Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
Annotation de séquences bactériennes
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Clara Moreno
Annotation de séquences bactériennes
Commits
44b4f625
Commit
44b4f625
authored
3 months ago
by
Clara Moreno
Browse files
Options
Downloads
Patches
Plain Diff
PRÉMISSES D'UN SECOND TABLEAU STAT
parent
ed8b797e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Code
+129
-57
129 additions, 57 deletions
Code
with
129 additions
and
57 deletions
Code
+
129
−
57
View file @
44b4f625
import gffutils
import pandas as pd
def gff_a_html(gff_file, output_html):
"""
Analyse un fichier GFF et génère un tableau HTML avec les informations des gènes extraites
Parameters:
- gff_file (str): chemin de ou est enregistré le fichier GFF
- output_html (str): chemin de ou on veux que le fichier HTML s'enregistre
Returns:
- rien mais enregistre un fichier HTML avec un tableau de donnée la ou on lui a demandé
"""
# base de données temporaire du fichier
db = gffutils.create_db(gff_file, dbfn=":memory:", force=True, keep_order=True, merge_strategy="create_unique", sort_attribute_values=True)
# memory : pour pas stocker sur disque (RAM)
#force = true : recrée base si elle existe déja
#merge_strategy="create_unique" : pour que les valeurs fusionnée reste unique
#sort_attribute_values=True : tri valeurs
data = [] # Liste stock infos
# éléments GFF
for feature in db.all_features(): #all_feature() est une methode des gffutils
entry = {
"Feature Type": feature.featuretype,
"ID": feature.id,
"Start": feature.start,
"End": feature.end,
"Strand": feature.strand,
"Sequence": feature.attributes.get('Sequence'),
"CDS": feature.attributes.get('CDS'),
}
data.append(entry)
# TABLEAU :
df = pd.DataFrame(data, columns=["ID", "Start", "End", "Strand","Sequence", "CDS"])
# fichier HTML
df.to_html(output_html, index=False)
print(f"HTML table generated: {output_html}")
if __name__ == "__main__":
#chemin des fichiers de Clara :
#gff_file = "/Users/claramoreno/PycharmProjects/PythonProjectPaster/wormbase_gff2_alt.txt"
#output_html = "/Users/claramoreno/PycharmProjects/PythonProjectPaster/output.html"
#chemin des fichiers :
#gff_file =
#output_html =
print(gff_a_html(gff_file,output_html))
\ No newline at end of file
import gffutils
import pandas as pd
from collections import Counter
def avg_lenght(db):
avg = Counter()
# Longueur moyenne des Features :
CDS_lengths = [feature.end - feature.start + 1 for feature in db.features_of_type("CDS")]
region_lengths = [feature.end - feature.start + 1 for feature in db.features_of_type("region")]
coding_exon_lengths = [feature.end - feature.start + 1 for feature in db.features_of_type("coding_exon")]
intron_lengths = [feature.end - feature.start + 1 for feature in db.features_of_type("intron")]
avg_CDS_length = sum(CDS_lengths) / len(CDS_lengths) if CDS_lengths else 0
avg_region_length = sum(region_lengths) / len(region_lengths) if region_lengths else 0
avg_coding_exon_length = sum(coding_exon_lengths) / len(coding_exon_lengths) if coding_exon_lengths else 0
avg_intron_length = sum(intron_lengths) / len(intron_lengths) if intron_lengths else 0
avg["CDS"] = avg_CDS_length
avg["region"] = avg_region_length
avg["coding_exon"] = avg_coding_exon_length
avg["intron"] = avg_intron_length
return avg
def count(db):
"""
Stat
Parameters:
- db: base de donné
Returns:
- stats (dict) : exemple --> Counter({'coding_exon': 4, 'intron': 3, 'region': 1, 'CDS': 1, 'average_gene_length': 0})
"""
stats = Counter()
for feature in db.all_features(): #methode gffutils
stats[feature.featuretype] += 1
return stats
import pandas as pd
def fusions_stat(count, avg):
"""
Combinaisons de plusieurs dictionnaires stat dans 1 tableau
Parameters:
- stats (dict): Un dictionnaire avec le nombre de chaque type de feature.
- avg (dict): Un dictionnaire avec la longueur moyenne de chaque type de feature.
Returns:
- Un unique tableau et sa c'est beau
"""
# Transformer les dict en tableau
count_df = pd.DataFrame(count.items(), columns=["Feature Type", "Count"])
avg_df = pd.DataFrame(avg.items(), columns=["Feature Type", "Average Length"])
# Fusion les tableaux sur la colonne "Feature Type"
combined_df = pd.merge(count_df, avg_df, on="Feature Type", how="left") #faut que klé des deux dict soit les memes
return combined_df
def gff_a_html(gff_file, output_html):
"""
Analyse un fichier GFF et génère un tableau HTML avec les informations des gènes extraites
Parameters:
- gff_file (str): chemin de ou est enregistré le fichier GFF
- output_html (str): chemin de ou on veux que le fichier HTML s'enregistre
Returns:
- rien mais enregistre un fichier HTML avec un tableau de donnée la ou on lui a demandé
"""
# base de données temporaire du fichier
db = gffutils.create_db(gff_file, dbfn=":memory:", force=True, keep_order=True, merge_strategy="create_unique", sort_attribute_values=True)
# memory : pour pas stocker sur disque (RAM)
#force = true : recrée base si elle existe déja
#merge_strategy="create_unique" : pour que les valeurs fusionnée reste unique
#sort_attribute_values=True : tri valeurs
data = [] # Liste stock infos
# éléments GFF
for feature in db.all_features(): #all_feature() est une methode des gffutils
entry = {
"Feature Type": feature.featuretype,
"ID": feature.id,
"Start": feature.start,
"End": feature.end,
"Strand": feature.strand,
"Sequence": feature.attributes.get('Sequence'),
"CDS": feature.attributes.get('CDS')
}
data.append(entry)
# DATA
df = pd.DataFrame(data, columns=["ID", "Start", "End", "Strand", "Sequence", "CDS"])
df_html = df.to_html(index=False) #html
# STAT
cnt = count(db)
avg = avg_lenght(db)
stats_df = fusions_stat(cnt, avg)
stats_html = stats_df.to_html(index=False) #html
# TOUT les tableaux dans 1 fichier HTML
with open(output_html, "w", encoding="utf-8") as f:
f.write("<h1> DATA </h1>\n")
f.write(df_html) # 1er tableau
f.write("<h1> Statistics </h1>\n")
f.write(stats_html) # 2e tableau
print(f"HTML file saved as {output_html}")
if __name__ == "__main__":
#chemin des fichiers de Clara :
gff_file = "/Users/claramoreno/PycharmProjects/PythonProjectPaster/wormbase_gff2_alt.txt"
output_html = "/Users/claramoreno/PycharmProjects/PythonProjectPaster/output.html"
#chemin des fichiers :
#gff_file =
#output_html =
print(gff_a_html(gff_file,output_html))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment