Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TD2.R
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Kanléfé Couldiaty
TD2.R
Commits
83d30f2c
Commit
83d30f2c
authored
2 years ago
by
Kanléfé Couldiaty
Browse files
Options
Downloads
Patches
Plain Diff
Delete README.md
parent
5c4efb2e
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
README.md
+0
-88
0 additions, 88 deletions
README.md
with
0 additions
and
88 deletions
README.md
deleted
100644 → 0
+
0
−
88
View file @
5c4efb2e
#####import data
pop_insee = read.csv2("data/BTT_TD_POP1B_2017.csv", sep = ";")
deces_insee = read.csv2("data/deces-2017.csv", sep = ";")
immig_insee = readxl::read_xlsx("data/BTX_TD_IMG1A_2017.xlsx")
profes_insee = readxl::read_xlsx("data/TCRD_005.xlsx", sheet = 'DEP', skip = 3)
################################################################################
### Changements dans DF 1 : renommer colonnes,
# suppr les arrondissements,
# extraire le département,
# nouvelles variables : nombre d'habitants/vivants par unité stat, nb vivants par sexe, age moyen
# calcul indicateurs : taux hommes vivants, age moyen des vivants
########################### colonnes
colnames(pop_insee) = tolower(colnames(pop_insee))
str(pop_insee)
pop_insee$nb = as.numeric(as.character(pop_insee$nb))
str(pop_insee)
library(readxl)
library(dplyr)
library(lubridate)
########################## arrondissement
pop_comm_insee = pop_insee %>%
filter(nivgeo == "COM") # ou filter(!nivgeo == "ARM")
print(unique(pop_comm_insee$nivgeo))
########################## departement
pop_depart_insee = pop_comm_insee %>%
mutate(departement_code = substr(codgeo, 1, 2))
str(pop_depart_insee)
# autre code
# pop_comm_insee$departement_code = substr(pop_comm_insee$codgeo, 1, 2)
########################## nouvelles variables
pop_gp_deprt_insee = pop_depart_insee %>%
group_by(departement_code) %>%
summarise(nb_habitants = round(sum(nb,na.rm=TRUE)),
nb_hommes = round(sum(nb[sexe == 1], na.rm = TRUE)), # nombre d'hommes
nb_femmes = round(sum(nb[sexe == 2], na.rm = TRUE)),# nombre de femmes
sum_age = round(sum(nb
*
aged100, na.rm = TRUE))) # total de tous les ages
View(pop_gp_deprt_insee)
########################## indicateurs
pop_indic_deprt_insee = pop_gp_deprt_insee %>%
mutate(taux_hommes_vivants = round((nb_hommes/(nb_hommes + nb_femmes))
*
100, 2), # taux hommes vivants # taux en pourcentage
age_moyen_vivants = round((sum_age / nb_habitants), 2)) # age moyen vivants
View(pop_indic_deprt_insee)
################################################################################
### Changements dans DF DECES : renommer colonnes,
# extraire le département,
# nouvelles variables : age deces par unité stat
# calcul indicateurs : âge moyen des personnes décédés, taux de décès
#renommer colonnes :
colnames(deces_insee) = tolower(colnames(deces_insee))
str(deces_insee)
#extraire le département
deces_departement_insee = deces_insee %>%
mutate(deces_insee, departement_code = substr(lieudeces, 1, 2))
str(deces_departement_insee)
##Str les dates
as.Date(deces_departement_insee$datenaiss, "%y, %m, %d")
deces_departement_insee$datenaiss = ymd(deces_departement_insee$datenaiss)
deces_departement_insee$datedeces = ymd(deces_departement_insee$datedeces)
##Age deces
age_deces_departement_insee = deces_departement_insee %>%
mutate( age_deces = time_length(difftime(datedeces, datenaiss), "years"))
###nb_deces
nb_deces <- nrow(age_deces_departement_insee)
##Indicateurs
group_by(age_deces_departement_insee) %>%
mutate(age_moyen_deces = mean(age_deces, na.rm = TRUE),
taux_deces = round(sum(nb_deces/nb_habitants)
*
100, 2))
##Merge
tableau_final <- merge(deces_departement_insee, pop_depart_insee, by = 'departement_code')
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment