Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
TP3_Arbre
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Anta Diop
TP3_Arbre
Commits
8e57a4d1
Commit
8e57a4d1
authored
1 month ago
by
Antaaa28
Browse files
Options
Downloads
Patches
Plain Diff
maj
parent
77d319bf
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
querykmers_tpmiso.py
+104
-107
104 additions, 107 deletions
querykmers_tpmiso.py
with
104 additions
and
107 deletions
querykmers_tpmiso.py
+
104
−
107
View file @
8e57a4d1
...
...
@@ -35,7 +35,7 @@ class SimpleBloomFilter:
self
.
size
=
size
self
.
num_hashes
=
num_hashes
self
.
bit_array
=
[
0
]
*
size
def
_hashes
(
self
,
item
):
hash_values
=
[]
for
i
in
range
(
self
.
num_hashes
):
...
...
@@ -58,19 +58,19 @@ class SimpleBloomFilter:
class
StructureNode
:
def
__init__
(
self
,
bloom_filter
=
None
):
self
.
bloom
=
bloom_filter
if
bloom_filter
else
SimpleBloomFilter
()
self
.
left
=
None
self
.
right
=
None
self
.
datasets
=
[]
# list of dataset names at leaf nodes
def
__init__
(
self
,
bloom_filter
=
None
):
self
.
bloom
=
bloom_filter
if
bloom_filter
else
SimpleBloomFilter
()
self
.
left
=
None
self
.
right
=
None
self
.
datasets
=
[]
# list of dataset names at leaf nodes
class
Structure
:
"""
Une structure arborescente qui organise des jeux de données (datasets) en
utilisant des filtres de Bloom pour permettre des requetes efficaces de k-mers.
"""
Une structure arborescente qui organise des jeux de données (datasets) en
utilisant des filtres de Bloom pour permettre des requetes efficaces de k-mers.
Exemples d
'
utilisation:
>>>
datasets
=
[
"
Dataset1
"
,
"
Dataset2
"
,
"
Dataset3
"
,
"
Dataset4
"
]
Exemples d
'
utilisation:
>>>
datasets
=
[
"
Dataset1
"
,
"
Dataset2
"
,
"
Dataset3
"
,
"
Dataset4
"
]
>>>
kmers_dict
=
{
...
"
Dataset1
"
:
[
"
ACGT
"
,
"
TGCA
"
,
"
GCTA
"
],
# k-mers du Dataset1
...
"
Dataset2
"
:
[
"
CGTA
"
,
"
GCTA
"
,
"
TACC
"
],
# k-mers du Dataset2
...
...
@@ -79,112 +79,109 @@ class Structure:
...
}
>>>
structure
=
Structure
(
datasets
,
kmers_dict
,
bloom_size
=
100
,
num_hashes
=
1
)
>>>
structure
.
query
(
"
TCCA
"
)
#Recherche du k-mer "GCTA"
[
'
Dataset1
'
,
'
Dataset2
'
]
#"GCTA" est présent dans Dataset1 et Dataset2
>>>
structure
.
query
(
"
TCCA
"
)
# Recherche du k-mer "TCCA"
[
'
Dataset3
'
]
# "TCCA" est présent dans Dataset3
>>>
structure
.
query
(
"
ACGT
"
)
# Recherche du k-mer "ACGT"
[
'
Dataset1
'
]
# "ACGT" est présent dans Dataset1
>>>
structure
.
query
(
"
GGGG
"
)
# Recherche du k-mer "GGGG"
[]
# "GGGG" n'est présent dans aucun dataset
>>>
structure
.
query
(
"
TGGC
"
)
# Recherche du k-mer "TGGC"
[
'
Dataset4
'
]
# "TGGC" est présent dans Dataset4
>>>
structure
.
query
(
"
CGGT
"
)
# Recherche du k-mer "CGGT"
[
'
Dataset3
'
]
# "CGGT" est présent dans Dataset3
"""
def
__init__
(
self
,
datasets
,
kmers_dict
,
bloom_size
=
10000
,
num_hashes
=
3
):
self
.
leaves
=
{}
# maps dataset names to their Bloom filter nodes
self
.
root
=
self
.
_build_tree
(
datasets
,
kmers_dict
,
bloom_size
,
num_hashes
)
def
_build_tree
(
self
,
datasets
,
kmers_dict
,
bloom_size
,
num_hashes
):
nodes
=
[]
# Step 1 : # Création des feuilles pour chaque jeu de données
for
dataset
in
datasets
:
bf
=
SimpleBloomFilter
(
bloom_size
,
num_hashes
)
for
kmer
in
kmers_dict
[
dataset
]:
bf
.
add
(
kmer
)
node
=
StructureNode
(
bf
)
node
.
datasets
=
[
dataset
]
self
.
leaves
[
dataset
]
=
node
nodes
.
append
(
node
)
# Step 2 : Fusion itérative des nœuds pour construire l'arbre
while
len
(
nodes
)
>
1
:
new_nodes
=
[]
for
i
in
range
(
0
,
len
(
nodes
),
2
):
if
i
+
1
<
len
(
nodes
):
merged_bf
=
nodes
[
i
].
bloom
.
merge
(
nodes
[
i
+
1
].
bloom
)
parent
=
StructureNode
(
merged_bf
)
parent
.
left
=
nodes
[
i
]
parent
.
right
=
nodes
[
i
+
1
]
parent
.
datasets
=
nodes
[
i
].
datasets
+
nodes
[
i
+
1
].
datasets
else
:
parent
=
nodes
[
i
]
new_nodes
.
append
(
parent
)
nodes
=
new_nodes
return
nodes
[
0
]
if
nodes
else
None
def
query
(
self
,
kmer
):
"""
Recherche un k-mer dans l
'
arbre et retourne la liste des jeux de données
susceptibles de le contenir.
Exemple d
'
utilisation:
>>>
datasets
=
[
"
DS1
"
,
"
DS2
"
,
"
DS3
"
]
>>>
kmers_dict
=
{
...
"
DS1
"
:
[
"
AAA
"
,
"
CCC
"
],
...
"
DS2
"
:
[
"
GGG
"
,
"
TTT
"
],
...
"
DS3
"
:
[
"
CCC
"
,
"
GGG
"
]
...
}
>>>
s
=
Structure
(
datasets
,
kmers_dict
,
bloom_size
=
10
,
num_hashes
=
1
)
>>>
sorted
(
s
.
query
(
"
CCC
"
))
[
'
DS1
'
,
'
DS3
'
]
>>>
sorted
(
s
.
query
(
"
GGG
"
))
[
'
DS2
'
,
'
DS3
'
]
>>>
s
.
query
(
"
AAA
"
)
[
'
DS1
'
]
>>>
s
.
query
(
"
TTT
"
)
[
'
DS2
'
]
>>>
s
.
query
(
"
XYZ
"
)
[]
"""
results
=
[]
self
.
_query_recursive
(
self
.
root
,
kmer
,
results
)
return
results
def
_query_recursive
(
self
,
node
,
kmer
,
results
):
if
node
is
None
:
return
if
node
.
bloom
.
contains
(
kmer
):
# Si le nœud est une feuille, ajouter directement les jeux de données
if
node
.
left
is
None
and
node
.
right
is
None
:
results
.
extend
(
node
.
datasets
)
else
:
self
.
_query_recursive
(
node
.
left
,
kmer
,
results
)
self
.
_query_recursive
(
node
.
right
,
kmer
,
results
)
>>>
structure
.
query
(
"
TCCA
"
)
[
'
Dataset3
'
]
>>>
structure
.
query
(
"
ACGT
"
)
[
'
Dataset1
'
]
>>>
structure
.
query
(
"
GGGG
"
)
[]
>>>
structure
.
query
(
"
TGGC
"
)
[
'
Dataset4
'
]
>>>
structure
.
query
(
"
CGGT
"
)
[
'
Dataset3
'
]
"""
def
__init__
(
self
,
datasets
,
kmers_dict
,
bloom_size
=
10000
,
num_hashes
=
3
):
self
.
leaves
=
{}
# maps dataset names to their Bloom filter nodes
self
.
root
=
self
.
_build_tree
(
datasets
,
kmers_dict
,
bloom_size
,
num_hashes
)
def
_build_tree
(
self
,
datasets
,
kmers_dict
,
bloom_size
,
num_hashes
):
nodes
=
[]
# Step 1 : # Création des feuilles pour chaque jeu de données
for
dataset
in
datasets
:
bf
=
SimpleBloomFilter
(
bloom_size
,
num_hashes
)
for
kmer
in
kmers_dict
[
dataset
]:
bf
.
add
(
kmer
)
node
=
StructureNode
(
bf
)
node
.
datasets
=
[
dataset
]
self
.
leaves
[
dataset
]
=
node
nodes
.
append
(
node
)
# Step 2 : Fusion itérative des nœuds pour construire l'arbre
while
len
(
nodes
)
>
1
:
new_nodes
=
[]
for
i
in
range
(
0
,
len
(
nodes
),
2
):
if
i
+
1
<
len
(
nodes
):
merged_bf
=
nodes
[
i
].
bloom
.
merge
(
nodes
[
i
+
1
].
bloom
)
parent
=
StructureNode
(
merged_bf
)
parent
.
left
=
nodes
[
i
]
parent
.
right
=
nodes
[
i
+
1
]
parent
.
datasets
=
nodes
[
i
].
datasets
+
nodes
[
i
+
1
].
datasets
else
:
parent
=
nodes
[
i
]
new_nodes
.
append
(
parent
)
nodes
=
new_nodes
return
nodes
[
0
]
if
nodes
else
None
def
query
(
self
,
kmer
):
"""
Recherche un k-mer dans l
'
arbre et retourne la liste des jeux de données
susceptibles de le contenir.
Exemple d
'
utilisation:
>>>
datasets
=
[
"
DS1
"
,
"
DS2
"
,
"
DS3
"
]
>>>
kmers_dict
=
{
...
"
DS1
"
:
[
"
AAA
"
,
"
CCC
"
],
...
"
DS2
"
:
[
"
GGG
"
,
"
TTT
"
],
...
"
DS3
"
:
[
"
CCC
"
,
"
GGG
"
]
...
}
>>>
s
=
Structure
(
datasets
,
kmers_dict
,
bloom_size
=
10
,
num_hashes
=
1
)
>>>
sorted
(
s
.
query
(
"
CCC
"
))
[
'
DS1
'
,
'
DS3
'
]
>>>
sorted
(
s
.
query
(
"
GGG
"
))
[
'
DS2
'
,
'
DS3
'
]
>>>
s
.
query
(
"
AAA
"
)
[
'
DS1
'
]
>>>
s
.
query
(
"
TTT
"
)
[
'
DS2
'
]
>>>
s
.
query
(
"
XYZ
"
)
[]
"""
results
=
[]
self
.
_query_recursive
(
self
.
root
,
kmer
,
results
)
return
results
def
_query_recursive
(
self
,
node
,
kmer
,
results
):
if
node
is
None
:
return
if
node
.
bloom
.
contains
(
kmer
):
# Si le nœud est une feuille, ajouter directement les jeux de données
if
node
.
left
is
None
and
node
.
right
is
None
:
results
.
extend
(
node
.
datasets
)
else
:
self
.
_query_recursive
(
node
.
left
,
kmer
,
results
)
self
.
_query_recursive
(
node
.
right
,
kmer
,
results
)
datasets
=
[
"
Dataset1
"
,
"
Dataset2
"
,
"
Dataset3
"
,
"
Dataset4
"
]
kmers_dict
=
{
"
Dataset1
"
:
[
"
ACGT
"
,
"
TGCA
"
,
"
GCTA
"
],
"
Dataset2
"
:
[
"
CGTA
"
,
"
GCTA
"
,
"
TACC
"
],
"
Dataset3
"
:
[
"
AAGT
"
,
"
TCCA
"
,
"
CGGT
"
],
"
Dataset4
"
:
[
"
TGGC
"
,
"
GGCA
"
,
"
CCAA
"
]
"
Dataset1
"
:
[
"
ACGT
"
,
"
TGCA
"
,
"
GCTA
"
],
"
Dataset2
"
:
[
"
CGTA
"
,
"
GCTA
"
,
"
TACC
"
],
"
Dataset3
"
:
[
"
AAGT
"
,
"
TCCA
"
,
"
CGGT
"
],
"
Dataset4
"
:
[
"
TGGC
"
,
"
GGCA
"
,
"
CCAA
"
]
}
#test
structure
=
Structure
(
datasets
,
kmers_dict
,
bloom_size
=
100
,
num_hashes
=
1
)
query_kmers
=
[
"
GCTA
"
,
"
TCCA
"
,
"
ACGT
"
,
"
GGGG
"
]
for
kmer
in
query_kmers
:
result
=
structure
.
query
(
kmer
)
print
(
f
"
K-mer
'
{
kmer
}
'
found in datasets:
{
result
}
"
)
result
=
structure
.
query
(
kmer
)
print
(
f
"
K-mer
'
{
kmer
}
'
found in datasets:
{
result
}
"
)
if
__name__
==
"
__main__
"
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment