Skip to content
Snippets Groups Projects
Commit 051daa4f authored by Mladen Dimitrov's avatar Mladen Dimitrov
Browse files

typos

parent 59c7dcd2
No related branches found
No related tags found
No related merge requests found
Pipeline #59058 passed
......@@ -92,7 +92,7 @@ Coordinateur scientifique du projet <A HREF="http://math.uni.lu/~galf/">GALF</A>
<ul>
<li><i><A HREF="https://msp.org/ant/2024/18-8/p02.xhtml">
Unramifiedness of weight one Hilbert Hecke algebras}</A></i>,
Unramifiedness of weight one Hilbert Hecke algebras</A></i>,
(with Shaunak Deo and Gabor Wiese), Algebra and Number Theory 18, Issue 8 (2024), 1465-1496.
<A HREF="http://arxiv.org/abs/1911.11196 ">arXiv</A> </li>
......@@ -101,7 +101,6 @@ Unramifiedness of weight one Hilbert Hecke algebras}</A></i>,
(with Alexandre Maksoud), Ann. Math. Québec 47 (2023), 49-71.
<A HREF="http://arxiv.org/abs/2205.09719">arXiv</A> </li>
<li><i><A HREF="https://doi.org/10.1353/ajm.2022.0004">
On the failure of Gorensteinness at weight 1 Eisenstein points of the eigencurve</A></i>,
(with Adel Betina and Alice Pozzi), Amer. J. Math. 144, Issue 1 (2022), 227--265.
......@@ -116,42 +115,35 @@ p-adic L-functions of Hilbert cusp forms and the trivial zero conjecture</A></i>
A geometric view on Iwasawa theory</A></i>, (with Adel Betina),
J. Théorie Nombres Bordeaux 33, Issue 3.1 (2021), 703-731. <A HREF="https://arxiv.org/abs/2011.06579">arXiv</A> </li>
<li><i><A HREF="https://doi.org/10.1016/j.aim.2021.107724">
Geometry of the eigencurve at CM points and trivial zeros of Katz p-adic L-functions</A></i>, (with Adel Betina),
Adv. Math. 384 (2021), 107724. <A HREF="http://arxiv.org/abs/1907.09422">arXiv</A> </li>
<li><i><A HREF=" http://dx.doi.org/10.1112/S0010437X20007551">
L-functions of GL(2n): p-adic properties and nonvanishing of twists</A></i>, (with Fabian Januszewski and A.Raghuram),
Compositio Math. 156, Issue 12 (2020), 2437-2468.
<A HREF="http://arxiv.org/abs/1802.10064">arXiv</A> </li>
<li><i>
<A HREF="https://doi.org/10.1017/S1474748018000026">
Unramifiedness of Galois representations attached to Hilbert modular forms mod p of weight 1</A></i>, (with Gabor Wiese),
J. Inst. Math. Jussieu 19, Issue 2 (2020), 281-306.
<A HREF="http://arxiv.org/abs/1508.07722">arXiv</A> </li>
<li><i>
<A HREF="https://doi.org/10.1142/9789814719230_0005">
p-adic L-functions for Hilbert modular forms</A></i>, In: p-Adic Aspects of Modular Forms,
World Scientific, (2016), 165-184.
<A HREF="articles/pune-volume.pdf">pdf</A></li>
<li><i>
<A HREF="https://projecteuclid.org/euclid.dmj/1453211874"> On the Eigencurve at classical weight 1 points</A></i>, (with Joël Bellaïche), Duke Math. J. 165, Issue 2 (2016), 245-266.
<A HREF="http://arxiv.org/abs/1301.0712">arXiv</A> </li>
<li><i>
<A HREF="https://doi.org/10.4171/dm/516"> Arithmetic quotients of the complex ball and a conjecture of Lang</A></i>, (with Dinakar Ramakrishnan), Documenta Math. 20 (2015), 1185-1205.
<A HREF="http://arxiv.org/abs/1401.1628">arXiv</A> </li>
<li><i>
<A HREF="http://www.cambridge.org/us/academic/subjects/mathematics/number-theory/automorphic-forms-and-galois-representations-volume-2"> On the local structure of ordinary Hecke algebras at classical weight one points</A></i>,
In: Automorphic Forms and Galois Representations vol.2 (Durham, 2011), London Math. Soc. Lecture Note Series 415, Cambridge Univ. Press, (2014), 1-16. <A HREF="articles/durham.pdf">pdf</A></li>
......@@ -161,7 +153,6 @@ In: Automorphic Forms and Galois Representations vol.2 (Durham, 2011), London M
Amer. J. Math. 135, Issue 4 (2013), 1117-1155.
<A HREF="articles/hilbertL-galois.pdf">pdf</A></li>
<li><i>
<A HREF="http://www.numdam.org/item/JTNB_2012__24_3_669_0/"> On classical weight one forms in Hida families</A></i>, (with Eknath Ghate), J. Théor. Nombres Bordeaux 24, Issue 3 (2012), 669-690.
<A HREF="articles/weight1-jntb.pdf">pdf</A></li>
......@@ -172,36 +163,37 @@ Amer. J. Math. 135, Issue 4 (2013), 1117-1155.
Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser (2013), 119-134.
<A HREF="articles/crm-dimitrov.pdf">pdf</A></li>
<li><i>
<A HREF="http://link.springer.com/article/10.1007/s00229-010-0382-0"> Test vectors for trilinear forms when at least one representation is not supercuspidal</A></i>, (with Louise Nyssen), Manuscripta Math. 133, Issue 3-4 (2010), 479-504.
<A HREF="http://arxiv.org/abs/1005.0724">arXiv</A></li>
<li><i>
<A HREF="http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=6331568&fulltextType=RA&fileId=S0010437X09004205"> On Ihara's Lemma for Hilbert modular varieties</A></i>, Compositio Math. 145, Issue 5 (2009), 1114-1146.
<A HREF="https://doi.org/10.1112/S0010437X09004205">
On Ihara's Lemma for Hilbert modular varieties</A></i>, Compositio Math. 145, Issue 5 (2009), 1114-1146.
<A HREF="http://arxiv.org/abs/math/0503134">arXiv</A></li>
<li><i>
<A HREF="https://doi.org/10.5802/pmb.a-121"> Applications arithmétiques de la cohomologie &ell;-adique des variétés
modulaires de Hilbert</A></i>, In: Cohomologie &ell;-adique et corps de nombres (CIRM, 2007), Publ. Math. Univ. Franche-Comté Besançon, (2009), 117-128. <A HREF="articles/cirm2007-PMB-dimitrov.pdf">pdf</A></li>
modulaires de Hilbert</A></i>, In: Cohomologie &ell;-adique et corps de nombres (CIRM, 2007),
Publ. Math. Besançon. Algèbre et théorie des nombres (2009), 117-128.
<A HREF="articles/cirm2007-PMB-dimitrov.pdf">pdf</A></li>
<li><i>
<A HREF="http://www.sciencedirect.com/science/article/pii/S0022314X05001678"> Explicit determination of images of Galois representations attached to Hilbert modular forms</A></i>, (with Luis Dieulefait), Journal of Number Theory 117, Issue 2 (2006), 397-405.
<A HREF="http://arxiv.org/abs/math/0406461">arXiv</A></li>
<li><i>
<A HREF="http://archive.numdam.org/ARCHIVE/ASENS/ASENS_2005_4_38_4/ASENS_2005_4_38_4_505_0/ASENS_2005_4_38_4_505_0.pdf"> Galois representations modulo p and
cohomology of Hilbert modular varieties</A></i>,
Ann. Sci. école Norm. Sup. 38, Issue 4 (2005), 505-551. <A HREF="http://arxiv.org/abs/math/0411152">arXiv</A></li>
Ann. Sci. École Norm. Sup. 38, Issue 4 (2005), 505-551. <A HREF="http://arxiv.org/abs/math/0411152">arXiv</A></li>
<li><i>
<A HREF="http://www.degruyter.com/view/books/9783110198133/9783110198133.2.555/9783110198133.2.555.xml"> Variétés et formes modulaires
<A HREF="https://doi.org/10.1515/9783110198133.2.555"> Variétés et formes modulaires
de Hilbert arithmétiques pour &Gamma;<sub>1</sub>(c,N)</A></i>, (with Jacques Tilouine), In:
Geometric Aspects of Dwork Theory vol.2, Walter de Gruyter, (2004), 555-614. <A HREF="articles/Pad16-DiTi.pdf">pdf</A></li>
<li><i>
<A HREF="http://www.degruyter.com/view/books/9783110198133/9783110198133.1.527/9783110198133.1.527.xml"> Compactifications arithmétiques des variétés de Hilbert et
<A HREF="https://doi.org/10.1515/9783110198133.1.527"> Compactifications arithmétiques des variétés de Hilbert et
formes modulaires de Hilbert pour &Gamma;<sub>1</sub>(c,N)</A></i>, In:
Geometric Aspects of Dwork Theory vol.1, Walter de Gruyter, (2004), 527-554. <A HREF="articles/Pad15-Di.pdf">pdf</A></li>
......@@ -209,7 +201,7 @@ formes modulaires de Hilbert pour &Gamma;<sub>1</sub>(c,N)</A></i>, In:
<hr>
<H2> Thesis </H2>
<H2> Theses </H2>
<ul>
<li>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment