Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
Bayesian Project
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Guillaume Suatton
Bayesian Project
Commits
e53f933b
Commit
e53f933b
authored
4 years ago
by
Guillaume Suatton
Browse files
Options
Downloads
Patches
Plain Diff
Update Variational_Bayesian_Model_Selection_for_Mixture_Distributions.ipynb
parent
d17e8d85
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Variational_Bayesian_Model_Selection_for_Mixture_Distributions.ipynb
+2
-0
2 additions, 0 deletions
..._Bayesian_Model_Selection_for_Mixture_Distributions.ipynb
with
2 additions
and
0 deletions
Variational_Bayesian_Model_Selection_for_Mixture_Distributions.ipynb
+
2
−
0
View file @
e53f933b
...
@@ -13,6 +13,8 @@
...
@@ -13,6 +13,8 @@
"metadata": {},
"metadata": {},
"outputs": [],
"outputs": [],
"source": [
"source": [
"# %pip install -r requirements.txt\n",
"\n",
"# Imports\n",
"# Imports\n",
"import numpy as np\n",
"import numpy as np\n",
"from numpy import linalg as la\n",
"from numpy import linalg as la\n",
...
...
%% Cell type:markdown id: tags:
%% Cell type:markdown id: tags:
### Reproducing the results of the paper
### Reproducing the results of the paper
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# %pip install -r requirements.txt
# Imports
# Imports
import
numpy
as
np
import
numpy
as
np
from
numpy
import
linalg
as
la
from
numpy
import
linalg
as
la
import
matplotlib.pyplot
as
plt
import
matplotlib.pyplot
as
plt
from
matplotlib.patches
import
Ellipse
from
matplotlib.patches
import
Ellipse
from
matplotlib.colors
import
LogNorm
from
matplotlib.colors
import
LogNorm
from
scipy.special
import
digamma
,
gammaln
,
logsumexp
from
scipy.special
import
digamma
,
gammaln
,
logsumexp
from
scipy.stats
import
multivariate_normal
from
scipy.stats
import
multivariate_normal
def
fit_predict
(
X
,
nb_components
=
10
,
max_iter
=
10
,
seed
=
0
):
def
fit_predict
(
X
,
nb_components
=
10
,
max_iter
=
10
,
seed
=
0
):
# Sizes
# Sizes
n
,
d
=
X
.
shape
n
,
d
=
X
.
shape
# Initialization
# Initialization
rd
=
np
.
random
.
RandomState
(
seed
)
rd
=
np
.
random
.
RandomState
(
seed
)
resp
=
rd
.
rand
(
n
,
nb_components
)
/
resp
.
sum
(
axis
=
1
)[:,
np
.
newaxis
]
resp
=
rd
.
rand
(
n
,
nb_components
)
/
resp
.
sum
(
axis
=
1
)[:,
np
.
newaxis
]
nu0
,
invW0
,
beta0
=
d
,
np
.
atleast_2d
(
np
.
cov
(
X
.
T
)),
1.
nu0
,
invW0
,
beta0
=
d
,
np
.
atleast_2d
(
np
.
cov
(
X
.
T
)),
1.
weights
=
np
.
ones
(
nb_components
)
/
nb_components
weights
=
np
.
ones
(
nb_components
)
/
nb_components
expectation
=
[
np
.
zeros
((
nb_components
,
d
)),
np
.
array
([
nu0
*
np
.
linalg
.
inv
(
invW0
)
for
_
in
range
(
nb_components
)]),
np
.
zeros
(
nb_components
),
np
.
zeros
((
nb_components
,
d
,
d
))]
expectation
=
[
np
.
zeros
((
nb_components
,
d
)),
np
.
array
([
nu0
*
np
.
linalg
.
inv
(
invW0
)
for
_
in
range
(
nb_components
)]),
np
.
zeros
(
nb_components
),
np
.
zeros
((
nb_components
,
d
,
d
))]
# First parameter update
# First parameter update
eta
=
resp
.
sum
(
axis
=
0
)
+
10
*
np
.
finfo
(
resp
.
dtype
).
eps
eta
=
resp
.
sum
(
axis
=
0
)
+
10
*
np
.
finfo
(
resp
.
dtype
).
eps
nu
=
nu0
+
eta
nu
=
nu0
+
eta
S
=
beta0
*
np
.
eye
(
d
)
+
expectation
[
1
]
*
eta
[:,
np
.
newaxis
,
np
.
newaxis
]
S
=
beta0
*
np
.
eye
(
d
)
+
expectation
[
1
]
*
eta
[:,
np
.
newaxis
,
np
.
newaxis
]
inverse_S
=
np
.
linalg
.
inv
(
S
)
inverse_S
=
np
.
linalg
.
inv
(
S
)
inverse_W
=
np
.
zeros
((
nb_components
,
d
,
d
))
inverse_W
=
np
.
zeros
((
nb_components
,
d
,
d
))
m
=
np
.
zeros
((
nb_components
,
d
))
m
=
np
.
zeros
((
nb_components
,
d
))
for
k
in
range
(
nb_components
):
for
k
in
range
(
nb_components
):
m
[
k
]
=
inverse_S
[
k
]
@expectation
[
1
][
k
]
@
(
resp
[:,
k
]
@X
)
m
[
k
]
=
inverse_S
[
k
]
@expectation
[
1
][
k
]
@
(
resp
[:,
k
]
@X
)
s
=
np
.
zeros
((
d
,
d
))
s
=
np
.
zeros
((
d
,
d
))
for
i
in
range
(
n
):
for
i
in
range
(
n
):
s
+=
resp
[
i
,
k
]
*
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
k
])
-
np
.
outer
(
expectation
[
0
][
k
],
X
[
i
])
+
expectation
[
3
][
k
])
s
+=
resp
[
i
,
k
]
*
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
k
])
-
np
.
outer
(
expectation
[
0
][
k
],
X
[
i
])
+
expectation
[
3
][
k
])
inverse_W
[
k
]
=
invW0
+
s
inverse_W
[
k
]
=
invW0
+
s
# Initializing the lower bound
# Initializing the lower bound
lower_bound
=
np
.
zeros
(
max_iter
)
lower_bound
=
np
.
zeros
(
max_iter
)
# EM procedure
# EM procedure
for
p
in
range
(
max_iter
):
for
p
in
range
(
max_iter
):
# Computing expectation values
# Computing expectation values
expectation
=
[]
expectation
=
[]
expectation
.
append
(
m
.
copy
())
expectation
.
append
(
m
.
copy
())
expectation
.
append
(
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
*
np
.
linalg
.
inv
(
inverse_W
))
expectation
.
append
(
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
*
np
.
linalg
.
inv
(
inverse_W
))
expectation
.
append
(
d
*
np
.
log
(
2
)
-
np
.
log
(
np
.
linalg
.
det
(
inverse_W
))
+
np
.
sum
(
digamma
(
0.5
*
(
nu
-
np
.
arange
(
d
)[:,
np
.
newaxis
]))))
expectation
.
append
(
d
*
np
.
log
(
2
)
-
np
.
log
(
np
.
linalg
.
det
(
inverse_W
))
+
np
.
sum
(
digamma
(
0.5
*
(
nu
-
np
.
arange
(
d
)[:,
np
.
newaxis
]))))
inverse_S
=
np
.
linalg
.
inv
(
S
)
inverse_S
=
np
.
linalg
.
inv
(
S
)
expectation
.
append
([
inverse_S
[
i
]
+
np
.
outer
(
m
[
i
],
m
[
i
])
for
i
in
range
(
nb_components
)])
expectation
.
append
([
inverse_S
[
i
]
+
np
.
outer
(
m
[
i
],
m
[
i
])
for
i
in
range
(
nb_components
)])
expectation
.
append
([
np
.
trace
(
inverse_S
[
i
])
+
m
[
i
]
@m
[
i
]
for
i
in
range
(
nb_components
)])
expectation
.
append
([
np
.
trace
(
inverse_S
[
i
])
+
m
[
i
]
@m
[
i
]
for
i
in
range
(
nb_components
)])
# Computing probabilities
# Computing probabilities
log_rho_tilde
=
np
.
zeros
((
n
,
nb_components
))
log_rho_tilde
=
np
.
zeros
((
n
,
nb_components
))
for
i
in
range
(
n
):
for
i
in
range
(
n
):
for
j
in
range
(
nb_components
):
for
j
in
range
(
nb_components
):
log_rho_tilde
[
i
,
j
]
=
0.5
*
expectation
[
2
][
j
]
-
0.5
*
np
.
trace
(
expectation
[
1
][
j
]
@
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
j
])
-
np
.
outer
(
expectation
[
0
][
j
],
X
[
i
])
+
expectation
[
3
][
j
]))
log_rho_tilde
[
i
,
j
]
=
0.5
*
expectation
[
2
][
j
]
-
0.5
*
np
.
trace
(
expectation
[
1
][
j
]
@
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
j
])
-
np
.
outer
(
expectation
[
0
][
j
],
X
[
i
])
+
expectation
[
3
][
j
]))
log_rho
=
log_rho_tilde
+
np
.
log
(
weights
+
10
*
np
.
finfo
(
weights
.
dtype
).
eps
)
log_rho
=
log_rho_tilde
+
np
.
log
(
weights
+
10
*
np
.
finfo
(
weights
.
dtype
).
eps
)
log_resp
=
log_rho
-
logsumexp
(
log_rho
,
axis
=
1
)[:,
np
.
newaxis
]
log_resp
=
log_rho
-
logsumexp
(
log_rho
,
axis
=
1
)[:,
np
.
newaxis
]
# Computing resp
# Computing resp
resp
=
np
.
exp
(
log_resp
)
resp
=
np
.
exp
(
log_resp
)
# Updating parameters
# Updating parameters
eta
=
resp
.
sum
(
axis
=
0
)
+
10
*
np
.
finfo
(
resp
.
dtype
).
eps
eta
=
resp
.
sum
(
axis
=
0
)
+
10
*
np
.
finfo
(
resp
.
dtype
).
eps
nu
=
nu0
+
eta
nu
=
nu0
+
eta
S
=
beta0
*
np
.
eye
(
d
)
+
expectation
[
1
]
*
eta
[:,
np
.
newaxis
,
np
.
newaxis
]
S
=
beta0
*
np
.
eye
(
d
)
+
expectation
[
1
]
*
eta
[:,
np
.
newaxis
,
np
.
newaxis
]
inverse_S
=
np
.
linalg
.
inv
(
S
)
inverse_S
=
np
.
linalg
.
inv
(
S
)
inverse_W
=
np
.
zeros
((
nb_components
,
d
,
d
))
inverse_W
=
np
.
zeros
((
nb_components
,
d
,
d
))
m
=
np
.
zeros
((
nb_components
,
d
))
m
=
np
.
zeros
((
nb_components
,
d
))
for
k
in
range
(
nb_components
):
for
k
in
range
(
nb_components
):
m
[
k
]
=
inverse_S
[
k
]
@expectation
[
1
][
k
]
@
(
resp
[:,
k
]
@X
)
m
[
k
]
=
inverse_S
[
k
]
@expectation
[
1
][
k
]
@
(
resp
[:,
k
]
@X
)
s
=
np
.
zeros
((
d
,
d
))
s
=
np
.
zeros
((
d
,
d
))
for
i
in
range
(
n
):
for
i
in
range
(
n
):
s
+=
resp
[
i
,
k
]
*
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
k
])
-
np
.
outer
(
expectation
[
0
][
k
],
X
[
i
])
+
expectation
[
3
][
k
])
s
+=
resp
[
i
,
k
]
*
(
np
.
outer
(
X
[
i
],
X
[
i
])
-
np
.
outer
(
X
[
i
],
expectation
[
0
][
k
])
-
np
.
outer
(
expectation
[
0
][
k
],
X
[
i
])
+
expectation
[
3
][
k
])
inverse_W
[
k
]
=
invW0
+
s
inverse_W
[
k
]
=
invW0
+
s
# M-step
# M-step
weights
=
resp
.
sum
(
axis
=
0
)
/
resp
.
sum
()
weights
=
resp
.
sum
(
axis
=
0
)
/
resp
.
sum
()
# Computing the lower bound
# Computing the lower bound
ln_p_x
=
np
.
sum
(
resp
*
(
log_rho_tilde
))
ln_p_x
=
np
.
sum
(
resp
*
(
log_rho_tilde
))
ln_p_z
=
np
.
sum
(
resp
*
np
.
log
(
weights
))
ln_p_z
=
np
.
sum
(
resp
*
np
.
log
(
weights
))
ln_p_mu
=
nb_components
*
d
*
np
.
log
(
0.5
*
beta0
/
np
.
pi
)
-
0.5
*
beta0
*
np
.
sum
(
expectation
[
4
])
ln_p_mu
=
nb_components
*
d
*
np
.
log
(
0.5
*
beta0
/
np
.
pi
)
-
0.5
*
beta0
*
np
.
sum
(
expectation
[
4
])
ln_p_T
=
nb_components
*
log_wishart_B
(
invW0
,
nu0
)
+
0.5
*
(
nu0
-
d
-
1
)
*
expectation
[
2
].
sum
()
-
0.5
*
np
.
trace
(
invW0
*
expectation
[
1
].
sum
())
ln_p_T
=
nb_components
*
log_wishart_B
(
invW0
,
nu0
)
+
0.5
*
(
nu0
-
d
-
1
)
*
expectation
[
2
].
sum
()
-
0.5
*
np
.
trace
(
invW0
*
expectation
[
1
].
sum
())
ln_q_z
=
np
.
sum
(
resp
*
np
.
log
(
resp
))
ln_q_z
=
np
.
sum
(
resp
*
np
.
log
(
resp
))
ln_q_mu
=
-
0.5
*
nb_components
*
d
*
(
1
+
np
.
log
(
2
*
np
.
pi
))
+
0.5
*
np
.
sum
(
np
.
log
(
np
.
linalg
.
det
(
S
)))
ln_q_mu
=
-
0.5
*
nb_components
*
d
*
(
1
+
np
.
log
(
2
*
np
.
pi
))
+
0.5
*
np
.
sum
(
np
.
log
(
np
.
linalg
.
det
(
S
)))
ln_q_T
=
np
.
sum
([
log_wishart_B
(
inverse_W
[
k
],
nu
[
k
])
for
k
in
range
(
nb_components
)])
+
np
.
sum
(
0.5
*
(
nu
-
d
-
1
)
*
expectation
[
2
])
-
np
.
sum
(
0.5
*
np
.
trace
(
inverse_W
@
expectation
[
1
],
axis1
=
1
,
axis2
=
2
))
ln_q_T
=
np
.
sum
([
log_wishart_B
(
inverse_W
[
k
],
nu
[
k
])
for
k
in
range
(
nb_components
)])
+
np
.
sum
(
0.5
*
(
nu
-
d
-
1
)
*
expectation
[
2
])
-
np
.
sum
(
0.5
*
np
.
trace
(
inverse_W
@
expectation
[
1
],
axis1
=
1
,
axis2
=
2
))
lower_bound
[
p
]
=
ln_p_x
+
ln_p_z
+
ln_p_mu
+
ln_p_T
+
ln_q_z
+
ln_q_mu
+
ln_q_T
lower_bound
[
p
]
=
ln_p_x
+
ln_p_z
+
ln_p_mu
+
ln_p_T
+
ln_q_z
+
ln_q_mu
+
ln_q_T
# Displaying every ten iterations the result
# Displaying every ten iterations the result
if
p
%
10
==
0
:
if
p
%
10
==
0
:
covs
=
inverse_W
/
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
covs
=
inverse_W
/
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
)
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
)
plt
.
title
(
'
iteration
'
+
str
(
p
))
plt
.
title
(
'
iteration
'
+
str
(
p
))
plt
.
show
()
plt
.
show
()
# Final parameter update
# Final parameter update
covs
=
inverse_W
/
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
covs
=
inverse_W
/
nu
[:,
np
.
newaxis
,
np
.
newaxis
]
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
)
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
)
plt
.
title
(
'
iteration
'
+
str
(
p
))
plt
.
title
(
'
iteration
'
+
str
(
p
))
plt
.
show
()
plt
.
show
()
def
log_wishart_B
(
inverse_W
,
nu
):
def
log_wishart_B
(
inverse_W
,
nu
):
d
=
len
(
inverse_W
)
d
=
len
(
inverse_W
)
return
+
0.5
*
nu
*
np
.
log
(
np
.
linalg
.
det
(
inverse_W
))
-
0.5
*
nu
*
d
*
np
.
log
(
2
)
-
0.25
*
d
*
(
d
-
1
)
*
np
.
log
(
np
.
pi
)
-
gammaln
(
0.5
*
(
nu
-
np
.
arange
(
d
))).
sum
()
return
+
0.5
*
nu
*
np
.
log
(
np
.
linalg
.
det
(
inverse_W
))
-
0.5
*
nu
*
d
*
np
.
log
(
2
)
-
0.25
*
d
*
(
d
-
1
)
*
np
.
log
(
np
.
pi
)
-
gammaln
(
0.5
*
(
nu
-
np
.
arange
(
d
))).
sum
()
def
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
):
def
display_2D
(
m
,
covs
,
nb_components
,
weights
,
X
):
# Grid
# Grid
xmin
,
xmax
,
ymin
,
ymax
=
X
[:,
0
].
min
(),
X
[:,
0
].
max
(),
X
[:,
1
].
min
(),
X
[:,
1
].
max
()
xmin
,
xmax
,
ymin
,
ymax
=
X
[:,
0
].
min
(),
X
[:,
0
].
max
(),
X
[:,
1
].
min
(),
X
[:,
1
].
max
()
mx
,
my
=
.
1
*
(
xmax
-
xmin
),
.
1
*
(
ymax
-
ymin
)
# margins
mx
,
my
=
.
1
*
(
xmax
-
xmin
),
.
1
*
(
ymax
-
ymin
)
# margins
xmin
,
xmax
,
ymin
,
ymax
=
xmin
-
mx
,
xmax
+
mx
,
ymin
-
my
,
ymax
+
my
xmin
,
xmax
,
ymin
,
ymax
=
xmin
-
mx
,
xmax
+
mx
,
ymin
-
my
,
ymax
+
my
x
=
np
.
linspace
(
xmin
,
xmax
,
200
)
x
=
np
.
linspace
(
xmin
,
xmax
,
200
)
y
=
np
.
linspace
(
ymin
,
ymax
,
200
)
y
=
np
.
linspace
(
ymin
,
ymax
,
200
)
x
,
y
=
np
.
meshgrid
(
x
,
y
)
x
,
y
=
np
.
meshgrid
(
x
,
y
)
pos
=
np
.
empty
(
x
.
shape
+
(
2
,))
pos
=
np
.
empty
(
x
.
shape
+
(
2
,))
pos
[:,:,
0
]
=
x
;
pos
[:,:,
1
]
=
y
pos
[:,:,
0
]
=
x
;
pos
[:,:,
1
]
=
y
# Distributions
# Distributions
rvs
=
[
multivariate_normal
(
m
[
k
],
covs
[
k
])
for
k
in
range
(
nb_components
)]
rvs
=
[
multivariate_normal
(
m
[
k
],
covs
[
k
])
for
k
in
range
(
nb_components
)]
Z
=
sum
([
weights
[
k
]
*
rvs
[
k
].
pdf
(
pos
)
for
k
in
range
(
nb_components
)])
Z
=
sum
([
weights
[
k
]
*
rvs
[
k
].
pdf
(
pos
)
for
k
in
range
(
nb_components
)])
# Figure
# Figure
plt
.
figure
(
figsize
=
(
6
,
6
))
plt
.
figure
(
figsize
=
(
6
,
6
))
# Dataset plot
# Dataset plot
plt
.
plot
(
*
X
.
T
,
'
.
'
,
c
=
'
k
'
)
plt
.
plot
(
*
X
.
T
,
'
.
'
,
c
=
'
k
'
)
plt
.
xlim
(
xmin
,
xmax
)
plt
.
xlim
(
xmin
,
xmax
)
plt
.
ylim
(
ymin
,
ymax
)
plt
.
ylim
(
ymin
,
ymax
)
# Component distributions
# Component distributions
ax
=
plt
.
gca
()
ax
=
plt
.
gca
()
for
k
in
range
(
nb_components
):
for
k
in
range
(
nb_components
):
if
weights
[
k
]
>=
1e-5
:
if
weights
[
k
]
>=
1e-5
:
plot_confidence_ellipse
(
m
[
k
],
covs
[
k
],
0.9
,
ax
=
ax
,
ec
=
'
black
'
,
alpha
=
max
(
0.3
,
weights
[
k
]
/
max
(
weights
)))
plot_confidence_ellipse
(
m
[
k
],
covs
[
k
],
0.9
,
ax
=
ax
,
ec
=
'
black
'
,
alpha
=
max
(
0.3
,
weights
[
k
]
/
max
(
weights
)))
def
plot_confidence_ellipse
(
mu
,
cov
,
alph
,
ax
,
clabel
=
None
,
label_bg
=
'
white
'
,
**
kwargs
):
def
plot_confidence_ellipse
(
mu
,
cov
,
alph
,
ax
,
clabel
=
None
,
label_bg
=
'
white
'
,
**
kwargs
):
c
=
-
2
*
np
.
log
(
1
-
alph
)
# quantile at alpha of the chi_squarred distr. with df = 2
c
=
-
2
*
np
.
log
(
1
-
alph
)
# quantile at alpha of the chi_squarred distr. with df = 2
Lambda
,
Q
=
la
.
eig
(
cov
)
# eigenvalues and eigenvectors (col. by col.)
Lambda
,
Q
=
la
.
eig
(
cov
)
# eigenvalues and eigenvectors (col. by col.)
# Compute the attributes of the ellipse
# Compute the attributes of the ellipse
width
,
heigth
=
2
*
np
.
sqrt
(
c
*
Lambda
)
width
,
heigth
=
2
*
np
.
sqrt
(
c
*
Lambda
)
# compute the value of the angle theta (in degree)
# compute the value of the angle theta (in degree)
theta
=
180
*
np
.
arctan
(
Q
[
1
,
0
]
/
Q
[
0
,
0
])
/
np
.
pi
if
cov
[
1
,
0
]
else
0
theta
=
180
*
np
.
arctan
(
Q
[
1
,
0
]
/
Q
[
0
,
0
])
/
np
.
pi
if
cov
[
1
,
0
]
else
0
# Create the ellipse
# Create the ellipse
if
'
fc
'
not
in
kwargs
.
keys
():
if
'
fc
'
not
in
kwargs
.
keys
():
kwargs
[
'
fc
'
]
=
'
None
'
kwargs
[
'
fc
'
]
=
'
None
'
level_line
=
Ellipse
(
mu
,
width
,
heigth
,
angle
=
theta
,
**
kwargs
)
level_line
=
Ellipse
(
mu
,
width
,
heigth
,
angle
=
theta
,
**
kwargs
)
return
ax
.
add_patch
(
level_line
)
return
ax
.
add_patch
(
level_line
)
```
```
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
# Dataset creation
# Dataset creation
dataset_1
=
np
.
random
.
multivariate_normal
(
mean
=
[
1
,
1
],
cov
=
[[
0.01
,
0
],[
0
,
0.01
]],
size
=
(
100
))
dataset_1
=
np
.
random
.
multivariate_normal
(
mean
=
[
1
,
1
],
cov
=
[[
0.01
,
0
],[
0
,
0.01
]],
size
=
(
100
))
dataset_2
=
np
.
random
.
multivariate_normal
(
mean
=
[
-
1
,
-
1
],
cov
=
[[
0.01
,
0
],[
0
,
0.01
]],
size
=
(
100
))
dataset_2
=
np
.
random
.
multivariate_normal
(
mean
=
[
-
1
,
-
1
],
cov
=
[[
0.01
,
0
],[
0
,
0.01
]],
size
=
(
100
))
dataset
=
np
.
vstack
((
dataset_1
,
dataset_2
))
dataset
=
np
.
vstack
((
dataset_1
,
dataset_2
))
# Training and visualization of the iterations
# Training and visualization of the iterations
fit_predict
(
dataset
,
nb_components
=
5
,
max_iter
=
100
)
fit_predict
(
dataset
,
nb_components
=
5
,
max_iter
=
100
)
```
```
%% Output
%% Output
%% Cell type:code id: tags:
%% Cell type:code id: tags:
```
python
```
python
```
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment