Skip to content
Snippets Groups Projects
Commit e5de9c83 authored by Antaaa28's avatar Antaaa28
Browse files

maj

parent 68016fda
No related branches found
No related tags found
No related merge requests found
......@@ -3,32 +3,6 @@ title: '"Module d''analyse des corrélations des annotations des échantillons"'
output: html_document
---
```{r input_parameters, include=FALSE}
# Chemin vers le fichier de design
design_file <- "C:/Users/User/Desktop/projet_visualisation/design_WS3.csv"
# Liste des noms de variables à considérer comme catégorielles.
categorical_vars <- c("sample", "condition", "animal", "experiment", "extraction")
# Liste des noms de variables à considérer comme quantitatives.
quantitative_vars <- c( "volume", "quantity")
# Liste des noms de variables à afficher pour la figure "matrice de plots" (advanced pairs plot).
# Ici, on exclut par exemple 'sample' pour ne pas surcharger la visualisation.
display_vars <- c("condition", "animal", "experiment", "extraction")
```
```{r setup, include=FALSE}
# Global options: hide code, warnings and messages in the final report.
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
```
```{r load_packages, include=FALSE}
# Installer et charger les packages nécessaires
if(!require(GGally)) install.packages("GGally")
......@@ -60,50 +34,60 @@ library(DT)
library(plotly)
library(lsr)
library(knitr)
```
```{r setup, include=FALSE}
# Global options: hide code, warnings and messages in the final report.
knitr::opts_chunk$set(echo = FALSE, warning = FALSE, message = FALSE)
```
1. Data Import and Exploration
```{r}
# Import the design file (CSV)
## 1. Data Import and Interactive Overview
```{r data_import, echo=FALSE}
# Import the design file (CSV) using the path specified in the input parameters.
annotations <- read.csv(design_file, sep = ",", stringsAsFactors = FALSE)
# Convert specified categorical variables to factors.
annotations <- annotations %>%
mutate(across(all_of(categorical_vars), as.factor))
# Display an interactive table to review all variables in the dataset.
DT::datatable(annotations,
options = list(pageLength = 10, autoWidth = TRUE),
caption = "Interactive Data Table: Review the design file")
# Overview of data structure and summary.
glimpse(annotations)
summary(annotations)
# Check missing values per column.
missing_values <- colSums(is.na(annotations))
print(missing_values)
```
```
2. Variable Separation and Conversion
### Manual Data Classification and Modification
## 2. Manual Data Classification and Modification
```{r}
# Variables numériques d'origine (pour certaines analyses)
num_data <- annotations %>% select(where(is.numeric))
```{r data_classification, echo=TRUE}
# After reviewing the dataset via the interactive table, you can decide which variables
# should be treated as categorical, which as quantitative, and which ones to display
# in the advanced pairs plot.
# Variables catégorielles d'origine (caractère ou facteur)
cat_data <- annotations %>% select(where(~ is.character(.) | is.factor(.)))
cat("Variables numériques détectées : ", paste(colnames(num_data), collapse = ", "), "\n")
cat("Variables catégorielles détectées : ", paste(colnames(cat_data), collapse = ", "), "\n")
# Print the default classification lists defined in the input parameters:
cat("Default Categorical Variables: ", paste(categorical_vars, collapse = ", "), "\n")
cat("Default Quantitative Variables: ", paste(quantitative_vars, collapse = ", "), "\n")
cat("Default Variables for Advanced Pairs Plot: ", paste(display_vars, collapse = ", "), "\n")
# If needed, manually modify the classification lists below:
# (For example, if you decide that a variable should be reclassified, update the lists here.)
# categorical_vars <- c("sample", "condition", "animal", "experiment", "extraction")
# quantitative_vars <- c("volume", "quantity")
# display_vars <- c("condition", "animal", "experiment", "extraction")
```
2.1 Automated Conversion for Correlation Analysis
```{r}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment