majorczyk
Browse files
Options
Downloads
Plain Diff
Merge branch 'Simon' into dev
parents
63230eb4
76aea6e6
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
app_glob.py
+44
-78
44 additions, 78 deletions
app_glob.py
templates/index-glob.html
+24
-12
24 additions, 12 deletions
templates/index-glob.html
with
68 additions
and
90 deletions
app_glob.py
+
44
−
78
View file @
bf3c78c8
from
flask
import
Flask
,
request
,
jsonify
,
render_template
import
pickle
from
flask
import
Flask
,
render_template
,
request
,
jsonify
import
pandas
as
pd
from
sklearn.preprocessing
import
StandardSca
le
r
import
numpy
as
np
import
pick
le
import
os
app
=
Flask
(
__name__
)
# Charger le modèle
with
open
(
'
random_forest_model_binaire.pkl
'
,
'
rb
'
)
as
model_file
:
rf
=
pickle
.
load
(
model_file
)
# Charger le scaler entraîné
with
open
(
'
scaler_binaire.pkl
'
,
'
rb
'
)
as
scaler_file
:
scaler
=
pickle
.
load
(
scaler_file
)
# Charger les modèles et scalers
model_paths
=
{
"
binaire
"
:
"
random_forest_model_binaire.pkl
"
,
"
sup0
"
:
"
random_forest_model_sup0.pkl
"
}
scaler_paths
=
{
"
binaire
"
:
"
scaler_binaire.pkl
"
,
"
sup0
"
:
"
scaler_sup0.pkl
"
}
models
=
{}
scalers
=
{}
for
key
in
model_paths
:
with
open
(
model_paths
[
key
],
"
rb
"
)
as
model_file
:
models
[
key
]
=
pickle
.
load
(
model_file
)
with
open
(
scaler_paths
[
key
],
"
rb
"
)
as
scaler_file
:
scalers
[
key
]
=
pickle
.
load
(
scaler_file
)
# Charger les features
features_path
=
"
features.txt
"
if
os
.
path
.
exists
(
features_path
):
with
open
(
features_path
,
"
r
"
)
as
f
:
features
=
f
.
read
().
splitlines
()
else
:
features
=
[]
@app.route
(
'
/
'
)
def
home
():
return
render_template
(
'
index-glob.html
'
)
def
index
():
return
render_template
(
'
index-glob.html
'
,
features
=
features
)
@app.route
(
'
/predict
'
,
methods
=
[
'
POST
'
])
def
predict
():
return
pr
ocess_prediction
(
request
.
form
,
'
/predict
'
)
return
pr
edict_with_model
(
"
binaire
"
)
@app.route
(
'
/predict_sup0
'
,
methods
=
[
'
POST
'
])
def
predict_sup0
():
return
process_prediction
(
request
.
form
,
'
/predict_sup0
'
)
def
process_prediction
(
form_data
,
endpoint
):
data
=
form_data
.
to_dict
()
if
'
name
'
in
data
:
data
[
'
nb_caracteres_sans_espaces
'
]
=
len
(
data
[
'
name
'
].
replace
(
"
"
,
""
))
if
'
artists
'
in
data
:
data
[
'
nb_artistes
'
]
=
data
[
'
artists
'
].
count
(
'
,
'
)
+
1
data
[
'
featuring
'
]
=
int
(
data
[
'
nb_artistes
'
]
>
1
)
if
'
duration_ms
'
in
data
:
duration_ms
=
float
(
data
[
'
duration_ms
'
])
data
[
'
duree_minute
'
]
=
float
(
f
"
{
int
(
duration_ms
//
60000
)
}
.
{
int
((
duration_ms
%
60000
)
//
1000
)
:
02
d
}
"
)
if
'
year
'
in
data
:
year
=
int
(
data
[
'
year
'
])
data
[
'
categorie_annee
'
]
=
3
if
year
<
1954
else
2
if
year
<
2002
else
1
if
'
tempo
'
in
data
:
tempo
=
float
(
data
[
'
tempo
'
])
if
40
<=
tempo
<
60
:
data
[
'
categorie_tempo
'
]
=
1
elif
60
<=
tempo
<
66
:
data
[
'
categorie_tempo
'
]
=
2
elif
66
<=
tempo
<
76
:
data
[
'
categorie_tempo
'
]
=
3
elif
76
<=
tempo
<
108
:
data
[
'
categorie_tempo
'
]
=
4
elif
108
<=
tempo
<
120
:
data
[
'
categorie_tempo
'
]
=
5
elif
120
<=
tempo
<
163
:
data
[
'
categorie_tempo
'
]
=
6
elif
163
<=
tempo
<
200
:
data
[
'
categorie_tempo
'
]
=
7
elif
200
<=
tempo
<=
208
:
data
[
'
categorie_tempo
'
]
=
8
else
:
data
[
'
categorie_tempo
'
]
=
9
return
predict_with_model
(
"
sup0
"
)
# Supprimer les clés non utilisées directement
data
.
pop
(
'
name
'
,
None
)
data
.
pop
(
'
artists
'
,
None
)
data
.
pop
(
'
duration_ms
'
,
None
)
# Convertir les valeurs en float si possible
for
key
in
data
:
def
predict_with_model
(
model_key
):
try
:
data
[
key
]
=
float
(
data
[
key
])
except
ValueError
:
pass
expected_features
=
[
'
year
'
,
'
acousticness
'
,
'
danceability
'
,
'
energy
'
,
'
explicit
'
,
'
instrumentalness
'
,
'
key
'
,
'
liveness
'
,
'
loudness
'
,
'
mode
'
,
'
speechiness
'
,
'
tempo
'
,
'
valence
'
,
'
nb_caracteres_sans_espaces
'
,
'
nb_artistes
'
,
'
featuring
'
,
'
duree_minute
'
,
'
categorie_annee
'
,
'
categorie_tempo
'
]
input_data
=
pd
.
DataFrame
([[
data
.
get
(
key
,
0
)
for
key
in
expected_features
]],
columns
=
expected_features
)
missing_cols
=
[
col
for
col
in
expected_features
if
col
not
in
input_data
.
columns
]
if
missing_cols
:
return
jsonify
({
'
error
'
:
f
'
Missing features:
{
missing_cols
}
'
}),
400
input_data_scaled
=
scaler
.
transform
(
input_data
)
predictions
=
rf
.
predict
(
input_data_scaled
)
return
jsonify
({
'
predictions
'
:
int
(
predictions
[
0
])})
data
=
request
.
get_json
()
input_data
=
[
float
(
data
[
feature
])
for
feature
in
features
]
df_input
=
pd
.
DataFrame
([
input_data
],
columns
=
features
)
df_scaled
=
scalers
[
model_key
].
transform
(
df_input
)
prediction
=
models
[
model_key
].
predict
(
df_scaled
)
return
jsonify
({
"
prediction
"
:
int
(
prediction
[
0
])})
except
Exception
as
e
:
return
jsonify
({
"
error
"
:
str
(
e
)})
if
__name__
==
'
__main__
'
:
app
.
run
(
debug
=
True
)
This diff is collapsed.
Click to expand it.
templates/index-glob.html
+
24
−
12
View file @
bf3c78c8
...
...
@@ -9,37 +9,42 @@
font-family
:
Arial
,
sans-serif
;
margin
:
0
;
display
:
flex
;
background-color
:
#121212
;
color
:
white
;
}
/* Sidebar */
.sidebar
{
width
:
200px
;
background-color
:
#333
;
color
:
white
;
width
:
220px
;
background-color
:
#181818
;
height
:
100vh
;
padding-top
:
20px
;
display
:
flex
;
flex-direction
:
column
;
align-items
:
center
;
}
.sidebar
img
{
width
:
120px
;
margin-bottom
:
20px
;
}
.sidebar
button
{
width
:
80%
;
padding
:
10px
;
margin
:
10px
0
;
border
:
none
;
background
:
#
44
4
;
color
:
white
;
background
:
#
1DB95
4
;
color
:
black
;
cursor
:
pointer
;
font-size
:
16px
;
text-align
:
center
;
border-radius
:
20px
;
}
.sidebar
button
:hover
{
background
:
#
555
;
background
:
#
1ed760
;
}
.content
{
flex-grow
:
1
;
padding
:
20px
;
}
/* Cacher les sections par défaut */
.tab-content
{
display
:
none
;
}
...
...
@@ -49,7 +54,11 @@
form
{
max-width
:
600px
;
margin
:
auto
;
background
:
#282828
;
padding
:
20px
;
border-radius
:
10px
;
}
label
{
display
:
block
;
margin-top
:
10px
;
...
...
@@ -61,23 +70,25 @@
margin-top
:
5px
;
border
:
1px
solid
#ccc
;
border-radius
:
4px
;
background-color
:
#333
;
color
:
white
;
}
button
{
margin-top
:
20px
;
padding
:
10px
20px
;
background-color
:
#
4CAF50
;
color
:
white
;
background-color
:
#
1DB954
;
color
:
black
;
border
:
none
;
border-radius
:
4
px
;
border-radius
:
20
px
;
cursor
:
pointer
;
}
button
:hover
{
background-color
:
#
45a049
;
background-color
:
#
1ed760
;
}
#result
{
margin-top
:
20px
;
font-size
:
1.2em
;
color
:
#
555
;
color
:
#
1DB954
;
}
</style>
</head>
...
...
@@ -85,6 +96,7 @@
<!-- Sidebar pour naviguer entre les onglets -->
<div
class=
"sidebar"
>
<img
src=
"https://upload.wikimedia.org/wikipedia/commons/2/26/Spotify_logo_with_text.svg"
alt=
"Spotify Logo"
>
<button
onclick=
"showTab('tab1')"
>
Prédiction Standard
</button>
<button
onclick=
"showTab('tab2')"
>
Prédiction (>0)
</button>
</div>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment