Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
BigData
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simon Majorczyk
BigData
Commits
16660a38
Commit
16660a38
authored
4 months ago
by
Mohamed Sebabti
Browse files
Options
Downloads
Patches
Plain Diff
model sup0 formulaire
parent
41b540c5
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
app_sup0.py
+67
-12
67 additions, 12 deletions
app_sup0.py
mlsup0final.py
+21
-11
21 additions, 11 deletions
mlsup0final.py
templates/index-sup0.html
+12
-27
12 additions, 27 deletions
templates/index-sup0.html
with
100 additions
and
50 deletions
app_sup0.py
+
67
−
12
View file @
16660a38
...
@@ -22,19 +22,74 @@ def predict():
...
@@ -22,19 +22,74 @@ def predict():
# Récupérer les données du formulaire
# Récupérer les données du formulaire
data
=
request
.
form
.
to_dict
()
data
=
request
.
form
.
to_dict
()
# Convertir en DataFrame et en float
# Calculer les features automatiquement
df_input
=
pd
.
DataFrame
([
data
])
if
'
name
'
in
data
:
df_input
=
df_input
.
astype
(
float
)
data
[
'
nb_caracteres_sans_espaces
'
]
=
len
(
data
[
'
name
'
].
replace
(
"
"
,
""
))
if
'
artists
'
in
data
:
data
[
'
nb_artistes
'
]
=
data
[
'
artists
'
].
count
(
'
,
'
)
+
1
data
[
'
featuring
'
]
=
int
(
data
[
'
nb_artistes
'
]
>
1
)
if
'
duration_ms
'
in
data
:
duration_ms
=
float
(
data
[
'
duration_ms
'
])
data
[
'
duree_minute
'
]
=
float
(
f
"
{
int
(
duration_ms
//
60000
)
}
.
{
int
((
duration_ms
%
60000
)
//
1000
)
:
02
d
}
"
)
if
'
year
'
in
data
:
year
=
int
(
data
[
'
year
'
])
data
[
'
categorie_annee
'
]
=
3
if
year
<
1954
else
2
if
year
<
2002
else
1
if
'
tempo
'
in
data
:
tempo
=
float
(
data
[
'
tempo
'
])
if
40
<=
tempo
<
60
:
data
[
'
categorie_tempo
'
]
=
1
elif
60
<=
tempo
<
66
:
data
[
'
categorie_tempo
'
]
=
2
elif
66
<=
tempo
<
76
:
data
[
'
categorie_tempo
'
]
=
3
elif
76
<=
tempo
<
108
:
data
[
'
categorie_tempo
'
]
=
4
elif
108
<=
tempo
<
120
:
data
[
'
categorie_tempo
'
]
=
5
elif
120
<=
tempo
<
163
:
data
[
'
categorie_tempo
'
]
=
6
elif
163
<=
tempo
<
200
:
data
[
'
categorie_tempo
'
]
=
7
elif
200
<=
tempo
<=
208
:
data
[
'
categorie_tempo
'
]
=
8
else
:
data
[
'
categorie_tempo
'
]
=
9
# Appliquer le scaler
# Supprimer les clés inutiles
df_input_scaled
=
scaler
.
transform
(
df_input
)
data
.
pop
(
'
name
'
,
None
)
data
.
pop
(
'
artists
'
,
None
)
data
.
pop
(
'
duration_ms
'
,
None
)
# Faire la prédiction
# Convertir les valeurs en float si possible
prediction
=
rf
.
predict
(
df_input_scaled
)
for
key
in
data
:
try
:
data
[
key
]
=
float
(
data
[
key
])
except
ValueError
:
pass
# Garder les valeurs non convertibles (ex: texte)
# Liste des features dans le bon ordre (comme lors de l'entraînement)
expected_features
=
[
'
year
'
,
'
acousticness
'
,
'
danceability
'
,
'
energy
'
,
'
explicit
'
,
'
instrumentalness
'
,
'
key
'
,
'
liveness
'
,
'
loudness
'
,
'
mode
'
,
'
speechiness
'
,
'
tempo
'
,
'
valence
'
,
'
nb_caracteres_sans_espaces
'
,
'
nb_artistes
'
,
'
featuring
'
,
'
duree_minute
'
,
'
categorie_annee
'
,
'
categorie_tempo
'
]
# Construire le DataFrame avec les features dans le bon ordre
input_data
=
pd
.
DataFrame
([[
data
.
get
(
key
,
0
)
for
key
in
expected_features
]],
columns
=
expected_features
)
# Vérifier que toutes les colonnes attendues sont présentes
missing_cols
=
[
col
for
col
in
expected_features
if
col
not
in
input_data
.
columns
]
if
missing_cols
:
return
jsonify
({
'
error
'
:
f
'
Missing features:
{
missing_cols
}
'
}),
400
# Normalisation des features
input_data_scaled
=
scaler
.
transform
(
input_data
)
# Prédiction
predictions
=
rf
.
predict
(
input_data_scaled
)
return
jsonify
({
"
predictions
"
:
prediction
.
tolist
()})
return
jsonify
({
'
predictions
'
:
prediction
s
.
tolist
()})
except
Exception
as
e
:
except
Exception
as
e
:
return
jsonify
({
"
error
"
:
str
(
e
)})
return
jsonify
({
'
error
'
:
str
(
e
)})
if
__name__
==
'
__main__
'
:
if
__name__
==
'
__main__
'
:
app
.
run
(
debug
=
True
)
app
.
run
(
debug
=
True
)
This diff is collapsed.
Click to expand it.
mlsup0final.py
+
21
−
11
View file @
16660a38
...
@@ -6,41 +6,51 @@ from sklearn.model_selection import train_test_split
...
@@ -6,41 +6,51 @@ from sklearn.model_selection import train_test_split
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.preprocessing
import
StandardScaler
from
sklearn.ensemble
import
RandomForestRegressor
from
sklearn.ensemble
import
RandomForestRegressor
from
sklearn.metrics
import
mean_absolute_error
,
mean_squared_error
,
r2_score
from
sklearn.metrics
import
mean_absolute_error
,
mean_squared_error
,
r2_score
print
(
'
HELLO
'
)
print
(
'
HELLO
'
)
# 📂 Charger les données
# 📂 Charger les données
df
=
pd
.
read_csv
(
"
data_sup_0popularity.csv
"
)
df
=
pd
.
read_csv
(
"
data_sup_0popularity.csv
"
)
# 1️⃣ Séparation des features et de la cible
# 1️⃣ Vérifier que les features sont bien présentes
X
=
df
.
drop
(
columns
=
[
"
popularity
"
,
"
id
"
,
"
artists
"
,
"
name
"
,
"
release_date
"
,
"
date_sortie
"
,
"
duration_ms
"
,
"
nom_artiste
"
])
expected_features
=
[
'
year
'
,
'
acousticness
'
,
'
danceability
'
,
'
energy
'
,
'
explicit
'
,
'
instrumentalness
'
,
'
key
'
,
'
liveness
'
,
'
loudness
'
,
'
mode
'
,
'
speechiness
'
,
'
tempo
'
,
'
valence
'
,
'
nb_caracteres_sans_espaces
'
,
'
nb_artistes
'
,
'
featuring
'
,
'
duree_minute
'
,
'
categorie_annee
'
,
'
categorie_tempo
'
]
# Vérifier que toutes les colonnes attendues sont présentes
missing_features
=
[
col
for
col
in
expected_features
if
col
not
in
df
.
columns
]
if
missing_features
:
raise
ValueError
(
f
"
⚠️ Il manque ces colonnes dans le dataset :
{
missing_features
}
"
)
# 2️⃣ Séparation des features et de la cible
y
=
df
[
"
popularity
"
]
y
=
df
[
"
popularity
"
]
X
=
df
[
expected_features
]
# On garde uniquement les features déjà présentes
#
2
️⃣ Split train/test
#
3
️⃣ Split train/test
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.2
,
random_state
=
42
)
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
X
,
y
,
test_size
=
0.2
,
random_state
=
42
)
#
3
️⃣ Normalisation des features
#
4
️⃣ Normalisation des features
scaler
=
StandardScaler
()
scaler
=
StandardScaler
()
X_train_scaled
=
scaler
.
fit_transform
(
X_train
)
X_train_scaled
=
scaler
.
fit_transform
(
X_train
)
X_test_scaled
=
scaler
.
transform
(
X_test
)
X_test_scaled
=
scaler
.
transform
(
X_test
)
#
4
️⃣ Entraînement du modèle
#
5
️⃣ Entraînement du modèle
rf
=
RandomForestRegressor
(
n_estimators
=
200
,
max_depth
=
20
,
min_samples_split
=
2
,
random_state
=
42
)
rf
=
RandomForestRegressor
(
n_estimators
=
200
,
max_depth
=
20
,
min_samples_split
=
2
,
random_state
=
42
)
rf
.
fit
(
X_train_scaled
,
y_train
)
rf
.
fit
(
X_train_scaled
,
y_train
)
#
5
️⃣ Sauvegarde du modèle et du scaler
#
6
️⃣ Sauvegarde du modèle et du scaler
with
open
(
"
random_forest_model_sup0.pkl
"
,
"
wb
"
)
as
model_file
:
with
open
(
"
random_forest_model_sup0.pkl
"
,
"
wb
"
)
as
model_file
:
pickle
.
dump
(
rf
,
model_file
)
pickle
.
dump
(
rf
,
model_file
)
with
open
(
"
scaler_sup0.pkl
"
,
"
wb
"
)
as
scaler_file
:
with
open
(
"
scaler_sup0.pkl
"
,
"
wb
"
)
as
scaler_file
:
pickle
.
dump
(
scaler
,
scaler_file
)
pickle
.
dump
(
scaler
,
scaler_file
)
#
6
️⃣ Évaluation du modèle
#
7
️⃣ Évaluation du modèle
y_pred
=
rf
.
predict
(
X_test_scaled
)
y_pred
=
rf
.
predict
(
X_test_scaled
)
mae
=
mean_absolute_error
(
y_test
,
y_pred
)
mae
=
mean_absolute_error
(
y_test
,
y_pred
)
rmse
=
np
.
sqrt
(
mean_squared_error
(
y_test
,
y_pred
))
rmse
=
np
.
sqrt
(
mean_squared_error
(
y_test
,
y_pred
))
r2
=
r2_score
(
y_test
,
y_pred
)
r2
=
r2_score
(
y_test
,
y_pred
)
print
(
f
"
\n
📊 RandomForestRegressor - MAE:
{
mae
:
.
2
f
}
, RMSE:
{
rmse
:
.
2
f
}
, R²:
{
r2
:
.
3
f
}
"
)
print
(
f
"
\n
📊 RandomForestRegressor - MAE:
{
mae
:
.
2
f
}
, RMSE:
{
rmse
:
.
2
f
}
, R²:
{
r2
:
.
3
f
}
"
)
print
(
"
\n
✅ Modèle et scaler sauvegardés !
"
)
print
(
"
\n
✅ Modèle et scaler sauvegardés avec succès !
"
)
#nohup python3 -u mlsup0final.py > modelsup0final.txt 2>&1 &
#ps aux | grep python
This diff is collapsed.
Click to expand it.
templates/index-sup0.html
+
12
−
27
View file @
16660a38
...
@@ -50,62 +50,47 @@
...
@@ -50,62 +50,47 @@
<body>
<body>
<h1>
Prédire la Popularité d'une Chanson
</h1>
<h1>
Prédire la Popularité d'une Chanson
</h1>
<form
action=
"/predict_sup0"
method=
"post"
>
<form
action=
"/predict_sup0"
method=
"post"
>
<label
for=
"name"
>
Titre de la chanson :
</label>
<input
type=
"text"
id=
"name"
name=
"name"
required
>
<label
for=
"year"
>
Année :
</label>
<label
for=
"year"
>
Année :
</label>
<input
type=
"number"
id=
"year"
name=
"year"
required
>
<input
type=
"number"
id=
"year"
name=
"year"
required
>
<label
for=
"acousticness"
>
Acousticness :
</label>
<label
for=
"acousticness"
>
Acousticness :
</label>
<input
type=
"number"
step=
"0.01"
id=
"acousticness"
name=
"acousticness"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"acousticness"
name=
"acousticness"
required
>
<label
for=
"danceability"
>
Danceability :
</label>
<label
for=
"danceability"
>
Danceability :
</label>
<input
type=
"number"
step=
"0.01"
id=
"danceability"
name=
"danceability"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"danceability"
name=
"danceability"
required
>
<label
for=
"energy"
>
Energy :
</label>
<label
for=
"energy"
>
Energy :
</label>
<input
type=
"number"
step=
"0.01"
id=
"energy"
name=
"energy"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"energy"
name=
"energy"
required
>
<label
for=
"explicit"
>
Explicit (0 ou 1) :
</label>
<label
for=
"explicit"
>
Explicit (0 ou 1) :
</label>
<input
type=
"number"
id=
"explicit"
name=
"explicit"
required
>
<input
type=
"number"
id=
"explicit"
name=
"explicit"
required
>
<label
for=
"instrumentalness"
>
Instrumentalness :
</label>
<label
for=
"instrumentalness"
>
Instrumentalness :
</label>
<input
type=
"number"
step=
"0.01"
id=
"instrumentalness"
name=
"instrumentalness"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"instrumentalness"
name=
"instrumentalness"
required
>
<label
for=
"key"
>
Key :
</label>
<label
for=
"key"
>
Key :
</label>
<input
type=
"number"
id=
"key"
name=
"key"
required
>
<input
type=
"number"
id=
"key"
name=
"key"
required
>
<label
for=
"liveness"
>
Liveness :
</label>
<label
for=
"liveness"
>
Liveness :
</label>
<input
type=
"number"
step=
"0.01"
id=
"liveness"
name=
"liveness"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"liveness"
name=
"liveness"
required
>
<label
for=
"loudness"
>
Loudness :
</label>
<label
for=
"loudness"
>
Loudness :
</label>
<input
type=
"number"
step=
"0.1"
id=
"loudness"
name=
"loudness"
required
>
<input
type=
"number"
step=
"0.
000
1"
id=
"loudness"
name=
"loudness"
required
>
<label
for=
"mode"
>
Mode :
</label>
<label
for=
"mode"
>
Mode :
</label>
<input
type=
"number"
id=
"mode"
name=
"mode"
required
>
<input
type=
"number"
id=
"mode"
name=
"mode"
required
>
<label
for=
"speechiness"
>
Speechiness :
</label>
<label
for=
"speechiness"
>
Speechiness :
</label>
<input
type=
"number"
step=
"0.01"
id=
"speechiness"
name=
"speechiness"
required
>
<input
type=
"number"
step=
"0.
00
01"
id=
"speechiness"
name=
"speechiness"
required
>
<label
for=
"tempo"
>
Tempo :
</label>
<label
for=
"tempo"
>
Tempo :
</label>
<input
type=
"number"
step=
"0.1"
id=
"tempo"
name=
"tempo"
required
>
<input
type=
"number"
step=
"0.
000
1"
id=
"tempo"
name=
"tempo"
required
>
<label
for=
"valence"
>
Valence :
</label>
<label
for=
"valence"
>
Valence :
</label>
<input
type=
"number"
step=
"0.01"
id=
"valence"
name=
"valence"
required
>
<input
type=
"number"
step=
"0.0001"
id=
"valence"
name=
"valence"
required
>
<label
for=
"nb_caracteres_sans_espaces"
>
Nombre de caractères sans espaces :
</label>
<input
type=
"number"
id=
"nb_caracteres_sans_espaces"
name=
"nb_caracteres_sans_espaces"
required
>
<label
for=
"nb_artistes"
>
Nombre d'artistes :
</label>
<input
type=
"number"
id=
"nb_artistes"
name=
"nb_artistes"
required
>
<label
for=
"featuring"
>
Featuring :
</label>
<input
type=
"number"
id=
"featuring"
name=
"featuring"
required
>
<label
for=
"duree_minute"
>
Durée (minutes) :
</label>
<input
type=
"number"
step=
"0.01"
id=
"duree_minute"
name=
"duree_minute"
required
>
<label
for=
"categorie_annee"
>
Catégorie année :
</label>
<input
type=
"number"
id=
"categorie_annee"
name=
"categorie_annee"
required
>
<label
for=
"categorie_tempo"
>
Catégorie tempo :
</label>
<input
type=
"number"
id=
"categorie_tempo"
name=
"categorie_tempo"
required
>
<input
type=
"submit"
value=
"Prédire"
>
<input
type=
"submit"
value=
"Prédire"
>
</form>
</form>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment