diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e8ce37eeeabd9aaf32b8868b8f8e1641a066850c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9424e8559987243ddcb68bd262638cb909adc3f5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_JRM.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_JRM.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f2ea851dd719eb75f0ea023b947f357345f54400
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_0_JRM.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f38baddbb0c4b36d4d0ba648fa4542cd2d327a0f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9c8c3e225884721cbf3b519d98e55fc5ddd9141e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_JRM.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_JRM.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8f5fca81acf53d050b08eecdb94bfe86e197fee8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_1_JRM.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..96bae1bd10560be7f0b54925c6fd491f95d954d2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1a160dbbbf71e9bcf564ff31f5a81612e2ab2541
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_JRM.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_JRM.npy
new file mode 100644
index 0000000000000000000000000000000000000000..543d9152b480b8095fb984030a63016d17a43ad7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_2_JRM.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d5ccc7a5f2fe9e5f185659155f1f2724e40df2d6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a7af5f954d9ab1ce28c9df4ecd5386a0a2fb4730
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_JRM.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_JRM.npy
new file mode 100644
index 0000000000000000000000000000000000000000..317f07ce415e72f76c981890805d527bef3a7fbb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_3_JRM.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cb2820c1354ea87310f4bc1aac4858bc3fe73058
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0ac16f9a7753692f545195a01a4b15c061b2b144
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_4_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_DCTR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_DCTR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8293210300a5963d3000e4dbfc482ed58fcfb8ff
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_DCTR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_GFR.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_GFR.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6548c0e5e14b14b114cad274736408c33117d52e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/DCTR_GFR/train_5_GFR.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8b733ecda46d1e53d26fe9cc95d1365a86ad375d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fcbd87c79456b50d783adb50b82bc6914f68cd2c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7355a09f82fdd682c033700cb6b565f4f95a89a6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a0ffb99d21079dcca89e212d556c28180c0ceee6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..082d87f62ba5b71be4a6e3b6961976ae1ade0dcf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d83a0b352c517f6df45a8f4ded97000a3cf89c41
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d496027824a1e8b5a9eff1eadb2433b18b2cf3b4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..42ac125b3f50324a6c81f01532327e34e76315a6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fa07ca7e3fa0c8d63cd97066bef0020fb9d8a06c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a0cb220f3089d01765057811530f8266942f04c8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6078a529009ec2567eec885c42edbde500c4931a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f96a5a6af9ee7a498ca271ffb92bd3a628868716
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..645ccab465702bd51ae3570b15b7f6a91480b177
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e77c2f36f763508575a68a52f71c10d0caad642c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..560d5d1fa800bfe4fa055d7c723500f68d15181f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c3715db151dc619550754bc836bf23e179801419
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a0de9595a7aa01eaa5e455158e8e48f207e58ea1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f8e5ff7922f371640d97bfbd1a5018988e51ebc9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c7ba5401d1a5e3c706ac9e0a4980e8ee9af405d8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..442fe170fc73b44ca317bac8e7194ceb8c890488
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..278523aa77f2bbd53014de4ce18202b5d900bede
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fe0d026d9ed813793b9a1a43bea90a26ba9566ef
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1fd173695e07c0ff76fffb4d051e40db3da04dfa
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..93c3c2b02d370775be061ca651210ea8a678f2cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c60f62786b0d22b8faf134e7a6c0ef31e6fd83a7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..eeb6d7521ce892d51e596c6c38087865b1decb7b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9b79ce3fd44cca32d1d08c38145c6f06839a9bcb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..652c8f44ba8bbb07caf08bc3e26ee0146cebbf85
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..635701a0a6bb4e7a5b514c91cf3c314542d5e36c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5def122dbd55e3705ba1236a2bbd5b5f95f7f635
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a6aaab6bc6e0fb8045c7be77545381f1928042a7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a6202d2e3fb1fa68495573d00aa6c4374d6c2c19
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5cd84c4691ffdeab6c7b205566aa4e94b22f5eba
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2bbe36b5e4a65b042a88f2bce740cfee886245bf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..71fa72c248ab88f49ff415034e0b7c435d0e1626
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..248ba23ba7e841d22923db3ed776e2dbdc422b22
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..52b8b1245aa1d0a95f7c24f8cb088b6762a29f91
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..99ee62fde15b203bd522be172d6a1a8544522e88
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d07173cdc86ec4abd0c5eb6154b8d65276d56874
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..855d7876d3ee76cd2b95154148b89a5c180acacf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e485f9bbd779e6f215ab97e6998287728589d532
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..082c2edfafd07efde9b2f72368a1cf69dd4afa13
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ba8f893e35de6057d5035dc475c922bb40c034fd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5c4956263fd2ea58e6f8f4e5f82cdc3becd4b448
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6464161b925c56d578b8c7706f66b4db80e2f799
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e0e888a5acd9a94cb96341487286e9b20992aafd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6c50b36a8ac59ed7391c858f16f379cb3a982d6a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b642a0742c7ac1d3439084aa9337d2a5aaae8ee0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/cover/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/J_UNI_0_4_npy.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/J_UNI_0_4_npy.zip
new file mode 100644
index 0000000000000000000000000000000000000000..96773a6975d7c343c3a365fcfa50ec5a280f96c3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/J_UNI_0_4_npy.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:981671c333f2367d35a8a8b1ce49333bc93e5fea48b73136ebead1bb411abc23
+size 779387334
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d86cd5579bbb7ff46aa649c1812858343b288bda
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..03b2ecd8a53c99b1a512f48d02231d40bd39dd8f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..13eece9f526cf0f3ade9162c23a5d0d5654bf351
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ea30406c317e0d6cd57c5be94e588de0d1b1da6a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ce113f393e2a38fe6052ce56853a1c1dd8b4f0f9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..affcee1696e19cad02afc68b28b070b71dcf06d3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fb4de1e188199d2d1918fb92d54e585dfdad988f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..667573511681310c4ba85773ab7847ecc6e795cd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..983ff500ec6cb7dad9d92c45de89e997e076639b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6bccfcd259c014ba637ec05470953faaf32454bc
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b4e05f7708a79c556889ba73ebc6896712c061f4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0e2f9d30cb886b607044dd7936cb0537b069725b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3cc843da7a72f12e3ccca9177caa7a68049214af
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ccf387c3d739baf093c7f579e3eede161ab8ee7f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..91a99fc56e2891ab406096a1395e636ed6642a29
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3528365457a2a5d97ff4f5e00808811ae58baff5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b8719f18336f97ab861030f55bdc41f7479ef052
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5ecd501167920d0e2e731419afae62a9128a9946
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e769b5a5bbd13f1007e09cf433995d781ddb640c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4d8686e8e2a0c92fd38c185e32ea25ce221def92
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d97256664bb9749fcae50311c2dfabb8195a4778
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fa404876b017fd324b02973b2dfbce86bf664561
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a76111e8cb8b7e6d6d8fd4b7c37b29b37671e6b1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1d80d16e79b468aacfa6f15980ee142e04e495a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..57167b0d15a7948bbbea8809ec0905f587fd26ab
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..97027d7b885900b4b036a945336b941387579e52
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e9349d08dcf88994a24c880965ced58915e98f69
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6f8d55523ddb117ebca727041ed084ec1df15191
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ba7801bc6b3b70dfd107d2d6117d1128a23e116d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bf998bc6c6d7baf0f811dec28800923c0f6de44e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c971a21200647d0c0357101148948206b51bc0bd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8a6388305189f84e994edcf509a14f1d3b59da51
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5f4fa97bf12f133da4b2aee8bf7ef0c620e01e94
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..23e0670e6fd36aa08f6a470343358d2973eadc2c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0527450971be62a275fe3985e4ed2f30b94d7c26
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1e5567da1143dab3d2905c794ca5030cdf737a7e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fe4a67108ce86098112ae34838d8469bf39683a8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0d424d8147942c2b80698504c32d43911fbab08f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1870c86704a222c164d32e364bea4b4045fd148
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ce6f3f03a55213eea1334ac84b8455bbc127121b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6789ec5ade814adddd2290ef834c289f480bc8ed
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6900fc5fff2c3221d70cd5c3f6ae9ff90938c6c4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..305d564baba52906dff3c2a767da82913592f29f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cf5042cf1865f9de8b6c89cd99331f036b877878
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a4fd8aeb462eea0181086632b17bbe0e66893540
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b32dddcac2b28ede95dec1943882ae38d03be711
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1e079eea135ff00992feb82c93d8915364e93247
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4a62ee7d80e69b84514c69df8dddd8e2d790b454
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_0/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f83bbf15e8b5bb5355315607a5315823c6be3be2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f86ea6132732bd953861ef619aacbe08921bec54
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..87af5b2420af103bb7e714e6e622e6ddd3fe61f2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a4a0aed91bcc4075890faaa79843a7bb396258fe
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cdc857e7cd75e79babd7872c87074fec4ae90de4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4e72ad46ca3f2f34a0e1e2408831ff3977eb8fe1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..293746c23faebff38b42a08a8c61ea994389c902
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..85aade5c339631b3b2edb585c49675187ac05a20
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9a9de569643b439b4dd9948e55a34b92a9e945c9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_cost/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..8895bf1b07246e47bc2c5734b590b42113428060
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:997ef8753b406503797b34de15c45619d82964349eda9f3dde3b92dc1363cab5
+size 811016431
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fd961b631a092c8de761863223bcf17f9da4b31a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3ad995a28c834fbdce0aa6370cfca4e3eb4507f2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..84b14882f85f559d6701acca4581a2808c7688e3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..65cefd46d9256cf1bb7f27a42afe8abaf569a0b8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0ae62b3fae0a5cc1164eb1f764a5a2f690beb011
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ca784420535edf12534a969254d7dee2a13c95da
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e84e8c34d02405d6c5115130ccedfdde977fcdc9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..22c8780da1177f2ce7d79a7b3751cef4cb2d8605
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..58db5b0b0c8facedd7792c6e9bdce85a32da864a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/adv_final/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3aafc4d0c421a868f7b59f453bf51769b3ee17ea
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8302fcf03c7eac96db0e96375639ff876653d619
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1f0a922d3ce04e4c8afc9b7091635f198641147
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c05b4349170a971dde9ae32adfd4278043cf3452
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..49ebb9d9030a69ed15dfdb07620e9b9331aaf1e2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..df008af3a14052a1ad3f1257c854ae9fdc3e4a07
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e117416181071f38f91b800dcbb08a9512ec218a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5936e6907fcdf439a32b01d04c6734e567ff027e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..62a830ff9e4bfdfa2d5aecb9c59f250c6394ad63
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..12716e05fa3522dbbb3836e2550978e35baf5b2a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8c73fe208ae198ba5998025aba1e59baac71db65
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..79e61c9e4e19dc8e1de2e69211dccd33249a922f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3f45ba01d99792238f702a899701f7a652f36116
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0e79dad8e6cb56202584edc58a0014323f94f8c3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6fe05df6d786e4c9977da1046c7a997b820dcb27
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..945800ba1555d844103dc268d0db4d32a030019e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9308028abeeea70d7c73525b57f91e404fd9a593
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fabe555f8e8f1c4eb6bc06f478bb8ced50705b83
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1a16686eb6f6d1b880784c621044cdec60267e03
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..53e1de31ab634fa8816cd5a46cd681aee15e90e8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ba65166daa1eeb454ec2d9149e5a65e933cfe2b9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b150e589bb44f2be6bf301469db298a892c215cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e2875eab1d50a4656b05f82a771995a9262bdeff
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ef87af24661c54864e75230dcab79edb39bfb446
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..968de1db1440cf30c8248ebab9509cc95cfe704c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2200900aa871910f7317f65b8b8fc53acc4b70bb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4471a4bacbf5307a539b98fa3ecfe4418a415ee5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0395de3ddf34afb5961e4286c203053b88bdc69d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b882a9ac165f90fec4eb67420c9f864bcd9aed50
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..215f4c5a88f62a93ee93e291779c8074b152f310
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6229373ef5b906bd75eb602f79d942de36861473
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7956104d3c092a5f24ed48bbbae505fa76d87028
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f8035abeac46e2570e79895dd8bfed69c9b7041c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..41e81923df4f300392a7d5bd2aecb2c2085909ff
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..dc92c1c5bf41e7e0055ec138ba9542f2bfe83bc5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..108e48c0aefabee0a3173358a4c49fe62ae7a0df
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2d326ba93dda174f28905af471626616e3ddad9f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4352024efc540aced0932e23b983cd034978828d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a9aec3c3a78f425695f10c933bf30fd99c268e56
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8082b376bd065aadd8e9b9b9ff3a2bd1c2c8a42a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7bf14d9c463a332e3935f45e81eef5b95fe8e18c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ed490f82b2d6a6e7dd21b80544c3cd456a7ba1ef
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..eba64d94c2f9c2cc2678dea92199e0fca20330e4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4251771fa5f39d37271a648be7115b2652a620b3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a659b6122745599549543199de8f253a40a8de11
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8c940fcbfc6e5e678ac699859e9339887c6249ac
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c912c745bd75f68336e0183c67c061ef40f05b03
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2eb8eb5f0ffbf62d13cea7576644688785389d50
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_1/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6715b083cdcd59b2abd98688fa1f2b6521362c36
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..afe804823bd02a40257fc845c53184bae89c6e46
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9040e2395516b7a916a26fc42de4c55af43941b3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f78c1a8b9aa5f80c37f2ebdb9d3ecb6c603c0f5b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..572279002273af03c39de537d1729d03c83cfe39
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3c0cb1452394e13b7d43c5f8b550c9750e4ffc46
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..dab0c9d6e1af9dac959afed1ce7f6a6853b63073
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0fb1656ad695709c1f41d14121433f80052f937d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f0155da48afeb77b8810e0b12c797ecb9daf4d87
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_cost/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..c3d65f16b545128f23048abde365523f60206295
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:de812db1ba2d25ad60ddd36896f923b043ea0cdccaa43b85d9a36ccd53da3bc8
+size 806104610
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..59b274865e2e817b342ba2fa5fb4853e73bdd248
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..549744fec7a9f042f8765e78f651e1c11fba3176
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1c12e61d0e482d4780457fedeccd02a5775a1240
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2cf155f3aec5b386de88cbb70e931bc609690c24
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4c141ab2250fdbe24982ed8deaa1e83071e870e6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..afc8d2162e4cee3e6d9e41af73655886b99e2b9b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e7c90a4c5b0365312c1cc77cae0cd6aab8569de3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1f07850a31d9d9b02759c646df497bd16317619e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..77b6b6be609a1d9b548b3a7ffe28a6fdc2268c90
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/adv_final/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..44b1068239cbc7cc94927b18f9df7d74f565fb97
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e37eda46fc78b95ad1a12b7b11253f4914478970
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e92550241231f277a2a5abe2461860a90824e0a3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..45b59aacb810cadb0380c214b8a371cd8753482e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fce601a12dae6a9554a49941c2d07b2d8e833b3e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f65316e078edf9b6184a2cbd0023c8addafbd89b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..123f572d39ec5253f03e3aa5a17810ef08b9661c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6d9c324ff50939f1e7d4aba7534b5bb978bb1531
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d3b102bf82bbaad93334347b7bb96d670055267f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..834d5b111993b6fc5d9380ab538ebe6c8541fd5a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..596ef6e45c5d371ff1ac6e5803ac2db9a8745fe4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..85102ed61d2f423f659f2f15597aff01434f78b5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..21800b012be41a4cbd1da4701219d01a0dd0fc74
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..336e7b736ba880a2e300425245a23f2fda52586a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0aa160d7558dfeecf0dc2d994194468e0188baf0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0143a5248e696684925d13cdf5af0733e81e15d2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4399bec1dd07812ca545992a359e0926c3250056
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..62d055ef3f1be617120cc490cccc351ae02e344b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0fc4022ad895901db68016436afc1b69accd9ce9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..77fdafa778c51c1fc000a81293eb548e8b3117e8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c859c0bde5a807e7236b117f81774c8dd507355b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9679102e63fa2f5d603b3b69bb061c77cc27391e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..34756acbe51b00b5500f52fd848c5461fefa6dd3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a6801286a4197d0d522891d40c2360411662ce5d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..300a1cc1fdb19f26a52ba05fb235bf6f3e02d4a0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ab24da55ac5ce209e9d8c27d205ee871f4db39b6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..62b21f77653de40a034153074eb9abd89a843144
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..07edb1917bbaac1f02900cc3aa1f82adb0083381
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..85c20514226e76cd3bea5def1efaba49fdc7d6df
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2deb63d2dd352cfe8703922cd255cf57655ba3a5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7e118541d1e4bd233c3d27e02dabc13c3c2ef7df
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ca1ee62f307c3cecc2dfcccd3e5698fe44280440
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c76ed1874983b4f296a19c61e0a1438451d79d68
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..56e7d4230e5f3d18adeeef376acb21d424bd44d3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7f45462a48f728ae128b974faf3ed317c14baaa5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4dbbaa2f4159b1c77e45ebc6abcb39a6db60af91
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..96f300097a37445a85c5d65c0966fb5810915458
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..de2c19ddc895f14aec3633155d018ee0b098fe4d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e01dcf7a3db666955e2f78a95ebac7de7c0621af
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f8f891d80c3ed8e67a029f0b0cace9235672f312
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..964ef41ffe897ccf0ec09ea1e206b4ad3de9d637
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..016195941c0c60515dfaf50cf4e5286afcbb03b5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9910fb71e9e86dd1b7c8070147da538656eb1178
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b5160589371c874c9aca1619edaefffd4b69597e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e59cc55842f218b5fcf3a1fc1831e6670ec65498
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d765474e0eb158ba9052e86e776aa1cd92fde96d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..87885e9a92340d7fb225ea07fb41649eba0b6b74
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d12f09a11bcc4f2e27691957660eb20d483d9d5c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_2/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..168f5b05e35020072d5ec4759616a47b372c24e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4e01687ff54e073846ce822ac522ef22e7ab1980
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0a3b1f8c8896c7ede52cffedf2f289c62c056708
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3dda7e4137c98b56b03011c7d22ea258a6e35554
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ec45cd4a4324169b5ec695d090051047c336b52c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f6c2adf8c11e635f4d552cbe9a2b3a159eb26a4e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cf396791653a0cdb6e7c70df90f9ea0a2682a33f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7740749ff85c68322eb248da8681a00eedc156af
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b53c014708d6590b2f642c9ca08cd065956df124
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_cost/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..b4c7cfea8f84044daf7b7bbe2ae7711788642596
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e0bc4ca11d6eebed3200d907b2bff77f36b8fe7a4fa9ab4e770d3c32898c6d57
+size 790028016
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6d484d5e4ab4064251628bac877d6f817b46bba4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..59ebb263b21fa637d6be83c553c4134f16e55e37
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bb207c5bdccb8355f16c912b05dc6e2f1d7299f9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fbb77c802accd8b3d453cffedf3be26b42665180
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e4737beef0febb654939e75d77c8181755d5298a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5e5b154831176d9f583403554bf54c8c0e4ef544
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..23863bd6ff97793eaa4a54495d81b12906c46fc9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..58a59a6460b539723af198e180dd99e879f41f90
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3407092d1c0db931380606bce7332d5a2982d045
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/adv_final/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e8d2052138e31a39ad1f4e361ba9eec0660c1ad4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..92700b37877e6874229887c6edfe4984e818bb25
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..198b69a000f81e89d195fecba9a1b47642cf2307
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5ceb57441532c08afec5db429f42744b7e7024de
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d8ad53de153b08c489e537aa29f7875f7aae6c63
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e0816cc4df0db8891579600481c7d9d3a1cd3a4f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..16a737409a8fd7221ad24db4ac539ff983287543
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fdd1379517b8afc6825f6efffea6813ec74c60a2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d76e95d37f4fc0f31c94309ed461e418d46cd8ee
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8d12e7ed43df7ec997be4d664e06ee572f4dd722
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7caa9f8ea11ed81e3e620ce8d8f027a57212afef
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..deb8fc000856cb1fd7c6bb4ae24061994a91cb2d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e2bf90baeacc1902fa71c2049b46526569bb6cdd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..11c78e6492849b01602aad9acb58e101de7c0484
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7e6e22a4848dd8ddc4ba53a0beff9d612a9309e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e015e08283325a0d748d7f4f458ce91c23c07db7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..932fbf6956721062f9eb8eb8d1c3a1996f12281f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..dcc0a91e8c0e7b346f7e98f862d6d4cd73d0a5b0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b56566bd7bfa77f62b0fe798ebd0413db72c3af7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..29ac1c0668020aae59b6a8bb0b2a6843e9dadaa9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..aa698c6f146f497d909db8bed55573af4c816aca
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d56cde2ca03d90241983d54cf1c3e548e19b78ec
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..88ee087bbc6bf68bf67b914df055903db3bde483
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e84f63115915fa70e959ec3a8e5cb62b0b6cee53
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..55800dd54ad42401299376bb7e4023d0805bbf71
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7f2243679db3d4642474fd99c211816bb1e70130
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6df89237b4f2636870131ec980eaf99fb0849aaf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..352ca445c185a9b3bc54d38496fe3104834be1a5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..94ad851a955e95e837e1b34f7cfa17c60832be7e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7dd5e103966a64c8392431baf8cfa49103f4cdd3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cbf7282b932d05a33742c12990d2083431a305e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2329d9ff2250f8242f00d5e8010d2327b3a2a920
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..816be96efc6412ebfdd1e60eea83affdc3eeceec
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f2d05cbf6f06303e5c83d008972242befb1b9bf1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f0898bd2f8b12a35d1379d3e13e3069e40bfdc0b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1d6997b0744b8b5d3913fdf87ef33e2b51435f3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a2a65cb17598ea1f497bfbf6d02cda7866ec193d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7c9fb0260e2c9e7a21665f7330755330f4e896b7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3afd3de9019969f1be2d6a6031c9d0845c5c72f9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4a2cde69e418b0719d3c515373b2840563cfc589
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fdc79ff3787bce7ce410237a6a8be143e14e838e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a93e2ff5bbc342f7f36b48c7f11089789ae0a0cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e7c34b48e14822dea9831357c8c1537a5b12829f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c6bb650bba77edc46617bc690c712b2af15a84f4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5c7b674587d34654e0c49e79915df70b498ffc5a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d838c6b32d3a68ee1da5863e06b6d8f7039ca502
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cfd951c748d0e464558ac2978b955ff19ff34cfd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..719c6a5f2774152a5bbba02a6e9e1961dbf25ae8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_3/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..01f15b14e1dbff239e8eed4dc6b93d2e56356027
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7678ca1dde6e3bd3c58c6dc36d9665c31535e47a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..309e10d0f13442d3ec331a7a2c817d682f44a477
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..299f1a1d07cf64ca45cfa63099d7f569a9528c23
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bdb441d9eee21362d0ac180643cf474c393eb2c3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f46b54a7fadaf5ff6c642e6bfaf74c4694ab75da
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..efaf2bb3ab07613afa8820bf9e25b704e4b53188
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_cost/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..1238b5fa80f0ee4bdceeca872ff122f794ebfb1e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:87df29474a0b2dd5fb9652e652958d0fcfad9b9aae1b8634cd7491d0917fa8d7
+size 692731812
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..feb407284c000cea782d4b2f9c4ac61ae6488931
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3c9018e488626c9beee1f67757c5cc1cac786edb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..500075b8096683d36d9a5726818218e632c96cae
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..817c6d5d090c91b7b00c2332647696f7f2fccf20
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/6.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/6.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ed04fe089454f250b42525afa4b0dfd43decc643
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/6.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..94f5ced536573d57ac8b7e24b017f6a3005705e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d05f2a940e68c29dd5ff5cb93a3ba71cfe892e95
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/adv_final/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b70ab5fe3b686d2eddc0a6a3a12465cff32c5f4e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2d235b194536a5e089fd997f37dd3e1c9a2785cd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0be1531777d58bd12a1231fa20459f730e74f0e1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..659312298270c3f818da55ed1bd8b122c28130b6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ba5f7f706291945ac7515f351874e95623bdd052
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6f31d8273eba3b368f6a7dea8b023c0224a92398
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8bb15a69232cf48952c09c84aa97b58f5e5706f2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9fa6d4d35d8a37e2acb213288567de63ae5ef599
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d06471614837017c68e0225e2c729c508e2f53b7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..72fcfc4f355e23a5848521c8aab3e558f5347bd6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6a3e6cff8af7c180a0ea9c6002c14555f5fc3ee1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..32deefb2fba9fbd4ebf65cfc1707978df061f34f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..046b6c1e98cec6454718c169932d1e7bd3ec39ae
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4caacc79f871b4981e81255ddd0e0e25d080e353
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..59663826d8cbbd6c8a3bb3971890e720fe6b89da
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8de428c49db6f5367cd7a4892025773767d8475e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c98a6f76e803e574dc532635e342c8f7048445aa
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..67c2b702946f0b2b36e4b4c0cf0351628961013b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e2c1a45f965d1883942b6f65030b0f4dc601a8a8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7c32a368431cc2ad56d4f3b8ed692a626adfe4a0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..313038f5079518ace6b53575f597ffab7ce2645b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..538ac8687ae5a5c38df263adec57cb7169ef64fd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7281b4860fb9c92668f94e6f5bfa519a273cc789
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1f4c21f3fed9dd7042fc507d5a585983eab2acd7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..78cccb4ceea35682dafa6bced37c9af0dbdc27e9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a938c10b0ba5ead08c04e03a5550051e8a319f96
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ce5ecbf57f2564713342aac56233598905b5ea6b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..47f8455397fd11a9a16010a8e026627fb8249cb4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..736529813526d331840bdd69425bc1b3e01abf50
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5557e74c63171e4be1937544f4c30522f073a179
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..408cd867c06265d077c1cec859e34065c2163692
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..858d02ca346fc0d64d4ed4da581a7556349868d5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b627918f85868858758cedf53354b89b305520e3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..26e7c8ea0e0b08cb9a66624d1ee0c99bb20f4e35
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9da06bfe7bb60f6289c40cd997f0fc5e2418fdcd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a58f6e26bee2ea8cdd52ef9803720f315f2dc53e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3f9d40b3766b6edc3469d6da5020cde487afc941
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bafe1ed59e6509bcbf72583fa99d1340b95d6e02
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c965c66268cf211b78977fc9bad34b64b9f8f850
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ecc934b521cf0916a3e62ffe51bcaa187bd3ef48
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..10e1cf9112aab3e0349f46c155db8cf0a9db5b31
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..835852d8bbfc66bfcbe572aee9004a27b92814f0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b9c3f2408370b161c71206a3b8639dc494cb8acb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b15b5c81dcc11de20638aa36dd8047ec8d0aa492
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5eede9a84dd1483e9207324cf7ee10d7a647b7d4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..23225504affe28d75533cacf3a46cfc8c9724685
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..49efe466150c793d3691f6d42eea7c6a6e807eb0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b83c534f4f0811f484f0dbfe229fe6b8c79d52d8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_4/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e40ad9b1daac8fc6f4c310107763ea50dbed14ec
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..080a13c8359631c0e7d38c43034c2d2aa48ba176
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..94f5ebd44cadf78339c5d7d943978a7b9915afad
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..27a817cbc62c42cb83afd2171a826307e2ba7198
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..585ccf93484f5c8679fee1151ffdc8542a7edc9b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b4f7c127328464a54b786f905453c69a26cd8ae1b23852d27cf933c53d335b9b
+size 333317563
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5b4a46142e79a48b255d2701bb81443119ea7540
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..166502468c5a060f65eab1f3dedccfd30a3e32bc
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..44d7548d4a241f56acbf050185a077fbbd08c2be
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6793b0690d5bca499436819b463dd616b55a4d30
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1506396ce0f60fcec3285462756c462c7d1d336
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d02f5c4f030d2f9e79c2ea805381d675778a6eca
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a8aeefd5043d8d38fcf00f9c792b591c36008012
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0a3149ba51f83ae203120542ba7ee54e5f1e1dc4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a9bb8e8a10e0e97bc6994c79b36cc33a3d174982
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4bc036177452d54ecb56be4192f7f7a694130caa
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..28b9458e8494d2aededce88937792a6a611df385
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ecbb7055d00df712c6cd58a2f82c41c63aa697fb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0132cbb16ae9fc68d36acd1f5d2f4b8c8570450c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d89c2f8e8ee01c8cf5d997b9aa176e7b786bfb0e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6c7c8d0aeeef45b0ce5ea35fd2b00c79c88274b1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b610bd0803c3d1a27533836c10f22d910d5cfa28
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b3f919bf4e3a8689161ec9c3fba196c1d78c75c6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b36fe5afda68fb8bcb21cf3cddb280ad229da1bd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6d31dd13c1c7d56b353052fb5c1506bb54223839
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..95a24311c1427f21a470e53a5dcdb8690e39dd4e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3e64244eb4d2281d533fffaf255a3b44b6d0ffaa
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..181821c4ad49e0fc4849f8286c819a027a4c77d8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0e566b5c5c0a15fb283d75df47cec86bcf9396cd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..05c570c98766de38b6331ac3f991e8da43aaf02f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2de8935d22dadeac3e30e15081b5ac195acc5695
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5323a18fa49b1dccca62b36e60912754f7d4205d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6314665bc2338905a1bdb4ec0e96ea3f9e711712
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a77ff8c927909cfb34decad5bfca05d659526bee
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a26763a54d9d0457ca35123b21d22ba3b8b1f831
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c2df7fd650fe66a3e297f78a1d22d87d22b1b4ab
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6d7a65a0e1ec4b438399289910fce86b113279af
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..653f1258932b2ae8e04b8efcf169e6143edd74ff
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..95c9a3b032b41e5f447c243acc309f737b4f7a32
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a76ec23b2cf736dcfac200f7cebb85d698a433e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8bd490f6b56849e21db8760748b3f269d6574695
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3ffcd46b78c2147420d9ebbe1f1b120a87ca6708
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..34cdf484b8bf1afb50c63f340e8556065828cc74
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..aada22c1a3096a56ff4a92838e60afacd3fa4a91
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b248e6ed27897e90b4e020b6161f1032e93fc568
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5f12bb8586021771217b7b9f3114ddfc30ffdde9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7f45a6ef61e97c14a30355d833d13981da09b058
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0c8f4938efaf24330a820fea541ef4036f5c8356
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d1a69e2d86a861bbe92d5450a5876146bb9314f4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c05efb07e419ba0948437ffec93fa9d327d519b3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e7bfbbce83afa981d4271fd7712c2fb4bddbc2c8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bf3942cce12c2575aaac1af265f3af009985abac
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..edd4b010f2e2199ccbcfc7b3c1ea9ba3b979c452
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7f915387ddc34e01f0d640ed0e2d6e14ec0763d0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ea1261c9ba83a5f2172de6f99ae2d683ee41dc7c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cad43b31da178ce9ebf9eec42b8af9793aaa87e0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..41b411e4c312940006046f7ce1791939e9349873
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f893ea24cd74075c04d9e5e6ff92c37e45926f67
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_5/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fee437cae778b6861e78ee15f692670b7c5afcc7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..65dffc8e157896cdd69148e0c4c0c7d78a65a2f5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f6c7eb406adf463758c7ff98a514462cdd0a7172
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d8f446fe6dde7a0291fa321f17d05a7bb8f4c9d7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..fb098fa3bc97d570a7931044a534bdae683d61c4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:26272903cfe4172aea8c5eaae871414e22ec1c30c78d2f45c1fea93865352a7e
+size 511705288
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/3.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/3.npy
new file mode 100644
index 0000000000000000000000000000000000000000..56ff47900a7a8a6b97cdc20ec6f9323ad6f357dd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/3.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..273924b8fa5cfefe0df6f96c400c04b6e7b6a248
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6ade78533c854b398182e607d376706616c74b86
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3ba691fadaff0e9dbc293e3ded06f733aaeeabdf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2817eef0cf7a5b1b3556a6d1c74a16a5ce94ba9c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1870d7fe0915ec79de765e5aef3346b4fac176bb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a5aa3004f593307d99461750ff9af1c6ba65f507
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c3158e61fff2a83b85499bed610afddd211ce71e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ee0f4b04e2a9310c407b264afe5dacf4e15ecd6f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9a82dd943c928399dabf536dabb7976681ba3cb8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..75d99e13bb188036c6a26ec0c9bfe24f756d0369
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..861e23c93b442733ccf9d2493193cae77ab04524
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..130bab691c4561fbd3a3ed1a70f487d620726133
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..663f9c61332929d36a9acc20ea0e98c6b7f63c26
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d05e79c858a86149dadda6cba2a52c113c08fe9c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8ae84df50225a042f44fec793dd5d104c86c5029
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f0b91481822d18cb80f99dca8e3b2cdc78b23c76
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..32423569ae52a620975b54b0ec4f4bfa998ed364
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..70a905b87511afaf084251f1d984c95406230059
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e0fe313167ae86955dbe7d2afccba1db63567faa
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7a21744530d8a663f327a13d322afd7d8a18e087
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4cc5aa3fc9e940bce70980300c423a0ca7814b6d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e1fc78efb27fe22a2e7f8a38c8c0e13188b51fd0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e4609219229b0cbdfe92fef86a3ca2e069fc4c99
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..77b3337121074aefce7220a39b112ecd32de14a2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0570fd09858bb19b0b5f5728411f0e0930682edf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..79a126af9cbda5b903b4e7b7252015c2729c7599
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..593d90743636725b8cda728debf705124bc240bd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6489b9afc661f81a767f42a23a7a26a755f3b81f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8e4b98c8a616ef1867ae4b00bccf26586f11546a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2797319a22d5b78a8542f129718c11442ed31277
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7626b63bcf64c571a8f4452709a3be914df3fd61
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..414b21ab751e898d1a93e4532ed834cb6caa34f4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..15c94bad6cb7073cb72aa618961da13371fcbdd5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6dbccd27574049af0599b8ccdca7781b5c7a795d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..718dab93d920b23873a0a2954b1b1a7ce02cda81
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f6b201671eca60cd596b57d5821b623339df9229
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3fd34c923e8811efc0eaa19d5a3f811efb682119
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c5c7b46e7aa7c4b002f5934b0616e65ecde90cb1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..722b9a6b2b54e722cdf093ace35d194306fa31cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1fbee8ee0427c1905d618f997956fdf3a31be142
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6dc61587253720a14013aeb7ca6cd8435abe2341
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5cf0acab228fa2f041d2ba06a22553b56bed3883
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b0146fef868f5253b1d29f430d33b41d85936cca
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b5fe3ef2766eae079b1e4f4ea39b3a56ff5c0891
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..86906b5915cd3a9ad2678c67383d52ea54bc9867
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d41e92af9842afb0fc0ef295e2c18b0f7fc991e6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..010efa5cf09d1693e99859d25a0d06bd58612d34
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..02f08593f82e217489b122c8163346c3f16c72d3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4163b471171c148ac6b5b8f788b62cb0d6a61d0c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..456e8bf7410504fce6070fc6513e080500f0e998
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9f5aaddcef7ec9c1a91a9ad4f606166a3d9b80a3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_6/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bbc53a0e9a32c2dc459825a234786295d5a41594
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..96359ac401a8581a0ea2b13af924510e8c5824da
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f41ab4c638c6554d6a6f7f9ca1d6b72ff4ca2fb6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d4720a9929c00e23544ec9f809ef2e178d3357c3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f335263e87652d3adc81ece1c663996d084ece44
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6d06a65a868482e3d73bf5861ce87d58c277fe6e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9ceb919de0d4c6508fdb260d13339cb0faf369c9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_cost/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final.zip b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final.zip
new file mode 100644
index 0000000000000000000000000000000000000000..101d39188a1a49241c26c9193586c368b5712be4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final.zip
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b08d44a26881affafbbdd84b11d0203b0c957af61ae7c9dc57cf6180c49f05ce
+size 514071794
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/1.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/1.npy
new file mode 100644
index 0000000000000000000000000000000000000000..82f60d01144678daff1a4f69e25f5a86f378e848
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/1.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/2.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/2.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9cace1c68789e02cd2440cec09a0ab34d67716ce
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/2.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/4.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/4.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c2644df68db60c013865b76215f57de5a14590f9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/4.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/5.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/5.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1e523e49d3a0eb84bacc2fa7eee4bb4b1ac43061
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/5.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/7.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/7.npy
new file mode 100644
index 0000000000000000000000000000000000000000..114259bb3b43f2de9010ecdc9097eb55f63f35b5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/7.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/8.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/8.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0b4b8162f65581d7b123ce5e575974d030c6271c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/8.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/9.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/9.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fe4ac6e6bb2895ba714f565fd49abd5f7116bd6e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/adv_final/9.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9d94a106f54c70fa3a83c18ec5176757d9004b12
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..59c04f90882f119d152625475eba37b0e1d0e5da
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3deec5592f9ea9cfd99c13d888c74953ccf7f26a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a47178ec1f19df4a19bd1f38a6ef792bc8ae15ee
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e230325c1fdb4e0faf1a35497b0d217b0e2993d8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7b862a4f3021184577bc08d997ef32a3635ae301
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3e78ffc2b3f695664a7b78c3aa79bbb6512a6035
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e2e00e45297badb3cc210d7db3ecfce5b9487184
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5f066949bc9bc3d61790604fe2b4a776ea9f0820
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..5f3b5504d21d17d13949c21f4ed351bb25263cf9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9694c7805f0ae6e46ca644755e4448d8c2686e36
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..85d4b1c40e5d7f29e2924236b5ad37f70c69e228
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c2a79e14dcbf33b066d31d1ab50dc441a855b5cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..91c9a5bef965453260118bafbcc9489db985b3db
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..721f65a939c60597f3a0fa82441f0882049c4ade
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..29db236117c7f79d2aa33d7d3c4448d98a07f4d4
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_efnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8f9850d0c35d430253b0d326cc7c7292f3481f26
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..49414d9f3c0ec091d5fa60a16cf600f9e051090e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6ef750f95639154c180a1e23025faa2486766569
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..90d31a73eea493300186c5a75d4ba222dd331728
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..368f204d3c5f84a9cf5fd7e9525676f5226c71b2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..62f740bca927ef8d032192d747717d0f6b244b5b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0740bf0acca3fe1f65f98d0aef2ca9cfeb0cbb32
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ca4f03ef28c7ea4bb1d442f16f8c2f49202aad86
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..46aa47be96f98365a415d11ea49223eb9cf7eb2e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f0f0c0dbabcbbf3db08d55a5b2e6317bccf7510f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9a3c3fc94404dbe88d89d1ca528278cf1ca7b1cb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3b5c669ae1e294265245dc3ca8b31dc199d9ef9b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b6d341c90ae13a2494b1d4bc3ce4d16d939450d7
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8adfb56cd0cc166d1d84fd0ecf9511e8308bdc6c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b5e251cf907e282b6cce975a209fef0605a1f09a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0669d945a9c064796d538d76ed071dd2184d6673
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_srnet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3fa86b41f806409afd4db4bcd4ee5c9b7b6d48f2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..22c08159737d85a8482f8bb660898d8ff29f6144
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_0/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4cd9aef28a7f34c96635155d3d874e8603e33b67
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3da52edd0a9c494f8d462f388fdb06894bd8e730
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_1/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7edd76fc065699fb779e782d63932d38bc030e7c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..468931e0636ffcc738088206d2143a19a8995201
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_2/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a58a8ceeb49e6511dc08dff4a44b315c82387b39
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..849072b96bdc9a4a16a6979a6e590d25eca37b44
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_3/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8a5b903f568b195c656609e7976b3fe4a65392ad
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..981bbfc72ce15815aa4d2ed25a37c7c21a2ae867
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_4/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ad1fbb85a20b57b5e937f6b33be671d84b4c6911
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c54d22e1c8fef798491d6dc2b5f1263ab72b1f15
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_5/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8c1f11d190cc014eefd76721d44c084da89fba20
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c8f8196a8dd0a85f3737f8b40cda5a66126bb32d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_6/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/logits.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/logits.npy
new file mode 100644
index 0000000000000000000000000000000000000000..623163cf1307cc012d8cebf2673f4670688ce1f9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/logits.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/probas.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/probas.npy
new file mode 100644
index 0000000000000000000000000000000000000000..44dc64e7d1849d25c8eb0fc198841426fb962e22
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_adv_7/eval_xunet_7/probas.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_0/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_0/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fea09fc722732b76b07ae9d1a23c52201236b5c3
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_0/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_1/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_1/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d955b641fe68d7e7d16dc888e0f32fefcb02ea32
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_1/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_2/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_2/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..071c23a508bab5f7e26bac4609243e0f5e8434cd
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_2/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_3/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_3/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2a22bdc2055b328b0c134751e90550da96cdc28a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_3/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_4/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_4/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b98caed87fa14a8a8fc19190f6ad83204a307703
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_4/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_5/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_5/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2be358db4f7175c68ca461f7a3f72516f6f47bcf
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_5/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_6/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_6/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1afa77a7b7d8eef7c527cc5989aa55ca6da4a60a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_6/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_7/index.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_7/index.npy
new file mode 100644
index 0000000000000000000000000000000000000000..342aa1e1fdc9c12858c436cfc9eda8528e4f29ff
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/data_train_7/index.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/description.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/description.txt
new file mode 100644
index 0000000000000000000000000000000000000000..47ba2c0ea8ab122c0b7c75d881ebbea86790a8a7
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/description.txt
@@ -0,0 +1,49 @@
+Jun-10-2021Launch of the protocol, starting from iteration 6 to 7
+Number of CPUs called : 10
+ 
+PARAMETERS 
+Image characteristics 
+- QF = 75
+- Image size = 512
+- Embedding rate = 0.4 bpnzAC
+- Cover images are taken in folder /gpfswork/rech/srp/commun/JPEG_75_512/c_coeffs/
+- Stego images are taken in folder /gpfswork/rech/srp/commun/JPEG_75_512/J_UNI_0_4_npy/
+- Cost maps are taken in folder /gpfswork/rech/srp/commun/JPEG_75_512/costs/
+ 
+Protocol setup 
+- Strategy =minmax 
+ 
+Model description 
+- The 3 model architectures are efnet,xunet,srnet with the following setup :
+     - Efficient-net version is b0 pretrained on image-net 
+     - First conv stem is with stride = 1 
+ 
+     - XuNet architecture is composed with 5 big blocks 
+ 
+Training setup 
+- Train size = 4000
+- Valid size = 1000
+- Test size = 5000
+- Files permutation, which order determines train, valid and test sets is /gpfswork/rech/srp/commun/python3/tifs_protocol_efficientnet/models/permutation_files.npy
+- Model efnet is trained during 30 epochs 
+- Pair training is not used 
+- Batch size is 8 
+- Curriculum is used : the embedding rate starts from 1.0 and decreases every two epochs by factor 0.9 to reach target embedding rate 0.4
+ 
+- Model xunet is trained during 30 epochs 
+- Pair training is used 
+- Batch size is 2*32 
+- Curriculum is used : the embedding rate starts from 1.2 and decreases every two epochs by factor 0.9 to reach target embedding rate 0.4
+ 
+- Model srnet is trained during 30 epochs 
+- Pair training is used 
+- Batch size is 2*16 
+- Curriculum is used : the embedding rate starts from 1.0 and decreases every two epochs by factor 0.9 to reach target embedding rate 0.4
+ 
+Attack setup 
+- The smoothing function is SGE 
+- Maximum number of steps is 2000 
+- Number of samples is 1 
+- Tau is initialized with value 10.0 and decreases by factor 0.5 when needed
+- The exit condition is required to be respected with precision = 0.01
+ 
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a537a72f547abfda377cc086691c2a09ced98f35
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-009epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-009epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d3edd8cb88f16967f1c54b63caed20f8cd994182
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-009epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5a46b8f5eb3b91d4891153b1cbc3fa53d6e4d0ceae80745090fca6bf3bc168a0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-017epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-017epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..40c806f498d47ea3e71bd815007efc325c2c5ab1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-017epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c6d3fa0268cbd8a3e38d52111ada6a75cff5d569e175e51a8b209bef99352777
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-021epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-021epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ec6288370fa16215b9ff1b7e35dd637f0db0420a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/best-checkpoint-021epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:41ea48def25ef2cec60c5f62361e4a4fb2ad33bdca39ca60a10ac4cc12ac02c4
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..05cdb86e3703c5afed81c125e962d31d977e2dbe
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1f2dbefd8501beea56b1900ef892d09dfd82c47978b707addaf0658b4e3e52d9
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..57b16f9123cb129e519cbf00cc3585fb4c765265
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/log.txt
@@ -0,0 +1,198 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-06T13:41:24.960986
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.38457, final_score: 0.15859, time: 446.41050
+[RESULT]: Val. Epoch: 1, summary_loss: 1.65717, final_score: 0.36663, time: 103.23291
+
+2021-04-06T13:50:34.987949
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.25451, final_score: 0.06511, time: 464.97037
+[RESULT]: Val. Epoch: 2, summary_loss: 1.58793, final_score: 0.30619, time: 108.87386
+
+2021-04-06T14:00:09.112296
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.20949, final_score: 0.04149, time: 444.50158
+[RESULT]: Val. Epoch: 3, summary_loss: 1.87403, final_score: 0.25624, time: 105.46765
+
+2021-04-06T14:09:19.228772
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22217, final_score: 0.04849, time: 456.23604
+[RESULT]: Val. Epoch: 4, summary_loss: 1.30484, final_score: 0.20130, time: 110.81499
+
+2021-04-06T14:18:46.532736
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.19602, final_score: 0.03662, time: 433.32361
+[RESULT]: Val. Epoch: 5, summary_loss: 1.52900, final_score: 0.31568, time: 106.10954
+
+2021-04-06T14:27:46.086618
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22254, final_score: 0.05199, time: 455.11430
+[RESULT]: Val. Epoch: 6, summary_loss: 2.05622, final_score: 0.32168, time: 103.39090
+
+2021-04-06T14:37:04.741094
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.19837, final_score: 0.03862, time: 476.46509
+[RESULT]: Val. Epoch: 7, summary_loss: 1.06776, final_score: 0.24775, time: 114.84630
+
+2021-04-06T14:46:56.368150
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.22327, final_score: 0.05236, time: 478.20518
+[RESULT]: Val. Epoch: 8, summary_loss: 1.87947, final_score: 0.32567, time: 115.83542
+
+2021-04-06T14:56:50.551096
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.21421, final_score: 0.04749, time: 466.70660
+[RESULT]: Val. Epoch: 9, summary_loss: 0.37249, final_score: 0.13187, time: 110.53179
+
+2021-04-06T15:06:28.052539
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.23362, final_score: 0.05999, time: 468.94585
+[RESULT]: Val. Epoch: 10, summary_loss: 0.61707, final_score: 0.09341, time: 107.26632
+
+2021-04-06T15:16:04.379549
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.22881, final_score: 0.05524, time: 463.31607
+[RESULT]: Val. Epoch: 11, summary_loss: 1.42742, final_score: 0.19730, time: 107.25408
+
+2021-04-06T15:25:35.067026
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.24591, final_score: 0.06636, time: 472.86618
+[RESULT]: Val. Epoch: 12, summary_loss: 0.68325, final_score: 0.11888, time: 107.56692
+
+2021-04-06T15:35:15.647462
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.23399, final_score: 0.06148, time: 484.51604
+[RESULT]: Val. Epoch: 13, summary_loss: 0.98300, final_score: 0.14835, time: 114.08524
+
+2021-04-06T15:45:14.391014
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.26335, final_score: 0.07823, time: 461.35396
+[RESULT]: Val. Epoch: 14, summary_loss: 0.52365, final_score: 0.09341, time: 105.38135
+
+2021-04-06T15:54:41.237102
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.24524, final_score: 0.06611, time: 451.49072
+[RESULT]: Val. Epoch: 15, summary_loss: 1.57966, final_score: 0.22228, time: 103.64308
+
+2021-04-06T16:03:56.506007
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.27711, final_score: 0.08798, time: 464.12727
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69393, final_score: 0.11239, time: 107.76890
+
+2021-04-06T16:13:28.516214
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.27007, final_score: 0.08210, time: 458.48955
+[RESULT]: Val. Epoch: 17, summary_loss: 0.26598, final_score: 0.06643, time: 107.14588
+
+2021-04-06T16:22:54.401930
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.28404, final_score: 0.09135, time: 455.02252
+[RESULT]: Val. Epoch: 18, summary_loss: 1.25297, final_score: 0.17383, time: 106.17660
+
+2021-04-06T16:32:15.739027
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.27969, final_score: 0.08435, time: 465.55680
+[RESULT]: Val. Epoch: 19, summary_loss: 0.45947, final_score: 0.09441, time: 104.74326
+
+2021-04-06T16:41:46.193268
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.24403, final_score: 0.07048, time: 457.30382
+[RESULT]: Val. Epoch: 20, summary_loss: 0.28149, final_score: 0.05495, time: 106.19020
+
+2021-04-06T16:51:09.825655
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.23540, final_score: 0.06261, time: 459.04081
+[RESULT]: Val. Epoch: 21, summary_loss: 0.22065, final_score: 0.05195, time: 105.68800
+
+2021-04-06T17:00:34.779046
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.22848, final_score: 0.06023, time: 460.78100
+[RESULT]: Val. Epoch: 22, summary_loss: 0.56600, final_score: 0.08991, time: 104.49872
+
+2021-04-06T17:10:00.186664
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.22442, final_score: 0.05649, time: 452.74057
+[RESULT]: Val. Epoch: 23, summary_loss: 0.70976, final_score: 0.09590, time: 106.62299
+
+2021-04-06T17:19:19.688767
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.20737, final_score: 0.04599, time: 460.69333
+[RESULT]: Val. Epoch: 24, summary_loss: 0.26602, final_score: 0.04496, time: 106.68803
+
+2021-04-06T17:28:47.183044
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.21228, final_score: 0.05049, time: 451.73303
+[RESULT]: Val. Epoch: 25, summary_loss: 0.53535, final_score: 0.07742, time: 106.14428
+
+2021-04-06T17:38:05.199378
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.18933, final_score: 0.03699, time: 455.90954
+[RESULT]: Val. Epoch: 26, summary_loss: 0.28445, final_score: 0.04595, time: 105.60008
+
+2021-04-06T17:47:26.849064
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.19479, final_score: 0.04136, time: 452.54981
+[RESULT]: Val. Epoch: 27, summary_loss: 0.33729, final_score: 0.05095, time: 109.18742
+
+2021-04-06T17:56:48.729971
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.19070, final_score: 0.03899, time: 463.43152
+[RESULT]: Val. Epoch: 28, summary_loss: 0.34065, final_score: 0.04945, time: 104.66443
+
+2021-04-06T18:06:16.942842
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.18514, final_score: 0.03599, time: 460.37873
+[RESULT]: Val. Epoch: 29, summary_loss: 0.35515, final_score: 0.04895, time: 109.67818
+
+2021-04-06T18:15:47.129815
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.18381, final_score: 0.03512, time: 455.40007
+[RESULT]: Val. Epoch: 30, summary_loss: 0.32251, final_score: 0.04595, time: 106.60117
+Fitter prepared. Device is cuda:0
+
+2021-04-12T08:15:48.336681
+LR: 0.0005
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:38:24.921363
+LR: 1.5625e-05
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 31, summary_loss: 0.39903, final_score: 0.16058, time: 743.66876
+[RESULT]: Val. Epoch: 31, summary_loss: 1.12617, final_score: 0.33816, time: 173.86461
+
+2021-04-28T09:53:42.841988
+LR: 1.5625e-05
+Emb_rate: 0.18000000000000002
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a5ec401fcd5861cdc3cca299f16f60eb2c83f273
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-036epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-036epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3d4e0335272abace179c80654fb23c6fda20b5e9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-036epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b57fe71c04bd8749a3b533fb8b0214c99f016142b3622ad5642c9201accee032
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-038epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-038epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..de806797a76801c62f6b7af93a1db9303703a769
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-038epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:64a04cffc61194279f303b5a8218e082b9a91feb66e5ec98f63e3c76073fdd3f
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-039epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-039epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f596fdb9e8505f3a59023b224e116ba9acb5157d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/best-checkpoint-039epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e7e65b05a91249c6321b437da83c275a9dfbac00f4f0f7db4d1d24a2967ab01b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c1f1ad66803847960a80c0fa8f3f2982b7ad6c86
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e6e3dd2ecad90902b314d9a1e8aae687fdf4db6ef8e8c9c2740c429e0fe2961
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7c78c8a074d5eb327abf5ca909822a965737e774
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/log.txt
@@ -0,0 +1,242 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:48:18.286009
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.43501, final_score: 0.19145, time: 720.08656
+[RESULT]: Val. Epoch: 1, summary_loss: 3.53685, final_score: 0.45954, time: 165.93323
+
+2021-04-26T10:03:04.687305
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.27887, final_score: 0.07936, time: 690.34998
+[RESULT]: Val. Epoch: 2, summary_loss: 2.19805, final_score: 0.43257, time: 166.88085
+
+2021-04-26T10:17:22.243014
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.22977, final_score: 0.05374, time: 675.23893
+[RESULT]: Val. Epoch: 3, summary_loss: 3.76291, final_score: 0.43556, time: 165.13361
+
+2021-04-26T10:31:22.807231
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22594, final_score: 0.05224, time: 682.05105
+[RESULT]: Val. Epoch: 4, summary_loss: 1.93782, final_score: 0.42507, time: 163.91369
+
+2021-04-26T10:45:29.159406
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.20147, final_score: 0.03862, time: 687.04098
+[RESULT]: Val. Epoch: 5, summary_loss: 1.48217, final_score: 0.48052, time: 164.43833
+
+2021-04-26T10:59:40.993276
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22603, final_score: 0.05449, time: 689.99004
+[RESULT]: Val. Epoch: 6, summary_loss: 1.94142, final_score: 0.46903, time: 165.01467
+
+2021-04-26T11:13:56.187145
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.19619, final_score: 0.03699, time: 674.49473
+[RESULT]: Val. Epoch: 7, summary_loss: 1.59094, final_score: 0.43706, time: 164.94940
+
+2021-04-26T11:27:55.818517
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.22218, final_score: 0.05186, time: 686.19339
+[RESULT]: Val. Epoch: 8, summary_loss: 0.99177, final_score: 0.38911, time: 167.37074
+
+2021-04-26T11:42:09.717630
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.20586, final_score: 0.04324, time: 698.41854
+[RESULT]: Val. Epoch: 9, summary_loss: 1.44147, final_score: 0.42158, time: 168.29029
+
+2021-04-26T11:56:36.599077
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.22511, final_score: 0.05486, time: 700.55670
+[RESULT]: Val. Epoch: 10, summary_loss: 2.02638, final_score: 0.42008, time: 166.98877
+
+2021-04-26T12:11:04.342648
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.22125, final_score: 0.05224, time: 704.81501
+[RESULT]: Val. Epoch: 11, summary_loss: 1.63879, final_score: 0.39510, time: 164.60945
+
+2021-04-26T12:25:33.959582
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.23000, final_score: 0.05811, time: 694.38467
+[RESULT]: Val. Epoch: 12, summary_loss: 2.32041, final_score: 0.40609, time: 164.73405
+
+2021-04-26T12:39:53.281183
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.23265, final_score: 0.05911, time: 692.64143
+[RESULT]: Val. Epoch: 13, summary_loss: 1.51879, final_score: 0.43906, time: 163.35546
+
+2021-04-26T12:54:09.477626
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.24724, final_score: 0.06811, time: 693.94303
+[RESULT]: Val. Epoch: 14, summary_loss: 1.82567, final_score: 0.38811, time: 166.58948
+
+2021-04-26T13:08:30.192923
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.22853, final_score: 0.05874, time: 697.08200
+[RESULT]: Val. Epoch: 15, summary_loss: 1.87019, final_score: 0.40909, time: 163.81336
+
+2021-04-26T13:22:51.262240
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.26629, final_score: 0.07998, time: 701.74162
+[RESULT]: Val. Epoch: 16, summary_loss: 1.54548, final_score: 0.35065, time: 163.85540
+
+2021-04-26T13:37:17.073147
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.25805, final_score: 0.07436, time: 688.21683
+[RESULT]: Val. Epoch: 17, summary_loss: 0.92029, final_score: 0.36414, time: 166.45762
+
+2021-04-26T13:51:32.122459
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.27671, final_score: 0.08748, time: 706.40313
+[RESULT]: Val. Epoch: 18, summary_loss: 1.84621, final_score: 0.37612, time: 166.08317
+
+2021-04-26T14:06:04.805245
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.26880, final_score: 0.08223, time: 696.93859
+[RESULT]: Val. Epoch: 19, summary_loss: 1.64067, final_score: 0.35614, time: 163.53194
+
+2021-04-26T14:20:25.446638
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.29261, final_score: 0.09798, time: 718.08656
+[RESULT]: Val. Epoch: 20, summary_loss: 1.42854, final_score: 0.33267, time: 166.18933
+
+2021-04-26T14:35:09.914859
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.29281, final_score: 0.09835, time: 705.18243
+[RESULT]: Val. Epoch: 21, summary_loss: 2.00417, final_score: 0.34915, time: 167.56646
+
+2021-04-26T14:49:42.839592
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.31986, final_score: 0.11272, time: 698.50465
+[RESULT]: Val. Epoch: 22, summary_loss: 1.36035, final_score: 0.38961, time: 163.14537
+
+2021-04-26T15:04:04.669750
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.30879, final_score: 0.10760, time: 708.05474
+[RESULT]: Val. Epoch: 23, summary_loss: 1.51937, final_score: 0.34815, time: 164.73840
+
+2021-04-26T15:18:37.630875
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.33874, final_score: 0.12172, time: 694.42999
+[RESULT]: Val. Epoch: 24, summary_loss: 1.05550, final_score: 0.36913, time: 167.54664
+
+2021-04-26T15:32:59.790152
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 25, summary_loss: 0.33641, final_score: 0.12484, time: 696.06533
+[RESULT]: Val. Epoch: 25, summary_loss: 1.54550, final_score: 0.35465, time: 165.97788
+
+2021-04-26T15:47:22.069152
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.36326, final_score: 0.14634, time: 707.90735
+[RESULT]: Val. Epoch: 26, summary_loss: 1.93412, final_score: 0.38711, time: 163.44319
+
+2021-04-26T16:01:53.601447
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 27, summary_loss: 0.34997, final_score: 0.13547, time: 695.77552
+[RESULT]: Val. Epoch: 27, summary_loss: 0.98111, final_score: 0.33616, time: 164.70023
+
+2021-04-26T16:16:14.307028
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.37307, final_score: 0.14859, time: 704.90242
+[RESULT]: Val. Epoch: 28, summary_loss: 0.94927, final_score: 0.32118, time: 167.62900
+
+2021-04-26T16:30:47.031973
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 29, summary_loss: 0.37986, final_score: 0.15346, time: 690.02928
+[RESULT]: Val. Epoch: 29, summary_loss: 1.12114, final_score: 0.33467, time: 165.43189
+
+2021-04-26T16:45:02.675569
+LR: 0.0005
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 30, summary_loss: 0.40831, final_score: 0.17296, time: 693.70758
+[RESULT]: Val. Epoch: 30, summary_loss: 0.81160, final_score: 0.32118, time: 164.75570
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:05:02.433990
+LR: 0.0005
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 31, summary_loss: 0.40259, final_score: 0.16908, time: 719.53492
+[RESULT]: Val. Epoch: 31, summary_loss: 0.67385, final_score: 0.31069, time: 163.08922
+
+2021-04-28T10:19:45.564530
+LR: 0.0005
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 32, summary_loss: 0.43800, final_score: 0.19133, time: 705.38239
+[RESULT]: Val. Epoch: 32, summary_loss: 1.35296, final_score: 0.33816, time: 164.46076
+
+2021-04-28T10:34:15.581470
+LR: 0.0005
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 33, summary_loss: 0.43168, final_score: 0.19333, time: 722.00718
+[RESULT]: Val. Epoch: 33, summary_loss: 0.80095, final_score: 0.32567, time: 164.39163
+
+2021-04-28T10:49:02.159009
+LR: 0.0005
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 34, summary_loss: 0.46100, final_score: 0.21182, time: 709.51972
+[RESULT]: Val. Epoch: 34, summary_loss: 0.66319, final_score: 0.31518, time: 163.10031
+
+2021-04-28T11:03:35.342215
+LR: 0.0005
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 35, summary_loss: 0.45019, final_score: 0.20720, time: 717.34234
+[RESULT]: Val. Epoch: 35, summary_loss: 0.66912, final_score: 0.30619, time: 165.26908
+
+2021-04-28T11:18:18.146232
+LR: 0.0005
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 36, summary_loss: 0.48384, final_score: 0.23157, time: 716.23115
+[RESULT]: Val. Epoch: 36, summary_loss: 0.59882, final_score: 0.29920, time: 163.25293
+
+2021-04-28T11:32:57.997398
+LR: 0.0005
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 37, summary_loss: 0.47147, final_score: 0.22169, time: 706.46444
+[RESULT]: Val. Epoch: 37, summary_loss: 0.62365, final_score: 0.29870, time: 165.80943
+
+2021-04-28T11:47:30.511321
+LR: 0.0005
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 38, summary_loss: 0.49579, final_score: 0.23569, time: 724.98851
+[RESULT]: Val. Epoch: 38, summary_loss: 0.59242, final_score: 0.30020, time: 163.78264
+
+2021-04-28T12:02:19.633813
+LR: 0.0005
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 39, summary_loss: 0.49743, final_score: 0.23919, time: 728.28275
+[RESULT]: Val. Epoch: 39, summary_loss: 0.57864, final_score: 0.28372, time: 163.70417
+
+2021-04-28T12:17:11.923696
+LR: 0.0005
+Emb_rate: 0.11809800000000004
+[RESULT]: Train. Epoch: 40, summary_loss: 0.51478, final_score: 0.25606, time: 724.76678
+[RESULT]: Val. Epoch: 40, summary_loss: 1.23882, final_score: 0.33516, time: 165.65714
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7cb8ab686e25c254904245701a6544070812bf05
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-017epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-017epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..014b5ebdaec6aa1f19ab32797da0af145c244da6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-017epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ea9097bc517f2fdffa6c52eec04dacb6d23cd1cb4a57897c20c51f986d0a7c09
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-018epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-018epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6fc2f495bf59934048ee799419309a44a0faab2e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-018epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:43ab394b56c1324d345514454346e3dd652923ddaf5c65e42c4e57f2f44ad2e2
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ba9845b59d84cba8d665d6a96bf710278a584c45
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c8e048cedd1befcdf868582dff464d37bb7556b2986076f1e573f7fb687f1f2a
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..097b00bed36f845a90c5c36a07b0d15f2caa440b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ec66213e5ac91d7625689fabf6047da3b94e355b7b400cbbf42d3d7380c9c92
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8b7042e926f76c794e205fea1aba8e875554715f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:42:38.956394
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.37787, final_score: 0.15621, time: 680.97926
+[RESULT]: Val. Epoch: 1, summary_loss: 1.99894, final_score: 0.47902, time: 166.53369
+
+2021-04-26T09:56:46.725873
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.24563, final_score: 0.06036, time: 676.72309
+[RESULT]: Val. Epoch: 2, summary_loss: 2.76199, final_score: 0.42707, time: 165.13346
+
+2021-04-26T10:10:48.707019
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.20466, final_score: 0.04061, time: 683.87065
+[RESULT]: Val. Epoch: 3, summary_loss: 1.77149, final_score: 0.36813, time: 164.33880
+
+2021-04-26T10:24:57.182041
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20667, final_score: 0.04361, time: 688.78306
+[RESULT]: Val. Epoch: 4, summary_loss: 1.97962, final_score: 0.38462, time: 162.37636
+
+2021-04-26T10:39:08.480336
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.19156, final_score: 0.03287, time: 664.63021
+[RESULT]: Val. Epoch: 5, summary_loss: 2.39761, final_score: 0.42557, time: 163.02837
+
+2021-04-26T10:52:56.293432
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.21613, final_score: 0.04799, time: 683.56305
+[RESULT]: Val. Epoch: 6, summary_loss: 1.42065, final_score: 0.37962, time: 162.26185
+
+2021-04-26T11:07:02.385275
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.20115, final_score: 0.04099, time: 683.88505
+[RESULT]: Val. Epoch: 7, summary_loss: 1.40856, final_score: 0.31518, time: 163.03656
+
+2021-04-26T11:21:09.550049
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.22536, final_score: 0.05286, time: 681.47892
+[RESULT]: Val. Epoch: 8, summary_loss: 1.64898, final_score: 0.33467, time: 164.81276
+
+2021-04-26T11:35:15.979109
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.20761, final_score: 0.04511, time: 684.94377
+[RESULT]: Val. Epoch: 9, summary_loss: 1.75014, final_score: 0.38711, time: 165.34193
+
+2021-04-26T11:49:26.377682
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.23017, final_score: 0.05786, time: 694.25029
+[RESULT]: Val. Epoch: 10, summary_loss: 0.80731, final_score: 0.27622, time: 162.79960
+
+2021-04-26T12:03:43.673128
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.23934, final_score: 0.06211, time: 699.93721
+[RESULT]: Val. Epoch: 11, summary_loss: 0.85419, final_score: 0.25674, time: 163.89502
+
+2021-04-26T12:18:07.639646
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.24860, final_score: 0.06661, time: 687.75638
+[RESULT]: Val. Epoch: 12, summary_loss: 1.46492, final_score: 0.29321, time: 164.30324
+
+2021-04-26T12:32:19.833428
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.23604, final_score: 0.05886, time: 687.47868
+[RESULT]: Val. Epoch: 13, summary_loss: 1.76193, final_score: 0.34116, time: 162.47569
+
+2021-04-26T12:46:29.928646
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.25205, final_score: 0.07036, time: 687.02018
+[RESULT]: Val. Epoch: 14, summary_loss: 1.06660, final_score: 0.29570, time: 165.31148
+
+2021-04-26T13:00:42.371493
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.25429, final_score: 0.07298, time: 691.20165
+[RESULT]: Val. Epoch: 15, summary_loss: 1.38822, final_score: 0.25874, time: 162.74216
+
+2021-04-26T13:14:56.425800
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.27370, final_score: 0.08548, time: 693.00431
+[RESULT]: Val. Epoch: 16, summary_loss: 1.47160, final_score: 0.27522, time: 163.64580
+
+2021-04-26T13:29:13.185087
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.26319, final_score: 0.07948, time: 697.42029
+[RESULT]: Val. Epoch: 17, summary_loss: 0.72113, final_score: 0.22577, time: 163.38783
+
+2021-04-26T13:43:34.315463
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.29882, final_score: 0.09585, time: 690.47745
+[RESULT]: Val. Epoch: 18, summary_loss: 0.54267, final_score: 0.21179, time: 163.72035
+
+2021-04-26T13:57:48.754039
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.28953, final_score: 0.09498, time: 685.91874
+[RESULT]: Val. Epoch: 19, summary_loss: 1.31976, final_score: 0.22877, time: 163.61401
+
+2021-04-26T14:11:58.421961
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.30814, final_score: 0.10597, time: 697.91424
+[RESULT]: Val. Epoch: 20, summary_loss: 0.84348, final_score: 0.23427, time: 161.98513
+
+2021-04-26T14:26:18.478114
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.30275, final_score: 0.10147, time: 690.88045
+[RESULT]: Val. Epoch: 21, summary_loss: 1.24073, final_score: 0.27323, time: 163.36699
+
+2021-04-26T14:40:32.893504
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.33174, final_score: 0.12259, time: 687.19787
+[RESULT]: Val. Epoch: 22, summary_loss: 0.71227, final_score: 0.22977, time: 161.65373
+
+2021-04-26T14:54:41.878711
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.32784, final_score: 0.11947, time: 704.33893
+[RESULT]: Val. Epoch: 23, summary_loss: 1.36628, final_score: 0.21728, time: 165.83316
+
+2021-04-26T15:09:12.183007
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.34365, final_score: 0.12959, time: 698.65438
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69318, final_score: 0.20480, time: 161.94093
+
+2021-04-26T15:23:32.914631
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 25, summary_loss: 0.34507, final_score: 0.13259, time: 698.34160
+[RESULT]: Val. Epoch: 25, summary_loss: 0.46614, final_score: 0.18182, time: 161.92198
+
+2021-04-26T15:37:53.422171
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.36971, final_score: 0.14309, time: 689.22697
+[RESULT]: Val. Epoch: 26, summary_loss: 0.75347, final_score: 0.20829, time: 164.26572
+
+2021-04-26T15:52:07.050591
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 27, summary_loss: 0.36230, final_score: 0.14409, time: 699.02312
+[RESULT]: Val. Epoch: 27, summary_loss: 0.52706, final_score: 0.19131, time: 162.99755
+
+2021-04-26T16:06:29.205988
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.38894, final_score: 0.15671, time: 682.92175
+[RESULT]: Val. Epoch: 28, summary_loss: 0.54008, final_score: 0.17882, time: 162.26578
+
+2021-04-26T16:20:34.532981
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 29, summary_loss: 0.37982, final_score: 0.15121, time: 692.02997
+[RESULT]: Val. Epoch: 29, summary_loss: 0.88350, final_score: 0.19780, time: 162.07168
+
+2021-04-26T16:34:48.782006
+LR: 0.0005
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 30, summary_loss: 0.41183, final_score: 0.17558, time: 685.94667
+[RESULT]: Val. Epoch: 30, summary_loss: 0.74262, final_score: 0.20130, time: 163.84190
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3371029d75338eede8b399415fd65f92308e0255
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a8d584d4cb905370ff30bbe0c99853045ff24835
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:530154af6154662ab4f93c03e5e932b502ede36a336dba7e98a43a219db479aa
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..753be7fb6d8150b4213151bb87da08d2d9b26c86
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eff93e411311eea49ec31e213c6387c21e895b60e0fb3477fa34a942776d912b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..90e9377c8db7ce29d4226f41302928ceab22f87b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:40b78a1bf1492865370c3c36d6d2bd20b6731e95df5be926f557ec8d2c0d80c9
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..89f3093184c45fbc218e464e29f72de9659cecb6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9cd3354c710de7fa4f60df886b09462894a3f865caef4eefed4c2f4b2f83781c
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..492ea84119fc63d03b5db0aacb2c01f804a68375
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:42:33.501870
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.38708, final_score: 0.15821, time: 705.93890
+[RESULT]: Val. Epoch: 1, summary_loss: 1.65027, final_score: 0.41508, time: 164.04028
+
+2021-04-26T09:57:03.849085
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.25293, final_score: 0.06561, time: 675.82266
+[RESULT]: Val. Epoch: 2, summary_loss: 1.74864, final_score: 0.34815, time: 163.34013
+
+2021-04-26T10:11:03.185284
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.20655, final_score: 0.04149, time: 668.84584
+[RESULT]: Val. Epoch: 3, summary_loss: 1.56498, final_score: 0.32368, time: 162.09735
+
+2021-04-26T10:24:54.504321
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22039, final_score: 0.04974, time: 675.45446
+[RESULT]: Val. Epoch: 4, summary_loss: 1.22362, final_score: 0.27123, time: 162.08292
+
+2021-04-26T10:38:52.421169
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.20125, final_score: 0.04024, time: 680.91575
+[RESULT]: Val. Epoch: 5, summary_loss: 1.32875, final_score: 0.28921, time: 165.55257
+
+2021-04-26T10:52:59.088715
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22772, final_score: 0.05511, time: 684.90550
+[RESULT]: Val. Epoch: 6, summary_loss: 1.31337, final_score: 0.20879, time: 161.80147
+
+2021-04-26T11:07:05.987177
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.20929, final_score: 0.04336, time: 685.62151
+[RESULT]: Val. Epoch: 7, summary_loss: 1.94350, final_score: 0.34066, time: 163.22191
+
+2021-04-26T11:21:14.999560
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.22576, final_score: 0.05324, time: 678.80042
+[RESULT]: Val. Epoch: 8, summary_loss: 1.13579, final_score: 0.23526, time: 163.03063
+
+2021-04-26T11:35:17.182504
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.21663, final_score: 0.04724, time: 677.48215
+[RESULT]: Val. Epoch: 9, summary_loss: 2.11393, final_score: 0.25524, time: 163.36381
+
+2021-04-26T11:49:18.192155
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.23906, final_score: 0.06261, time: 696.97676
+[RESULT]: Val. Epoch: 10, summary_loss: 1.36289, final_score: 0.17033, time: 162.23995
+
+2021-04-26T12:03:37.572664
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.22236, final_score: 0.05161, time: 690.23052
+[RESULT]: Val. Epoch: 11, summary_loss: 1.14024, final_score: 0.19580, time: 162.41618
+
+2021-04-26T12:17:50.411112
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.25309, final_score: 0.06936, time: 695.15843
+[RESULT]: Val. Epoch: 12, summary_loss: 1.03795, final_score: 0.19231, time: 162.59750
+
+2021-04-26T12:32:08.510986
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.23917, final_score: 0.06261, time: 676.75777
+[RESULT]: Val. Epoch: 13, summary_loss: 1.21966, final_score: 0.20480, time: 164.12270
+
+2021-04-26T12:46:09.522273
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.25573, final_score: 0.07373, time: 691.66937
+[RESULT]: Val. Epoch: 14, summary_loss: 0.42461, final_score: 0.16084, time: 161.73974
+
+2021-04-26T13:00:23.285051
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.24597, final_score: 0.06686, time: 702.91537
+[RESULT]: Val. Epoch: 15, summary_loss: 1.38118, final_score: 0.19231, time: 163.99361
+
+2021-04-26T13:14:50.424609
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.27711, final_score: 0.08360, time: 699.26809
+[RESULT]: Val. Epoch: 16, summary_loss: 0.92684, final_score: 0.14735, time: 165.85875
+
+2021-04-26T13:29:15.734350
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.27198, final_score: 0.08473, time: 682.70001
+[RESULT]: Val. Epoch: 17, summary_loss: 0.47470, final_score: 0.15135, time: 163.19384
+
+2021-04-26T13:43:21.837596
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.29714, final_score: 0.09885, time: 697.63713
+[RESULT]: Val. Epoch: 18, summary_loss: 0.39894, final_score: 0.15185, time: 161.83027
+
+2021-04-26T13:57:41.710955
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.27622, final_score: 0.08535, time: 687.85438
+[RESULT]: Val. Epoch: 19, summary_loss: 0.57311, final_score: 0.12038, time: 161.44874
+
+2021-04-26T14:11:51.237671
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.30904, final_score: 0.10347, time: 693.09301
+[RESULT]: Val. Epoch: 20, summary_loss: 0.69632, final_score: 0.11688, time: 162.20061
+
+2021-04-26T14:26:06.721982
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.29490, final_score: 0.09710, time: 691.48102
+[RESULT]: Val. Epoch: 21, summary_loss: 0.40236, final_score: 0.12438, time: 161.36569
+
+2021-04-26T14:40:19.759796
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.32847, final_score: 0.12184, time: 691.64201
+[RESULT]: Val. Epoch: 22, summary_loss: 0.39000, final_score: 0.12088, time: 161.11540
+
+2021-04-26T14:54:32.879919
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.31839, final_score: 0.11210, time: 708.63301
+[RESULT]: Val. Epoch: 23, summary_loss: 0.36083, final_score: 0.10639, time: 165.65502
+
+2021-04-26T15:09:07.529176
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 24, summary_loss: 0.32839, final_score: 0.11760, time: 702.29530
+[RESULT]: Val. Epoch: 24, summary_loss: 0.51369, final_score: 0.10789, time: 162.16720
+
+2021-04-26T15:23:32.173306
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 25, summary_loss: 0.32136, final_score: 0.11122, time: 684.04516
+[RESULT]: Val. Epoch: 25, summary_loss: 0.29104, final_score: 0.08791, time: 162.18789
+
+2021-04-26T15:37:38.755509
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 26, summary_loss: 0.32112, final_score: 0.11510, time: 682.34516
+[RESULT]: Val. Epoch: 26, summary_loss: 0.30537, final_score: 0.10240, time: 162.75153
+
+2021-04-26T15:51:44.041393
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.31160, final_score: 0.10847, time: 692.97416
+[RESULT]: Val. Epoch: 27, summary_loss: 0.43067, final_score: 0.12987, time: 164.87310
+
+2021-04-26T16:06:02.063514
+LR: 0.00025
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.27504, final_score: 0.08573, time: 701.32362
+[RESULT]: Val. Epoch: 28, summary_loss: 0.48262, final_score: 0.09640, time: 164.83962
+
+2021-04-26T16:20:28.569966
+LR: 0.00025
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.27286, final_score: 0.08710, time: 693.66442
+[RESULT]: Val. Epoch: 29, summary_loss: 0.60810, final_score: 0.11039, time: 161.05649
+
+2021-04-26T16:34:43.487347
+LR: 0.000125
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 30, summary_loss: 0.25375, final_score: 0.07311, time: 688.20090
+[RESULT]: Val. Epoch: 30, summary_loss: 0.45358, final_score: 0.09191, time: 161.52871
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c5bad4df97cf5cfca5ddb16fec4a722111843c0b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-012epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-012epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..815a0ac549e26e368056431c8307d6eec068f491
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-012epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:07cf947c6c013d666efd5d4bd1959a33c58498177f3eb9070f1d923c10f115c0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-019epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-019epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a575a2f83dfafa8d8ff980b48804487c2a06283a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-019epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:412a12e36565fd6e2b363a63270a5048c7159a4e7f7a0f7236794b8ba92f0757
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f2c071d44a9f754e29134b50e955543b80d518c0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6966b73dd0b800d3bf39e945dda176e75aaa5b92bd0d59dc2fd996072a0c9ee4
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..231c86741395b0f04309ad12278719064254b94c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c0b9fd9fb00804067a722ff0bfbdf51a3c236ca8d60352a10c93f532102823ed
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8757c76a8944de0188daee35c90329ae4dfb9328
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:43:26.681932
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.38451, final_score: 0.15971, time: 708.58558
+[RESULT]: Val. Epoch: 1, summary_loss: 1.49582, final_score: 0.26673, time: 167.86630
+
+2021-04-26T09:58:03.558800
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.25564, final_score: 0.06336, time: 691.50563
+[RESULT]: Val. Epoch: 2, summary_loss: 1.19938, final_score: 0.18432, time: 167.97683
+
+2021-04-26T10:12:23.432351
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.20637, final_score: 0.04136, time: 692.81944
+[RESULT]: Val. Epoch: 3, summary_loss: 1.53257, final_score: 0.25375, time: 170.33976
+
+2021-04-26T10:26:46.800552
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22069, final_score: 0.04899, time: 684.20858
+[RESULT]: Val. Epoch: 4, summary_loss: 1.00555, final_score: 0.20130, time: 168.33094
+
+2021-04-26T10:40:59.740037
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.19455, final_score: 0.03474, time: 687.43336
+[RESULT]: Val. Epoch: 5, summary_loss: 1.14709, final_score: 0.17283, time: 167.95696
+
+2021-04-26T10:55:15.337585
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.21943, final_score: 0.04911, time: 679.65361
+[RESULT]: Val. Epoch: 6, summary_loss: 0.53038, final_score: 0.11538, time: 169.76675
+
+2021-04-26T11:09:25.149731
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.20611, final_score: 0.04349, time: 687.85509
+[RESULT]: Val. Epoch: 7, summary_loss: 1.41937, final_score: 0.16733, time: 167.64857
+
+2021-04-26T11:23:40.846091
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.22444, final_score: 0.05299, time: 708.42452
+[RESULT]: Val. Epoch: 8, summary_loss: 0.43820, final_score: 0.10140, time: 169.60399
+
+2021-04-26T11:38:19.270173
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.21248, final_score: 0.04636, time: 693.60747
+[RESULT]: Val. Epoch: 9, summary_loss: 1.11879, final_score: 0.12887, time: 168.23868
+
+2021-04-26T11:52:41.288880
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.23560, final_score: 0.05949, time: 694.66531
+[RESULT]: Val. Epoch: 10, summary_loss: 0.27473, final_score: 0.06543, time: 166.41243
+
+2021-04-26T12:07:02.717860
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.22134, final_score: 0.05374, time: 710.90734
+[RESULT]: Val. Epoch: 11, summary_loss: 1.17226, final_score: 0.12787, time: 170.00023
+
+2021-04-26T12:21:43.784268
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.25348, final_score: 0.07248, time: 706.53331
+[RESULT]: Val. Epoch: 12, summary_loss: 0.22927, final_score: 0.04895, time: 169.45037
+
+2021-04-26T12:36:20.094650
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.23746, final_score: 0.06061, time: 702.52931
+[RESULT]: Val. Epoch: 13, summary_loss: 0.98835, final_score: 0.08392, time: 168.95457
+
+2021-04-26T12:50:51.753688
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 14, summary_loss: 0.24163, final_score: 0.06461, time: 702.08159
+[RESULT]: Val. Epoch: 14, summary_loss: 0.45427, final_score: 0.06194, time: 169.10712
+
+2021-04-26T13:05:23.098950
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 15, summary_loss: 0.24787, final_score: 0.06823, time: 708.19037
+[RESULT]: Val. Epoch: 15, summary_loss: 0.66149, final_score: 0.06494, time: 168.82795
+
+2021-04-26T13:20:00.288864
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 16, summary_loss: 0.23327, final_score: 0.06186, time: 720.34999
+[RESULT]: Val. Epoch: 16, summary_loss: 0.25926, final_score: 0.04795, time: 167.92726
+
+2021-04-26T13:34:48.723693
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.22977, final_score: 0.05711, time: 691.75033
+[RESULT]: Val. Epoch: 17, summary_loss: 0.24632, final_score: 0.03946, time: 170.17429
+
+2021-04-26T13:49:10.830311
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.22224, final_score: 0.05361, time: 705.99420
+[RESULT]: Val. Epoch: 18, summary_loss: 0.50843, final_score: 0.06044, time: 169.89016
+
+2021-04-26T14:03:46.887546
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.22442, final_score: 0.05524, time: 706.63011
+[RESULT]: Val. Epoch: 19, summary_loss: 0.20327, final_score: 0.02947, time: 169.85269
+
+2021-04-26T14:18:23.764746
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.21478, final_score: 0.04874, time: 708.04086
+[RESULT]: Val. Epoch: 20, summary_loss: 0.39465, final_score: 0.04396, time: 169.36116
+
+2021-04-26T14:33:01.347082
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.21368, final_score: 0.04924, time: 702.95291
+[RESULT]: Val. Epoch: 21, summary_loss: 0.42117, final_score: 0.05594, time: 168.39942
+
+2021-04-26T14:47:32.866204
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.19370, final_score: 0.03837, time: 696.75437
+[RESULT]: Val. Epoch: 22, summary_loss: 0.26193, final_score: 0.03347, time: 167.18058
+
+2021-04-26T15:01:56.955715
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.18316, final_score: 0.03162, time: 705.06735
+[RESULT]: Val. Epoch: 23, summary_loss: 0.17692, final_score: 0.02797, time: 167.87533
+
+2021-04-26T15:16:30.234447
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.18070, final_score: 0.03174, time: 711.36618
+[RESULT]: Val. Epoch: 24, summary_loss: 0.28420, final_score: 0.02997, time: 169.17524
+
+2021-04-26T15:31:10.936590
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.17993, final_score: 0.03249, time: 715.84734
+[RESULT]: Val. Epoch: 25, summary_loss: 0.38916, final_score: 0.03447, time: 169.30674
+
+2021-04-26T15:45:56.261283
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.16155, final_score: 0.02087, time: 705.92641
+[RESULT]: Val. Epoch: 26, summary_loss: 0.30980, final_score: 0.02498, time: 170.61838
+
+2021-04-26T16:00:32.965638
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.16179, final_score: 0.02174, time: 701.34230
+[RESULT]: Val. Epoch: 27, summary_loss: 0.22600, final_score: 0.02747, time: 169.79041
+
+2021-04-26T16:15:04.265750
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.15644, final_score: 0.02062, time: 706.29722
+[RESULT]: Val. Epoch: 28, summary_loss: 0.19484, final_score: 0.02348, time: 169.34178
+
+2021-04-26T16:29:40.064039
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.15421, final_score: 0.01737, time: 722.88852
+[RESULT]: Val. Epoch: 29, summary_loss: 0.23174, final_score: 0.02398, time: 168.79899
+
+2021-04-26T16:44:31.921504
+LR: 3.125e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 30, summary_loss: 0.15421, final_score: 0.01862, time: 702.64587
+[RESULT]: Val. Epoch: 30, summary_loss: 0.23230, final_score: 0.02448, time: 169.51447
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b827140d8b3afbdedd7056c4add0c965ec795fe5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_0_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-009epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-009epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..28382a4f1cda572b679d806b857836b9ae427b20
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-009epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:65895e5518d3251c8a6497ddf4e0376d60ab6c1d92673fe5cb36bd76e7962e3a
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-018epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-018epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..46f1705f2a66ddcce74af265322e4bcaeb2208b3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-018epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3f10274f567b07dfab4f7d12f98ef50d2a3920e6560758f4ec2e560e163627b4
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3039266200c20c39637920076b15bca579341b1b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:956739004af29a82ad2ca1f100d03371e9d6037521eeed5491d378af9025d3c8
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..14e3d8f5a541ce4c7dd5c6e379c66a001ecaabe5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:508bfca980291fa359045c44aada3334b38f6fcd01c8b6a097f57be1f327f276
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e12636686649f3e8840619c4ea0f25b87ee0dd99
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/log.txt
@@ -0,0 +1,186 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-13T13:00:25.291620
+LR: 0.0005
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-13T13:08:45.564644
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.42323, final_score: 0.18283, time: 468.37462
+[RESULT]: Val. Epoch: 1, summary_loss: 1.68779, final_score: 0.40759, time: 112.16986
+
+2021-04-13T13:18:26.615014
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.27664, final_score: 0.07736, time: 460.56769
+[RESULT]: Val. Epoch: 2, summary_loss: 1.11326, final_score: 0.34466, time: 108.51722
+
+2021-04-13T13:27:56.056765
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.23485, final_score: 0.05436, time: 460.05409
+[RESULT]: Val. Epoch: 3, summary_loss: 1.51121, final_score: 0.32268, time: 110.42398
+
+2021-04-13T13:37:26.730381
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.26064, final_score: 0.07136, time: 467.33574
+[RESULT]: Val. Epoch: 4, summary_loss: 1.11581, final_score: 0.33816, time: 110.32539
+
+2021-04-13T13:47:04.628163
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.23661, final_score: 0.05899, time: 465.99016
+[RESULT]: Val. Epoch: 5, summary_loss: 1.13542, final_score: 0.32368, time: 109.64362
+
+2021-04-13T13:56:40.444197
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.26177, final_score: 0.07411, time: 464.86002
+[RESULT]: Val. Epoch: 6, summary_loss: 1.05434, final_score: 0.28621, time: 109.70806
+
+2021-04-13T14:06:15.422402
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.24772, final_score: 0.06598, time: 464.87695
+[RESULT]: Val. Epoch: 7, summary_loss: 1.06286, final_score: 0.28721, time: 109.30548
+
+2021-04-13T14:15:49.786055
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.28460, final_score: 0.08598, time: 469.91484
+[RESULT]: Val. Epoch: 8, summary_loss: 1.20879, final_score: 0.36813, time: 112.38205
+
+2021-04-13T14:25:32.267123
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.28085, final_score: 0.08560, time: 464.67462
+[RESULT]: Val. Epoch: 9, summary_loss: 0.57337, final_score: 0.23027, time: 109.73953
+
+2021-04-13T14:35:07.072636
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.31847, final_score: 0.11122, time: 471.40729
+[RESULT]: Val. Epoch: 10, summary_loss: 0.61359, final_score: 0.22178, time: 109.72122
+
+2021-04-13T14:44:48.412908
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.30471, final_score: 0.10010, time: 469.64367
+[RESULT]: Val. Epoch: 11, summary_loss: 0.97412, final_score: 0.29121, time: 110.63186
+
+2021-04-13T14:54:28.929140
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.35073, final_score: 0.12709, time: 472.90650
+[RESULT]: Val. Epoch: 12, summary_loss: 0.82454, final_score: 0.19131, time: 111.17438
+
+2021-04-13T15:04:13.204075
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.33424, final_score: 0.12059, time: 474.27531
+[RESULT]: Val. Epoch: 13, summary_loss: 1.42159, final_score: 0.29570, time: 110.91285
+
+2021-04-13T15:13:58.815938
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.37317, final_score: 0.14571, time: 479.87929
+[RESULT]: Val. Epoch: 14, summary_loss: 0.64368, final_score: 0.19780, time: 109.80132
+
+2021-04-13T15:23:48.731359
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.36444, final_score: 0.14696, time: 475.16461
+[RESULT]: Val. Epoch: 15, summary_loss: 1.02107, final_score: 0.21079, time: 110.72362
+
+2021-04-13T15:33:34.780216
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.40310, final_score: 0.16796, time: 476.80413
+[RESULT]: Val. Epoch: 16, summary_loss: 1.14654, final_score: 0.22677, time: 110.26891
+
+2021-04-13T15:43:22.046044
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.39199, final_score: 0.16521, time: 473.94077
+[RESULT]: Val. Epoch: 17, summary_loss: 0.62247, final_score: 0.18332, time: 111.40826
+
+2021-04-13T15:53:07.588368
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.41350, final_score: 0.17796, time: 474.37207
+[RESULT]: Val. Epoch: 18, summary_loss: 0.38309, final_score: 0.14985, time: 112.48841
+
+2021-04-13T16:02:54.811500
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.41202, final_score: 0.17758, time: 478.46110
+[RESULT]: Val. Epoch: 19, summary_loss: 0.77753, final_score: 0.17582, time: 110.84504
+
+2021-04-13T16:12:44.315920
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.40698, final_score: 0.17258, time: 475.87078
+[RESULT]: Val. Epoch: 20, summary_loss: 0.47070, final_score: 0.16134, time: 110.66133
+
+2021-04-13T16:22:31.049199
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.35896, final_score: 0.14434, time: 479.38055
+[RESULT]: Val. Epoch: 21, summary_loss: 0.55279, final_score: 0.14136, time: 110.82816
+
+2021-04-13T16:32:21.473156
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.34660, final_score: 0.13372, time: 482.95989
+[RESULT]: Val. Epoch: 22, summary_loss: 0.58999, final_score: 0.15534, time: 109.87995
+
+2021-04-13T16:42:14.510996
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.32070, final_score: 0.11835, time: 481.13461
+[RESULT]: Val. Epoch: 23, summary_loss: 0.38846, final_score: 0.11638, time: 110.49141
+
+2021-04-13T16:52:06.332601
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.31173, final_score: 0.11160, time: 473.57437
+[RESULT]: Val. Epoch: 24, summary_loss: 0.32844, final_score: 0.11239, time: 109.80523
+
+2021-04-13T17:01:50.079107
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.31596, final_score: 0.11535, time: 481.28372
+[RESULT]: Val. Epoch: 25, summary_loss: 0.34147, final_score: 0.11239, time: 110.32200
+
+2021-04-13T17:11:41.852868
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.29869, final_score: 0.10510, time: 475.83167
+[RESULT]: Val. Epoch: 26, summary_loss: 0.56750, final_score: 0.13586, time: 110.11445
+
+2021-04-13T17:21:28.097170
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.29782, final_score: 0.10472, time: 481.31235
+[RESULT]: Val. Epoch: 27, summary_loss: 0.42254, final_score: 0.13237, time: 109.69493
+
+2021-04-13T17:31:19.305093
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.29625, final_score: 0.10110, time: 474.47014
+[RESULT]: Val. Epoch: 28, summary_loss: 0.36210, final_score: 0.11439, time: 109.08414
+
+2021-04-13T17:41:03.050412
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.28081, final_score: 0.09310, time: 488.25298
+[RESULT]: Val. Epoch: 29, summary_loss: 0.45189, final_score: 0.11489, time: 109.37328
+
+2021-04-13T17:51:00.873097
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.27820, final_score: 0.08948, time: 472.12445
+[RESULT]: Val. Epoch: 30, summary_loss: 0.42170, final_score: 0.11538, time: 112.00125
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b32f1e77a8214e4a64ba9c1698c568ac80e02c35
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..cf93849d9b7020066472e52214b425aa125020a6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df0b32a6f42594f3a6c54106925eb9a402c57ea0c02a9166f7e90d43c146f9aa
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4b702b31ac8b5d77173df3d455fb1168f1d4da83
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2398885c53bb146537a65f28491f67a7af0ce0ce0c268d18a911a8b7a6f3f680
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f5c323140fb0f36b4c201a7f12d3b677e68c1147
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e80f10acb4548789b9c944ee586cdd78e386c05bfc764836d7b727eb190028b6
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..270524cbfe223d5b0c8314b8ced1eb2d2e814ce6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b62530d55a9a51438c0b5667d305f7c9398aebf67e843f2c50d700b58b0c7490
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..82daea9ca6decd9fba599df89f9da4e32586a1ce
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-15T07:51:54.808601
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.45485, final_score: 0.21482, time: 457.84298
+[RESULT]: Val. Epoch: 1, summary_loss: 1.30415, final_score: 0.44156, time: 109.36026
+
+2021-04-15T08:01:22.430356
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.30962, final_score: 0.09735, time: 437.51393
+[RESULT]: Val. Epoch: 2, summary_loss: 1.91660, final_score: 0.39910, time: 106.24927
+
+2021-04-15T08:10:26.409150
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.25558, final_score: 0.07086, time: 439.29720
+[RESULT]: Val. Epoch: 3, summary_loss: 1.94049, final_score: 0.39860, time: 107.67715
+
+2021-04-15T08:19:33.558910
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.28423, final_score: 0.08673, time: 440.51807
+[RESULT]: Val. Epoch: 4, summary_loss: 1.83119, final_score: 0.39910, time: 107.26134
+
+2021-04-15T08:28:41.572798
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.25178, final_score: 0.06436, time: 456.17909
+[RESULT]: Val. Epoch: 5, summary_loss: 1.70017, final_score: 0.38661, time: 107.40718
+
+2021-04-15T08:38:05.351348
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.29160, final_score: 0.08985, time: 460.02076
+[RESULT]: Val. Epoch: 6, summary_loss: 1.32882, final_score: 0.38911, time: 107.90734
+
+2021-04-15T08:47:33.437687
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.27620, final_score: 0.08023, time: 446.31064
+[RESULT]: Val. Epoch: 7, summary_loss: 2.72350, final_score: 0.41858, time: 107.53073
+
+2021-04-15T08:56:47.479715
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.32947, final_score: 0.11485, time: 449.34126
+[RESULT]: Val. Epoch: 8, summary_loss: 1.11535, final_score: 0.35165, time: 108.14041
+
+2021-04-15T09:06:05.340763
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.31097, final_score: 0.10110, time: 459.32956
+[RESULT]: Val. Epoch: 9, summary_loss: 1.77398, final_score: 0.37662, time: 106.21387
+
+2021-04-15T09:15:31.085026
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.36320, final_score: 0.13934, time: 456.73215
+[RESULT]: Val. Epoch: 10, summary_loss: 1.23927, final_score: 0.34216, time: 106.96972
+
+2021-04-15T09:24:54.983599
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.35706, final_score: 0.13184, time: 451.99358
+[RESULT]: Val. Epoch: 11, summary_loss: 1.22517, final_score: 0.29221, time: 109.28364
+
+2021-04-15T09:34:16.546716
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.41225, final_score: 0.16771, time: 471.08088
+[RESULT]: Val. Epoch: 12, summary_loss: 0.92266, final_score: 0.29371, time: 108.57938
+
+2021-04-15T09:43:56.613946
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.39633, final_score: 0.16733, time: 461.64806
+[RESULT]: Val. Epoch: 13, summary_loss: 1.11128, final_score: 0.30519, time: 105.72076
+
+2021-04-15T09:53:24.180286
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.45628, final_score: 0.20557, time: 467.59621
+[RESULT]: Val. Epoch: 14, summary_loss: 0.89081, final_score: 0.32567, time: 106.29032
+
+2021-04-15T10:02:58.565337
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.45308, final_score: 0.20132, time: 456.57598
+[RESULT]: Val. Epoch: 15, summary_loss: 0.97629, final_score: 0.26523, time: 108.02346
+
+2021-04-15T10:12:23.346300
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.50301, final_score: 0.23107, time: 459.91355
+[RESULT]: Val. Epoch: 16, summary_loss: 0.64755, final_score: 0.27473, time: 107.64899
+
+2021-04-15T10:21:51.253988
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.48561, final_score: 0.22669, time: 462.31668
+[RESULT]: Val. Epoch: 17, summary_loss: 0.91089, final_score: 0.27622, time: 108.15919
+
+2021-04-15T10:31:21.923401
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.52496, final_score: 0.26081, time: 469.39386
+[RESULT]: Val. Epoch: 18, summary_loss: 0.79822, final_score: 0.27423, time: 108.60826
+
+2021-04-15T10:41:00.123827
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.51822, final_score: 0.25344, time: 457.17897
+[RESULT]: Val. Epoch: 19, summary_loss: 0.48673, final_score: 0.22777, time: 105.69308
+
+2021-04-15T10:50:23.399146
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.50823, final_score: 0.24694, time: 465.87453
+[RESULT]: Val. Epoch: 20, summary_loss: 0.50951, final_score: 0.23177, time: 106.04302
+
+2021-04-15T10:59:55.478106
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.50236, final_score: 0.24119, time: 459.61589
+[RESULT]: Val. Epoch: 21, summary_loss: 1.65767, final_score: 0.34715, time: 109.59370
+
+2021-04-15T11:09:24.875815
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.47203, final_score: 0.21882, time: 455.45161
+[RESULT]: Val. Epoch: 22, summary_loss: 0.48314, final_score: 0.22228, time: 106.77089
+
+2021-04-15T11:18:47.476402
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.45958, final_score: 0.20920, time: 460.87027
+[RESULT]: Val. Epoch: 23, summary_loss: 0.57750, final_score: 0.21828, time: 108.53271
+
+2021-04-15T11:28:17.071780
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.44700, final_score: 0.20320, time: 455.00002
+[RESULT]: Val. Epoch: 24, summary_loss: 0.59290, final_score: 0.22278, time: 108.34316
+
+2021-04-15T11:37:40.612653
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.42549, final_score: 0.18845, time: 462.80188
+[RESULT]: Val. Epoch: 25, summary_loss: 0.73943, final_score: 0.21678, time: 107.20796
+
+2021-04-15T11:47:10.812704
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.41011, final_score: 0.17608, time: 462.08325
+[RESULT]: Val. Epoch: 26, summary_loss: 0.45292, final_score: 0.19131, time: 108.00441
+
+2021-04-15T11:56:41.289675
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.40923, final_score: 0.18133, time: 456.11564
+[RESULT]: Val. Epoch: 27, summary_loss: 0.58553, final_score: 0.19980, time: 106.09764
+
+2021-04-15T12:06:03.775825
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.40042, final_score: 0.17258, time: 460.39776
+[RESULT]: Val. Epoch: 28, summary_loss: 0.79088, final_score: 0.20879, time: 108.73030
+
+2021-04-15T12:15:33.117703
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.39719, final_score: 0.16208, time: 462.05352
+[RESULT]: Val. Epoch: 29, summary_loss: 0.43576, final_score: 0.16933, time: 107.68080
+
+2021-04-15T12:25:03.259303
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.38826, final_score: 0.16033, time: 458.84551
+[RESULT]: Val. Epoch: 30, summary_loss: 0.48889, final_score: 0.18332, time: 106.83413
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0c8bdfab655d192aee5ebe8cb1e3004bd5895925
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ae997ed9124f5999093e5adbcb10cc72faa52258
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f7cf39d035041f2305cbdbdb308124b3bef6af9c853122dc2745bfa81f051ad0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..65bc86381d30068e3d21a38e4a39e134fa87c7ba
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:69b09cb891d2248ec545d6507a04b9f8b1b17e308af5f0d8d484fa679686ff8f
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b170948dc3744df4805e50d6d1a55d1d42267373
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:059a0bb9333f2ecce223a61de52ca4272dd54a710280db5a1cee20402dc56b95
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4033f3fd2f422308e73e144f3288700c5e08e664
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:febb7648c03bd10dc00ad22a588681fae94953a4464ed2066e34125266e6b341
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8a1823f0d7768e7c118b2312537584741ec1a428
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/log.txt
@@ -0,0 +1,227 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-19T06:46:36.752895
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.44328, final_score: 0.20295, time: 773.30344
+[RESULT]: Val. Epoch: 1, summary_loss: 1.43230, final_score: 0.42557, time: 179.00703
+
+2021-04-19T07:02:29.456993
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.31864, final_score: 0.10060, time: 758.38839
+[RESULT]: Val. Epoch: 2, summary_loss: 1.67968, final_score: 0.41958, time: 197.06500
+
+2021-04-19T07:18:25.109909
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.26666, final_score: 0.07436, time: 749.78796
+[RESULT]: Val. Epoch: 3, summary_loss: 1.64414, final_score: 0.40609, time: 187.74909
+
+2021-04-19T07:34:02.875541
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.29336, final_score: 0.08973, time: 741.09868
+[RESULT]: Val. Epoch: 4, summary_loss: 1.42515, final_score: 0.40959, time: 176.15598
+
+2021-04-19T07:49:20.537097
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.26527, final_score: 0.07973, time: 742.46101
+[RESULT]: Val. Epoch: 5, summary_loss: 2.10666, final_score: 0.41508, time: 187.95412
+
+2021-04-19T08:04:51.138152
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+Fitter prepared. Device is cuda:0
+
+2021-04-19T18:41:08.642639
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.47737, final_score: 0.23207, time: 786.14268
+[RESULT]: Val. Epoch: 1, summary_loss: 1.12468, final_score: 0.43906, time: 172.54792
+
+2021-04-19T18:57:07.731678
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.33665, final_score: 0.11560, time: 729.55439
+[RESULT]: Val. Epoch: 2, summary_loss: 1.16209, final_score: 0.42607, time: 169.69648
+
+2021-04-19T19:12:07.183369
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.28452, final_score: 0.08735, time: 734.54312
+[RESULT]: Val. Epoch: 3, summary_loss: 1.31979, final_score: 0.41508, time: 169.41596
+
+2021-04-19T19:27:11.387317
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30609, final_score: 0.09810, time: 751.90603
+[RESULT]: Val. Epoch: 4, summary_loss: 1.81883, final_score: 0.41459, time: 169.69129
+
+2021-04-19T19:42:33.176783
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.28051, final_score: 0.08260, time: 730.95309
+[RESULT]: Val. Epoch: 5, summary_loss: 1.57500, final_score: 0.39810, time: 167.99674
+
+2021-04-19T19:57:32.309293
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.31937, final_score: 0.10722, time: 735.50927
+[RESULT]: Val. Epoch: 6, summary_loss: 1.34070, final_score: 0.40110, time: 167.91637
+
+2021-04-19T20:12:35.942021
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.30655, final_score: 0.10222, time: 738.08575
+[RESULT]: Val. Epoch: 7, summary_loss: 1.77714, final_score: 0.41159, time: 166.89743
+
+2021-04-19T20:27:41.126229
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.37113, final_score: 0.14059, time: 747.11871
+[RESULT]: Val. Epoch: 8, summary_loss: 1.54774, final_score: 0.38861, time: 166.70131
+
+2021-04-19T20:42:55.167645
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.35099, final_score: 0.12884, time: 734.29406
+[RESULT]: Val. Epoch: 9, summary_loss: 1.18642, final_score: 0.39610, time: 165.27648
+
+2021-04-19T20:57:54.921690
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.40693, final_score: 0.16546, time: 751.38886
+[RESULT]: Val. Epoch: 10, summary_loss: 0.80724, final_score: 0.37063, time: 167.21007
+
+2021-04-19T21:13:13.924623
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39955, final_score: 0.16246, time: 742.89235
+[RESULT]: Val. Epoch: 11, summary_loss: 0.95691, final_score: 0.36663, time: 165.42960
+
+2021-04-19T21:28:22.441901
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.46854, final_score: 0.21545, time: 733.80649
+[RESULT]: Val. Epoch: 12, summary_loss: 0.81337, final_score: 0.35365, time: 165.93953
+
+2021-04-19T21:43:22.417313
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44726, final_score: 0.19870, time: 735.38461
+[RESULT]: Val. Epoch: 13, summary_loss: 0.66380, final_score: 0.35664, time: 164.95873
+
+2021-04-19T21:58:23.134346
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.51624, final_score: 0.24919, time: 735.93973
+[RESULT]: Val. Epoch: 14, summary_loss: 0.85946, final_score: 0.34665, time: 163.64824
+
+2021-04-19T22:13:22.897019
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.49864, final_score: 0.23732, time: 729.73192
+[RESULT]: Val. Epoch: 15, summary_loss: 0.85448, final_score: 0.32667, time: 165.28364
+
+2021-04-19T22:28:18.090176
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.55939, final_score: 0.29018, time: 743.37867
+[RESULT]: Val. Epoch: 16, summary_loss: 0.71481, final_score: 0.35015, time: 165.98252
+
+2021-04-19T22:43:27.628625
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.54665, final_score: 0.28318, time: 742.92577
+[RESULT]: Val. Epoch: 17, summary_loss: 0.62211, final_score: 0.32817, time: 165.02472
+
+2021-04-19T22:58:35.938406
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.58210, final_score: 0.31717, time: 735.08998
+[RESULT]: Val. Epoch: 18, summary_loss: 0.76191, final_score: 0.32767, time: 164.51817
+
+2021-04-19T23:13:35.741652
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.57830, final_score: 0.31092, time: 741.18757
+[RESULT]: Val. Epoch: 19, summary_loss: 0.59845, final_score: 0.31269, time: 163.44419
+
+2021-04-19T23:28:40.769838
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.57512, final_score: 0.30892, time: 731.55611
+[RESULT]: Val. Epoch: 20, summary_loss: 0.55676, final_score: 0.27572, time: 164.86913
+
+2021-04-19T23:43:37.540769
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.56312, final_score: 0.29980, time: 741.89931
+[RESULT]: Val. Epoch: 21, summary_loss: 0.62585, final_score: 0.32368, time: 165.12319
+
+2021-04-19T23:58:44.730220
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.56126, final_score: 0.29580, time: 724.56501
+[RESULT]: Val. Epoch: 22, summary_loss: 0.65063, final_score: 0.30270, time: 165.76097
+
+2021-04-20T00:13:35.225637
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.51954, final_score: 0.26293, time: 736.41555
+[RESULT]: Val. Epoch: 23, summary_loss: 0.56405, final_score: 0.26573, time: 166.80786
+
+2021-04-20T00:28:38.634538
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.50703, final_score: 0.25131, time: 741.08236
+[RESULT]: Val. Epoch: 24, summary_loss: 0.53809, final_score: 0.24775, time: 164.93450
+
+2021-04-20T00:43:44.979860
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.50095, final_score: 0.24619, time: 724.57404
+[RESULT]: Val. Epoch: 25, summary_loss: 0.66300, final_score: 0.26274, time: 166.55208
+
+2021-04-20T00:58:36.276382
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.49023, final_score: 0.23519, time: 725.93102
+[RESULT]: Val. Epoch: 26, summary_loss: 0.51967, final_score: 0.23676, time: 165.96945
+
+2021-04-20T01:13:28.482509
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.48155, final_score: 0.22944, time: 727.35663
+[RESULT]: Val. Epoch: 27, summary_loss: 0.53949, final_score: 0.25175, time: 163.98416
+
+2021-04-20T01:28:19.991168
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.47842, final_score: 0.23157, time: 742.50146
+[RESULT]: Val. Epoch: 28, summary_loss: 0.49954, final_score: 0.22577, time: 164.53107
+
+2021-04-20T01:43:27.356441
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.47140, final_score: 0.22269, time: 722.34062
+[RESULT]: Val. Epoch: 29, summary_loss: 0.48160, final_score: 0.21978, time: 166.47781
+
+2021-04-20T01:58:16.498841
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.46083, final_score: 0.21495, time: 742.54762
+[RESULT]: Val. Epoch: 30, summary_loss: 0.51615, final_score: 0.23926, time: 164.36111
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:36:32.682731
+LR: 0.00025
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 31, summary_loss: 0.65854, final_score: 0.39628, time: 785.03612
+[RESULT]: Val. Epoch: 31, summary_loss: 0.70610, final_score: 0.40160, time: 166.26262
+
+2021-04-28T09:52:24.228144
+LR: 0.00025
+Emb_rate: 0.18000000000000002
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a0ff0fab62bf46537bf8830543c5781a3ca9d713
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-030epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-030epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b4816f170f8460ca6b9d67041e0d48260d1e363c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-030epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:32734d9727fef8bc43ada9dd7b97c69e418bd9e3999e644a8ea141fa9a0f3a6e
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-032epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-032epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3cf2013047ee56c79013eae0117c732d0388fc6d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-032epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2eaff43abc22e8c3ce0902f5cf5240d396701e5749fc87db3d39c95173fe5a5b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-036epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-036epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..56672d47a9ee366f238260a9894e01d9da88a486
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/best-checkpoint-036epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:37ee2c2fd155afa7469f613d15cf091142de91e81ea3be4c2018b7f021eb8521
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..965e89aa12c7d59eee475612b0792b57d6b385ba
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:50e82ad9783f60b506d6e6948ab65c73a677e751604887905f5119570387497b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9d48e26e181bee4c0a2cd341deb05112cd8c5391
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/log.txt
@@ -0,0 +1,240 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:56:43.155091
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.44540, final_score: 0.20482, time: 974.10172
+[RESULT]: Val. Epoch: 1, summary_loss: 1.33332, final_score: 0.50000, time: 260.97505
+
+2021-04-26T10:17:18.725432
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.32684, final_score: 0.10997, time: 1014.76367
+[RESULT]: Val. Epoch: 2, summary_loss: 1.75346, final_score: 0.50000, time: 210.29546
+
+2021-04-26T10:37:43.952245
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27220, final_score: 0.07773, time: 1016.25265
+[RESULT]: Val. Epoch: 3, summary_loss: 2.04468, final_score: 0.49950, time: 259.89722
+
+2021-04-26T10:59:00.321411
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30327, final_score: 0.09410, time: 965.67374
+[RESULT]: Val. Epoch: 4, summary_loss: 2.22072, final_score: 0.50000, time: 244.91394
+
+2021-04-26T11:19:11.130654
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.26480, final_score: 0.07748, time: 949.69133
+[RESULT]: Val. Epoch: 5, summary_loss: 1.73163, final_score: 0.49850, time: 227.18994
+
+2021-04-26T11:38:48.188350
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.32203, final_score: 0.10647, time: 1014.66729
+[RESULT]: Val. Epoch: 6, summary_loss: 1.36024, final_score: 0.49351, time: 228.81075
+
+2021-04-26T11:59:31.834078
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.30068, final_score: 0.09773, time: 1006.77130
+[RESULT]: Val. Epoch: 7, summary_loss: 1.76627, final_score: 0.50000, time: 253.39142
+
+2021-04-26T12:20:32.156784
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.35176, final_score: 0.13184, time: 1019.66192
+[RESULT]: Val. Epoch: 8, summary_loss: 2.60219, final_score: 0.50000, time: 222.84421
+
+2021-04-26T12:41:14.872549
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33492, final_score: 0.11972, time: 1021.42626
+[RESULT]: Val. Epoch: 9, summary_loss: 1.32545, final_score: 0.50000, time: 241.85572
+
+2021-04-26T13:02:18.566082
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.41982, final_score: 0.17658, time: 1049.05175
+[RESULT]: Val. Epoch: 10, summary_loss: 2.29335, final_score: 0.50000, time: 222.40633
+
+2021-04-26T13:23:30.246540
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39650, final_score: 0.16033, time: 960.96584
+[RESULT]: Val. Epoch: 11, summary_loss: 1.31397, final_score: 0.49950, time: 218.58543
+
+2021-04-26T13:43:10.208082
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.45975, final_score: 0.20682, time: 1015.14738
+[RESULT]: Val. Epoch: 12, summary_loss: 1.66180, final_score: 0.50000, time: 246.17360
+
+2021-04-26T14:04:11.716819
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44748, final_score: 0.19358, time: 961.22777
+[RESULT]: Val. Epoch: 13, summary_loss: 2.11723, final_score: 0.50000, time: 257.71829
+
+2021-04-26T14:24:30.858173
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.51250, final_score: 0.24881, time: 992.03841
+[RESULT]: Val. Epoch: 14, summary_loss: 1.48539, final_score: 0.50000, time: 235.74129
+
+2021-04-26T14:44:58.851386
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.50448, final_score: 0.24356, time: 1006.89527
+[RESULT]: Val. Epoch: 15, summary_loss: 1.43534, final_score: 0.49950, time: 246.16029
+
+2021-04-26T15:05:52.135473
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.56305, final_score: 0.29693, time: 999.86398
+[RESULT]: Val. Epoch: 16, summary_loss: 1.13516, final_score: 0.49950, time: 250.29098
+
+2021-04-26T15:26:42.760264
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.54559, final_score: 0.27768, time: 1055.16345
+[RESULT]: Val. Epoch: 17, summary_loss: 1.33832, final_score: 0.49950, time: 240.87720
+
+2021-04-26T15:48:18.999991
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59440, final_score: 0.32829, time: 1023.63443
+[RESULT]: Val. Epoch: 18, summary_loss: 1.18218, final_score: 0.49950, time: 236.53697
+
+2021-04-26T16:09:19.420815
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59012, final_score: 0.31980, time: 1004.93828
+[RESULT]: Val. Epoch: 19, summary_loss: 1.15869, final_score: 0.50000, time: 240.29869
+
+2021-04-26T16:30:04.850983
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62203, final_score: 0.35779, time: 1002.86017
+[RESULT]: Val. Epoch: 20, summary_loss: 0.96110, final_score: 0.49950, time: 214.66728
+
+2021-04-26T16:50:22.857595
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.61485, final_score: 0.34779, time: 1014.84030
+[RESULT]: Val. Epoch: 21, summary_loss: 1.10856, final_score: 0.49850, time: 256.64491
+
+2021-04-26T17:11:34.518804
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.63623, final_score: 0.37341, time: 1032.32735
+[RESULT]: Val. Epoch: 22, summary_loss: 0.76973, final_score: 0.45704, time: 233.42484
+
+2021-04-26T17:32:40.669613
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.61275, final_score: 0.33992, time: 1028.63575
+[RESULT]: Val. Epoch: 23, summary_loss: 1.13348, final_score: 0.40160, time: 243.41275
+
+2021-04-26T17:53:52.926331
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.56040, final_score: 0.28155, time: 959.31886
+[RESULT]: Val. Epoch: 24, summary_loss: 0.58998, final_score: 0.22627, time: 216.86012
+
+2021-04-26T18:13:29.454090
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 25, summary_loss: 0.48453, final_score: 0.21907, time: 937.02140
+[RESULT]: Val. Epoch: 25, summary_loss: 0.46243, final_score: 0.18981, time: 208.07738
+
+2021-04-26T18:32:34.875176
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.44727, final_score: 0.18833, time: 998.25177
+[RESULT]: Val. Epoch: 26, summary_loss: 0.53899, final_score: 0.19381, time: 221.74335
+
+2021-04-26T18:52:55.031119
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 27, summary_loss: 0.42733, final_score: 0.18070, time: 973.65151
+[RESULT]: Val. Epoch: 27, summary_loss: 0.52402, final_score: 0.19281, time: 214.50564
+
+2021-04-26T19:12:43.391003
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.41319, final_score: 0.17008, time: 957.65060
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56075, final_score: 0.15085, time: 205.47115
+
+2021-04-26T19:32:06.679603
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 29, summary_loss: 0.40066, final_score: 0.16046, time: 987.14075
+[RESULT]: Val. Epoch: 29, summary_loss: 0.38681, final_score: 0.13087, time: 209.04230
+
+2021-04-26T19:52:03.208789
+LR: 0.0005
+Emb_rate: 0.2058911320946491
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:06:53.044264
+LR: 0.0005
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.37668, final_score: 0.14246, time: 775.52208
+[RESULT]: Val. Epoch: 30, summary_loss: 0.35193, final_score: 0.12088, time: 171.82202
+
+2021-04-28T10:22:41.188794
+LR: 0.0005
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 31, summary_loss: 0.37518, final_score: 0.14909, time: 749.24501
+[RESULT]: Val. Epoch: 31, summary_loss: 0.57143, final_score: 0.14036, time: 171.01923
+
+2021-04-28T10:38:01.647263
+LR: 0.0005
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 32, summary_loss: 0.36947, final_score: 0.14159, time: 729.83548
+[RESULT]: Val. Epoch: 32, summary_loss: 0.34794, final_score: 0.12288, time: 169.83013
+
+2021-04-28T10:53:01.758891
+LR: 0.0005
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 33, summary_loss: 0.35906, final_score: 0.13284, time: 734.20498
+[RESULT]: Val. Epoch: 33, summary_loss: 0.34834, final_score: 0.11888, time: 172.21820
+
+2021-04-28T11:08:08.390415
+LR: 0.0005
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 34, summary_loss: 0.35179, final_score: 0.13134, time: 751.98429
+[RESULT]: Val. Epoch: 34, summary_loss: 0.42885, final_score: 0.11988, time: 170.46193
+
+2021-04-28T11:23:31.032670
+LR: 0.0005
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 35, summary_loss: 0.34333, final_score: 0.12572, time: 749.46733
+[RESULT]: Val. Epoch: 35, summary_loss: 0.52539, final_score: 0.12438, time: 172.56363
+
+2021-04-28T11:38:53.221646
+LR: 0.0005
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 36, summary_loss: 0.34328, final_score: 0.12459, time: 741.96778
+[RESULT]: Val. Epoch: 36, summary_loss: 0.33860, final_score: 0.10889, time: 169.80062
+
+2021-04-28T11:54:05.392306
+LR: 0.0005
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 37, summary_loss: 0.33970, final_score: 0.12184, time: 719.92210
+[RESULT]: Val. Epoch: 37, summary_loss: 0.35776, final_score: 0.11888, time: 170.40954
+
+2021-04-28T12:08:55.890067
+LR: 0.0005
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 38, summary_loss: 0.33934, final_score: 0.12472, time: 737.44173
+[RESULT]: Val. Epoch: 38, summary_loss: 0.34220, final_score: 0.11538, time: 171.74103
+
+2021-04-28T12:24:05.242933
+LR: 0.0005
+Emb_rate: 0.11809800000000004
+[RESULT]: Train. Epoch: 39, summary_loss: 0.33296, final_score: 0.11910, time: 738.70743
+[RESULT]: Val. Epoch: 39, summary_loss: 0.42958, final_score: 0.13187, time: 175.30044
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..613314113296c21d911c2144486fbec3637c2b42
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..aed95129445bc289f8937728fd0817dc8f324e31
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7539e2c6d5ec07f9b45f0bb497e690f2242630dae990e23a881caeda728759c0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4ae67ee7499b201613387134a4e0e444b07ba066
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7ede98b082583034ddc77a0d5a941d6722391e3c0478b81925e27effebc652db
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5e4a2f9f3638ba82e0488b918e115f096f9211cf
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e403de00ac247f165b152f79174b41d985cfdfe35de5a54081c3e059bdb6961d
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fabda8eda4c7c350682e97279addac03a04e2b6d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:85ac97ac54acfdf442f94824e99d036c0ba56f69a9f533a7912d03ca6485d195
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d7013695c3975beebea2f8fbc23891b23eabb7f8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:31:40.859434
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.46403, final_score: 0.22082, time: 759.89895
+[RESULT]: Val. Epoch: 1, summary_loss: 1.61314, final_score: 0.49800, time: 181.90306
+
+2021-04-26T09:47:22.981534
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.31024, final_score: 0.09885, time: 775.72641
+[RESULT]: Val. Epoch: 2, summary_loss: 1.65319, final_score: 0.49950, time: 232.63727
+
+2021-04-26T10:04:11.538851
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27014, final_score: 0.07411, time: 813.44190
+[RESULT]: Val. Epoch: 3, summary_loss: 2.84616, final_score: 0.49850, time: 187.82921
+
+2021-04-26T10:20:53.022280
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.28595, final_score: 0.08735, time: 768.53532
+[RESULT]: Val. Epoch: 4, summary_loss: 1.85338, final_score: 0.49950, time: 189.88578
+
+2021-04-26T10:36:51.640278
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27080, final_score: 0.08098, time: 773.28084
+[RESULT]: Val. Epoch: 5, summary_loss: 2.28717, final_score: 0.49850, time: 188.78612
+
+2021-04-26T10:52:53.859579
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.31102, final_score: 0.10360, time: 779.95394
+[RESULT]: Val. Epoch: 6, summary_loss: 1.68300, final_score: 0.49950, time: 188.43408
+
+2021-04-26T11:09:02.416547
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.29646, final_score: 0.09585, time: 770.78542
+[RESULT]: Val. Epoch: 7, summary_loss: 3.77968, final_score: 0.49950, time: 188.12409
+
+2021-04-26T11:25:01.487209
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.35786, final_score: 0.13084, time: 783.41525
+[RESULT]: Val. Epoch: 8, summary_loss: 1.98318, final_score: 0.49900, time: 191.41373
+
+2021-04-26T11:41:16.485458
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33607, final_score: 0.11847, time: 776.85529
+[RESULT]: Val. Epoch: 9, summary_loss: 1.32060, final_score: 0.49900, time: 190.68007
+
+2021-04-26T11:57:24.363894
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.40223, final_score: 0.16158, time: 804.46131
+[RESULT]: Val. Epoch: 10, summary_loss: 1.63675, final_score: 0.49850, time: 186.08549
+
+2021-04-26T12:13:55.073389
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39079, final_score: 0.15459, time: 782.17791
+[RESULT]: Val. Epoch: 11, summary_loss: 2.20134, final_score: 0.49900, time: 192.90415
+
+2021-04-26T12:30:10.303854
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.45654, final_score: 0.20295, time: 793.44857
+[RESULT]: Val. Epoch: 12, summary_loss: 1.46025, final_score: 0.49850, time: 189.91426
+
+2021-04-26T12:46:33.840658
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44461, final_score: 0.19520, time: 792.46565
+[RESULT]: Val. Epoch: 13, summary_loss: 1.77451, final_score: 0.49950, time: 190.92163
+
+2021-04-26T13:02:57.425121
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.51352, final_score: 0.24894, time: 783.14103
+[RESULT]: Val. Epoch: 14, summary_loss: 1.39658, final_score: 0.49800, time: 187.30109
+
+2021-04-26T13:19:08.019154
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.50105, final_score: 0.23694, time: 778.72723
+[RESULT]: Val. Epoch: 15, summary_loss: 1.44828, final_score: 0.49700, time: 181.42484
+
+2021-04-26T13:35:08.338803
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.55435, final_score: 0.28618, time: 784.74546
+[RESULT]: Val. Epoch: 16, summary_loss: 1.16943, final_score: 0.49700, time: 190.71833
+
+2021-04-26T13:51:24.209370
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.54921, final_score: 0.28430, time: 807.37053
+[RESULT]: Val. Epoch: 17, summary_loss: 1.21956, final_score: 0.49750, time: 191.50704
+
+2021-04-26T14:08:03.240725
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59846, final_score: 0.33654, time: 809.95386
+[RESULT]: Val. Epoch: 18, summary_loss: 0.92157, final_score: 0.49151, time: 190.26253
+
+2021-04-26T14:24:43.829713
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.58988, final_score: 0.32154, time: 802.72294
+[RESULT]: Val. Epoch: 19, summary_loss: 1.13600, final_score: 0.49151, time: 185.51690
+
+2021-04-26T14:41:12.282409
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62349, final_score: 0.36266, time: 838.14583
+[RESULT]: Val. Epoch: 20, summary_loss: 1.25946, final_score: 0.48751, time: 190.61583
+
+2021-04-26T14:58:21.240351
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.61602, final_score: 0.34754, time: 802.37367
+[RESULT]: Val. Epoch: 21, summary_loss: 0.95338, final_score: 0.47852, time: 185.29157
+
+2021-04-26T15:14:49.116964
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.64034, final_score: 0.37391, time: 798.39661
+[RESULT]: Val. Epoch: 22, summary_loss: 0.73949, final_score: 0.45455, time: 219.19994
+
+2021-04-26T15:31:47.091854
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.63362, final_score: 0.36591, time: 789.67024
+[RESULT]: Val. Epoch: 23, summary_loss: 0.75492, final_score: 0.43457, time: 195.85755
+
+2021-04-26T15:48:12.772739
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.61238, final_score: 0.33754, time: 796.00332
+[RESULT]: Val. Epoch: 24, summary_loss: 0.56623, final_score: 0.26474, time: 187.96069
+
+2021-04-26T16:04:37.060800
+LR: 0.0005
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 25, summary_loss: 0.53632, final_score: 0.26368, time: 802.97043
+[RESULT]: Val. Epoch: 25, summary_loss: 1.10342, final_score: 0.24126, time: 171.64869
+
+2021-04-26T16:20:51.872425
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.48526, final_score: 0.21795, time: 794.00560
+[RESULT]: Val. Epoch: 26, summary_loss: 0.62376, final_score: 0.20729, time: 189.38328
+
+2021-04-26T16:37:16.329785
+LR: 0.0005
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 27, summary_loss: 0.45736, final_score: 0.19795, time: 781.05814
+[RESULT]: Val. Epoch: 27, summary_loss: 0.72108, final_score: 0.20480, time: 188.77410
+
+2021-04-26T16:53:26.362901
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.42441, final_score: 0.17771, time: 818.30639
+[RESULT]: Val. Epoch: 28, summary_loss: 0.41498, final_score: 0.16683, time: 186.70602
+
+2021-04-26T17:10:11.706348
+LR: 0.0005
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 29, summary_loss: 0.41186, final_score: 0.16733, time: 831.57560
+[RESULT]: Val. Epoch: 29, summary_loss: 0.36380, final_score: 0.12737, time: 199.31931
+
+2021-04-26T17:27:23.014362
+LR: 0.0005
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 30, summary_loss: 0.38676, final_score: 0.14884, time: 815.29753
+[RESULT]: Val. Epoch: 30, summary_loss: 0.53831, final_score: 0.12737, time: 186.39940
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0f903991a320c51321bbc6a9f5f33665cbd92926
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4ea4f37b3aa22c876e527f4c09d7bc5a84e41dfc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:22bdb994b595d315cd430ec006980aa23e3c882f4e186571d6f45aa39287effc
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d5393aa9f331583635f9d6d5d16d92057d359234
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:961b8ab9041bb563e5034d7078ad159777720914c41abce0ff296a2d1b6ca549
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..67a43a15322dcfb29e1ec0c0b55fa5a100cdbfb1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9e00d6d044fd40e9bd88e462d8f4a813a4b90b825ff0516305f0e5350230341c
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..018fced9a83ce63b92475f1d5272c26719e6ffa2
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b3eb8fc8ebcda8a65461ea9c431037c4b8ed58cda41404bcf699ebd1b2601ec1
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..aaf36dcab7b1fcb85cff37fba62d0ef4cc6e5791
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:32:25.773820
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.44186, final_score: 0.20557, time: 726.58946
+[RESULT]: Val. Epoch: 1, summary_loss: 1.32824, final_score: 0.47752, time: 169.21040
+
+2021-04-26T09:47:22.003863
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.33012, final_score: 0.11272, time: 719.78873
+[RESULT]: Val. Epoch: 2, summary_loss: 1.62371, final_score: 0.47802, time: 172.63492
+
+2021-04-26T10:02:14.614542
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27330, final_score: 0.07923, time: 724.38541
+[RESULT]: Val. Epoch: 3, summary_loss: 1.59675, final_score: 0.47952, time: 168.06914
+
+2021-04-26T10:17:07.224938
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30432, final_score: 0.09823, time: 726.86723
+[RESULT]: Val. Epoch: 4, summary_loss: 1.11498, final_score: 0.48452, time: 170.86186
+
+2021-04-26T10:32:05.309063
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27869, final_score: 0.08610, time: 723.85958
+[RESULT]: Val. Epoch: 5, summary_loss: 2.80902, final_score: 0.48651, time: 170.43473
+
+2021-04-26T10:46:59.792585
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.31909, final_score: 0.10510, time: 726.36373
+[RESULT]: Val. Epoch: 6, summary_loss: 1.95219, final_score: 0.47502, time: 170.76251
+
+2021-04-26T11:01:57.073949
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.31428, final_score: 0.10497, time: 755.13758
+[RESULT]: Val. Epoch: 7, summary_loss: 2.35144, final_score: 0.48402, time: 172.19957
+
+2021-04-26T11:17:24.613942
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.36128, final_score: 0.13347, time: 747.07605
+[RESULT]: Val. Epoch: 8, summary_loss: 1.87567, final_score: 0.49051, time: 169.25372
+
+2021-04-26T11:32:41.136252
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.34462, final_score: 0.12422, time: 746.25183
+[RESULT]: Val. Epoch: 9, summary_loss: 1.03171, final_score: 0.45954, time: 168.46109
+
+2021-04-26T11:47:56.216584
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.40307, final_score: 0.16408, time: 727.76973
+[RESULT]: Val. Epoch: 10, summary_loss: 1.48269, final_score: 0.46953, time: 171.02564
+
+2021-04-26T12:02:55.173273
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40191, final_score: 0.16421, time: 738.71602
+[RESULT]: Val. Epoch: 11, summary_loss: 1.57936, final_score: 0.46104, time: 169.55578
+
+2021-04-26T12:18:03.641863
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.46288, final_score: 0.20770, time: 735.42863
+[RESULT]: Val. Epoch: 12, summary_loss: 0.84615, final_score: 0.46553, time: 171.60854
+
+2021-04-26T12:33:11.104235
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44869, final_score: 0.19683, time: 726.43879
+[RESULT]: Val. Epoch: 13, summary_loss: 1.52270, final_score: 0.45754, time: 168.81345
+
+2021-04-26T12:48:06.554243
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.51907, final_score: 0.25794, time: 738.16803
+[RESULT]: Val. Epoch: 14, summary_loss: 1.20560, final_score: 0.45005, time: 170.57404
+
+2021-04-26T13:03:15.492396
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.51171, final_score: 0.25044, time: 736.44293
+[RESULT]: Val. Epoch: 15, summary_loss: 0.97018, final_score: 0.43207, time: 169.98266
+
+2021-04-26T13:18:22.101836
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.55723, final_score: 0.28468, time: 739.76696
+[RESULT]: Val. Epoch: 16, summary_loss: 0.83471, final_score: 0.42458, time: 169.17455
+
+2021-04-26T13:33:31.413830
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.55387, final_score: 0.28455, time: 746.91899
+[RESULT]: Val. Epoch: 17, summary_loss: 0.78863, final_score: 0.41858, time: 170.01842
+
+2021-04-26T13:48:48.764767
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59459, final_score: 0.32467, time: 767.31851
+[RESULT]: Val. Epoch: 18, summary_loss: 0.91662, final_score: 0.41359, time: 169.68538
+
+2021-04-26T14:04:25.969865
+LR: 0.0005
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59151, final_score: 0.32804, time: 738.71136
+[RESULT]: Val. Epoch: 19, summary_loss: 0.65755, final_score: 0.38961, time: 171.84713
+
+2021-04-26T14:19:36.894703
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.61353, final_score: 0.34666, time: 739.11555
+[RESULT]: Val. Epoch: 20, summary_loss: 0.75230, final_score: 0.38412, time: 170.99122
+
+2021-04-26T14:34:47.184122
+LR: 0.0005
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 21, summary_loss: 0.59314, final_score: 0.31680, time: 761.97549
+[RESULT]: Val. Epoch: 21, summary_loss: 0.64665, final_score: 0.32018, time: 171.29907
+
+2021-04-26T14:50:20.823756
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.56186, final_score: 0.28518, time: 746.42617
+[RESULT]: Val. Epoch: 22, summary_loss: 0.47929, final_score: 0.20979, time: 168.71790
+
+2021-04-26T15:05:36.300520
+LR: 0.0005
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.50654, final_score: 0.23532, time: 755.18688
+[RESULT]: Val. Epoch: 23, summary_loss: 0.46920, final_score: 0.20729, time: 170.73649
+
+2021-04-26T15:21:02.574513
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 24, summary_loss: 0.47049, final_score: 0.20620, time: 740.08124
+[RESULT]: Val. Epoch: 24, summary_loss: 0.42066, final_score: 0.14885, time: 168.79011
+
+2021-04-26T15:36:11.768475
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 25, summary_loss: 0.45142, final_score: 0.19533, time: 754.63597
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69186, final_score: 0.20030, time: 172.60389
+
+2021-04-26T15:51:39.185389
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 26, summary_loss: 0.43253, final_score: 0.17658, time: 755.08008
+[RESULT]: Val. Epoch: 26, summary_loss: 0.37739, final_score: 0.12338, time: 170.36705
+
+2021-04-26T16:07:04.959096
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.42052, final_score: 0.16971, time: 735.61372
+[RESULT]: Val. Epoch: 27, summary_loss: 0.44784, final_score: 0.14635, time: 169.69027
+
+2021-04-26T16:22:10.451656
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.41430, final_score: 0.16746, time: 745.27764
+[RESULT]: Val. Epoch: 28, summary_loss: 0.38172, final_score: 0.13586, time: 170.62299
+
+2021-04-26T16:37:26.511860
+LR: 0.00025
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.38227, final_score: 0.14896, time: 742.51501
+[RESULT]: Val. Epoch: 29, summary_loss: 0.35389, final_score: 0.12038, time: 169.31000
+
+2021-04-26T16:52:38.770582
+LR: 0.00025
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 30, summary_loss: 0.36777, final_score: 0.13797, time: 751.71544
+[RESULT]: Val. Epoch: 30, summary_loss: 0.37508, final_score: 0.13237, time: 169.34574
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..621e9c24ed27b652a81b8395772c03e301f96189
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-014epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-014epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..aaf37b541f9a79c5e957f74c7bb6d0a1ed856185
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-014epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:01495c4dca38033322bd36f0f25bf05aea81329c635d420263f6de48fe8c2109
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-017epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-017epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3f3762e83774cbb78a598130f145695aedd6070c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-017epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:21abf1dffb17253b838b25c164d8df454166b15ca99a88ed52eccd210c8eff3a
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..194bae07957330ea787abfd4c110d9080690337e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fdbb39231a5a7398713fe0f3e8fc7962b10823f0bac469449b935c2a264829d1
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..25008a015dfe9bd574b765db99bab94323ae6241
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f4f5fb6e4a396eaae81394c048350d5bb9d353a6d93df6938c7d108a976377c5
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..41255eca07419c94c77c042e5ab94fa519245ba5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:34:09.844401
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.45487, final_score: 0.21707, time: 755.58496
+[RESULT]: Val. Epoch: 1, summary_loss: 0.98446, final_score: 0.37013, time: 164.53891
+
+2021-04-26T09:49:30.356170
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.31693, final_score: 0.10285, time: 690.49379
+[RESULT]: Val. Epoch: 2, summary_loss: 1.17790, final_score: 0.30919, time: 165.84205
+
+2021-04-26T10:03:46.913840
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.25595, final_score: 0.06848, time: 691.61054
+[RESULT]: Val. Epoch: 3, summary_loss: 1.44489, final_score: 0.32967, time: 166.44214
+
+2021-04-26T10:18:05.162674
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.28381, final_score: 0.08623, time: 696.73522
+[RESULT]: Val. Epoch: 4, summary_loss: 1.17660, final_score: 0.30120, time: 164.11633
+
+2021-04-26T10:32:26.203448
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.26923, final_score: 0.07923, time: 695.69807
+[RESULT]: Val. Epoch: 5, summary_loss: 1.57745, final_score: 0.32218, time: 164.38646
+
+2021-04-26T10:46:46.494665
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.32264, final_score: 0.10947, time: 693.82402
+[RESULT]: Val. Epoch: 6, summary_loss: 1.01428, final_score: 0.32068, time: 167.98240
+
+2021-04-26T11:01:08.472814
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28786, final_score: 0.09185, time: 699.57360
+[RESULT]: Val. Epoch: 7, summary_loss: 1.59503, final_score: 0.28521, time: 165.88706
+
+2021-04-26T11:15:34.114461
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.35549, final_score: 0.13209, time: 702.91317
+[RESULT]: Val. Epoch: 8, summary_loss: 1.08550, final_score: 0.29570, time: 167.81207
+
+2021-04-26T11:30:05.021090
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33718, final_score: 0.12309, time: 713.37569
+[RESULT]: Val. Epoch: 9, summary_loss: 0.88556, final_score: 0.24725, time: 166.97929
+
+2021-04-26T11:44:45.825773
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.40646, final_score: 0.16533, time: 694.14366
+[RESULT]: Val. Epoch: 10, summary_loss: 1.04534, final_score: 0.23926, time: 164.30511
+
+2021-04-26T11:59:04.464755
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39405, final_score: 0.15896, time: 695.43515
+[RESULT]: Val. Epoch: 11, summary_loss: 1.52472, final_score: 0.32118, time: 166.99711
+
+2021-04-26T12:13:27.104677
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.45317, final_score: 0.20332, time: 703.30782
+[RESULT]: Val. Epoch: 12, summary_loss: 0.63625, final_score: 0.24675, time: 164.38252
+
+2021-04-26T12:27:55.139872
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.43888, final_score: 0.19170, time: 693.93411
+[RESULT]: Val. Epoch: 13, summary_loss: 0.92006, final_score: 0.27223, time: 167.60375
+
+2021-04-26T12:42:16.893566
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 14, summary_loss: 0.48173, final_score: 0.22057, time: 713.36994
+[RESULT]: Val. Epoch: 14, summary_loss: 0.47606, final_score: 0.20480, time: 167.51161
+
+2021-04-26T12:56:58.180977
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 15, summary_loss: 0.47294, final_score: 0.22094, time: 694.71445
+[RESULT]: Val. Epoch: 15, summary_loss: 0.55986, final_score: 0.24426, time: 166.20192
+
+2021-04-26T13:11:19.284107
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 16, summary_loss: 0.46415, final_score: 0.20995, time: 711.53229
+[RESULT]: Val. Epoch: 16, summary_loss: 1.17536, final_score: 0.27872, time: 166.23783
+
+2021-04-26T13:25:57.271193
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.41993, final_score: 0.18633, time: 718.44210
+[RESULT]: Val. Epoch: 17, summary_loss: 0.47061, final_score: 0.18132, time: 168.32497
+
+2021-04-26T13:40:44.439875
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.40192, final_score: 0.17046, time: 715.84248
+[RESULT]: Val. Epoch: 18, summary_loss: 0.48376, final_score: 0.17433, time: 164.66565
+
+2021-04-26T13:55:26.477562
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.39396, final_score: 0.16521, time: 704.95786
+[RESULT]: Val. Epoch: 19, summary_loss: 0.63794, final_score: 0.18282, time: 164.75714
+
+2021-04-26T14:09:56.605170
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.37171, final_score: 0.15284, time: 707.08383
+[RESULT]: Val. Epoch: 20, summary_loss: 0.59149, final_score: 0.16184, time: 165.45018
+
+2021-04-26T14:24:29.327559
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.35434, final_score: 0.13434, time: 708.94347
+[RESULT]: Val. Epoch: 21, summary_loss: 0.55880, final_score: 0.17383, time: 164.77131
+
+2021-04-26T14:39:03.221192
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.34789, final_score: 0.13484, time: 703.84374
+[RESULT]: Val. Epoch: 22, summary_loss: 0.44682, final_score: 0.15335, time: 165.01951
+
+2021-04-26T14:53:32.634894
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.33579, final_score: 0.12822, time: 710.88396
+[RESULT]: Val. Epoch: 23, summary_loss: 0.52625, final_score: 0.16184, time: 166.29344
+
+2021-04-26T15:08:10.015441
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.33206, final_score: 0.12359, time: 713.01336
+[RESULT]: Val. Epoch: 24, summary_loss: 0.48045, final_score: 0.16084, time: 166.03013
+
+2021-04-26T15:22:49.242673
+LR: 3.125e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.32778, final_score: 0.12097, time: 705.40984
+[RESULT]: Val. Epoch: 25, summary_loss: 0.54000, final_score: 0.15235, time: 164.16805
+
+2021-04-26T15:37:18.993807
+LR: 3.125e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.32004, final_score: 0.11535, time: 716.77298
+[RESULT]: Val. Epoch: 26, summary_loss: 0.64942, final_score: 0.16134, time: 164.56222
+
+2021-04-26T15:52:00.511909
+LR: 1.5625e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.31601, final_score: 0.11310, time: 716.76286
+[RESULT]: Val. Epoch: 27, summary_loss: 0.56556, final_score: 0.15884, time: 165.65165
+
+2021-04-26T16:06:43.118977
+LR: 1.5625e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.31718, final_score: 0.11710, time: 694.98416
+[RESULT]: Val. Epoch: 28, summary_loss: 0.55095, final_score: 0.15435, time: 166.66665
+
+2021-04-26T16:21:04.928981
+LR: 7.8125e-06
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.30915, final_score: 0.10772, time: 712.94500
+[RESULT]: Val. Epoch: 29, summary_loss: 0.58684, final_score: 0.15834, time: 167.47458
+
+2021-04-26T16:35:45.543404
+LR: 7.8125e-06
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 30, summary_loss: 0.31119, final_score: 0.11222, time: 706.14286
+[RESULT]: Val. Epoch: 30, summary_loss: 0.58120, final_score: 0.15734, time: 165.28202
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..06653dadecc9807662cdfffd08c83efda1db520e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_3_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..2b566873d57b0b7cce3c78210ebfffe97443c224
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6a4867223b40ec637a4245b9e8e4a5d2e5fd73a0fb0d7a7ca60cb3714df17116
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d7a692f3d38f45c34dd2ff0cdf651bd038cfbca3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:68b806cae59dcc3d2e101480576551303dbdede522a10d69750aa219b8eba7fd
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-030epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-030epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..079e83b6c3f0d81e103fb654a10b1667da03c2fe
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/best-checkpoint-030epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:845ecf721645f9fa545787fbd499ae0310f2280a344396e455ce27bc62a0a8c8
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f89fc2c11a66d89288ce9558d6fcfa812fc2175f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:08f4c49101b33d030719aaff6bb1eccbea7435fe130f134f9dadcdbe1cd68b78
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bde19063cbf935bc0056c4d9acfb0b553d19cedc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-25T01:46:26.463481
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.47832, final_score: 0.23607, time: 722.09276
+[RESULT]: Val. Epoch: 1, summary_loss: 1.48428, final_score: 0.43307, time: 173.39201
+
+2021-04-25T02:01:22.435049
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.30692, final_score: 0.09510, time: 733.11573
+[RESULT]: Val. Epoch: 2, summary_loss: 1.36792, final_score: 0.40759, time: 175.40392
+
+2021-04-25T02:16:31.312565
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27150, final_score: 0.07448, time: 722.45672
+[RESULT]: Val. Epoch: 3, summary_loss: 2.30018, final_score: 0.42857, time: 176.23771
+
+2021-04-25T02:31:30.170066
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30390, final_score: 0.09360, time: 727.95214
+[RESULT]: Val. Epoch: 4, summary_loss: 1.84662, final_score: 0.40210, time: 175.40318
+
+2021-04-25T02:46:33.702797
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27469, final_score: 0.07898, time: 741.22916
+[RESULT]: Val. Epoch: 5, summary_loss: 2.78385, final_score: 0.41009, time: 174.57139
+
+2021-04-25T03:01:49.681532
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.32112, final_score: 0.10735, time: 731.90716
+[RESULT]: Val. Epoch: 6, summary_loss: 1.36704, final_score: 0.40360, time: 171.23469
+
+2021-04-25T03:16:53.167428
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.30290, final_score: 0.09835, time: 723.79755
+[RESULT]: Val. Epoch: 7, summary_loss: 1.32742, final_score: 0.40959, time: 174.27954
+
+2021-04-25T03:31:51.632296
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.36877, final_score: 0.14034, time: 750.88577
+[RESULT]: Val. Epoch: 8, summary_loss: 1.71704, final_score: 0.39960, time: 169.32627
+
+2021-04-25T03:47:12.047293
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.34829, final_score: 0.12709, time: 725.52443
+[RESULT]: Val. Epoch: 9, summary_loss: 1.21154, final_score: 0.37213, time: 172.94269
+
+2021-04-25T04:02:10.863572
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.41623, final_score: 0.17408, time: 742.80683
+[RESULT]: Val. Epoch: 10, summary_loss: 0.75624, final_score: 0.36663, time: 171.08996
+
+2021-04-25T04:17:25.112006
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39974, final_score: 0.16271, time: 729.57646
+[RESULT]: Val. Epoch: 11, summary_loss: 0.94686, final_score: 0.37413, time: 174.31170
+
+2021-04-25T04:32:29.178684
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.47761, final_score: 0.22119, time: 732.20310
+[RESULT]: Val. Epoch: 12, summary_loss: 1.17539, final_score: 0.38162, time: 173.23935
+
+2021-04-25T04:47:34.791941
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47239, final_score: 0.21732, time: 749.13574
+[RESULT]: Val. Epoch: 13, summary_loss: 1.19044, final_score: 0.35614, time: 176.01910
+
+2021-04-25T05:03:00.147273
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.53195, final_score: 0.26368, time: 739.53159
+[RESULT]: Val. Epoch: 14, summary_loss: 0.72612, final_score: 0.35015, time: 170.36899
+
+2021-04-25T05:18:10.400030
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.52739, final_score: 0.26431, time: 736.22642
+[RESULT]: Val. Epoch: 15, summary_loss: 0.73948, final_score: 0.35015, time: 171.69948
+
+2021-04-25T05:33:18.500475
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.58066, final_score: 0.31105, time: 743.70539
+[RESULT]: Val. Epoch: 16, summary_loss: 0.80720, final_score: 0.38012, time: 169.32711
+
+2021-04-25T05:48:31.715242
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.58547, final_score: 0.31880, time: 743.93330
+[RESULT]: Val. Epoch: 17, summary_loss: 0.81934, final_score: 0.37962, time: 172.53054
+
+2021-04-25T06:03:48.348962
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.60847, final_score: 0.34729, time: 736.60329
+[RESULT]: Val. Epoch: 18, summary_loss: 0.82340, final_score: 0.34466, time: 170.75967
+
+2021-04-25T06:18:55.917676
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.60388, final_score: 0.34229, time: 753.89420
+[RESULT]: Val. Epoch: 19, summary_loss: 0.62105, final_score: 0.33467, time: 169.50630
+
+2021-04-25T06:34:19.696463
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.59567, final_score: 0.33192, time: 745.86096
+[RESULT]: Val. Epoch: 20, summary_loss: 0.65132, final_score: 0.36264, time: 174.82508
+
+2021-04-25T06:49:40.554432
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.60028, final_score: 0.33392, time: 736.74177
+[RESULT]: Val. Epoch: 21, summary_loss: 0.61770, final_score: 0.34116, time: 172.73295
+
+2021-04-25T07:04:50.548069
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.59429, final_score: 0.32629, time: 749.54624
+[RESULT]: Val. Epoch: 22, summary_loss: 0.64722, final_score: 0.32917, time: 172.33298
+
+2021-04-25T07:20:13.222344
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.59014, final_score: 0.32604, time: 740.64717
+[RESULT]: Val. Epoch: 23, summary_loss: 0.63198, final_score: 0.34266, time: 169.55644
+
+2021-04-25T07:35:23.616571
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.55941, final_score: 0.29605, time: 745.01283
+[RESULT]: Val. Epoch: 24, summary_loss: 0.55672, final_score: 0.28422, time: 173.03378
+
+2021-04-25T07:50:42.019910
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.54210, final_score: 0.28068, time: 750.18058
+[RESULT]: Val. Epoch: 25, summary_loss: 0.53520, final_score: 0.27473, time: 174.99913
+
+2021-04-25T08:06:07.553257
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.53201, final_score: 0.27093, time: 746.67730
+[RESULT]: Val. Epoch: 26, summary_loss: 0.56924, final_score: 0.27572, time: 173.36763
+
+2021-04-25T08:21:27.808232
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.53081, final_score: 0.27481, time: 756.92998
+[RESULT]: Val. Epoch: 27, summary_loss: 0.58526, final_score: 0.28571, time: 171.01733
+
+2021-04-25T08:36:55.935608
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.50209, final_score: 0.24694, time: 742.42175
+[RESULT]: Val. Epoch: 28, summary_loss: 0.53069, final_score: 0.24625, time: 172.98755
+
+2021-04-25T08:52:11.708836
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.50508, final_score: 0.25456, time: 746.63017
+[RESULT]: Val. Epoch: 29, summary_loss: 0.52435, final_score: 0.25874, time: 170.60782
+
+2021-04-25T09:07:29.463035
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.49151, final_score: 0.23982, time: 765.13900
+[RESULT]: Val. Epoch: 30, summary_loss: 0.58910, final_score: 0.26623, time: 176.79979
+Fitter prepared. Device is cuda:0
+
+2021-04-26T00:51:30.057129
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.44351, final_score: 0.20220, time: 724.35247
+[RESULT]: Val. Epoch: 1, summary_loss: 1.65485, final_score: 0.45105, time: 168.92811
+
+2021-04-26T01:06:23.715542
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.31669, final_score: 0.10422, time: 717.97256
+[RESULT]: Val. Epoch: 2, summary_loss: 1.65705, final_score: 0.44056, time: 168.29749
+
+2021-04-26T01:21:10.168315
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27157, final_score: 0.07811, time: 706.53822
+[RESULT]: Val. Epoch: 3, summary_loss: 1.47557, final_score: 0.43556, time: 170.96144
+
+2021-04-26T01:35:48.040424
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30929, final_score: 0.10047, time: 744.09160
+[RESULT]: Val. Epoch: 4, summary_loss: 1.13178, final_score: 0.43906, time: 172.78501
+
+2021-04-26T01:51:05.330111
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27658, final_score: 0.08373, time: 734.21588
+[RESULT]: Val. Epoch: 5, summary_loss: 2.26784, final_score: 0.45105, time: 172.02173
+
+2021-04-26T02:06:11.764670
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.32596, final_score: 0.11235, time: 731.85799
+[RESULT]: Val. Epoch: 6, summary_loss: 1.84699, final_score: 0.44505, time: 168.55239
+
+2021-04-26T02:21:12.346577
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.31788, final_score: 0.10572, time: 742.21023
+[RESULT]: Val. Epoch: 7, summary_loss: 0.96060, final_score: 0.42957, time: 170.83584
+
+2021-04-26T02:36:25.797532
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.38312, final_score: 0.14609, time: 734.74228
+[RESULT]: Val. Epoch: 8, summary_loss: 1.54619, final_score: 0.44805, time: 168.60274
+
+2021-04-26T02:51:29.315215
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.36465, final_score: 0.13847, time: 729.00196
+[RESULT]: Val. Epoch: 9, summary_loss: 1.24385, final_score: 0.42807, time: 169.59376
+
+2021-04-26T03:06:28.092165
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.42863, final_score: 0.17983, time: 754.90148
+[RESULT]: Val. Epoch: 10, summary_loss: 0.83973, final_score: 0.39960, time: 168.17030
+
+2021-04-26T03:21:51.517034
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.41010, final_score: 0.16846, time: 737.03647
+[RESULT]: Val. Epoch: 11, summary_loss: 2.04576, final_score: 0.41858, time: 171.87096
+
+2021-04-26T03:37:00.601827
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.48905, final_score: 0.22557, time: 734.76943
+[RESULT]: Val. Epoch: 12, summary_loss: 0.92476, final_score: 0.38262, time: 169.20191
+
+2021-04-26T03:52:04.746496
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47941, final_score: 0.21995, time: 740.52299
+[RESULT]: Val. Epoch: 13, summary_loss: 1.08410, final_score: 0.40809, time: 169.44640
+
+2021-04-26T04:07:14.889557
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.54482, final_score: 0.27206, time: 751.16783
+[RESULT]: Val. Epoch: 14, summary_loss: 0.92899, final_score: 0.37812, time: 168.94062
+
+2021-04-26T04:22:35.170199
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54477, final_score: 0.27093, time: 739.63438
+[RESULT]: Val. Epoch: 15, summary_loss: 0.71464, final_score: 0.38062, time: 168.75539
+
+2021-04-26T04:37:43.896753
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.58886, final_score: 0.31067, time: 752.90686
+[RESULT]: Val. Epoch: 16, summary_loss: 1.00534, final_score: 0.38911, time: 169.16908
+
+2021-04-26T04:53:06.161839
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.57646, final_score: 0.30592, time: 753.72700
+[RESULT]: Val. Epoch: 17, summary_loss: 0.64558, final_score: 0.33317, time: 170.43174
+
+2021-04-26T05:08:30.675015
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.60540, final_score: 0.32992, time: 752.52656
+[RESULT]: Val. Epoch: 18, summary_loss: 0.61456, final_score: 0.33167, time: 168.66271
+
+2021-04-26T05:23:52.248975
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59943, final_score: 0.32767, time: 736.29588
+[RESULT]: Val. Epoch: 19, summary_loss: 0.75326, final_score: 0.33417, time: 170.72128
+
+2021-04-26T05:38:59.441840
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.59497, final_score: 0.32304, time: 750.54994
+[RESULT]: Val. Epoch: 20, summary_loss: 0.67435, final_score: 0.33017, time: 172.11572
+
+2021-04-26T05:54:22.283473
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.55572, final_score: 0.28393, time: 739.77338
+[RESULT]: Val. Epoch: 21, summary_loss: 0.57776, final_score: 0.25924, time: 168.04923
+
+2021-04-26T06:09:30.870609
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.53890, final_score: 0.26906, time: 740.37017
+[RESULT]: Val. Epoch: 22, summary_loss: 0.55863, final_score: 0.26374, time: 170.87568
+
+2021-04-26T06:24:42.517184
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.53188, final_score: 0.26518, time: 756.09033
+[RESULT]: Val. Epoch: 23, summary_loss: 0.70919, final_score: 0.29970, time: 170.10509
+
+2021-04-26T06:40:08.877159
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.51785, final_score: 0.25056, time: 737.78975
+[RESULT]: Val. Epoch: 24, summary_loss: 0.89305, final_score: 0.30270, time: 171.52685
+
+2021-04-26T06:55:18.367204
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.49913, final_score: 0.23507, time: 739.58340
+[RESULT]: Val. Epoch: 25, summary_loss: 0.48525, final_score: 0.23127, time: 170.08611
+
+2021-04-26T07:10:28.388502
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.48590, final_score: 0.22819, time: 738.60303
+[RESULT]: Val. Epoch: 26, summary_loss: 0.54862, final_score: 0.23726, time: 168.80679
+
+2021-04-26T07:25:35.988140
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.48731, final_score: 0.23169, time: 756.44103
+[RESULT]: Val. Epoch: 27, summary_loss: 0.47756, final_score: 0.21778, time: 170.96208
+
+2021-04-26T07:41:03.763326
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.47351, final_score: 0.22269, time: 730.06542
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56726, final_score: 0.22827, time: 170.13497
+
+2021-04-26T07:56:04.126504
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.47526, final_score: 0.22369, time: 760.77203
+[RESULT]: Val. Epoch: 29, summary_loss: 0.58349, final_score: 0.24126, time: 172.64918
+
+2021-04-26T08:11:37.722245
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.45729, final_score: 0.20845, time: 743.79463
+[RESULT]: Val. Epoch: 30, summary_loss: 0.47381, final_score: 0.20979, time: 171.48538
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ea0f145b91c8880b0ed369344022a5be43a3b319
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_4/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..cd94348652b675c738fd9c588cc9ee1aa7563a5f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:88bc6bdd69e8b2a74b697c9656e9d0c096536a7950343d2cf2870b3b51f7613c
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c9d347c17efa508b80e9c894905b28b988a1d7c9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0de9a1c473183436a924054f06938581826237e814226573c66d207bb0726129
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..14368e590793db4848f876508cda355415a95e52
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:493fba42557200a0430a175ad83e8be994eaf8c61e60d4afbf8561ba535abbc0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1bf71adc6ab028cd424695a4ac7664b8e3d0231e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f2c6e59643fdabb8543c5eb55fdd5c8173544db4b61d1adf675a9f780d1a4dd4
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..fe1836c86cf8f1e45f2ed6562e6328c185ca6b31
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:17:03.232334
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.43120, final_score: 0.19083, time: 770.44519
+[RESULT]: Val. Epoch: 1, summary_loss: 2.02583, final_score: 0.44406, time: 168.18836
+
+2021-04-28T09:32:42.535348
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.32814, final_score: 0.11035, time: 718.51863
+[RESULT]: Val. Epoch: 2, summary_loss: 1.48277, final_score: 0.41758, time: 166.20211
+
+2021-04-28T09:47:27.648485
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.29020, final_score: 0.08835, time: 713.48085
+[RESULT]: Val. Epoch: 3, summary_loss: 1.41004, final_score: 0.45055, time: 166.05420
+
+2021-04-28T10:02:07.620260
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.30586, final_score: 0.09998, time: 698.13017
+[RESULT]: Val. Epoch: 4, summary_loss: 1.78963, final_score: 0.42008, time: 166.38322
+
+2021-04-28T10:16:32.379550
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27410, final_score: 0.07986, time: 704.37154
+[RESULT]: Val. Epoch: 5, summary_loss: 1.21424, final_score: 0.41459, time: 166.99426
+
+2021-04-28T10:31:04.222600
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.31630, final_score: 0.10897, time: 715.65573
+[RESULT]: Val. Epoch: 6, summary_loss: 1.63527, final_score: 0.42358, time: 164.87781
+
+2021-04-28T10:45:44.965919
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.31157, final_score: 0.10322, time: 721.33731
+[RESULT]: Val. Epoch: 7, summary_loss: 2.45567, final_score: 0.41259, time: 167.87363
+
+2021-04-28T11:00:34.411386
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.36591, final_score: 0.14059, time: 719.35259
+[RESULT]: Val. Epoch: 8, summary_loss: 1.16181, final_score: 0.38561, time: 166.19622
+
+2021-04-28T11:15:20.449642
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.35238, final_score: 0.12909, time: 725.30531
+[RESULT]: Val. Epoch: 9, summary_loss: 4.34630, final_score: 0.45005, time: 166.37514
+
+2021-04-28T11:30:12.353186
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.41731, final_score: 0.16721, time: 721.03552
+[RESULT]: Val. Epoch: 10, summary_loss: 0.67000, final_score: 0.36513, time: 168.19448
+
+2021-04-28T11:45:01.999730
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40808, final_score: 0.16546, time: 723.24248
+[RESULT]: Val. Epoch: 11, summary_loss: 1.76425, final_score: 0.39261, time: 166.98754
+
+2021-04-28T11:59:52.443051
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.47660, final_score: 0.21757, time: 744.01080
+[RESULT]: Val. Epoch: 12, summary_loss: 1.34662, final_score: 0.37163, time: 167.91500
+
+2021-04-28T12:15:04.550126
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.46893, final_score: 0.21157, time: 744.22696
+[RESULT]: Val. Epoch: 13, summary_loss: 0.78680, final_score: 0.35864, time: 169.36894
+
+2021-04-28T12:30:18.350288
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.53950, final_score: 0.27343, time: 725.85576
+[RESULT]: Val. Epoch: 14, summary_loss: 0.98634, final_score: 0.37612, time: 165.74663
+
+2021-04-28T12:45:10.167955
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.53585, final_score: 0.26518, time: 727.96284
+[RESULT]: Val. Epoch: 15, summary_loss: 0.76603, final_score: 0.37762, time: 168.35354
+
+2021-04-28T13:00:06.684168
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.58964, final_score: 0.31792, time: 731.65884
+[RESULT]: Val. Epoch: 16, summary_loss: 0.62868, final_score: 0.34366, time: 165.97172
+
+2021-04-28T13:15:04.862257
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.59520, final_score: 0.32254, time: 726.30549
+[RESULT]: Val. Epoch: 17, summary_loss: 0.76307, final_score: 0.36314, time: 165.33532
+
+2021-04-28T13:29:56.708383
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.61874, final_score: 0.35416, time: 735.57496
+[RESULT]: Val. Epoch: 18, summary_loss: 0.79492, final_score: 0.37512, time: 168.09463
+
+2021-04-28T13:45:00.579582
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.61293, final_score: 0.34641, time: 732.34059
+[RESULT]: Val. Epoch: 19, summary_loss: 0.63543, final_score: 0.33666, time: 169.80477
+
+2021-04-28T14:00:02.965975
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.61233, final_score: 0.34529, time: 729.15614
+[RESULT]: Val. Epoch: 20, summary_loss: 0.61507, final_score: 0.34466, time: 167.64996
+
+2021-04-28T14:15:00.237932
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.61177, final_score: 0.34804, time: 730.53373
+[RESULT]: Val. Epoch: 21, summary_loss: 0.65820, final_score: 0.35764, time: 168.53457
+
+2021-04-28T14:29:59.515475
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.60923, final_score: 0.34479, time: 743.16409
+[RESULT]: Val. Epoch: 22, summary_loss: 0.60414, final_score: 0.33017, time: 167.57299
+
+2021-04-28T14:45:10.655810
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.60567, final_score: 0.34116, time: 742.97615
+[RESULT]: Val. Epoch: 23, summary_loss: 0.63344, final_score: 0.33816, time: 168.07160
+
+2021-04-28T15:00:21.908057
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.59728, final_score: 0.33717, time: 727.40635
+[RESULT]: Val. Epoch: 24, summary_loss: 0.68907, final_score: 0.34565, time: 166.85558
+
+2021-04-28T15:15:16.375172
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.58039, final_score: 0.31717, time: 724.16358
+[RESULT]: Val. Epoch: 25, summary_loss: 0.57677, final_score: 0.30919, time: 168.42940
+
+2021-04-28T15:30:09.399731
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.56767, final_score: 0.30705, time: 737.78669
+[RESULT]: Val. Epoch: 26, summary_loss: 0.60062, final_score: 0.30919, time: 170.52595
+
+2021-04-28T15:45:17.925070
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.55909, final_score: 0.30267, time: 750.00070
+[RESULT]: Val. Epoch: 27, summary_loss: 0.60322, final_score: 0.30769, time: 170.51203
+
+2021-04-28T16:00:38.712086
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.53794, final_score: 0.28043, time: 752.90585
+[RESULT]: Val. Epoch: 28, summary_loss: 0.55387, final_score: 0.28521, time: 172.64037
+
+2021-04-28T16:16:04.666818
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.52483, final_score: 0.26993, time: 760.67863
+[RESULT]: Val. Epoch: 29, summary_loss: 0.60101, final_score: 0.28621, time: 169.65839
+
+2021-04-28T16:31:35.205669
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.52965, final_score: 0.26893, time: 743.43080
+[RESULT]: Val. Epoch: 30, summary_loss: 0.63522, final_score: 0.29620, time: 170.03517
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c142a50e980cd44b149dc74cc55e70fe247e7c14
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0371a835712114aba67cd81ac33eec54a00b877a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bb019c66c1df37c7fcb3da45e38281bdc52ccf0aeb9a1a75ca33dc6f20b30001
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..146b86019e5d55f7a26f6afecdf45ff2501012c8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5bcfefd1890bb17fc1bda0636a0dd6dc51e2c95b1cdaaf483ad65e09265f1a9b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..619a1cdc6049be5df75f9e40cc4246b883dbe69e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a392fd0ce94f7a7cdd09732802efc62bd235fa03484379eb0876a0fa62a93b3b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9e350630695e8faa0a5a67e420635c2790621b25
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:622af4b769a41f34f3bc8dbec9f8cfc959706cfa8b10188071e5ed6e8e788827
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..33d1aae030c760922afe03bfe52412c3907d1f57
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-10T19:19:47.442463
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.45388, final_score: 0.20257, time: 786.67450
+[RESULT]: Val. Epoch: 1, summary_loss: 1.48949, final_score: 0.44456, time: 169.55192
+
+2021-06-10T19:35:44.029584
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.34371, final_score: 0.12072, time: 734.42114
+[RESULT]: Val. Epoch: 2, summary_loss: 1.18128, final_score: 0.41359, time: 171.49347
+
+2021-06-10T19:50:50.729948
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.28940, final_score: 0.09135, time: 737.76680
+[RESULT]: Val. Epoch: 3, summary_loss: 1.73999, final_score: 0.41758, time: 169.56870
+
+2021-06-10T20:05:58.225067
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.31013, final_score: 0.09973, time: 737.93447
+[RESULT]: Val. Epoch: 4, summary_loss: 2.09962, final_score: 0.40909, time: 168.53317
+
+2021-06-10T20:21:04.994273
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.28527, final_score: 0.08473, time: 749.58752
+[RESULT]: Val. Epoch: 5, summary_loss: 1.40107, final_score: 0.39960, time: 168.63383
+
+2021-06-10T20:36:23.431120
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.33343, final_score: 0.11810, time: 740.73124
+[RESULT]: Val. Epoch: 6, summary_loss: 1.15360, final_score: 0.41059, time: 170.83969
+
+2021-06-10T20:51:35.383831
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.31677, final_score: 0.10760, time: 748.97478
+[RESULT]: Val. Epoch: 7, summary_loss: 1.41023, final_score: 0.41309, time: 170.70341
+
+2021-06-10T21:06:55.252436
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.37511, final_score: 0.14284, time: 745.98827
+[RESULT]: Val. Epoch: 8, summary_loss: 1.67994, final_score: 0.39510, time: 170.31402
+
+2021-06-10T21:22:11.710887
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.36122, final_score: 0.13584, time: 756.43049
+[RESULT]: Val. Epoch: 9, summary_loss: 1.64699, final_score: 0.40659, time: 172.55175
+
+2021-06-10T21:37:40.895336
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.42671, final_score: 0.17821, time: 745.74569
+[RESULT]: Val. Epoch: 10, summary_loss: 0.70505, final_score: 0.36763, time: 170.90596
+
+2021-06-10T21:52:57.922869
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.41837, final_score: 0.17633, time: 740.01523
+[RESULT]: Val. Epoch: 11, summary_loss: 1.48208, final_score: 0.40709, time: 172.20450
+
+2021-06-10T22:08:10.299362
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.48107, final_score: 0.22132, time: 740.73840
+[RESULT]: Val. Epoch: 12, summary_loss: 0.80681, final_score: 0.36863, time: 173.10238
+
+2021-06-10T22:23:24.301902
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47549, final_score: 0.21870, time: 743.01223
+[RESULT]: Val. Epoch: 13, summary_loss: 0.78311, final_score: 0.36014, time: 170.96435
+
+2021-06-10T22:38:38.450608
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.54764, final_score: 0.27193, time: 758.06523
+[RESULT]: Val. Epoch: 14, summary_loss: 0.74704, final_score: 0.38711, time: 170.79328
+
+2021-06-10T22:54:07.709199
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54117, final_score: 0.27143, time: 746.88044
+[RESULT]: Val. Epoch: 15, summary_loss: 0.70421, final_score: 0.36763, time: 170.58662
+
+2021-06-10T23:09:25.542221
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.58806, final_score: 0.31905, time: 746.20884
+[RESULT]: Val. Epoch: 16, summary_loss: 0.67951, final_score: 0.37163, time: 178.67921
+
+2021-06-10T23:24:50.888299
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.59266, final_score: 0.32254, time: 776.14567
+[RESULT]: Val. Epoch: 17, summary_loss: 0.77496, final_score: 0.36264, time: 177.08186
+
+2021-06-10T23:40:44.356820
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.61663, final_score: 0.35066, time: 770.32459
+[RESULT]: Val. Epoch: 18, summary_loss: 0.70961, final_score: 0.35365, time: 179.38435
+
+2021-06-10T23:56:34.323929
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.62151, final_score: 0.35629, time: 785.19341
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69610, final_score: 0.34965, time: 179.66040
+
+2021-06-11T00:12:39.430356
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.61750, final_score: 0.35104, time: 788.16230
+[RESULT]: Val. Epoch: 20, summary_loss: 0.64051, final_score: 0.34765, time: 178.57044
+
+2021-06-11T00:28:46.648896
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.61412, final_score: 0.34754, time: 770.63618
+[RESULT]: Val. Epoch: 21, summary_loss: 0.79013, final_score: 0.37712, time: 176.77399
+
+2021-06-11T00:44:34.294133
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.61233, final_score: 0.34391, time: 764.98196
+[RESULT]: Val. Epoch: 22, summary_loss: 0.59992, final_score: 0.32917, time: 175.36970
+
+2021-06-11T01:00:15.058895
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.60395, final_score: 0.34116, time: 768.02503
+[RESULT]: Val. Epoch: 23, summary_loss: 0.64006, final_score: 0.35415, time: 174.93086
+
+2021-06-11T01:15:58.232842
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.60756, final_score: 0.34354, time: 760.40500
+[RESULT]: Val. Epoch: 24, summary_loss: 0.61232, final_score: 0.34166, time: 176.75163
+
+2021-06-11T01:31:35.596117
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.57552, final_score: 0.30942, time: 768.68371
+[RESULT]: Val. Epoch: 25, summary_loss: 0.58315, final_score: 0.31219, time: 176.82714
+
+2021-06-11T01:47:21.546318
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.56726, final_score: 0.30342, time: 745.41632
+[RESULT]: Val. Epoch: 26, summary_loss: 0.56444, final_score: 0.30170, time: 179.22549
+
+2021-06-11T02:02:46.560119
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.55857, final_score: 0.29505, time: 773.08944
+[RESULT]: Val. Epoch: 27, summary_loss: 0.56636, final_score: 0.30020, time: 178.32887
+
+2021-06-11T02:18:38.197672
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.55636, final_score: 0.29305, time: 775.17920
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65323, final_score: 0.32068, time: 179.33646
+
+2021-06-11T02:34:32.950476
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.53048, final_score: 0.26818, time: 765.00939
+[RESULT]: Val. Epoch: 29, summary_loss: 0.62147, final_score: 0.29820, time: 178.15008
+
+2021-06-11T02:50:16.356239
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.52547, final_score: 0.27168, time: 766.49372
+[RESULT]: Val. Epoch: 30, summary_loss: 0.60613, final_score: 0.29870, time: 178.19872
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..ef657777cb67203dca4ef7ed9e8aebf0ff3e2eee
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_6/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d9cb80a539f00336785f4ccb979b3539854a2d0f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c840b6b6711451a2fb4dc7ecfedad7a8ecc13a8d966080c45b73bdf3cdcb7386
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..47e8f588fb54ebb2524ff0fbed5ebce8fc89d5c4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:668847bc06f6fc51bc7b8536f64e5c7e491c144f9bfddd8866109a56376ed185
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..901100175ac399159e0b95aa2151b3e0c40b619f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6ee4097c7bdda8411c903d02088143679bbed13dea12f345290a11a7aae80dfa
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..068741691ecccd3968ab884c4ea599aa4852a776
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:062b27571d0d2b91c93a702cc2c88adda2aaf8163eefe736ba492b2399aae707
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c74fb4cd310adea5a453cfb5ecbd8527f1551bd9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-11T15:46:09.236344
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.47016, final_score: 0.22832, time: 784.10441
+[RESULT]: Val. Epoch: 1, summary_loss: 1.26562, final_score: 0.43506, time: 178.98511
+
+2021-06-11T16:02:13.152531
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.33347, final_score: 0.11172, time: 752.45231
+[RESULT]: Val. Epoch: 2, summary_loss: 1.05763, final_score: 0.41708, time: 178.15213
+
+2021-06-11T16:17:44.166583
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27113, final_score: 0.07598, time: 728.68928
+[RESULT]: Val. Epoch: 3, summary_loss: 2.86054, final_score: 0.45005, time: 179.07876
+
+2021-06-11T16:32:52.133949
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.29232, final_score: 0.09335, time: 751.76307
+[RESULT]: Val. Epoch: 4, summary_loss: 1.01323, final_score: 0.39960, time: 178.00892
+
+2021-06-11T16:48:22.388636
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27053, final_score: 0.07848, time: 739.37653
+[RESULT]: Val. Epoch: 5, summary_loss: 1.81453, final_score: 0.43307, time: 177.40929
+
+2021-06-11T17:03:39.337604
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.32518, final_score: 0.11135, time: 752.14536
+[RESULT]: Val. Epoch: 6, summary_loss: 3.23962, final_score: 0.45055, time: 178.67347
+
+2021-06-11T17:19:10.370748
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.31498, final_score: 0.10360, time: 766.43373
+[RESULT]: Val. Epoch: 7, summary_loss: 1.61973, final_score: 0.43606, time: 178.32690
+
+2021-06-11T17:34:55.328996
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.37204, final_score: 0.14421, time: 760.80712
+[RESULT]: Val. Epoch: 8, summary_loss: 1.53977, final_score: 0.40310, time: 176.72202
+
+2021-06-11T17:50:33.126821
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.35048, final_score: 0.13072, time: 768.46043
+[RESULT]: Val. Epoch: 9, summary_loss: 1.17713, final_score: 0.40110, time: 176.54098
+
+2021-06-11T18:06:18.330735
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.42207, final_score: 0.17358, time: 757.82272
+[RESULT]: Val. Epoch: 10, summary_loss: 1.17391, final_score: 0.40310, time: 177.81716
+
+2021-06-11T18:21:54.156962
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40725, final_score: 0.16558, time: 775.20901
+[RESULT]: Val. Epoch: 11, summary_loss: 1.43023, final_score: 0.42757, time: 177.89517
+
+2021-06-11T18:37:47.430925
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.48152, final_score: 0.22219, time: 762.56798
+[RESULT]: Val. Epoch: 12, summary_loss: 1.07538, final_score: 0.38162, time: 178.02451
+
+2021-06-11T18:53:28.241081
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47375, final_score: 0.21732, time: 763.77661
+[RESULT]: Val. Epoch: 13, summary_loss: 0.80794, final_score: 0.36813, time: 180.07864
+
+2021-06-11T19:09:12.500292
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.55398, final_score: 0.28155, time: 763.27514
+[RESULT]: Val. Epoch: 14, summary_loss: 0.67377, final_score: 0.36364, time: 176.59949
+
+2021-06-11T19:24:52.748235
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54359, final_score: 0.27243, time: 758.40614
+[RESULT]: Val. Epoch: 15, summary_loss: 0.67121, final_score: 0.35814, time: 173.56183
+
+2021-06-11T19:40:25.146305
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.60017, final_score: 0.32679, time: 753.23508
+[RESULT]: Val. Epoch: 16, summary_loss: 0.75437, final_score: 0.38312, time: 168.30320
+
+2021-06-11T19:55:46.873566
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.59636, final_score: 0.32629, time: 743.03965
+[RESULT]: Val. Epoch: 17, summary_loss: 0.67835, final_score: 0.36264, time: 171.40761
+
+2021-06-11T20:11:01.483091
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.63022, final_score: 0.36641, time: 746.51867
+[RESULT]: Val. Epoch: 18, summary_loss: 0.67873, final_score: 0.37962, time: 169.34024
+
+2021-06-11T20:26:17.577221
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.62472, final_score: 0.35516, time: 747.86598
+[RESULT]: Val. Epoch: 19, summary_loss: 0.63726, final_score: 0.36513, time: 172.25550
+
+2021-06-11T20:41:38.136508
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62248, final_score: 0.35504, time: 743.52092
+[RESULT]: Val. Epoch: 20, summary_loss: 0.61464, final_score: 0.34416, time: 168.47927
+
+2021-06-11T20:56:50.508986
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.61778, final_score: 0.35041, time: 735.15513
+[RESULT]: Val. Epoch: 21, summary_loss: 0.61269, final_score: 0.34016, time: 170.78215
+
+2021-06-11T21:11:56.843068
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.61313, final_score: 0.35079, time: 747.37880
+[RESULT]: Val. Epoch: 22, summary_loss: 0.64494, final_score: 0.35514, time: 171.65881
+
+2021-06-11T21:27:16.081912
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.61056, final_score: 0.33979, time: 755.51063
+[RESULT]: Val. Epoch: 23, summary_loss: 0.74099, final_score: 0.36414, time: 168.78504
+
+2021-06-11T21:42:40.568747
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.57820, final_score: 0.31305, time: 740.26192
+[RESULT]: Val. Epoch: 24, summary_loss: 0.60662, final_score: 0.30320, time: 168.45823
+
+2021-06-11T21:57:49.629791
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.56209, final_score: 0.29443, time: 734.78119
+[RESULT]: Val. Epoch: 25, summary_loss: 0.55978, final_score: 0.29471, time: 168.45490
+
+2021-06-11T22:12:53.225591
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.55840, final_score: 0.29618, time: 743.00305
+[RESULT]: Val. Epoch: 26, summary_loss: 0.57219, final_score: 0.30070, time: 171.86667
+
+2021-06-11T22:28:08.293780
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.55203, final_score: 0.28668, time: 732.47939
+[RESULT]: Val. Epoch: 27, summary_loss: 0.54490, final_score: 0.27722, time: 168.24182
+
+2021-06-11T22:43:09.362613
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.54723, final_score: 0.28280, time: 733.67869
+[RESULT]: Val. Epoch: 28, summary_loss: 0.55823, final_score: 0.27822, time: 168.06386
+
+2021-06-11T22:58:11.273905
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.53891, final_score: 0.27856, time: 743.11742
+[RESULT]: Val. Epoch: 29, summary_loss: 0.71525, final_score: 0.30420, time: 171.22217
+
+2021-06-11T23:13:25.811841
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.51665, final_score: 0.25994, time: 737.56921
+[RESULT]: Val. Epoch: 30, summary_loss: 0.57939, final_score: 0.27173, time: 168.68089
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..6ce8ce0b911bde07fc8c7390238d6bbc1d1f9726
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_7/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..105ae54fe653e40a27cb39acb40b12e49b7c843b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8e3984540a29270602e0e9f8683d04b7c988c19d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fd2df09108ddb019c3f2228a4af71ef11e4b3d9998403bb57cf8a9368a83cd0a
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c8b59847630d81ee3645f734a462c56446bc5630
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:03062534d899c7d9f534b5cafa6c469672527db6ac8326f1ef76ba7b79869b8b
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1cf87890507e51847e4a5a480a24377e83f4e54c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f478b638874dba09e9d39062f611ddccb79a0374b5a8074743120a2704906b05
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a4f11a162a0c4d97d68d28850f08c1678cb3a8b1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e7e5e0453ba51c46cfe42409a3dacc93ba59bb5e42b1d8c97bbb0b6cded293f
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b603e91a5979226d014e3cd4bd4c9bf0e3f72eb8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_1/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T13:10:55.808293
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.70753, final_score: 0.49950, time: 396.39662
+[RESULT]: Val. Epoch: 1, summary_loss: 0.70361, final_score: 0.49600, time: 24.41295
+
+2021-06-25T13:17:56.973781
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.70009, final_score: 0.48988, time: 388.06204
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69941, final_score: 0.49650, time: 24.28344
+
+2021-06-25T13:24:49.688625
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69862, final_score: 0.49738, time: 387.45537
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69446, final_score: 0.49650, time: 24.58200
+
+2021-06-25T13:31:42.084325
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69832, final_score: 0.49288, time: 387.40908
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69558, final_score: 0.49351, time: 24.44517
+
+2021-06-25T13:38:34.098589
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69699, final_score: 0.49550, time: 387.86132
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69464, final_score: 0.49650, time: 24.32813
+
+2021-06-25T13:45:26.456789
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69709, final_score: 0.49425, time: 387.51171
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69509, final_score: 0.49700, time: 24.78928
+
+2021-06-25T13:52:19.015976
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69653, final_score: 0.49763, time: 387.35743
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69481, final_score: 0.49650, time: 24.99536
+
+2021-06-25T13:59:11.568233
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69682, final_score: 0.49788, time: 387.30101
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69525, final_score: 0.49550, time: 24.29747
+
+2021-06-25T14:06:03.324199
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69555, final_score: 0.48350, time: 387.81760
+[RESULT]: Val. Epoch: 9, summary_loss: 0.70270, final_score: 0.49700, time: 24.28934
+
+2021-06-25T14:12:55.585838
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69625, final_score: 0.49150, time: 387.45835
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69921, final_score: 0.49700, time: 25.79453
+
+2021-06-25T14:19:49.071500
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69622, final_score: 0.49350, time: 387.17709
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69508, final_score: 0.49600, time: 24.67909
+
+2021-06-25T14:26:41.110438
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69583, final_score: 0.49575, time: 387.65794
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69426, final_score: 0.49600, time: 24.84380
+
+2021-06-25T14:33:33.992465
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69531, final_score: 0.49238, time: 386.92307
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69381, final_score: 0.49700, time: 25.55408
+
+2021-06-25T14:40:26.920155
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69543, final_score: 0.49400, time: 387.24716
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69652, final_score: 0.49550, time: 25.72363
+
+2021-06-25T14:47:20.080913
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69551, final_score: 0.49650, time: 387.02115
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69411, final_score: 0.49451, time: 25.90948
+
+2021-06-25T14:54:13.201760
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69524, final_score: 0.49550, time: 386.98000
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69357, final_score: 0.49600, time: 24.87103
+
+2021-06-25T15:01:05.450499
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69475, final_score: 0.48463, time: 387.57235
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69822, final_score: 0.49600, time: 25.95603
+
+2021-06-25T15:07:59.188905
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69507, final_score: 0.49413, time: 386.90082
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69318, final_score: 0.49500, time: 25.05427
+
+2021-06-25T15:14:51.524331
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.69440, final_score: 0.49063, time: 387.00987
+[RESULT]: Val. Epoch: 19, summary_loss: 0.70545, final_score: 0.49550, time: 24.85646
+
+2021-06-25T15:21:43.599206
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.69574, final_score: 0.49738, time: 387.70616
+[RESULT]: Val. Epoch: 20, summary_loss: 0.69743, final_score: 0.49351, time: 24.32190
+
+2021-06-25T15:28:35.806033
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.69396, final_score: 0.49838, time: 387.75330
+[RESULT]: Val. Epoch: 21, summary_loss: 0.69330, final_score: 0.49151, time: 24.86023
+
+2021-06-25T15:35:28.627798
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.69409, final_score: 0.49600, time: 387.44009
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69355, final_score: 0.49401, time: 24.29712
+
+2021-06-25T15:42:20.561864
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.69370, final_score: 0.49400, time: 387.54780
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69331, final_score: 0.49451, time: 24.37190
+
+2021-06-25T15:49:12.653888
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.69345, final_score: 0.49375, time: 387.35056
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69380, final_score: 0.49401, time: 24.34858
+
+2021-06-25T15:56:04.515329
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.69355, final_score: 0.49763, time: 387.60078
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69316, final_score: 0.49351, time: 24.58894
+
+2021-06-25T16:02:57.051639
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.69348, final_score: 0.49838, time: 387.60114
+[RESULT]: Val. Epoch: 26, summary_loss: 0.69315, final_score: 0.49251, time: 24.44711
+
+2021-06-25T16:09:49.451826
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.69342, final_score: 0.49788, time: 387.55608
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69315, final_score: 0.49351, time: 24.65323
+
+2021-06-25T16:16:41.819317
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.69327, final_score: 0.49338, time: 387.61567
+[RESULT]: Val. Epoch: 28, summary_loss: 0.69317, final_score: 0.49251, time: 24.42060
+
+2021-06-25T16:23:34.058242
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.69334, final_score: 0.49825, time: 387.73225
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69314, final_score: 0.49051, time: 24.48609
+
+2021-06-25T16:30:26.625451
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.69314, final_score: 0.49325, time: 387.36983
+[RESULT]: Val. Epoch: 30, summary_loss: 0.69320, final_score: 0.49451, time: 26.21957
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.877242
+LR: 0.000125
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 25, summary_loss: 0.32861, final_score: 0.12084, time: 393.23026
+[RESULT]: Val. Epoch: 25, summary_loss: 0.77536, final_score: 0.16583, time: 24.66131
+
+2021-06-26T08:58:33.046768
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 26, summary_loss: 0.32601, final_score: 0.12172, time: 387.46520
+[RESULT]: Val. Epoch: 26, summary_loss: 0.41421, final_score: 0.13536, time: 24.82988
+
+2021-06-26T09:05:25.522874
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 27, summary_loss: 0.31648, final_score: 0.11760, time: 387.10900
+[RESULT]: Val. Epoch: 27, summary_loss: 0.54164, final_score: 0.14735, time: 24.71899
+
+2021-06-26T09:12:17.540378
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 28, summary_loss: 0.31816, final_score: 0.11585, time: 387.03677
+[RESULT]: Val. Epoch: 28, summary_loss: 0.55721, final_score: 0.15534, time: 24.59663
+
+2021-06-26T09:19:09.342298
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 29, summary_loss: 0.31335, final_score: 0.11760, time: 386.95399
+[RESULT]: Val. Epoch: 29, summary_loss: 0.80229, final_score: 0.17932, time: 24.27713
+
+2021-06-26T09:26:00.743512
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 30, summary_loss: 0.31026, final_score: 0.11297, time: 386.96069
+[RESULT]: Val. Epoch: 30, summary_loss: 0.45101, final_score: 0.12238, time: 24.44484
+
+2021-06-26T09:32:52.317332
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.30543, final_score: 0.10772, time: 387.61148
+[RESULT]: Val. Epoch: 31, summary_loss: 0.57072, final_score: 0.15235, time: 24.72772
+
+2021-06-26T09:39:44.813624
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.30044, final_score: 0.10560, time: 387.65959
+[RESULT]: Val. Epoch: 32, summary_loss: 0.69960, final_score: 0.14386, time: 24.52030
+
+2021-06-26T09:46:37.144045
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.29912, final_score: 0.10860, time: 387.30411
+[RESULT]: Val. Epoch: 33, summary_loss: 0.38176, final_score: 0.13137, time: 24.65409
+
+2021-06-26T09:53:29.274801
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 34, summary_loss: 0.29752, final_score: 0.10522, time: 387.29272
+[RESULT]: Val. Epoch: 34, summary_loss: 0.39452, final_score: 0.12537, time: 24.43143
+
+2021-06-26T10:00:21.168802
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 35, summary_loss: 0.29284, final_score: 0.10222, time: 387.09337
+[RESULT]: Val. Epoch: 35, summary_loss: 0.59254, final_score: 0.15185, time: 24.50208
+
+2021-06-26T10:07:12.972495
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 36, summary_loss: 0.28738, final_score: 0.09898, time: 387.15306
+[RESULT]: Val. Epoch: 36, summary_loss: 0.50444, final_score: 0.13237, time: 24.65564
+
+2021-06-26T10:14:04.953963
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.28047, final_score: 0.09473, time: 387.63248
+[RESULT]: Val. Epoch: 37, summary_loss: 0.57930, final_score: 0.13536, time: 24.43974
+
+2021-06-26T10:20:57.224989
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 38, summary_loss: 0.28527, final_score: 0.09798, time: 387.53238
+[RESULT]: Val. Epoch: 38, summary_loss: 0.74173, final_score: 0.14735, time: 24.52825
+
+2021-06-26T10:27:49.452391
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 39, summary_loss: 0.27912, final_score: 0.08898, time: 387.58322
+[RESULT]: Val. Epoch: 39, summary_loss: 0.65632, final_score: 0.15934, time: 24.66971
+
+2021-06-26T10:34:41.882648
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 40, summary_loss: 0.27441, final_score: 0.09098, time: 387.64766
+[RESULT]: Val. Epoch: 40, summary_loss: 0.54924, final_score: 0.13237, time: 24.70901
+
+2021-06-26T10:41:34.407493
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 41, summary_loss: 0.27413, final_score: 0.08810, time: 387.86559
+[RESULT]: Val. Epoch: 41, summary_loss: 0.35241, final_score: 0.13736, time: 24.51835
+
+2021-06-26T10:48:26.983544
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 42, summary_loss: 0.27318, final_score: 0.08610, time: 386.95095
+[RESULT]: Val. Epoch: 42, summary_loss: 0.41677, final_score: 0.12038, time: 24.53792
+
+2021-06-26T10:55:18.625770
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 43, summary_loss: 0.26768, final_score: 0.08585, time: 387.84921
+[RESULT]: Val. Epoch: 43, summary_loss: 0.45870, final_score: 0.12937, time: 24.52682
+
+2021-06-26T11:02:11.162315
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 44, summary_loss: 0.25181, final_score: 0.07298, time: 387.01991
+[RESULT]: Val. Epoch: 44, summary_loss: 0.47015, final_score: 0.11938, time: 24.60477
+
+2021-06-26T11:09:02.939671
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 45, summary_loss: 0.25109, final_score: 0.07436, time: 387.66273
+[RESULT]: Val. Epoch: 45, summary_loss: 0.40709, final_score: 0.12537, time: 24.52839
+
+2021-06-26T11:15:55.339143
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.23999, final_score: 0.06661, time: 387.74166
+[RESULT]: Val. Epoch: 46, summary_loss: 0.52285, final_score: 0.12338, time: 25.01832
+
+2021-06-26T11:22:48.305611
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.23524, final_score: 0.06498, time: 387.57106
+[RESULT]: Val. Epoch: 47, summary_loss: 0.59043, final_score: 0.13536, time: 24.63105
+
+2021-06-26T11:29:40.671954
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.23568, final_score: 0.06523, time: 388.12516
+[RESULT]: Val. Epoch: 48, summary_loss: 0.54253, final_score: 0.13087, time: 24.63321
+
+2021-06-26T11:36:33.624107
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.23871, final_score: 0.06623, time: 387.19102
+[RESULT]: Val. Epoch: 49, summary_loss: 0.45426, final_score: 0.12238, time: 24.63515
+
+2021-06-26T11:43:25.605314
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.23108, final_score: 0.06498, time: 386.74639
+[RESULT]: Val. Epoch: 50, summary_loss: 0.46794, final_score: 0.12088, time: 24.38114
+
+2021-06-26T11:50:16.924842
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.23162, final_score: 0.06436, time: 386.47189
+[RESULT]: Val. Epoch: 51, summary_loss: 0.48955, final_score: 0.12288, time: 25.23351
+
+2021-06-26T11:57:08.840197
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.22705, final_score: 0.06011, time: 387.06831
+[RESULT]: Val. Epoch: 52, summary_loss: 0.53186, final_score: 0.12637, time: 24.80012
+
+2021-06-26T12:04:00.892398
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.23023, final_score: 0.06236, time: 387.10743
+[RESULT]: Val. Epoch: 53, summary_loss: 0.46651, final_score: 0.12288, time: 24.61362
+
+2021-06-26T12:10:52.814244
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.22779, final_score: 0.06086, time: 387.25374
+[RESULT]: Val. Epoch: 54, summary_loss: 0.52609, final_score: 0.12887, time: 24.41384
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..155f37187928d3ce8f61df6c19adc93e1105cad8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..308b76458627d6bfc7e174d2cd178fbf1f530b87
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f791882a9b3e1fb92526f05f587ef4c3855c1e2a9f731b557a8f9591d0120370
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..95035845ff2ed0da77e2b86232d49495162dcd1b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_2/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.746418
+LR: 6.25e-05
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 30, summary_loss: 0.42995, final_score: 0.19358, time: 389.29355
+[RESULT]: Val. Epoch: 30, summary_loss: 0.67922, final_score: 0.23077, time: 24.61853
+
+2021-06-26T08:58:28.940542
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.41980, final_score: 0.18570, time: 387.70188
+[RESULT]: Val. Epoch: 31, summary_loss: 0.70254, final_score: 0.23826, time: 24.54659
+
+2021-06-26T09:05:21.352765
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.41225, final_score: 0.18120, time: 387.78543
+[RESULT]: Val. Epoch: 32, summary_loss: 0.56268, final_score: 0.22677, time: 24.24182
+
+2021-06-26T09:12:13.557389
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.41338, final_score: 0.18170, time: 387.95619
+[RESULT]: Val. Epoch: 33, summary_loss: 0.60657, final_score: 0.22777, time: 24.85880
+
+2021-06-26T09:19:06.531885
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.41191, final_score: 0.18283, time: 387.20181
+[RESULT]: Val. Epoch: 34, summary_loss: 0.69257, final_score: 0.22827, time: 24.41624
+
+2021-06-26T09:25:58.311888
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.40911, final_score: 0.17621, time: 387.53704
+[RESULT]: Val. Epoch: 35, summary_loss: 0.59160, final_score: 0.22128, time: 24.42617
+
+2021-06-26T09:32:50.471594
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.40209, final_score: 0.17121, time: 388.37273
+[RESULT]: Val. Epoch: 36, summary_loss: 0.51430, final_score: 0.21528, time: 24.69248
+
+2021-06-26T09:39:43.700504
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.39643, final_score: 0.16908, time: 388.50904
+[RESULT]: Val. Epoch: 37, summary_loss: 0.65553, final_score: 0.22278, time: 24.42360
+
+2021-06-26T09:46:36.808914
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.39790, final_score: 0.17196, time: 388.64464
+[RESULT]: Val. Epoch: 38, summary_loss: 0.58430, final_score: 0.20929, time: 24.39609
+
+2021-06-26T09:53:30.017623
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.38857, final_score: 0.16433, time: 388.12736
+[RESULT]: Val. Epoch: 39, summary_loss: 0.69184, final_score: 0.22078, time: 24.39248
+
+2021-06-26T10:00:22.716457
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.39156, final_score: 0.16671, time: 388.79286
+[RESULT]: Val. Epoch: 40, summary_loss: 0.79522, final_score: 0.23477, time: 24.63407
+
+2021-06-26T10:07:16.323725
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.38723, final_score: 0.16396, time: 387.51142
+[RESULT]: Val. Epoch: 41, summary_loss: 0.82330, final_score: 0.23377, time: 24.58522
+
+2021-06-26T10:14:08.615734
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.38634, final_score: 0.15909, time: 388.02410
+[RESULT]: Val. Epoch: 42, summary_loss: 0.61075, final_score: 0.21778, time: 24.47247
+
+2021-06-26T10:21:01.293905
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.38020, final_score: 0.15559, time: 388.46509
+[RESULT]: Val. Epoch: 43, summary_loss: 0.61384, final_score: 0.22028, time: 24.28219
+
+2021-06-26T10:27:54.220408
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.37754, final_score: 0.15471, time: 388.45471
+[RESULT]: Val. Epoch: 44, summary_loss: 0.65206, final_score: 0.21479, time: 24.62960
+
+2021-06-26T10:34:47.474053
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.37752, final_score: 0.15471, time: 388.22375
+[RESULT]: Val. Epoch: 45, summary_loss: 0.66694, final_score: 0.22478, time: 24.73876
+
+2021-06-26T10:41:40.605608
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.37542, final_score: 0.15634, time: 387.72581
+[RESULT]: Val. Epoch: 46, summary_loss: 0.72321, final_score: 0.22378, time: 24.48023
+
+2021-06-26T10:48:33.017106
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.37311, final_score: 0.15584, time: 387.63808
+[RESULT]: Val. Epoch: 47, summary_loss: 0.76962, final_score: 0.22428, time: 24.30711
+
+2021-06-26T10:55:25.124627
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.36553, final_score: 0.15071, time: 387.90843
+[RESULT]: Val. Epoch: 48, summary_loss: 0.55147, final_score: 0.21129, time: 24.54059
+
+2021-06-26T11:02:17.747466
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.35409, final_score: 0.14159, time: 388.23691
+[RESULT]: Val. Epoch: 49, summary_loss: 0.66907, final_score: 0.21578, time: 24.60097
+
+2021-06-26T11:09:10.744491
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.35331, final_score: 0.14096, time: 389.83194
+[RESULT]: Val. Epoch: 50, summary_loss: 0.62906, final_score: 0.21379, time: 25.04806
+
+2021-06-26T11:16:05.810385
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.35382, final_score: 0.13972, time: 388.00687
+[RESULT]: Val. Epoch: 51, summary_loss: 0.67049, final_score: 0.21578, time: 24.76148
+
+2021-06-26T11:22:58.742227
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.34623, final_score: 0.13484, time: 388.38375
+[RESULT]: Val. Epoch: 52, summary_loss: 0.60105, final_score: 0.21079, time: 24.30279
+
+2021-06-26T11:29:51.590221
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.34886, final_score: 0.14009, time: 388.46064
+[RESULT]: Val. Epoch: 53, summary_loss: 0.63358, final_score: 0.21029, time: 24.60254
+
+2021-06-26T11:36:44.831607
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.34747, final_score: 0.13797, time: 387.68792
+[RESULT]: Val. Epoch: 54, summary_loss: 0.62560, final_score: 0.21029, time: 24.43520
+
+2021-06-26T11:43:37.123329
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.34447, final_score: 0.13672, time: 388.06723
+[RESULT]: Val. Epoch: 55, summary_loss: 0.63056, final_score: 0.21079, time: 24.61228
+
+2021-06-26T11:50:29.997207
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.34987, final_score: 0.13672, time: 388.53773
+[RESULT]: Val. Epoch: 56, summary_loss: 0.62713, final_score: 0.21229, time: 24.54574
+
+2021-06-26T11:57:23.237659
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.34783, final_score: 0.13759, time: 387.53437
+[RESULT]: Val. Epoch: 57, summary_loss: 0.59475, final_score: 0.20879, time: 24.35366
+
+2021-06-26T12:04:15.300490
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.34976, final_score: 0.13622, time: 387.98264
+[RESULT]: Val. Epoch: 58, summary_loss: 0.67674, final_score: 0.21479, time: 24.93716
+
+2021-06-26T12:11:08.387302
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.34710, final_score: 0.13672, time: 388.18243
+[RESULT]: Val. Epoch: 59, summary_loss: 0.65448, final_score: 0.21329, time: 24.49351
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d8a94126cb0ca24c7cfe1888a7bf7d1c131e358d
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-052epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-052epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..06c9539b1ee13018f88a65160f222538bc021826
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-052epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e802d9b477badfdee29bf2fdfb2a59da0f5ca392ce5b77b2f51e90283b971bf7
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-055epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-055epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ffee9a37ded9eb891a64f3ac9f093d9444bce936
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-055epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2562aebcaaf01068e263faa02e14d625fda06090fe752ecd8dd80f2654620cbf
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-056epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-056epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0f1bba40033c6e19fddb8bd866eb7c1159128f22
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/best-checkpoint-056epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8379240b2b51af8b2ac96c853f92b75352c0a8537f1703fe575377d28d86dd5d
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a1c5e930b5e235b8016dc5bbe3a7d30e777c3eb8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5a85d7232ede2f0238af2434dfb7fd9be46d75b0bc90c3e66bb9435e34df4ae0
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9e40899eabef5c9491b8345a73c68230681ba26a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_3/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:09.459660
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 30, summary_loss: 0.51650, final_score: 0.25931, time: 390.32434
+[RESULT]: Val. Epoch: 30, summary_loss: 0.52040, final_score: 0.24625, time: 25.67636
+
+2021-06-26T08:58:05.746251
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.50259, final_score: 0.24594, time: 388.65300
+[RESULT]: Val. Epoch: 31, summary_loss: 0.49087, final_score: 0.23077, time: 25.56779
+
+2021-06-26T09:05:00.183003
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.49445, final_score: 0.24031, time: 388.41512
+[RESULT]: Val. Epoch: 32, summary_loss: 0.87927, final_score: 0.26474, time: 26.10995
+
+2021-06-26T09:11:54.915324
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.47891, final_score: 0.23182, time: 388.54744
+[RESULT]: Val. Epoch: 33, summary_loss: 0.50617, final_score: 0.22328, time: 25.20968
+
+2021-06-26T09:18:48.878039
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.46401, final_score: 0.21532, time: 388.79213
+[RESULT]: Val. Epoch: 34, summary_loss: 0.45981, final_score: 0.20679, time: 24.90592
+
+2021-06-26T09:25:42.962681
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.44789, final_score: 0.19545, time: 388.66114
+[RESULT]: Val. Epoch: 35, summary_loss: 0.45350, final_score: 0.20679, time: 25.21324
+
+2021-06-26T09:32:37.226172
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.44320, final_score: 0.19720, time: 388.67089
+[RESULT]: Val. Epoch: 36, summary_loss: 0.43578, final_score: 0.18581, time: 25.88566
+
+2021-06-26T09:39:32.193070
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.42570, final_score: 0.18670, time: 388.56963
+[RESULT]: Val. Epoch: 37, summary_loss: 0.45228, final_score: 0.16384, time: 25.73871
+
+2021-06-26T09:46:26.706665
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.41397, final_score: 0.17633, time: 388.43301
+[RESULT]: Val. Epoch: 38, summary_loss: 0.68539, final_score: 0.19381, time: 25.55945
+
+2021-06-26T09:53:20.896693
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.40238, final_score: 0.16971, time: 388.69320
+[RESULT]: Val. Epoch: 39, summary_loss: 0.58084, final_score: 0.20629, time: 25.85882
+
+2021-06-26T10:00:15.658935
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.39666, final_score: 0.16508, time: 388.57701
+[RESULT]: Val. Epoch: 40, summary_loss: 0.51936, final_score: 0.18432, time: 25.42410
+
+2021-06-26T10:07:09.894199
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.38515, final_score: 0.15771, time: 388.46965
+[RESULT]: Val. Epoch: 41, summary_loss: 0.38985, final_score: 0.14186, time: 25.31782
+
+2021-06-26T10:14:04.097533
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.37569, final_score: 0.15134, time: 388.75253
+[RESULT]: Val. Epoch: 42, summary_loss: 0.36786, final_score: 0.13437, time: 25.48291
+
+2021-06-26T10:20:58.807546
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.36880, final_score: 0.14634, time: 389.07282
+[RESULT]: Val. Epoch: 43, summary_loss: 0.38298, final_score: 0.14486, time: 25.25338
+
+2021-06-26T10:27:53.334970
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.36286, final_score: 0.14334, time: 388.52595
+[RESULT]: Val. Epoch: 44, summary_loss: 0.36726, final_score: 0.13686, time: 25.93888
+
+2021-06-26T10:34:48.206563
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.35234, final_score: 0.13122, time: 389.39170
+[RESULT]: Val. Epoch: 45, summary_loss: 0.35557, final_score: 0.13187, time: 25.87841
+
+2021-06-26T10:41:43.902037
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.36120, final_score: 0.14009, time: 388.55408
+[RESULT]: Val. Epoch: 46, summary_loss: 0.39779, final_score: 0.14885, time: 25.53296
+
+2021-06-26T10:48:38.219614
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.33871, final_score: 0.12672, time: 388.62483
+[RESULT]: Val. Epoch: 47, summary_loss: 0.43585, final_score: 0.12837, time: 25.07554
+
+2021-06-26T10:55:32.124228
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.34153, final_score: 0.12447, time: 388.45268
+[RESULT]: Val. Epoch: 48, summary_loss: 0.35315, final_score: 0.12388, time: 25.15313
+
+2021-06-26T11:02:26.260273
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.33543, final_score: 0.12322, time: 388.36122
+[RESULT]: Val. Epoch: 49, summary_loss: 0.35221, final_score: 0.12388, time: 25.36538
+
+2021-06-26T11:09:20.394973
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.32933, final_score: 0.11835, time: 388.41048
+[RESULT]: Val. Epoch: 50, summary_loss: 0.46663, final_score: 0.11588, time: 25.43111
+
+2021-06-26T11:16:14.430539
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.33846, final_score: 0.12172, time: 388.74174
+[RESULT]: Val. Epoch: 51, summary_loss: 0.50982, final_score: 0.13137, time: 25.32841
+
+2021-06-26T11:23:08.711955
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.30410, final_score: 0.10285, time: 388.81398
+[RESULT]: Val. Epoch: 52, summary_loss: 0.33134, final_score: 0.11389, time: 25.21264
+
+2021-06-26T11:30:03.156146
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.29221, final_score: 0.09173, time: 388.77272
+[RESULT]: Val. Epoch: 53, summary_loss: 0.36525, final_score: 0.11189, time: 25.78468
+
+2021-06-26T11:36:57.920701
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.28933, final_score: 0.09248, time: 388.43862
+[RESULT]: Val. Epoch: 54, summary_loss: 0.34538, final_score: 0.11139, time: 25.24311
+
+2021-06-26T11:43:51.860846
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.26865, final_score: 0.08110, time: 388.70646
+[RESULT]: Val. Epoch: 55, summary_loss: 0.32888, final_score: 0.10739, time: 25.91459
+
+2021-06-26T11:50:46.887124
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.26952, final_score: 0.08073, time: 389.00368
+[RESULT]: Val. Epoch: 56, summary_loss: 0.32820, final_score: 0.10440, time: 25.68913
+
+2021-06-26T11:57:41.991934
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.27015, final_score: 0.08185, time: 388.69734
+[RESULT]: Val. Epoch: 57, summary_loss: 0.35212, final_score: 0.11339, time: 25.62221
+
+2021-06-26T12:04:36.524916
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.25983, final_score: 0.07673, time: 388.43211
+[RESULT]: Val. Epoch: 58, summary_loss: 0.33837, final_score: 0.10789, time: 26.44676
+
+2021-06-26T12:11:31.612006
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.24769, final_score: 0.06986, time: 388.75334
+[RESULT]: Val. Epoch: 59, summary_loss: 0.34362, final_score: 0.10340, time: 25.22180
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d6dfa3ca843fce5ad64cfb6412862ec5048d7c19
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/best-checkpoint-044epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/best-checkpoint-044epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ac62395b99426abeaa9b5fa8cc1d71ff08497773
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/best-checkpoint-044epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d6947b98e2e50dd82c49c20d550d1bfac6c7c30c06adef313c98cd00c075821
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..28600c85debd06ad4d25ae95c142da18df878bf4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9f01bac3550e9fd7cf8940f717451d07a0d99298fc04d2a3e56036e3856caa42
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c5dba8e4b40c2de69840b0f62e546ab456243b9d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_4/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.951797
+LR: 6.25e-05
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 31, summary_loss: 0.48528, final_score: 0.22582, time: 394.03787
+[RESULT]: Val. Epoch: 31, summary_loss: 0.50595, final_score: 0.22328, time: 24.51910
+
+2021-06-26T08:58:33.864129
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.47613, final_score: 0.21895, time: 388.39636
+[RESULT]: Val. Epoch: 32, summary_loss: 0.54607, final_score: 0.22627, time: 24.59511
+
+2021-06-26T09:05:27.015023
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 33, summary_loss: 0.46482, final_score: 0.21332, time: 388.26004
+[RESULT]: Val. Epoch: 33, summary_loss: 0.57591, final_score: 0.21928, time: 24.27717
+
+2021-06-26T09:12:19.747551
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.46521, final_score: 0.20820, time: 388.57429
+[RESULT]: Val. Epoch: 34, summary_loss: 0.49140, final_score: 0.21429, time: 24.47066
+
+2021-06-26T09:19:12.947384
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 35, summary_loss: 0.45570, final_score: 0.20570, time: 387.96595
+[RESULT]: Val. Epoch: 35, summary_loss: 0.47701, final_score: 0.21079, time: 24.48185
+
+2021-06-26T09:26:05.581596
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.45753, final_score: 0.20620, time: 387.72485
+[RESULT]: Val. Epoch: 36, summary_loss: 0.54588, final_score: 0.21079, time: 24.59346
+
+2021-06-26T09:32:58.100606
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.45242, final_score: 0.20445, time: 387.75290
+[RESULT]: Val. Epoch: 37, summary_loss: 0.67157, final_score: 0.23676, time: 24.55085
+
+2021-06-26T09:39:50.574867
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.45030, final_score: 0.20095, time: 387.43762
+[RESULT]: Val. Epoch: 38, summary_loss: 0.52380, final_score: 0.21329, time: 24.57061
+
+2021-06-26T09:46:42.755386
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.44206, final_score: 0.19320, time: 387.54169
+[RESULT]: Val. Epoch: 39, summary_loss: 0.52783, final_score: 0.22028, time: 24.41045
+
+2021-06-26T09:53:34.873002
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.44847, final_score: 0.19845, time: 388.49037
+[RESULT]: Val. Epoch: 40, summary_loss: 0.51061, final_score: 0.21029, time: 24.42819
+
+2021-06-26T10:00:27.990670
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.44481, final_score: 0.19258, time: 387.55984
+[RESULT]: Val. Epoch: 41, summary_loss: 0.54806, final_score: 0.21379, time: 24.36468
+
+2021-06-26T10:07:20.104854
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.43291, final_score: 0.19270, time: 387.59194
+[RESULT]: Val. Epoch: 42, summary_loss: 0.61024, final_score: 0.21528, time: 24.69611
+
+2021-06-26T10:14:12.574422
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 43, summary_loss: 0.43436, final_score: 0.18720, time: 387.40930
+[RESULT]: Val. Epoch: 43, summary_loss: 0.53214, final_score: 0.20679, time: 24.94722
+
+2021-06-26T10:21:05.131818
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.42716, final_score: 0.18208, time: 388.42175
+[RESULT]: Val. Epoch: 44, summary_loss: 0.46493, final_score: 0.20330, time: 24.45278
+
+2021-06-26T10:27:58.357033
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 45, summary_loss: 0.42908, final_score: 0.18695, time: 388.12367
+[RESULT]: Val. Epoch: 45, summary_loss: 0.47145, final_score: 0.20979, time: 24.37597
+
+2021-06-26T10:34:51.024412
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.41869, final_score: 0.17808, time: 387.95820
+[RESULT]: Val. Epoch: 46, summary_loss: 0.46866, final_score: 0.20529, time: 24.51194
+
+2021-06-26T10:41:43.669478
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 47, summary_loss: 0.41704, final_score: 0.17971, time: 387.40636
+[RESULT]: Val. Epoch: 47, summary_loss: 0.50273, final_score: 0.20829, time: 24.48555
+
+2021-06-26T10:48:35.717929
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.41466, final_score: 0.17796, time: 387.98320
+[RESULT]: Val. Epoch: 48, summary_loss: 0.47251, final_score: 0.20729, time: 24.24158
+
+2021-06-26T10:55:28.124435
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.40947, final_score: 0.17171, time: 387.58525
+[RESULT]: Val. Epoch: 49, summary_loss: 0.47494, final_score: 0.20679, time: 24.42639
+
+2021-06-26T11:02:20.304871
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.41267, final_score: 0.17983, time: 387.91582
+[RESULT]: Val. Epoch: 50, summary_loss: 0.47644, final_score: 0.20480, time: 24.35416
+
+2021-06-26T11:09:12.754244
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.39891, final_score: 0.16633, time: 387.82349
+[RESULT]: Val. Epoch: 51, summary_loss: 0.52998, final_score: 0.20480, time: 24.78755
+
+2021-06-26T11:16:05.566613
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.39872, final_score: 0.16646, time: 388.10375
+[RESULT]: Val. Epoch: 52, summary_loss: 0.53747, final_score: 0.20480, time: 24.59043
+
+2021-06-26T11:22:58.435615
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.39590, final_score: 0.16458, time: 387.75568
+[RESULT]: Val. Epoch: 53, summary_loss: 0.49574, final_score: 0.20380, time: 24.41638
+
+2021-06-26T11:29:50.768179
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.38986, final_score: 0.16346, time: 387.31763
+[RESULT]: Val. Epoch: 54, summary_loss: 0.50702, final_score: 0.20180, time: 24.40626
+
+2021-06-26T11:36:42.704641
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.39229, final_score: 0.16308, time: 387.83326
+[RESULT]: Val. Epoch: 55, summary_loss: 0.51658, final_score: 0.20130, time: 24.51242
+
+2021-06-26T11:43:35.234199
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.37997, final_score: 0.15121, time: 387.74178
+[RESULT]: Val. Epoch: 56, summary_loss: 0.53302, final_score: 0.19880, time: 24.50913
+
+2021-06-26T11:50:27.690299
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.38075, final_score: 0.15534, time: 387.73603
+[RESULT]: Val. Epoch: 57, summary_loss: 0.51409, final_score: 0.20280, time: 24.96847
+
+2021-06-26T11:57:20.566789
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.38482, final_score: 0.15671, time: 388.40546
+[RESULT]: Val. Epoch: 58, summary_loss: 0.52065, final_score: 0.19830, time: 24.84498
+
+2021-06-26T12:04:13.996915
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.38061, final_score: 0.15471, time: 387.39454
+[RESULT]: Val. Epoch: 59, summary_loss: 0.50388, final_score: 0.20130, time: 24.51489
+
+2021-06-26T12:11:06.105981
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 60, summary_loss: 0.38285, final_score: 0.15509, time: 387.60986
+[RESULT]: Val. Epoch: 60, summary_loss: 0.51466, final_score: 0.20230, time: 24.51543
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..3c901f4fc161d1606f143f74b6282137a6682841
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..79ab7d81c41ddaa5d98e34bf937b5ccb64f64918
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4954c04d4d6c777fd94070fa8a19b9fa36a0a16af2f79ef525116da29547b721
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..33081965c4a178e3f924526ee54ba1d701c726de
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fdd870fb35e03bbcb2f028555e1da6433348ff87fb29ad7b468fbf49d0457288
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-030epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-030epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6a26cc3c9f9a3f0e44a121829a23d3bf3e832a0c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/best-checkpoint-030epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:481ee44a588fdba69aece5078539e4f9654b1892846ac2e898e3ef4879f18682
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..62a3fef1b56b266d408b1cc27f74e30d3d9330b4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:661ad86368d9ea46dd86ca4fbfe2df6c4e5b964f840f88b54ffe00b05a9d33d1
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..09dee1a4a3af5e365fee6dec7684638a02e43d42
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_5/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T13:12:50.354898
+LR: 0.0005
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 1, summary_loss: 0.70602, final_score: 0.49525, time: 388.07192
+[RESULT]: Val. Epoch: 1, summary_loss: 0.71807, final_score: 0.49700, time: 25.57164
+
+2021-06-25T13:19:44.496412
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.70192, final_score: 0.49588, time: 387.20007
+[RESULT]: Val. Epoch: 2, summary_loss: 0.70151, final_score: 0.49700, time: 25.49152
+
+2021-06-25T13:26:37.522744
+LR: 0.0005
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 3, summary_loss: 0.70156, final_score: 0.49538, time: 387.38365
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69374, final_score: 0.49700, time: 24.65585
+
+2021-06-25T13:33:29.926209
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69713, final_score: 0.49513, time: 386.82793
+[RESULT]: Val. Epoch: 4, summary_loss: 0.70677, final_score: 0.49700, time: 25.50580
+
+2021-06-25T13:40:22.419824
+LR: 0.0005
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69700, final_score: 0.49050, time: 387.16932
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69579, final_score: 0.49700, time: 24.70141
+
+2021-06-25T13:47:14.496465
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69662, final_score: 0.49475, time: 386.83823
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69420, final_score: 0.49600, time: 25.24798
+
+2021-06-25T13:54:06.774037
+LR: 0.0005
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69608, final_score: 0.48988, time: 386.46168
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69344, final_score: 0.49600, time: 25.10541
+
+2021-06-25T14:00:58.701291
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69632, final_score: 0.49225, time: 386.94856
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69415, final_score: 0.49650, time: 24.81153
+
+2021-06-25T14:07:50.651474
+LR: 0.0005
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69597, final_score: 0.49763, time: 387.55128
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69869, final_score: 0.49850, time: 24.87049
+
+2021-06-25T14:14:43.247125
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69568, final_score: 0.49538, time: 387.40625
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69823, final_score: 0.49700, time: 27.19469
+
+2021-06-25T14:21:38.061757
+LR: 0.0005
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69614, final_score: 0.49675, time: 387.05980
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69383, final_score: 0.49650, time: 25.67637
+
+2021-06-25T14:28:30.986978
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69500, final_score: 0.49213, time: 386.73328
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69460, final_score: 0.49600, time: 26.30622
+
+2021-06-25T14:35:24.227647
+LR: 0.0005
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69535, final_score: 0.49588, time: 386.99557
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69885, final_score: 0.49750, time: 26.85491
+
+2021-06-25T14:42:18.264268
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69547, final_score: 0.49325, time: 386.69156
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69700, final_score: 0.49550, time: 27.29900
+
+2021-06-25T14:49:12.456144
+LR: 0.0005
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69500, final_score: 0.49375, time: 386.82052
+[RESULT]: Val. Epoch: 15, summary_loss: 0.70039, final_score: 0.49800, time: 27.47697
+
+2021-06-25T14:56:06.951500
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69572, final_score: 0.49800, time: 386.76330
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69475, final_score: 0.49800, time: 26.60330
+
+2021-06-25T15:03:00.491648
+LR: 0.0005
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69515, final_score: 0.49363, time: 386.73874
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69340, final_score: 0.49700, time: 26.93613
+
+2021-06-25T15:09:54.557553
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69557, final_score: 0.49938, time: 386.93188
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69630, final_score: 0.49700, time: 26.26630
+
+2021-06-25T15:16:47.966516
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.69472, final_score: 0.49275, time: 386.76928
+[RESULT]: Val. Epoch: 19, summary_loss: 0.70250, final_score: 0.49700, time: 25.69056
+
+2021-06-25T15:23:40.602182
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.69394, final_score: 0.49538, time: 387.18145
+[RESULT]: Val. Epoch: 20, summary_loss: 0.69468, final_score: 0.49650, time: 25.22309
+
+2021-06-25T15:30:33.173452
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.69359, final_score: 0.49075, time: 387.03346
+[RESULT]: Val. Epoch: 21, summary_loss: 0.69651, final_score: 0.49750, time: 25.03267
+
+2021-06-25T15:37:25.431371
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.69366, final_score: 0.49425, time: 387.39990
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69332, final_score: 0.49700, time: 25.65029
+
+2021-06-25T15:44:18.839765
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.69357, final_score: 0.49675, time: 387.02838
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69325, final_score: 0.49650, time: 25.11617
+
+2021-06-25T15:51:11.320464
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.69353, final_score: 0.49463, time: 387.14437
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69339, final_score: 0.49750, time: 24.93916
+
+2021-06-25T15:58:03.572116
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.69379, final_score: 0.49750, time: 387.03623
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69329, final_score: 0.49451, time: 25.74146
+
+2021-06-25T16:04:56.538000
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.69338, final_score: 0.49213, time: 387.46551
+[RESULT]: Val. Epoch: 26, summary_loss: 0.69316, final_score: 0.49750, time: 25.38042
+
+2021-06-25T16:11:49.723325
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.69324, final_score: 0.49488, time: 386.99700
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69331, final_score: 0.49700, time: 25.82227
+
+2021-06-25T16:18:42.712972
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.69349, final_score: 0.49463, time: 387.15581
+[RESULT]: Val. Epoch: 28, summary_loss: 0.69317, final_score: 0.49700, time: 25.05004
+
+2021-06-25T16:25:35.090019
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.69333, final_score: 0.49263, time: 386.98540
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69316, final_score: 0.49700, time: 25.87224
+
+2021-06-25T16:32:28.349299
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 30, summary_loss: 0.69323, final_score: 0.49725, time: 387.24028
+[RESULT]: Val. Epoch: 30, summary_loss: 0.69315, final_score: 0.49550, time: 26.29589
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.818129
+LR: 0.000125
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 29, summary_loss: 0.61031, final_score: 0.34904, time: 393.37572
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69634, final_score: 0.36414, time: 25.00097
+
+2021-06-26T08:58:33.439867
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 30, summary_loss: 0.59849, final_score: 0.33542, time: 387.30442
+[RESULT]: Val. Epoch: 30, summary_loss: 0.68898, final_score: 0.36763, time: 24.46487
+
+2021-06-26T09:05:25.362718
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.59599, final_score: 0.33717, time: 386.56003
+[RESULT]: Val. Epoch: 31, summary_loss: 0.65219, final_score: 0.35664, time: 24.59465
+
+2021-06-26T09:12:16.673688
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 32, summary_loss: 0.59409, final_score: 0.33367, time: 386.77685
+[RESULT]: Val. Epoch: 32, summary_loss: 0.63144, final_score: 0.34066, time: 24.59544
+
+2021-06-26T09:19:08.217182
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.58814, final_score: 0.32754, time: 386.66101
+[RESULT]: Val. Epoch: 33, summary_loss: 0.62428, final_score: 0.34565, time: 24.88612
+
+2021-06-26T09:25:59.950074
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.58304, final_score: 0.31705, time: 387.07351
+[RESULT]: Val. Epoch: 34, summary_loss: 0.70805, final_score: 0.35415, time: 24.65773
+
+2021-06-26T09:32:51.848423
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.57518, final_score: 0.31817, time: 386.84219
+[RESULT]: Val. Epoch: 35, summary_loss: 0.65410, final_score: 0.34316, time: 24.52500
+
+2021-06-26T09:39:43.393728
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.57285, final_score: 0.31742, time: 386.74081
+[RESULT]: Val. Epoch: 36, summary_loss: 0.65289, final_score: 0.34515, time: 24.79754
+
+2021-06-26T09:46:35.100565
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.57158, final_score: 0.31242, time: 387.35722
+[RESULT]: Val. Epoch: 37, summary_loss: 0.63065, final_score: 0.34016, time: 24.48876
+
+2021-06-26T09:53:27.099757
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.56069, final_score: 0.29768, time: 386.52288
+[RESULT]: Val. Epoch: 38, summary_loss: 0.64911, final_score: 0.34116, time: 24.50184
+
+2021-06-26T10:00:18.285829
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.56060, final_score: 0.30155, time: 387.37413
+[RESULT]: Val. Epoch: 39, summary_loss: 0.69817, final_score: 0.34216, time: 24.78607
+
+2021-06-26T10:07:10.624423
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.55844, final_score: 0.30055, time: 386.93000
+[RESULT]: Val. Epoch: 40, summary_loss: 0.60617, final_score: 0.32917, time: 24.61658
+
+2021-06-26T10:14:02.318986
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.55195, final_score: 0.29480, time: 386.87160
+[RESULT]: Val. Epoch: 41, summary_loss: 0.64171, final_score: 0.32717, time: 24.62292
+
+2021-06-26T10:20:54.006738
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 42, summary_loss: 0.54451, final_score: 0.28443, time: 387.11449
+[RESULT]: Val. Epoch: 42, summary_loss: 0.66682, final_score: 0.33566, time: 24.45066
+
+2021-06-26T10:27:45.725369
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.54141, final_score: 0.28543, time: 386.89049
+[RESULT]: Val. Epoch: 43, summary_loss: 0.72086, final_score: 0.34216, time: 24.88520
+
+2021-06-26T10:34:37.694004
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 44, summary_loss: 0.53959, final_score: 0.28280, time: 387.21788
+[RESULT]: Val. Epoch: 44, summary_loss: 0.71323, final_score: 0.34116, time: 24.77397
+
+2021-06-26T10:41:29.846857
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.53554, final_score: 0.28455, time: 387.20419
+[RESULT]: Val. Epoch: 45, summary_loss: 0.62980, final_score: 0.32418, time: 24.58274
+
+2021-06-26T10:48:21.801007
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.53223, final_score: 0.28068, time: 386.47484
+[RESULT]: Val. Epoch: 46, summary_loss: 0.67292, final_score: 0.32567, time: 24.53468
+
+2021-06-26T10:55:12.968001
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.51415, final_score: 0.26756, time: 387.08927
+[RESULT]: Val. Epoch: 47, summary_loss: 0.70392, final_score: 0.32817, time: 24.50734
+
+2021-06-26T11:02:04.723223
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.50960, final_score: 0.25831, time: 386.75787
+[RESULT]: Val. Epoch: 48, summary_loss: 0.77279, final_score: 0.32517, time: 24.60003
+
+2021-06-26T11:08:56.248049
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.50107, final_score: 0.25044, time: 387.02289
+[RESULT]: Val. Epoch: 49, summary_loss: 0.68571, final_score: 0.31668, time: 24.71478
+
+2021-06-26T11:15:48.193256
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.49172, final_score: 0.24644, time: 386.98536
+[RESULT]: Val. Epoch: 50, summary_loss: 0.71909, final_score: 0.31568, time: 24.63172
+
+2021-06-26T11:22:39.973502
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.49744, final_score: 0.25131, time: 387.07160
+[RESULT]: Val. Epoch: 51, summary_loss: 0.66062, final_score: 0.31518, time: 24.53967
+
+2021-06-26T11:29:31.741025
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.48860, final_score: 0.24081, time: 386.53191
+[RESULT]: Val. Epoch: 52, summary_loss: 0.70141, final_score: 0.31968, time: 24.62594
+
+2021-06-26T11:36:23.051122
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.49212, final_score: 0.24656, time: 386.52617
+[RESULT]: Val. Epoch: 53, summary_loss: 0.65334, final_score: 0.31369, time: 24.76551
+
+2021-06-26T11:43:14.513478
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.48425, final_score: 0.23682, time: 386.70800
+[RESULT]: Val. Epoch: 54, summary_loss: 0.70028, final_score: 0.31918, time: 24.84369
+
+2021-06-26T11:50:06.227064
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.48892, final_score: 0.24106, time: 386.95304
+[RESULT]: Val. Epoch: 55, summary_loss: 0.72293, final_score: 0.32018, time: 24.42350
+
+2021-06-26T11:56:57.751634
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.48811, final_score: 0.24019, time: 386.79275
+[RESULT]: Val. Epoch: 56, summary_loss: 0.67692, final_score: 0.31419, time: 24.52349
+
+2021-06-26T12:03:49.230039
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.48191, final_score: 0.23857, time: 386.97632
+[RESULT]: Val. Epoch: 57, summary_loss: 0.67947, final_score: 0.31518, time: 24.93628
+
+2021-06-26T12:10:41.301566
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.48445, final_score: 0.24119, time: 386.69968
+[RESULT]: Val. Epoch: 58, summary_loss: 0.67765, final_score: 0.31518, time: 24.64890
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0002dd80678278d9a5272117bf93633d3f63863b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..e84ffd45a74ec130546bd11a3f5f91df2c356d7a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b1cbe6901b349b02bfc62c38c449cd806d06ddc065e6875c76137d3681344446
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..988814196054d7981c2e1235d126bee1d59a4b05
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_6/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.871318
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64182, final_score: 0.38003, time: 396.70955
+[RESULT]: Val. Epoch: 27, summary_loss: 0.68277, final_score: 0.38511, time: 25.42992
+
+2021-06-26T08:58:37.261255
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 28, summary_loss: 0.63047, final_score: 0.37191, time: 398.93124
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65640, final_score: 0.38062, time: 25.37567
+
+2021-06-26T09:05:41.757206
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 29, summary_loss: 0.62633, final_score: 0.36216, time: 399.40828
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65271, final_score: 0.37013, time: 25.50675
+
+2021-06-26T09:12:46.864378
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 30, summary_loss: 0.62445, final_score: 0.36441, time: 398.69447
+[RESULT]: Val. Epoch: 30, summary_loss: 0.63194, final_score: 0.36364, time: 25.70384
+
+2021-06-26T09:19:51.420144
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 31, summary_loss: 0.61370, final_score: 0.35054, time: 400.47170
+[RESULT]: Val. Epoch: 31, summary_loss: 0.69707, final_score: 0.38262, time: 25.55036
+
+2021-06-26T09:26:57.622638
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.61340, final_score: 0.34454, time: 400.20032
+[RESULT]: Val. Epoch: 32, summary_loss: 0.65725, final_score: 0.37113, time: 26.64530
+
+2021-06-26T09:34:04.644206
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.60825, final_score: 0.35004, time: 399.32783
+[RESULT]: Val. Epoch: 33, summary_loss: 0.79461, final_score: 0.39860, time: 27.21509
+
+2021-06-26T09:41:11.364024
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.60044, final_score: 0.33904, time: 399.58956
+[RESULT]: Val. Epoch: 34, summary_loss: 0.65076, final_score: 0.37313, time: 28.72279
+
+2021-06-26T09:48:19.846070
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.59483, final_score: 0.33742, time: 401.08017
+[RESULT]: Val. Epoch: 35, summary_loss: 0.66680, final_score: 0.36014, time: 26.51499
+
+2021-06-26T09:55:27.621281
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 36, summary_loss: 0.59047, final_score: 0.32179, time: 401.32324
+[RESULT]: Val. Epoch: 36, summary_loss: 0.63981, final_score: 0.34266, time: 27.07269
+
+2021-06-26T10:02:36.219552
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.58733, final_score: 0.32767, time: 399.86861
+[RESULT]: Val. Epoch: 37, summary_loss: 0.63640, final_score: 0.36014, time: 25.86097
+
+2021-06-26T10:09:42.127989
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.58120, final_score: 0.31492, time: 401.08972
+[RESULT]: Val. Epoch: 38, summary_loss: 0.64121, final_score: 0.35964, time: 27.90065
+
+2021-06-26T10:16:51.274807
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.57505, final_score: 0.31392, time: 401.10186
+[RESULT]: Val. Epoch: 39, summary_loss: 0.61498, final_score: 0.34316, time: 27.10740
+
+2021-06-26T10:23:59.658394
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 40, summary_loss: 0.57414, final_score: 0.30855, time: 399.43115
+[RESULT]: Val. Epoch: 40, summary_loss: 0.61027, final_score: 0.33966, time: 27.27149
+
+2021-06-26T10:31:06.524834
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 41, summary_loss: 0.57065, final_score: 0.30280, time: 402.19798
+[RESULT]: Val. Epoch: 41, summary_loss: 0.61571, final_score: 0.33017, time: 26.87844
+
+2021-06-26T10:38:15.796656
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 42, summary_loss: 0.56083, final_score: 0.30167, time: 399.83574
+[RESULT]: Val. Epoch: 42, summary_loss: 0.83644, final_score: 0.34815, time: 27.11882
+
+2021-06-26T10:45:22.928993
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 43, summary_loss: 0.55814, final_score: 0.30167, time: 400.60564
+[RESULT]: Val. Epoch: 43, summary_loss: 0.59728, final_score: 0.32368, time: 26.19783
+
+2021-06-26T10:52:29.902323
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 44, summary_loss: 0.55466, final_score: 0.29668, time: 401.81656
+[RESULT]: Val. Epoch: 44, summary_loss: 0.76825, final_score: 0.35514, time: 26.96509
+
+2021-06-26T10:59:38.842016
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 45, summary_loss: 0.52939, final_score: 0.26918, time: 401.34306
+[RESULT]: Val. Epoch: 45, summary_loss: 0.61311, final_score: 0.31868, time: 27.51581
+
+2021-06-26T11:06:47.876890
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.53273, final_score: 0.27206, time: 402.54818
+[RESULT]: Val. Epoch: 46, summary_loss: 0.70063, final_score: 0.32168, time: 26.17904
+
+2021-06-26T11:13:56.763840
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.49802, final_score: 0.24431, time: 402.34622
+[RESULT]: Val. Epoch: 47, summary_loss: 0.70344, final_score: 0.31069, time: 26.61697
+
+2021-06-26T11:21:05.891374
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.49610, final_score: 0.25106, time: 401.61298
+[RESULT]: Val. Epoch: 48, summary_loss: 0.60944, final_score: 0.29421, time: 26.78845
+
+2021-06-26T11:28:14.470120
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.49634, final_score: 0.24281, time: 400.48645
+[RESULT]: Val. Epoch: 49, summary_loss: 0.60251, final_score: 0.28521, time: 27.05935
+
+2021-06-26T11:35:22.167452
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.48680, final_score: 0.23569, time: 401.23373
+[RESULT]: Val. Epoch: 50, summary_loss: 0.62084, final_score: 0.29371, time: 26.86574
+
+2021-06-26T11:42:30.431951
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.48875, final_score: 0.24069, time: 402.75819
+[RESULT]: Val. Epoch: 51, summary_loss: 0.64799, final_score: 0.29920, time: 28.17242
+
+2021-06-26T11:49:41.550198
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.47936, final_score: 0.23319, time: 400.69173
+[RESULT]: Val. Epoch: 52, summary_loss: 0.63820, final_score: 0.29520, time: 28.42883
+
+2021-06-26T11:56:50.880720
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.47853, final_score: 0.23119, time: 401.35636
+[RESULT]: Val. Epoch: 53, summary_loss: 0.61858, final_score: 0.29121, time: 27.04798
+
+2021-06-26T12:03:59.460353
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.47333, final_score: 0.22657, time: 401.00324
+[RESULT]: Val. Epoch: 54, summary_loss: 0.63457, final_score: 0.29271, time: 26.81237
+
+2021-06-26T12:11:07.433841
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.47694, final_score: 0.23319, time: 402.89364
+[RESULT]: Val. Epoch: 55, summary_loss: 0.64273, final_score: 0.29421, time: 27.79826
+
+2021-06-26T12:18:18.285960
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.47961, final_score: 0.23444, time: 402.91917
+[RESULT]: Val. Epoch: 56, summary_loss: 0.65779, final_score: 0.29920, time: 27.18008
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..676d181c473f6b646f7176158b6e45d3ab37ac2e
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..803849834769a910e7afc988e4f1e6eaced6f0e6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c61f8b41071aeabdd5636ac575a88d726b89064bbf22f01e40bf279e2e00c338
+size 48550161
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..113eee1804011991bf02aed55a2d2816133ef906
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_efnet_stego_7/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:51:34.812738
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 28, summary_loss: 0.62198, final_score: 0.35704, time: 389.07663
+[RESULT]: Val. Epoch: 28, summary_loss: 0.73102, final_score: 0.37912, time: 24.67301
+
+2021-06-26T08:58:28.824399
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 29, summary_loss: 0.61719, final_score: 0.35854, time: 388.71833
+[RESULT]: Val. Epoch: 29, summary_loss: 0.62459, final_score: 0.34466, time: 24.60369
+
+2021-06-26T09:05:22.321048
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 30, summary_loss: 0.61240, final_score: 0.34079, time: 388.45510
+[RESULT]: Val. Epoch: 30, summary_loss: 0.61551, final_score: 0.34715, time: 24.45844
+
+2021-06-26T09:12:15.405447
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 31, summary_loss: 0.59814, final_score: 0.33417, time: 388.10702
+[RESULT]: Val. Epoch: 31, summary_loss: 0.68128, final_score: 0.37113, time: 24.61975
+
+2021-06-26T09:19:08.296365
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 32, summary_loss: 0.59333, final_score: 0.32217, time: 388.38000
+[RESULT]: Val. Epoch: 32, summary_loss: 0.65862, final_score: 0.34565, time: 24.70014
+
+2021-06-26T09:26:01.545199
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.58829, final_score: 0.32192, time: 388.58022
+[RESULT]: Val. Epoch: 33, summary_loss: 0.62476, final_score: 0.33616, time: 24.41181
+
+2021-06-26T09:32:54.686130
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.58640, final_score: 0.32329, time: 388.34252
+[RESULT]: Val. Epoch: 34, summary_loss: 0.59775, final_score: 0.32068, time: 24.42277
+
+2021-06-26T09:39:47.608370
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.57714, final_score: 0.30467, time: 389.08628
+[RESULT]: Val. Epoch: 35, summary_loss: 0.73906, final_score: 0.33467, time: 24.39984
+
+2021-06-26T09:46:41.264491
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.57016, final_score: 0.30542, time: 388.35942
+[RESULT]: Val. Epoch: 36, summary_loss: 0.62777, final_score: 0.32318, time: 24.25280
+
+2021-06-26T09:53:34.025967
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.56732, final_score: 0.30280, time: 388.97781
+[RESULT]: Val. Epoch: 37, summary_loss: 0.82878, final_score: 0.35265, time: 24.91817
+
+2021-06-26T10:00:28.097362
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.55450, final_score: 0.28980, time: 388.29815
+[RESULT]: Val. Epoch: 38, summary_loss: 0.63556, final_score: 0.31419, time: 24.33953
+
+2021-06-26T10:07:20.902120
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.54920, final_score: 0.29368, time: 388.20282
+[RESULT]: Val. Epoch: 39, summary_loss: 0.63681, final_score: 0.30569, time: 24.53177
+
+2021-06-26T10:14:13.809300
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.54225, final_score: 0.27381, time: 388.93556
+[RESULT]: Val. Epoch: 40, summary_loss: 0.55619, final_score: 0.27772, time: 24.89191
+
+2021-06-26T10:21:07.799773
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 41, summary_loss: 0.53582, final_score: 0.27418, time: 388.83654
+[RESULT]: Val. Epoch: 41, summary_loss: 0.63391, final_score: 0.30619, time: 24.41779
+
+2021-06-26T10:28:01.227572
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 42, summary_loss: 0.53232, final_score: 0.27043, time: 388.42106
+[RESULT]: Val. Epoch: 42, summary_loss: 0.54908, final_score: 0.27822, time: 24.55919
+
+2021-06-26T10:34:54.365744
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 43, summary_loss: 0.52142, final_score: 0.25919, time: 388.71356
+[RESULT]: Val. Epoch: 43, summary_loss: 0.57905, final_score: 0.29071, time: 24.88255
+
+2021-06-26T10:41:48.139742
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 44, summary_loss: 0.52742, final_score: 0.26443, time: 388.44117
+[RESULT]: Val. Epoch: 44, summary_loss: 0.57285, final_score: 0.28022, time: 24.52711
+
+2021-06-26T10:48:41.296254
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 45, summary_loss: 0.49475, final_score: 0.23944, time: 388.80257
+[RESULT]: Val. Epoch: 45, summary_loss: 0.62250, final_score: 0.27473, time: 24.76020
+
+2021-06-26T10:55:35.041925
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.48373, final_score: 0.23557, time: 388.93505
+[RESULT]: Val. Epoch: 46, summary_loss: 0.55190, final_score: 0.26124, time: 24.37286
+
+2021-06-26T11:02:28.516571
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.47616, final_score: 0.23044, time: 388.88541
+[RESULT]: Val. Epoch: 47, summary_loss: 0.62666, final_score: 0.26823, time: 24.32772
+
+2021-06-26T11:09:21.916119
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.46947, final_score: 0.22732, time: 388.77917
+[RESULT]: Val. Epoch: 48, summary_loss: 0.54585, final_score: 0.26024, time: 24.18521
+
+2021-06-26T11:16:15.030848
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.46717, final_score: 0.22144, time: 388.40298
+[RESULT]: Val. Epoch: 49, summary_loss: 0.57985, final_score: 0.27123, time: 24.51857
+
+2021-06-26T11:23:08.111883
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.46051, final_score: 0.21357, time: 388.71236
+[RESULT]: Val. Epoch: 50, summary_loss: 0.64621, final_score: 0.26773, time: 24.34487
+
+2021-06-26T11:30:01.318577
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.43940, final_score: 0.20295, time: 388.50681
+[RESULT]: Val. Epoch: 51, summary_loss: 0.63897, final_score: 0.26573, time: 24.85100
+
+2021-06-26T11:36:54.822661
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.43810, final_score: 0.20395, time: 388.70530
+[RESULT]: Val. Epoch: 52, summary_loss: 0.60816, final_score: 0.25624, time: 24.59521
+
+2021-06-26T11:43:48.297148
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.42145, final_score: 0.19108, time: 388.29720
+[RESULT]: Val. Epoch: 53, summary_loss: 0.60151, final_score: 0.26124, time: 24.40429
+
+2021-06-26T11:50:41.162345
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.42054, final_score: 0.19108, time: 387.98199
+[RESULT]: Val. Epoch: 54, summary_loss: 0.56442, final_score: 0.24426, time: 24.42691
+
+2021-06-26T11:57:33.762346
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.41393, final_score: 0.18808, time: 388.18656
+[RESULT]: Val. Epoch: 55, summary_loss: 0.61554, final_score: 0.25624, time: 24.31777
+
+2021-06-26T12:04:26.450586
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.40913, final_score: 0.17971, time: 388.60468
+[RESULT]: Val. Epoch: 56, summary_loss: 0.59057, final_score: 0.25175, time: 24.58495
+
+2021-06-26T12:11:19.822019
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.41374, final_score: 0.18020, time: 388.35206
+[RESULT]: Val. Epoch: 57, summary_loss: 0.59711, final_score: 0.25225, time: 24.50948
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-015epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-015epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..18150739097741c69e8d569336be41cb393db3a0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-015epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c7d5f98a5751f4464781b43d69a5fbfa48d126aa8e5bbd89f87c2d44a3ad5786
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5a68f49cc07eec76ae30e525b7ab2deb6d07bff4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9bda0c73b5067bf1a6dda102b7d3119a213d231b9dffbaa72f526604ceccd5bd
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5f6762f9700ed61e0574f9d70ba0d8d6e9511227
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:345914b4334a94e6a06ad774c5d5bb0ee02c4275fe3a751bf41aea4e59e907c2
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ee7e3b6a892a10bd0faa29a4d1c75147957b4f7d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2561d27ff3e99dde1e7609acf69bef2e365890ddd9c4c3a0cf68cc3a4385eed
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..76560b1d03128f4c4f45bb008bb5a2abcd43993e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/log.txt
@@ -0,0 +1,202 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-12T08:05:13.627147
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-12T08:15:46.004401
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69266, final_score: 0.46663, time: 411.31687
+[RESULT]: Val. Epoch: 0, summary_loss: 1.27957, final_score: 0.49500, time: 113.61637
+
+2021-04-12T08:24:31.494324
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.64450, final_score: 0.36816, time: 419.12661
+[RESULT]: Val. Epoch: 1, summary_loss: 0.90761, final_score: 0.44605, time: 112.53803
+
+2021-04-12T08:33:23.512772
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.43485, final_score: 0.17108, time: 416.39443
+[RESULT]: Val. Epoch: 2, summary_loss: 0.87840, final_score: 0.32817, time: 110.97938
+
+2021-04-12T08:42:11.241254
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.31509, final_score: 0.09285, time: 412.41331
+[RESULT]: Val. Epoch: 3, summary_loss: 1.51086, final_score: 0.34865, time: 108.68435
+
+2021-04-12T08:50:52.900790
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.24100, final_score: 0.05036, time: 415.51946
+[RESULT]: Val. Epoch: 4, summary_loss: 1.21758, final_score: 0.26124, time: 111.00738
+
+2021-04-12T08:59:39.707385
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.23943, final_score: 0.04861, time: 417.56336
+[RESULT]: Val. Epoch: 5, summary_loss: 0.61465, final_score: 0.22927, time: 112.75383
+
+2021-04-12T09:08:30.387650
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22602, final_score: 0.04049, time: 425.10885
+[RESULT]: Val. Epoch: 6, summary_loss: 0.79314, final_score: 0.20979, time: 112.08447
+
+2021-04-12T09:17:27.751615
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.25971, final_score: 0.06211, time: 426.36526
+[RESULT]: Val. Epoch: 7, summary_loss: 0.61776, final_score: 0.22977, time: 111.80877
+
+2021-04-12T09:26:26.143299
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.23237, final_score: 0.04461, time: 425.89023
+[RESULT]: Val. Epoch: 8, summary_loss: 1.23918, final_score: 0.24975, time: 111.66309
+
+2021-04-12T09:35:23.884015
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.26334, final_score: 0.06411, time: 428.62160
+[RESULT]: Val. Epoch: 9, summary_loss: 0.47445, final_score: 0.17233, time: 111.52887
+
+2021-04-12T09:44:24.471834
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.24073, final_score: 0.04949, time: 423.51209
+[RESULT]: Val. Epoch: 10, summary_loss: 0.63170, final_score: 0.17133, time: 108.78117
+
+2021-04-12T09:53:16.949446
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.28133, final_score: 0.07536, time: 427.45016
+[RESULT]: Val. Epoch: 11, summary_loss: 1.11108, final_score: 0.23776, time: 112.74518
+
+2021-04-12T10:02:17.582258
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.26087, final_score: 0.06373, time: 435.77290
+[RESULT]: Val. Epoch: 12, summary_loss: 1.72867, final_score: 0.25275, time: 113.72839
+
+2021-04-12T10:11:27.264589
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.28921, final_score: 0.07786, time: 437.82740
+[RESULT]: Val. Epoch: 13, summary_loss: 2.84427, final_score: 0.33566, time: 113.94197
+
+2021-04-12T10:20:39.217111
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.28432, final_score: 0.07248, time: 439.55967
+[RESULT]: Val. Epoch: 14, summary_loss: 0.45799, final_score: 0.12537, time: 111.93571
+
+2021-04-12T10:29:51.133212
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.31104, final_score: 0.09385, time: 437.86513
+[RESULT]: Val. Epoch: 15, summary_loss: 0.45234, final_score: 0.11988, time: 113.01430
+
+2021-04-12T10:39:02.382932
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.30356, final_score: 0.08560, time: 436.81560
+[RESULT]: Val. Epoch: 16, summary_loss: 0.65222, final_score: 0.14436, time: 113.19999
+
+2021-04-12T10:48:12.639841
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.32020, final_score: 0.09948, time: 434.28371
+[RESULT]: Val. Epoch: 17, summary_loss: 0.70330, final_score: 0.16783, time: 112.22896
+
+2021-04-12T10:57:19.333196
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.31683, final_score: 0.09098, time: 441.78845
+[RESULT]: Val. Epoch: 18, summary_loss: 0.50186, final_score: 0.13187, time: 112.38914
+
+2021-04-12T11:06:34.350612
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.31139, final_score: 0.08898, time: 435.38680
+[RESULT]: Val. Epoch: 19, summary_loss: 0.85243, final_score: 0.19231, time: 113.23151
+
+2021-04-12T11:15:43.189964
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.30156, final_score: 0.08310, time: 440.63462
+[RESULT]: Val. Epoch: 20, summary_loss: 0.46731, final_score: 0.12488, time: 113.19599
+
+2021-04-12T11:24:57.202395
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.29356, final_score: 0.07986, time: 440.97827
+[RESULT]: Val. Epoch: 21, summary_loss: 0.74142, final_score: 0.17632, time: 112.65722
+
+2021-04-12T11:34:11.037427
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.30262, final_score: 0.09048, time: 440.13018
+[RESULT]: Val. Epoch: 22, summary_loss: 0.48624, final_score: 0.11888, time: 113.88775
+
+2021-04-12T11:43:25.263579
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.26437, final_score: 0.06286, time: 440.99094
+[RESULT]: Val. Epoch: 23, summary_loss: 0.35886, final_score: 0.09191, time: 113.06927
+
+2021-04-12T11:52:39.732652
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.25464, final_score: 0.05886, time: 439.97573
+[RESULT]: Val. Epoch: 24, summary_loss: 0.46887, final_score: 0.11389, time: 111.17131
+
+2021-04-12T12:01:51.064769
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.25448, final_score: 0.05874, time: 438.89510
+[RESULT]: Val. Epoch: 25, summary_loss: 0.61667, final_score: 0.14935, time: 113.28798
+
+2021-04-12T12:11:03.430660
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.23771, final_score: 0.04836, time: 437.65083
+[RESULT]: Val. Epoch: 26, summary_loss: 0.71254, final_score: 0.12787, time: 112.67548
+
+2021-04-12T12:20:13.949486
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.23966, final_score: 0.04999, time: 438.93199
+[RESULT]: Val. Epoch: 27, summary_loss: 0.55431, final_score: 0.10889, time: 114.08619
+
+2021-04-12T12:29:27.216386
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.22740, final_score: 0.04274, time: 445.89171
+[RESULT]: Val. Epoch: 28, summary_loss: 0.42736, final_score: 0.09491, time: 115.77842
+
+2021-04-12T12:38:49.060786
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.22583, final_score: 0.04024, time: 443.06060
+[RESULT]: Val. Epoch: 29, summary_loss: 0.33248, final_score: 0.06943, time: 112.46475
+Fitter prepared. Device is cuda:0
+
+2021-04-12T13:51:48.509709
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:37:40.568357
+LR: 0.000125
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.49480, final_score: 0.20957, time: 672.13123
+[RESULT]: Val. Epoch: 30, summary_loss: 1.07944, final_score: 0.37562, time: 179.40447
+
+2021-04-28T09:51:52.428460
+LR: 0.000125
+Emb_rate: 0.18000000000000002
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..86a2ff740b10ae5002b77eec4ef8799eb60ac8ce
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-002epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-002epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c00531962feb963946c3f701d08172281ba1e9a8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-002epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2e0464c5523a0d37c0c61bf69fa2e4a8eb2bfd66c17e2db0e46ae3226f58a609
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-031epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-031epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..94ba0fa9a4451422a74e9d68dfac50b24f1b386f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-031epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:304138396a7caf4bd481124657b0d13da9e0eac61fd41dd3706ce94ececf21d8
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-037epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-037epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1a857a8f2444db083bc85e4888891d180d54dd36
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/best-checkpoint-037epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df782ad0b12a14cb9b53594359c42fa4b7dd96a0b8483330f4aba8e35b0346f0
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c62da2ac29acd0c94915f029fcb351263b9b9531
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6a3b633ad0d4d7a592b8a46779a719688da002ead8ef3ee946a011634a9c8e36
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ae7fe27ce56f25c3171958c516f5873b31a2c87c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/log.txt
@@ -0,0 +1,242 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:47:08.076116
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.67579, final_score: 0.44239, time: 646.17002
+[RESULT]: Val. Epoch: 0, summary_loss: 7.11191, final_score: 0.49750, time: 180.61134
+
+2021-04-26T10:00:55.236188
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.45130, final_score: 0.18495, time: 653.44277
+[RESULT]: Val. Epoch: 1, summary_loss: 1.05673, final_score: 0.49650, time: 183.10116
+
+2021-04-26T10:14:52.116603
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40322, final_score: 0.15246, time: 653.08130
+[RESULT]: Val. Epoch: 2, summary_loss: 0.86610, final_score: 0.49401, time: 183.18653
+
+2021-04-26T10:28:48.703352
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.42666, final_score: 0.17808, time: 656.00108
+[RESULT]: Val. Epoch: 3, summary_loss: 0.87118, final_score: 0.49001, time: 178.44443
+
+2021-04-26T10:42:43.324527
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.41215, final_score: 0.15834, time: 655.25055
+[RESULT]: Val. Epoch: 4, summary_loss: 2.25717, final_score: 0.49151, time: 178.43446
+
+2021-04-26T10:56:37.292422
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.32631, final_score: 0.09860, time: 661.94355
+[RESULT]: Val. Epoch: 5, summary_loss: 1.06681, final_score: 0.45654, time: 179.13513
+
+2021-04-26T11:10:38.526426
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.24547, final_score: 0.05524, time: 657.80055
+[RESULT]: Val. Epoch: 6, summary_loss: 2.44698, final_score: 0.46603, time: 178.19766
+
+2021-04-26T11:24:34.694107
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.26449, final_score: 0.06661, time: 663.41959
+[RESULT]: Val. Epoch: 7, summary_loss: 1.57971, final_score: 0.44156, time: 176.86412
+
+2021-04-26T11:38:35.158484
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.23634, final_score: 0.04886, time: 661.63491
+[RESULT]: Val. Epoch: 8, summary_loss: 2.71651, final_score: 0.46054, time: 182.30619
+
+2021-04-26T11:52:39.271277
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.27240, final_score: 0.06798, time: 666.13535
+[RESULT]: Val. Epoch: 9, summary_loss: 1.34887, final_score: 0.44456, time: 178.25349
+
+2021-04-26T12:06:43.856410
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.26171, final_score: 0.06361, time: 667.66055
+[RESULT]: Val. Epoch: 10, summary_loss: 1.61627, final_score: 0.44256, time: 178.67625
+
+2021-04-26T12:20:50.365779
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.29595, final_score: 0.08248, time: 668.15212
+[RESULT]: Val. Epoch: 11, summary_loss: 2.20656, final_score: 0.44705, time: 178.86459
+
+2021-04-26T12:34:57.578748
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.28363, final_score: 0.07723, time: 659.54161
+[RESULT]: Val. Epoch: 12, summary_loss: 1.97817, final_score: 0.44206, time: 178.23861
+
+2021-04-26T12:48:55.541659
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.31171, final_score: 0.09273, time: 667.59654
+[RESULT]: Val. Epoch: 13, summary_loss: 1.41760, final_score: 0.43007, time: 177.78063
+
+2021-04-26T13:03:01.102667
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.29834, final_score: 0.08498, time: 666.54787
+[RESULT]: Val. Epoch: 14, summary_loss: 2.23853, final_score: 0.44555, time: 183.05013
+
+2021-04-26T13:17:10.899130
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.34325, final_score: 0.11335, time: 668.03041
+[RESULT]: Val. Epoch: 15, summary_loss: 1.52987, final_score: 0.43457, time: 177.97533
+
+2021-04-26T13:31:17.092482
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.32828, final_score: 0.10297, time: 671.69686
+[RESULT]: Val. Epoch: 16, summary_loss: 1.92752, final_score: 0.44056, time: 177.81627
+
+2021-04-26T13:45:26.888930
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.36467, final_score: 0.12334, time: 666.47828
+[RESULT]: Val. Epoch: 17, summary_loss: 1.15071, final_score: 0.40959, time: 180.49620
+
+2021-04-26T13:59:34.067166
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.36169, final_score: 0.12209, time: 663.27361
+[RESULT]: Val. Epoch: 18, summary_loss: 1.16254, final_score: 0.42258, time: 177.60235
+
+2021-04-26T14:13:35.267624
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.39640, final_score: 0.14584, time: 670.48746
+[RESULT]: Val. Epoch: 19, summary_loss: 0.97151, final_score: 0.41209, time: 176.44234
+
+2021-04-26T14:27:42.410014
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.39130, final_score: 0.14196, time: 668.45065
+[RESULT]: Val. Epoch: 20, summary_loss: 1.74224, final_score: 0.43656, time: 178.55113
+
+2021-04-26T14:41:49.607803
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.41857, final_score: 0.15721, time: 672.04811
+[RESULT]: Val. Epoch: 21, summary_loss: 1.22675, final_score: 0.40559, time: 180.81749
+
+2021-04-26T14:56:02.703014
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.41388, final_score: 0.15421, time: 673.03510
+[RESULT]: Val. Epoch: 22, summary_loss: 1.33998, final_score: 0.41209, time: 178.65884
+
+2021-04-26T15:10:14.579777
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.44711, final_score: 0.17596, time: 674.67874
+[RESULT]: Val. Epoch: 23, summary_loss: 0.90155, final_score: 0.40010, time: 178.77535
+
+2021-04-26T15:24:28.229902
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.44224, final_score: 0.17758, time: 675.76237
+[RESULT]: Val. Epoch: 24, summary_loss: 1.01245, final_score: 0.39760, time: 178.40961
+
+2021-04-26T15:38:42.586833
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 25, summary_loss: 0.46122, final_score: 0.19095, time: 667.69875
+[RESULT]: Val. Epoch: 25, summary_loss: 1.21709, final_score: 0.38811, time: 180.50845
+
+2021-04-26T15:52:50.981192
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.46618, final_score: 0.19320, time: 678.39998
+[RESULT]: Val. Epoch: 26, summary_loss: 0.99812, final_score: 0.40609, time: 179.95561
+
+2021-04-26T16:07:09.521734
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 27, summary_loss: 0.49368, final_score: 0.21182, time: 669.97373
+[RESULT]: Val. Epoch: 27, summary_loss: 1.43572, final_score: 0.40609, time: 181.93191
+
+2021-04-26T16:21:21.646331
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.48656, final_score: 0.21082, time: 670.95796
+[RESULT]: Val. Epoch: 28, summary_loss: 1.19070, final_score: 0.40759, time: 177.90370
+
+2021-04-26T16:35:30.699451
+LR: 0.001
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 29, summary_loss: 0.51238, final_score: 0.22494, time: 672.72123
+[RESULT]: Val. Epoch: 29, summary_loss: 1.19053, final_score: 0.39560, time: 178.97294
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:05:20.961383
+LR: 0.001
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.51816, final_score: 0.23607, time: 663.83323
+[RESULT]: Val. Epoch: 30, summary_loss: 1.20445, final_score: 0.39261, time: 179.16053
+
+2021-04-28T10:19:24.143957
+LR: 0.001
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 31, summary_loss: 0.53975, final_score: 0.24881, time: 670.16255
+[RESULT]: Val. Epoch: 31, summary_loss: 0.69463, final_score: 0.37363, time: 179.48376
+
+2021-04-28T10:33:34.325200
+LR: 0.001
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 32, summary_loss: 0.53825, final_score: 0.25369, time: 671.71156
+[RESULT]: Val. Epoch: 32, summary_loss: 0.74470, final_score: 0.37313, time: 180.71968
+
+2021-04-28T10:47:46.924800
+LR: 0.001
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 33, summary_loss: 0.55866, final_score: 0.27418, time: 654.52229
+[RESULT]: Val. Epoch: 33, summary_loss: 0.73050, final_score: 0.37263, time: 178.60374
+
+2021-04-28T11:01:40.262617
+LR: 0.001
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 34, summary_loss: 0.55321, final_score: 0.26506, time: 671.40594
+[RESULT]: Val. Epoch: 34, summary_loss: 1.06531, final_score: 0.40759, time: 178.78731
+
+2021-04-28T11:15:50.658673
+LR: 0.001
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 35, summary_loss: 0.57587, final_score: 0.28255, time: 672.60641
+[RESULT]: Val. Epoch: 35, summary_loss: 0.83182, final_score: 0.37762, time: 179.78069
+
+2021-04-28T11:30:03.233747
+LR: 0.001
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 36, summary_loss: 0.57467, final_score: 0.28505, time: 665.49745
+[RESULT]: Val. Epoch: 36, summary_loss: 0.86341, final_score: 0.38162, time: 180.47499
+
+2021-04-28T11:44:09.383081
+LR: 0.001
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 37, summary_loss: 0.59265, final_score: 0.30517, time: 669.08984
+[RESULT]: Val. Epoch: 37, summary_loss: 0.68532, final_score: 0.35964, time: 181.16019
+
+2021-04-28T11:58:19.970151
+LR: 0.001
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 38, summary_loss: 0.58437, final_score: 0.29118, time: 664.38468
+[RESULT]: Val. Epoch: 38, summary_loss: 0.69075, final_score: 0.37163, time: 178.86596
+
+2021-04-28T12:12:23.371137
+LR: 0.001
+Emb_rate: 0.11809800000000004
+[RESULT]: Train. Epoch: 39, summary_loss: 0.59858, final_score: 0.31517, time: 669.13978
+[RESULT]: Val. Epoch: 39, summary_loss: 0.73019, final_score: 0.36164, time: 180.84094
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e11b01a0811b5fab037f92cf3ba9668ef23c8b47
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-014epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-014epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a10ee89d580f91b46fb80e4f9bb366fe1d4c2636
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-014epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0d2fb0fe8b35994ff0932c85e69626ba5f110dc82c00a332eedd9f14b6bffa6a
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..cdc7c72efa1ac9e6672c948a69e94163b2b0c44e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:32099b15537c2612b4e8b153a63d4c79ae20cc8d92fd0fabf82df583c200dfe3
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d6cc5bceedabe578212e76de00724ec36b9d4bfa
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df0f9e6aa6e4d968837bc9930946f866e68f9c864f4df887ac21cd805b80440e
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0bdd98db4f93ab1b86138e9aa518cdaa36e232c0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:98d4842fb3288c61fb544f10910d1cba1fdad06a2d08c0809113d827ef3996c2
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..01984e7eab39cc7780c3094e65abbcde96183e4b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:43:24.948571
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69711, final_score: 0.47688, time: 650.76529
+[RESULT]: Val. Epoch: 0, summary_loss: 0.82406, final_score: 0.48801, time: 182.63257
+
+2021-04-26T09:57:18.678656
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.50577, final_score: 0.23694, time: 644.24929
+[RESULT]: Val. Epoch: 1, summary_loss: 1.40181, final_score: 0.47153, time: 176.94400
+
+2021-04-26T10:11:00.089493
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.29864, final_score: 0.08185, time: 661.70466
+[RESULT]: Val. Epoch: 2, summary_loss: 2.10868, final_score: 0.46054, time: 175.09514
+
+2021-04-26T10:24:57.061614
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.27222, final_score: 0.06786, time: 649.29461
+[RESULT]: Val. Epoch: 3, summary_loss: 2.13104, final_score: 0.43856, time: 182.62071
+
+2021-04-26T10:38:49.140433
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22396, final_score: 0.03849, time: 650.66432
+[RESULT]: Val. Epoch: 4, summary_loss: 1.65586, final_score: 0.42757, time: 176.11879
+
+2021-04-26T10:52:36.088454
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24760, final_score: 0.05361, time: 655.57037
+[RESULT]: Val. Epoch: 5, summary_loss: 2.30787, final_score: 0.41009, time: 178.95763
+
+2021-04-26T11:06:30.773472
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.23137, final_score: 0.04436, time: 657.49050
+[RESULT]: Val. Epoch: 6, summary_loss: 0.94150, final_score: 0.38711, time: 177.07402
+
+2021-04-26T11:20:25.509476
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.24899, final_score: 0.05411, time: 663.33106
+[RESULT]: Val. Epoch: 7, summary_loss: 2.12884, final_score: 0.39610, time: 177.16665
+
+2021-04-26T11:34:26.175461
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.24933, final_score: 0.05461, time: 663.86122
+[RESULT]: Val. Epoch: 8, summary_loss: 3.53307, final_score: 0.42957, time: 181.00685
+
+2021-04-26T11:48:31.215869
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.27145, final_score: 0.06561, time: 672.78273
+[RESULT]: Val. Epoch: 9, summary_loss: 2.12893, final_score: 0.39660, time: 181.02754
+
+2021-04-26T12:02:45.193710
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.25401, final_score: 0.06061, time: 663.91416
+[RESULT]: Val. Epoch: 10, summary_loss: 2.19078, final_score: 0.39361, time: 177.33893
+
+2021-04-26T12:16:46.604723
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.29348, final_score: 0.08398, time: 665.41505
+[RESULT]: Val. Epoch: 11, summary_loss: 1.26069, final_score: 0.37512, time: 179.53604
+
+2021-04-26T12:30:51.733854
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.28259, final_score: 0.07498, time: 663.94331
+[RESULT]: Val. Epoch: 12, summary_loss: 0.84845, final_score: 0.32817, time: 175.64789
+
+2021-04-26T12:44:51.498356
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.31217, final_score: 0.09498, time: 656.43512
+[RESULT]: Val. Epoch: 13, summary_loss: 1.53083, final_score: 0.36314, time: 177.39041
+
+2021-04-26T12:58:45.501464
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.29906, final_score: 0.08273, time: 658.48834
+[RESULT]: Val. Epoch: 14, summary_loss: 0.75309, final_score: 0.31818, time: 175.25316
+
+2021-04-26T13:12:39.564961
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.32921, final_score: 0.10597, time: 662.53554
+[RESULT]: Val. Epoch: 15, summary_loss: 0.89084, final_score: 0.31718, time: 177.30701
+
+2021-04-26T13:26:39.574867
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.33377, final_score: 0.10497, time: 664.39700
+[RESULT]: Val. Epoch: 16, summary_loss: 0.78219, final_score: 0.30869, time: 177.26596
+
+2021-04-26T13:40:41.406060
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.36172, final_score: 0.12172, time: 665.19463
+[RESULT]: Val. Epoch: 17, summary_loss: 2.29013, final_score: 0.40110, time: 176.41911
+
+2021-04-26T13:54:43.181290
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.35093, final_score: 0.11735, time: 661.93207
+[RESULT]: Val. Epoch: 18, summary_loss: 0.77102, final_score: 0.29570, time: 177.56023
+
+2021-04-26T14:08:42.835543
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.39029, final_score: 0.14409, time: 665.19917
+[RESULT]: Val. Epoch: 19, summary_loss: 1.08753, final_score: 0.35315, time: 177.47769
+
+2021-04-26T14:22:45.714535
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.38474, final_score: 0.13997, time: 666.04964
+[RESULT]: Val. Epoch: 20, summary_loss: 0.87407, final_score: 0.31219, time: 178.91910
+
+2021-04-26T14:36:50.866487
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.42483, final_score: 0.16258, time: 661.72497
+[RESULT]: Val. Epoch: 21, summary_loss: 1.08079, final_score: 0.32068, time: 177.05642
+
+2021-04-26T14:50:49.812140
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.41489, final_score: 0.15846, time: 663.34638
+[RESULT]: Val. Epoch: 22, summary_loss: 0.76775, final_score: 0.29171, time: 178.08436
+
+2021-04-26T15:04:51.408748
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.44018, final_score: 0.17533, time: 670.07822
+[RESULT]: Val. Epoch: 23, summary_loss: 0.65625, final_score: 0.27273, time: 176.76233
+
+2021-04-26T15:18:58.594864
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.43404, final_score: 0.17221, time: 666.26494
+[RESULT]: Val. Epoch: 24, summary_loss: 1.24978, final_score: 0.32468, time: 177.46173
+
+2021-04-26T15:33:02.492452
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 25, summary_loss: 0.47069, final_score: 0.19208, time: 662.54267
+[RESULT]: Val. Epoch: 25, summary_loss: 0.99906, final_score: 0.31219, time: 177.46721
+
+2021-04-26T15:47:02.673390
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.46859, final_score: 0.19595, time: 663.76427
+[RESULT]: Val. Epoch: 26, summary_loss: 0.95603, final_score: 0.31568, time: 176.18002
+
+2021-04-26T16:01:02.797919
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 27, summary_loss: 0.49180, final_score: 0.21382, time: 667.86067
+[RESULT]: Val. Epoch: 27, summary_loss: 0.61231, final_score: 0.26324, time: 176.24345
+
+2021-04-26T16:15:07.259631
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.49329, final_score: 0.21295, time: 678.75001
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65580, final_score: 0.26324, time: 175.37806
+
+2021-04-26T16:29:21.549848
+LR: 0.001
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 29, summary_loss: 0.51348, final_score: 0.23032, time: 663.45955
+[RESULT]: Val. Epoch: 29, summary_loss: 0.85986, final_score: 0.29670, time: 177.81262
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a462290c3dcccf95ebac5fb8beafafa7c35ba2d9
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-021epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-021epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3206c78ae54e7aa4dd7f3b283d9f9f83d251f1c0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-021epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b9d7d89778cd33a8580999afa36db5d7321e890ba4338b3949fe8b9b381de6a8
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6782857a937e7d9ae89d004b0872464ffb61b02e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d8f5a9bf658e53bc94f457a041e1c4d76df74e10d47f2a9cdbaaa520cc74190c
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6bc8efbfcdac949f547a08b20566bca77ac80be0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:67de2422729244bfb4e59a89be1daf2915761c14b874ba878fc11fb5fc7fc153
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5a84d0bf038cb9f0cca7ab2a64fe2df801f650bc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:44da4793ee8513b548d3c5863c65e600a1a62ddb0042c70458b8163d927f9c5d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..eedcae8d6e7abec9e126c1345b636bd17fcbc47a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:39:39.092777
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.60828, final_score: 0.36053, time: 648.51146
+[RESULT]: Val. Epoch: 0, summary_loss: 1.58791, final_score: 0.47652, time: 180.86458
+
+2021-04-26T09:53:28.851572
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.42515, final_score: 0.16896, time: 654.19481
+[RESULT]: Val. Epoch: 1, summary_loss: 0.80415, final_score: 0.46454, time: 179.73050
+
+2021-04-26T10:07:23.166361
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.39611, final_score: 0.15009, time: 649.08123
+[RESULT]: Val. Epoch: 2, summary_loss: 0.88004, final_score: 0.46204, time: 183.54009
+
+2021-04-26T10:21:15.968678
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.42690, final_score: 0.17671, time: 657.44223
+[RESULT]: Val. Epoch: 3, summary_loss: 0.82636, final_score: 0.44555, time: 177.41929
+
+2021-04-26T10:35:11.002681
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.40284, final_score: 0.15809, time: 661.49872
+[RESULT]: Val. Epoch: 4, summary_loss: 1.22830, final_score: 0.45055, time: 176.47953
+
+2021-04-26T10:49:09.162800
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.35963, final_score: 0.12384, time: 659.20285
+[RESULT]: Val. Epoch: 5, summary_loss: 1.61310, final_score: 0.38761, time: 177.65977
+
+2021-04-26T11:03:06.186914
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.25964, final_score: 0.05886, time: 657.69542
+[RESULT]: Val. Epoch: 6, summary_loss: 1.23103, final_score: 0.35814, time: 181.24780
+
+2021-04-26T11:17:05.291460
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.27006, final_score: 0.06836, time: 664.86677
+[RESULT]: Val. Epoch: 7, summary_loss: 0.72585, final_score: 0.31119, time: 180.43015
+
+2021-04-26T11:31:10.929647
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.24420, final_score: 0.05249, time: 659.20489
+[RESULT]: Val. Epoch: 8, summary_loss: 1.34109, final_score: 0.32567, time: 177.36933
+
+2021-04-26T11:45:07.747989
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.26992, final_score: 0.06861, time: 669.95051
+[RESULT]: Val. Epoch: 9, summary_loss: 0.78737, final_score: 0.27872, time: 181.32802
+
+2021-04-26T11:59:19.201851
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.26331, final_score: 0.06273, time: 672.20847
+[RESULT]: Val. Epoch: 10, summary_loss: 0.97777, final_score: 0.28472, time: 177.65791
+
+2021-04-26T12:13:29.239873
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.29187, final_score: 0.07973, time: 660.64080
+[RESULT]: Val. Epoch: 11, summary_loss: 2.23974, final_score: 0.35115, time: 179.25146
+
+2021-04-26T12:27:29.292879
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.26943, final_score: 0.06811, time: 666.53248
+[RESULT]: Val. Epoch: 12, summary_loss: 1.20138, final_score: 0.26923, time: 177.72212
+
+2021-04-26T12:41:33.716354
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.30822, final_score: 0.09160, time: 664.68858
+[RESULT]: Val. Epoch: 13, summary_loss: 1.35699, final_score: 0.28771, time: 178.35494
+
+2021-04-26T12:55:36.935199
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.29745, final_score: 0.08310, time: 673.17323
+[RESULT]: Val. Epoch: 14, summary_loss: 0.68349, final_score: 0.22677, time: 176.68638
+
+2021-04-26T13:09:47.174841
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.32711, final_score: 0.10272, time: 665.01909
+[RESULT]: Val. Epoch: 15, summary_loss: 0.72978, final_score: 0.23377, time: 178.03950
+
+2021-04-26T13:23:50.402640
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.31645, final_score: 0.09835, time: 662.25855
+[RESULT]: Val. Epoch: 16, summary_loss: 0.56361, final_score: 0.19481, time: 177.64418
+
+2021-04-26T13:37:50.848322
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.35635, final_score: 0.11960, time: 672.39977
+[RESULT]: Val. Epoch: 17, summary_loss: 0.61029, final_score: 0.23526, time: 178.90975
+
+2021-04-26T13:52:02.329362
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.34448, final_score: 0.11210, time: 676.64661
+[RESULT]: Val. Epoch: 18, summary_loss: 0.64138, final_score: 0.21628, time: 178.19812
+
+2021-04-26T14:06:17.366029
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.38341, final_score: 0.13647, time: 668.92954
+[RESULT]: Val. Epoch: 19, summary_loss: 0.62668, final_score: 0.20729, time: 181.76893
+
+2021-04-26T14:20:28.223536
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.37165, final_score: 0.13172, time: 670.96972
+[RESULT]: Val. Epoch: 20, summary_loss: 0.92589, final_score: 0.24376, time: 177.56115
+
+2021-04-26T14:34:36.942189
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.40383, final_score: 0.14859, time: 676.58603
+[RESULT]: Val. Epoch: 21, summary_loss: 0.50191, final_score: 0.18432, time: 177.88984
+
+2021-04-26T14:48:51.743478
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.40388, final_score: 0.15209, time: 677.91446
+[RESULT]: Val. Epoch: 22, summary_loss: 0.84719, final_score: 0.21429, time: 177.66996
+
+2021-04-26T15:03:07.517223
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 23, summary_loss: 0.41086, final_score: 0.15521, time: 669.98829
+[RESULT]: Val. Epoch: 23, summary_loss: 0.75048, final_score: 0.22677, time: 179.51779
+
+2021-04-26T15:17:17.214154
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 24, summary_loss: 0.40662, final_score: 0.14984, time: 665.14754
+[RESULT]: Val. Epoch: 24, summary_loss: 0.62286, final_score: 0.22328, time: 178.52498
+
+2021-04-26T15:31:21.068531
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 25, summary_loss: 0.39642, final_score: 0.15296, time: 676.32852
+[RESULT]: Val. Epoch: 25, summary_loss: 0.52393, final_score: 0.18132, time: 175.67741
+
+2021-04-26T15:45:33.254889
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 26, summary_loss: 0.39451, final_score: 0.14709, time: 674.72835
+[RESULT]: Val. Epoch: 26, summary_loss: 0.62244, final_score: 0.19780, time: 177.22329
+
+2021-04-26T15:59:45.374358
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.38618, final_score: 0.13859, time: 662.86921
+[RESULT]: Val. Epoch: 27, summary_loss: 0.46132, final_score: 0.17932, time: 179.64371
+
+2021-04-26T16:13:48.253184
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.38674, final_score: 0.14046, time: 670.48612
+[RESULT]: Val. Epoch: 28, summary_loss: 0.66649, final_score: 0.18082, time: 177.38205
+
+2021-04-26T16:27:56.316921
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.37742, final_score: 0.13234, time: 666.18666
+[RESULT]: Val. Epoch: 29, summary_loss: 0.42151, final_score: 0.16733, time: 177.65247
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a12cf4cfa836f77f75e231c0c64ee909ea69ac9f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-016epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-016epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0b0acb13f3dff3552241800e8a6d21b0bb600403
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-016epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:390690e710550a2d61a314f0767408784d8f47bac6b7077565f6d8cc11b089d0
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-018epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-018epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6cab891fdd756d31d43be2080ff20e61c3059c31
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-018epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:825c598a64562e44929598f61a3937218528a7aae60889a9de3a50655f733d59
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b47caa44e4abca80ae7c004637b813bfbb29924a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:88799a4943589a40615de831eb654158d68fbd3a6bb7aed951b44e7ef7fb0190
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9657d7fbc4a222b0cab6814f0f02b998970af204
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:189252b985ef4d1a1d773d7b0cf3af658895976899125ba2fb267e3aea7181f2
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..74fad179641bdd4f4f576c5d6406378e179615e8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:40:31.493492
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.61027, final_score: 0.37041, time: 655.73743
+[RESULT]: Val. Epoch: 0, summary_loss: 0.81731, final_score: 0.40010, time: 179.77496
+
+2021-04-26T09:54:27.374714
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.42485, final_score: 0.16608, time: 654.06191
+[RESULT]: Val. Epoch: 1, summary_loss: 0.74281, final_score: 0.37512, time: 178.15149
+
+2021-04-26T10:08:19.993291
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40128, final_score: 0.15209, time: 652.15489
+[RESULT]: Val. Epoch: 2, summary_loss: 1.07863, final_score: 0.40809, time: 179.01198
+
+2021-04-26T10:22:11.314666
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.44111, final_score: 0.18270, time: 650.13446
+[RESULT]: Val. Epoch: 3, summary_loss: 1.25907, final_score: 0.37712, time: 177.67006
+
+2021-04-26T10:35:59.281163
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.42537, final_score: 0.17433, time: 655.96198
+[RESULT]: Val. Epoch: 4, summary_loss: 0.77291, final_score: 0.35015, time: 179.61991
+
+2021-04-26T10:49:55.030262
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.44869, final_score: 0.18970, time: 649.24424
+[RESULT]: Val. Epoch: 5, summary_loss: 1.50323, final_score: 0.37712, time: 183.33534
+
+2021-04-26T11:03:47.768145
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.36092, final_score: 0.12109, time: 652.61473
+[RESULT]: Val. Epoch: 6, summary_loss: 0.95117, final_score: 0.28222, time: 177.39571
+
+2021-04-26T11:17:37.948150
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.33961, final_score: 0.10422, time: 659.76250
+[RESULT]: Val. Epoch: 7, summary_loss: 0.64073, final_score: 0.20679, time: 177.79524
+
+2021-04-26T11:31:35.973029
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.27170, final_score: 0.06911, time: 658.29511
+[RESULT]: Val. Epoch: 8, summary_loss: 0.46548, final_score: 0.14286, time: 187.50166
+
+2021-04-26T11:45:42.211403
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.30735, final_score: 0.09210, time: 656.35956
+[RESULT]: Val. Epoch: 9, summary_loss: 0.53658, final_score: 0.16034, time: 176.27714
+
+2021-04-26T11:59:35.006886
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.27613, final_score: 0.07298, time: 655.83382
+[RESULT]: Val. Epoch: 10, summary_loss: 1.43560, final_score: 0.25425, time: 176.83301
+
+2021-04-26T12:13:27.838024
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.30234, final_score: 0.08748, time: 673.69442
+[RESULT]: Val. Epoch: 11, summary_loss: 0.34318, final_score: 0.10240, time: 177.11018
+
+2021-04-26T12:27:38.974567
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.29175, final_score: 0.08335, time: 667.40432
+[RESULT]: Val. Epoch: 12, summary_loss: 0.42782, final_score: 0.10340, time: 177.05084
+
+2021-04-26T12:41:43.597233
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 13, summary_loss: 0.30404, final_score: 0.08910, time: 661.48874
+[RESULT]: Val. Epoch: 13, summary_loss: 1.05597, final_score: 0.22877, time: 179.09131
+
+2021-04-26T12:55:44.329128
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 14, summary_loss: 0.28209, final_score: 0.07498, time: 666.35815
+[RESULT]: Val. Epoch: 14, summary_loss: 0.51096, final_score: 0.11888, time: 180.64558
+
+2021-04-26T13:09:51.490958
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 15, summary_loss: 0.26052, final_score: 0.06361, time: 666.99624
+[RESULT]: Val. Epoch: 15, summary_loss: 0.43463, final_score: 0.10040, time: 181.58904
+
+2021-04-26T13:24:00.226111
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 16, summary_loss: 0.25105, final_score: 0.05674, time: 663.77692
+[RESULT]: Val. Epoch: 16, summary_loss: 0.32543, final_score: 0.07493, time: 177.40409
+
+2021-04-26T13:38:01.794945
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.24437, final_score: 0.05261, time: 668.44578
+[RESULT]: Val. Epoch: 17, summary_loss: 0.65279, final_score: 0.10939, time: 177.31833
+
+2021-04-26T13:52:07.710574
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.24136, final_score: 0.05136, time: 662.46095
+[RESULT]: Val. Epoch: 18, summary_loss: 0.29055, final_score: 0.05594, time: 181.03122
+
+2021-04-26T14:06:11.570632
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.23408, final_score: 0.04811, time: 662.02845
+[RESULT]: Val. Epoch: 19, summary_loss: 0.51588, final_score: 0.09940, time: 177.61786
+
+2021-04-26T14:20:11.377297
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.23570, final_score: 0.04899, time: 661.73913
+[RESULT]: Val. Epoch: 20, summary_loss: 0.39668, final_score: 0.09141, time: 177.39045
+
+2021-04-26T14:34:10.667777
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.22120, final_score: 0.04024, time: 680.82303
+[RESULT]: Val. Epoch: 21, summary_loss: 0.51181, final_score: 0.09590, time: 178.24409
+
+2021-04-26T14:48:29.900874
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.21472, final_score: 0.03662, time: 673.32983
+[RESULT]: Val. Epoch: 22, summary_loss: 0.36562, final_score: 0.06494, time: 177.27054
+
+2021-04-26T15:02:40.669427
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.21087, final_score: 0.03487, time: 665.24968
+[RESULT]: Val. Epoch: 23, summary_loss: 0.33172, final_score: 0.05395, time: 178.39026
+
+2021-04-26T15:16:44.474947
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.20665, final_score: 0.03087, time: 671.25319
+[RESULT]: Val. Epoch: 24, summary_loss: 0.24121, final_score: 0.04945, time: 178.71725
+
+2021-04-26T15:30:54.772666
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.20640, final_score: 0.03074, time: 664.18154
+[RESULT]: Val. Epoch: 25, summary_loss: 0.46167, final_score: 0.07792, time: 177.85039
+
+2021-04-26T15:44:56.968433
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.20471, final_score: 0.03174, time: 666.18558
+[RESULT]: Val. Epoch: 26, summary_loss: 0.28373, final_score: 0.05095, time: 182.24367
+
+2021-04-26T15:59:05.560133
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.20273, final_score: 0.02974, time: 678.46432
+[RESULT]: Val. Epoch: 27, summary_loss: 0.45595, final_score: 0.07742, time: 183.55526
+
+2021-04-26T16:13:27.777077
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.20250, final_score: 0.03124, time: 669.03987
+[RESULT]: Val. Epoch: 28, summary_loss: 0.27101, final_score: 0.04945, time: 178.35006
+
+2021-04-26T16:27:35.348112
+LR: 3.125e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.19970, final_score: 0.02774, time: 657.75445
+[RESULT]: Val. Epoch: 29, summary_loss: 0.28777, final_score: 0.05245, time: 178.75266
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1baf6d261190845bf18fd9a66f6159bc4f4096ba
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_0_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9e790aaa107abf168c7b7b9d2ee2477c221866e6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a15b578fde54ff6ddca8e68c82f0f59726e7465f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4753c067d2d7f3bc03f81cb897935374dcb9f14edbac37d298a09890f59281cc
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5ccf54b65d4daee31fa83242acaf645d428b9747
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:58f0cb03b9a596a1f7479a6c0d8beea265742f91a31f78357fc84729e59ec322
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..0e4fa6f9a13b2239ff1303e4588915c80c356e05
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/log.txt
@@ -0,0 +1,372 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-08T15:25:25.821945
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-08T18:19:10.735614
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-08T18:28:03.991863
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.73637, final_score: 0.49388, time: 418.87591
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69333, final_score: 0.49600, time: 114.48161
+
+2021-04-08T18:36:57.763043
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69237, final_score: 0.48038, time: 423.50036
+[RESULT]: Val. Epoch: 1, summary_loss: 0.75700, final_score: 0.49650, time: 112.06245
+
+2021-04-08T18:45:53.480275
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.50315, final_score: 0.23769, time: 420.57800
+[RESULT]: Val. Epoch: 2, summary_loss: 1.06121, final_score: 0.46803, time: 112.04360
+
+2021-04-08T18:54:46.299194
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.41103, final_score: 0.15546, time: 420.23721
+[RESULT]: Val. Epoch: 3, summary_loss: 1.12613, final_score: 0.45355, time: 113.44286
+
+2021-04-08T19:03:40.176506
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.39344, final_score: 0.14084, time: 424.15006
+[RESULT]: Val. Epoch: 4, summary_loss: 1.14484, final_score: 0.45305, time: 112.30277
+
+2021-04-08T19:12:36.846610
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.42799, final_score: 0.16521, time: 430.15101
+[RESULT]: Val. Epoch: 5, summary_loss: 0.88711, final_score: 0.43307, time: 114.04028
+
+2021-04-08T19:21:41.240916
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.41024, final_score: 0.15409, time: 427.46570
+[RESULT]: Val. Epoch: 6, summary_loss: 1.30806, final_score: 0.43656, time: 112.54500
+
+2021-04-08T19:30:41.453606
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.45707, final_score: 0.19620, time: 430.03160
+[RESULT]: Val. Epoch: 7, summary_loss: 0.97400, final_score: 0.43457, time: 113.68637
+
+2021-04-08T19:39:45.374516
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.45271, final_score: 0.19183, time: 430.91966
+[RESULT]: Val. Epoch: 8, summary_loss: 1.13867, final_score: 0.43706, time: 114.69528
+
+2021-04-08T19:48:51.150836
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.49346, final_score: 0.22319, time: 438.54317
+[RESULT]: Val. Epoch: 9, summary_loss: 1.29880, final_score: 0.42258, time: 115.91124
+
+2021-04-08T19:58:05.799682
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.48647, final_score: 0.22294, time: 436.55143
+[RESULT]: Val. Epoch: 10, summary_loss: 0.86388, final_score: 0.42757, time: 115.64890
+
+2021-04-08T20:07:18.249894
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.53509, final_score: 0.26593, time: 439.60777
+[RESULT]: Val. Epoch: 11, summary_loss: 1.11881, final_score: 0.43806, time: 116.41200
+
+2021-04-08T20:16:34.463497
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.53266, final_score: 0.26431, time: 449.14429
+[RESULT]: Val. Epoch: 12, summary_loss: 0.79112, final_score: 0.41009, time: 116.30961
+
+2021-04-08T20:26:00.076245
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.56823, final_score: 0.29830, time: 452.32926
+[RESULT]: Val. Epoch: 13, summary_loss: 0.71619, final_score: 0.40460, time: 113.95180
+
+2021-04-08T20:35:26.550109
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.56403, final_score: 0.29593, time: 443.89203
+[RESULT]: Val. Epoch: 14, summary_loss: 0.96033, final_score: 0.42408, time: 111.70263
+
+2021-04-08T20:44:42.324748
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.60454, final_score: 0.33517, time: 448.64040
+[RESULT]: Val. Epoch: 15, summary_loss: 0.79303, final_score: 0.41708, time: 115.29968
+
+2021-04-08T20:54:06.481328
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.59899, final_score: 0.33229, time: 447.09629
+[RESULT]: Val. Epoch: 16, summary_loss: 0.80359, final_score: 0.41708, time: 116.88012
+
+2021-04-08T21:03:30.634904
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.63357, final_score: 0.36553, time: 444.16187
+[RESULT]: Val. Epoch: 17, summary_loss: 0.72985, final_score: 0.41109, time: 114.68325
+
+2021-04-08T21:12:49.664397
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.62964, final_score: 0.36391, time: 443.97413
+[RESULT]: Val. Epoch: 18, summary_loss: 0.75446, final_score: 0.42408, time: 114.79872
+
+2021-04-08T21:22:08.631264
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.64910, final_score: 0.39728, time: 449.40019
+[RESULT]: Val. Epoch: 19, summary_loss: 0.67363, final_score: 0.40310, time: 114.85733
+
+2021-04-08T21:31:33.239067
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.64718, final_score: 0.38815, time: 450.34433
+[RESULT]: Val. Epoch: 20, summary_loss: 0.70942, final_score: 0.41658, time: 114.37689
+
+2021-04-08T21:40:58.153836
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.65464, final_score: 0.40315, time: 449.39845
+[RESULT]: Val. Epoch: 21, summary_loss: 0.68353, final_score: 0.40210, time: 115.24847
+
+2021-04-08T21:50:22.979737
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.65598, final_score: 0.40327, time: 449.37666
+[RESULT]: Val. Epoch: 22, summary_loss: 0.67881, final_score: 0.40809, time: 113.17959
+
+2021-04-08T21:59:45.701033
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.65530, final_score: 0.40377, time: 450.90402
+[RESULT]: Val. Epoch: 23, summary_loss: 0.67495, final_score: 0.40709, time: 114.82843
+
+2021-04-08T22:09:11.614315
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.65316, final_score: 0.40252, time: 447.13898
+[RESULT]: Val. Epoch: 24, summary_loss: 0.68771, final_score: 0.41159, time: 114.70509
+
+2021-04-08T22:18:33.646547
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.65223, final_score: 0.40140, time: 452.25568
+[RESULT]: Val. Epoch: 25, summary_loss: 0.68723, final_score: 0.41409, time: 114.23343
+
+2021-04-08T22:28:00.323586
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.64780, final_score: 0.39715, time: 445.51339
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66029, final_score: 0.39810, time: 114.11795
+
+2021-04-08T22:37:20.342280
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64587, final_score: 0.39390, time: 447.68692
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69924, final_score: 0.40959, time: 112.77697
+
+2021-04-08T22:46:40.971654
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.64168, final_score: 0.38978, time: 450.02730
+[RESULT]: Val. Epoch: 28, summary_loss: 0.67342, final_score: 0.39710, time: 114.13427
+
+2021-04-08T22:56:05.342264
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.64130, final_score: 0.39090, time: 443.35036
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65765, final_score: 0.39510, time: 113.81464
+Fitter prepared. Device is cuda:0
+
+2021-04-12T18:00:58.460572
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69551, final_score: 0.47688, time: 456.61325
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69328, final_score: 0.48901, time: 120.16223
+
+2021-04-12T18:10:35.827278
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.64196, final_score: 0.36041, time: 456.56209
+[RESULT]: Val. Epoch: 1, summary_loss: 0.78405, final_score: 0.44505, time: 122.05819
+
+2021-04-12T18:20:14.643990
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.49161, final_score: 0.21332, time: 456.51360
+[RESULT]: Val. Epoch: 2, summary_loss: 1.08380, final_score: 0.43806, time: 121.56241
+
+2021-04-12T18:29:53.004809
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.43554, final_score: 0.16958, time: 453.67247
+[RESULT]: Val. Epoch: 3, summary_loss: 0.83870, final_score: 0.40210, time: 119.35769
+
+2021-04-12T18:39:26.238536
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.36831, final_score: 0.12659, time: 451.25833
+[RESULT]: Val. Epoch: 4, summary_loss: 2.16517, final_score: 0.43956, time: 119.99259
+
+2021-04-12T18:48:57.671497
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.40226, final_score: 0.15109, time: 459.77517
+[RESULT]: Val. Epoch: 5, summary_loss: 1.59454, final_score: 0.41459, time: 119.15059
+
+2021-04-12T18:58:37.002863
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.37112, final_score: 0.12659, time: 456.54841
+[RESULT]: Val. Epoch: 6, summary_loss: 1.19530, final_score: 0.38312, time: 119.45945
+
+2021-04-12T19:08:13.235374
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.41865, final_score: 0.16108, time: 464.62627
+[RESULT]: Val. Epoch: 7, summary_loss: 1.20308, final_score: 0.37213, time: 119.17073
+
+2021-04-12T19:17:57.282031
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.39679, final_score: 0.14709, time: 463.29160
+[RESULT]: Val. Epoch: 8, summary_loss: 0.87246, final_score: 0.37163, time: 120.05912
+
+2021-04-12T19:27:40.921208
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.44326, final_score: 0.17821, time: 461.25101
+[RESULT]: Val. Epoch: 9, summary_loss: 0.91344, final_score: 0.36963, time: 118.23270
+
+2021-04-12T19:37:20.740933
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.42505, final_score: 0.16721, time: 469.07313
+[RESULT]: Val. Epoch: 10, summary_loss: 1.83467, final_score: 0.40509, time: 121.53031
+
+2021-04-12T19:47:11.639964
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.47209, final_score: 0.19995, time: 471.30607
+[RESULT]: Val. Epoch: 11, summary_loss: 0.81390, final_score: 0.33516, time: 119.46267
+
+2021-04-12T19:57:02.608884
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.46037, final_score: 0.18858, time: 470.06095
+[RESULT]: Val. Epoch: 12, summary_loss: 0.62062, final_score: 0.31818, time: 118.12605
+
+2021-04-12T20:06:51.305244
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.50848, final_score: 0.23557, time: 478.51331
+[RESULT]: Val. Epoch: 13, summary_loss: 0.60651, final_score: 0.28671, time: 119.97033
+
+2021-04-12T20:16:50.231598
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.49507, final_score: 0.22507, time: 472.87883
+[RESULT]: Val. Epoch: 14, summary_loss: 0.70137, final_score: 0.28721, time: 120.64780
+
+2021-04-12T20:26:43.977556
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.53100, final_score: 0.25531, time: 473.30531
+[RESULT]: Val. Epoch: 15, summary_loss: 0.88088, final_score: 0.32967, time: 118.82023
+
+2021-04-12T20:36:36.355665
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.51614, final_score: 0.23619, time: 470.62622
+[RESULT]: Val. Epoch: 16, summary_loss: 0.59702, final_score: 0.26823, time: 126.12359
+
+2021-04-12T20:46:33.496605
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.54515, final_score: 0.25844, time: 475.56047
+[RESULT]: Val. Epoch: 17, summary_loss: 1.19378, final_score: 0.36663, time: 122.94834
+
+2021-04-12T20:56:32.218084
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.53845, final_score: 0.25506, time: 467.88993
+[RESULT]: Val. Epoch: 18, summary_loss: 0.77341, final_score: 0.31219, time: 121.46029
+
+2021-04-12T21:06:21.772531
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.49522, final_score: 0.22132, time: 476.60380
+[RESULT]: Val. Epoch: 19, summary_loss: 0.56000, final_score: 0.25524, time: 125.45971
+
+2021-04-12T21:16:24.236441
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.48897, final_score: 0.22119, time: 469.58388
+[RESULT]: Val. Epoch: 20, summary_loss: 0.60240, final_score: 0.22977, time: 121.38683
+
+2021-04-12T21:26:15.434570
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.48529, final_score: 0.21432, time: 468.95159
+[RESULT]: Val. Epoch: 21, summary_loss: 0.60611, final_score: 0.25924, time: 122.21054
+
+2021-04-12T21:36:06.825613
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.45803, final_score: 0.19345, time: 463.29829
+[RESULT]: Val. Epoch: 22, summary_loss: 0.55204, final_score: 0.22877, time: 122.96385
+
+2021-04-12T21:45:53.496921
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.45225, final_score: 0.18758, time: 468.47885
+[RESULT]: Val. Epoch: 23, summary_loss: 0.77731, final_score: 0.25275, time: 125.64420
+
+2021-04-12T21:55:47.830775
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.44916, final_score: 0.18758, time: 469.48221
+[RESULT]: Val. Epoch: 24, summary_loss: 0.54040, final_score: 0.21479, time: 123.58759
+
+2021-04-12T22:05:41.322876
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.44261, final_score: 0.18070, time: 474.32084
+[RESULT]: Val. Epoch: 25, summary_loss: 0.77174, final_score: 0.24825, time: 121.73048
+
+2021-04-12T22:15:37.570560
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.43857, final_score: 0.18208, time: 473.33846
+[RESULT]: Val. Epoch: 26, summary_loss: 0.56497, final_score: 0.21728, time: 121.53605
+
+2021-04-12T22:25:32.676974
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.42691, final_score: 0.17296, time: 473.07838
+[RESULT]: Val. Epoch: 27, summary_loss: 0.54436, final_score: 0.20030, time: 115.58981
+
+2021-04-12T22:35:21.788137
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.42066, final_score: 0.17083, time: 449.43934
+[RESULT]: Val. Epoch: 28, summary_loss: 0.58780, final_score: 0.20280, time: 114.94282
+
+2021-04-12T22:44:46.468459
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.41225, final_score: 0.16458, time: 446.88114
+[RESULT]: Val. Epoch: 29, summary_loss: 0.55210, final_score: 0.19780, time: 114.90712
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..1e33e27a429943a6740d31c4b1cad872591d80df
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-017epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-017epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1f62d71d6d063e50931cd597390873c6542505f1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-017epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c1fce6366da5d46fbe0b244f2e4314b62ceb0f31b7d717f78a61378d7dd4656a
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-019epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-019epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7f1e755a648b9238865bb4f4761f3232928d53cd
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-019epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b97e32a36c7462bd45963d4c03bedeedffb5dfcaced890128eab0df7bf9862ac
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ea794f5f264d485a65fa88f111db6ef338465dc4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:105e0b5f68739f83875b4832735de3afe4ce0ccfbd49650bb9dd7da9a4586ff8
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d5aa224628f4db65570a6e2b7b06f659601e6ea5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4a4441e4170603d5840bc489f6892780df1837e785195b285d18aa807744f422
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f4b81f334751f9511df0ba14453c0cd01382d8c4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-15T07:51:25.536806
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.68381, final_score: 0.46001, time: 417.18624
+[RESULT]: Val. Epoch: 0, summary_loss: 0.99897, final_score: 0.47652, time: 118.53487
+
+2021-04-15T08:00:21.658880
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.45411, final_score: 0.18620, time: 426.04535
+[RESULT]: Val. Epoch: 1, summary_loss: 1.04369, final_score: 0.44955, time: 117.16619
+
+2021-04-15T08:09:25.052965
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40604, final_score: 0.15421, time: 424.20458
+[RESULT]: Val. Epoch: 2, summary_loss: 0.94705, final_score: 0.44456, time: 117.15627
+
+2021-04-15T08:18:26.788642
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.43871, final_score: 0.18333, time: 432.23802
+[RESULT]: Val. Epoch: 3, summary_loss: 1.03031, final_score: 0.45904, time: 114.53801
+
+2021-04-15T08:27:33.730186
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.42621, final_score: 0.17658, time: 431.29549
+[RESULT]: Val. Epoch: 4, summary_loss: 1.24362, final_score: 0.45055, time: 115.09656
+
+2021-04-15T08:36:40.295716
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.45964, final_score: 0.20470, time: 431.82737
+[RESULT]: Val. Epoch: 5, summary_loss: 0.92605, final_score: 0.43357, time: 118.41150
+
+2021-04-15T08:45:50.881886
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.44286, final_score: 0.19170, time: 426.79293
+[RESULT]: Val. Epoch: 6, summary_loss: 1.15284, final_score: 0.42607, time: 113.41502
+
+2021-04-15T08:54:51.267623
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.48163, final_score: 0.21245, time: 435.20564
+[RESULT]: Val. Epoch: 7, summary_loss: 1.03984, final_score: 0.39411, time: 115.91702
+
+2021-04-15T09:04:02.561849
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.46031, final_score: 0.19308, time: 432.34281
+[RESULT]: Val. Epoch: 8, summary_loss: 0.78554, final_score: 0.40060, time: 114.34547
+
+2021-04-15T09:13:09.671414
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.48949, final_score: 0.21807, time: 440.44556
+[RESULT]: Val. Epoch: 9, summary_loss: 0.91809, final_score: 0.40160, time: 114.24620
+
+2021-04-15T09:22:24.541985
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.47688, final_score: 0.20820, time: 436.08639
+[RESULT]: Val. Epoch: 10, summary_loss: 1.04176, final_score: 0.40110, time: 113.90484
+
+2021-04-15T09:31:34.706842
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.51041, final_score: 0.23144, time: 441.33294
+[RESULT]: Val. Epoch: 11, summary_loss: 0.82565, final_score: 0.36863, time: 114.97367
+
+2021-04-15T09:40:51.189478
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.50171, final_score: 0.21707, time: 438.48996
+[RESULT]: Val. Epoch: 12, summary_loss: 0.90418, final_score: 0.37313, time: 113.72656
+
+2021-04-15T09:50:03.579920
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.54714, final_score: 0.25581, time: 446.74121
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69735, final_score: 0.34665, time: 113.06368
+
+2021-04-15T09:59:23.730927
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.54419, final_score: 0.25819, time: 439.13356
+[RESULT]: Val. Epoch: 14, summary_loss: 0.84919, final_score: 0.37063, time: 113.50483
+
+2021-04-15T10:08:36.536722
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.58565, final_score: 0.29855, time: 443.72852
+[RESULT]: Val. Epoch: 15, summary_loss: 0.63800, final_score: 0.33766, time: 113.15895
+
+2021-04-15T10:17:53.773227
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.57894, final_score: 0.29393, time: 437.51857
+[RESULT]: Val. Epoch: 16, summary_loss: 0.70765, final_score: 0.35015, time: 116.13230
+
+2021-04-15T10:27:07.588648
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.60700, final_score: 0.31930, time: 445.28824
+[RESULT]: Val. Epoch: 17, summary_loss: 0.62143, final_score: 0.32118, time: 114.07289
+
+2021-04-15T10:36:27.297567
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59536, final_score: 0.30717, time: 430.60745
+[RESULT]: Val. Epoch: 18, summary_loss: 0.63833, final_score: 0.33417, time: 113.66371
+
+2021-04-15T10:45:31.730703
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59359, final_score: 0.30817, time: 442.34186
+[RESULT]: Val. Epoch: 19, summary_loss: 0.60874, final_score: 0.32168, time: 119.08967
+
+2021-04-15T10:54:53.539608
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.59045, final_score: 0.30480, time: 441.60999
+[RESULT]: Val. Epoch: 20, summary_loss: 0.62518, final_score: 0.32667, time: 118.18312
+
+2021-04-15T11:04:13.494220
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.59114, final_score: 0.30017, time: 441.20304
+[RESULT]: Val. Epoch: 21, summary_loss: 0.62674, final_score: 0.31319, time: 117.55641
+
+2021-04-15T11:13:32.423264
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.56975, final_score: 0.29030, time: 445.95249
+[RESULT]: Val. Epoch: 22, summary_loss: 0.68857, final_score: 0.32068, time: 114.77930
+
+2021-04-15T11:22:53.316545
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.56662, final_score: 0.28193, time: 437.15040
+[RESULT]: Val. Epoch: 23, summary_loss: 0.62555, final_score: 0.30270, time: 113.69356
+
+2021-04-15T11:32:04.332473
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.55038, final_score: 0.27118, time: 438.07794
+[RESULT]: Val. Epoch: 24, summary_loss: 0.59027, final_score: 0.29570, time: 114.73303
+
+2021-04-15T11:41:17.479710
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.53953, final_score: 0.25769, time: 437.66602
+[RESULT]: Val. Epoch: 25, summary_loss: 0.65553, final_score: 0.28871, time: 119.44697
+
+2021-04-15T11:50:34.775354
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.54671, final_score: 0.26956, time: 440.53963
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66141, final_score: 0.30619, time: 113.93504
+
+2021-04-15T11:59:49.449887
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.53187, final_score: 0.25319, time: 439.53530
+[RESULT]: Val. Epoch: 27, summary_loss: 0.62442, final_score: 0.28921, time: 113.88042
+
+2021-04-15T12:09:03.023219
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.52874, final_score: 0.25319, time: 442.33549
+[RESULT]: Val. Epoch: 28, summary_loss: 0.63587, final_score: 0.29121, time: 114.32046
+
+2021-04-15T12:18:19.877655
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.51994, final_score: 0.25056, time: 442.08568
+[RESULT]: Val. Epoch: 29, summary_loss: 0.62328, final_score: 0.29271, time: 114.47361
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4f4fb802d65a8b398338377a3f6be3b85ecd1db6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d0d1a7046835ee6e901f95e7bca3e2b73cdbe626
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:63d8a96439926bc0fff3beb0e0e68f117d5eefa4028424650402a4e428bc7ce9
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..cdf0026e0d6b83fe3e91691a1ff65312aa7deb60
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bad2d805de7f418f4d0da5b50bc4471f932a907c348b60d7f9d8680d3a474ea8
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..288d8888da339727b5444ba3f45212ac5fa5e3b5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6d6607e2693f2f1a9e48195dd02886bea60061bfb95208abea7dcd5c23b0c74d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ea5325ec09a503143de42a87c31388410f45cf38
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf6dfdbb1a02b87d2ddd1abb2243a66fc769adbe56ad81bcbd6f19abfe8ad35e
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..355a734b25b97abdc9011f64e3e7742e439e3cac
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/log.txt
@@ -0,0 +1,234 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-19T06:46:53.680322
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.65214, final_score: 0.41415, time: 669.89903
+[RESULT]: Val. Epoch: 0, summary_loss: 0.75791, final_score: 0.44855, time: 190.05520
+
+2021-04-19T07:01:13.990522
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.44637, final_score: 0.17883, time: 672.46017
+[RESULT]: Val. Epoch: 1, summary_loss: 0.79984, final_score: 0.43407, time: 187.69035
+
+2021-04-19T07:15:34.366749
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40469, final_score: 0.15859, time: 675.15325
+[RESULT]: Val. Epoch: 2, summary_loss: 0.97278, final_score: 0.43856, time: 185.46024
+
+2021-04-19T07:29:55.160593
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.44490, final_score: 0.18820, time: 670.88680
+[RESULT]: Val. Epoch: 3, summary_loss: 0.99078, final_score: 0.44605, time: 184.85304
+
+2021-04-19T07:44:11.066407
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.42215, final_score: 0.17133, time: 679.21078
+[RESULT]: Val. Epoch: 4, summary_loss: 1.61688, final_score: 0.47403, time: 187.00031
+
+2021-04-19T07:58:37.456468
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46027, final_score: 0.20395, time: 665.43423
+[RESULT]: Val. Epoch: 5, summary_loss: 1.20755, final_score: 0.45704, time: 189.13224
+
+2021-04-19T08:12:52.205858
+LR: 0.001
+Emb_rate: 0.7290000000000001
+Fitter prepared. Device is cuda:0
+
+2021-04-19T18:51:10.624848
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69458, final_score: 0.47663, time: 685.19793
+[RESULT]: Val. Epoch: 0, summary_loss: 0.78449, final_score: 0.49650, time: 193.55499
+
+2021-04-19T19:05:49.847100
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.66158, final_score: 0.38740, time: 696.31820
+[RESULT]: Val. Epoch: 1, summary_loss: 0.92474, final_score: 0.48152, time: 208.44739
+
+2021-04-19T19:20:54.828997
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.57058, final_score: 0.27956, time: 687.57345
+[RESULT]: Val. Epoch: 2, summary_loss: 0.93435, final_score: 0.44755, time: 187.30023
+
+2021-04-19T19:35:29.886374
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.55152, final_score: 0.26206, time: 683.72736
+[RESULT]: Val. Epoch: 3, summary_loss: 0.85363, final_score: 0.43457, time: 183.87658
+
+2021-04-19T19:49:57.687831
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.50946, final_score: 0.22782, time: 695.87743
+[RESULT]: Val. Epoch: 4, summary_loss: 0.97209, final_score: 0.42158, time: 184.91200
+
+2021-04-19T20:04:38.785785
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.54168, final_score: 0.25319, time: 686.64689
+[RESULT]: Val. Epoch: 5, summary_loss: 0.86880, final_score: 0.45455, time: 188.44301
+
+2021-04-19T20:19:14.044837
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.51427, final_score: 0.22857, time: 785.61958
+[RESULT]: Val. Epoch: 6, summary_loss: 0.75217, final_score: 0.42158, time: 183.64870
+
+2021-04-19T20:35:23.745648
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.53929, final_score: 0.25569, time: 691.98202
+[RESULT]: Val. Epoch: 7, summary_loss: 1.88390, final_score: 0.46404, time: 184.07193
+
+2021-04-19T20:49:59.970825
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.53041, final_score: 0.24769, time: 681.94153
+[RESULT]: Val. Epoch: 8, summary_loss: 0.84018, final_score: 0.40709, time: 185.90111
+
+2021-04-19T21:04:27.994920
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55354, final_score: 0.27556, time: 700.52923
+[RESULT]: Val. Epoch: 9, summary_loss: 1.25691, final_score: 0.42657, time: 183.01394
+
+2021-04-19T21:19:11.763663
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.54424, final_score: 0.26406, time: 699.59120
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69813, final_score: 0.39810, time: 182.34079
+
+2021-04-19T21:33:54.044899
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.56459, final_score: 0.28718, time: 776.20207
+[RESULT]: Val. Epoch: 11, summary_loss: 0.92731, final_score: 0.41708, time: 198.18874
+
+2021-04-19T21:50:08.618575
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.55620, final_score: 0.27343, time: 829.40013
+[RESULT]: Val. Epoch: 12, summary_loss: 1.67628, final_score: 0.43257, time: 189.76756
+
+2021-04-19T22:07:07.942924
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.58472, final_score: 0.30530, time: 833.17618
+[RESULT]: Val. Epoch: 13, summary_loss: 0.72252, final_score: 0.37013, time: 208.51788
+
+2021-04-19T22:24:29.803729
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.57807, final_score: 0.29793, time: 756.53598
+[RESULT]: Val. Epoch: 14, summary_loss: 0.84848, final_score: 0.38511, time: 203.44472
+
+2021-04-19T22:40:29.959778
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.60268, final_score: 0.32667, time: 912.35914
+[RESULT]: Val. Epoch: 15, summary_loss: 0.65031, final_score: 0.36114, time: 197.44858
+
+2021-04-19T22:59:00.115929
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.59187, final_score: 0.31405, time: 696.14183
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69004, final_score: 0.34515, time: 191.63213
+
+2021-04-19T23:13:48.073520
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.61267, final_score: 0.33729, time: 754.37306
+[RESULT]: Val. Epoch: 17, summary_loss: 0.90292, final_score: 0.39061, time: 207.37195
+
+2021-04-19T23:29:49.985423
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.60834, final_score: 0.33679, time: 772.87558
+[RESULT]: Val. Epoch: 18, summary_loss: 0.73761, final_score: 0.33666, time: 183.64431
+
+2021-04-19T23:45:46.703279
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.58262, final_score: 0.30842, time: 760.83454
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69740, final_score: 0.33666, time: 178.53729
+
+2021-04-20T00:01:26.288429
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.57692, final_score: 0.30430, time: 762.15499
+[RESULT]: Val. Epoch: 20, summary_loss: 0.61747, final_score: 0.31469, time: 179.34718
+
+2021-04-20T00:17:08.192793
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.57396, final_score: 0.29643, time: 800.87536
+[RESULT]: Val. Epoch: 21, summary_loss: 0.59079, final_score: 0.30819, time: 220.06163
+
+2021-04-20T00:34:09.463458
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.56047, final_score: 0.28980, time: 900.01891
+[RESULT]: Val. Epoch: 22, summary_loss: 0.58529, final_score: 0.28372, time: 180.62319
+
+2021-04-20T00:52:10.455066
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.55635, final_score: 0.28130, time: 813.21702
+[RESULT]: Val. Epoch: 23, summary_loss: 0.57493, final_score: 0.29520, time: 187.95324
+
+2021-04-20T01:08:52.024448
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.53794, final_score: 0.25894, time: 781.64614
+[RESULT]: Val. Epoch: 24, summary_loss: 0.57102, final_score: 0.27073, time: 233.23719
+
+2021-04-20T01:25:47.292892
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.52039, final_score: 0.24406, time: 773.18709
+[RESULT]: Val. Epoch: 25, summary_loss: 0.89062, final_score: 0.30519, time: 196.25798
+
+2021-04-20T01:41:56.934342
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.50513, final_score: 0.22844, time: 890.68627
+[RESULT]: Val. Epoch: 26, summary_loss: 0.67403, final_score: 0.26623, time: 191.67633
+
+2021-04-20T01:59:59.504014
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.48152, final_score: 0.21170, time: 802.07873
+[RESULT]: Val. Epoch: 27, summary_loss: 0.53617, final_score: 0.24226, time: 217.32167
+
+2021-04-20T02:16:59.257136
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.46260, final_score: 0.20095, time: 874.77895
+[RESULT]: Val. Epoch: 28, summary_loss: 0.57650, final_score: 0.24026, time: 187.18829
+
+2021-04-20T02:34:41.474583
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.46000, final_score: 0.19658, time: 737.15089
+[RESULT]: Val. Epoch: 29, summary_loss: 0.50614, final_score: 0.21479, time: 235.40755
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:33:47.118204
+LR: 0.00025
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.50791, final_score: 0.23057, time: 715.07439
+[RESULT]: Val. Epoch: 30, summary_loss: 0.65981, final_score: 0.26823, time: 185.24147
+
+2021-04-28T09:48:47.605535
+LR: 0.00025
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 31, summary_loss: 0.48202, final_score: 0.21107, time: 707.70052
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e79fe0b7e2b29dc0f71a4d37e6a58ee85a373f2c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..00dd95b8446eeb98e925fe67d61384bf83cafb6e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef3be19d19bfe863999ef617a3be7064c80a1e835dfccc80ed95403af04572da
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f0f93fbabc9dac706483e480a0635f0492129395
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ea38d0012ff1516d37af2f65c71ed153f6827d7f15645bee267ffad7475c1007
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-030epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-030epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c83d9e35f189b674b66c036a9ac0a3b3dcf6d8f7
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/best-checkpoint-030epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:51f6209069b86650191cf4dfe4274d79fda1419135169e69b97ce165300bab86
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a1a0422ff91717ec0c38985ec9fe6997e05bd4b6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:11dc222cc9303c32cfb376a700d2d261a9b08ca5c7f80e5bfdadb5e519d8f8dc
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f4396c391e0a0dc94f04107b0059eee346c78cf1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/log.txt
@@ -0,0 +1,242 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:51:46.861209
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.68571, final_score: 0.46388, time: 715.50076
+[RESULT]: Val. Epoch: 0, summary_loss: 4.81629, final_score: 0.49800, time: 198.72982
+
+2021-04-26T10:07:01.457558
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.51361, final_score: 0.23807, time: 731.11444
+[RESULT]: Val. Epoch: 1, summary_loss: 1.16492, final_score: 0.49351, time: 211.94761
+
+2021-04-26T10:22:44.843556
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40370, final_score: 0.15121, time: 725.08104
+[RESULT]: Val. Epoch: 2, summary_loss: 0.87547, final_score: 0.49550, time: 209.38826
+
+2021-04-26T10:38:19.630028
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.44002, final_score: 0.18170, time: 723.68304
+[RESULT]: Val. Epoch: 3, summary_loss: 0.81510, final_score: 0.49800, time: 193.34700
+
+2021-04-26T10:53:36.978107
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.42229, final_score: 0.17371, time: 723.70827
+[RESULT]: Val. Epoch: 4, summary_loss: 2.10697, final_score: 0.49850, time: 220.41211
+
+2021-04-26T11:09:21.256520
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46392, final_score: 0.20957, time: 743.29855
+[RESULT]: Val. Epoch: 5, summary_loss: 0.87013, final_score: 0.49900, time: 195.04204
+
+2021-04-26T11:24:59.763359
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.45236, final_score: 0.20470, time: 729.31862
+[RESULT]: Val. Epoch: 6, summary_loss: 1.57393, final_score: 0.49800, time: 210.52103
+
+2021-04-26T11:40:39.763882
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.50956, final_score: 0.24631, time: 740.60907
+[RESULT]: Val. Epoch: 7, summary_loss: 1.01434, final_score: 0.49950, time: 206.28624
+
+2021-04-26T11:56:26.838521
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.50514, final_score: 0.24469, time: 756.32901
+[RESULT]: Val. Epoch: 8, summary_loss: 0.82847, final_score: 0.49900, time: 198.66301
+
+2021-04-26T12:12:21.993147
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55515, final_score: 0.28618, time: 728.83688
+[RESULT]: Val. Epoch: 9, summary_loss: 0.90585, final_score: 0.49850, time: 198.26447
+
+2021-04-26T12:27:49.247018
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.54951, final_score: 0.28118, time: 730.39389
+[RESULT]: Val. Epoch: 10, summary_loss: 1.04572, final_score: 0.49850, time: 193.99017
+
+2021-04-26T12:43:13.797183
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59706, final_score: 0.33104, time: 745.99724
+[RESULT]: Val. Epoch: 11, summary_loss: 0.79906, final_score: 0.49900, time: 193.52890
+
+2021-04-26T12:58:53.668929
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.59253, final_score: 0.32467, time: 694.65885
+[RESULT]: Val. Epoch: 12, summary_loss: 0.83168, final_score: 0.49950, time: 211.01090
+
+2021-04-26T13:13:59.571780
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62725, final_score: 0.36628, time: 750.74383
+[RESULT]: Val. Epoch: 13, summary_loss: 1.03735, final_score: 0.49900, time: 206.19511
+
+2021-04-26T13:29:56.669097
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.62336, final_score: 0.35754, time: 754.13248
+[RESULT]: Val. Epoch: 14, summary_loss: 0.74969, final_score: 0.49850, time: 199.91649
+
+2021-04-26T13:45:51.067394
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64801, final_score: 0.38840, time: 749.21122
+[RESULT]: Val. Epoch: 15, summary_loss: 0.76669, final_score: 0.49700, time: 220.40873
+
+2021-04-26T14:02:00.866479
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64603, final_score: 0.38778, time: 728.27010
+[RESULT]: Val. Epoch: 16, summary_loss: 0.74733, final_score: 0.49700, time: 198.00750
+
+2021-04-26T14:17:27.475248
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.66511, final_score: 0.41490, time: 738.34497
+[RESULT]: Val. Epoch: 17, summary_loss: 0.74906, final_score: 0.49251, time: 196.57494
+
+2021-04-26T14:33:02.600867
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.66237, final_score: 0.41165, time: 742.75023
+[RESULT]: Val. Epoch: 18, summary_loss: 0.73852, final_score: 0.48402, time: 223.63089
+
+2021-04-26T14:49:09.334887
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.65810, final_score: 0.39240, time: 757.93194
+[RESULT]: Val. Epoch: 19, summary_loss: 1.02238, final_score: 0.39560, time: 209.65613
+
+2021-04-26T15:05:17.141545
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.57356, final_score: 0.28230, time: 754.07631
+[RESULT]: Val. Epoch: 20, summary_loss: 1.12080, final_score: 0.33766, time: 212.86251
+
+2021-04-26T15:21:24.249269
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.49354, final_score: 0.21232, time: 745.10022
+[RESULT]: Val. Epoch: 21, summary_loss: 0.57805, final_score: 0.21628, time: 197.85875
+
+2021-04-26T15:37:07.591816
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.45601, final_score: 0.18695, time: 743.72930
+[RESULT]: Val. Epoch: 22, summary_loss: 0.47711, final_score: 0.18581, time: 216.62135
+
+2021-04-26T15:53:08.814963
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.43175, final_score: 0.16708, time: 760.02756
+[RESULT]: Val. Epoch: 23, summary_loss: 0.68999, final_score: 0.22827, time: 196.67368
+
+2021-04-26T16:09:05.703550
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.40756, final_score: 0.15621, time: 743.39833
+[RESULT]: Val. Epoch: 24, summary_loss: 0.67484, final_score: 0.19231, time: 214.38909
+
+2021-04-26T16:25:03.710001
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 25, summary_loss: 0.39697, final_score: 0.14521, time: 749.91101
+[RESULT]: Val. Epoch: 25, summary_loss: 0.86163, final_score: 0.24975, time: 216.61226
+
+2021-04-26T16:41:10.524701
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.39045, final_score: 0.14346, time: 758.65091
+[RESULT]: Val. Epoch: 26, summary_loss: 0.46745, final_score: 0.16883, time: 208.68954
+
+2021-04-26T16:57:18.230741
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 27, summary_loss: 0.37035, final_score: 0.13309, time: 753.37396
+[RESULT]: Val. Epoch: 27, summary_loss: 0.52648, final_score: 0.17083, time: 220.84204
+
+2021-04-26T17:13:32.602232
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.36284, final_score: 0.12222, time: 758.32697
+[RESULT]: Val. Epoch: 28, summary_loss: 0.75886, final_score: 0.19880, time: 203.47092
+
+2021-04-26T17:29:34.672433
+LR: 0.001
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 29, summary_loss: 0.35712, final_score: 0.12309, time: 724.82255
+[RESULT]: Val. Epoch: 29, summary_loss: 0.40834, final_score: 0.14236, time: 201.82272
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:05:55.008212
+LR: 0.001
+Emb_rate: 0.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.35002, final_score: 0.11372, time: 684.77689
+[RESULT]: Val. Epoch: 30, summary_loss: 0.41806, final_score: 0.14486, time: 187.15895
+
+2021-04-28T10:20:27.344127
+LR: 0.001
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 31, summary_loss: 0.35147, final_score: 0.11485, time: 731.53570
+[RESULT]: Val. Epoch: 31, summary_loss: 0.43426, final_score: 0.15485, time: 207.59508
+
+2021-04-28T10:36:07.169758
+LR: 0.001
+Emb_rate: 0.18000000000000002
+[RESULT]: Train. Epoch: 32, summary_loss: 0.34441, final_score: 0.11335, time: 778.53532
+[RESULT]: Val. Epoch: 32, summary_loss: 0.43180, final_score: 0.15584, time: 209.99369
+
+2021-04-28T10:52:35.893256
+LR: 0.001
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 33, summary_loss: 0.34483, final_score: 0.11235, time: 723.33780
+[RESULT]: Val. Epoch: 33, summary_loss: 0.82601, final_score: 0.19031, time: 181.76947
+
+2021-04-28T11:07:41.194032
+LR: 0.001
+Emb_rate: 0.16200000000000003
+[RESULT]: Train. Epoch: 34, summary_loss: 0.34246, final_score: 0.10922, time: 698.58306
+[RESULT]: Val. Epoch: 34, summary_loss: 0.46994, final_score: 0.14685, time: 184.63130
+
+2021-04-28T11:22:24.571743
+LR: 0.001
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 35, summary_loss: 0.34139, final_score: 0.11247, time: 700.20053
+[RESULT]: Val. Epoch: 35, summary_loss: 0.48610, final_score: 0.15085, time: 184.72035
+
+2021-04-28T11:37:09.681140
+LR: 0.001
+Emb_rate: 0.14580000000000004
+[RESULT]: Train. Epoch: 36, summary_loss: 0.33517, final_score: 0.10647, time: 705.03761
+[RESULT]: Val. Epoch: 36, summary_loss: 0.43075, final_score: 0.14136, time: 184.07294
+
+2021-04-28T11:51:58.944545
+LR: 0.001
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 37, summary_loss: 0.35062, final_score: 0.11572, time: 699.01917
+[RESULT]: Val. Epoch: 37, summary_loss: 0.43294, final_score: 0.14286, time: 187.38595
+
+2021-04-28T12:06:45.530673
+LR: 0.001
+Emb_rate: 0.13122000000000003
+[RESULT]: Train. Epoch: 38, summary_loss: 0.33395, final_score: 0.10660, time: 703.15751
+[RESULT]: Val. Epoch: 38, summary_loss: 0.46073, final_score: 0.14885, time: 185.09640
+
+2021-04-28T12:21:33.949892
+LR: 0.001
+Emb_rate: 0.11809800000000004
+[RESULT]: Train. Epoch: 39, summary_loss: 0.34286, final_score: 0.10960, time: 702.74255
+[RESULT]: Val. Epoch: 39, summary_loss: 0.93595, final_score: 0.20979, time: 181.22160
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8bf30fe67a263febbcee5589c79840c19476af71
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c66ff20830b100f498c07f8b934a3f9bd17ce622
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:63f23082568d90007e29f7c104d2f16e021fb5eec61216b38b9c9a9a635621df
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a67c0c0d75401e2ce20585134fa8a7b67f35e3e1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:226ca9fcf83c934c93b0f2b2786c72966489c038832218882bddae4b19f7b95c
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..78a7168a45ccf34d816fe12c9e6af5dd764c2931
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ca4f004f65695bf0f0532ca1fcda26f1929b7f0fd5a1a23bf3a5ad9e9a5039c4
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3b085f5f89cddd75235da667b427e717f12b7328
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cd603a3a6ce2d12fa937bdda0a1e8342a4eefb5060ee506e2b9951ad8dee1a0a
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b92bfc8dd2f50ac05a4217850bb092526693b53a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/log.txt
@@ -0,0 +1,187 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:29:32.082621
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:44:30.085178
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.53893, final_score: 0.28993, time: 685.94658
+[RESULT]: Val. Epoch: 0, summary_loss: 1.12533, final_score: 0.49500, time: 201.55580
+
+2021-04-26T09:59:17.989803
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.41864, final_score: 0.16558, time: 717.59861
+[RESULT]: Val. Epoch: 1, summary_loss: 1.36204, final_score: 0.49251, time: 195.70018
+
+2021-04-26T10:14:31.521235
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.38873, final_score: 0.14546, time: 711.11408
+[RESULT]: Val. Epoch: 2, summary_loss: 1.94617, final_score: 0.49451, time: 196.98797
+
+2021-04-26T10:29:39.792892
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.41611, final_score: 0.16883, time: 724.77815
+[RESULT]: Val. Epoch: 3, summary_loss: 1.36275, final_score: 0.49550, time: 196.75172
+
+2021-04-26T10:45:01.536935
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.40364, final_score: 0.16333, time: 716.55686
+[RESULT]: Val. Epoch: 4, summary_loss: 0.93112, final_score: 0.48951, time: 191.32007
+
+2021-04-26T11:00:09.903808
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46097, final_score: 0.20570, time: 717.12787
+[RESULT]: Val. Epoch: 5, summary_loss: 1.51040, final_score: 0.49401, time: 194.57210
+
+2021-04-26T11:15:21.784707
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.45597, final_score: 0.20220, time: 719.27898
+[RESULT]: Val. Epoch: 6, summary_loss: 1.08604, final_score: 0.49600, time: 196.92647
+
+2021-04-26T11:30:38.210694
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.50246, final_score: 0.24556, time: 719.77882
+[RESULT]: Val. Epoch: 7, summary_loss: 0.83537, final_score: 0.49351, time: 191.72809
+
+2021-04-26T11:45:50.130916
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.50136, final_score: 0.24231, time: 729.66930
+[RESULT]: Val. Epoch: 8, summary_loss: 0.88861, final_score: 0.48901, time: 200.03184
+
+2021-04-26T12:01:20.066503
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55209, final_score: 0.28455, time: 728.83554
+[RESULT]: Val. Epoch: 9, summary_loss: 0.86416, final_score: 0.49351, time: 196.23199
+
+2021-04-26T12:16:45.317348
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.54903, final_score: 0.28393, time: 717.95837
+[RESULT]: Val. Epoch: 10, summary_loss: 0.79065, final_score: 0.49151, time: 195.70261
+
+2021-04-26T12:31:59.484530
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59584, final_score: 0.32429, time: 726.01984
+[RESULT]: Val. Epoch: 11, summary_loss: 0.99006, final_score: 0.49351, time: 188.95083
+
+2021-04-26T12:47:14.676512
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.59161, final_score: 0.32429, time: 729.57562
+[RESULT]: Val. Epoch: 12, summary_loss: 0.84309, final_score: 0.49301, time: 188.45257
+
+2021-04-26T13:02:32.929790
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62419, final_score: 0.35804, time: 707.98091
+[RESULT]: Val. Epoch: 13, summary_loss: 0.81425, final_score: 0.48951, time: 197.00886
+
+2021-04-26T13:17:38.133274
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.61885, final_score: 0.35654, time: 726.90623
+[RESULT]: Val. Epoch: 14, summary_loss: 0.75985, final_score: 0.48851, time: 196.62779
+
+2021-04-26T13:33:02.100285
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64541, final_score: 0.38853, time: 724.53758
+[RESULT]: Val. Epoch: 15, summary_loss: 0.78547, final_score: 0.49151, time: 194.61764
+
+2021-04-26T13:48:21.485806
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64069, final_score: 0.37928, time: 736.75413
+[RESULT]: Val. Epoch: 16, summary_loss: 0.76684, final_score: 0.48501, time: 192.19285
+
+2021-04-26T14:03:50.719239
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.66112, final_score: 0.41140, time: 737.57226
+[RESULT]: Val. Epoch: 17, summary_loss: 0.75297, final_score: 0.48501, time: 195.43841
+
+2021-04-26T14:19:24.201732
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.65399, final_score: 0.39653, time: 736.82337
+[RESULT]: Val. Epoch: 18, summary_loss: 0.75455, final_score: 0.42557, time: 190.25748
+
+2021-04-26T14:34:51.513630
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59476, final_score: 0.30592, time: 734.39099
+[RESULT]: Val. Epoch: 19, summary_loss: 0.57209, final_score: 0.25075, time: 194.28352
+
+2021-04-26T14:50:20.636572
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.50442, final_score: 0.22607, time: 730.38570
+[RESULT]: Val. Epoch: 20, summary_loss: 0.92610, final_score: 0.28222, time: 202.26039
+
+2021-04-26T15:05:53.505518
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.45707, final_score: 0.19070, time: 724.89712
+[RESULT]: Val. Epoch: 21, summary_loss: 0.52794, final_score: 0.20380, time: 198.93634
+
+2021-04-26T15:21:17.738966
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.43552, final_score: 0.16958, time: 746.33844
+[RESULT]: Val. Epoch: 22, summary_loss: 0.58113, final_score: 0.19431, time: 199.12974
+
+2021-04-26T15:37:03.443159
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 23, summary_loss: 0.40867, final_score: 0.15309, time: 731.04966
+[RESULT]: Val. Epoch: 23, summary_loss: 0.56203, final_score: 0.15435, time: 195.38820
+
+2021-04-26T15:52:30.104821
+LR: 0.001
+Emb_rate: 0.28242953648100017
+[RESULT]: Train. Epoch: 24, summary_loss: 0.39843, final_score: 0.14634, time: 729.23097
+[RESULT]: Val. Epoch: 24, summary_loss: 0.65054, final_score: 0.17682, time: 195.70710
+
+2021-04-26T16:07:55.277669
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 25, summary_loss: 0.38886, final_score: 0.14234, time: 748.25412
+[RESULT]: Val. Epoch: 25, summary_loss: 0.45011, final_score: 0.15035, time: 187.60316
+
+2021-04-26T16:23:31.614124
+LR: 0.001
+Emb_rate: 0.25418658283290013
+[RESULT]: Train. Epoch: 26, summary_loss: 0.37756, final_score: 0.13522, time: 733.25089
+[RESULT]: Val. Epoch: 26, summary_loss: 0.42498, final_score: 0.13287, time: 184.63980
+
+2021-04-26T16:38:49.915258
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 27, summary_loss: 0.36846, final_score: 0.12522, time: 736.74521
+[RESULT]: Val. Epoch: 27, summary_loss: 0.42629, final_score: 0.14985, time: 200.14931
+
+2021-04-26T16:54:27.045528
+LR: 0.001
+Emb_rate: 0.22876792454961012
+[RESULT]: Train. Epoch: 28, summary_loss: 0.36100, final_score: 0.12322, time: 742.22306
+[RESULT]: Val. Epoch: 28, summary_loss: 0.41157, final_score: 0.13237, time: 195.12463
+
+2021-04-26T17:10:04.760076
+LR: 0.001
+Emb_rate: 0.2058911320946491
+[RESULT]: Train. Epoch: 29, summary_loss: 0.35600, final_score: 0.12134, time: 719.77923
+[RESULT]: Val. Epoch: 29, summary_loss: 0.46212, final_score: 0.14386, time: 185.67349
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..8fa544a56ad39827edd70e5a499f46e960fa9e4f
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..87e026b03af7ee51d137d9c380efbce5bcb29fee
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:872ee9740b715ddf16811e538ed64a275cb2920a89074acd01eac8372454e9a4
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7372cad17d017b0207d824541ca23e5ecaabf962
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:22b2080962e1737fb5e93ea8e9ec15c41a9beab9930b50c7d01633e746066fe3
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a6b76c2e945104367c95a1d524a3ed778aaaf9a8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3e085affc948e1701e43138a10d23d6a582681b2c654712bd641d4962249a6f7
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..af138381f510d0cf23d359eb01c7c09449c30a22
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a6708a394fe0b92032079102ffad9f8adc6792a6bb007b7241f0424b008af860
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e57cac898202b6ac7a556faa438dde7b5b800f15
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/log.txt
@@ -0,0 +1,187 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:28:49.583684
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:35:23.187357
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.63460, final_score: 0.39815, time: 691.76472
+[RESULT]: Val. Epoch: 0, summary_loss: 1.19085, final_score: 0.47652, time: 184.50017
+
+2021-04-26T09:49:59.854817
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.42920, final_score: 0.16721, time: 725.31181
+[RESULT]: Val. Epoch: 1, summary_loss: 1.00425, final_score: 0.47003, time: 214.85215
+
+2021-04-26T10:05:40.405825
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.39862, final_score: 0.15171, time: 694.65093
+[RESULT]: Val. Epoch: 2, summary_loss: 1.42040, final_score: 0.48751, time: 218.79357
+
+2021-04-26T10:20:54.054864
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.42348, final_score: 0.17233, time: 697.70667
+[RESULT]: Val. Epoch: 3, summary_loss: 2.42396, final_score: 0.49051, time: 189.20342
+
+2021-04-26T10:35:41.164897
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.41556, final_score: 0.17146, time: 738.96724
+[RESULT]: Val. Epoch: 4, summary_loss: 1.08787, final_score: 0.46903, time: 196.44475
+
+2021-04-26T10:51:16.795263
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46461, final_score: 0.20582, time: 733.67837
+[RESULT]: Val. Epoch: 5, summary_loss: 1.11974, final_score: 0.47453, time: 189.63662
+
+2021-04-26T11:06:40.334116
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.45265, final_score: 0.20032, time: 721.49953
+[RESULT]: Val. Epoch: 6, summary_loss: 1.48312, final_score: 0.48751, time: 211.78160
+
+2021-04-26T11:22:13.833431
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.51474, final_score: 0.24481, time: 740.32091
+[RESULT]: Val. Epoch: 7, summary_loss: 1.22615, final_score: 0.48252, time: 218.14056
+
+2021-04-26T11:38:12.486771
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.50092, final_score: 0.24394, time: 713.79634
+[RESULT]: Val. Epoch: 8, summary_loss: 0.96292, final_score: 0.46703, time: 211.50906
+
+2021-04-26T11:53:38.126687
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55510, final_score: 0.28668, time: 755.50121
+[RESULT]: Val. Epoch: 9, summary_loss: 0.75476, final_score: 0.46503, time: 205.60422
+
+2021-04-26T12:09:39.587404
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.55140, final_score: 0.28430, time: 712.24113
+[RESULT]: Val. Epoch: 10, summary_loss: 0.85827, final_score: 0.47103, time: 185.42057
+
+2021-04-26T12:24:37.412312
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59210, final_score: 0.32492, time: 699.32449
+[RESULT]: Val. Epoch: 11, summary_loss: 0.83255, final_score: 0.47453, time: 200.57896
+
+2021-04-26T12:39:37.477903
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.59404, final_score: 0.32642, time: 764.82937
+[RESULT]: Val. Epoch: 12, summary_loss: 0.82206, final_score: 0.47552, time: 184.42137
+
+2021-04-26T12:55:26.931688
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62344, final_score: 0.35916, time: 710.97892
+[RESULT]: Val. Epoch: 13, summary_loss: 0.91938, final_score: 0.47552, time: 213.65227
+
+2021-04-26T13:10:51.742049
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.62282, final_score: 0.35529, time: 740.38624
+[RESULT]: Val. Epoch: 14, summary_loss: 0.73880, final_score: 0.46404, time: 185.90483
+
+2021-04-26T13:26:18.351632
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64569, final_score: 0.38315, time: 755.25783
+[RESULT]: Val. Epoch: 15, summary_loss: 0.70928, final_score: 0.46454, time: 198.60708
+
+2021-04-26T13:42:12.647005
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64091, final_score: 0.37966, time: 745.84879
+[RESULT]: Val. Epoch: 16, summary_loss: 0.72206, final_score: 0.45305, time: 215.85961
+
+2021-04-26T13:58:14.519434
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 17, summary_loss: 0.66041, final_score: 0.41152, time: 765.55841
+[RESULT]: Val. Epoch: 17, summary_loss: 0.72392, final_score: 0.46503, time: 184.10414
+
+2021-04-26T14:14:04.389843
+LR: 0.001
+Emb_rate: 0.38742048900000015
+[RESULT]: Train. Epoch: 18, summary_loss: 0.66283, final_score: 0.41202, time: 742.70467
+[RESULT]: Val. Epoch: 18, summary_loss: 0.73590, final_score: 0.46454, time: 188.90805
+
+2021-04-26T14:29:36.213319
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 19, summary_loss: 0.67496, final_score: 0.43702, time: 752.95845
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69190, final_score: 0.45405, time: 211.64558
+
+2021-04-26T14:45:41.232873
+LR: 0.001
+Emb_rate: 0.34867844010000015
+[RESULT]: Train. Epoch: 20, summary_loss: 0.67090, final_score: 0.42764, time: 775.06090
+[RESULT]: Val. Epoch: 20, summary_loss: 0.73617, final_score: 0.45654, time: 196.14247
+
+2021-04-26T15:01:52.625287
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 21, summary_loss: 0.67844, final_score: 0.43689, time: 726.19821
+[RESULT]: Val. Epoch: 21, summary_loss: 0.71709, final_score: 0.43157, time: 202.94966
+
+2021-04-26T15:17:21.982596
+LR: 0.001
+Emb_rate: 0.31381059609000017
+[RESULT]: Train. Epoch: 22, summary_loss: 0.62820, final_score: 0.35141, time: 770.89866
+[RESULT]: Val. Epoch: 22, summary_loss: 0.55777, final_score: 0.24725, time: 222.17651
+
+2021-04-26T15:33:55.367322
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 23, summary_loss: 0.52325, final_score: 0.23619, time: 750.74651
+[RESULT]: Val. Epoch: 23, summary_loss: 0.54507, final_score: 0.22977, time: 208.27996
+
+2021-04-26T15:49:54.775662
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 24, summary_loss: 0.46154, final_score: 0.19158, time: 744.39665
+[RESULT]: Val. Epoch: 24, summary_loss: 0.51685, final_score: 0.18581, time: 183.77523
+
+2021-04-26T16:05:23.297804
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 25, summary_loss: 0.44362, final_score: 0.18233, time: 737.16087
+[RESULT]: Val. Epoch: 25, summary_loss: 0.55939, final_score: 0.19530, time: 187.33655
+
+2021-04-26T16:20:48.056454
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 26, summary_loss: 0.42108, final_score: 0.16221, time: 819.34592
+[RESULT]: Val. Epoch: 26, summary_loss: 0.51774, final_score: 0.18981, time: 221.13672
+
+2021-04-26T16:38:08.717581
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.39865, final_score: 0.14696, time: 746.00580
+[RESULT]: Val. Epoch: 27, summary_loss: 0.74408, final_score: 0.19481, time: 201.33170
+
+2021-04-26T16:53:56.231355
+LR: 0.0005
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.39038, final_score: 0.14259, time: 750.66440
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56817, final_score: 0.17433, time: 193.61742
+
+2021-04-26T17:09:40.698192
+LR: 0.00025
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.37609, final_score: 0.13334, time: 941.07722
+[RESULT]: Val. Epoch: 29, summary_loss: 0.71209, final_score: 0.18731, time: 189.55742
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2a6c0014a2481fc1777e6c9f4f314438a5aaaefe
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-021epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-021epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8a1ce4c514dfe69342654343547e267bf90ede4f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-021epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:29c5a5e7a417a46349d820c3672a7f6c7983c75417aca4c5f4146e8a18f64a6f
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3cf743ba103a5b73e05e3bf322af207bbd5066b2
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:89ba270ebdadbe5f3fc2d0f336413178b9fd072275565e44fa6dc2dd95c33905
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..318c7410bc1655158f9980369e0e3ef5394956db
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f167ddc28822a2a6546b0ff295d101c43a20bfa0aea860a8687e72c8b323649c
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..46dbcb7b0c3eaf9f7c96a65bf2f7792a5a9db7d5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b66a5e8097cabfd420fc060e3e824d1718ff030c5e5e9013601d958c881e498d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..266c3ac7471a50ae73e4ca0f0c4f4c03fe7e1ec6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/log.txt
@@ -0,0 +1,187 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:34:01.862678
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:34:46.492174
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69707, final_score: 0.49000, time: 719.77373
+[RESULT]: Val. Epoch: 0, summary_loss: 0.72082, final_score: 0.49750, time: 196.81023
+
+2021-04-26T09:50:03.475680
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.68726, final_score: 0.45801, time: 772.48185
+[RESULT]: Val. Epoch: 1, summary_loss: 0.82043, final_score: 0.47103, time: 216.96237
+
+2021-04-26T10:06:33.124114
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.68861, final_score: 0.45926, time: 800.41726
+[RESULT]: Val. Epoch: 2, summary_loss: 0.72185, final_score: 0.48801, time: 234.24038
+
+2021-04-26T10:23:47.971353
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.66846, final_score: 0.40527, time: 735.74342
+[RESULT]: Val. Epoch: 3, summary_loss: 0.86980, final_score: 0.48501, time: 223.24549
+
+2021-04-26T10:39:47.177567
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.61945, final_score: 0.33304, time: 714.03418
+[RESULT]: Val. Epoch: 4, summary_loss: 1.01832, final_score: 0.47602, time: 202.98260
+
+2021-04-26T10:55:04.377192
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.62049, final_score: 0.34216, time: 778.92891
+[RESULT]: Val. Epoch: 5, summary_loss: 0.80051, final_score: 0.40460, time: 219.11712
+
+2021-04-26T11:11:42.607498
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.60705, final_score: 0.32004, time: 779.38093
+[RESULT]: Val. Epoch: 6, summary_loss: 0.76574, final_score: 0.41259, time: 219.22035
+
+2021-04-26T11:28:21.372259
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.61817, final_score: 0.33879, time: 821.03574
+[RESULT]: Val. Epoch: 7, summary_loss: 0.70790, final_score: 0.40110, time: 207.99961
+
+2021-04-26T11:45:30.801650
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.60058, final_score: 0.32429, time: 788.52862
+[RESULT]: Val. Epoch: 8, summary_loss: 0.90226, final_score: 0.42408, time: 201.05897
+
+2021-04-26T12:02:00.551600
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.61407, final_score: 0.33629, time: 698.47590
+[RESULT]: Val. Epoch: 9, summary_loss: 0.88051, final_score: 0.39111, time: 222.85231
+
+2021-04-26T12:17:22.074495
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.61004, final_score: 0.33217, time: 872.89039
+[RESULT]: Val. Epoch: 10, summary_loss: 0.70871, final_score: 0.40559, time: 222.07895
+
+2021-04-26T12:35:37.248937
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.62771, final_score: 0.35529, time: 868.35973
+[RESULT]: Val. Epoch: 11, summary_loss: 0.68183, final_score: 0.36813, time: 213.80985
+
+2021-04-26T12:53:39.770362
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.61777, final_score: 0.34204, time: 833.50087
+[RESULT]: Val. Epoch: 12, summary_loss: 1.02616, final_score: 0.43057, time: 222.17575
+
+2021-04-26T13:11:15.656506
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62492, final_score: 0.35279, time: 872.08347
+[RESULT]: Val. Epoch: 13, summary_loss: 1.40808, final_score: 0.41259, time: 243.32187
+
+2021-04-26T13:29:51.240785
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 14, summary_loss: 0.62226, final_score: 0.35304, time: 801.65164
+[RESULT]: Val. Epoch: 14, summary_loss: 1.00022, final_score: 0.37662, time: 218.39248
+
+2021-04-26T13:46:51.474077
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 15, summary_loss: 0.61695, final_score: 0.34491, time: 851.96626
+[RESULT]: Val. Epoch: 15, summary_loss: 0.63506, final_score: 0.35714, time: 221.06723
+
+2021-04-26T14:04:44.895334
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 16, summary_loss: 0.61262, final_score: 0.33954, time: 857.64946
+[RESULT]: Val. Epoch: 16, summary_loss: 0.67952, final_score: 0.34466, time: 221.45635
+
+2021-04-26T14:22:44.196399
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.60672, final_score: 0.33554, time: 777.21898
+[RESULT]: Val. Epoch: 17, summary_loss: 0.62342, final_score: 0.33816, time: 211.96220
+
+2021-04-26T14:39:13.843862
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59844, final_score: 0.32867, time: 856.24270
+[RESULT]: Val. Epoch: 18, summary_loss: 0.65147, final_score: 0.37063, time: 232.62245
+
+2021-04-26T14:57:22.896947
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.59576, final_score: 0.32654, time: 754.23960
+[RESULT]: Val. Epoch: 19, summary_loss: 0.63092, final_score: 0.34316, time: 229.43963
+
+2021-04-26T15:13:46.789528
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.58195, final_score: 0.30780, time: 861.75581
+[RESULT]: Val. Epoch: 20, summary_loss: 0.74689, final_score: 0.34715, time: 211.59442
+
+2021-04-26T15:31:40.360787
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.56998, final_score: 0.29480, time: 841.29687
+[RESULT]: Val. Epoch: 21, summary_loss: 0.61841, final_score: 0.32517, time: 242.45947
+
+2021-04-26T15:49:44.463508
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.57077, final_score: 0.29568, time: 823.56545
+[RESULT]: Val. Epoch: 22, summary_loss: 0.80369, final_score: 0.34066, time: 242.45419
+
+2021-04-26T16:07:30.689083
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.55931, final_score: 0.28780, time: 851.77157
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69510, final_score: 0.31818, time: 206.89915
+
+2021-04-26T16:25:09.584388
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.53959, final_score: 0.26406, time: 767.97170
+[RESULT]: Val. Epoch: 24, summary_loss: 0.55658, final_score: 0.28621, time: 224.61215
+
+2021-04-26T16:41:42.544607
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.53640, final_score: 0.26931, time: 811.64862
+[RESULT]: Val. Epoch: 25, summary_loss: 0.56385, final_score: 0.27273, time: 221.26032
+
+2021-04-26T16:58:55.634640
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.53151, final_score: 0.26256, time: 762.88616
+[RESULT]: Val. Epoch: 26, summary_loss: 0.83529, final_score: 0.32667, time: 235.73374
+
+2021-04-26T17:15:34.479580
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.51545, final_score: 0.24569, time: 848.44460
+[RESULT]: Val. Epoch: 27, summary_loss: 0.58723, final_score: 0.26773, time: 230.60560
+
+2021-04-26T17:33:33.720703
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.51191, final_score: 0.24019, time: 861.89311
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56285, final_score: 0.26374, time: 196.80605
+
+2021-04-26T17:51:12.645970
+LR: 6.25e-05
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.50843, final_score: 0.24269, time: 863.55153
+[RESULT]: Val. Epoch: 29, summary_loss: 0.53974, final_score: 0.25774, time: 227.52278
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a0e43992706702c7f92a50bf8ede6539de00b031
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_3_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1c0f191cfed6050ba784e224df3c52f7163fc4f0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c626993994e481ad7fd0b3f86733bbb5e0e164f5101e725d3776fa1d1f4f78a9
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..41fe56f0ba2e4aaef1b41e948eac3c29e02357dc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c9ac0d6bbfa141743f641dafbaf79b2891116273aba362a99a79799cc5e39eb9
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..e6d6c3190502414421871ba0bd575dc0bad5e2d5
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e696179c888d0bb8f9ad063e3cba7fbdd409948ef4731b6ca6b2723eded2d0cd
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f69c5f1177e5e71f98531ab85791067a4d39997f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d5acbd7a252a7fb4644f53497726e8d71b3c8dfb0a9ae5e0d2be103106da7ce7
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..44f417fa5cb12d68cd65e2ef479c475e3224a0b4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-25T01:44:38.163600
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69518, final_score: 0.47726, time: 675.68924
+[RESULT]: Val. Epoch: 0, summary_loss: 0.71110, final_score: 0.49151, time: 191.07093
+
+2021-04-25T01:59:05.264861
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.67252, final_score: 0.41740, time: 677.82193
+[RESULT]: Val. Epoch: 1, summary_loss: 0.89452, final_score: 0.48352, time: 185.22949
+
+2021-04-25T02:13:28.480537
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.60081, final_score: 0.30867, time: 672.94543
+[RESULT]: Val. Epoch: 2, summary_loss: 1.66917, final_score: 0.45904, time: 184.77780
+
+2021-04-25T02:27:46.467819
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.57700, final_score: 0.29055, time: 683.31863
+[RESULT]: Val. Epoch: 3, summary_loss: 4.21914, final_score: 0.47802, time: 191.00412
+
+2021-04-25T02:42:20.966357
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.54863, final_score: 0.27118, time: 673.75329
+[RESULT]: Val. Epoch: 4, summary_loss: 1.66236, final_score: 0.47153, time: 185.58634
+
+2021-04-25T02:56:40.469797
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.55702, final_score: 0.27943, time: 689.66671
+[RESULT]: Val. Epoch: 5, summary_loss: 1.03570, final_score: 0.44256, time: 183.97631
+
+2021-04-25T03:11:14.283862
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.53529, final_score: 0.25619, time: 689.75579
+[RESULT]: Val. Epoch: 6, summary_loss: 1.05475, final_score: 0.42657, time: 183.54596
+
+2021-04-25T03:25:47.747987
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.56604, final_score: 0.27806, time: 688.93440
+[RESULT]: Val. Epoch: 7, summary_loss: 0.83979, final_score: 0.41558, time: 186.51610
+
+2021-04-25T03:40:23.412357
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.54858, final_score: 0.26381, time: 696.44283
+[RESULT]: Val. Epoch: 8, summary_loss: 1.17854, final_score: 0.45504, time: 188.15794
+
+2021-04-25T03:55:08.191933
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.57108, final_score: 0.29030, time: 691.07296
+[RESULT]: Val. Epoch: 9, summary_loss: 0.92670, final_score: 0.44456, time: 184.25373
+
+2021-04-25T04:09:43.709137
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.56599, final_score: 0.28105, time: 688.23615
+[RESULT]: Val. Epoch: 10, summary_loss: 1.02068, final_score: 0.41958, time: 182.90056
+
+2021-04-25T04:24:15.029827
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59519, final_score: 0.31492, time: 693.37692
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69780, final_score: 0.38811, time: 187.05660
+
+2021-04-25T04:38:55.873579
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.59047, final_score: 0.31042, time: 691.94822
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69623, final_score: 0.40460, time: 188.78428
+
+2021-04-25T04:53:36.926792
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.60975, final_score: 0.33542, time: 694.30544
+[RESULT]: Val. Epoch: 13, summary_loss: 0.79202, final_score: 0.40110, time: 184.28572
+
+2021-04-25T05:08:15.698321
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.60771, final_score: 0.33367, time: 692.70178
+[RESULT]: Val. Epoch: 14, summary_loss: 0.74141, final_score: 0.41858, time: 182.64686
+
+2021-04-25T05:22:51.207479
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.63275, final_score: 0.36141, time: 691.33279
+[RESULT]: Val. Epoch: 15, summary_loss: 0.65278, final_score: 0.37512, time: 183.52914
+
+2021-04-25T05:37:26.471911
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.62357, final_score: 0.35116, time: 692.97023
+[RESULT]: Val. Epoch: 16, summary_loss: 0.66248, final_score: 0.38661, time: 184.10107
+
+2021-04-25T05:52:03.733910
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.64150, final_score: 0.37803, time: 687.82607
+[RESULT]: Val. Epoch: 17, summary_loss: 0.68339, final_score: 0.38511, time: 184.46431
+
+2021-04-25T06:06:36.205211
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.63890, final_score: 0.37291, time: 703.89257
+[RESULT]: Val. Epoch: 18, summary_loss: 0.66127, final_score: 0.38911, time: 184.40408
+
+2021-04-25T06:21:24.705183
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.63738, final_score: 0.37166, time: 696.96062
+[RESULT]: Val. Epoch: 19, summary_loss: 0.75971, final_score: 0.41958, time: 187.37234
+
+2021-04-25T06:36:09.245084
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.63414, final_score: 0.37028, time: 685.41807
+[RESULT]: Val. Epoch: 20, summary_loss: 0.70897, final_score: 0.39910, time: 187.22553
+
+2021-04-25T06:50:42.091770
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.62765, final_score: 0.36453, time: 694.04870
+[RESULT]: Val. Epoch: 21, summary_loss: 0.65927, final_score: 0.36763, time: 187.03955
+
+2021-04-25T07:05:23.440260
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.62478, final_score: 0.36253, time: 694.65933
+[RESULT]: Val. Epoch: 22, summary_loss: 0.63237, final_score: 0.35465, time: 187.54896
+
+2021-04-25T07:20:06.987772
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.62271, final_score: 0.35804, time: 696.79832
+[RESULT]: Val. Epoch: 23, summary_loss: 0.82355, final_score: 0.38412, time: 186.42797
+
+2021-04-25T07:34:50.413817
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.62056, final_score: 0.35766, time: 691.07377
+[RESULT]: Val. Epoch: 24, summary_loss: 0.63259, final_score: 0.36314, time: 185.44749
+
+2021-04-25T07:49:27.188875
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.61186, final_score: 0.34766, time: 702.45209
+[RESULT]: Val. Epoch: 25, summary_loss: 0.63124, final_score: 0.35914, time: 181.53903
+
+2021-04-25T08:04:11.542977
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.61115, final_score: 0.34641, time: 691.85984
+[RESULT]: Val. Epoch: 26, summary_loss: 0.64139, final_score: 0.35614, time: 185.36924
+
+2021-04-25T08:18:48.966333
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.60869, final_score: 0.34354, time: 693.57406
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69519, final_score: 0.36763, time: 183.35184
+
+2021-04-25T08:33:26.089987
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.60574, final_score: 0.34304, time: 698.59813
+[RESULT]: Val. Epoch: 28, summary_loss: 0.63709, final_score: 0.35015, time: 183.79262
+
+2021-04-25T08:48:08.668080
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.59861, final_score: 0.32879, time: 696.18183
+[RESULT]: Val. Epoch: 29, summary_loss: 0.64939, final_score: 0.34865, time: 187.78848
+Fitter prepared. Device is cuda:0
+
+2021-04-26T00:51:29.797069
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.67569, final_score: 0.43164, time: 669.36460
+[RESULT]: Val. Epoch: 0, summary_loss: 0.95341, final_score: 0.49301, time: 188.24878
+
+2021-04-26T01:05:47.776275
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.61299, final_score: 0.32579, time: 678.77364
+[RESULT]: Val. Epoch: 1, summary_loss: 1.06983, final_score: 0.46204, time: 183.23988
+
+2021-04-26T01:20:10.006167
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.54988, final_score: 0.26418, time: 674.04005
+[RESULT]: Val. Epoch: 2, summary_loss: 0.78919, final_score: 0.45105, time: 184.45867
+
+2021-04-26T01:34:28.944754
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.53884, final_score: 0.25481, time: 679.42929
+[RESULT]: Val. Epoch: 3, summary_loss: 1.42443, final_score: 0.47353, time: 185.23689
+
+2021-04-26T01:48:53.785842
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.51031, final_score: 0.22907, time: 687.51335
+[RESULT]: Val. Epoch: 4, summary_loss: 0.90069, final_score: 0.41808, time: 188.30495
+
+2021-04-26T02:03:29.838778
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.47089, final_score: 0.21045, time: 692.56312
+[RESULT]: Val. Epoch: 5, summary_loss: 1.12170, final_score: 0.41658, time: 183.01406
+
+2021-04-26T02:18:05.584012
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.44316, final_score: 0.18858, time: 682.33353
+[RESULT]: Val. Epoch: 6, summary_loss: 2.02542, final_score: 0.45155, time: 187.88963
+
+2021-04-26T02:32:35.978887
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.48041, final_score: 0.21770, time: 688.72987
+[RESULT]: Val. Epoch: 7, summary_loss: 1.45879, final_score: 0.43856, time: 183.51708
+
+2021-04-26T02:47:09.458178
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.47963, final_score: 0.21720, time: 691.55377
+[RESULT]: Val. Epoch: 8, summary_loss: 0.94822, final_score: 0.40210, time: 185.40715
+
+2021-04-26T03:01:46.589282
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.51723, final_score: 0.24844, time: 685.76090
+[RESULT]: Val. Epoch: 9, summary_loss: 1.22815, final_score: 0.42607, time: 184.85009
+
+2021-04-26T03:16:17.377593
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.51374, final_score: 0.23957, time: 685.03792
+[RESULT]: Val. Epoch: 10, summary_loss: 0.77600, final_score: 0.40160, time: 183.72702
+
+2021-04-26T03:30:46.522251
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.55650, final_score: 0.27993, time: 694.92523
+[RESULT]: Val. Epoch: 11, summary_loss: 1.23190, final_score: 0.42158, time: 179.07634
+
+2021-04-26T03:45:20.692742
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.55116, final_score: 0.27706, time: 689.47918
+[RESULT]: Val. Epoch: 12, summary_loss: 0.98761, final_score: 0.41658, time: 179.22046
+
+2021-04-26T03:59:49.560466
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.59236, final_score: 0.31567, time: 698.24990
+[RESULT]: Val. Epoch: 13, summary_loss: 0.74542, final_score: 0.40260, time: 182.77055
+
+2021-04-26T04:14:30.947886
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.58305, final_score: 0.31055, time: 693.84045
+[RESULT]: Val. Epoch: 14, summary_loss: 0.83538, final_score: 0.38312, time: 184.35211
+
+2021-04-26T04:29:09.299042
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.61605, final_score: 0.33517, time: 691.35005
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69661, final_score: 0.38162, time: 183.24708
+
+2021-04-26T04:43:44.222791
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.60846, final_score: 0.33392, time: 694.29735
+[RESULT]: Val. Epoch: 16, summary_loss: 0.64091, final_score: 0.36314, time: 187.55132
+
+2021-04-26T04:58:26.463322
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.62928, final_score: 0.35879, time: 698.10603
+[RESULT]: Val. Epoch: 17, summary_loss: 0.65412, final_score: 0.36663, time: 184.53506
+
+2021-04-26T05:13:09.277819
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.62529, final_score: 0.35004, time: 691.66942
+[RESULT]: Val. Epoch: 18, summary_loss: 0.66182, final_score: 0.36813, time: 183.81528
+
+2021-04-26T05:27:44.958211
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.60989, final_score: 0.32829, time: 696.02556
+[RESULT]: Val. Epoch: 19, summary_loss: 0.65238, final_score: 0.33766, time: 182.79987
+
+2021-04-26T05:42:23.958449
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.60573, final_score: 0.33404, time: 697.03679
+[RESULT]: Val. Epoch: 20, summary_loss: 0.66919, final_score: 0.34965, time: 183.44739
+
+2021-04-26T05:57:04.636178
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.59372, final_score: 0.31742, time: 695.26012
+[RESULT]: Val. Epoch: 21, summary_loss: 0.67089, final_score: 0.32867, time: 182.96728
+
+2021-04-26T06:11:43.169682
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.58885, final_score: 0.31142, time: 692.56195
+[RESULT]: Val. Epoch: 22, summary_loss: 0.60887, final_score: 0.30420, time: 183.17248
+
+2021-04-26T06:26:19.426643
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.58158, final_score: 0.30417, time: 698.81053
+[RESULT]: Val. Epoch: 23, summary_loss: 0.61368, final_score: 0.29670, time: 183.77961
+
+2021-04-26T06:41:02.196855
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.57674, final_score: 0.29580, time: 690.13016
+[RESULT]: Val. Epoch: 24, summary_loss: 0.61469, final_score: 0.29371, time: 183.51282
+
+2021-04-26T06:55:36.047373
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.56893, final_score: 0.28918, time: 692.57721
+[RESULT]: Val. Epoch: 25, summary_loss: 0.58987, final_score: 0.27473, time: 184.26748
+
+2021-04-26T07:10:13.290475
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.56233, final_score: 0.28530, time: 696.55498
+[RESULT]: Val. Epoch: 26, summary_loss: 0.64960, final_score: 0.30519, time: 182.06113
+
+2021-04-26T07:24:52.094121
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.56169, final_score: 0.28318, time: 702.98710
+[RESULT]: Val. Epoch: 27, summary_loss: 0.57644, final_score: 0.27522, time: 186.25950
+
+2021-04-26T07:39:41.857637
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.55383, final_score: 0.27806, time: 698.75688
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56860, final_score: 0.27473, time: 183.01281
+
+2021-04-26T07:54:23.979059
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.54986, final_score: 0.27068, time: 693.88561
+[RESULT]: Val. Epoch: 29, summary_loss: 0.59958, final_score: 0.28072, time: 183.68627
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0d233541142323525352cfeddfa78be6a5e82e72
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_4/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..133c84abc673e8fc291649c7782c398e23adfad8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:59eece4c72bec28c2f3cf50725eeeb71506048ac9429ee6e7c4ab932b1212911
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..20ca984880633b697886c702461c75d39e06f999
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2ff731a96cc201bb6bc0683a82f881d8ab8c835a8f5fa175522a16e7abd5a0d8
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b8ab2bb7d6df4b92b7fc0c8c0b919f16a368c0a7
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ee2a5cff252bc1cbf0b2068621aa8940f59ca6b3c425e9e91a1ec5e933fd3aa9
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f7e12567b0628f06e600fcae3c1ae90f2e995692
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:dd5413e6ce57f561f2c24f22818ae149ca1f52ce3a4fe4f74e536104bec9624d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..625cd67f98a520842ade37cc2abf29d6bf92b4f8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:17:03.039055
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69120, final_score: 0.46038, time: 673.72103
+[RESULT]: Val. Epoch: 0, summary_loss: 0.83286, final_score: 0.48601, time: 191.92316
+
+2021-04-28T09:31:29.118815
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.65947, final_score: 0.38453, time: 680.14344
+[RESULT]: Val. Epoch: 1, summary_loss: 0.88634, final_score: 0.49001, time: 188.77037
+
+2021-04-28T09:45:58.195370
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.48193, final_score: 0.21145, time: 679.58840
+[RESULT]: Val. Epoch: 2, summary_loss: 1.17088, final_score: 0.45604, time: 185.24895
+
+2021-04-28T10:00:23.241858
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.46027, final_score: 0.19633, time: 674.55140
+[RESULT]: Val. Epoch: 3, summary_loss: 0.75781, final_score: 0.43157, time: 187.64411
+
+2021-04-28T10:14:45.843455
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.43314, final_score: 0.17808, time: 690.69974
+[RESULT]: Val. Epoch: 4, summary_loss: 0.94664, final_score: 0.44505, time: 189.72032
+
+2021-04-28T10:29:26.473220
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.48388, final_score: 0.22494, time: 687.49189
+[RESULT]: Val. Epoch: 5, summary_loss: 1.56707, final_score: 0.45904, time: 185.73663
+
+2021-04-28T10:43:59.931377
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.47754, final_score: 0.22094, time: 678.21211
+[RESULT]: Val. Epoch: 6, summary_loss: 0.76468, final_score: 0.42757, time: 186.05779
+
+2021-04-28T10:58:24.387855
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.51717, final_score: 0.25456, time: 692.52941
+[RESULT]: Val. Epoch: 7, summary_loss: 0.82250, final_score: 0.42557, time: 187.70294
+
+2021-04-28T11:13:04.839183
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.51131, final_score: 0.24844, time: 682.54149
+[RESULT]: Val. Epoch: 8, summary_loss: 0.79267, final_score: 0.42158, time: 187.13281
+
+2021-04-28T11:27:34.710728
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55898, final_score: 0.29168, time: 681.25408
+[RESULT]: Val. Epoch: 9, summary_loss: 0.75675, final_score: 0.42008, time: 188.68746
+
+2021-04-28T11:42:05.018272
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.55981, final_score: 0.29330, time: 698.65979
+[RESULT]: Val. Epoch: 10, summary_loss: 0.70245, final_score: 0.41808, time: 182.00905
+
+2021-04-28T11:56:46.049226
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59426, final_score: 0.32767, time: 706.36948
+[RESULT]: Val. Epoch: 11, summary_loss: 0.76159, final_score: 0.42308, time: 181.94390
+
+2021-04-28T12:11:34.558316
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.59596, final_score: 0.32729, time: 704.16437
+[RESULT]: Val. Epoch: 12, summary_loss: 0.85251, final_score: 0.43706, time: 186.45641
+
+2021-04-28T12:26:25.394414
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62481, final_score: 0.35816, time: 700.09373
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69523, final_score: 0.41409, time: 183.75766
+
+2021-04-28T12:41:09.606251
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.62768, final_score: 0.36341, time: 705.93841
+[RESULT]: Val. Epoch: 14, summary_loss: 1.00670, final_score: 0.44755, time: 192.36120
+
+2021-04-28T12:56:08.125973
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.65327, final_score: 0.39728, time: 705.47917
+[RESULT]: Val. Epoch: 15, summary_loss: 0.67989, final_score: 0.41359, time: 188.26148
+
+2021-04-28T13:11:02.243746
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64706, final_score: 0.39265, time: 690.58154
+[RESULT]: Val. Epoch: 16, summary_loss: 0.68761, final_score: 0.40959, time: 187.72888
+
+2021-04-28T13:25:40.714463
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.66136, final_score: 0.41240, time: 688.01917
+[RESULT]: Val. Epoch: 17, summary_loss: 0.67884, final_score: 0.41808, time: 181.10486
+
+2021-04-28T13:40:10.225724
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.66202, final_score: 0.41252, time: 700.49083
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69395, final_score: 0.41958, time: 185.29525
+
+2021-04-28T13:54:56.253652
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.66153, final_score: 0.41140, time: 706.68414
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69434, final_score: 0.41708, time: 187.79856
+
+2021-04-28T14:09:50.911085
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.65793, final_score: 0.41190, time: 678.40341
+[RESULT]: Val. Epoch: 20, summary_loss: 0.66809, final_score: 0.40909, time: 193.15804
+
+2021-04-28T14:24:22.865441
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.65229, final_score: 0.40390, time: 689.59019
+[RESULT]: Val. Epoch: 21, summary_loss: 0.68734, final_score: 0.41608, time: 191.40743
+
+2021-04-28T14:39:04.064287
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.65722, final_score: 0.40815, time: 697.61092
+[RESULT]: Val. Epoch: 22, summary_loss: 0.70191, final_score: 0.41159, time: 186.34484
+
+2021-04-28T14:53:48.172006
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.64936, final_score: 0.40102, time: 705.98758
+[RESULT]: Val. Epoch: 23, summary_loss: 0.70908, final_score: 0.41758, time: 186.86131
+
+2021-04-28T15:08:41.221194
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.64837, final_score: 0.40202, time: 720.94903
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69093, final_score: 0.40909, time: 195.40607
+
+2021-04-28T15:23:57.758478
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.64428, final_score: 0.39415, time: 733.39929
+[RESULT]: Val. Epoch: 25, summary_loss: 0.66479, final_score: 0.40060, time: 199.77938
+
+2021-04-28T15:39:31.491835
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.64823, final_score: 0.39753, time: 736.82147
+[RESULT]: Val. Epoch: 26, summary_loss: 0.65820, final_score: 0.39610, time: 194.25484
+
+2021-04-28T15:55:02.925455
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64595, final_score: 0.39665, time: 719.28831
+[RESULT]: Val. Epoch: 27, summary_loss: 0.66794, final_score: 0.40010, time: 188.24552
+
+2021-04-28T16:10:10.635394
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.64496, final_score: 0.39853, time: 700.59070
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65671, final_score: 0.39161, time: 184.23340
+
+2021-04-28T16:24:55.862689
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.64249, final_score: 0.39203, time: 707.37978
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65977, final_score: 0.39760, time: 188.81951
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..9692da412b6a8a29bebd19ae476a6130d5e93602
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..015681eb0402974780cde54403ce3df51af65382
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:060e2a00acb1014fb3c0dea9ee7acb7ed9fc9b5e5afaf39244e90e3b227c385b
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..43975199e5efd15469be53fbcbc7684a4df3925d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7e42a808bad8020031d58bee89236a629b55916b84243ba0bdb23fd5fe74eeea
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..65dc103d232ac166ca6c1873ad464fa7299bd15b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef5f4043c69512ce5dbb5fa3c6127251d599386506ace77c7af99eab5276130b
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3cecd59209a9e2d5506b2271474a5a13e3c183cc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:90abe9a137d5f9e4c5b93ffb66bf2ab5c46a56a650da11e5b95c29783f66d0da
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5e3918ec38eebdd404fecfd3be318a9fc92ba4fc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-10T19:19:47.144092
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.68731, final_score: 0.45514, time: 677.08043
+[RESULT]: Val. Epoch: 0, summary_loss: 3.27126, final_score: 0.49251, time: 188.21371
+
+2021-06-10T19:34:12.879213
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.50298, final_score: 0.22707, time: 682.58422
+[RESULT]: Val. Epoch: 1, summary_loss: 0.96637, final_score: 0.43257, time: 185.80895
+
+2021-06-10T19:48:42.671201
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40013, final_score: 0.15596, time: 675.05807
+[RESULT]: Val. Epoch: 2, summary_loss: 1.52525, final_score: 0.44705, time: 186.24561
+
+2021-06-10T20:03:04.187907
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.43356, final_score: 0.18145, time: 682.81344
+[RESULT]: Val. Epoch: 3, summary_loss: 0.85419, final_score: 0.42158, time: 187.44044
+
+2021-06-10T20:17:34.837615
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.41802, final_score: 0.17421, time: 685.80909
+[RESULT]: Val. Epoch: 4, summary_loss: 0.86067, final_score: 0.42557, time: 193.27600
+
+2021-06-10T20:32:14.180709
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46686, final_score: 0.21132, time: 694.69328
+[RESULT]: Val. Epoch: 5, summary_loss: 0.86891, final_score: 0.41858, time: 187.88971
+
+2021-06-10T20:46:56.947211
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.45822, final_score: 0.20857, time: 685.40362
+[RESULT]: Val. Epoch: 6, summary_loss: 0.79272, final_score: 0.41808, time: 188.27934
+
+2021-06-10T21:01:31.166274
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.50827, final_score: 0.24856, time: 690.56607
+[RESULT]: Val. Epoch: 7, summary_loss: 0.73001, final_score: 0.41758, time: 190.57430
+
+2021-06-10T21:16:12.702328
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.50718, final_score: 0.24756, time: 690.19730
+[RESULT]: Val. Epoch: 8, summary_loss: 0.73617, final_score: 0.40859, time: 189.24308
+
+2021-06-10T21:30:52.330073
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55591, final_score: 0.28830, time: 700.33402
+[RESULT]: Val. Epoch: 9, summary_loss: 0.68520, final_score: 0.40909, time: 194.03127
+
+2021-06-10T21:45:47.067990
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.54580, final_score: 0.27881, time: 701.44615
+[RESULT]: Val. Epoch: 10, summary_loss: 0.70717, final_score: 0.41508, time: 187.21244
+
+2021-06-10T22:00:35.971298
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.59303, final_score: 0.32542, time: 697.04667
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69791, final_score: 0.40809, time: 186.43429
+
+2021-06-10T22:15:19.635009
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.58670, final_score: 0.31830, time: 695.58123
+[RESULT]: Val. Epoch: 12, summary_loss: 0.71739, final_score: 0.40559, time: 186.58981
+
+2021-06-10T22:30:02.021764
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.62161, final_score: 0.35954, time: 696.32514
+[RESULT]: Val. Epoch: 13, summary_loss: 0.78059, final_score: 0.41259, time: 185.83294
+
+2021-06-10T22:44:44.380907
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.62060, final_score: 0.35854, time: 696.72542
+[RESULT]: Val. Epoch: 14, summary_loss: 0.67023, final_score: 0.40260, time: 186.69610
+
+2021-06-10T22:59:28.166339
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64812, final_score: 0.38703, time: 691.99194
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69258, final_score: 0.41059, time: 184.74545
+
+2021-06-10T23:14:05.134744
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64894, final_score: 0.38915, time: 703.67975
+[RESULT]: Val. Epoch: 16, summary_loss: 0.67335, final_score: 0.40160, time: 190.52221
+
+2021-06-10T23:28:59.528901
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.65881, final_score: 0.40602, time: 693.63919
+[RESULT]: Val. Epoch: 17, summary_loss: 0.67554, final_score: 0.40559, time: 186.26223
+
+2021-06-10T23:43:39.651070
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.65816, final_score: 0.40740, time: 697.84232
+[RESULT]: Val. Epoch: 18, summary_loss: 0.71612, final_score: 0.41758, time: 186.69843
+
+2021-06-10T23:58:24.391056
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.65421, final_score: 0.40552, time: 694.39797
+[RESULT]: Val. Epoch: 19, summary_loss: 0.65954, final_score: 0.39910, time: 192.90936
+
+2021-06-11T00:13:12.170881
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.65044, final_score: 0.39928, time: 693.30720
+[RESULT]: Val. Epoch: 20, summary_loss: 0.87252, final_score: 0.42258, time: 189.15027
+
+2021-06-11T00:27:54.817642
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.65252, final_score: 0.40177, time: 704.17414
+[RESULT]: Val. Epoch: 21, summary_loss: 0.66115, final_score: 0.39860, time: 188.80439
+
+2021-06-11T00:42:48.015513
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.64745, final_score: 0.39215, time: 701.08243
+[RESULT]: Val. Epoch: 22, summary_loss: 0.65652, final_score: 0.40010, time: 187.23476
+
+2021-06-11T00:57:36.903341
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.64858, final_score: 0.39815, time: 694.43013
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69695, final_score: 0.40260, time: 187.22537
+
+2021-06-11T01:12:18.749684
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.64840, final_score: 0.39403, time: 703.13372
+[RESULT]: Val. Epoch: 24, summary_loss: 0.65689, final_score: 0.39510, time: 185.79853
+
+2021-06-11T01:27:07.875209
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.64005, final_score: 0.38878, time: 695.86677
+[RESULT]: Val. Epoch: 25, summary_loss: 0.67700, final_score: 0.39710, time: 190.29328
+
+2021-06-11T01:41:54.250348
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.64505, final_score: 0.39690, time: 701.36822
+[RESULT]: Val. Epoch: 26, summary_loss: 0.65173, final_score: 0.38511, time: 185.37624
+
+2021-06-11T01:56:41.384912
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64348, final_score: 0.39053, time: 696.08961
+[RESULT]: Val. Epoch: 27, summary_loss: 0.67011, final_score: 0.39610, time: 185.37327
+
+2021-06-11T02:11:23.047955
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.64366, final_score: 0.39278, time: 702.21345
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65673, final_score: 0.38362, time: 187.15324
+
+2021-06-11T02:26:12.694778
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.64200, final_score: 0.38878, time: 711.19274
+[RESULT]: Val. Epoch: 29, summary_loss: 0.64960, final_score: 0.38911, time: 186.69439
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..91da9182ae1cf9c5f227ea647d3b030a28d648e5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_6/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..45f94939d7ed5cb93c79a4854a313403e25ec3a6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:82cdc05ed402e24f2948e79fbf7e53fdf951811a2962118e03cab31b2de9a925
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f931b2c9d8062d970dfd3b12da1296777d7dfbd9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4df13e13c4fc912ac4cdfa7749c8b688454972b680786c6018ed872dfccc27f8
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b8628a16e3fcb3015c203266c87814c165a86db0
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7c078989d6ddd793a18484a15dfb679d3bf6c30ff7e23df0dd2eec57b821aad4
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7788689160e4544dc47f56246a8b49ed7332824e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:46fdc46c4d3b11f65439c853cd12e8b1442209f9ca2251243efa06f29a84f3ea
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..d07f7e6b04a2be2adf970ef53fdd3f257371f333
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-11T15:46:08.722870
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69604, final_score: 0.48600, time: 684.04594
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69612, final_score: 0.49600, time: 189.63013
+
+2021-06-11T16:00:42.787677
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.52816, final_score: 0.26418, time: 683.65382
+[RESULT]: Val. Epoch: 1, summary_loss: 0.96657, final_score: 0.45055, time: 189.69005
+
+2021-06-11T16:15:16.292832
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.40615, final_score: 0.15246, time: 676.66003
+[RESULT]: Val. Epoch: 2, summary_loss: 1.66709, final_score: 0.46903, time: 183.80052
+
+2021-06-11T16:29:36.957299
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.44143, final_score: 0.18770, time: 679.32107
+[RESULT]: Val. Epoch: 3, summary_loss: 1.62327, final_score: 0.46404, time: 188.99581
+
+2021-06-11T16:44:05.456583
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.41763, final_score: 0.16908, time: 675.32129
+[RESULT]: Val. Epoch: 4, summary_loss: 0.90274, final_score: 0.44256, time: 183.72909
+
+2021-06-11T16:58:24.676424
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.46539, final_score: 0.21207, time: 683.25130
+[RESULT]: Val. Epoch: 5, summary_loss: 0.77540, final_score: 0.42258, time: 182.92042
+
+2021-06-11T17:12:51.040787
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.46391, final_score: 0.20932, time: 681.10466
+[RESULT]: Val. Epoch: 6, summary_loss: 0.90173, final_score: 0.44905, time: 182.67492
+
+2021-06-11T17:27:15.019028
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.51016, final_score: 0.24469, time: 693.68207
+[RESULT]: Val. Epoch: 7, summary_loss: 1.16790, final_score: 0.46953, time: 185.28172
+
+2021-06-11T17:41:54.151886
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.50271, final_score: 0.23869, time: 689.33626
+[RESULT]: Val. Epoch: 8, summary_loss: 1.51355, final_score: 0.46603, time: 183.92731
+
+2021-06-11T17:56:27.584674
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.55205, final_score: 0.27868, time: 690.60421
+[RESULT]: Val. Epoch: 9, summary_loss: 0.74199, final_score: 0.41259, time: 183.66027
+
+2021-06-11T18:11:02.030065
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.53915, final_score: 0.26918, time: 699.89606
+[RESULT]: Val. Epoch: 10, summary_loss: 0.73270, final_score: 0.42208, time: 183.04418
+
+2021-06-11T18:25:45.156882
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.58692, final_score: 0.30967, time: 702.70385
+[RESULT]: Val. Epoch: 11, summary_loss: 1.05335, final_score: 0.43057, time: 183.13528
+
+2021-06-11T18:40:31.154083
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.58596, final_score: 0.30580, time: 697.01429
+[RESULT]: Val. Epoch: 12, summary_loss: 0.94769, final_score: 0.44755, time: 186.07912
+
+2021-06-11T18:55:14.397553
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.61886, final_score: 0.34504, time: 704.92018
+[RESULT]: Val. Epoch: 13, summary_loss: 0.68109, final_score: 0.42557, time: 182.75472
+
+2021-06-11T19:10:02.452452
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.61853, final_score: 0.34129, time: 692.48179
+[RESULT]: Val. Epoch: 14, summary_loss: 0.71877, final_score: 0.40360, time: 186.52400
+
+2021-06-11T19:24:41.620981
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64583, final_score: 0.38065, time: 698.90109
+[RESULT]: Val. Epoch: 15, summary_loss: 0.67868, final_score: 0.39910, time: 184.80719
+
+2021-06-11T19:39:25.673643
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64277, final_score: 0.37803, time: 693.92450
+[RESULT]: Val. Epoch: 16, summary_loss: 0.68258, final_score: 0.40360, time: 183.94090
+
+2021-06-11T19:54:03.706543
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.65978, final_score: 0.40627, time: 706.98273
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69041, final_score: 0.40010, time: 182.95148
+
+2021-06-11T20:08:53.795001
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.65698, final_score: 0.39840, time: 693.09564
+[RESULT]: Val. Epoch: 18, summary_loss: 0.67917, final_score: 0.39461, time: 184.15152
+
+2021-06-11T20:23:31.224445
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.65800, final_score: 0.40140, time: 701.36281
+[RESULT]: Val. Epoch: 19, summary_loss: 0.73187, final_score: 0.40410, time: 188.18391
+
+2021-06-11T20:38:20.959053
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.65745, final_score: 0.39765, time: 701.12851
+[RESULT]: Val. Epoch: 20, summary_loss: 0.68988, final_score: 0.40310, time: 184.76770
+
+2021-06-11T20:53:07.021980
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.65420, final_score: 0.39290, time: 691.35102
+[RESULT]: Val. Epoch: 21, summary_loss: 0.67993, final_score: 0.40559, time: 189.79220
+
+2021-06-11T21:07:48.322515
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.65080, final_score: 0.39228, time: 702.64375
+[RESULT]: Val. Epoch: 22, summary_loss: 0.66712, final_score: 0.39061, time: 183.19960
+
+2021-06-11T21:22:34.494025
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.64914, final_score: 0.38615, time: 686.91285
+[RESULT]: Val. Epoch: 23, summary_loss: 0.65860, final_score: 0.39261, time: 182.76339
+
+2021-06-11T21:37:04.587477
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.64787, final_score: 0.38753, time: 688.42979
+[RESULT]: Val. Epoch: 24, summary_loss: 0.71183, final_score: 0.39311, time: 184.45518
+
+2021-06-11T21:51:37.628549
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.64705, final_score: 0.38478, time: 700.07746
+[RESULT]: Val. Epoch: 25, summary_loss: 0.67023, final_score: 0.40210, time: 185.39128
+
+2021-06-11T22:06:23.255680
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.64588, final_score: 0.37891, time: 698.95333
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66024, final_score: 0.38362, time: 191.53146
+
+2021-06-11T22:21:13.899317
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64053, final_score: 0.37478, time: 702.80761
+[RESULT]: Val. Epoch: 27, summary_loss: 0.68248, final_score: 0.38262, time: 186.23175
+
+2021-06-11T22:36:03.121787
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.63630, final_score: 0.36978, time: 693.64341
+[RESULT]: Val. Epoch: 28, summary_loss: 0.66054, final_score: 0.37962, time: 182.51617
+
+2021-06-11T22:50:39.470912
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.63652, final_score: 0.37228, time: 691.25406
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65485, final_score: 0.38012, time: 187.16830
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..271864966a4ef2af5894c716946f9e3d8ce1e424
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_7/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7530c7ae7c18ed5fd1608a56aba5f21928784e47
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-032epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-032epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7c28a81c21b1154a99ddd2d137fca5606774d6b1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-032epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5371ce2e5f3b751158a91e1f073355002abeedff915b49b89b579529e1e83211
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-040epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-040epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..705367a9e4b6a15f4662420b2e6389a1d73acc1a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-040epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef061c592265e4237c1e8115a5428cdc9b23fd1e53a8dd78953b3694809e5481
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-042epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-042epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ff26a2160bb7cfa19924499b6b2972df0770ebce
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/best-checkpoint-042epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6b6022a73109e0a2b58a7ad3d50457331b4f2f6b355961c546e58f2540956d6d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9bcc6e820c5ff1aa906be1deb3cbc940510a9263
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d11a57b88f9967aa580e2d5cd4049645157012b29404f7d5a28c70cea8d4dc87
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..915bbe0a17898231d38471cf266323537c7b614b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_1/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:49:02.428237
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69727, final_score: 0.49813, time: 292.86171
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49550, time: 27.75810
+
+2021-06-25T17:54:23.385561
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69314, final_score: 0.49750, time: 289.78386
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69314, final_score: 0.49351, time: 25.38252
+
+2021-06-25T17:59:38.872938
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69314, final_score: 0.49650, time: 289.60142
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69321, final_score: 0.49201, time: 28.61540
+
+2021-06-25T18:04:57.280499
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69334, final_score: 0.49313, time: 290.00163
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69325, final_score: 0.49251, time: 27.11310
+
+2021-06-25T18:10:14.558267
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69322, final_score: 0.48925, time: 289.89929
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69274, final_score: 0.48152, time: 27.81536
+
+2021-06-25T18:15:32.639574
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.68072, final_score: 0.43077, time: 289.73918
+[RESULT]: Val. Epoch: 5, summary_loss: 1.36291, final_score: 0.45654, time: 26.60440
+
+2021-06-25T18:20:49.189846
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.65094, final_score: 0.36853, time: 289.61738
+[RESULT]: Val. Epoch: 6, summary_loss: 0.71531, final_score: 0.34865, time: 27.77381
+
+2021-06-25T18:26:06.750356
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.63272, final_score: 0.33704, time: 289.68461
+[RESULT]: Val. Epoch: 7, summary_loss: 0.73914, final_score: 0.34865, time: 26.97391
+
+2021-06-25T18:31:23.595249
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.61944, final_score: 0.31455, time: 289.99606
+[RESULT]: Val. Epoch: 8, summary_loss: 0.67919, final_score: 0.32318, time: 26.47827
+
+2021-06-25T18:36:40.494099
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.60797, final_score: 0.30742, time: 290.04007
+[RESULT]: Val. Epoch: 9, summary_loss: 0.65731, final_score: 0.31419, time: 26.75961
+
+2021-06-25T18:41:57.644455
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.59792, final_score: 0.28793, time: 289.85661
+[RESULT]: Val. Epoch: 10, summary_loss: 0.94868, final_score: 0.35964, time: 26.27805
+
+2021-06-25T18:47:13.975248
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.58634, final_score: 0.28305, time: 289.83156
+[RESULT]: Val. Epoch: 11, summary_loss: 0.66303, final_score: 0.29471, time: 26.30541
+
+2021-06-25T18:52:30.278037
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.57640, final_score: 0.26843, time: 289.87555
+[RESULT]: Val. Epoch: 12, summary_loss: 0.61465, final_score: 0.25824, time: 26.10344
+
+2021-06-25T18:57:46.596315
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.56466, final_score: 0.26556, time: 290.30883
+[RESULT]: Val. Epoch: 13, summary_loss: 0.61715, final_score: 0.28422, time: 25.69262
+
+2021-06-25T19:03:02.761951
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.55181, final_score: 0.25556, time: 289.57868
+[RESULT]: Val. Epoch: 14, summary_loss: 0.62465, final_score: 0.26474, time: 26.57881
+
+2021-06-25T19:08:19.089254
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54724, final_score: 0.24856, time: 289.46383
+[RESULT]: Val. Epoch: 15, summary_loss: 0.59202, final_score: 0.26523, time: 26.83469
+
+2021-06-25T19:13:35.701635
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.53948, final_score: 0.24456, time: 289.58824
+[RESULT]: Val. Epoch: 16, summary_loss: 0.56776, final_score: 0.24775, time: 27.11090
+
+2021-06-25T19:18:52.774146
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.53056, final_score: 0.24394, time: 289.70150
+[RESULT]: Val. Epoch: 17, summary_loss: 0.58061, final_score: 0.25475, time: 26.41062
+
+2021-06-25T19:24:09.088919
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.52216, final_score: 0.22432, time: 289.69115
+[RESULT]: Val. Epoch: 18, summary_loss: 0.59488, final_score: 0.25624, time: 25.42840
+
+2021-06-25T19:29:24.437772
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.50498, final_score: 0.21682, time: 290.24320
+[RESULT]: Val. Epoch: 19, summary_loss: 0.54470, final_score: 0.23427, time: 25.85747
+
+2021-06-25T19:34:40.916190
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.49314, final_score: 0.21020, time: 289.96560
+[RESULT]: Val. Epoch: 20, summary_loss: 0.54617, final_score: 0.24076, time: 28.58628
+
+2021-06-25T19:39:59.651676
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.49175, final_score: 0.20882, time: 289.58894
+[RESULT]: Val. Epoch: 21, summary_loss: 0.60868, final_score: 0.24426, time: 26.70542
+
+2021-06-25T19:45:16.108563
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.47203, final_score: 0.19783, time: 290.07902
+[RESULT]: Val. Epoch: 22, summary_loss: 0.56568, final_score: 0.21728, time: 26.08703
+
+2021-06-25T19:50:32.441905
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.46786, final_score: 0.18945, time: 290.06886
+[RESULT]: Val. Epoch: 23, summary_loss: 0.52529, final_score: 0.21528, time: 26.59213
+
+2021-06-25T19:55:49.543079
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.46405, final_score: 0.19108, time: 289.76876
+[RESULT]: Val. Epoch: 24, summary_loss: 0.54552, final_score: 0.22128, time: 25.26996
+
+2021-06-25T20:01:04.764438
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.45629, final_score: 0.18520, time: 289.96113
+[RESULT]: Val. Epoch: 25, summary_loss: 0.53980, final_score: 0.21778, time: 26.25574
+
+2021-06-25T20:06:21.158428
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.45569, final_score: 0.18308, time: 290.11026
+[RESULT]: Val. Epoch: 26, summary_loss: 0.56285, final_score: 0.21728, time: 25.67554
+
+2021-06-25T20:11:37.102755
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.44331, final_score: 0.17333, time: 289.81444
+[RESULT]: Val. Epoch: 27, summary_loss: 0.57966, final_score: 0.22028, time: 26.44009
+
+2021-06-25T20:16:53.550162
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.44404, final_score: 0.17333, time: 290.48909
+[RESULT]: Val. Epoch: 28, summary_loss: 0.54456, final_score: 0.21329, time: 26.22491
+
+2021-06-25T20:22:10.449592
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.44118, final_score: 0.17508, time: 289.74960
+[RESULT]: Val. Epoch: 29, summary_loss: 0.56672, final_score: 0.21179, time: 28.22401
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.028649
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 25, summary_loss: 0.45189, final_score: 0.18733, time: 291.81960
+[RESULT]: Val. Epoch: 25, summary_loss: 0.65449, final_score: 0.24725, time: 24.87709
+
+2021-06-26T08:58:39.904877
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 26, summary_loss: 0.44770, final_score: 0.18783, time: 292.14375
+[RESULT]: Val. Epoch: 26, summary_loss: 0.60313, final_score: 0.22478, time: 24.19452
+
+2021-06-26T09:03:56.401760
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 27, summary_loss: 0.44270, final_score: 0.18258, time: 292.54626
+[RESULT]: Val. Epoch: 27, summary_loss: 0.66302, final_score: 0.22228, time: 25.36440
+
+2021-06-26T09:09:14.502503
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 28, summary_loss: 0.44137, final_score: 0.18245, time: 292.94754
+[RESULT]: Val. Epoch: 28, summary_loss: 0.65210, final_score: 0.23177, time: 25.06140
+
+2021-06-26T09:14:32.663993
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 29, summary_loss: 0.43608, final_score: 0.17583, time: 293.07006
+[RESULT]: Val. Epoch: 29, summary_loss: 0.73702, final_score: 0.24276, time: 25.30536
+
+2021-06-26T09:19:51.189770
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 30, summary_loss: 0.43338, final_score: 0.17258, time: 293.47956
+[RESULT]: Val. Epoch: 30, summary_loss: 0.60193, final_score: 0.22178, time: 24.77353
+
+2021-06-26T09:25:09.614416
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.42722, final_score: 0.17246, time: 293.12160
+[RESULT]: Val. Epoch: 31, summary_loss: 0.52979, final_score: 0.20130, time: 24.64053
+
+2021-06-26T09:30:27.719624
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.42615, final_score: 0.17308, time: 292.30374
+[RESULT]: Val. Epoch: 32, summary_loss: 0.49679, final_score: 0.19031, time: 25.24043
+
+2021-06-26T09:35:45.622464
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.41764, final_score: 0.16921, time: 292.49725
+[RESULT]: Val. Epoch: 33, summary_loss: 0.50450, final_score: 0.19331, time: 25.10311
+
+2021-06-26T09:41:03.499548
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 34, summary_loss: 0.41413, final_score: 0.16071, time: 292.49773
+[RESULT]: Val. Epoch: 34, summary_loss: 0.51745, final_score: 0.19980, time: 24.77981
+
+2021-06-26T09:46:20.954637
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 35, summary_loss: 0.40650, final_score: 0.15609, time: 293.33376
+[RESULT]: Val. Epoch: 35, summary_loss: 0.60940, final_score: 0.21279, time: 24.63485
+
+2021-06-26T09:51:39.076201
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 36, summary_loss: 0.40990, final_score: 0.15996, time: 292.82747
+[RESULT]: Val. Epoch: 36, summary_loss: 0.55569, final_score: 0.20180, time: 24.94271
+
+2021-06-26T09:56:56.998003
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.40557, final_score: 0.15846, time: 293.78376
+[RESULT]: Val. Epoch: 37, summary_loss: 0.51606, final_score: 0.19780, time: 24.83757
+
+2021-06-26T10:02:15.814147
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 38, summary_loss: 0.40171, final_score: 0.15584, time: 292.65451
+[RESULT]: Val. Epoch: 38, summary_loss: 0.54043, final_score: 0.19031, time: 24.83443
+
+2021-06-26T10:07:33.504435
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 39, summary_loss: 0.39606, final_score: 0.15509, time: 292.79666
+[RESULT]: Val. Epoch: 39, summary_loss: 0.50692, final_score: 0.17932, time: 24.10612
+
+2021-06-26T10:12:50.592648
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 40, summary_loss: 0.39795, final_score: 0.14996, time: 292.70829
+[RESULT]: Val. Epoch: 40, summary_loss: 0.49092, final_score: 0.18282, time: 25.38920
+
+2021-06-26T10:18:09.056758
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 41, summary_loss: 0.39255, final_score: 0.14859, time: 292.75326
+[RESULT]: Val. Epoch: 41, summary_loss: 0.52156, final_score: 0.17932, time: 24.77357
+
+2021-06-26T10:23:26.752735
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 42, summary_loss: 0.39351, final_score: 0.14746, time: 292.85319
+[RESULT]: Val. Epoch: 42, summary_loss: 0.47958, final_score: 0.17682, time: 25.36328
+
+2021-06-26T10:28:45.325783
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 43, summary_loss: 0.39403, final_score: 0.15071, time: 292.88364
+[RESULT]: Val. Epoch: 43, summary_loss: 0.74496, final_score: 0.22827, time: 25.35344
+
+2021-06-26T10:34:03.756642
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 44, summary_loss: 0.38451, final_score: 0.14084, time: 293.61539
+[RESULT]: Val. Epoch: 44, summary_loss: 0.49627, final_score: 0.18332, time: 24.94457
+
+2021-06-26T10:39:22.510951
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 45, summary_loss: 0.37020, final_score: 0.13534, time: 292.56209
+[RESULT]: Val. Epoch: 45, summary_loss: 0.48730, final_score: 0.17283, time: 24.18207
+
+2021-06-26T10:44:39.412829
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.36732, final_score: 0.13309, time: 292.33883
+[RESULT]: Val. Epoch: 46, summary_loss: 0.60967, final_score: 0.19680, time: 24.94191
+
+2021-06-26T10:49:56.884807
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.36026, final_score: 0.12822, time: 293.03908
+[RESULT]: Val. Epoch: 47, summary_loss: 0.49320, final_score: 0.16583, time: 25.04548
+
+2021-06-26T10:55:15.153712
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.35337, final_score: 0.12259, time: 292.85231
+[RESULT]: Val. Epoch: 48, summary_loss: 0.53850, final_score: 0.17133, time: 24.54796
+
+2021-06-26T11:00:32.729820
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.35165, final_score: 0.12272, time: 293.49351
+[RESULT]: Val. Epoch: 49, summary_loss: 0.56016, final_score: 0.17782, time: 24.81000
+
+2021-06-26T11:05:51.210238
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.35658, final_score: 0.12359, time: 292.92830
+[RESULT]: Val. Epoch: 50, summary_loss: 0.54388, final_score: 0.17483, time: 25.27919
+
+2021-06-26T11:11:09.604416
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.35439, final_score: 0.12572, time: 292.62036
+[RESULT]: Val. Epoch: 51, summary_loss: 0.51559, final_score: 0.17582, time: 24.73404
+
+2021-06-26T11:16:27.142723
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.34945, final_score: 0.12222, time: 293.01267
+[RESULT]: Val. Epoch: 52, summary_loss: 0.52111, final_score: 0.16833, time: 25.36918
+
+2021-06-26T11:21:45.682587
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.34669, final_score: 0.11422, time: 293.68585
+[RESULT]: Val. Epoch: 53, summary_loss: 0.54120, final_score: 0.17183, time: 24.49170
+
+2021-06-26T11:27:04.008325
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.34957, final_score: 0.12159, time: 292.84288
+[RESULT]: Val. Epoch: 54, summary_loss: 0.55379, final_score: 0.17333, time: 24.30216
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..cdf9da4513d18f7dc6a06fc767a81a0747fc1fc8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-000epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-000epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8a2d4afd229a4111601b08a65e6ab6d10ef11788
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-000epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a444d4d1f51f448d3d8f4a6e58dd1ca7c447a7e51d682150118f25cff4ecdfb8
+size 57505280
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-002epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-002epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9ca6d6c2d9f51a29045b076518d3960c30d3be99
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/best-checkpoint-002epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8491c5fe26baebca13f27c0228823d588af410df763ce6982a675778859a1a11
+size 57505408
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..20c51e2af59388e2de0b1d95aede28ae16675099
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8b5884d7c38be1c4d432e16c043dd2608bc11b4de82e372a12e8b0f2946f45d8
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..c43ff8a96453d6e14a2a1d94e92eb2a3a1443a13
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_2/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:48:31.217710
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69745, final_score: 0.49800, time: 297.77635
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49550, time: 25.05583
+
+2021-06-25T17:53:54.386642
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69315, final_score: 0.49713, time: 299.63052
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69315, final_score: 0.49451, time: 26.33651
+
+2021-06-25T17:59:20.521064
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69315, final_score: 0.49700, time: 299.90197
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69314, final_score: 0.49451, time: 25.51630
+
+2021-06-25T18:04:46.243832
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69329, final_score: 0.49688, time: 300.23060
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69314, final_score: 0.49401, time: 26.58505
+
+2021-06-25T18:10:13.213922
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69315, final_score: 0.49550, time: 299.79131
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69320, final_score: 0.49401, time: 26.55114
+
+2021-06-25T18:15:39.724061
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69351, final_score: 0.49763, time: 299.80171
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69315, final_score: 0.49600, time: 25.76542
+
+2021-06-25T18:21:05.475230
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69384, final_score: 0.49913, time: 304.73306
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69315, final_score: 0.49750, time: 25.24654
+
+2021-06-25T18:26:35.614447
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69317, final_score: 0.49875, time: 305.79557
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69315, final_score: 0.49750, time: 26.48679
+
+2021-06-25T18:32:08.068812
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69315, final_score: 0.49863, time: 305.76004
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69316, final_score: 0.49750, time: 25.64165
+
+2021-06-25T18:37:39.634469
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69315, final_score: 0.49850, time: 302.48866
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69315, final_score: 0.49650, time: 25.04062
+
+2021-06-25T18:43:07.359731
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69315, final_score: 0.49838, time: 302.05898
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69315, final_score: 0.49550, time: 25.08117
+
+2021-06-25T18:48:34.652711
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69315, final_score: 0.49813, time: 302.23824
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69314, final_score: 0.49650, time: 24.91378
+
+2021-06-25T18:54:02.004774
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69319, final_score: 0.49838, time: 302.62885
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69314, final_score: 0.49550, time: 25.37326
+
+2021-06-25T18:59:30.162593
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69326, final_score: 0.49825, time: 302.44568
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69389, final_score: 0.49800, time: 25.57453
+
+2021-06-25T19:04:58.355060
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69320, final_score: 0.49913, time: 301.85359
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69317, final_score: 0.49700, time: 25.79353
+
+2021-06-25T19:10:26.181201
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69322, final_score: 0.49913, time: 301.54334
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69346, final_score: 0.49800, time: 25.39791
+
+2021-06-25T19:15:53.289444
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69373, final_score: 0.49775, time: 302.46469
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69316, final_score: 0.49650, time: 26.48563
+
+2021-06-25T19:21:22.432802
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69334, final_score: 0.49838, time: 301.40566
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69315, final_score: 0.49800, time: 26.05330
+
+2021-06-25T19:26:50.055258
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69315, final_score: 0.49838, time: 301.91614
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69315, final_score: 0.49750, time: 26.10945
+
+2021-06-25T19:32:18.265979
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.69315, final_score: 0.49838, time: 302.53241
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69315, final_score: 0.49700, time: 25.07806
+
+2021-06-25T19:37:46.041431
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.69315, final_score: 0.49800, time: 303.11217
+[RESULT]: Val. Epoch: 20, summary_loss: 0.69315, final_score: 0.49650, time: 24.68546
+
+2021-06-25T19:43:14.009441
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.69315, final_score: 0.49800, time: 302.40423
+[RESULT]: Val. Epoch: 21, summary_loss: 0.69315, final_score: 0.49750, time: 25.15155
+
+2021-06-25T19:48:41.736861
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.69315, final_score: 0.49813, time: 300.70125
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69315, final_score: 0.49700, time: 25.41788
+
+2021-06-25T19:54:08.021505
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.69315, final_score: 0.49813, time: 301.95056
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69315, final_score: 0.49700, time: 25.46449
+
+2021-06-25T19:59:35.589328
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.69315, final_score: 0.49813, time: 301.70326
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69315, final_score: 0.49600, time: 24.93053
+
+2021-06-25T20:05:02.389566
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.69315, final_score: 0.49800, time: 301.72895
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69315, final_score: 0.49650, time: 25.29340
+
+2021-06-25T20:10:29.560755
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.69315, final_score: 0.49788, time: 301.78525
+[RESULT]: Val. Epoch: 26, summary_loss: 0.69315, final_score: 0.49650, time: 25.68990
+
+2021-06-25T20:15:57.209656
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.69315, final_score: 0.49788, time: 301.84649
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69315, final_score: 0.49650, time: 25.82748
+
+2021-06-25T20:21:25.039149
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.69315, final_score: 0.49763, time: 301.44269
+[RESULT]: Val. Epoch: 28, summary_loss: 0.69315, final_score: 0.49650, time: 25.30243
+
+2021-06-25T20:26:51.964828
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.69315, final_score: 0.49800, time: 300.17405
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69315, final_score: 0.49600, time: 24.71757
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.143091
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 25, summary_loss: 0.58494, final_score: 0.30430, time: 290.39114
+[RESULT]: Val. Epoch: 25, summary_loss: 0.71861, final_score: 0.33666, time: 24.04264
+
+2021-06-26T08:58:37.747010
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 26, summary_loss: 0.57855, final_score: 0.29293, time: 288.30276
+[RESULT]: Val. Epoch: 26, summary_loss: 0.64103, final_score: 0.31868, time: 24.97516
+
+2021-06-26T09:03:51.202745
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 27, summary_loss: 0.57573, final_score: 0.29518, time: 288.63282
+[RESULT]: Val. Epoch: 27, summary_loss: 0.65663, final_score: 0.32168, time: 24.26863
+
+2021-06-26T09:09:04.296806
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 28, summary_loss: 0.57196, final_score: 0.29605, time: 288.92252
+[RESULT]: Val. Epoch: 28, summary_loss: 0.62509, final_score: 0.31469, time: 24.00353
+
+2021-06-26T09:14:17.414020
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 29, summary_loss: 0.56679, final_score: 0.28843, time: 288.38598
+[RESULT]: Val. Epoch: 29, summary_loss: 0.63100, final_score: 0.30969, time: 24.37561
+
+2021-06-26T09:19:30.347516
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 30, summary_loss: 0.56538, final_score: 0.28818, time: 288.48957
+[RESULT]: Val. Epoch: 30, summary_loss: 0.65272, final_score: 0.32368, time: 25.17458
+
+2021-06-26T09:24:44.190876
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.56446, final_score: 0.28343, time: 288.66005
+[RESULT]: Val. Epoch: 31, summary_loss: 0.62100, final_score: 0.31319, time: 26.02526
+
+2021-06-26T09:29:59.037249
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.55936, final_score: 0.27956, time: 289.36662
+[RESULT]: Val. Epoch: 32, summary_loss: 0.65219, final_score: 0.30869, time: 25.58507
+
+2021-06-26T09:35:14.162854
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.55494, final_score: 0.28168, time: 288.63822
+[RESULT]: Val. Epoch: 33, summary_loss: 0.66529, final_score: 0.31219, time: 25.56809
+
+2021-06-26T09:40:28.539891
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 34, summary_loss: 0.55653, final_score: 0.28005, time: 288.32584
+[RESULT]: Val. Epoch: 34, summary_loss: 0.63708, final_score: 0.30769, time: 24.79344
+
+2021-06-26T09:45:41.814405
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 35, summary_loss: 0.55466, final_score: 0.27806, time: 288.88304
+[RESULT]: Val. Epoch: 35, summary_loss: 0.76923, final_score: 0.31818, time: 25.99315
+
+2021-06-26T09:50:56.857111
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 36, summary_loss: 0.55165, final_score: 0.27506, time: 288.76505
+[RESULT]: Val. Epoch: 36, summary_loss: 0.60886, final_score: 0.29870, time: 26.09736
+
+2021-06-26T09:56:11.881444
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.54506, final_score: 0.26931, time: 288.44022
+[RESULT]: Val. Epoch: 37, summary_loss: 0.67431, final_score: 0.30769, time: 26.64926
+
+2021-06-26T10:01:27.128952
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 38, summary_loss: 0.54657, final_score: 0.27256, time: 288.83869
+[RESULT]: Val. Epoch: 38, summary_loss: 0.70606, final_score: 0.30769, time: 24.95013
+
+2021-06-26T10:06:41.073360
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 39, summary_loss: 0.54282, final_score: 0.26981, time: 288.51576
+[RESULT]: Val. Epoch: 39, summary_loss: 0.66947, final_score: 0.30470, time: 26.80444
+
+2021-06-26T10:11:56.561592
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 40, summary_loss: 0.54038, final_score: 0.26606, time: 288.84403
+[RESULT]: Val. Epoch: 40, summary_loss: 0.67522, final_score: 0.30270, time: 26.73357
+
+2021-06-26T10:17:12.291081
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 41, summary_loss: 0.53677, final_score: 0.25981, time: 289.35638
+[RESULT]: Val. Epoch: 41, summary_loss: 0.63719, final_score: 0.29520, time: 25.40404
+
+2021-06-26T10:22:27.207270
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 42, summary_loss: 0.53658, final_score: 0.26456, time: 289.14606
+[RESULT]: Val. Epoch: 42, summary_loss: 0.70938, final_score: 0.31868, time: 25.76129
+
+2021-06-26T10:27:42.303903
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 43, summary_loss: 0.52691, final_score: 0.25656, time: 288.31115
+[RESULT]: Val. Epoch: 43, summary_loss: 0.65800, final_score: 0.30470, time: 26.23945
+
+2021-06-26T10:32:57.028276
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 44, summary_loss: 0.52296, final_score: 0.25106, time: 288.82872
+[RESULT]: Val. Epoch: 44, summary_loss: 0.67882, final_score: 0.29620, time: 26.20563
+
+2021-06-26T10:38:12.236349
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 45, summary_loss: 0.51558, final_score: 0.24494, time: 288.39281
+[RESULT]: Val. Epoch: 45, summary_loss: 0.61709, final_score: 0.27722, time: 25.78885
+
+2021-06-26T10:43:26.610369
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.51593, final_score: 0.24281, time: 288.84720
+[RESULT]: Val. Epoch: 46, summary_loss: 0.62719, final_score: 0.28422, time: 26.19072
+
+2021-06-26T10:48:41.809155
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.50872, final_score: 0.24094, time: 288.54682
+[RESULT]: Val. Epoch: 47, summary_loss: 0.64387, final_score: 0.29021, time: 25.89935
+
+2021-06-26T10:53:56.422057
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.51042, final_score: 0.24381, time: 288.64769
+[RESULT]: Val. Epoch: 48, summary_loss: 0.62992, final_score: 0.28971, time: 26.73910
+
+2021-06-26T10:59:11.968904
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.51437, final_score: 0.24456, time: 290.50412
+[RESULT]: Val. Epoch: 49, summary_loss: 0.73169, final_score: 0.30170, time: 25.97064
+
+2021-06-26T11:04:28.611627
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.50824, final_score: 0.24144, time: 288.53379
+[RESULT]: Val. Epoch: 50, summary_loss: 0.75939, final_score: 0.30569, time: 24.64775
+
+2021-06-26T11:09:41.963148
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.50970, final_score: 0.24356, time: 288.75376
+[RESULT]: Val. Epoch: 51, summary_loss: 0.66159, final_score: 0.29371, time: 25.01791
+
+2021-06-26T11:14:55.898812
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.50877, final_score: 0.24344, time: 289.02399
+[RESULT]: Val. Epoch: 52, summary_loss: 0.63309, final_score: 0.28472, time: 25.60560
+
+2021-06-26T11:20:10.716645
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.50465, final_score: 0.23569, time: 289.00216
+[RESULT]: Val. Epoch: 53, summary_loss: 0.64282, final_score: 0.28671, time: 25.23739
+
+2021-06-26T11:25:25.134448
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.50617, final_score: 0.23982, time: 288.83170
+[RESULT]: Val. Epoch: 54, summary_loss: 0.66310, final_score: 0.29121, time: 24.51194
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..7d972797503db00ce42b99b0a3c78f7a739e9e8a
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-037epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-037epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c40eb789b2ea388f0a522761eee23a8ceedecc9a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-037epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:297de7f2b6a2068ac7799780473b5ca973f85a0e8594235ab7a2183db2270d07
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-050epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-050epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5b7535f9cf92e7d8342c0d3b3261590ffa5adf51
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-050epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:786f35e785f381ea5dd84fa3b6cdb1eb5f3e0ffcb0fbf16baa2fb4b6dc9b4d29
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-053epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-053epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..075256a1d87c83da0b0f498ae225c6954c83a163
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/best-checkpoint-053epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:511cf03e098fbeed17c1c0b6b3c45a3ede12883e6294826e274d14f6cecaf20d
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8556f16da87c8a395a220bd232f084c6806dcd42
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cbaf29a304bb693cd05b3f4ae81d07a02f6021f31067511653a31b857fa93130
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..bbad9d1347f4b8f132d3199e68943a872c5126a2
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_3/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:48:11.636763
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69746, final_score: 0.49825, time: 291.94513
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49600, time: 25.42104
+
+2021-06-25T17:53:29.361689
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69315, final_score: 0.49688, time: 289.00746
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69314, final_score: 0.49550, time: 26.24294
+
+2021-06-25T17:58:45.013365
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69316, final_score: 0.49688, time: 288.76408
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69320, final_score: 0.49500, time: 25.51897
+
+2021-06-25T18:03:59.487362
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69314, final_score: 0.49263, time: 289.29428
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69308, final_score: 0.48851, time: 25.37411
+
+2021-06-25T18:09:14.521479
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.65720, final_score: 0.39440, time: 288.77914
+[RESULT]: Val. Epoch: 4, summary_loss: 1.03556, final_score: 0.40709, time: 25.69881
+
+2021-06-25T18:14:29.189520
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.57341, final_score: 0.27518, time: 288.64303
+[RESULT]: Val. Epoch: 5, summary_loss: 1.08173, final_score: 0.33816, time: 25.61916
+
+2021-06-25T18:19:43.637312
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.52046, final_score: 0.23357, time: 289.66893
+[RESULT]: Val. Epoch: 6, summary_loss: 0.54046, final_score: 0.21728, time: 26.61799
+
+2021-06-25T18:25:00.288410
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.49936, final_score: 0.21432, time: 288.69589
+[RESULT]: Val. Epoch: 7, summary_loss: 0.64092, final_score: 0.23726, time: 25.57025
+
+2021-06-25T18:30:14.762206
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.48851, final_score: 0.20857, time: 289.05702
+[RESULT]: Val. Epoch: 8, summary_loss: 0.55174, final_score: 0.19630, time: 26.40599
+
+2021-06-25T18:35:30.400012
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.46669, final_score: 0.18920, time: 289.21946
+[RESULT]: Val. Epoch: 9, summary_loss: 0.50671, final_score: 0.18581, time: 25.86880
+
+2021-06-25T18:40:45.856201
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.45261, final_score: 0.18645, time: 288.91077
+[RESULT]: Val. Epoch: 10, summary_loss: 0.71702, final_score: 0.23377, time: 25.50982
+
+2021-06-25T18:46:00.453523
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.44764, final_score: 0.17908, time: 288.85661
+[RESULT]: Val. Epoch: 11, summary_loss: 0.46593, final_score: 0.16484, time: 24.83850
+
+2021-06-25T18:51:14.464023
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.43535, final_score: 0.17046, time: 288.95731
+[RESULT]: Val. Epoch: 12, summary_loss: 0.98075, final_score: 0.25674, time: 24.94680
+
+2021-06-25T18:56:28.564543
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.43479, final_score: 0.16746, time: 289.05475
+[RESULT]: Val. Epoch: 13, summary_loss: 0.66871, final_score: 0.20130, time: 24.43527
+
+2021-06-25T19:01:42.230715
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.42354, final_score: 0.16171, time: 288.99014
+[RESULT]: Val. Epoch: 14, summary_loss: 0.85356, final_score: 0.25225, time: 25.81189
+
+2021-06-25T19:06:57.183507
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.42051, final_score: 0.16171, time: 288.77890
+[RESULT]: Val. Epoch: 15, summary_loss: 1.54129, final_score: 0.30420, time: 25.46503
+
+2021-06-25T19:12:11.587251
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.41703, final_score: 0.15696, time: 289.24333
+[RESULT]: Val. Epoch: 16, summary_loss: 0.58134, final_score: 0.16633, time: 25.67546
+
+2021-06-25T19:17:26.665643
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.40523, final_score: 0.14521, time: 288.78958
+[RESULT]: Val. Epoch: 17, summary_loss: 0.49341, final_score: 0.18082, time: 25.17928
+
+2021-06-25T19:22:40.796240
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.40218, final_score: 0.14834, time: 289.08124
+[RESULT]: Val. Epoch: 18, summary_loss: 0.49564, final_score: 0.16434, time: 25.85758
+
+2021-06-25T19:27:55.891828
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.39514, final_score: 0.14609, time: 288.78096
+[RESULT]: Val. Epoch: 19, summary_loss: 0.60902, final_score: 0.18482, time: 26.17722
+
+2021-06-25T19:33:11.010075
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.37681, final_score: 0.12959, time: 289.31677
+[RESULT]: Val. Epoch: 20, summary_loss: 0.50790, final_score: 0.16034, time: 25.03281
+
+2021-06-25T19:38:25.511559
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.37470, final_score: 0.13372, time: 288.86358
+[RESULT]: Val. Epoch: 21, summary_loss: 0.57948, final_score: 0.16484, time: 25.13630
+
+2021-06-25T19:43:39.676116
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.36491, final_score: 0.12047, time: 289.11972
+[RESULT]: Val. Epoch: 22, summary_loss: 0.41114, final_score: 0.14136, time: 24.85088
+
+2021-06-25T19:48:53.978536
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.35590, final_score: 0.11997, time: 289.29306
+[RESULT]: Val. Epoch: 23, summary_loss: 0.83401, final_score: 0.21179, time: 25.85043
+
+2021-06-25T19:54:09.282467
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.35907, final_score: 0.11722, time: 288.92390
+[RESULT]: Val. Epoch: 24, summary_loss: 0.47862, final_score: 0.15285, time: 24.63896
+
+2021-06-25T19:59:23.003379
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.35271, final_score: 0.11560, time: 289.01366
+[RESULT]: Val. Epoch: 25, summary_loss: 0.41410, final_score: 0.13536, time: 25.37052
+
+2021-06-25T20:04:37.577076
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.35196, final_score: 0.11460, time: 289.02023
+[RESULT]: Val. Epoch: 26, summary_loss: 0.41212, final_score: 0.13337, time: 24.96239
+
+2021-06-25T20:09:51.718868
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.34436, final_score: 0.10985, time: 288.97766
+[RESULT]: Val. Epoch: 27, summary_loss: 0.40804, final_score: 0.13337, time: 26.11494
+
+2021-06-25T20:15:07.144715
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.34554, final_score: 0.11172, time: 289.15877
+[RESULT]: Val. Epoch: 28, summary_loss: 0.41870, final_score: 0.13387, time: 25.72692
+
+2021-06-25T20:20:22.208468
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.34349, final_score: 0.10897, time: 288.59982
+[RESULT]: Val. Epoch: 29, summary_loss: 0.41448, final_score: 0.13237, time: 24.90283
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:12.539451
+LR: 0.00025
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 30, summary_loss: 0.45483, final_score: 0.18958, time: 290.49948
+[RESULT]: Val. Epoch: 30, summary_loss: 0.51610, final_score: 0.21878, time: 25.30877
+
+2021-06-26T08:58:28.522650
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.44388, final_score: 0.18283, time: 288.74801
+[RESULT]: Val. Epoch: 31, summary_loss: 0.49123, final_score: 0.19830, time: 24.73262
+
+2021-06-26T09:03:42.355810
+LR: 0.00025
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.43539, final_score: 0.17946, time: 289.03029
+[RESULT]: Val. Epoch: 32, summary_loss: 0.64339, final_score: 0.22677, time: 24.68512
+
+2021-06-26T09:08:56.241870
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.43299, final_score: 0.17583, time: 289.23808
+[RESULT]: Val. Epoch: 33, summary_loss: 0.48417, final_score: 0.19580, time: 24.67748
+
+2021-06-26T09:14:10.540124
+LR: 0.00025
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.41869, final_score: 0.16396, time: 289.56248
+[RESULT]: Val. Epoch: 34, summary_loss: 0.60080, final_score: 0.22078, time: 25.96087
+
+2021-06-26T09:19:26.230036
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.42269, final_score: 0.16821, time: 289.46693
+[RESULT]: Val. Epoch: 35, summary_loss: 0.47907, final_score: 0.18681, time: 26.04769
+
+2021-06-26T09:24:42.075746
+LR: 0.00025
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.41108, final_score: 0.16008, time: 288.87167
+[RESULT]: Val. Epoch: 36, summary_loss: 0.47296, final_score: 0.18082, time: 26.32358
+
+2021-06-26T09:29:57.605026
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.40791, final_score: 0.15871, time: 288.83418
+[RESULT]: Val. Epoch: 37, summary_loss: 0.45774, final_score: 0.18282, time: 25.08118
+
+2021-06-26T09:35:11.841286
+LR: 0.00025
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.40627, final_score: 0.15696, time: 289.22283
+[RESULT]: Val. Epoch: 38, summary_loss: 0.48007, final_score: 0.18332, time: 26.57276
+
+2021-06-26T09:40:27.789585
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.40102, final_score: 0.15484, time: 289.80519
+[RESULT]: Val. Epoch: 39, summary_loss: 0.51863, final_score: 0.18631, time: 25.27951
+
+2021-06-26T09:45:43.035066
+LR: 0.00025
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.39183, final_score: 0.14559, time: 288.80940
+[RESULT]: Val. Epoch: 40, summary_loss: 0.49778, final_score: 0.18981, time: 25.42358
+
+2021-06-26T09:50:57.445365
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.39209, final_score: 0.14596, time: 289.63610
+[RESULT]: Val. Epoch: 41, summary_loss: 0.62237, final_score: 0.19630, time: 26.79217
+
+2021-06-26T09:56:14.030058
+LR: 0.00025
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.39368, final_score: 0.14546, time: 289.30573
+[RESULT]: Val. Epoch: 42, summary_loss: 0.45806, final_score: 0.18232, time: 25.87332
+
+2021-06-26T10:01:29.417419
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.38153, final_score: 0.13947, time: 288.92187
+[RESULT]: Val. Epoch: 43, summary_loss: 0.46354, final_score: 0.17682, time: 27.01325
+
+2021-06-26T10:06:45.523267
+LR: 0.00025
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.37763, final_score: 0.13547, time: 288.91438
+[RESULT]: Val. Epoch: 44, summary_loss: 0.49720, final_score: 0.18032, time: 26.61985
+
+2021-06-26T10:12:01.222989
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.37597, final_score: 0.13047, time: 288.85780
+[RESULT]: Val. Epoch: 45, summary_loss: 0.47681, final_score: 0.17183, time: 26.33811
+
+2021-06-26T10:17:16.579769
+LR: 0.00025
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.37447, final_score: 0.13384, time: 289.56753
+[RESULT]: Val. Epoch: 46, summary_loss: 0.45977, final_score: 0.16484, time: 26.08859
+
+2021-06-26T10:22:32.413597
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.36938, final_score: 0.12934, time: 289.56224
+[RESULT]: Val. Epoch: 47, summary_loss: 0.52719, final_score: 0.17433, time: 26.13771
+
+2021-06-26T10:27:48.301672
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.36690, final_score: 0.13209, time: 289.37205
+[RESULT]: Val. Epoch: 48, summary_loss: 0.47657, final_score: 0.16484, time: 25.68566
+
+2021-06-26T10:33:03.535665
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.35228, final_score: 0.11960, time: 289.13164
+[RESULT]: Val. Epoch: 49, summary_loss: 0.55034, final_score: 0.18581, time: 25.05629
+
+2021-06-26T10:38:17.893056
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.35351, final_score: 0.11722, time: 288.99634
+[RESULT]: Val. Epoch: 50, summary_loss: 0.43094, final_score: 0.15185, time: 25.92185
+
+2021-06-26T10:43:33.162627
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.34212, final_score: 0.11210, time: 289.44773
+[RESULT]: Val. Epoch: 51, summary_loss: 0.51672, final_score: 0.17033, time: 26.26450
+
+2021-06-26T10:48:49.102311
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.34523, final_score: 0.11097, time: 289.91516
+[RESULT]: Val. Epoch: 52, summary_loss: 0.44896, final_score: 0.15984, time: 26.34780
+
+2021-06-26T10:54:05.531060
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.33860, final_score: 0.11035, time: 289.18889
+[RESULT]: Val. Epoch: 53, summary_loss: 0.42455, final_score: 0.14935, time: 26.07578
+
+2021-06-26T10:59:21.173754
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.33733, final_score: 0.10822, time: 288.71290
+[RESULT]: Val. Epoch: 54, summary_loss: 0.42903, final_score: 0.15185, time: 25.79776
+
+2021-06-26T11:04:35.867871
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.33453, final_score: 0.10797, time: 289.49450
+[RESULT]: Val. Epoch: 55, summary_loss: 0.43803, final_score: 0.15534, time: 26.84624
+
+2021-06-26T11:09:52.367090
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.33703, final_score: 0.10810, time: 289.03393
+[RESULT]: Val. Epoch: 56, summary_loss: 0.44328, final_score: 0.15135, time: 26.18859
+
+2021-06-26T11:15:07.776962
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.33256, final_score: 0.10647, time: 288.68396
+[RESULT]: Val. Epoch: 57, summary_loss: 0.43079, final_score: 0.14935, time: 25.68997
+
+2021-06-26T11:20:22.320454
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.33049, final_score: 0.10685, time: 289.46764
+[RESULT]: Val. Epoch: 58, summary_loss: 0.43370, final_score: 0.15235, time: 27.37393
+
+2021-06-26T11:25:39.359641
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.32597, final_score: 0.09985, time: 289.05511
+[RESULT]: Val. Epoch: 59, summary_loss: 0.42946, final_score: 0.14685, time: 25.65280
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..d137eb79c76777105bede4347672812aab373ab0
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-052epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-052epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..227ca65b82b228031310eb4cddcaf303d2d35d6f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-052epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:05587c8e264e71ebab6e7fc251a077d86d5e2ecc7509383be407135a1383fd6c
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-053epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-053epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..06560eb273ff09fc9d2f3c1de397f69f61cbdf6c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-053epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3ac2e484a4d0c1788f2a7230a716b4f5da35fab4a8a7cd54b8f2c4cddf67d096
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-054epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-054epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..2d384b56b014e8e4a618ddc7429dfbc382ac3dc4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/best-checkpoint-054epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fb7f6a4f84f80b7306002a8d245775bf0a19d350accd0148019df6ece125ecf4
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7ef1796b39329a34412fe4af55ad6915fc81873d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4ddead55e32e0c1ca58c4973514c3d1480ef98d79d4a8ab0a9a9f95afd12952c
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..1c02be828836fb167285d1b2ed882cca8659694b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_4/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:47:55.759315
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69743, final_score: 0.49750, time: 294.13639
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69316, final_score: 0.49550, time: 25.15020
+
+2021-06-25T17:53:15.383849
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69314, final_score: 0.49625, time: 289.81060
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69314, final_score: 0.49401, time: 26.19676
+
+2021-06-25T17:58:31.788025
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69315, final_score: 0.49588, time: 288.82275
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69318, final_score: 0.49301, time: 25.58069
+
+2021-06-25T18:03:46.364882
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69368, final_score: 0.49788, time: 288.70381
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69317, final_score: 0.49700, time: 26.07359
+
+2021-06-25T18:09:01.326264
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69315, final_score: 0.49838, time: 288.58870
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69340, final_score: 0.49650, time: 25.54838
+
+2021-06-25T18:14:15.696831
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69321, final_score: 0.49838, time: 288.70958
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69738, final_score: 0.49800, time: 25.63989
+
+2021-06-25T18:19:30.230909
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69321, final_score: 0.49838, time: 288.94842
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69315, final_score: 0.49600, time: 25.29542
+
+2021-06-25T18:24:44.650925
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69315, final_score: 0.49750, time: 288.32199
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69314, final_score: 0.49451, time: 25.28877
+
+2021-06-25T18:29:58.430540
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69316, final_score: 0.49688, time: 288.61758
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69314, final_score: 0.49351, time: 25.15136
+
+2021-06-25T18:35:12.617108
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69334, final_score: 0.49800, time: 288.76409
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69315, final_score: 0.49650, time: 24.70693
+
+2021-06-25T18:40:26.262718
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69315, final_score: 0.49513, time: 288.34278
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69308, final_score: 0.48102, time: 24.99325
+
+2021-06-25T18:45:39.946435
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69442, final_score: 0.49850, time: 288.62335
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69318, final_score: 0.49600, time: 25.05566
+
+2021-06-25T18:50:53.823413
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69315, final_score: 0.49800, time: 288.55046
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69314, final_score: 0.49451, time: 24.68703
+
+2021-06-25T18:56:07.218714
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69314, final_score: 0.49675, time: 289.26669
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69314, final_score: 0.49401, time: 24.77699
+
+2021-06-25T19:01:21.434463
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69307, final_score: 0.49275, time: 289.13870
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69312, final_score: 0.48801, time: 24.50391
+
+2021-06-25T19:06:35.259828
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69320, final_score: 0.48688, time: 288.80267
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69370, final_score: 0.49201, time: 24.87809
+
+2021-06-25T19:11:49.129499
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69263, final_score: 0.47951, time: 288.51060
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69259, final_score: 0.47003, time: 24.92324
+
+2021-06-25T19:17:02.922226
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69166, final_score: 0.47538, time: 289.28744
+[RESULT]: Val. Epoch: 17, summary_loss: 0.70587, final_score: 0.46953, time: 25.16020
+
+2021-06-25T19:22:17.546981
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.68832, final_score: 0.45514, time: 288.88021
+[RESULT]: Val. Epoch: 18, summary_loss: 0.68891, final_score: 0.44406, time: 24.99198
+
+2021-06-25T19:27:31.751516
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.68266, final_score: 0.43077, time: 289.10099
+[RESULT]: Val. Epoch: 19, summary_loss: 0.81667, final_score: 0.45654, time: 24.59648
+
+2021-06-25T19:32:45.644267
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.66668, final_score: 0.39465, time: 288.79111
+[RESULT]: Val. Epoch: 20, summary_loss: 0.70594, final_score: 0.38511, time: 24.51054
+
+2021-06-25T19:37:59.102792
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.63495, final_score: 0.34104, time: 289.49799
+[RESULT]: Val. Epoch: 21, summary_loss: 0.71303, final_score: 0.32967, time: 24.96357
+
+2021-06-25T19:43:13.757634
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.61633, final_score: 0.32154, time: 288.61598
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69451, final_score: 0.31718, time: 25.07955
+
+2021-06-25T19:48:27.627924
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.59319, final_score: 0.29755, time: 288.73115
+[RESULT]: Val. Epoch: 23, summary_loss: 0.59847, final_score: 0.29720, time: 24.85407
+
+2021-06-25T19:53:41.561179
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.58075, final_score: 0.28205, time: 288.84167
+[RESULT]: Val. Epoch: 24, summary_loss: 0.59255, final_score: 0.28422, time: 24.15536
+
+2021-06-25T19:58:54.902664
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.57349, final_score: 0.27593, time: 288.77771
+[RESULT]: Val. Epoch: 25, summary_loss: 0.59148, final_score: 0.27722, time: 24.43550
+
+2021-06-25T20:04:08.449292
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.57320, final_score: 0.27481, time: 288.95619
+[RESULT]: Val. Epoch: 26, summary_loss: 0.67754, final_score: 0.28621, time: 24.85486
+
+2021-06-25T20:09:22.457333
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.56692, final_score: 0.26706, time: 288.88524
+[RESULT]: Val. Epoch: 27, summary_loss: 0.64685, final_score: 0.29820, time: 24.37432
+
+2021-06-25T20:14:35.875432
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.55721, final_score: 0.26068, time: 288.50141
+[RESULT]: Val. Epoch: 28, summary_loss: 0.62479, final_score: 0.27572, time: 24.90933
+
+2021-06-25T20:19:49.478506
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.55260, final_score: 0.25906, time: 289.24005
+[RESULT]: Val. Epoch: 29, summary_loss: 0.60665, final_score: 0.26573, time: 23.94477
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.216931
+LR: 0.000125
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 29, summary_loss: 0.57501, final_score: 0.29055, time: 301.94857
+[RESULT]: Val. Epoch: 29, summary_loss: 0.64269, final_score: 0.29620, time: 24.70968
+
+2021-06-26T08:58:50.048916
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 30, summary_loss: 0.56986, final_score: 0.28205, time: 302.31716
+[RESULT]: Val. Epoch: 30, summary_loss: 0.61107, final_score: 0.29171, time: 26.08241
+
+2021-06-26T09:04:18.599554
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.56563, final_score: 0.27906, time: 302.38380
+[RESULT]: Val. Epoch: 31, summary_loss: 0.59122, final_score: 0.28372, time: 25.66632
+
+2021-06-26T09:09:46.816891
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 32, summary_loss: 0.56085, final_score: 0.27368, time: 301.95629
+[RESULT]: Val. Epoch: 32, summary_loss: 0.59814, final_score: 0.28771, time: 24.89875
+
+2021-06-26T09:15:13.823685
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.55501, final_score: 0.26631, time: 302.06615
+[RESULT]: Val. Epoch: 33, summary_loss: 0.57329, final_score: 0.27922, time: 26.26239
+
+2021-06-26T09:20:42.316202
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.54983, final_score: 0.26831, time: 302.10382
+[RESULT]: Val. Epoch: 34, summary_loss: 0.59127, final_score: 0.28072, time: 24.25232
+
+2021-06-26T09:26:08.834099
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.55088, final_score: 0.26431, time: 300.99150
+[RESULT]: Val. Epoch: 35, summary_loss: 0.57447, final_score: 0.27273, time: 25.24451
+
+2021-06-26T09:31:35.225527
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.53949, final_score: 0.25756, time: 302.10183
+[RESULT]: Val. Epoch: 36, summary_loss: 0.59134, final_score: 0.26773, time: 24.89416
+
+2021-06-26T09:37:02.390361
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.53792, final_score: 0.25456, time: 301.04548
+[RESULT]: Val. Epoch: 37, summary_loss: 0.56699, final_score: 0.26673, time: 24.80575
+
+2021-06-26T09:42:28.689390
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.53559, final_score: 0.24881, time: 301.64944
+[RESULT]: Val. Epoch: 38, summary_loss: 0.58481, final_score: 0.25774, time: 25.72928
+
+2021-06-26T09:47:56.231405
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.53079, final_score: 0.25081, time: 302.21279
+[RESULT]: Val. Epoch: 39, summary_loss: 0.55965, final_score: 0.26374, time: 25.98517
+
+2021-06-26T09:53:24.751261
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.53202, final_score: 0.24881, time: 302.70408
+[RESULT]: Val. Epoch: 40, summary_loss: 0.60512, final_score: 0.26474, time: 25.80433
+
+2021-06-26T09:58:53.416605
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.52633, final_score: 0.24894, time: 301.80772
+[RESULT]: Val. Epoch: 41, summary_loss: 0.56188, final_score: 0.26224, time: 25.22810
+
+2021-06-26T10:04:20.637125
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 42, summary_loss: 0.52224, final_score: 0.24206, time: 301.75259
+[RESULT]: Val. Epoch: 42, summary_loss: 0.61748, final_score: 0.25924, time: 25.66426
+
+2021-06-26T10:09:48.209277
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.51927, final_score: 0.24044, time: 301.56811
+[RESULT]: Val. Epoch: 43, summary_loss: 0.60381, final_score: 0.26374, time: 25.78464
+
+2021-06-26T10:15:15.732266
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 44, summary_loss: 0.51879, final_score: 0.23682, time: 302.63295
+[RESULT]: Val. Epoch: 44, summary_loss: 0.56282, final_score: 0.25225, time: 25.53359
+
+2021-06-26T10:20:44.065442
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.51315, final_score: 0.23782, time: 302.83343
+[RESULT]: Val. Epoch: 45, summary_loss: 0.60766, final_score: 0.25475, time: 25.09474
+
+2021-06-26T10:26:12.159766
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.51359, final_score: 0.23157, time: 301.98553
+[RESULT]: Val. Epoch: 46, summary_loss: 0.56027, final_score: 0.24476, time: 24.67714
+
+2021-06-26T10:31:38.995211
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.51144, final_score: 0.22982, time: 302.07511
+[RESULT]: Val. Epoch: 47, summary_loss: 0.59659, final_score: 0.26873, time: 24.65615
+
+2021-06-26T10:37:05.887591
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.50749, final_score: 0.22782, time: 302.37119
+[RESULT]: Val. Epoch: 48, summary_loss: 0.72042, final_score: 0.27473, time: 25.46674
+
+2021-06-26T10:42:33.877434
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.50097, final_score: 0.22432, time: 302.48559
+[RESULT]: Val. Epoch: 49, summary_loss: 0.55133, final_score: 0.24326, time: 25.33759
+
+2021-06-26T10:48:02.048320
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.49747, final_score: 0.22144, time: 302.86008
+[RESULT]: Val. Epoch: 50, summary_loss: 0.55025, final_score: 0.24476, time: 24.73691
+
+2021-06-26T10:53:29.965336
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.49557, final_score: 0.22169, time: 302.31217
+[RESULT]: Val. Epoch: 51, summary_loss: 0.56537, final_score: 0.24376, time: 24.65539
+
+2021-06-26T10:58:57.089397
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.49428, final_score: 0.21720, time: 301.86336
+[RESULT]: Val. Epoch: 52, summary_loss: 0.54205, final_score: 0.24675, time: 25.40771
+
+2021-06-26T11:04:24.705014
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.49514, final_score: 0.22069, time: 303.48304
+[RESULT]: Val. Epoch: 53, summary_loss: 0.54168, final_score: 0.24326, time: 24.74567
+
+2021-06-26T11:09:53.236039
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.49298, final_score: 0.21720, time: 301.87351
+[RESULT]: Val. Epoch: 54, summary_loss: 0.54005, final_score: 0.24476, time: 25.14737
+
+2021-06-26T11:15:20.632266
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.49171, final_score: 0.21895, time: 302.88440
+[RESULT]: Val. Epoch: 55, summary_loss: 0.55456, final_score: 0.23776, time: 25.32581
+
+2021-06-26T11:20:49.005424
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.48999, final_score: 0.21557, time: 302.63417
+[RESULT]: Val. Epoch: 56, summary_loss: 0.58346, final_score: 0.25025, time: 23.97911
+
+2021-06-26T11:26:15.802864
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.48379, final_score: 0.21107, time: 302.09430
+[RESULT]: Val. Epoch: 57, summary_loss: 0.55889, final_score: 0.24026, time: 24.78404
+
+2021-06-26T11:31:42.852403
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.48732, final_score: 0.21307, time: 302.96564
+[RESULT]: Val. Epoch: 58, summary_loss: 0.56626, final_score: 0.23876, time: 25.41841
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..06baccfa310e96bbd9629436de636d39bd967428
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8ee7f3cb3a86d55914f4b7cd9fd7c9d0ad9d7478
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6e15aeaca3c0a841834e26128db123c4338aee979dca880ea5822d84bc6ba84c
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..6e95590ea82853d99101084beaeaff14e525f0ae
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:41ba74c528dbc1325e631e80d538558776a20504ca39a9982af616c85b13ac9f
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f3f4c750333555bc0b75c69ceef48318f398d6a1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:79c74d93dba487bf8e8fc9582a88b6c1b8c92b416edbf51815642197fe13e3f6
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..849bbfa63b15a926b1b18c7efaad6c12f090d6ae
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9bc4e26121fcbeec8a10b382a5e848f880bade6fa367187e1396a65f885baca1
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..370475662c0cad221af917a5011b349f748f77b1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_5/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:46:49.878062
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69644, final_score: 0.49838, time: 291.68530
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49550, time: 24.87296
+
+2021-06-25T17:52:06.775860
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69315, final_score: 0.49750, time: 289.82286
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69315, final_score: 0.49451, time: 24.04304
+
+2021-06-25T17:57:20.799414
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69318, final_score: 0.49763, time: 289.46353
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69331, final_score: 0.49800, time: 24.66244
+
+2021-06-25T18:02:35.118642
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69316, final_score: 0.49775, time: 289.00259
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69314, final_score: 0.49401, time: 25.29589
+
+2021-06-25T18:07:49.762896
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69353, final_score: 0.49825, time: 289.42295
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69318, final_score: 0.49750, time: 24.90045
+
+2021-06-25T18:13:04.247726
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69320, final_score: 0.49888, time: 289.11978
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69316, final_score: 0.49700, time: 25.75945
+
+2021-06-25T18:18:19.293352
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69315, final_score: 0.49825, time: 289.48796
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69315, final_score: 0.49650, time: 24.32468
+
+2021-06-25T18:23:33.266581
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69315, final_score: 0.49750, time: 289.93677
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69315, final_score: 0.49500, time: 24.70468
+
+2021-06-25T18:28:48.062204
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69315, final_score: 0.49600, time: 289.43861
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69313, final_score: 0.49251, time: 24.56551
+
+2021-06-25T18:34:02.481315
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69326, final_score: 0.49775, time: 289.42586
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69348, final_score: 0.49700, time: 25.49248
+
+2021-06-25T18:39:17.574146
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69327, final_score: 0.49800, time: 289.05777
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69317, final_score: 0.49600, time: 24.85239
+
+2021-06-25T18:44:31.648935
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69318, final_score: 0.49713, time: 289.97413
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69314, final_score: 0.49351, time: 25.42905
+
+2021-06-25T18:49:47.213755
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69312, final_score: 0.49363, time: 289.30718
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69316, final_score: 0.49201, time: 23.62546
+
+2021-06-25T18:55:00.314396
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69327, final_score: 0.49613, time: 288.94148
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69314, final_score: 0.49451, time: 24.12914
+
+2021-06-25T19:00:13.554158
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69311, final_score: 0.49300, time: 289.50296
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69299, final_score: 0.48501, time: 24.60687
+
+2021-06-25T19:05:28.004293
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69305, final_score: 0.48950, time: 289.97728
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69327, final_score: 0.48252, time: 24.61390
+
+2021-06-25T19:10:42.750438
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69266, final_score: 0.48363, time: 290.54197
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69561, final_score: 0.49051, time: 25.20508
+
+2021-06-25T19:15:58.673812
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69208, final_score: 0.47863, time: 289.51147
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69714, final_score: 0.47952, time: 24.67629
+
+2021-06-25T19:21:13.027093
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69127, final_score: 0.47138, time: 289.29404
+[RESULT]: Val. Epoch: 18, summary_loss: 0.70194, final_score: 0.48202, time: 24.40080
+
+2021-06-25T19:26:26.883162
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.68974, final_score: 0.46738, time: 289.26416
+[RESULT]: Val. Epoch: 19, summary_loss: 0.70994, final_score: 0.47303, time: 25.91382
+
+2021-06-25T19:31:42.220892
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.68891, final_score: 0.46401, time: 289.57384
+[RESULT]: Val. Epoch: 20, summary_loss: 0.80961, final_score: 0.48501, time: 25.26493
+
+2021-06-25T19:36:57.226941
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.68720, final_score: 0.45676, time: 289.82154
+[RESULT]: Val. Epoch: 21, summary_loss: 0.69563, final_score: 0.46204, time: 24.58968
+
+2021-06-25T19:42:11.801086
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.68609, final_score: 0.45376, time: 290.35529
+[RESULT]: Val. Epoch: 22, summary_loss: 0.68946, final_score: 0.45105, time: 24.58167
+
+2021-06-25T19:47:27.066793
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.68565, final_score: 0.44939, time: 289.69667
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69138, final_score: 0.44456, time: 24.72748
+
+2021-06-25T19:52:41.641803
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.68539, final_score: 0.45064, time: 289.08125
+[RESULT]: Val. Epoch: 24, summary_loss: 0.68759, final_score: 0.44855, time: 24.83579
+
+2021-06-25T19:57:55.898072
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.68413, final_score: 0.44364, time: 289.12540
+[RESULT]: Val. Epoch: 25, summary_loss: 0.79491, final_score: 0.47602, time: 24.97195
+
+2021-06-25T20:03:10.158101
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.68391, final_score: 0.44601, time: 289.29464
+[RESULT]: Val. Epoch: 26, summary_loss: 0.70752, final_score: 0.45704, time: 24.11890
+
+2021-06-25T20:08:23.737611
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.68231, final_score: 0.44226, time: 289.03410
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69898, final_score: 0.44755, time: 25.38748
+
+2021-06-25T20:13:38.352537
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.68193, final_score: 0.43952, time: 289.76530
+[RESULT]: Val. Epoch: 28, summary_loss: 0.68819, final_score: 0.43656, time: 24.61196
+
+2021-06-25T20:18:52.892030
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.68038, final_score: 0.43739, time: 289.72242
+[RESULT]: Val. Epoch: 29, summary_loss: 0.68673, final_score: 0.43806, time: 25.07666
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.041111
+LR: 0.000125
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 29, summary_loss: 0.68019, final_score: 0.44576, time: 310.72210
+[RESULT]: Val. Epoch: 29, summary_loss: 0.68838, final_score: 0.44555, time: 25.51249
+
+2021-06-26T08:58:59.449026
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 30, summary_loss: 0.67787, final_score: 0.44201, time: 312.17457
+[RESULT]: Val. Epoch: 30, summary_loss: 0.70298, final_score: 0.43856, time: 25.50292
+
+2021-06-26T09:04:37.303764
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.67616, final_score: 0.44264, time: 311.60425
+[RESULT]: Val. Epoch: 31, summary_loss: 0.68815, final_score: 0.44106, time: 26.39391
+
+2021-06-26T09:10:15.481898
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 32, summary_loss: 0.67597, final_score: 0.43927, time: 313.06644
+[RESULT]: Val. Epoch: 32, summary_loss: 0.68966, final_score: 0.44056, time: 26.51779
+
+2021-06-26T09:15:55.232568
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.67501, final_score: 0.43427, time: 312.94777
+[RESULT]: Val. Epoch: 33, summary_loss: 0.69066, final_score: 0.44256, time: 24.50148
+
+2021-06-26T09:21:32.833680
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.67405, final_score: 0.43539, time: 311.94283
+[RESULT]: Val. Epoch: 34, summary_loss: 0.69422, final_score: 0.43107, time: 25.16791
+
+2021-06-26T09:27:10.114388
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.67314, final_score: 0.43252, time: 312.22203
+[RESULT]: Val. Epoch: 35, summary_loss: 0.69867, final_score: 0.43856, time: 25.87427
+
+2021-06-26T09:32:48.378944
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.67304, final_score: 0.42989, time: 312.98739
+[RESULT]: Val. Epoch: 36, summary_loss: 0.79289, final_score: 0.43556, time: 25.99306
+
+2021-06-26T09:38:27.524366
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.67094, final_score: 0.42727, time: 312.90695
+[RESULT]: Val. Epoch: 37, summary_loss: 0.69000, final_score: 0.43357, time: 25.27120
+
+2021-06-26T09:44:05.857805
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.66905, final_score: 0.42364, time: 312.08114
+[RESULT]: Val. Epoch: 38, summary_loss: 0.69353, final_score: 0.42857, time: 25.96986
+
+2021-06-26T09:49:44.074483
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.66592, final_score: 0.41765, time: 313.22106
+[RESULT]: Val. Epoch: 39, summary_loss: 0.71504, final_score: 0.43257, time: 24.90493
+
+2021-06-26T09:55:22.375423
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.66370, final_score: 0.41740, time: 312.93754
+[RESULT]: Val. Epoch: 40, summary_loss: 0.67666, final_score: 0.42308, time: 25.72917
+
+2021-06-26T10:01:01.213431
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.66427, final_score: 0.41502, time: 312.62907
+[RESULT]: Val. Epoch: 41, summary_loss: 0.67944, final_score: 0.42058, time: 24.25918
+
+2021-06-26T10:06:38.284022
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 42, summary_loss: 0.66137, final_score: 0.41327, time: 312.52740
+[RESULT]: Val. Epoch: 42, summary_loss: 0.68736, final_score: 0.41459, time: 24.99468
+
+2021-06-26T10:12:15.969879
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.66050, final_score: 0.41577, time: 312.08746
+[RESULT]: Val. Epoch: 43, summary_loss: 0.69516, final_score: 0.42208, time: 25.09857
+
+2021-06-26T10:17:53.343812
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 44, summary_loss: 0.65860, final_score: 0.41215, time: 313.72018
+[RESULT]: Val. Epoch: 44, summary_loss: 0.75298, final_score: 0.41259, time: 25.33311
+
+2021-06-26T10:23:32.560781
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.65443, final_score: 0.40902, time: 312.65746
+[RESULT]: Val. Epoch: 45, summary_loss: 0.70177, final_score: 0.41309, time: 25.05862
+
+2021-06-26T10:29:10.448288
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 46, summary_loss: 0.65397, final_score: 0.40240, time: 312.74634
+[RESULT]: Val. Epoch: 46, summary_loss: 0.72997, final_score: 0.41658, time: 25.85567
+
+2021-06-26T10:34:49.216155
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.65368, final_score: 0.40477, time: 312.51862
+[RESULT]: Val. Epoch: 47, summary_loss: 0.68400, final_score: 0.41608, time: 24.73775
+
+2021-06-26T10:40:26.648374
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.65185, final_score: 0.40202, time: 312.66794
+[RESULT]: Val. Epoch: 48, summary_loss: 0.69154, final_score: 0.41259, time: 26.35328
+
+2021-06-26T10:46:05.830964
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.65055, final_score: 0.40090, time: 313.14917
+[RESULT]: Val. Epoch: 49, summary_loss: 0.67420, final_score: 0.40859, time: 25.29118
+
+2021-06-26T10:51:44.427813
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.64973, final_score: 0.39790, time: 312.96628
+[RESULT]: Val. Epoch: 50, summary_loss: 0.67872, final_score: 0.41209, time: 26.27276
+
+2021-06-26T10:57:23.873610
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.64882, final_score: 0.39990, time: 313.42082
+[RESULT]: Val. Epoch: 51, summary_loss: 0.68126, final_score: 0.40659, time: 25.36232
+
+2021-06-26T11:03:02.857135
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.64857, final_score: 0.40027, time: 313.54309
+[RESULT]: Val. Epoch: 52, summary_loss: 0.68300, final_score: 0.40609, time: 25.83679
+
+2021-06-26T11:08:42.398129
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.65070, final_score: 0.40152, time: 313.34798
+[RESULT]: Val. Epoch: 53, summary_loss: 0.70059, final_score: 0.40909, time: 26.00179
+
+2021-06-26T11:14:21.914301
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.64805, final_score: 0.39753, time: 313.38741
+[RESULT]: Val. Epoch: 54, summary_loss: 0.68293, final_score: 0.40709, time: 25.06577
+
+2021-06-26T11:20:00.546673
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.64820, final_score: 0.39753, time: 312.76315
+[RESULT]: Val. Epoch: 55, summary_loss: 0.67397, final_score: 0.40360, time: 25.55777
+
+2021-06-26T11:25:39.062853
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.64800, final_score: 0.40077, time: 311.95584
+[RESULT]: Val. Epoch: 56, summary_loss: 0.68046, final_score: 0.40460, time: 26.89759
+
+2021-06-26T11:31:18.085384
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.64664, final_score: 0.39653, time: 312.56782
+[RESULT]: Val. Epoch: 57, summary_loss: 0.69756, final_score: 0.40959, time: 26.49057
+
+2021-06-26T11:36:57.348535
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.64775, final_score: 0.39390, time: 312.15015
+[RESULT]: Val. Epoch: 58, summary_loss: 0.68172, final_score: 0.40859, time: 26.32759
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..0ce265ab76ba7cc1bea6e98fcfa4a93d14dd3336
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a145753b80e9ad5aeb69382a0d6f67371f190996
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9a05c21d95ad8c41f01ccaccfea209ad6b01d243e2b1c3d79ce473e635362bff
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..25998e7f22ce17085c9bb225f75f0dfbc56ab864
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:58c6af6857410b87dfc42b2eb6f9b64345c5fd40f2f4d26ec89bc348de9baf04
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4b7a5ad67160bddb41b5223c7fe6584ab785ad69
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d0634c0add321ec328475ba9d0d9b56c7a42a3aed9cfffb374e981820e9696a
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f3c2affa45bc2dde01338cc9cedb14a45040b436
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9b2f80c5eccc6508e688d816c0c2d4c244604465829d34debd4cb1cf0d66c3df
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7562fee7d502e9c7f2e0fcc405a0d51897971f0a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_6/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:46:27.330139
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69708, final_score: 0.49875, time: 289.68161
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49600, time: 24.96695
+
+2021-06-25T17:51:42.392539
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69316, final_score: 0.49825, time: 288.27674
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69319, final_score: 0.49650, time: 24.11795
+
+2021-06-25T17:56:54.943358
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69319, final_score: 0.49775, time: 288.01891
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69336, final_score: 0.49750, time: 23.93105
+
+2021-06-25T18:02:07.048952
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69321, final_score: 0.49813, time: 288.02662
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69315, final_score: 0.49600, time: 25.71682
+
+2021-06-25T18:07:21.136256
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69316, final_score: 0.49738, time: 288.38762
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69320, final_score: 0.49650, time: 25.45180
+
+2021-06-25T18:12:35.180922
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69319, final_score: 0.49775, time: 288.46017
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69316, final_score: 0.49650, time: 25.30085
+
+2021-06-25T18:17:49.116543
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69344, final_score: 0.49850, time: 288.48466
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69316, final_score: 0.49700, time: 24.42381
+
+2021-06-25T18:23:02.177677
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69316, final_score: 0.49825, time: 288.28411
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69317, final_score: 0.49700, time: 24.38853
+
+2021-06-25T18:28:15.031421
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69325, final_score: 0.49825, time: 287.78465
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69315, final_score: 0.49650, time: 24.65695
+
+2021-06-25T18:33:27.883995
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69317, final_score: 0.49775, time: 287.95655
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69317, final_score: 0.49800, time: 24.27110
+
+2021-06-25T18:38:40.262088
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69317, final_score: 0.49725, time: 288.50186
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69362, final_score: 0.49500, time: 23.19104
+
+2021-06-25T18:43:52.145714
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69327, final_score: 0.49875, time: 287.72121
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69315, final_score: 0.49650, time: 25.02348
+
+2021-06-25T18:49:05.093793
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69315, final_score: 0.49800, time: 287.71245
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69319, final_score: 0.49700, time: 24.12644
+
+2021-06-25T18:54:17.091351
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69315, final_score: 0.49750, time: 288.77027
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69382, final_score: 0.49650, time: 24.12935
+
+2021-06-25T18:59:30.158693
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69316, final_score: 0.49625, time: 287.67766
+[RESULT]: Val. Epoch: 14, summary_loss: 0.69342, final_score: 0.49600, time: 25.26725
+
+2021-06-25T19:04:43.256872
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69397, final_score: 0.49838, time: 288.22744
+[RESULT]: Val. Epoch: 15, summary_loss: 0.69319, final_score: 0.49800, time: 24.25020
+
+2021-06-25T19:09:55.892044
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69315, final_score: 0.49888, time: 288.43882
+[RESULT]: Val. Epoch: 16, summary_loss: 0.69315, final_score: 0.49700, time: 25.44599
+
+2021-06-25T19:15:09.952039
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69315, final_score: 0.49863, time: 288.32462
+[RESULT]: Val. Epoch: 17, summary_loss: 0.69316, final_score: 0.49800, time: 24.88681
+
+2021-06-25T19:20:23.345329
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69327, final_score: 0.49875, time: 287.86797
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69315, final_score: 0.49800, time: 24.88504
+
+2021-06-25T19:25:36.255583
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.69315, final_score: 0.49800, time: 288.52182
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69315, final_score: 0.49600, time: 23.90480
+
+2021-06-25T19:30:48.850702
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.69315, final_score: 0.49788, time: 287.63780
+[RESULT]: Val. Epoch: 20, summary_loss: 0.69315, final_score: 0.49650, time: 24.04874
+
+2021-06-25T19:36:00.717389
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.69315, final_score: 0.49825, time: 287.60920
+[RESULT]: Val. Epoch: 21, summary_loss: 0.69315, final_score: 0.49700, time: 24.23381
+
+2021-06-25T19:41:12.742832
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.69315, final_score: 0.49813, time: 288.53724
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69315, final_score: 0.49600, time: 24.08100
+
+2021-06-25T19:46:25.707047
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.69315, final_score: 0.49775, time: 288.53011
+[RESULT]: Val. Epoch: 23, summary_loss: 0.69315, final_score: 0.49650, time: 23.80656
+
+2021-06-25T19:51:38.382572
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.69315, final_score: 0.49788, time: 288.16412
+[RESULT]: Val. Epoch: 24, summary_loss: 0.69315, final_score: 0.49600, time: 24.34197
+
+2021-06-25T19:56:51.080297
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.69314, final_score: 0.49750, time: 288.04389
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69315, final_score: 0.49550, time: 24.80998
+
+2021-06-25T20:02:04.290457
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.69315, final_score: 0.49725, time: 288.06401
+[RESULT]: Val. Epoch: 26, summary_loss: 0.69315, final_score: 0.49650, time: 24.25134
+
+2021-06-25T20:07:16.945613
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.69314, final_score: 0.49738, time: 287.65165
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69314, final_score: 0.49650, time: 24.77702
+
+2021-06-25T20:12:29.709003
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.69314, final_score: 0.49738, time: 288.66296
+[RESULT]: Val. Epoch: 28, summary_loss: 0.69314, final_score: 0.49550, time: 25.17369
+
+2021-06-25T20:17:43.730529
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.69314, final_score: 0.49725, time: 287.57325
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69314, final_score: 0.49550, time: 23.97508
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.154397
+LR: 6.25e-05
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 30, summary_loss: 0.68040, final_score: 0.43914, time: 293.83106
+[RESULT]: Val. Epoch: 30, summary_loss: 0.69105, final_score: 0.43556, time: 24.52047
+
+2021-06-26T08:58:41.680704
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.67754, final_score: 0.43952, time: 289.64027
+[RESULT]: Val. Epoch: 31, summary_loss: 0.69025, final_score: 0.43457, time: 24.52143
+
+2021-06-26T09:03:56.009596
+LR: 6.25e-05
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.67653, final_score: 0.43464, time: 289.54698
+[RESULT]: Val. Epoch: 32, summary_loss: 0.69829, final_score: 0.44006, time: 24.49855
+
+2021-06-26T09:09:10.224989
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.67743, final_score: 0.43727, time: 290.36748
+[RESULT]: Val. Epoch: 33, summary_loss: 0.69216, final_score: 0.43656, time: 24.59436
+
+2021-06-26T09:14:25.368839
+LR: 6.25e-05
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.67592, final_score: 0.43552, time: 290.18189
+[RESULT]: Val. Epoch: 34, summary_loss: 0.70358, final_score: 0.43556, time: 25.08866
+
+2021-06-26T09:19:40.797288
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.67570, final_score: 0.43264, time: 289.91381
+[RESULT]: Val. Epoch: 35, summary_loss: 0.69099, final_score: 0.43257, time: 24.39368
+
+2021-06-26T09:24:55.305077
+LR: 6.25e-05
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.67508, final_score: 0.43302, time: 289.90709
+[RESULT]: Val. Epoch: 36, summary_loss: 0.70291, final_score: 0.43457, time: 24.27704
+
+2021-06-26T09:30:09.638902
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.67604, final_score: 0.43502, time: 290.67546
+[RESULT]: Val. Epoch: 37, summary_loss: 0.69263, final_score: 0.43307, time: 24.50284
+
+2021-06-26T09:35:24.989949
+LR: 6.25e-05
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.67461, final_score: 0.43114, time: 289.60655
+[RESULT]: Val. Epoch: 38, summary_loss: 0.69565, final_score: 0.43756, time: 24.39206
+
+2021-06-26T09:40:39.156357
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.67450, final_score: 0.43064, time: 289.77961
+[RESULT]: Val. Epoch: 39, summary_loss: 0.72026, final_score: 0.44505, time: 24.72527
+
+2021-06-26T09:45:53.814962
+LR: 6.25e-05
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.67311, final_score: 0.42789, time: 290.09189
+[RESULT]: Val. Epoch: 40, summary_loss: 0.69449, final_score: 0.43856, time: 23.99109
+
+2021-06-26T09:51:08.054912
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.67306, final_score: 0.42877, time: 289.59982
+[RESULT]: Val. Epoch: 41, summary_loss: 0.68876, final_score: 0.43307, time: 24.68036
+
+2021-06-26T09:56:22.499797
+LR: 6.25e-05
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.67238, final_score: 0.42702, time: 289.56591
+[RESULT]: Val. Epoch: 42, summary_loss: 0.70058, final_score: 0.43307, time: 24.16224
+
+2021-06-26T10:01:36.386136
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.67228, final_score: 0.42514, time: 290.01551
+[RESULT]: Val. Epoch: 43, summary_loss: 0.69612, final_score: 0.43606, time: 24.54584
+
+2021-06-26T10:06:51.121276
+LR: 6.25e-05
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.67212, final_score: 0.42689, time: 290.03731
+[RESULT]: Val. Epoch: 44, summary_loss: 0.68852, final_score: 0.43157, time: 24.39611
+
+2021-06-26T10:12:05.741452
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.67114, final_score: 0.42502, time: 289.60545
+[RESULT]: Val. Epoch: 45, summary_loss: 0.70207, final_score: 0.43157, time: 24.10692
+
+2021-06-26T10:17:19.606091
+LR: 6.25e-05
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.67159, final_score: 0.42602, time: 290.00711
+[RESULT]: Val. Epoch: 46, summary_loss: 0.69763, final_score: 0.42807, time: 24.87703
+
+2021-06-26T10:22:34.667040
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.67119, final_score: 0.41965, time: 290.39703
+[RESULT]: Val. Epoch: 47, summary_loss: 0.69223, final_score: 0.42907, time: 24.04299
+
+2021-06-26T10:27:49.275716
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.66874, final_score: 0.41990, time: 289.31104
+[RESULT]: Val. Epoch: 48, summary_loss: 0.70329, final_score: 0.43606, time: 24.64867
+
+2021-06-26T10:33:03.416260
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.66801, final_score: 0.41677, time: 290.19310
+[RESULT]: Val. Epoch: 49, summary_loss: 0.69389, final_score: 0.42557, time: 24.14543
+
+2021-06-26T10:38:17.916626
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.66776, final_score: 0.42002, time: 290.30083
+[RESULT]: Val. Epoch: 50, summary_loss: 0.69201, final_score: 0.42757, time: 24.99131
+
+2021-06-26T10:43:33.373500
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.66802, final_score: 0.42027, time: 289.90567
+[RESULT]: Val. Epoch: 51, summary_loss: 0.69143, final_score: 0.42408, time: 23.89436
+
+2021-06-26T10:48:47.365886
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.66795, final_score: 0.41915, time: 289.74354
+[RESULT]: Val. Epoch: 52, summary_loss: 0.69491, final_score: 0.42258, time: 24.76724
+
+2021-06-26T10:54:02.034749
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.66884, final_score: 0.41815, time: 289.50951
+[RESULT]: Val. Epoch: 53, summary_loss: 0.69178, final_score: 0.42208, time: 23.69208
+
+2021-06-26T10:59:15.405095
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.66708, final_score: 0.41865, time: 289.40283
+[RESULT]: Val. Epoch: 54, summary_loss: 0.69091, final_score: 0.42258, time: 24.33643
+
+2021-06-26T11:04:29.300721
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.66768, final_score: 0.41977, time: 289.86436
+[RESULT]: Val. Epoch: 55, summary_loss: 0.69491, final_score: 0.42957, time: 24.32310
+
+2021-06-26T11:09:43.659767
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.66816, final_score: 0.41890, time: 289.38269
+[RESULT]: Val. Epoch: 56, summary_loss: 0.69735, final_score: 0.41808, time: 23.53825
+
+2021-06-26T11:14:56.742731
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.66791, final_score: 0.41827, time: 290.60386
+[RESULT]: Val. Epoch: 57, summary_loss: 0.68987, final_score: 0.42158, time: 25.55060
+
+2021-06-26T11:20:13.069353
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.66790, final_score: 0.41402, time: 289.51180
+[RESULT]: Val. Epoch: 58, summary_loss: 0.69616, final_score: 0.43107, time: 24.27878
+
+2021-06-26T11:25:27.029287
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.66784, final_score: 0.41640, time: 289.93669
+[RESULT]: Val. Epoch: 59, summary_loss: 0.69548, final_score: 0.42258, time: 24.15432
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..e75da5ee8591629c9d5b89a0821c17966e1de3ac
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-020epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-020epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3e1f0b1c6b584fed638fd1a3c1c90f49d49d0904
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-020epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:83760e6f16777891ea8050a539012e9da5762b88cedf42d8ae258d618ac68d7e
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b8f6210a17fb1fd85f3f9db49c8cd61cd1b00884
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1906b0e909afb219a92d4d0505cc53bd6cf78e397f4d037dfda61a02111133f5
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..27df0a6f0dcd8d8a76a7522304551af6ccb94f36
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:164ae8505b6050195ae90b061fde531ef159e193171fa381eaf29ccc633faba2
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..db121bec91e2fc3601419e4c96270091696b5641
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:90fe3b3bba2707b6acbb72d7b89d33978426dea8b71ef355926e192eef46ab3a
+size 57505472
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5fb2b3c01a106ed9b2beb85698e28f715fc408af
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_srnet_stego_7/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T17:46:12.343305
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.69648, final_score: 0.49825, time: 292.17719
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69317, final_score: 0.49650, time: 25.99518
+
+2021-06-25T17:51:30.917453
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69315, final_score: 0.49763, time: 289.75499
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69315, final_score: 0.49451, time: 26.55927
+
+2021-06-25T17:56:47.630522
+LR: 0.001
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69316, final_score: 0.49750, time: 290.32649
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69316, final_score: 0.49550, time: 26.18510
+
+2021-06-25T18:02:04.351520
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69322, final_score: 0.49725, time: 289.94486
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69537, final_score: 0.49800, time: 27.20191
+
+2021-06-25T18:07:21.696229
+LR: 0.001
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69365, final_score: 0.49863, time: 289.71475
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69315, final_score: 0.49700, time: 26.46421
+
+2021-06-25T18:12:38.294405
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69315, final_score: 0.49813, time: 289.66586
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69315, final_score: 0.49650, time: 26.26747
+
+2021-06-25T18:17:54.432866
+LR: 0.001
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69315, final_score: 0.49763, time: 289.83635
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69315, final_score: 0.49550, time: 26.64166
+
+2021-06-25T18:23:11.321062
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69314, final_score: 0.49588, time: 289.79730
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69314, final_score: 0.49351, time: 26.41756
+
+2021-06-25T18:28:27.934093
+LR: 0.001
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69344, final_score: 0.49750, time: 289.75355
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69435, final_score: 0.49700, time: 27.32688
+
+2021-06-25T18:33:45.227831
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69315, final_score: 0.49738, time: 290.01024
+[RESULT]: Val. Epoch: 9, summary_loss: 0.69316, final_score: 0.49600, time: 27.84318
+
+2021-06-25T18:39:03.287547
+LR: 0.001
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69315, final_score: 0.49650, time: 290.02088
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69328, final_score: 0.49301, time: 26.76614
+
+2021-06-25T18:44:20.269240
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 11, summary_loss: 0.69320, final_score: 0.49438, time: 290.36343
+[RESULT]: Val. Epoch: 11, summary_loss: 0.70783, final_score: 0.49451, time: 27.09935
+
+2021-06-25T18:49:37.927532
+LR: 0.001
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 12, summary_loss: 0.69322, final_score: 0.49363, time: 290.39677
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69364, final_score: 0.49650, time: 26.06296
+
+2021-06-25T18:54:54.589997
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 13, summary_loss: 0.69319, final_score: 0.49338, time: 289.85985
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69453, final_score: 0.49101, time: 26.50144
+
+2021-06-25T19:00:11.143540
+LR: 0.001
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 14, summary_loss: 0.69278, final_score: 0.48400, time: 290.48120
+[RESULT]: Val. Epoch: 14, summary_loss: 0.70923, final_score: 0.49051, time: 27.32710
+
+2021-06-25T19:05:29.145739
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 15, summary_loss: 0.69279, final_score: 0.48188, time: 290.34648
+[RESULT]: Val. Epoch: 15, summary_loss: 0.72934, final_score: 0.48452, time: 27.00842
+
+2021-06-25T19:10:46.691846
+LR: 0.001
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 16, summary_loss: 0.69222, final_score: 0.47801, time: 290.62732
+[RESULT]: Val. Epoch: 16, summary_loss: 0.71577, final_score: 0.48202, time: 26.29042
+
+2021-06-25T19:16:03.813876
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 17, summary_loss: 0.69152, final_score: 0.47063, time: 289.74300
+[RESULT]: Val. Epoch: 17, summary_loss: 0.72600, final_score: 0.47453, time: 26.64398
+
+2021-06-25T19:21:20.427091
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 18, summary_loss: 0.69014, final_score: 0.46438, time: 290.34121
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69426, final_score: 0.46404, time: 26.56189
+
+2021-06-25T19:26:37.538711
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 19, summary_loss: 0.68941, final_score: 0.45776, time: 290.36824
+[RESULT]: Val. Epoch: 19, summary_loss: 1.01435, final_score: 0.48452, time: 26.86901
+
+2021-06-25T19:31:54.974317
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 20, summary_loss: 0.68805, final_score: 0.45614, time: 290.39433
+[RESULT]: Val. Epoch: 20, summary_loss: 0.68921, final_score: 0.44755, time: 26.98099
+
+2021-06-25T19:37:12.776104
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.68628, final_score: 0.44451, time: 290.05708
+[RESULT]: Val. Epoch: 21, summary_loss: 0.70696, final_score: 0.45854, time: 27.25468
+
+2021-06-25T19:42:30.284527
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.68538, final_score: 0.44201, time: 290.24966
+[RESULT]: Val. Epoch: 22, summary_loss: 0.73172, final_score: 0.45904, time: 26.35402
+
+2021-06-25T19:47:47.077609
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.68164, final_score: 0.43564, time: 289.72865
+[RESULT]: Val. Epoch: 23, summary_loss: 0.68767, final_score: 0.43856, time: 26.98362
+
+2021-06-25T19:53:04.206088
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.67906, final_score: 0.42977, time: 289.80881
+[RESULT]: Val. Epoch: 24, summary_loss: 0.70631, final_score: 0.44306, time: 27.91368
+
+2021-06-25T19:58:22.122935
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.67811, final_score: 0.42914, time: 290.49617
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69279, final_score: 0.43107, time: 26.08681
+
+2021-06-25T20:03:38.904502
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.67247, final_score: 0.41140, time: 290.11420
+[RESULT]: Val. Epoch: 26, summary_loss: 0.68666, final_score: 0.43107, time: 25.72232
+
+2021-06-25T20:08:55.157922
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.67058, final_score: 0.41252, time: 289.86451
+[RESULT]: Val. Epoch: 27, summary_loss: 0.69909, final_score: 0.41658, time: 27.68244
+
+2021-06-25T20:14:12.900400
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.66876, final_score: 0.40890, time: 290.47079
+[RESULT]: Val. Epoch: 28, summary_loss: 0.71388, final_score: 0.43257, time: 26.86514
+
+2021-06-25T20:19:30.438733
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.66560, final_score: 0.40490, time: 289.89223
+[RESULT]: Val. Epoch: 29, summary_loss: 0.69313, final_score: 0.41259, time: 26.57602
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:53:23.173530
+LR: 0.000125
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 30, summary_loss: 0.67442, final_score: 0.42039, time: 293.81275
+[RESULT]: Val. Epoch: 30, summary_loss: 0.68414, final_score: 0.42358, time: 24.60329
+
+2021-06-26T08:58:41.769891
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 31, summary_loss: 0.67158, final_score: 0.41365, time: 289.93254
+[RESULT]: Val. Epoch: 31, summary_loss: 0.68419, final_score: 0.42408, time: 24.59061
+
+2021-06-26T09:03:56.464588
+LR: 0.000125
+Emb_rate: 0.9
+[RESULT]: Train. Epoch: 32, summary_loss: 0.67097, final_score: 0.41315, time: 289.50377
+[RESULT]: Val. Epoch: 32, summary_loss: 0.68766, final_score: 0.41708, time: 25.07673
+
+2021-06-26T09:09:11.203084
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 33, summary_loss: 0.67053, final_score: 0.40977, time: 289.48119
+[RESULT]: Val. Epoch: 33, summary_loss: 0.68018, final_score: 0.42008, time: 24.77790
+
+2021-06-26T09:14:25.621109
+LR: 0.000125
+Emb_rate: 0.81
+[RESULT]: Train. Epoch: 34, summary_loss: 0.66935, final_score: 0.40740, time: 289.50817
+[RESULT]: Val. Epoch: 34, summary_loss: 0.68040, final_score: 0.42008, time: 24.33404
+
+2021-06-26T09:19:39.618309
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.66713, final_score: 0.40465, time: 289.71068
+[RESULT]: Val. Epoch: 35, summary_loss: 0.70271, final_score: 0.42557, time: 24.75349
+
+2021-06-26T09:24:54.261237
+LR: 0.000125
+Emb_rate: 0.7290000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.66630, final_score: 0.40502, time: 289.57200
+[RESULT]: Val. Epoch: 36, summary_loss: 0.68240, final_score: 0.41858, time: 25.13296
+
+2021-06-26T09:30:09.137612
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.66607, final_score: 0.40215, time: 289.71302
+[RESULT]: Val. Epoch: 37, summary_loss: 0.68402, final_score: 0.41858, time: 24.45674
+
+2021-06-26T09:35:23.470989
+LR: 0.000125
+Emb_rate: 0.6561000000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.66377, final_score: 0.40052, time: 290.31621
+[RESULT]: Val. Epoch: 38, summary_loss: 0.68677, final_score: 0.40809, time: 24.26277
+
+2021-06-26T09:40:38.211835
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 39, summary_loss: 0.66333, final_score: 0.39978, time: 289.47866
+[RESULT]: Val. Epoch: 39, summary_loss: 0.70275, final_score: 0.42408, time: 24.43087
+
+2021-06-26T09:45:52.326072
+LR: 0.000125
+Emb_rate: 0.5904900000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.66266, final_score: 0.39578, time: 289.60719
+[RESULT]: Val. Epoch: 40, summary_loss: 0.69212, final_score: 0.42507, time: 25.06366
+
+2021-06-26T09:51:07.164384
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.66181, final_score: 0.39690, time: 289.24794
+[RESULT]: Val. Epoch: 41, summary_loss: 0.71239, final_score: 0.42807, time: 25.04314
+
+2021-06-26T09:56:21.615468
+LR: 0.000125
+Emb_rate: 0.5314410000000002
+[RESULT]: Train. Epoch: 42, summary_loss: 0.66018, final_score: 0.39340, time: 289.45224
+[RESULT]: Val. Epoch: 42, summary_loss: 0.71245, final_score: 0.41858, time: 23.75519
+
+2021-06-26T10:01:34.986330
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 43, summary_loss: 0.65830, final_score: 0.38778, time: 289.93943
+[RESULT]: Val. Epoch: 43, summary_loss: 0.68265, final_score: 0.41508, time: 26.05476
+
+2021-06-26T10:06:51.141779
+LR: 0.000125
+Emb_rate: 0.47829690000000014
+[RESULT]: Train. Epoch: 44, summary_loss: 0.65900, final_score: 0.38940, time: 289.24518
+[RESULT]: Val. Epoch: 44, summary_loss: 0.67816, final_score: 0.40859, time: 25.60115
+
+2021-06-26T10:12:06.142663
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 45, summary_loss: 0.65768, final_score: 0.38965, time: 290.28377
+[RESULT]: Val. Epoch: 45, summary_loss: 0.68936, final_score: 0.41009, time: 25.16630
+
+2021-06-26T10:17:21.760951
+LR: 0.000125
+Emb_rate: 0.43046721000000016
+[RESULT]: Train. Epoch: 46, summary_loss: 0.65690, final_score: 0.39415, time: 290.15734
+[RESULT]: Val. Epoch: 46, summary_loss: 0.67998, final_score: 0.41059, time: 24.10699
+
+2021-06-26T10:22:36.192585
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.65318, final_score: 0.38440, time: 289.95613
+[RESULT]: Val. Epoch: 47, summary_loss: 0.69638, final_score: 0.40659, time: 25.70998
+
+2021-06-26T10:27:52.027416
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.65378, final_score: 0.38515, time: 289.30379
+[RESULT]: Val. Epoch: 48, summary_loss: 0.68723, final_score: 0.40809, time: 24.73830
+
+2021-06-26T10:33:06.225261
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.64887, final_score: 0.38215, time: 290.43244
+[RESULT]: Val. Epoch: 49, summary_loss: 0.68696, final_score: 0.40410, time: 25.01953
+
+2021-06-26T10:38:21.844383
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.65028, final_score: 0.37716, time: 289.41333
+[RESULT]: Val. Epoch: 50, summary_loss: 0.69367, final_score: 0.40460, time: 24.81593
+
+2021-06-26T10:43:36.247965
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.65053, final_score: 0.38103, time: 289.78670
+[RESULT]: Val. Epoch: 51, summary_loss: 0.68427, final_score: 0.40360, time: 24.85318
+
+2021-06-26T10:48:51.083584
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.64827, final_score: 0.37753, time: 289.79249
+[RESULT]: Val. Epoch: 52, summary_loss: 0.68667, final_score: 0.40559, time: 25.03715
+
+2021-06-26T10:54:06.081377
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.64861, final_score: 0.38128, time: 289.32338
+[RESULT]: Val. Epoch: 53, summary_loss: 0.68844, final_score: 0.40110, time: 25.47052
+
+2021-06-26T10:59:21.033381
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.64826, final_score: 0.36991, time: 289.72214
+[RESULT]: Val. Epoch: 54, summary_loss: 0.68474, final_score: 0.40110, time: 24.33139
+
+2021-06-26T11:04:35.258485
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.64769, final_score: 0.37316, time: 289.94974
+[RESULT]: Val. Epoch: 55, summary_loss: 0.68850, final_score: 0.40410, time: 25.19742
+
+2021-06-26T11:09:50.620405
+LR: 3.90625e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.64723, final_score: 0.37603, time: 290.44198
+[RESULT]: Val. Epoch: 56, summary_loss: 0.69781, final_score: 0.40609, time: 24.30765
+
+2021-06-26T11:15:05.528418
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.64854, final_score: 0.37828, time: 290.03439
+[RESULT]: Val. Epoch: 57, summary_loss: 0.68422, final_score: 0.40110, time: 26.80078
+
+2021-06-26T11:20:22.527503
+LR: 1.953125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.64849, final_score: 0.37416, time: 289.84963
+[RESULT]: Val. Epoch: 58, summary_loss: 0.68796, final_score: 0.40559, time: 24.15200
+
+2021-06-26T11:25:36.694399
+LR: 9.765625e-07
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.64639, final_score: 0.37341, time: 289.83514
+[RESULT]: Val. Epoch: 59, summary_loss: 0.68406, final_score: 0.40260, time: 25.13345
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-001epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-001epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..42f7356fbea4376375bc4db83692fe1873bc58c8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-001epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8e5571ba7df62b01c34ada03c4624f7f594666dc6507fc2595dc21e2a86e278d
+size 69172438
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-005epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-005epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7a4a85d5839ea56444955fefd2a8bdce61cd27f8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-005epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7f0abbb4883cda8046397e1c41a3ca50307e17f0b38083fb88a4d1868c18dc67
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8386a118c17943e053040778a8469fd8d572d553
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c16406d93929541ea90636a390384ba7cfcdda60fe300e8594089b5675d41405
+size 69172374
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c612d029e8ab411258257e71728ef2b8d5344ba1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4437eeb04d924afcfdc32fb373c67b1e5c0780c2292d8dc3dac43465cc325f4e
+size 69172438
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f0aed9e661922a0c0427666d127a26b90cc904e3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/log.txt
@@ -0,0 +1,100 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-06T13:41:24.938679
+LR: 0.001
+Emb_rate: 0.7
+[RESULT]: Train. Epoch: 0, summary_loss: 0.72282, final_score: 0.49809, time: 517.16676
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69943, final_score: 0.49800, time: 160.16959
+
+2021-04-06T13:52:42.719632
+LR: 0.001
+Emb_rate: 0.63
+[RESULT]: Train. Epoch: 1, summary_loss: 0.70199, final_score: 0.49022, time: 581.01155
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69885, final_score: 0.49401, time: 155.75730
+
+2021-04-06T14:04:59.902507
+LR: 0.001
+Emb_rate: 0.63
+[RESULT]: Train. Epoch: 2, summary_loss: 0.70219, final_score: 0.49772, time: 518.94051
+[RESULT]: Val. Epoch: 2, summary_loss: 0.71018, final_score: 0.49401, time: 150.45693
+
+2021-04-06T14:16:09.504348
+LR: 0.001
+Emb_rate: 0.5670000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69956, final_score: 0.49435, time: 524.41321
+[RESULT]: Val. Epoch: 3, summary_loss: 0.70864, final_score: 0.49800, time: 134.31624
+
+2021-04-06T14:27:08.417532
+LR: 0.001
+Emb_rate: 0.5670000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.70110, final_score: 0.48935, time: 534.77653
+[RESULT]: Val. Epoch: 4, summary_loss: 0.70395, final_score: 0.49800, time: 151.50510
+
+2021-04-06T14:38:34.878508
+LR: 0.001
+Emb_rate: 0.5103000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69935, final_score: 0.49249, time: 569.52817
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69317, final_score: 0.49700, time: 163.87445
+
+2021-04-06T14:50:48.694448
+LR: 0.001
+Emb_rate: 0.5103000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69852, final_score: 0.49800, time: 596.01768
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69381, final_score: 0.49451, time: 164.66586
+
+2021-04-06T15:03:29.589571
+LR: 0.001
+Emb_rate: 0.45927000000000007
+[RESULT]: Train. Epoch: 7, summary_loss: 0.69915, final_score: 0.49399, time: 518.97630
+[RESULT]: Val. Epoch: 7, summary_loss: 0.77485, final_score: 0.49650, time: 162.52371
+
+2021-04-06T15:14:51.300477
+LR: 0.001
+Emb_rate: 0.45927000000000007
+[RESULT]: Train. Epoch: 8, summary_loss: 0.69952, final_score: 0.49599, time: 499.44378
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69465, final_score: 0.49650, time: 157.05457
+
+2021-04-06T15:25:48.119656
+LR: 0.001
+Emb_rate: 0.41334300000000007
+[RESULT]: Train. Epoch: 9, summary_loss: 0.69844, final_score: 0.49848, time: 539.14084
+[RESULT]: Val. Epoch: 9, summary_loss: 0.70249, final_score: 0.49800, time: 161.58685
+
+2021-04-06T15:37:29.053104
+LR: 0.001
+Emb_rate: 0.41334300000000007
+[RESULT]: Train. Epoch: 10, summary_loss: 0.69690, final_score: 0.48819, time: 587.14150
+[RESULT]: Val. Epoch: 10, summary_loss: 0.69441, final_score: 0.49500, time: 156.75844
+Fitter prepared. Device is cuda:0
+
+2021-04-08T08:06:55.352664
+LR: 0.001
+Emb_rate: 1.0
+Fitter prepared. Device is cuda:0
+
+2021-04-08T08:08:08.333123
+LR: 0.001
+Emb_rate: 1.0
+[RESULT]: Train. Epoch: 0, summary_loss: 0.61767, final_score: 0.34491, time: 433.87334
+[RESULT]: Val. Epoch: 0, summary_loss: 1.12149, final_score: 0.32717, time: 127.36631
+
+2021-04-08T08:17:30.168372
+LR: 0.001
+Emb_rate: 0.9
+Fitter prepared. Device is cuda:0
+
+2021-04-12T13:51:48.541192
+LR: 0.001
+Emb_rate: 1.2
+Fitter prepared. Device is cuda:0
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:36:54.965790
+LR: 0.001
+Emb_rate: 0.24
+[RESULT]: Train. Epoch: 1, summary_loss: 0.67230, final_score: 0.38303, time: 673.06895
+[RESULT]: Val. Epoch: 1, summary_loss: 1.30752, final_score: 0.47902, time: 202.51438
+
+2021-04-28T09:51:30.922833
+LR: 0.001
+Emb_rate: 0.216
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..194b7fe8b732c3dc7af9a5a5e8f5bcd1b3aa71bb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..391ca2c5ed568d7673819914e3d9dc056432e8b6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4a03bfbc3b4c6a2587320e9fa13a15700a614b458ecaf517b0e2673a515a6cc2
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-031epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-031epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ac03cb52d436ed5deb3e3d99c509325eabcb43c1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-031epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:76c806d368d29e8f7e22f9c856059dfe74d64711469a02a1e6b955725b985d64
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-036epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-036epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..375cb9ccfb010784666e50be578afbe3a659d6b8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/best-checkpoint-036epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ed4efbc3bfc5f81cff9fc8a37992ed3aa9e014c7eb5183e65bf0881a5da8b9c1
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..030b7886cc31ef4bd3f01d091a6f08baeb9013e2
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8037bc09f6b05b5baeeece1098b61315cb58848ae3ce3c9ee46aa24199ee4cf5
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..5bd3507d8728c9e0902d271c9b5f877072520e17
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/log.txt
@@ -0,0 +1,254 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:47:45.181104
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.46653, final_score: 0.20845, time: 647.80818
+[RESULT]: Val. Epoch: 0, summary_loss: 2.61759, final_score: 0.48002, time: 199.41531
+
+2021-04-26T10:01:52.834758
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.18362, final_score: 0.01900, time: 637.79749
+[RESULT]: Val. Epoch: 1, summary_loss: 1.48727, final_score: 0.47902, time: 215.57560
+
+2021-04-26T10:16:06.553729
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.16076, final_score: 0.01137, time: 647.79765
+[RESULT]: Val. Epoch: 2, summary_loss: 1.22666, final_score: 0.45055, time: 203.14394
+
+2021-04-26T10:30:17.971094
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.16445, final_score: 0.01225, time: 647.51563
+[RESULT]: Val. Epoch: 3, summary_loss: 2.11409, final_score: 0.47103, time: 205.91400
+
+2021-04-26T10:44:31.602627
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.17419, final_score: 0.01687, time: 655.63127
+[RESULT]: Val. Epoch: 4, summary_loss: 3.01678, final_score: 0.48002, time: 203.66919
+
+2021-04-26T10:58:51.093886
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.17580, final_score: 0.01712, time: 653.53254
+[RESULT]: Val. Epoch: 5, summary_loss: 1.38926, final_score: 0.44705, time: 202.57373
+
+2021-04-26T11:13:07.393861
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.15821, final_score: 0.01025, time: 679.21056
+[RESULT]: Val. Epoch: 6, summary_loss: 1.43767, final_score: 0.45854, time: 202.87938
+
+2021-04-26T11:27:49.657280
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.18987, final_score: 0.02537, time: 686.23749
+[RESULT]: Val. Epoch: 7, summary_loss: 2.50336, final_score: 0.46853, time: 202.90086
+
+2021-04-26T11:42:38.978270
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.18251, final_score: 0.02149, time: 673.36028
+[RESULT]: Val. Epoch: 8, summary_loss: 1.99218, final_score: 0.45355, time: 202.70501
+
+2021-04-26T11:57:15.203687
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.19793, final_score: 0.03012, time: 676.62080
+[RESULT]: Val. Epoch: 9, summary_loss: 1.78947, final_score: 0.44356, time: 202.46851
+
+2021-04-26T12:11:54.464370
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.19506, final_score: 0.02937, time: 669.54129
+[RESULT]: Val. Epoch: 10, summary_loss: 2.69203, final_score: 0.46304, time: 203.21163
+
+2021-04-26T12:26:27.408122
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.20559, final_score: 0.03487, time: 685.89687
+[RESULT]: Val. Epoch: 11, summary_loss: 1.96020, final_score: 0.46553, time: 202.38798
+
+2021-04-26T12:41:15.890282
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.21981, final_score: 0.04299, time: 680.28723
+[RESULT]: Val. Epoch: 12, summary_loss: 1.85339, final_score: 0.43856, time: 203.07733
+
+2021-04-26T12:55:59.416682
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.24046, final_score: 0.05399, time: 686.06290
+[RESULT]: Val. Epoch: 13, summary_loss: 1.28382, final_score: 0.43157, time: 203.11228
+
+2021-04-26T13:10:48.777815
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.22656, final_score: 0.04674, time: 672.47998
+[RESULT]: Val. Epoch: 14, summary_loss: 1.77621, final_score: 0.42308, time: 203.64534
+
+2021-04-26T13:25:25.114927
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.24707, final_score: 0.06098, time: 679.90146
+[RESULT]: Val. Epoch: 15, summary_loss: 1.93670, final_score: 0.44456, time: 202.74944
+
+2021-04-26T13:40:08.031517
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.25391, final_score: 0.06511, time: 681.78799
+[RESULT]: Val. Epoch: 16, summary_loss: 1.99685, final_score: 0.43606, time: 203.62761
+
+2021-04-26T13:54:53.641344
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.28172, final_score: 0.07836, time: 680.97461
+[RESULT]: Val. Epoch: 17, summary_loss: 1.05556, final_score: 0.42308, time: 206.22731
+
+2021-04-26T14:09:41.304739
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.26787, final_score: 0.07048, time: 681.62578
+[RESULT]: Val. Epoch: 18, summary_loss: 1.66519, final_score: 0.42358, time: 206.34734
+
+2021-04-26T14:24:29.483820
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.30682, final_score: 0.09473, time: 680.64729
+[RESULT]: Val. Epoch: 19, summary_loss: 1.18940, final_score: 0.41359, time: 206.65576
+
+2021-04-26T14:39:17.017795
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.30944, final_score: 0.09873, time: 682.66315
+[RESULT]: Val. Epoch: 20, summary_loss: 1.04541, final_score: 0.41259, time: 206.19856
+
+2021-04-26T14:54:06.227823
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.32869, final_score: 0.10922, time: 680.17991
+[RESULT]: Val. Epoch: 21, summary_loss: 1.80547, final_score: 0.43457, time: 205.68367
+
+2021-04-26T15:08:52.260713
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.32664, final_score: 0.10835, time: 667.00014
+[RESULT]: Val. Epoch: 22, summary_loss: 1.57916, final_score: 0.41558, time: 203.72627
+
+2021-04-26T15:23:23.175459
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.36265, final_score: 0.13134, time: 673.88407
+[RESULT]: Val. Epoch: 23, summary_loss: 1.24792, final_score: 0.41459, time: 205.94042
+
+2021-04-26T15:38:03.172040
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.34949, final_score: 0.12209, time: 679.86101
+[RESULT]: Val. Epoch: 24, summary_loss: 1.53584, final_score: 0.41159, time: 202.54676
+
+2021-04-26T15:52:45.816931
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.38895, final_score: 0.14809, time: 672.69777
+[RESULT]: Val. Epoch: 25, summary_loss: 1.11786, final_score: 0.39710, time: 203.52531
+
+2021-04-26T16:07:22.233515
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.37853, final_score: 0.14584, time: 671.95245
+[RESULT]: Val. Epoch: 26, summary_loss: 1.27258, final_score: 0.41309, time: 203.50339
+
+2021-04-26T16:21:57.978027
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 27, summary_loss: 0.41055, final_score: 0.16033, time: 670.03026
+[RESULT]: Val. Epoch: 27, summary_loss: 0.97403, final_score: 0.39311, time: 206.48937
+
+2021-04-26T16:36:34.850832
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 28, summary_loss: 0.40955, final_score: 0.16421, time: 666.72797
+[RESULT]: Val. Epoch: 28, summary_loss: 0.96333, final_score: 0.38462, time: 204.16401
+
+2021-04-26T16:51:06.180013
+LR: 0.001
+Emb_rate: 0.24706935851357886
+[RESULT]: Train. Epoch: 29, summary_loss: 0.43107, final_score: 0.18033, time: 672.73569
+[RESULT]: Val. Epoch: 29, summary_loss: 1.61924, final_score: 0.39910, time: 203.56923
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:05:02.001047
+LR: 0.001
+Emb_rate: 0.24
+[RESULT]: Train. Epoch: 30, summary_loss: 0.43901, final_score: 0.18583, time: 670.03966
+[RESULT]: Val. Epoch: 30, summary_loss: 0.98015, final_score: 0.38362, time: 201.49861
+
+2021-04-28T10:19:33.723778
+LR: 0.001
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 31, summary_loss: 0.46583, final_score: 0.20482, time: 662.73002
+[RESULT]: Val. Epoch: 31, summary_loss: 0.84601, final_score: 0.38112, time: 200.20963
+
+2021-04-28T10:33:57.297513
+LR: 0.001
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 32, summary_loss: 0.45929, final_score: 0.19958, time: 664.37477
+[RESULT]: Val. Epoch: 32, summary_loss: 1.19469, final_score: 0.37762, time: 199.11684
+
+2021-04-28T10:48:20.965669
+LR: 0.001
+Emb_rate: 0.1944
+[RESULT]: Train. Epoch: 33, summary_loss: 0.48782, final_score: 0.22469, time: 668.25154
+[RESULT]: Val. Epoch: 33, summary_loss: 0.97575, final_score: 0.37862, time: 200.39152
+
+2021-04-28T11:02:49.810846
+LR: 0.001
+Emb_rate: 0.1944
+[RESULT]: Train. Epoch: 34, summary_loss: 0.48539, final_score: 0.22682, time: 665.46960
+[RESULT]: Val. Epoch: 34, summary_loss: 0.86914, final_score: 0.38262, time: 199.91907
+
+2021-04-28T11:17:15.380361
+LR: 0.001
+Emb_rate: 0.17496
+[RESULT]: Train. Epoch: 35, summary_loss: 0.50773, final_score: 0.24319, time: 665.99118
+[RESULT]: Val. Epoch: 35, summary_loss: 1.88383, final_score: 0.42158, time: 200.60358
+
+2021-04-28T11:31:42.297315
+LR: 0.001
+Emb_rate: 0.17496
+[RESULT]: Train. Epoch: 36, summary_loss: 0.50719, final_score: 0.24506, time: 676.49385
+[RESULT]: Val. Epoch: 36, summary_loss: 0.68849, final_score: 0.35564, time: 199.61468
+
+2021-04-28T11:46:18.805486
+LR: 0.001
+Emb_rate: 0.15746400000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.53387, final_score: 0.26381, time: 659.37483
+[RESULT]: Val. Epoch: 37, summary_loss: 0.92357, final_score: 0.37213, time: 199.15123
+
+2021-04-28T12:00:37.511071
+LR: 0.001
+Emb_rate: 0.15746400000000002
+[RESULT]: Train. Epoch: 38, summary_loss: 0.52559, final_score: 0.25781, time: 662.77672
+[RESULT]: Val. Epoch: 38, summary_loss: 0.87759, final_score: 0.37762, time: 202.62457
+
+2021-04-28T12:15:03.104602
+LR: 0.001
+Emb_rate: 0.14171760000000003
+[RESULT]: Train. Epoch: 39, summary_loss: 0.54556, final_score: 0.27543, time: 665.82074
+[RESULT]: Val. Epoch: 39, summary_loss: 0.78534, final_score: 0.38412, time: 202.84920
+
+2021-04-28T12:29:31.974626
+LR: 0.001
+Emb_rate: 0.14171760000000003
+[RESULT]: Train. Epoch: 40, summary_loss: 0.53779, final_score: 0.27068, time: 675.80680
+[RESULT]: Val. Epoch: 40, summary_loss: 1.08446, final_score: 0.39011, time: 202.78889
+
+2021-04-28T12:44:10.754016
+LR: 0.001
+Emb_rate: 0.12754584000000002
+[RESULT]: Train. Epoch: 41, summary_loss: 0.55730, final_score: 0.28705, time: 682.57216
+[RESULT]: Val. Epoch: 41, summary_loss: 0.69114, final_score: 0.36014, time: 203.69537
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..dd9eff9018d56d1cad22607170667210b5bb3ba5
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-005epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-005epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8852d7ae636e816c93bc8fb06f4edfd5fcd2418f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-005epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:402a54b4950ef46860238ee5d157c0ee3f9298ab8fadd2ac736852c48d6f8414
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-019epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-019epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..61bdca3534de888eeb1bf2187fdcd267c05f0c3b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-019epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:22019cf5eb6f27a1501ed19ebb4667f6f708b2864a794b6a4d360248a5ff6bdc
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..759bef315ce8b151e2ddaf97c415ac1eec976e74
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7ec364f2f895dd43b978d94f98f4784b2b5137046e2d14808bdd77d5d2bcd28a
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..68ab102ccd453d5520221548fba869041df1aa63
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:33af0b672f0500821bef125f7baaaf286bcb09de2ed7bbebefa7b7709ff36da5
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ec1b206127348c9ed0c2e25f5c55bc79fc2a2f54
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:41:29.790710
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.49016, final_score: 0.23569, time: 635.97913
+[RESULT]: Val. Epoch: 0, summary_loss: 1.06867, final_score: 0.42258, time: 208.89643
+
+2021-04-26T09:55:35.134824
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.21303, final_score: 0.03637, time: 654.17670
+[RESULT]: Val. Epoch: 1, summary_loss: 2.24277, final_score: 0.45255, time: 208.98919
+
+2021-04-26T10:09:58.499757
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20397, final_score: 0.03387, time: 663.72753
+[RESULT]: Val. Epoch: 2, summary_loss: 1.17171, final_score: 0.39411, time: 211.79667
+
+2021-04-26T10:24:34.225724
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.18395, final_score: 0.02249, time: 667.18538
+[RESULT]: Val. Epoch: 3, summary_loss: 1.42771, final_score: 0.41009, time: 208.57293
+
+2021-04-26T10:39:10.188839
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.19061, final_score: 0.02762, time: 651.98108
+[RESULT]: Val. Epoch: 4, summary_loss: 1.63638, final_score: 0.42058, time: 208.79686
+
+2021-04-26T10:53:31.166839
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.20362, final_score: 0.03449, time: 657.47271
+[RESULT]: Val. Epoch: 5, summary_loss: 0.78805, final_score: 0.35914, time: 209.00004
+
+2021-04-26T11:07:58.048735
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.19148, final_score: 0.03062, time: 667.15818
+[RESULT]: Val. Epoch: 6, summary_loss: 1.54906, final_score: 0.40210, time: 209.20147
+
+2021-04-26T11:22:34.613884
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.19875, final_score: 0.03424, time: 667.58946
+[RESULT]: Val. Epoch: 7, summary_loss: 0.87019, final_score: 0.34915, time: 208.56198
+
+2021-04-26T11:37:10.950626
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.18884, final_score: 0.02624, time: 658.72204
+[RESULT]: Val. Epoch: 8, summary_loss: 2.15168, final_score: 0.41658, time: 208.58588
+
+2021-04-26T11:51:38.437662
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.21134, final_score: 0.04099, time: 670.18506
+[RESULT]: Val. Epoch: 9, summary_loss: 1.30803, final_score: 0.36763, time: 208.23415
+
+2021-04-26T12:06:17.039077
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.20251, final_score: 0.03299, time: 673.37661
+[RESULT]: Val. Epoch: 10, summary_loss: 1.30706, final_score: 0.36863, time: 209.61250
+
+2021-04-26T12:21:00.211621
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.21673, final_score: 0.04486, time: 673.14536
+[RESULT]: Val. Epoch: 11, summary_loss: 1.49003, final_score: 0.38462, time: 208.35489
+
+2021-04-26T12:35:41.910318
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.22355, final_score: 0.04611, time: 676.56898
+[RESULT]: Val. Epoch: 12, summary_loss: 2.04287, final_score: 0.42308, time: 208.27205
+
+2021-04-26T12:50:26.946771
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.25015, final_score: 0.06073, time: 675.18381
+[RESULT]: Val. Epoch: 13, summary_loss: 2.38588, final_score: 0.39411, time: 208.33586
+
+2021-04-26T13:05:10.666410
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.22688, final_score: 0.05074, time: 675.49036
+[RESULT]: Val. Epoch: 14, summary_loss: 1.11003, final_score: 0.32567, time: 208.26282
+
+2021-04-26T13:19:54.621188
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.25219, final_score: 0.06373, time: 677.78479
+[RESULT]: Val. Epoch: 15, summary_loss: 0.82783, final_score: 0.30170, time: 208.36971
+
+2021-04-26T13:34:40.995576
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.25259, final_score: 0.06398, time: 673.35406
+[RESULT]: Val. Epoch: 16, summary_loss: 1.54595, final_score: 0.34016, time: 208.04154
+
+2021-04-26T13:49:22.607009
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.28440, final_score: 0.08098, time: 676.17903
+[RESULT]: Val. Epoch: 17, summary_loss: 0.97612, final_score: 0.33666, time: 209.11678
+
+2021-04-26T14:04:08.088720
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.27863, final_score: 0.08123, time: 680.64545
+[RESULT]: Val. Epoch: 18, summary_loss: 0.97326, final_score: 0.29920, time: 208.02249
+
+2021-04-26T14:18:56.952753
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.31216, final_score: 0.10360, time: 684.32330
+[RESULT]: Val. Epoch: 19, summary_loss: 0.64522, final_score: 0.28122, time: 207.33044
+
+2021-04-26T14:33:48.981858
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.29121, final_score: 0.08948, time: 683.49834
+[RESULT]: Val. Epoch: 20, summary_loss: 1.89217, final_score: 0.37163, time: 208.19462
+
+2021-04-26T14:48:40.843274
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.33566, final_score: 0.11460, time: 677.05413
+[RESULT]: Val. Epoch: 21, summary_loss: 0.70392, final_score: 0.31319, time: 207.55316
+
+2021-04-26T15:03:25.654522
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.31432, final_score: 0.10272, time: 694.33982
+[RESULT]: Val. Epoch: 22, summary_loss: 0.72450, final_score: 0.27622, time: 208.21273
+
+2021-04-26T15:18:28.400063
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.35377, final_score: 0.12972, time: 677.04945
+[RESULT]: Val. Epoch: 23, summary_loss: 0.70854, final_score: 0.28472, time: 207.56785
+
+2021-04-26T15:33:13.222686
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.35176, final_score: 0.13022, time: 671.63821
+[RESULT]: Val. Epoch: 24, summary_loss: 1.42391, final_score: 0.31818, time: 207.47885
+
+2021-04-26T15:47:52.534467
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.37669, final_score: 0.14696, time: 677.96330
+[RESULT]: Val. Epoch: 25, summary_loss: 1.51473, final_score: 0.34466, time: 207.94727
+
+2021-04-26T16:02:38.649474
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.37382, final_score: 0.13984, time: 678.22598
+[RESULT]: Val. Epoch: 26, summary_loss: 1.15343, final_score: 0.28621, time: 207.89043
+
+2021-04-26T16:17:25.007076
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 27, summary_loss: 0.41130, final_score: 0.16958, time: 678.51397
+[RESULT]: Val. Epoch: 27, summary_loss: 0.78090, final_score: 0.29321, time: 208.07955
+
+2021-04-26T16:32:11.806991
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 28, summary_loss: 0.39803, final_score: 0.16196, time: 672.29874
+[RESULT]: Val. Epoch: 28, summary_loss: 1.09821, final_score: 0.30470, time: 207.35893
+
+2021-04-26T16:46:51.628359
+LR: 0.001
+Emb_rate: 0.24706935851357886
+[RESULT]: Train. Epoch: 29, summary_loss: 0.43459, final_score: 0.18720, time: 691.76630
+[RESULT]: Val. Epoch: 29, summary_loss: 0.55774, final_score: 0.23477, time: 208.37847
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bcbda4663ee1aed04abd92502eeb48a55cb46e00
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7d373a4fa87c72cd3abd074904c59a6f3aa3ac22
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b8bc4c6a488be7004a86dff027fe2522cc9b5bc881013dcef56a85f2f3a60970
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9ee257d8c3819412948196d79409b6097aeceeef
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:060c7d8b9f51015e6cfcfc62fa509ad9aef25eecb8dfd2fea6d0f54906f9da2a
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a5e28a235ee11af45b367da8a85a28d8f487e391
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1347f2340331936a2dcc847d8eb88c2fbabb11f6f8604c2aa0e4dc2935f5f340
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..224d2f08225abd58339354c151bb05386a118b08
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b049f0b6198c40c1bd48ec58d309297c5d5401afe64001d12db4f3380da3a339
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..99d10ce75db705c9439629ebb94d46ef664c01e8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/log.txt
@@ -0,0 +1,183 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:41:31.378396
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.38599, final_score: 0.15759, time: 645.79428
+[RESULT]: Val. Epoch: 0, summary_loss: 3.48633, final_score: 0.46054, time: 207.24475
+
+2021-04-26T09:55:44.780632
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.19379, final_score: 0.02749, time: 647.36235
+[RESULT]: Val. Epoch: 1, summary_loss: 0.95566, final_score: 0.33866, time: 206.16629
+
+2021-04-26T10:09:58.712869
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.17253, final_score: 0.01975, time: 665.58095
+[RESULT]: Val. Epoch: 2, summary_loss: 1.40343, final_score: 0.40959, time: 208.19640
+
+2021-04-26T10:24:32.673824
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.18539, final_score: 0.02562, time: 666.22591
+[RESULT]: Val. Epoch: 3, summary_loss: 2.33766, final_score: 0.46054, time: 206.90865
+
+2021-04-26T10:39:06.024281
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.16307, final_score: 0.01462, time: 654.57414
+[RESULT]: Val. Epoch: 4, summary_loss: 2.05941, final_score: 0.38412, time: 206.02258
+
+2021-04-26T10:53:26.828177
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.22363, final_score: 0.04699, time: 653.03357
+[RESULT]: Val. Epoch: 5, summary_loss: 1.08580, final_score: 0.31469, time: 207.39993
+
+2021-04-26T11:07:47.464393
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.18176, final_score: 0.02349, time: 664.45088
+[RESULT]: Val. Epoch: 6, summary_loss: 0.73515, final_score: 0.25824, time: 206.28199
+
+2021-04-26T11:22:18.563664
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.19727, final_score: 0.03149, time: 662.58741
+[RESULT]: Val. Epoch: 7, summary_loss: 1.08521, final_score: 0.27073, time: 206.48248
+
+2021-04-26T11:36:47.800856
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.18609, final_score: 0.02724, time: 662.30011
+[RESULT]: Val. Epoch: 8, summary_loss: 1.59318, final_score: 0.33916, time: 206.46732
+
+2021-04-26T11:51:16.738227
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.20822, final_score: 0.03862, time: 665.88481
+[RESULT]: Val. Epoch: 9, summary_loss: 2.02503, final_score: 0.33167, time: 205.89480
+
+2021-04-26T12:05:48.723777
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.19439, final_score: 0.03137, time: 659.93169
+[RESULT]: Val. Epoch: 10, summary_loss: 0.63220, final_score: 0.23177, time: 207.16395
+
+2021-04-26T12:20:16.207021
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.22030, final_score: 0.04524, time: 666.04500
+[RESULT]: Val. Epoch: 11, summary_loss: 1.20874, final_score: 0.25275, time: 207.23298
+
+2021-04-26T12:34:49.683022
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.20353, final_score: 0.03424, time: 663.01185
+[RESULT]: Val. Epoch: 12, summary_loss: 0.86122, final_score: 0.21379, time: 206.16608
+
+2021-04-26T12:49:19.062625
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.22970, final_score: 0.05186, time: 668.37924
+[RESULT]: Val. Epoch: 13, summary_loss: 0.83096, final_score: 0.20679, time: 206.54322
+
+2021-04-26T13:03:54.178973
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.22728, final_score: 0.04924, time: 669.62539
+[RESULT]: Val. Epoch: 14, summary_loss: 1.17762, final_score: 0.25425, time: 205.26800
+
+2021-04-26T13:18:29.276645
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.24571, final_score: 0.06223, time: 666.63477
+[RESULT]: Val. Epoch: 15, summary_loss: 0.89709, final_score: 0.21129, time: 205.97476
+
+2021-04-26T13:33:02.086475
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.23947, final_score: 0.05761, time: 684.47531
+[RESULT]: Val. Epoch: 16, summary_loss: 1.08347, final_score: 0.23277, time: 205.99100
+
+2021-04-26T13:47:52.744932
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.27208, final_score: 0.07436, time: 687.41185
+[RESULT]: Val. Epoch: 17, summary_loss: 0.54250, final_score: 0.23227, time: 207.34920
+
+2021-04-26T14:02:47.878454
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.26647, final_score: 0.07273, time: 674.94120
+[RESULT]: Val. Epoch: 18, summary_loss: 1.22297, final_score: 0.24975, time: 209.63479
+
+2021-04-26T14:17:32.630358
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.29709, final_score: 0.08898, time: 676.97208
+[RESULT]: Val. Epoch: 19, summary_loss: 1.20955, final_score: 0.26873, time: 207.18100
+
+2021-04-26T14:32:16.991890
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.29295, final_score: 0.08910, time: 671.08693
+[RESULT]: Val. Epoch: 20, summary_loss: 1.30892, final_score: 0.23277, time: 207.43666
+
+2021-04-26T14:46:55.744147
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.31993, final_score: 0.10560, time: 681.49227
+[RESULT]: Val. Epoch: 21, summary_loss: 0.53163, final_score: 0.19231, time: 208.51136
+
+2021-04-26T15:01:46.110930
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.32247, final_score: 0.10310, time: 687.25390
+[RESULT]: Val. Epoch: 22, summary_loss: 0.47227, final_score: 0.17882, time: 206.16453
+
+2021-04-26T15:16:39.931051
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.35293, final_score: 0.12447, time: 670.10821
+[RESULT]: Val. Epoch: 23, summary_loss: 1.20042, final_score: 0.24925, time: 201.81978
+
+2021-04-26T15:31:12.057022
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.33927, final_score: 0.11847, time: 668.57467
+[RESULT]: Val. Epoch: 24, summary_loss: 0.44726, final_score: 0.17433, time: 201.66854
+
+2021-04-26T15:45:42.646491
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.37746, final_score: 0.14721, time: 661.75204
+[RESULT]: Val. Epoch: 25, summary_loss: 0.73953, final_score: 0.21279, time: 201.89830
+
+2021-04-26T16:00:06.480786
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.37511, final_score: 0.13984, time: 657.88709
+[RESULT]: Val. Epoch: 26, summary_loss: 0.49948, final_score: 0.16733, time: 200.87829
+
+2021-04-26T16:14:25.441813
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.36757, final_score: 0.13622, time: 658.29337
+[RESULT]: Val. Epoch: 27, summary_loss: 0.41168, final_score: 0.16034, time: 203.21185
+
+2021-04-26T16:28:47.466796
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.35703, final_score: 0.13497, time: 670.02004
+[RESULT]: Val. Epoch: 28, summary_loss: 0.45268, final_score: 0.16783, time: 201.30139
+
+2021-04-26T16:43:18.987870
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.35961, final_score: 0.13122, time: 659.53766
+[RESULT]: Val. Epoch: 29, summary_loss: 0.43916, final_score: 0.16933, time: 201.98829
+Fitter prepared. Device is cuda:0
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2470ad1d3a4690f8182d5ad3d78b2a4859ed9a96
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-015epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-015epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..12786f980398b0afd145582a6c088393e6b15410
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-015epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1683ddd0b2691e71b9b0b2c47f98ed56fdac8d771170786a8ca35910747a57ee
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..072a141c223da0b01ab861c76f8041af7d584d76
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f2cd95de0071b8f15a474e96b0dcf72f7885cd9211ab95d361ae1b9bdd6ceb7d
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5dc1432c991ba1b38bb45a673213acffcb9eb3b8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ef8794018a1392e35f8619c626a0d6bcbdaa3e28504af0dedd32e6785c2872b7
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..18d19fdc11ceda2dc3fb24d9e3cb4210d0eeec9d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4c9c1cf1f375be6480331cc2094bb112d7528b46132a1cefa702f16b3ce258f5
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..32efe3d793da98b4d86b309aa7ec409782776ec3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/log.txt
@@ -0,0 +1,182 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:41:29.807606
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.45927, final_score: 0.20282, time: 653.78587
+[RESULT]: Val. Epoch: 0, summary_loss: 3.20046, final_score: 0.38511, time: 197.19974
+
+2021-04-26T09:55:41.154860
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.20067, final_score: 0.02974, time: 655.16823
+[RESULT]: Val. Epoch: 1, summary_loss: 0.78770, final_score: 0.26024, time: 197.07499
+
+2021-04-26T10:09:53.736053
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.15623, final_score: 0.00887, time: 653.42757
+[RESULT]: Val. Epoch: 2, summary_loss: 1.85108, final_score: 0.31668, time: 197.22722
+
+2021-04-26T10:24:04.561735
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.16536, final_score: 0.01275, time: 656.26028
+[RESULT]: Val. Epoch: 3, summary_loss: 2.67521, final_score: 0.39560, time: 196.81941
+
+2021-04-26T10:38:17.820095
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.16153, final_score: 0.01087, time: 655.09344
+[RESULT]: Val. Epoch: 4, summary_loss: 0.58535, final_score: 0.15035, time: 197.09271
+
+2021-04-26T10:52:30.343987
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.17878, final_score: 0.02024, time: 643.96009
+[RESULT]: Val. Epoch: 5, summary_loss: 1.16335, final_score: 0.20230, time: 196.29852
+
+2021-04-26T11:06:30.782814
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.16461, final_score: 0.01287, time: 637.14297
+[RESULT]: Val. Epoch: 6, summary_loss: 1.04057, final_score: 0.22378, time: 195.43337
+
+2021-04-26T11:20:23.534804
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.18444, final_score: 0.02212, time: 656.67878
+[RESULT]: Val. Epoch: 7, summary_loss: 0.82968, final_score: 0.17233, time: 195.62219
+
+2021-04-26T11:34:36.006273
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.17760, final_score: 0.02099, time: 650.11651
+[RESULT]: Val. Epoch: 8, summary_loss: 1.94824, final_score: 0.30969, time: 195.75555
+
+2021-04-26T11:48:42.062298
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.19736, final_score: 0.02899, time: 660.41442
+[RESULT]: Val. Epoch: 9, summary_loss: 1.65825, final_score: 0.25125, time: 196.90500
+
+2021-04-26T12:02:59.554948
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.17828, final_score: 0.02012, time: 662.07420
+[RESULT]: Val. Epoch: 10, summary_loss: 0.79338, final_score: 0.14785, time: 195.24949
+
+2021-04-26T12:17:17.057116
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.20830, final_score: 0.03737, time: 665.60520
+[RESULT]: Val. Epoch: 11, summary_loss: 1.38185, final_score: 0.24925, time: 202.99927
+
+2021-04-26T12:31:45.849485
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.20766, final_score: 0.03462, time: 657.19440
+[RESULT]: Val. Epoch: 12, summary_loss: 1.75751, final_score: 0.24875, time: 196.00509
+
+2021-04-26T12:45:59.216303
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.22859, final_score: 0.04674, time: 664.53085
+[RESULT]: Val. Epoch: 13, summary_loss: 2.45117, final_score: 0.25724, time: 195.21341
+
+2021-04-26T13:00:19.145778
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.22491, final_score: 0.04636, time: 675.78805
+[RESULT]: Val. Epoch: 14, summary_loss: 1.12858, final_score: 0.17083, time: 196.52163
+
+2021-04-26T13:14:51.637622
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.25471, final_score: 0.06386, time: 682.03267
+[RESULT]: Val. Epoch: 15, summary_loss: 0.48417, final_score: 0.11788, time: 196.45389
+
+2021-04-26T13:29:30.541848
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.24571, final_score: 0.05861, time: 681.76292
+[RESULT]: Val. Epoch: 16, summary_loss: 1.03129, final_score: 0.17483, time: 201.19385
+
+2021-04-26T13:44:13.702682
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.24909, final_score: 0.05961, time: 679.83901
+[RESULT]: Val. Epoch: 17, summary_loss: 0.87621, final_score: 0.16933, time: 195.64850
+
+2021-04-26T13:58:49.354242
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.25492, final_score: 0.06223, time: 659.14790
+[RESULT]: Val. Epoch: 18, summary_loss: 0.83993, final_score: 0.19331, time: 197.08850
+
+2021-04-26T14:13:05.758707
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.24357, final_score: 0.05699, time: 671.24644
+[RESULT]: Val. Epoch: 19, summary_loss: 0.59350, final_score: 0.11638, time: 196.67481
+
+2021-04-26T14:27:33.846380
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.22768, final_score: 0.04824, time: 657.07229
+[RESULT]: Val. Epoch: 20, summary_loss: 0.59128, final_score: 0.14036, time: 197.09688
+
+2021-04-26T14:41:48.192722
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.22872, final_score: 0.04774, time: 670.19885
+[RESULT]: Val. Epoch: 21, summary_loss: 0.72829, final_score: 0.08941, time: 195.41106
+
+2021-04-26T14:56:14.683862
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.22629, final_score: 0.04849, time: 665.45181
+[RESULT]: Val. Epoch: 22, summary_loss: 0.71158, final_score: 0.13586, time: 196.12835
+
+2021-04-26T15:10:36.424438
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.20375, final_score: 0.03487, time: 664.04294
+[RESULT]: Val. Epoch: 23, summary_loss: 0.35618, final_score: 0.06543, time: 197.96909
+
+2021-04-26T15:24:58.831287
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.19997, final_score: 0.03099, time: 673.43717
+[RESULT]: Val. Epoch: 24, summary_loss: 0.44139, final_score: 0.07992, time: 195.54916
+
+2021-04-26T15:39:27.998354
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.19641, final_score: 0.02937, time: 664.57461
+[RESULT]: Val. Epoch: 25, summary_loss: 0.76669, final_score: 0.10889, time: 196.56850
+
+2021-04-26T15:53:49.317481
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.18907, final_score: 0.02787, time: 668.29295
+[RESULT]: Val. Epoch: 26, summary_loss: 0.23657, final_score: 0.04695, time: 196.52427
+
+2021-04-26T16:08:14.483569
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.18454, final_score: 0.02487, time: 664.15126
+[RESULT]: Val. Epoch: 27, summary_loss: 0.51024, final_score: 0.09291, time: 196.43586
+
+2021-04-26T16:22:35.352431
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.18698, final_score: 0.02612, time: 681.02673
+[RESULT]: Val. Epoch: 28, summary_loss: 0.27390, final_score: 0.06793, time: 203.41192
+
+2021-04-26T16:37:19.968817
+LR: 0.000125
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.17910, final_score: 0.02012, time: 672.68675
+[RESULT]: Val. Epoch: 29, summary_loss: 0.27654, final_score: 0.05345, time: 196.12415
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..03a3a4d2745850434f8407c71d534a07cc71a474
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_0_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..54414071f2a18c89f0cb97428c0c169cff16cc57
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:eaa79164996d4a94c45757d24a0327049727fac105a15140805ee2fec21242b9
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..24c2f938323ec57733a89fa48daa4a2147871e6f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0f7667c7bee61a2c8cffd22d959f59b787ef622a5a8441ceb3dbbf9fd94c64a4
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..cbc5708034a890a95d1d342f9da4bc91edbb23fe
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5e494ce683beceacbb551b4782452d1a8f1986877fd49081ca2d794c3c77cb45
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f8f36db0ae268f27e5b019aac168ea088b0a97a3
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:975e6c77b2efb9b55df23ecf9f0378804e552c113a84d9738719e57eebbe3834
+size 67108864
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b7985ee432813d9c8bb3d2cb9498ccda6949e1d1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/log.txt
@@ -0,0 +1,349 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-09T14:26:32.381893
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.50880, final_score: 0.25106, time: 402.50623
+[RESULT]: Val. Epoch: 0, summary_loss: 3.21548, final_score: 0.46953, time: 125.26842
+
+2021-04-09T14:35:20.520837
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.21665, final_score: 0.03912, time: 406.69880
+[RESULT]: Val. Epoch: 1, summary_loss: 2.00677, final_score: 0.43856, time: 124.43031
+
+2021-04-09T14:44:12.019466
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.17964, final_score: 0.02124, time: 405.00425
+[RESULT]: Val. Epoch: 2, summary_loss: 0.98252, final_score: 0.39461, time: 124.73399
+
+2021-04-09T14:53:02.149040
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.19752, final_score: 0.02924, time: 411.28023
+[RESULT]: Val. Epoch: 3, summary_loss: 1.73345, final_score: 0.42757, time: 123.87052
+
+2021-04-09T15:01:57.494288
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.18191, final_score: 0.02212, time: 408.70378
+[RESULT]: Val. Epoch: 4, summary_loss: 2.96732, final_score: 0.43656, time: 123.71029
+
+2021-04-09T15:10:50.111009
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.20142, final_score: 0.03174, time: 411.20297
+[RESULT]: Val. Epoch: 5, summary_loss: 1.65784, final_score: 0.40010, time: 124.77741
+
+2021-04-09T15:19:46.297841
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.20188, final_score: 0.03274, time: 409.81489
+[RESULT]: Val. Epoch: 6, summary_loss: 2.20129, final_score: 0.44655, time: 125.60046
+
+2021-04-09T15:28:41.912973
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.22638, final_score: 0.04711, time: 413.83959
+[RESULT]: Val. Epoch: 7, summary_loss: 2.11496, final_score: 0.38412, time: 127.13078
+
+2021-04-09T15:37:43.087717
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.21975, final_score: 0.04286, time: 414.91235
+[RESULT]: Val. Epoch: 8, summary_loss: 1.96588, final_score: 0.35764, time: 126.35819
+
+2021-04-09T15:46:44.566219
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.26150, final_score: 0.06598, time: 421.09882
+[RESULT]: Val. Epoch: 9, summary_loss: 0.97173, final_score: 0.34615, time: 126.15175
+
+2021-04-09T15:55:52.251215
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.23795, final_score: 0.05199, time: 424.61797
+[RESULT]: Val. Epoch: 10, summary_loss: 1.91259, final_score: 0.35514, time: 125.33134
+
+2021-04-09T16:05:02.412539
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.29764, final_score: 0.09098, time: 424.31906
+[RESULT]: Val. Epoch: 11, summary_loss: 0.84816, final_score: 0.35714, time: 125.80253
+
+2021-04-09T16:14:12.923719
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.28483, final_score: 0.08223, time: 422.37200
+[RESULT]: Val. Epoch: 12, summary_loss: 0.95078, final_score: 0.34965, time: 125.35596
+
+2021-04-09T16:23:20.849396
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.35148, final_score: 0.12172, time: 429.24279
+[RESULT]: Val. Epoch: 13, summary_loss: 1.30719, final_score: 0.29421, time: 124.72075
+
+2021-04-09T16:32:35.033650
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.33115, final_score: 0.10897, time: 426.39000
+[RESULT]: Val. Epoch: 14, summary_loss: 0.68708, final_score: 0.28222, time: 124.41971
+
+2021-04-09T16:41:46.311466
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.37656, final_score: 0.13909, time: 427.29041
+[RESULT]: Val. Epoch: 15, summary_loss: 0.82088, final_score: 0.29171, time: 125.01961
+
+2021-04-09T16:50:58.823092
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.37787, final_score: 0.14321, time: 422.98008
+[RESULT]: Val. Epoch: 16, summary_loss: 1.60908, final_score: 0.36014, time: 124.66048
+
+2021-04-09T17:00:06.702311
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.43966, final_score: 0.18320, time: 428.08081
+[RESULT]: Val. Epoch: 17, summary_loss: 1.18064, final_score: 0.30170, time: 125.00390
+
+2021-04-09T17:09:19.986112
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.42972, final_score: 0.17646, time: 428.42628
+[RESULT]: Val. Epoch: 18, summary_loss: 0.64441, final_score: 0.25974, time: 126.40660
+
+2021-04-09T17:18:35.171255
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.47222, final_score: 0.20970, time: 427.16171
+[RESULT]: Val. Epoch: 19, summary_loss: 0.59532, final_score: 0.27323, time: 124.22798
+
+2021-04-09T17:27:46.944266
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.45237, final_score: 0.19258, time: 429.23317
+[RESULT]: Val. Epoch: 20, summary_loss: 0.58807, final_score: 0.23027, time: 123.39412
+
+2021-04-09T17:36:59.954855
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.47702, final_score: 0.20745, time: 431.48436
+[RESULT]: Val. Epoch: 21, summary_loss: 0.80373, final_score: 0.27622, time: 124.21070
+
+2021-04-09T17:46:15.849911
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.46153, final_score: 0.20020, time: 428.46089
+[RESULT]: Val. Epoch: 22, summary_loss: 0.73897, final_score: 0.29421, time: 124.84805
+
+2021-04-09T17:55:29.369460
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.43283, final_score: 0.18158, time: 435.46057
+[RESULT]: Val. Epoch: 23, summary_loss: 0.54562, final_score: 0.22478, time: 124.38199
+
+2021-04-09T18:04:49.601604
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.42660, final_score: 0.17458, time: 429.98881
+[RESULT]: Val. Epoch: 24, summary_loss: 0.64750, final_score: 0.25724, time: 125.92906
+
+2021-04-09T18:14:05.754193
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.40870, final_score: 0.16721, time: 428.73946
+[RESULT]: Val. Epoch: 25, summary_loss: 0.91842, final_score: 0.23077, time: 125.41470
+
+2021-04-09T18:23:20.111196
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.39375, final_score: 0.15584, time: 430.03138
+[RESULT]: Val. Epoch: 26, summary_loss: 0.57275, final_score: 0.19630, time: 125.40608
+
+2021-04-09T18:32:35.756529
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.38258, final_score: 0.14809, time: 428.24292
+[RESULT]: Val. Epoch: 27, summary_loss: 0.56445, final_score: 0.19431, time: 126.01048
+
+2021-04-09T18:41:50.226652
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.37078, final_score: 0.13722, time: 427.26766
+[RESULT]: Val. Epoch: 28, summary_loss: 0.51660, final_score: 0.19181, time: 125.77744
+
+2021-04-09T18:51:03.665022
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.36786, final_score: 0.13834, time: 429.52909
+[RESULT]: Val. Epoch: 29, summary_loss: 0.48703, final_score: 0.17732, time: 125.33008
+Fitter prepared. Device is cuda:0
+
+2021-04-12T18:00:58.477184
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.48428, final_score: 0.22632, time: 438.66438
+[RESULT]: Val. Epoch: 0, summary_loss: 3.34797, final_score: 0.46653, time: 142.18541
+
+2021-04-12T18:10:40.031599
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.21569, final_score: 0.03874, time: 443.76478
+[RESULT]: Val. Epoch: 1, summary_loss: 1.30477, final_score: 0.43057, time: 139.25234
+
+2021-04-12T18:20:23.513990
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.17624, final_score: 0.01800, time: 445.06598
+[RESULT]: Val. Epoch: 2, summary_loss: 1.22398, final_score: 0.37213, time: 139.06620
+
+2021-04-12T18:30:08.121233
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.18908, final_score: 0.02549, time: 432.60417
+[RESULT]: Val. Epoch: 3, summary_loss: 2.23192, final_score: 0.43457, time: 138.56094
+
+2021-04-12T18:39:39.496402
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.18107, final_score: 0.02037, time: 436.31047
+[RESULT]: Val. Epoch: 4, summary_loss: 1.47112, final_score: 0.37962, time: 138.09186
+
+2021-04-12T18:49:14.174303
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.20598, final_score: 0.03699, time: 454.81060
+[RESULT]: Val. Epoch: 5, summary_loss: 3.43284, final_score: 0.44955, time: 141.57151
+
+2021-04-12T18:59:10.800689
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.20087, final_score: 0.03237, time: 439.84112
+[RESULT]: Val. Epoch: 6, summary_loss: 1.47657, final_score: 0.38811, time: 137.59925
+
+2021-04-12T19:08:48.485679
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.22896, final_score: 0.04524, time: 449.93577
+[RESULT]: Val. Epoch: 7, summary_loss: 1.47746, final_score: 0.41359, time: 138.10975
+
+2021-04-12T19:18:36.747789
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.21754, final_score: 0.04349, time: 445.91988
+[RESULT]: Val. Epoch: 8, summary_loss: 1.67439, final_score: 0.37063, time: 144.85834
+
+2021-04-12T19:28:27.729246
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.26677, final_score: 0.07011, time: 455.31442
+[RESULT]: Val. Epoch: 9, summary_loss: 3.96923, final_score: 0.43107, time: 139.11973
+
+2021-04-12T19:38:22.367227
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.25230, final_score: 0.06311, time: 444.62797
+[RESULT]: Val. Epoch: 10, summary_loss: 1.20851, final_score: 0.37712, time: 139.38942
+
+2021-04-12T19:48:06.973036
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.31534, final_score: 0.10135, time: 459.40691
+[RESULT]: Val. Epoch: 11, summary_loss: 1.71413, final_score: 0.38162, time: 138.93421
+
+2021-04-12T19:58:05.554879
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.28639, final_score: 0.08398, time: 453.52716
+[RESULT]: Val. Epoch: 12, summary_loss: 1.82653, final_score: 0.34865, time: 139.71528
+
+2021-04-12T20:07:59.005508
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.35358, final_score: 0.12659, time: 450.29876
+[RESULT]: Val. Epoch: 13, summary_loss: 0.83522, final_score: 0.36114, time: 138.76737
+
+2021-04-12T20:17:48.467101
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.34055, final_score: 0.11660, time: 453.27352
+[RESULT]: Val. Epoch: 14, summary_loss: 1.28528, final_score: 0.31069, time: 137.28487
+
+2021-04-12T20:27:39.322858
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.38922, final_score: 0.14984, time: 448.25744
+[RESULT]: Val. Epoch: 15, summary_loss: 1.40383, final_score: 0.35165, time: 138.01172
+
+2021-04-12T20:37:25.779955
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.38232, final_score: 0.14709, time: 459.41706
+[RESULT]: Val. Epoch: 16, summary_loss: 1.30883, final_score: 0.28072, time: 137.59392
+
+2021-04-12T20:47:22.984962
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.43797, final_score: 0.18408, time: 455.95951
+[RESULT]: Val. Epoch: 17, summary_loss: 0.56405, final_score: 0.27323, time: 137.22567
+
+2021-04-12T20:57:16.553623
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.42152, final_score: 0.17283, time: 455.83525
+[RESULT]: Val. Epoch: 18, summary_loss: 1.32010, final_score: 0.31369, time: 137.72697
+
+2021-04-12T21:07:10.308289
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.46860, final_score: 0.20632, time: 449.55976
+[RESULT]: Val. Epoch: 19, summary_loss: 0.60781, final_score: 0.23576, time: 136.89788
+
+2021-04-12T21:16:56.952341
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.46742, final_score: 0.20132, time: 455.51998
+[RESULT]: Val. Epoch: 20, summary_loss: 0.78360, final_score: 0.30669, time: 136.99421
+
+2021-04-12T21:26:49.661842
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.47724, final_score: 0.21395, time: 462.68792
+[RESULT]: Val. Epoch: 21, summary_loss: 1.32946, final_score: 0.30819, time: 137.98752
+
+2021-04-12T21:36:50.530595
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.46816, final_score: 0.20557, time: 456.55752
+[RESULT]: Val. Epoch: 22, summary_loss: 1.19621, final_score: 0.28172, time: 136.98396
+
+2021-04-12T21:46:44.348109
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.43918, final_score: 0.18420, time: 461.42478
+[RESULT]: Val. Epoch: 23, summary_loss: 0.79855, final_score: 0.28821, time: 136.81305
+
+2021-04-12T21:56:42.813236
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.41829, final_score: 0.17496, time: 453.77212
+[RESULT]: Val. Epoch: 24, summary_loss: 0.57432, final_score: 0.22677, time: 138.96950
+
+2021-04-12T22:06:35.750320
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.40649, final_score: 0.16071, time: 457.54659
+[RESULT]: Val. Epoch: 25, summary_loss: 1.65611, final_score: 0.22977, time: 137.09322
+
+2021-04-12T22:16:30.580943
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.40723, final_score: 0.16521, time: 465.01436
+[RESULT]: Val. Epoch: 26, summary_loss: 0.51934, final_score: 0.22777, time: 137.14090
+
+2021-04-12T22:26:33.150184
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.39618, final_score: 0.15259, time: 466.74769
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bf9c3aafa44a9bca498a4519d2541477d044d870
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b0643c3675d4f8cd640669ded00c6a7a1e96616a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:45d983098775859616cb0845e592cb8b5b87de7b994866b79cdf1eb3ba3b4174
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b7b4d75c9126ab49cca016da66f1b2ac3fdbe754
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ce7be8ae5113b12626618f6e53e354c5051f32392448bd681f704c0eddd4ce4
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c6dd99154ea57b633a4da3a0c40262d143729992
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1089ba79d32d41c095cad93a73f8840121f4e8b0de8b0594dbcd6e781ff3a595
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ff0fa9a671af4a17d38427f8d8b763e2dfd534dd
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5654354d95731ffccb8eb9ed85da448909914d2fdcd644355e7fdf4a6e336610
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..455d604b33dacf7d0bbf0975857e5d4531597d46
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-15T07:51:54.863166
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.62708, final_score: 0.31892, time: 402.36934
+[RESULT]: Val. Epoch: 0, summary_loss: 7.58348, final_score: 0.49451, time: 124.36670
+
+2021-04-15T08:00:41.960111
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.49450, final_score: 0.22369, time: 409.69803
+[RESULT]: Val. Epoch: 1, summary_loss: 4.18828, final_score: 0.48601, time: 124.70379
+
+2021-04-15T08:09:36.719462
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.32524, final_score: 0.10297, time: 413.61195
+[RESULT]: Val. Epoch: 2, summary_loss: 1.18124, final_score: 0.46104, time: 126.02877
+
+2021-04-15T08:18:36.710927
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.29928, final_score: 0.08923, time: 409.19170
+[RESULT]: Val. Epoch: 3, summary_loss: 1.53729, final_score: 0.45954, time: 127.26140
+
+2021-04-15T08:27:33.345782
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22852, final_score: 0.04624, time: 411.42281
+[RESULT]: Val. Epoch: 4, summary_loss: 1.93370, final_score: 0.44855, time: 129.31487
+
+2021-04-15T08:36:34.299763
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.27097, final_score: 0.07186, time: 413.47816
+[RESULT]: Val. Epoch: 5, summary_loss: 1.42547, final_score: 0.44106, time: 129.56446
+
+2021-04-15T08:45:37.547431
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22995, final_score: 0.04874, time: 412.53150
+[RESULT]: Val. Epoch: 6, summary_loss: 1.95635, final_score: 0.43656, time: 129.21804
+
+2021-04-15T08:54:39.486516
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.27939, final_score: 0.07773, time: 413.30684
+[RESULT]: Val. Epoch: 7, summary_loss: 1.51215, final_score: 0.42258, time: 128.90793
+
+2021-04-15T09:03:41.902448
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.26582, final_score: 0.06836, time: 414.73827
+[RESULT]: Val. Epoch: 8, summary_loss: 1.67121, final_score: 0.43257, time: 129.62783
+
+2021-04-15T09:12:46.477403
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.31181, final_score: 0.09760, time: 425.54922
+[RESULT]: Val. Epoch: 9, summary_loss: 1.24133, final_score: 0.41159, time: 129.55461
+
+2021-04-15T09:22:01.798883
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.31708, final_score: 0.10197, time: 418.59210
+[RESULT]: Val. Epoch: 10, summary_loss: 1.86136, final_score: 0.44156, time: 129.65190
+
+2021-04-15T09:31:10.260549
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.36156, final_score: 0.13072, time: 427.26039
+[RESULT]: Val. Epoch: 11, summary_loss: 1.71666, final_score: 0.40160, time: 130.22975
+
+2021-04-15T09:40:27.956226
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.35724, final_score: 0.12747, time: 422.38595
+[RESULT]: Val. Epoch: 12, summary_loss: 1.63407, final_score: 0.41608, time: 128.83496
+
+2021-04-15T09:49:39.383200
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.43309, final_score: 0.17871, time: 426.28925
+[RESULT]: Val. Epoch: 13, summary_loss: 0.94756, final_score: 0.38811, time: 129.85277
+
+2021-04-15T09:58:55.940973
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.42474, final_score: 0.17271, time: 425.00773
+[RESULT]: Val. Epoch: 14, summary_loss: 0.91114, final_score: 0.37562, time: 129.56796
+
+2021-04-15T10:08:10.869280
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.48198, final_score: 0.21195, time: 424.21870
+[RESULT]: Val. Epoch: 15, summary_loss: 2.09205, final_score: 0.39061, time: 129.95336
+
+2021-04-15T10:17:25.250271
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.46799, final_score: 0.20270, time: 422.06789
+[RESULT]: Val. Epoch: 16, summary_loss: 1.00801, final_score: 0.39211, time: 128.74490
+
+2021-04-15T10:26:36.248692
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.52376, final_score: 0.24506, time: 429.16847
+[RESULT]: Val. Epoch: 17, summary_loss: 0.82713, final_score: 0.35714, time: 129.08907
+
+2021-04-15T10:35:54.862280
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.51698, final_score: 0.24106, time: 427.12824
+[RESULT]: Val. Epoch: 18, summary_loss: 0.90282, final_score: 0.34865, time: 129.67944
+
+2021-04-15T10:45:11.868193
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.56358, final_score: 0.27893, time: 424.17587
+[RESULT]: Val. Epoch: 19, summary_loss: 0.62801, final_score: 0.31069, time: 129.01723
+
+2021-04-15T10:54:25.428711
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.55109, final_score: 0.26581, time: 426.91463
+[RESULT]: Val. Epoch: 20, summary_loss: 1.17616, final_score: 0.37912, time: 128.46500
+
+2021-04-15T11:03:41.058207
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.56382, final_score: 0.28130, time: 430.00769
+[RESULT]: Val. Epoch: 21, summary_loss: 1.27088, final_score: 0.35764, time: 128.32204
+
+2021-04-15T11:12:59.591625
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.54931, final_score: 0.26718, time: 425.32347
+[RESULT]: Val. Epoch: 22, summary_loss: 0.60565, final_score: 0.29920, time: 127.56254
+
+2021-04-15T11:22:12.829802
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.55300, final_score: 0.26793, time: 426.59903
+[RESULT]: Val. Epoch: 23, summary_loss: 0.63713, final_score: 0.28871, time: 127.04145
+
+2021-04-15T11:31:26.674663
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.54546, final_score: 0.25931, time: 426.37550
+[RESULT]: Val. Epoch: 24, summary_loss: 0.57717, final_score: 0.27722, time: 127.36562
+
+2021-04-15T11:40:40.775515
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.53900, final_score: 0.25381, time: 426.62515
+[RESULT]: Val. Epoch: 25, summary_loss: 2.03884, final_score: 0.37612, time: 125.91541
+
+2021-04-15T11:49:53.527810
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.53918, final_score: 0.25606, time: 427.38334
+[RESULT]: Val. Epoch: 26, summary_loss: 0.60773, final_score: 0.28521, time: 126.82035
+
+2021-04-15T11:59:07.946758
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.50606, final_score: 0.23394, time: 426.89213
+[RESULT]: Val. Epoch: 27, summary_loss: 0.83973, final_score: 0.27722, time: 126.98801
+
+2021-04-15T12:08:22.031063
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.50448, final_score: 0.22794, time: 432.45939
+[RESULT]: Val. Epoch: 28, summary_loss: 0.79911, final_score: 0.28571, time: 129.82443
+
+2021-04-15T12:17:44.538091
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.48222, final_score: 0.21707, time: 430.80292
+[RESULT]: Val. Epoch: 29, summary_loss: 0.57013, final_score: 0.24975, time: 128.22108
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c39552bfdf9db9a0146533dae7320b10c6ff17c2
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-021epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-021epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..e1b06ee257d1b2a353b9c092d5388742ec1f8ca9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-021epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d31fb07f2f0ad25787fe2d12ca7ea4a917d45bf535afd47031a4f7bd87e2b16c
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a6c8a1c96aeebef2757dfdc36c6d25f5ba50be32
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:76f156116e2fc5356453b6bf935c1b82e272926630405fa928f702001a597897
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9e1a90027c368df6b238000d3f44fa7106453ec1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:09fa4a90761784c9d4285575e48b7c03ced676ec3d48d6dad1668cbf369b375a
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d47d410e021f240a0138f2de3e5d8d9fc070ef8c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d0d39163fd79445481d0c031aeeeab1cd5b70711c82393d9cc44a5bc466a8360
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..288713ade722b8a3eaa43176b22132b3acf5a98c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/log.txt
@@ -0,0 +1,240 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-19T06:46:36.328914
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.48788, final_score: 0.22144, time: 662.71609
+[RESULT]: Val. Epoch: 0, summary_loss: 1.23488, final_score: 0.48102, time: 206.50357
+
+2021-04-19T07:01:05.988956
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.23714, final_score: 0.05699, time: 663.71629
+[RESULT]: Val. Epoch: 1, summary_loss: 1.63338, final_score: 0.47203, time: 211.43606
+
+2021-04-19T07:15:41.358522
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.19656, final_score: 0.02949, time: 669.32617
+[RESULT]: Val. Epoch: 2, summary_loss: 2.82807, final_score: 0.47702, time: 202.41411
+
+2021-04-19T07:30:13.299604
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.23040, final_score: 0.05361, time: 655.17119
+[RESULT]: Val. Epoch: 3, summary_loss: 1.25491, final_score: 0.48152, time: 201.74034
+
+2021-04-19T07:44:30.426678
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20337, final_score: 0.03562, time: 668.82833
+[RESULT]: Val. Epoch: 4, summary_loss: 1.99418, final_score: 0.47652, time: 201.79144
+
+2021-04-19T07:59:01.226092
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24395, final_score: 0.05736, time: 667.29155
+[RESULT]: Val. Epoch: 5, summary_loss: 1.68170, final_score: 0.46603, time: 202.88219
+
+2021-04-19T08:13:31.590332
+LR: 0.001
+Emb_rate: 0.8748000000000001
+Fitter prepared. Device is cuda:0
+
+2021-04-19T18:41:08.558186
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.58729, final_score: 0.31967, time: 677.12094
+[RESULT]: Val. Epoch: 0, summary_loss: 2.78126, final_score: 0.49251, time: 213.94392
+
+2021-04-19T18:56:00.124051
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.24176, final_score: 0.05361, time: 686.59191
+[RESULT]: Val. Epoch: 1, summary_loss: 2.20877, final_score: 0.48651, time: 211.77799
+
+2021-04-19T19:10:58.912812
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.18828, final_score: 0.02387, time: 695.39382
+[RESULT]: Val. Epoch: 2, summary_loss: 2.10062, final_score: 0.49201, time: 212.91195
+
+2021-04-19T19:26:07.640035
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.22345, final_score: 0.04399, time: 694.49552
+[RESULT]: Val. Epoch: 3, summary_loss: 2.37738, final_score: 0.48801, time: 213.05900
+
+2021-04-19T19:41:15.388180
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20109, final_score: 0.02974, time: 698.33332
+[RESULT]: Val. Epoch: 4, summary_loss: 1.35152, final_score: 0.48352, time: 214.57835
+
+2021-04-19T19:56:28.701276
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24859, final_score: 0.05724, time: 702.26998
+[RESULT]: Val. Epoch: 5, summary_loss: 2.38236, final_score: 0.48052, time: 214.09926
+
+2021-04-19T20:11:45.300183
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22671, final_score: 0.04674, time: 692.21349
+[RESULT]: Val. Epoch: 6, summary_loss: 1.35193, final_score: 0.47552, time: 213.17342
+
+2021-04-19T20:26:50.919264
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28623, final_score: 0.07998, time: 693.06104
+[RESULT]: Val. Epoch: 7, summary_loss: 1.67610, final_score: 0.47802, time: 212.14060
+
+2021-04-19T20:41:56.317137
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.25750, final_score: 0.06311, time: 696.30483
+[RESULT]: Val. Epoch: 8, summary_loss: 2.19302, final_score: 0.47752, time: 212.66086
+
+2021-04-19T20:57:05.507021
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33241, final_score: 0.10710, time: 700.99891
+[RESULT]: Val. Epoch: 9, summary_loss: 2.32706, final_score: 0.46553, time: 212.12924
+
+2021-04-19T21:12:18.841839
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.32876, final_score: 0.10847, time: 697.32577
+[RESULT]: Val. Epoch: 10, summary_loss: 1.29618, final_score: 0.45654, time: 211.67012
+
+2021-04-19T21:27:28.254973
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39061, final_score: 0.14621, time: 692.04497
+[RESULT]: Val. Epoch: 11, summary_loss: 2.38576, final_score: 0.46254, time: 209.28829
+
+2021-04-19T21:42:29.761434
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.37796, final_score: 0.14196, time: 696.35216
+[RESULT]: Val. Epoch: 12, summary_loss: 2.11282, final_score: 0.45904, time: 209.12145
+
+2021-04-19T21:57:35.446530
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.45565, final_score: 0.19620, time: 695.87802
+[RESULT]: Val. Epoch: 13, summary_loss: 0.88575, final_score: 0.39560, time: 208.20087
+
+2021-04-19T22:12:39.977543
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.44313, final_score: 0.17971, time: 695.75353
+[RESULT]: Val. Epoch: 14, summary_loss: 1.08665, final_score: 0.41209, time: 207.31392
+
+2021-04-19T22:27:43.251408
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.49978, final_score: 0.22657, time: 704.13129
+[RESULT]: Val. Epoch: 15, summary_loss: 0.72385, final_score: 0.36513, time: 208.69480
+
+2021-04-19T22:42:56.489894
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.49318, final_score: 0.21882, time: 702.69145
+[RESULT]: Val. Epoch: 16, summary_loss: 1.78968, final_score: 0.37762, time: 212.56849
+
+2021-04-19T22:58:11.923498
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.51712, final_score: 0.23319, time: 698.07584
+[RESULT]: Val. Epoch: 17, summary_loss: 0.66799, final_score: 0.31019, time: 209.43483
+
+2021-04-19T23:13:19.801397
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.50614, final_score: 0.22807, time: 693.51467
+[RESULT]: Val. Epoch: 18, summary_loss: 0.58116, final_score: 0.27972, time: 211.10319
+
+2021-04-19T23:28:24.805634
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.51971, final_score: 0.23869, time: 695.11652
+[RESULT]: Val. Epoch: 19, summary_loss: 1.08790, final_score: 0.36214, time: 209.79795
+
+2021-04-19T23:43:29.896259
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.51607, final_score: 0.23144, time: 698.39378
+[RESULT]: Val. Epoch: 20, summary_loss: 0.80032, final_score: 0.25524, time: 208.49191
+
+2021-04-19T23:58:36.967025
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.50804, final_score: 0.23032, time: 694.72337
+[RESULT]: Val. Epoch: 21, summary_loss: 0.54563, final_score: 0.22527, time: 209.07687
+
+2021-04-20T00:13:41.136389
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.49771, final_score: 0.22257, time: 703.28226
+[RESULT]: Val. Epoch: 22, summary_loss: 1.07376, final_score: 0.32368, time: 207.37316
+
+2021-04-20T00:28:51.972278
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.49092, final_score: 0.21657, time: 692.98693
+[RESULT]: Val. Epoch: 23, summary_loss: 1.03617, final_score: 0.27672, time: 207.34973
+
+2021-04-20T00:43:52.494296
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.46836, final_score: 0.20095, time: 693.86656
+[RESULT]: Val. Epoch: 24, summary_loss: 0.54144, final_score: 0.23127, time: 207.23518
+
+2021-04-20T00:58:53.931394
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.46231, final_score: 0.19945, time: 698.76766
+[RESULT]: Val. Epoch: 25, summary_loss: 0.75841, final_score: 0.23477, time: 207.19381
+
+2021-04-20T01:14:00.066715
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.45864, final_score: 0.19545, time: 700.11422
+[RESULT]: Val. Epoch: 26, summary_loss: 0.58177, final_score: 0.23177, time: 207.39133
+
+2021-04-20T01:29:07.814466
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.44121, final_score: 0.17783, time: 698.70620
+[RESULT]: Val. Epoch: 27, summary_loss: 0.48290, final_score: 0.19930, time: 207.31190
+
+2021-04-20T01:44:14.234701
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.43324, final_score: 0.17771, time: 703.74715
+[RESULT]: Val. Epoch: 28, summary_loss: 0.51630, final_score: 0.21029, time: 207.00380
+
+2021-04-20T01:59:25.179479
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.43648, final_score: 0.18245, time: 700.24421
+[RESULT]: Val. Epoch: 29, summary_loss: 0.50993, final_score: 0.20729, time: 206.94086
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:21:15.045053
+LR: 0.00025
+Emb_rate: 0.24
+[RESULT]: Train. Epoch: 30, summary_loss: 0.44258, final_score: 0.18520, time: 696.90540
+[RESULT]: Val. Epoch: 30, summary_loss: 0.74181, final_score: 0.24575, time: 203.73491
+
+2021-04-28T09:36:15.907347
+LR: 0.00025
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 31, summary_loss: 0.43119, final_score: 0.17721, time: 690.80668
+[RESULT]: Val. Epoch: 31, summary_loss: 0.54522, final_score: 0.23027, time: 201.02705
+
+2021-04-28T09:51:07.924218
+LR: 0.00025
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 32, summary_loss: 0.42469, final_score: 0.16658, time: 683.29846
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..f13f00e0fb3b879c9cc29e91dc72b5298d1821be
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..76d57df8fe9e6593fae5a1ddf8f092c17c6910f2
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:81f583167f31dbf98a31718e946e7cdaf55cf044e48b6b83c5177b33c1e243bd
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..01c3f11fd4ea7cccd3a19191dcb4d596121f6b1c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e8ab36421afede525763f99275d832b0dae197dc62371e840f1af8386d031b7c
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-032epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-032epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fbe4caf30b3891414a1738282d40378bb1e87324
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/best-checkpoint-032epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:5015e309af252842d5746d96b97fe4832b2dbd29501d1a47cfc0372c6142b7ed
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5c7d8f3b908d876624d6eae2ec50fc66a9d40209
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:35b9f32b229d14ca6f985929fa5efa71ff2ca0ec25645673269d673a6c833b00
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..ecd90d3a3b23f3808978d26312a04059c264827c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/log.txt
@@ -0,0 +1,252 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:50:39.809890
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.63156, final_score: 0.33779, time: 917.64000
+[RESULT]: Val. Epoch: 0, summary_loss: 3.08189, final_score: 0.50000, time: 236.69175
+
+2021-04-26T10:09:54.774859
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.26212, final_score: 0.06448, time: 963.79370
+[RESULT]: Val. Epoch: 1, summary_loss: 2.42425, final_score: 0.49950, time: 231.77085
+
+2021-04-26T10:29:50.874157
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20454, final_score: 0.03374, time: 986.73583
+[RESULT]: Val. Epoch: 2, summary_loss: 1.85543, final_score: 0.50000, time: 276.83907
+
+2021-04-26T10:50:54.952175
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.22267, final_score: 0.04261, time: 973.16202
+[RESULT]: Val. Epoch: 3, summary_loss: 1.49686, final_score: 0.50000, time: 288.95537
+
+2021-04-26T11:11:57.496567
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20684, final_score: 0.03399, time: 983.37107
+[RESULT]: Val. Epoch: 4, summary_loss: 1.96537, final_score: 0.50000, time: 248.20471
+
+2021-04-26T11:32:29.282264
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24972, final_score: 0.06323, time: 941.80197
+[RESULT]: Val. Epoch: 5, summary_loss: 1.87845, final_score: 0.50000, time: 262.79973
+
+2021-04-26T11:52:34.093851
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22807, final_score: 0.04799, time: 1002.12939
+[RESULT]: Val. Epoch: 6, summary_loss: 1.44981, final_score: 0.50000, time: 238.66233
+
+2021-04-26T12:13:15.370010
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.29174, final_score: 0.08610, time: 948.32260
+[RESULT]: Val. Epoch: 7, summary_loss: 1.46717, final_score: 0.49950, time: 253.43940
+
+2021-04-26T12:33:17.335276
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.27893, final_score: 0.07786, time: 964.17895
+[RESULT]: Val. Epoch: 8, summary_loss: 2.67220, final_score: 0.50000, time: 253.35764
+
+2021-04-26T12:53:35.200503
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33474, final_score: 0.11372, time: 980.03950
+[RESULT]: Val. Epoch: 9, summary_loss: 1.58595, final_score: 0.50000, time: 245.29764
+
+2021-04-26T13:14:00.754424
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.33258, final_score: 0.10847, time: 954.66127
+[RESULT]: Val. Epoch: 10, summary_loss: 2.21578, final_score: 0.50000, time: 265.28557
+
+2021-04-26T13:34:20.917047
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40379, final_score: 0.15259, time: 980.66151
+[RESULT]: Val. Epoch: 11, summary_loss: 1.54649, final_score: 0.50000, time: 255.77876
+
+2021-04-26T13:54:57.603416
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.38290, final_score: 0.14134, time: 1007.29861
+[RESULT]: Val. Epoch: 12, summary_loss: 1.60408, final_score: 0.50000, time: 236.77989
+
+2021-04-26T14:15:42.025394
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44349, final_score: 0.18708, time: 991.34302
+[RESULT]: Val. Epoch: 13, summary_loss: 1.37694, final_score: 0.49850, time: 281.09896
+
+2021-04-26T14:36:54.929568
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.43094, final_score: 0.17308, time: 970.88238
+[RESULT]: Val. Epoch: 14, summary_loss: 1.30532, final_score: 0.49900, time: 263.06930
+
+2021-04-26T14:57:29.363205
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.49627, final_score: 0.22444, time: 995.33084
+[RESULT]: Val. Epoch: 15, summary_loss: 1.15096, final_score: 0.49351, time: 255.77235
+
+2021-04-26T15:18:20.924202
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.47056, final_score: 0.20582, time: 987.62623
+[RESULT]: Val. Epoch: 16, summary_loss: 1.56664, final_score: 0.49201, time: 291.80306
+
+2021-04-26T15:39:40.535668
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.51071, final_score: 0.23194, time: 973.69281
+[RESULT]: Val. Epoch: 17, summary_loss: 0.99025, final_score: 0.44705, time: 261.53903
+
+2021-04-26T16:00:16.244432
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.50031, final_score: 0.22182, time: 1003.35406
+[RESULT]: Val. Epoch: 18, summary_loss: 0.95442, final_score: 0.44505, time: 268.83476
+
+2021-04-26T16:21:28.890333
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.51159, final_score: 0.23232, time: 996.33581
+[RESULT]: Val. Epoch: 19, summary_loss: 1.23905, final_score: 0.40310, time: 242.74764
+
+2021-04-26T16:42:08.215995
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.50218, final_score: 0.22607, time: 1026.32870
+[RESULT]: Val. Epoch: 20, summary_loss: 0.84523, final_score: 0.37812, time: 273.11002
+
+2021-04-26T17:03:48.227264
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.50434, final_score: 0.22819, time: 1037.64541
+[RESULT]: Val. Epoch: 21, summary_loss: 1.62630, final_score: 0.38861, time: 286.60542
+
+2021-04-26T17:25:52.715200
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.49016, final_score: 0.21182, time: 1013.60512
+[RESULT]: Val. Epoch: 22, summary_loss: 1.61645, final_score: 0.34416, time: 275.52631
+
+2021-04-26T17:47:22.067236
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.49360, final_score: 0.21595, time: 884.74358
+[RESULT]: Val. Epoch: 23, summary_loss: 0.80027, final_score: 0.30070, time: 257.97957
+
+2021-04-26T18:06:25.211082
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.47704, final_score: 0.20057, time: 875.01294
+[RESULT]: Val. Epoch: 24, summary_loss: 0.67859, final_score: 0.25824, time: 246.49223
+
+2021-04-26T18:25:07.094672
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.46499, final_score: 0.19570, time: 868.02859
+[RESULT]: Val. Epoch: 25, summary_loss: 0.91502, final_score: 0.31369, time: 220.95803
+
+2021-04-26T18:43:16.296261
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.45449, final_score: 0.18820, time: 874.96565
+[RESULT]: Val. Epoch: 26, summary_loss: 0.67249, final_score: 0.24675, time: 230.98878
+
+2021-04-26T19:01:42.613710
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 27, summary_loss: 0.44385, final_score: 0.18420, time: 919.83307
+[RESULT]: Val. Epoch: 27, summary_loss: 0.64816, final_score: 0.26973, time: 261.88999
+
+2021-04-26T19:21:24.718123
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 28, summary_loss: 0.43320, final_score: 0.17658, time: 884.21125
+[RESULT]: Val. Epoch: 28, summary_loss: 1.88805, final_score: 0.33866, time: 235.14951
+
+2021-04-26T19:40:04.300015
+LR: 0.001
+Emb_rate: 0.24706935851357886
+Fitter prepared. Device is cuda:0
+
+2021-04-28T10:06:50.846348
+LR: 0.001
+Emb_rate: 0.24
+[RESULT]: Train. Epoch: 29, summary_loss: 0.42476, final_score: 0.16883, time: 682.30213
+[RESULT]: Val. Epoch: 29, summary_loss: 0.80835, final_score: 0.22178, time: 204.63336
+
+2021-04-28T10:21:38.127866
+LR: 0.001
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 30, summary_loss: 0.41559, final_score: 0.16408, time: 686.97646
+[RESULT]: Val. Epoch: 30, summary_loss: 0.74304, final_score: 0.25475, time: 204.77019
+
+2021-04-28T10:36:30.205384
+LR: 0.001
+Emb_rate: 0.216
+[RESULT]: Train. Epoch: 31, summary_loss: 0.40924, final_score: 0.16071, time: 677.54650
+[RESULT]: Val. Epoch: 31, summary_loss: 1.50815, final_score: 0.26673, time: 207.72422
+
+2021-04-28T10:51:15.687714
+LR: 0.001
+Emb_rate: 0.1944
+[RESULT]: Train. Epoch: 32, summary_loss: 0.39250, final_score: 0.14759, time: 685.29124
+[RESULT]: Val. Epoch: 32, summary_loss: 0.47818, final_score: 0.20529, time: 206.90191
+
+2021-04-28T11:06:08.323936
+LR: 0.001
+Emb_rate: 0.1944
+[RESULT]: Train. Epoch: 33, summary_loss: 0.39161, final_score: 0.14759, time: 682.65054
+[RESULT]: Val. Epoch: 33, summary_loss: 0.60547, final_score: 0.20330, time: 208.08353
+
+2021-04-28T11:20:59.294768
+LR: 0.001
+Emb_rate: 0.17496
+[RESULT]: Train. Epoch: 34, summary_loss: 0.38770, final_score: 0.14334, time: 691.67403
+[RESULT]: Val. Epoch: 34, summary_loss: 0.61422, final_score: 0.21878, time: 207.81111
+
+2021-04-28T11:35:59.001290
+LR: 0.001
+Emb_rate: 0.17496
+[RESULT]: Train. Epoch: 35, summary_loss: 0.37174, final_score: 0.13197, time: 684.67847
+[RESULT]: Val. Epoch: 35, summary_loss: 0.61547, final_score: 0.20979, time: 206.81741
+
+2021-04-28T11:50:50.694734
+LR: 0.001
+Emb_rate: 0.15746400000000002
+[RESULT]: Train. Epoch: 36, summary_loss: 0.37443, final_score: 0.13909, time: 678.81593
+[RESULT]: Val. Epoch: 36, summary_loss: 1.14144, final_score: 0.25375, time: 206.96695
+
+2021-04-28T12:05:36.687522
+LR: 0.001
+Emb_rate: 0.15746400000000002
+[RESULT]: Train. Epoch: 37, summary_loss: 0.36538, final_score: 0.13272, time: 687.62750
+[RESULT]: Val. Epoch: 37, summary_loss: 1.10525, final_score: 0.26274, time: 208.62765
+
+2021-04-28T12:20:33.107210
+LR: 0.001
+Emb_rate: 0.14171760000000003
+[RESULT]: Train. Epoch: 38, summary_loss: 0.36577, final_score: 0.13109, time: 703.35752
+[RESULT]: Val. Epoch: 38, summary_loss: 1.84810, final_score: 0.30020, time: 208.28293
+
+2021-04-28T12:35:45.001299
+LR: 0.001
+Emb_rate: 0.14171760000000003
+[RESULT]: Train. Epoch: 39, summary_loss: 0.36320, final_score: 0.12859, time: 682.42444
+[RESULT]: Val. Epoch: 39, summary_loss: 3.20809, final_score: 0.30619, time: 206.52718
+
+2021-04-28T12:50:34.270593
+LR: 0.001
+Emb_rate: 0.12754584000000002
+[RESULT]: Train. Epoch: 40, summary_loss: 0.37123, final_score: 0.13672, time: 686.84760
+[RESULT]: Val. Epoch: 40, summary_loss: 2.09923, final_score: 0.28921, time: 207.84924
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..b761732c62e5e02f8219557829a26a3c9bec30fe
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.1/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-019epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-019epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0193c2c343605e33ca2fc50f48b47d4176d8465c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-019epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e6848c3972cacf864657207b02a4daf328358f6e4db1a63124a0b3f82dcf78c2
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f495b9e64b206c01c9c66e4536c53665981f31f7
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:de171dd071c8f99bf314a71b15ce0939d79f1ab3f9995855eae8c1a65341e332
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5f1e336dc94ee9dd155cfb2c49e224b8fb29ad77
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8e6ef35865802d8995f0250816dcc9d9339fb1c845c1c9a6bb8082342643f761
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9115aa697e9c17bbe6175a513af2567717458623
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:235bd2b741d85d5a6c1db01880e906dec8d672325c4e365bd78b77833ed3a155
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..fab456b586e32e3cbf9a4fc2f1eaabfb6607054e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/log.txt
@@ -0,0 +1,200 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T08:50:31.331371
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.52695, final_score: 0.26531, time: 667.68201
+[RESULT]: Val. Epoch: 0, summary_loss: 1.64035, final_score: 0.49950, time: 206.97561
+
+2021-04-26T09:05:06.487863
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.27181, final_score: 0.07398, time: 677.81942
+[RESULT]: Val. Epoch: 1, summary_loss: 2.33448, final_score: 0.50000, time: 207.03914
+
+2021-04-26T09:19:51.527345
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.21958, final_score: 0.04324, time: 676.11247
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:37:40.105987
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.51689, final_score: 0.24631, time: 658.93309
+[RESULT]: Val. Epoch: 0, summary_loss: 1.66347, final_score: 0.50000, time: 205.03070
+
+2021-04-26T09:52:04.499356
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.23921, final_score: 0.05299, time: 684.10522
+[RESULT]: Val. Epoch: 1, summary_loss: 1.64712, final_score: 0.49900, time: 203.04202
+
+2021-04-26T10:06:52.072355
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20776, final_score: 0.03537, time: 658.28485
+[RESULT]: Val. Epoch: 2, summary_loss: 2.55084, final_score: 0.50000, time: 206.71596
+
+2021-04-26T10:21:17.257603
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.21672, final_score: 0.04036, time: 665.44691
+[RESULT]: Val. Epoch: 3, summary_loss: 2.77565, final_score: 0.50000, time: 204.29789
+
+2021-04-26T10:35:47.174164
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.19242, final_score: 0.02812, time: 665.77943
+[RESULT]: Val. Epoch: 4, summary_loss: 1.78202, final_score: 0.50000, time: 203.61472
+
+2021-04-26T10:50:16.735081
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.25075, final_score: 0.06311, time: 658.56977
+[RESULT]: Val. Epoch: 5, summary_loss: 2.35209, final_score: 0.49950, time: 202.89468
+
+2021-04-26T11:04:38.373293
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.23509, final_score: 0.05186, time: 664.20813
+[RESULT]: Val. Epoch: 6, summary_loss: 1.93404, final_score: 0.50000, time: 203.65672
+
+2021-04-26T11:19:06.408360
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28555, final_score: 0.08010, time: 679.33425
+[RESULT]: Val. Epoch: 7, summary_loss: 2.45511, final_score: 0.49900, time: 203.94349
+
+2021-04-26T11:33:49.868434
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.25204, final_score: 0.06348, time: 674.16033
+[RESULT]: Val. Epoch: 8, summary_loss: 2.73924, final_score: 0.49950, time: 203.68229
+
+2021-04-26T11:48:27.894652
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.32024, final_score: 0.10397, time: 670.29461
+[RESULT]: Val. Epoch: 9, summary_loss: 5.95728, final_score: 0.49950, time: 202.89049
+
+2021-04-26T12:03:01.246385
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.32922, final_score: 0.10947, time: 665.92099
+[RESULT]: Val. Epoch: 10, summary_loss: 3.49516, final_score: 0.50000, time: 203.92171
+
+2021-04-26T12:17:31.269933
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.38777, final_score: 0.14471, time: 675.08509
+[RESULT]: Val. Epoch: 11, summary_loss: 1.49856, final_score: 0.49950, time: 202.95561
+
+2021-04-26T12:32:09.665454
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.37489, final_score: 0.13672, time: 680.21116
+[RESULT]: Val. Epoch: 12, summary_loss: 1.58749, final_score: 0.49950, time: 203.70530
+
+2021-04-26T12:46:53.749724
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44023, final_score: 0.17946, time: 669.43802
+[RESULT]: Val. Epoch: 13, summary_loss: 1.64554, final_score: 0.49800, time: 203.93827
+
+2021-04-26T13:01:27.299002
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.42191, final_score: 0.17096, time: 676.64621
+[RESULT]: Val. Epoch: 14, summary_loss: 2.24370, final_score: 0.49151, time: 203.72827
+
+2021-04-26T13:16:07.832932
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.47162, final_score: 0.20582, time: 685.08782
+[RESULT]: Val. Epoch: 15, summary_loss: 1.38231, final_score: 0.49451, time: 203.29741
+
+2021-04-26T13:30:56.678055
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.46126, final_score: 0.19583, time: 670.03288
+[RESULT]: Val. Epoch: 16, summary_loss: 1.59151, final_score: 0.45804, time: 204.22642
+
+2021-04-26T13:45:31.105349
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.49557, final_score: 0.22494, time: 688.80952
+[RESULT]: Val. Epoch: 17, summary_loss: 1.17195, final_score: 0.43856, time: 205.59447
+
+2021-04-26T14:00:25.896853
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.48440, final_score: 0.20945, time: 684.51551
+[RESULT]: Val. Epoch: 18, summary_loss: 1.04760, final_score: 0.36813, time: 210.35243
+
+2021-04-26T14:15:21.117052
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.50578, final_score: 0.22557, time: 694.74043
+[RESULT]: Val. Epoch: 19, summary_loss: 0.58701, final_score: 0.28671, time: 210.20594
+
+2021-04-26T14:30:26.390917
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.49511, final_score: 0.21970, time: 691.52068
+[RESULT]: Val. Epoch: 20, summary_loss: 0.65544, final_score: 0.30769, time: 204.46743
+
+2021-04-26T14:45:22.554878
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.49293, final_score: 0.22007, time: 680.67821
+[RESULT]: Val. Epoch: 21, summary_loss: 1.16800, final_score: 0.32418, time: 203.67064
+
+2021-04-26T15:00:07.095406
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.48268, final_score: 0.20957, time: 712.32906
+[RESULT]: Val. Epoch: 22, summary_loss: 0.52160, final_score: 0.22428, time: 203.45800
+
+2021-04-26T15:15:23.204233
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.47919, final_score: 0.21357, time: 690.43168
+[RESULT]: Val. Epoch: 23, summary_loss: 0.50964, final_score: 0.22028, time: 208.41465
+
+2021-04-26T15:30:22.386683
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.46417, final_score: 0.19858, time: 696.33556
+[RESULT]: Val. Epoch: 24, summary_loss: 0.82923, final_score: 0.22777, time: 209.60743
+
+2021-04-26T15:45:28.499047
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.45298, final_score: 0.19195, time: 674.43471
+[RESULT]: Val. Epoch: 25, summary_loss: 1.12080, final_score: 0.24775, time: 204.99402
+
+2021-04-26T16:00:08.104570
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.43923, final_score: 0.17833, time: 685.52714
+[RESULT]: Val. Epoch: 26, summary_loss: 0.60589, final_score: 0.20779, time: 209.55517
+
+2021-04-26T16:15:03.372350
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 27, summary_loss: 0.42671, final_score: 0.17208, time: 675.03748
+[RESULT]: Val. Epoch: 27, summary_loss: 0.55724, final_score: 0.22428, time: 203.73440
+
+2021-04-26T16:29:42.420345
+LR: 0.001
+Emb_rate: 0.2745215094595321
+[RESULT]: Train. Epoch: 28, summary_loss: 0.42151, final_score: 0.16596, time: 681.38593
+[RESULT]: Val. Epoch: 28, summary_loss: 0.79479, final_score: 0.24575, time: 203.49926
+
+2021-04-26T16:44:27.463874
+LR: 0.001
+Emb_rate: 0.24706935851357886
+[RESULT]: Train. Epoch: 29, summary_loss: 0.40995, final_score: 0.16146, time: 690.79693
+[RESULT]: Val. Epoch: 29, summary_loss: 2.73762, final_score: 0.36064, time: 203.95476
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..fcffda2b1f6680f04a19f0e1b7855c569ffbb5d8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.2/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5401546966c47d2adceba0c5397a70a8bddf45fb
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:cae2cfd906f81dbba6af322caa2833cedc144b979e48bebb58c0e060b7a05ebb
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-028epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-028epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..71640e8680b4540fb4eb4c96ff4c84f40d7feb9b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-028epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:76d66c2cbf034f59b02d8418fd7aa198708ccdd7e3ec234e724eeddae581eded
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d496f5a5bcae630a32164b386f7677057d86e924
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7decc527b7ad292d332a273503d012c5f6bf7a8f82bcac4e1fdf7d634b8f1d66
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4713a0533bedbcd5a1f7d89f4194d022482b3299
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:75af2cffbb91dd1bc9ce5b3154ff73f15ca6a08cc58f8da055cfe7be9b3ef8c6
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..337e8745c19b311cc872afd6eac342c5e6615e0a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/log.txt
@@ -0,0 +1,187 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:27:19.176668
+LR: 0.001
+Emb_rate: 1.2
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:43:41.327503
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.63889, final_score: 0.36553, time: 751.46293
+[RESULT]: Val. Epoch: 0, summary_loss: 3.30784, final_score: 0.49850, time: 227.34682
+
+2021-04-26T10:00:00.595547
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.25373, final_score: 0.06361, time: 783.07678
+[RESULT]: Val. Epoch: 1, summary_loss: 2.15665, final_score: 0.50000, time: 213.97724
+
+2021-04-26T10:16:38.038530
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.19446, final_score: 0.02887, time: 805.66843
+[RESULT]: Val. Epoch: 2, summary_loss: 2.42055, final_score: 0.49950, time: 241.92908
+
+2021-04-26T10:34:05.839246
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.22463, final_score: 0.04349, time: 756.89836
+[RESULT]: Val. Epoch: 3, summary_loss: 1.45529, final_score: 0.49900, time: 240.49926
+
+2021-04-26T10:50:43.670453
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.21257, final_score: 0.03812, time: 742.67095
+[RESULT]: Val. Epoch: 4, summary_loss: 2.03169, final_score: 0.49900, time: 211.83724
+
+2021-04-26T11:06:38.389051
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.23857, final_score: 0.05274, time: 786.61378
+[RESULT]: Val. Epoch: 5, summary_loss: 1.82372, final_score: 0.49950, time: 231.02863
+
+2021-04-26T11:23:36.211853
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.24250, final_score: 0.05686, time: 787.27572
+[RESULT]: Val. Epoch: 6, summary_loss: 3.43616, final_score: 0.49850, time: 220.43129
+
+2021-04-26T11:40:24.108723
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28924, final_score: 0.08373, time: 760.50872
+[RESULT]: Val. Epoch: 7, summary_loss: 2.79181, final_score: 0.49850, time: 259.18722
+
+2021-04-26T11:57:23.993719
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.26760, final_score: 0.07036, time: 768.46976
+[RESULT]: Val. Epoch: 8, summary_loss: 1.55941, final_score: 0.49850, time: 224.52110
+
+2021-04-26T12:13:57.183979
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.32093, final_score: 0.10535, time: 794.61614
+[RESULT]: Val. Epoch: 9, summary_loss: 4.66164, final_score: 0.50000, time: 212.53483
+
+2021-04-26T12:30:44.510510
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.30720, final_score: 0.09348, time: 785.22759
+[RESULT]: Val. Epoch: 10, summary_loss: 2.99897, final_score: 0.49850, time: 223.73114
+
+2021-04-26T12:47:33.675422
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.38270, final_score: 0.14234, time: 781.37816
+[RESULT]: Val. Epoch: 11, summary_loss: 2.97536, final_score: 0.49700, time: 214.31955
+
+2021-04-26T13:04:09.551789
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.36896, final_score: 0.13497, time: 791.21776
+[RESULT]: Val. Epoch: 12, summary_loss: 2.18942, final_score: 0.49550, time: 259.32322
+
+2021-04-26T13:21:40.283427
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.45033, final_score: 0.18908, time: 764.47211
+[RESULT]: Val. Epoch: 13, summary_loss: 2.38255, final_score: 0.48252, time: 259.72644
+
+2021-04-26T13:38:44.705248
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.42947, final_score: 0.17333, time: 761.45846
+[RESULT]: Val. Epoch: 14, summary_loss: 2.89281, final_score: 0.46903, time: 237.20923
+
+2021-04-26T13:55:23.576782
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.48386, final_score: 0.21170, time: 785.23619
+[RESULT]: Val. Epoch: 15, summary_loss: 0.98968, final_score: 0.42258, time: 223.59714
+
+2021-04-26T14:12:12.991454
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.46797, final_score: 0.20182, time: 741.02182
+[RESULT]: Val. Epoch: 16, summary_loss: 1.00460, final_score: 0.41908, time: 243.56891
+
+2021-04-26T14:28:37.765580
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.50314, final_score: 0.22957, time: 854.04312
+[RESULT]: Val. Epoch: 17, summary_loss: 0.86024, final_score: 0.38362, time: 215.21613
+
+2021-04-26T14:46:27.440050
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.48717, final_score: 0.21557, time: 779.32309
+[RESULT]: Val. Epoch: 18, summary_loss: 1.26110, final_score: 0.36314, time: 234.49381
+
+2021-04-26T15:03:22.249163
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.50924, final_score: 0.22632, time: 747.28143
+[RESULT]: Val. Epoch: 19, summary_loss: 1.19103, final_score: 0.28821, time: 206.64633
+
+2021-04-26T15:19:16.361804
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.49242, final_score: 0.21582, time: 821.96047
+[RESULT]: Val. Epoch: 20, summary_loss: 0.66516, final_score: 0.31518, time: 214.50450
+
+2021-04-26T15:36:33.243003
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 21, summary_loss: 0.49792, final_score: 0.22207, time: 813.37064
+[RESULT]: Val. Epoch: 21, summary_loss: 0.57878, final_score: 0.26823, time: 225.82752
+
+2021-04-26T15:53:52.847656
+LR: 0.001
+Emb_rate: 0.3765727153080001
+[RESULT]: Train. Epoch: 22, summary_loss: 0.48277, final_score: 0.21045, time: 724.47636
+[RESULT]: Val. Epoch: 22, summary_loss: 0.54557, final_score: 0.24176, time: 224.54699
+
+2021-04-26T16:09:42.280307
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 23, summary_loss: 0.47176, final_score: 0.20282, time: 762.45200
+[RESULT]: Val. Epoch: 23, summary_loss: 0.62227, final_score: 0.25175, time: 216.08188
+
+2021-04-26T16:26:01.037721
+LR: 0.001
+Emb_rate: 0.3389154437772001
+[RESULT]: Train. Epoch: 24, summary_loss: 0.45931, final_score: 0.19345, time: 720.03909
+[RESULT]: Val. Epoch: 24, summary_loss: 0.87039, final_score: 0.24326, time: 231.75784
+
+2021-04-26T16:41:53.023850
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 25, summary_loss: 0.44798, final_score: 0.18220, time: 784.49626
+[RESULT]: Val. Epoch: 25, summary_loss: 1.91181, final_score: 0.23676, time: 247.58658
+
+2021-04-26T16:59:05.360971
+LR: 0.001
+Emb_rate: 0.3050238993994801
+[RESULT]: Train. Epoch: 26, summary_loss: 0.44431, final_score: 0.18483, time: 795.64845
+[RESULT]: Val. Epoch: 26, summary_loss: 0.64143, final_score: 0.25225, time: 238.50467
+
+2021-04-26T17:16:19.713685
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 27, summary_loss: 0.43190, final_score: 0.17571, time: 830.31281
+[RESULT]: Val. Epoch: 27, summary_loss: 0.60047, final_score: 0.21429, time: 254.44267
+
+2021-04-26T17:34:24.663183
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 28, summary_loss: 0.42739, final_score: 0.16983, time: 802.35233
+[RESULT]: Val. Epoch: 28, summary_loss: 0.52063, final_score: 0.21578, time: 260.02768
+
+2021-04-26T17:52:07.465295
+LR: 0.001
+Emb_rate: 0.3
+[RESULT]: Train. Epoch: 29, summary_loss: 0.42212, final_score: 0.16908, time: 762.42699
+[RESULT]: Val. Epoch: 29, summary_loss: 0.49199, final_score: 0.18581, time: 231.08803
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..c3d39f225b10b18a584f2921d5b02ba41bcbb054
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.3/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a4fdfcf9a7db8a15eadb15d6a808495fe616e8d6
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:55a5b4cfbaab7f503742deef27545b2a35dc9419c529b331b5f1d41b946bfc31
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a597817f376f59c95b7fefba4629c1efccebd5f4
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:1bd5d914f3d38f160e9f786f957dc0a5bb2985462a35d8f42dd77e6df3092958
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ebe670ded4d9af67342d82edfc08994f161e07ca
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f14e6d0ec8fb98de3bbca7f376cebc4546e1df786f9b5e0b60f66cb4e149aabd
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4b1040b279abea9ccac0e37b17e0c18a0ab02b1f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6b5af0fe378ac4aac8620b309cd364aaa4a6a40a7694ce37845ce892aec345ff
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..22d995f70e485f3b59f13bee079a7a8bb6d0318b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/log.txt
@@ -0,0 +1,187 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:26:56.512772
+LR: 0.001
+Emb_rate: 1.2
+Fitter prepared. Device is cuda:0
+
+2021-04-26T09:37:40.354199
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.45831, final_score: 0.20482, time: 675.03005
+[RESULT]: Val. Epoch: 0, summary_loss: 1.33632, final_score: 0.43856, time: 199.72044
+
+2021-04-26T09:52:15.578120
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.25561, final_score: 0.06236, time: 672.17219
+[RESULT]: Val. Epoch: 1, summary_loss: 0.81795, final_score: 0.40659, time: 212.89124
+
+2021-04-26T10:07:01.139645
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.22822, final_score: 0.04899, time: 687.32931
+[RESULT]: Val. Epoch: 2, summary_loss: 0.92381, final_score: 0.41359, time: 213.30312
+
+2021-04-26T10:22:01.982416
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.24118, final_score: 0.05574, time: 703.89663
+[RESULT]: Val. Epoch: 3, summary_loss: 1.52796, final_score: 0.39510, time: 216.97245
+
+2021-04-26T10:37:23.046906
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.22841, final_score: 0.04886, time: 696.72759
+[RESULT]: Val. Epoch: 4, summary_loss: 1.50082, final_score: 0.40310, time: 214.77195
+
+2021-04-26T10:52:34.777906
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.26949, final_score: 0.07211, time: 697.82921
+[RESULT]: Val. Epoch: 5, summary_loss: 0.86536, final_score: 0.37413, time: 215.55218
+
+2021-04-26T11:07:48.349089
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.25324, final_score: 0.06448, time: 704.51238
+[RESULT]: Val. Epoch: 6, summary_loss: 1.27039, final_score: 0.39061, time: 215.20175
+
+2021-04-26T11:23:08.265514
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.30243, final_score: 0.08985, time: 698.12147
+[RESULT]: Val. Epoch: 7, summary_loss: 1.63375, final_score: 0.39510, time: 215.72380
+
+2021-04-26T11:38:22.291426
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.28125, final_score: 0.08198, time: 696.77479
+[RESULT]: Val. Epoch: 8, summary_loss: 1.84140, final_score: 0.36913, time: 216.35911
+
+2021-04-26T11:53:35.605031
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.36361, final_score: 0.12959, time: 711.91891
+[RESULT]: Val. Epoch: 9, summary_loss: 2.98215, final_score: 0.39610, time: 216.30519
+
+2021-04-26T12:09:04.017159
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.33748, final_score: 0.11497, time: 703.59252
+[RESULT]: Val. Epoch: 10, summary_loss: 2.10540, final_score: 0.40859, time: 216.50637
+
+2021-04-26T12:24:24.301477
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.41364, final_score: 0.16558, time: 713.53902
+[RESULT]: Val. Epoch: 11, summary_loss: 0.74160, final_score: 0.32867, time: 215.02397
+
+2021-04-26T12:39:53.347998
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.40050, final_score: 0.15496, time: 713.25096
+[RESULT]: Val. Epoch: 12, summary_loss: 0.66695, final_score: 0.30969, time: 216.63458
+
+2021-04-26T12:55:23.680862
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.45687, final_score: 0.19358, time: 719.67258
+[RESULT]: Val. Epoch: 13, summary_loss: 0.63055, final_score: 0.31968, time: 215.05857
+
+2021-04-26T13:10:58.841812
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.45304, final_score: 0.19533, time: 717.02093
+[RESULT]: Val. Epoch: 14, summary_loss: 0.56606, final_score: 0.27522, time: 216.08497
+
+2021-04-26T13:26:32.406733
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.50644, final_score: 0.23394, time: 720.31339
+[RESULT]: Val. Epoch: 15, summary_loss: 0.65421, final_score: 0.31419, time: 216.16046
+
+2021-04-26T13:42:09.058072
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.49544, final_score: 0.22494, time: 718.26714
+[RESULT]: Val. Epoch: 16, summary_loss: 1.02487, final_score: 0.29421, time: 216.20373
+
+2021-04-26T13:57:43.746757
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 17, summary_loss: 0.50185, final_score: 0.23069, time: 717.41987
+[RESULT]: Val. Epoch: 17, summary_loss: 0.54195, final_score: 0.23876, time: 211.12163
+
+2021-04-26T14:13:12.770352
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 18, summary_loss: 0.48434, final_score: 0.21495, time: 716.04747
+[RESULT]: Val. Epoch: 18, summary_loss: 0.77416, final_score: 0.27373, time: 216.18467
+
+2021-04-26T14:28:45.311736
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 19, summary_loss: 0.47928, final_score: 0.21632, time: 721.95117
+[RESULT]: Val. Epoch: 19, summary_loss: 0.49855, final_score: 0.23477, time: 218.15612
+
+2021-04-26T14:44:25.894845
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 20, summary_loss: 0.46231, final_score: 0.19258, time: 714.02724
+[RESULT]: Val. Epoch: 20, summary_loss: 1.05797, final_score: 0.29570, time: 214.29239
+
+2021-04-26T14:59:54.458239
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 21, summary_loss: 0.45630, final_score: 0.19008, time: 713.94870
+[RESULT]: Val. Epoch: 21, summary_loss: 0.47714, final_score: 0.21479, time: 216.71757
+
+2021-04-26T15:15:25.604126
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 22, summary_loss: 0.44326, final_score: 0.18570, time: 721.52252
+[RESULT]: Val. Epoch: 22, summary_loss: 0.47063, final_score: 0.19780, time: 216.86653
+
+2021-04-26T15:31:04.448378
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 23, summary_loss: 0.43975, final_score: 0.18420, time: 713.52268
+[RESULT]: Val. Epoch: 23, summary_loss: 0.80331, final_score: 0.23327, time: 212.28179
+
+2021-04-26T15:46:30.474892
+LR: 0.001
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 24, summary_loss: 0.42810, final_score: 0.17408, time: 714.66213
+[RESULT]: Val. Epoch: 24, summary_loss: 1.66185, final_score: 0.26374, time: 216.08413
+
+2021-04-26T16:02:01.450445
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 25, summary_loss: 0.39489, final_score: 0.15396, time: 721.67571
+[RESULT]: Val. Epoch: 25, summary_loss: 0.46313, final_score: 0.17732, time: 213.25198
+
+2021-04-26T16:17:36.959104
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 26, summary_loss: 0.38847, final_score: 0.14396, time: 713.82764
+[RESULT]: Val. Epoch: 26, summary_loss: 0.59978, final_score: 0.19031, time: 216.37953
+
+2021-04-26T16:33:07.382786
+LR: 0.0005
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 27, summary_loss: 0.38544, final_score: 0.14946, time: 719.72215
+[RESULT]: Val. Epoch: 27, summary_loss: 0.51674, final_score: 0.17932, time: 218.45084
+
+2021-04-26T16:48:45.767749
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 28, summary_loss: 0.36143, final_score: 0.13234, time: 722.80904
+[RESULT]: Val. Epoch: 28, summary_loss: 0.47029, final_score: 0.16733, time: 214.77856
+
+2021-04-26T17:04:23.575289
+LR: 0.00025
+Emb_rate: 0.5
+[RESULT]: Train. Epoch: 29, summary_loss: 0.35808, final_score: 0.12822, time: 727.64872
+[RESULT]: Val. Epoch: 29, summary_loss: 0.44502, final_score: 0.16883, time: 213.44717
+Fitter prepared. Device is cuda:0
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..14be8b0dd95ba16d5b3e5060321d444d6d0b7f22
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_3_0.5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c1c49c620b0e02c8c1578aeed76b79eab6b152fa
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9ed6cc48176dbfd68d60eb44b1a1c1c1b0d524399e16c578ba65a621fae8693a
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..18940f6287ad827a3c749e893f511e70a5194e7b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:c8e1c032697cb52c3a54c1f2e0c3dfea2fffff274d0bd1ca08c60bf8000c5e34
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..692316a09c40092f64efa246fc7577f1f3f16ae9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a4481de8500a5ebf11fffcdbc0ea91ce800b52894ad5bed52311cbeef4643d51
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..7905866d3e04fef4427a88892cfc95f5e8dc9d3e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:e9b3aec900e50b754e96ccd53d1cbacc92f7570940d0ca4642c525c1c69446ee
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9efe5a0ec5b233aa096eaee2d8e8dafb62565200
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-25T01:44:38.127534
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.57519, final_score: 0.29268, time: 657.35253
+[RESULT]: Val. Epoch: 0, summary_loss: 1.58751, final_score: 0.47403, time: 207.62215
+
+2021-04-25T01:59:03.476942
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.25540, final_score: 0.06223, time: 645.82340
+[RESULT]: Val. Epoch: 1, summary_loss: 1.98783, final_score: 0.48302, time: 205.41457
+
+2021-04-25T02:13:14.893595
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20187, final_score: 0.03324, time: 662.68838
+[RESULT]: Val. Epoch: 2, summary_loss: 1.92979, final_score: 0.47602, time: 204.12998
+
+2021-04-25T02:27:41.907763
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.21896, final_score: 0.04324, time: 656.25616
+[RESULT]: Val. Epoch: 3, summary_loss: 1.13568, final_score: 0.47103, time: 203.85315
+
+2021-04-25T02:42:02.365469
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.19997, final_score: 0.03137, time: 659.21033
+[RESULT]: Val. Epoch: 4, summary_loss: 2.29100, final_score: 0.47453, time: 203.40709
+
+2021-04-25T02:56:25.145813
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24925, final_score: 0.05849, time: 671.47125
+[RESULT]: Val. Epoch: 5, summary_loss: 1.53753, final_score: 0.47153, time: 204.30961
+
+2021-04-25T03:11:01.109629
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22987, final_score: 0.04599, time: 653.66722
+[RESULT]: Val. Epoch: 6, summary_loss: 1.95367, final_score: 0.47053, time: 203.71008
+
+2021-04-25T03:25:18.662854
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28185, final_score: 0.07848, time: 671.07701
+[RESULT]: Val. Epoch: 7, summary_loss: 2.52477, final_score: 0.46703, time: 204.65722
+
+2021-04-25T03:39:54.602758
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.26846, final_score: 0.07223, time: 662.55891
+[RESULT]: Val. Epoch: 8, summary_loss: 1.67781, final_score: 0.46503, time: 204.09381
+
+2021-04-25T03:54:21.419820
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.34194, final_score: 0.11585, time: 665.67141
+[RESULT]: Val. Epoch: 9, summary_loss: 2.00164, final_score: 0.47053, time: 204.05712
+
+2021-04-25T04:08:51.374557
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.32622, final_score: 0.10772, time: 671.16381
+[RESULT]: Val. Epoch: 10, summary_loss: 1.80299, final_score: 0.46503, time: 203.83420
+
+2021-04-25T04:23:26.563502
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40644, final_score: 0.15921, time: 669.85727
+[RESULT]: Val. Epoch: 11, summary_loss: 1.20507, final_score: 0.44855, time: 204.04871
+
+2021-04-25T04:38:00.662832
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.38978, final_score: 0.14271, time: 672.67203
+[RESULT]: Val. Epoch: 12, summary_loss: 2.45753, final_score: 0.45155, time: 203.95450
+
+2021-04-25T04:52:37.463681
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47666, final_score: 0.20820, time: 671.98049
+[RESULT]: Val. Epoch: 13, summary_loss: 1.99105, final_score: 0.47253, time: 204.79491
+
+2021-04-25T05:07:14.420138
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.47132, final_score: 0.20570, time: 676.85669
+[RESULT]: Val. Epoch: 14, summary_loss: 0.99391, final_score: 0.43357, time: 204.16529
+
+2021-04-25T05:21:55.787571
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54772, final_score: 0.26756, time: 674.95191
+[RESULT]: Val. Epoch: 15, summary_loss: 1.06537, final_score: 0.42707, time: 203.38223
+
+2021-04-25T05:36:34.405711
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.53604, final_score: 0.25906, time: 674.86458
+[RESULT]: Val. Epoch: 16, summary_loss: 1.34175, final_score: 0.44955, time: 203.40287
+
+2021-04-25T05:51:12.870550
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.59546, final_score: 0.31530, time: 679.37136
+[RESULT]: Val. Epoch: 17, summary_loss: 0.93011, final_score: 0.41459, time: 203.61021
+
+2021-04-25T06:05:56.288843
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.58624, final_score: 0.30680, time: 675.06850
+[RESULT]: Val. Epoch: 18, summary_loss: 2.16578, final_score: 0.43257, time: 203.84593
+
+2021-04-25T06:20:35.378917
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.62702, final_score: 0.34941, time: 676.39633
+[RESULT]: Val. Epoch: 19, summary_loss: 1.00437, final_score: 0.40410, time: 203.62092
+
+2021-04-25T06:35:15.592340
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62355, final_score: 0.34316, time: 676.56427
+[RESULT]: Val. Epoch: 20, summary_loss: 0.67825, final_score: 0.38412, time: 204.05454
+
+2021-04-25T06:49:56.550953
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.63171, final_score: 0.35354, time: 672.68895
+[RESULT]: Val. Epoch: 21, summary_loss: 0.64911, final_score: 0.36414, time: 206.56607
+
+2021-04-25T07:04:36.218772
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.62587, final_score: 0.34929, time: 687.85116
+[RESULT]: Val. Epoch: 22, summary_loss: 0.66475, final_score: 0.38711, time: 208.06392
+
+2021-04-25T07:19:32.475210
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.61857, final_score: 0.34254, time: 682.04283
+[RESULT]: Val. Epoch: 23, summary_loss: 0.63577, final_score: 0.36414, time: 207.43192
+
+2021-04-25T07:34:22.373820
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.61854, final_score: 0.34766, time: 694.96475
+[RESULT]: Val. Epoch: 24, summary_loss: 0.72694, final_score: 0.37512, time: 206.05129
+
+2021-04-25T07:49:23.593524
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.61232, final_score: 0.33817, time: 677.09249
+[RESULT]: Val. Epoch: 25, summary_loss: 0.67692, final_score: 0.35714, time: 206.97400
+
+2021-04-25T08:04:07.873299
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.59609, final_score: 0.32329, time: 689.93556
+[RESULT]: Val. Epoch: 26, summary_loss: 0.76962, final_score: 0.37413, time: 204.75671
+
+2021-04-25T08:19:02.740650
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.58674, final_score: 0.30867, time: 681.58222
+[RESULT]: Val. Epoch: 27, summary_loss: 0.80671, final_score: 0.36314, time: 203.75225
+
+2021-04-25T08:33:48.249778
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.57023, final_score: 0.29868, time: 684.65369
+[RESULT]: Val. Epoch: 28, summary_loss: 0.70936, final_score: 0.35564, time: 203.38599
+
+2021-04-25T08:48:36.464563
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.56430, final_score: 0.29143, time: 680.28235
+[RESULT]: Val. Epoch: 29, summary_loss: 0.71090, final_score: 0.35215, time: 205.14647
+Fitter prepared. Device is cuda:0
+
+2021-04-26T00:51:15.574295
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.54588, final_score: 0.27256, time: 731.71172
+[RESULT]: Val. Epoch: 0, summary_loss: 1.43949, final_score: 0.48951, time: 212.00594
+
+2021-04-26T01:06:59.657254
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.24640, final_score: 0.05661, time: 736.43947
+[RESULT]: Val. Epoch: 1, summary_loss: 1.71014, final_score: 0.48551, time: 244.33584
+
+2021-04-26T01:23:20.609972
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.19512, final_score: 0.02762, time: 685.83979
+[RESULT]: Val. Epoch: 2, summary_loss: 2.93172, final_score: 0.49201, time: 226.72925
+
+2021-04-26T01:38:33.373609
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.21503, final_score: 0.03662, time: 707.31482
+[RESULT]: Val. Epoch: 3, summary_loss: 1.69078, final_score: 0.48701, time: 227.72630
+
+2021-04-26T01:54:08.653986
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20043, final_score: 0.03112, time: 710.02928
+[RESULT]: Val. Epoch: 4, summary_loss: 1.89298, final_score: 0.48352, time: 214.43589
+
+2021-04-26T02:09:33.623108
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24968, final_score: 0.05911, time: 723.90607
+[RESULT]: Val. Epoch: 5, summary_loss: 1.18794, final_score: 0.48551, time: 229.08717
+
+2021-04-26T02:25:27.015016
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22361, final_score: 0.04486, time: 744.96087
+[RESULT]: Val. Epoch: 6, summary_loss: 2.58819, final_score: 0.48452, time: 241.94943
+
+2021-04-26T02:41:54.101179
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28812, final_score: 0.07948, time: 787.01440
+[RESULT]: Val. Epoch: 7, summary_loss: 3.40034, final_score: 0.48302, time: 220.13551
+
+2021-04-26T02:58:41.425592
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.25940, final_score: 0.06661, time: 763.83590
+[RESULT]: Val. Epoch: 8, summary_loss: 1.86380, final_score: 0.47203, time: 223.35602
+
+2021-04-26T03:15:08.825264
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.33368, final_score: 0.11035, time: 746.52029
+[RESULT]: Val. Epoch: 9, summary_loss: 1.51183, final_score: 0.47602, time: 214.24487
+
+2021-04-26T03:31:09.798990
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.32644, final_score: 0.10510, time: 764.78510
+[RESULT]: Val. Epoch: 10, summary_loss: 0.98799, final_score: 0.46853, time: 219.99596
+
+2021-04-26T03:47:34.938109
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39878, final_score: 0.15121, time: 753.82704
+[RESULT]: Val. Epoch: 11, summary_loss: 1.57407, final_score: 0.46603, time: 224.07263
+
+2021-04-26T04:03:53.012096
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.38202, final_score: 0.13897, time: 742.90887
+[RESULT]: Val. Epoch: 12, summary_loss: 2.13003, final_score: 0.46054, time: 219.40731
+
+2021-04-26T04:19:55.503419
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.46553, final_score: 0.20070, time: 731.71911
+[RESULT]: Val. Epoch: 13, summary_loss: 1.33620, final_score: 0.45305, time: 216.00371
+
+2021-04-26T04:35:43.401693
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.45551, final_score: 0.19358, time: 762.51292
+[RESULT]: Val. Epoch: 14, summary_loss: 1.77481, final_score: 0.44106, time: 212.00395
+
+2021-04-26T04:51:58.082752
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.52131, final_score: 0.24069, time: 765.05748
+[RESULT]: Val. Epoch: 15, summary_loss: 0.89556, final_score: 0.40509, time: 213.82335
+
+2021-04-26T05:08:17.316166
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.51450, final_score: 0.23257, time: 753.78333
+[RESULT]: Val. Epoch: 16, summary_loss: 0.73900, final_score: 0.40360, time: 212.31389
+
+2021-04-26T05:24:23.769478
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.56344, final_score: 0.27706, time: 788.76350
+[RESULT]: Val. Epoch: 17, summary_loss: 0.70601, final_score: 0.38012, time: 229.83603
+
+2021-04-26T05:41:22.729274
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.55814, final_score: 0.27306, time: 807.12736
+[RESULT]: Val. Epoch: 18, summary_loss: 2.38023, final_score: 0.43856, time: 209.51845
+
+2021-04-26T05:58:19.736173
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.58722, final_score: 0.30055, time: 765.83919
+[RESULT]: Val. Epoch: 19, summary_loss: 1.05829, final_score: 0.37463, time: 214.33652
+
+2021-04-26T06:14:40.247551
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.57781, final_score: 0.29118, time: 747.82587
+[RESULT]: Val. Epoch: 20, summary_loss: 0.74401, final_score: 0.34965, time: 213.81925
+
+2021-04-26T06:30:42.070932
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.58219, final_score: 0.29568, time: 780.24385
+[RESULT]: Val. Epoch: 21, summary_loss: 0.62706, final_score: 0.31019, time: 212.77311
+
+2021-04-26T06:47:15.478584
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.57585, final_score: 0.28693, time: 746.43904
+[RESULT]: Val. Epoch: 22, summary_loss: 0.63927, final_score: 0.32318, time: 213.34169
+
+2021-04-26T07:03:15.435007
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.56906, final_score: 0.28518, time: 763.37815
+[RESULT]: Val. Epoch: 23, summary_loss: 0.74384, final_score: 0.36613, time: 212.70461
+
+2021-04-26T07:19:31.724621
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.54953, final_score: 0.26706, time: 748.11610
+[RESULT]: Val. Epoch: 24, summary_loss: 0.59152, final_score: 0.29471, time: 220.70644
+
+2021-04-26T07:35:40.983672
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.53721, final_score: 0.25844, time: 754.11865
+[RESULT]: Val. Epoch: 25, summary_loss: 0.65589, final_score: 0.29471, time: 211.49802
+
+2021-04-26T07:51:46.824784
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.53528, final_score: 0.25331, time: 757.76284
+[RESULT]: Val. Epoch: 26, summary_loss: 0.71581, final_score: 0.32767, time: 249.81220
+
+2021-04-26T08:08:34.574648
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.52330, final_score: 0.24269, time: 720.64223
+[RESULT]: Val. Epoch: 27, summary_loss: 0.57054, final_score: 0.27572, time: 215.27999
+
+2021-04-26T08:24:10.920179
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.51215, final_score: 0.23919, time: 778.28602
+[RESULT]: Val. Epoch: 28, summary_loss: 0.58603, final_score: 0.27572, time: 212.88804
+
+2021-04-26T08:40:42.282607
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.51258, final_score: 0.23857, time: 773.52610
+[RESULT]: Val. Epoch: 29, summary_loss: 0.67722, final_score: 0.28372, time: 218.21543
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..4d2955e07a2c300fdfc48d050d7ab76feffdbd65
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_4/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..5693ccffbdae5d29d4d94643922dd2ec6544f1bc
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7dc31bd782b6b79cafacc88dd4c057f36e82c78c7bc63512ac77d69e99e211e1
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..b2c7fd5de689ea76589c21ef227ceacb5530eede
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4fd30d8d24caf02adb7bc0b40631b8aa8dfbfd05d3317450d9549f048bd2df22
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-025epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-025epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c58be96b68bbea3a76e035b4071e14fd9ba1ea64
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/best-checkpoint-025epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bf8934e4d13a9e0e001cdfaf5a8074315349486e40618675f6c87e5c9e0c2df5
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..623db332e6d442810cb40ea550d64bca56c4b46e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b313dfa8af27b6411360c81161118bbe78dc145e38c005f24ad48d7b88848c68
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..480a1a3c683460fcf01c1f3f1fd77802fc88fe2f
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-04-28T09:17:03.079102
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.72076, final_score: 0.44626, time: 687.36632
+[RESULT]: Val. Epoch: 0, summary_loss: 2.16182, final_score: 0.49051, time: 201.68500
+
+2021-04-28T09:31:52.495089
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.32373, final_score: 0.10372, time: 673.54068
+[RESULT]: Val. Epoch: 1, summary_loss: 2.81898, final_score: 0.47552, time: 203.87077
+
+2021-04-28T09:46:30.099379
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20551, final_score: 0.03449, time: 661.95903
+[RESULT]: Val. Epoch: 2, summary_loss: 1.52131, final_score: 0.46503, time: 204.89573
+
+2021-04-28T10:00:57.347064
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.23097, final_score: 0.04561, time: 655.25764
+[RESULT]: Val. Epoch: 3, summary_loss: 1.79543, final_score: 0.46204, time: 203.75988
+
+2021-04-28T10:15:16.543245
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.20160, final_score: 0.03287, time: 667.33771
+[RESULT]: Val. Epoch: 4, summary_loss: 2.86872, final_score: 0.48202, time: 202.49279
+
+2021-04-28T10:29:46.544153
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.24780, final_score: 0.05886, time: 667.58622
+[RESULT]: Val. Epoch: 5, summary_loss: 2.03048, final_score: 0.46154, time: 206.12107
+
+2021-04-28T10:44:20.461330
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.23551, final_score: 0.05036, time: 663.41558
+[RESULT]: Val. Epoch: 6, summary_loss: 1.05778, final_score: 0.45904, time: 202.52133
+
+2021-04-28T10:58:46.837538
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.28506, final_score: 0.08135, time: 665.48190
+[RESULT]: Val. Epoch: 7, summary_loss: 1.23643, final_score: 0.45355, time: 203.46848
+
+2021-04-28T11:13:16.031098
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.26719, final_score: 0.07186, time: 666.07373
+[RESULT]: Val. Epoch: 8, summary_loss: 2.47907, final_score: 0.45854, time: 204.21058
+
+2021-04-28T11:27:46.497198
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.32535, final_score: 0.10660, time: 672.58189
+[RESULT]: Val. Epoch: 9, summary_loss: 1.33497, final_score: 0.45455, time: 203.59528
+
+2021-04-28T11:42:22.847042
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.31112, final_score: 0.09623, time: 671.43524
+[RESULT]: Val. Epoch: 10, summary_loss: 1.45318, final_score: 0.44755, time: 203.36583
+
+2021-04-28T11:56:57.903834
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.40567, final_score: 0.15496, time: 674.91461
+[RESULT]: Val. Epoch: 11, summary_loss: 0.88991, final_score: 0.42957, time: 206.72844
+
+2021-04-28T12:11:39.967310
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.38717, final_score: 0.14546, time: 680.48974
+[RESULT]: Val. Epoch: 12, summary_loss: 0.93955, final_score: 0.44406, time: 202.22652
+
+2021-04-28T12:26:22.917096
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47471, final_score: 0.20945, time: 676.44493
+[RESULT]: Val. Epoch: 13, summary_loss: 1.40557, final_score: 0.44406, time: 205.14617
+
+2021-04-28T12:41:04.717260
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.46488, final_score: 0.20057, time: 681.58189
+[RESULT]: Val. Epoch: 14, summary_loss: 1.04488, final_score: 0.43956, time: 206.76650
+
+2021-04-28T12:55:53.299406
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54068, final_score: 0.26756, time: 679.11722
+[RESULT]: Val. Epoch: 15, summary_loss: 0.98963, final_score: 0.42058, time: 205.22576
+
+2021-04-28T13:10:37.822521
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.53357, final_score: 0.25219, time: 683.37380
+[RESULT]: Val. Epoch: 16, summary_loss: 1.26544, final_score: 0.43906, time: 204.31003
+
+2021-04-28T13:25:25.709211
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.59812, final_score: 0.31480, time: 679.87638
+[RESULT]: Val. Epoch: 17, summary_loss: 0.98206, final_score: 0.42507, time: 204.38314
+
+2021-04-28T13:40:10.160747
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.58749, final_score: 0.31030, time: 683.06263
+[RESULT]: Val. Epoch: 18, summary_loss: 0.77237, final_score: 0.42657, time: 204.38597
+
+2021-04-28T13:54:58.022313
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.64038, final_score: 0.36741, time: 684.10613
+[RESULT]: Val. Epoch: 19, summary_loss: 0.78988, final_score: 0.40859, time: 202.48048
+
+2021-04-28T14:09:44.777201
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.63145, final_score: 0.35929, time: 682.64827
+[RESULT]: Val. Epoch: 20, summary_loss: 0.68601, final_score: 0.39411, time: 204.80238
+
+2021-04-28T14:24:32.598521
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.64914, final_score: 0.37891, time: 697.59643
+[RESULT]: Val. Epoch: 21, summary_loss: 0.68819, final_score: 0.39461, time: 202.29644
+
+2021-04-28T14:39:32.671943
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.64107, final_score: 0.36878, time: 686.54189
+[RESULT]: Val. Epoch: 22, summary_loss: 0.92549, final_score: 0.43457, time: 201.70626
+
+2021-04-28T14:54:21.095761
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.63552, final_score: 0.36453, time: 692.55005
+[RESULT]: Val. Epoch: 23, summary_loss: 0.66898, final_score: 0.37612, time: 201.72017
+
+2021-04-28T15:09:15.748077
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.62976, final_score: 0.36303, time: 693.77677
+[RESULT]: Val. Epoch: 24, summary_loss: 0.66221, final_score: 0.37862, time: 203.20384
+
+2021-04-28T15:24:13.051926
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.62749, final_score: 0.35191, time: 691.40835
+[RESULT]: Val. Epoch: 25, summary_loss: 0.64237, final_score: 0.36813, time: 206.94574
+
+2021-04-28T15:39:11.820640
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.62336, final_score: 0.34841, time: 693.43598
+[RESULT]: Val. Epoch: 26, summary_loss: 0.87615, final_score: 0.38711, time: 208.34547
+
+2021-04-28T15:54:13.764787
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.62107, final_score: 0.35204, time: 695.49289
+[RESULT]: Val. Epoch: 27, summary_loss: 0.78731, final_score: 0.39261, time: 209.58349
+
+2021-04-28T16:09:19.006500
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.60938, final_score: 0.33654, time: 694.86755
+[RESULT]: Val. Epoch: 28, summary_loss: 0.70300, final_score: 0.36264, time: 206.94745
+
+2021-04-28T16:24:20.992134
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.60396, final_score: 0.33317, time: 696.80940
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65423, final_score: 0.35714, time: 207.03813
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..a819f2d198c2e939ad30e0f7a622f46f1ae8445c
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_5/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-021epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-021epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a5686b455969262055c3df2f36ca74534137d57e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-021epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:93b434f71abc6c4e3a6d1ba959e874139704bc2641a11d982a141bd582eecdfa
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-026epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-026epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9c306c977ccbfe77ee674d467c06d2ad7129bd86
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-026epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:380d9d6f4d63c3eb1447a7dfb1559ad85879b0df9b1dd5ccb932c1be3cc7a1bb
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3ecaea095254115fbba4141dd9c8afe0862211c7
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:71334206f8bfe0f9df4ccd73068475e7878c18773b3c10db3760c5a0dee48ba0
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8144669c15067df73cb28a3863e8fcbc1d0d0a22
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:200623a43d4e61882ecacf2b82979e32aa63f30c7e09fa1e722f6ab7f3f4e27f
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..75f659fade530e2cf855933d859db4e1cfdacf12
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-10T19:19:47.201076
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.46984, final_score: 0.20970, time: 669.39783
+[RESULT]: Val. Epoch: 0, summary_loss: 1.49312, final_score: 0.46603, time: 207.34879
+
+2021-06-10T19:34:24.337460
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.21728, final_score: 0.03799, time: 664.47242
+[RESULT]: Val. Epoch: 1, summary_loss: 1.13414, final_score: 0.45804, time: 206.48844
+
+2021-06-10T19:48:55.755460
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.20556, final_score: 0.03262, time: 661.07343
+[RESULT]: Val. Epoch: 2, summary_loss: 2.81443, final_score: 0.47902, time: 205.22899
+
+2021-06-10T20:03:22.321790
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.21793, final_score: 0.03999, time: 665.31948
+[RESULT]: Val. Epoch: 3, summary_loss: 1.24304, final_score: 0.45604, time: 205.20164
+
+2021-06-10T20:17:53.026295
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.19009, final_score: 0.02449, time: 671.33521
+[RESULT]: Val. Epoch: 4, summary_loss: 1.74208, final_score: 0.45604, time: 205.83335
+
+2021-06-10T20:32:30.555153
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.23487, final_score: 0.05024, time: 671.23533
+[RESULT]: Val. Epoch: 5, summary_loss: 1.64425, final_score: 0.45904, time: 203.74089
+
+2021-06-10T20:47:05.731656
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.22788, final_score: 0.04549, time: 683.48632
+[RESULT]: Val. Epoch: 6, summary_loss: 5.09686, final_score: 0.47802, time: 203.25732
+
+2021-06-10T21:01:52.661225
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.27065, final_score: 0.07036, time: 683.79004
+[RESULT]: Val. Epoch: 7, summary_loss: 1.77465, final_score: 0.46553, time: 203.27433
+
+2021-06-10T21:16:39.904523
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.26725, final_score: 0.06748, time: 681.93149
+[RESULT]: Val. Epoch: 8, summary_loss: 2.01071, final_score: 0.46204, time: 203.99995
+
+2021-06-10T21:31:26.106224
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.32331, final_score: 0.10160, time: 682.58605
+[RESULT]: Val. Epoch: 9, summary_loss: 1.05715, final_score: 0.44805, time: 204.66720
+
+2021-06-10T21:46:13.786302
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.32530, final_score: 0.10510, time: 688.10499
+[RESULT]: Val. Epoch: 10, summary_loss: 2.98367, final_score: 0.46354, time: 206.67440
+
+2021-06-10T22:01:08.757426
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.39588, final_score: 0.15246, time: 688.29119
+[RESULT]: Val. Epoch: 11, summary_loss: 2.20241, final_score: 0.45055, time: 203.71555
+
+2021-06-10T22:16:00.960842
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.39175, final_score: 0.15159, time: 684.28280
+[RESULT]: Val. Epoch: 12, summary_loss: 1.47414, final_score: 0.44705, time: 202.46403
+
+2021-06-10T22:30:47.958377
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.48051, final_score: 0.21545, time: 676.22770
+[RESULT]: Val. Epoch: 13, summary_loss: 1.31230, final_score: 0.45954, time: 202.76624
+
+2021-06-10T22:45:27.147472
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.46413, final_score: 0.20007, time: 692.55273
+[RESULT]: Val. Epoch: 14, summary_loss: 0.94769, final_score: 0.43157, time: 202.31893
+
+2021-06-10T23:00:22.693618
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.53892, final_score: 0.25919, time: 681.47723
+[RESULT]: Val. Epoch: 15, summary_loss: 0.76455, final_score: 0.42757, time: 202.28529
+
+2021-06-10T23:15:06.809363
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.52999, final_score: 0.25181, time: 687.64653
+[RESULT]: Val. Epoch: 16, summary_loss: 1.37281, final_score: 0.44605, time: 205.69005
+
+2021-06-10T23:30:00.341947
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.60028, final_score: 0.31905, time: 688.46086
+[RESULT]: Val. Epoch: 17, summary_loss: 0.85325, final_score: 0.41608, time: 203.67487
+
+2021-06-10T23:44:52.718610
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.59229, final_score: 0.31317, time: 685.23175
+[RESULT]: Val. Epoch: 18, summary_loss: 0.81835, final_score: 0.42657, time: 202.24881
+
+2021-06-10T23:59:40.510488
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.63657, final_score: 0.36866, time: 688.13578
+[RESULT]: Val. Epoch: 19, summary_loss: 0.71016, final_score: 0.40909, time: 202.18198
+
+2021-06-11T00:14:31.238227
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.63241, final_score: 0.36016, time: 686.34146
+[RESULT]: Val. Epoch: 20, summary_loss: 1.03550, final_score: 0.42507, time: 202.75284
+
+2021-06-11T00:29:20.596792
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.64795, final_score: 0.38253, time: 684.35915
+[RESULT]: Val. Epoch: 21, summary_loss: 0.67622, final_score: 0.40310, time: 202.57003
+
+2021-06-11T00:44:07.961491
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.64210, final_score: 0.37478, time: 684.88590
+[RESULT]: Val. Epoch: 22, summary_loss: 0.75024, final_score: 0.41409, time: 202.78727
+
+2021-06-11T00:58:55.973788
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.63896, final_score: 0.36966, time: 682.32556
+[RESULT]: Val. Epoch: 23, summary_loss: 0.71570, final_score: 0.38911, time: 203.56125
+
+2021-06-11T01:13:42.066199
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.62614, final_score: 0.35579, time: 683.13363
+[RESULT]: Val. Epoch: 24, summary_loss: 0.71589, final_score: 0.39710, time: 203.28610
+
+2021-06-11T01:28:28.647066
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.62175, final_score: 0.34904, time: 681.10799
+[RESULT]: Val. Epoch: 25, summary_loss: 0.78766, final_score: 0.38561, time: 202.29533
+
+2021-06-11T01:43:12.218961
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.61337, final_score: 0.33904, time: 685.77027
+[RESULT]: Val. Epoch: 26, summary_loss: 0.67402, final_score: 0.36663, time: 205.54237
+
+2021-06-11T01:58:03.981524
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.60675, final_score: 0.33304, time: 683.42066
+[RESULT]: Val. Epoch: 27, summary_loss: 0.66303, final_score: 0.36763, time: 204.23750
+
+2021-06-11T02:12:52.041063
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.60493, final_score: 0.32867, time: 685.40360
+[RESULT]: Val. Epoch: 28, summary_loss: 0.68369, final_score: 0.37413, time: 202.41460
+
+2021-06-11T02:27:40.162456
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.60413, final_score: 0.33717, time: 685.64939
+[RESULT]: Val. Epoch: 29, summary_loss: 0.67185, final_score: 0.36264, time: 202.86535
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..828605cfa4a13922368053ddd9e8dab85ee7c5eb
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_6/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-023epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-023epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9116cea52cdfc2c87fd51a8183329c34ac6d9477
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-023epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:31bd54f273197174be448b336e5fd8058855e945ef16d66e1c4348bbb012d5d4
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..3c091269fa513daf871a81c1b625065269ba0b1e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:4107a5bf195e6343bba4a038f5c118e03b04593e19bb51c35a67e27f5724507e
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..30ba01956d4dd9edfc3112432d8f51f05e8f5af8
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a2aa28309bdd55758d3b6861effc0d4876938c6a8c7302f967d447177ea96abe
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d6e2ef57449b948b7b7caf775a25bf7cf3cbde00
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:7765e911e529311d681625abd75fda612f13b8bfba417f04ec2478b85644f959
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..740a36c8798addfce07c1ef321a59269e3e9b939
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/log.txt
@@ -0,0 +1,181 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-11T15:46:08.730149
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.42571, final_score: 0.18608, time: 663.62564
+[RESULT]: Val. Epoch: 0, summary_loss: 1.40447, final_score: 0.47802, time: 210.28822
+
+2021-06-11T16:00:42.996310
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.21537, final_score: 0.03949, time: 669.51251
+[RESULT]: Val. Epoch: 1, summary_loss: 1.83501, final_score: 0.47552, time: 208.21981
+
+2021-06-11T16:15:20.898271
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.17074, final_score: 0.01475, time: 666.82929
+[RESULT]: Val. Epoch: 2, summary_loss: 1.22591, final_score: 0.46054, time: 207.68415
+
+2021-06-11T16:29:55.797221
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.21060, final_score: 0.03699, time: 683.04671
+[RESULT]: Val. Epoch: 3, summary_loss: 1.62604, final_score: 0.46503, time: 204.48885
+
+2021-06-11T16:44:43.507288
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.19492, final_score: 0.02974, time: 666.03741
+[RESULT]: Val. Epoch: 4, summary_loss: 1.99898, final_score: 0.46953, time: 207.14507
+
+2021-06-11T16:59:16.852560
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.23269, final_score: 0.05161, time: 673.99393
+[RESULT]: Val. Epoch: 5, summary_loss: 2.47895, final_score: 0.47652, time: 207.43454
+
+2021-06-11T17:13:58.455054
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.21369, final_score: 0.04049, time: 676.39750
+[RESULT]: Val. Epoch: 6, summary_loss: 1.54958, final_score: 0.44156, time: 205.75080
+
+2021-06-11T17:28:40.762191
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.25722, final_score: 0.06536, time: 679.10952
+[RESULT]: Val. Epoch: 7, summary_loss: 1.20403, final_score: 0.43556, time: 206.05103
+
+2021-06-11T17:43:26.268815
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.24896, final_score: 0.06036, time: 676.38517
+[RESULT]: Val. Epoch: 8, summary_loss: 2.56761, final_score: 0.45355, time: 205.07628
+
+2021-06-11T17:58:07.895457
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.32062, final_score: 0.10335, time: 680.45377
+[RESULT]: Val. Epoch: 9, summary_loss: 1.49816, final_score: 0.45255, time: 205.68594
+
+2021-06-11T18:12:54.248573
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.30306, final_score: 0.09348, time: 690.28350
+[RESULT]: Val. Epoch: 10, summary_loss: 1.91997, final_score: 0.45654, time: 205.70484
+
+2021-06-11T18:27:50.414176
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.38390, final_score: 0.14671, time: 685.62405
+[RESULT]: Val. Epoch: 11, summary_loss: 1.17636, final_score: 0.44206, time: 206.31174
+
+2021-06-11T18:42:42.671756
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.36328, final_score: 0.13297, time: 684.58247
+[RESULT]: Val. Epoch: 12, summary_loss: 0.93691, final_score: 0.44156, time: 206.09913
+
+2021-06-11T18:57:33.699607
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44125, final_score: 0.19070, time: 684.46879
+[RESULT]: Val. Epoch: 13, summary_loss: 0.88344, final_score: 0.43556, time: 206.19237
+
+2021-06-11T19:12:24.704829
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.43800, final_score: 0.18458, time: 692.59859
+[RESULT]: Val. Epoch: 14, summary_loss: 1.16624, final_score: 0.41508, time: 203.74919
+
+2021-06-11T19:27:21.225642
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.51206, final_score: 0.23757, time: 697.28507
+[RESULT]: Val. Epoch: 15, summary_loss: 1.20056, final_score: 0.42458, time: 207.88482
+
+2021-06-11T19:42:26.593670
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.51489, final_score: 0.24956, time: 685.03554
+[RESULT]: Val. Epoch: 16, summary_loss: 0.99689, final_score: 0.42757, time: 208.07804
+
+2021-06-11T19:57:19.891568
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.57189, final_score: 0.29605, time: 694.94306
+[RESULT]: Val. Epoch: 17, summary_loss: 0.76127, final_score: 0.39960, time: 205.14963
+
+2021-06-11T20:12:20.391083
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.56852, final_score: 0.29205, time: 689.19444
+[RESULT]: Val. Epoch: 18, summary_loss: 0.92938, final_score: 0.42657, time: 205.88470
+
+2021-06-11T20:27:15.715004
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.62115, final_score: 0.34716, time: 689.42575
+[RESULT]: Val. Epoch: 19, summary_loss: 0.76167, final_score: 0.41508, time: 207.96423
+
+2021-06-11T20:42:13.300319
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.61647, final_score: 0.34266, time: 688.34402
+[RESULT]: Val. Epoch: 20, summary_loss: 1.22405, final_score: 0.43157, time: 205.97105
+
+2021-06-11T20:57:07.819266
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.63225, final_score: 0.36516, time: 692.87682
+[RESULT]: Val. Epoch: 21, summary_loss: 0.71704, final_score: 0.39960, time: 205.68641
+
+2021-06-11T21:12:06.754212
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.63042, final_score: 0.36103, time: 693.14638
+[RESULT]: Val. Epoch: 22, summary_loss: 0.83860, final_score: 0.40959, time: 206.82210
+
+2021-06-11T21:27:06.901331
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.62843, final_score: 0.36153, time: 700.07687
+[RESULT]: Val. Epoch: 23, summary_loss: 0.68313, final_score: 0.38262, time: 205.83387
+
+2021-06-11T21:42:13.160223
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.62909, final_score: 0.36091, time: 691.58331
+[RESULT]: Val. Epoch: 24, summary_loss: 0.66488, final_score: 0.38212, time: 207.06302
+
+2021-06-11T21:57:12.141055
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.62836, final_score: 0.35791, time: 690.03032
+[RESULT]: Val. Epoch: 25, summary_loss: 0.70249, final_score: 0.40559, time: 207.66177
+
+2021-06-11T22:12:10.042755
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.62363, final_score: 0.35254, time: 697.49768
+[RESULT]: Val. Epoch: 26, summary_loss: 0.74445, final_score: 0.40060, time: 208.30950
+
+2021-06-11T22:27:16.058799
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.60688, final_score: 0.34141, time: 690.85699
+[RESULT]: Val. Epoch: 27, summary_loss: 0.66130, final_score: 0.36214, time: 206.89672
+
+2021-06-11T22:42:14.201327
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.60372, final_score: 0.33317, time: 695.68848
+[RESULT]: Val. Epoch: 28, summary_loss: 0.68243, final_score: 0.37263, time: 205.73838
+
+2021-06-11T22:57:15.792166
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.60136, final_score: 0.33054, time: 690.81108
+[RESULT]: Val. Epoch: 29, summary_loss: 0.66197, final_score: 0.36663, time: 204.55450
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/p_error/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/p_error/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..36e5c34e739114f52dbbf5b1a9a03fb5fbdfc2f6
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_7/p_error/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..2a2844326cf02f663a31adbf32bbd905d91e29f8
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-031epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-031epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1abda4f051c233d9f4d5d27c34edc6be4c48a325
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-031epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bede2a091cefcfba1a55b20e8ba962bc8726f94b1a2898bce44491bfe2a35e7b
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-032epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-032epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c6e3441221d849c6f76afed4d35a00f4de6c1d81
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-032epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2ae9bb6c509b9438d755ffcbcbb0c4723090cd5968fcbc76f62e61df81507887
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-052epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-052epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..06e5aad381027cc20cf8c38d349cb24edf10d987
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/best-checkpoint-052epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bcbeda1311b28fdf99e150f47ee673b4ea684cf0bcdb9fd11efd9fc6cde98863
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8c93fd674a6ab96430204f967065315bd8e94b69
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:42d99921adf8a8bda75f09d72dc95fba121f27962bde2e6cc9a1e8b1a7275de8
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..e727f371e4dd56ffb823c30bf935bc1181a0dd56
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_1/log.txt
@@ -0,0 +1,372 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T12:55:22.630832
+LR: 0.001
+Emb_rate: 1.2
+Fitter prepared. Device is cuda:0
+
+2021-06-25T12:58:18.790351
+LR: 0.001
+Emb_rate: 1.2
+Fitter prepared. Device is cuda:0
+
+2021-06-25T13:07:01.368832
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.73446, final_score: 0.49838, time: 111.13417
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69378, final_score: 0.49550, time: 32.83594
+
+2021-06-25T13:09:25.744286
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69342, final_score: 0.49638, time: 91.62950
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69320, final_score: 0.48951, time: 26.75422
+
+2021-06-25T13:11:24.468287
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69085, final_score: 0.47051, time: 92.41708
+[RESULT]: Val. Epoch: 2, summary_loss: 1.08113, final_score: 0.48102, time: 26.27322
+
+2021-06-25T13:13:23.320956
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.68161, final_score: 0.43564, time: 91.43521
+[RESULT]: Val. Epoch: 3, summary_loss: 0.97471, final_score: 0.47303, time: 26.43233
+
+2021-06-25T13:15:21.382652
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.66102, final_score: 0.39303, time: 90.25668
+[RESULT]: Val. Epoch: 4, summary_loss: 1.12363, final_score: 0.43706, time: 26.39587
+
+2021-06-25T13:17:18.200622
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.62603, final_score: 0.33892, time: 90.91511
+[RESULT]: Val. Epoch: 5, summary_loss: 1.49882, final_score: 0.41359, time: 26.31770
+
+2021-06-25T13:19:15.598248
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.59905, final_score: 0.30717, time: 93.01556
+[RESULT]: Val. Epoch: 6, summary_loss: 0.81680, final_score: 0.35614, time: 26.30480
+
+2021-06-25T13:21:15.102413
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.56744, final_score: 0.27706, time: 93.30545
+[RESULT]: Val. Epoch: 7, summary_loss: 1.51717, final_score: 0.32567, time: 26.70336
+
+2021-06-25T13:23:15.288391
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.55521, final_score: 0.26643, time: 91.35354
+[RESULT]: Val. Epoch: 8, summary_loss: 1.82578, final_score: 0.38611, time: 26.36872
+
+2021-06-25T13:25:13.196253
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.53459, final_score: 0.25169, time: 92.21858
+[RESULT]: Val. Epoch: 9, summary_loss: 0.63135, final_score: 0.28771, time: 26.26996
+
+2021-06-25T13:27:12.036842
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.52508, final_score: 0.24531, time: 92.47006
+[RESULT]: Val. Epoch: 10, summary_loss: 0.65355, final_score: 0.28771, time: 25.92795
+
+2021-06-25T13:29:10.604974
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.50830, final_score: 0.23182, time: 92.84406
+[RESULT]: Val. Epoch: 11, summary_loss: 0.59817, final_score: 0.22877, time: 27.11560
+
+2021-06-25T13:31:10.944915
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.49954, final_score: 0.22632, time: 93.63755
+[RESULT]: Val. Epoch: 12, summary_loss: 0.80060, final_score: 0.29570, time: 26.84618
+
+2021-06-25T13:33:11.600459
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.47327, final_score: 0.20582, time: 95.09385
+[RESULT]: Val. Epoch: 13, summary_loss: 0.55482, final_score: 0.21229, time: 26.12797
+
+2021-06-25T13:35:13.171330
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.47017, final_score: 0.20282, time: 93.79077
+[RESULT]: Val. Epoch: 14, summary_loss: 0.61621, final_score: 0.27722, time: 26.84154
+
+2021-06-25T13:37:14.055072
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.46013, final_score: 0.19745, time: 93.04424
+[RESULT]: Val. Epoch: 15, summary_loss: 0.78093, final_score: 0.30869, time: 26.10475
+
+2021-06-25T13:39:13.395814
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.45890, final_score: 0.19545, time: 93.48888
+[RESULT]: Val. Epoch: 16, summary_loss: 0.58030, final_score: 0.22827, time: 26.02379
+
+2021-06-25T13:41:13.074235
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.45201, final_score: 0.19108, time: 90.53256
+[RESULT]: Val. Epoch: 17, summary_loss: 0.73241, final_score: 0.23427, time: 26.39008
+
+2021-06-25T13:43:10.156956
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.44202, final_score: 0.18495, time: 93.57011
+[RESULT]: Val. Epoch: 18, summary_loss: 1.22128, final_score: 0.29720, time: 26.87367
+
+2021-06-25T13:45:10.777572
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.43349, final_score: 0.18158, time: 93.73033
+[RESULT]: Val. Epoch: 19, summary_loss: 0.58537, final_score: 0.21628, time: 26.46318
+
+2021-06-25T13:47:11.150406
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.42575, final_score: 0.17658, time: 94.66544
+[RESULT]: Val. Epoch: 20, summary_loss: 1.28832, final_score: 0.24126, time: 27.71574
+
+2021-06-25T13:49:13.702373
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.41649, final_score: 0.16433, time: 94.33719
+[RESULT]: Val. Epoch: 21, summary_loss: 0.70959, final_score: 0.25624, time: 27.43609
+
+2021-06-25T13:51:15.656601
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.40665, final_score: 0.15696, time: 94.98939
+[RESULT]: Val. Epoch: 22, summary_loss: 0.56413, final_score: 0.21878, time: 26.70102
+
+2021-06-25T13:53:17.513313
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.39976, final_score: 0.15671, time: 94.81677
+[RESULT]: Val. Epoch: 23, summary_loss: 0.59093, final_score: 0.20330, time: 27.49440
+
+2021-06-25T13:55:19.983729
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.40271, final_score: 0.15959, time: 93.71080
+[RESULT]: Val. Epoch: 24, summary_loss: 0.81983, final_score: 0.24975, time: 26.67982
+
+2021-06-25T13:57:20.567527
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.36716, final_score: 0.13184, time: 96.86995
+[RESULT]: Val. Epoch: 25, summary_loss: 0.64819, final_score: 0.19630, time: 26.81084
+
+2021-06-25T13:59:24.433661
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.35999, final_score: 0.12559, time: 93.62694
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66466, final_score: 0.22228, time: 26.81236
+
+2021-06-25T14:01:25.050518
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.32818, final_score: 0.11072, time: 93.64050
+[RESULT]: Val. Epoch: 27, summary_loss: 0.60287, final_score: 0.20330, time: 26.51553
+
+2021-06-25T14:03:25.370919
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.32672, final_score: 0.10772, time: 90.89624
+[RESULT]: Val. Epoch: 28, summary_loss: 0.53478, final_score: 0.17782, time: 26.44898
+
+2021-06-25T14:05:23.070132
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.31713, final_score: 0.10085, time: 93.66560
+[RESULT]: Val. Epoch: 29, summary_loss: 0.52616, final_score: 0.18332, time: 26.49338
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:45.598848
+LR: 0.000125
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.37217, final_score: 0.13984, time: 97.65524
+[RESULT]: Val. Epoch: 30, summary_loss: 0.48564, final_score: 0.18931, time: 30.53014
+
+2021-06-26T08:56:54.195073
+LR: 0.000125
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 31, summary_loss: 0.37016, final_score: 0.13634, time: 92.90333
+[RESULT]: Val. Epoch: 31, summary_loss: 0.47642, final_score: 0.18581, time: 26.62365
+
+2021-06-26T08:58:54.095059
+LR: 0.000125
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 32, summary_loss: 0.36466, final_score: 0.13472, time: 93.69856
+[RESULT]: Val. Epoch: 32, summary_loss: 0.46373, final_score: 0.18332, time: 26.70628
+
+2021-06-26T09:00:54.849586
+LR: 0.000125
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.36137, final_score: 0.13309, time: 94.43152
+[RESULT]: Val. Epoch: 33, summary_loss: 0.47023, final_score: 0.19381, time: 26.78824
+
+2021-06-26T09:02:56.240702
+LR: 0.000125
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.35910, final_score: 0.13234, time: 94.18977
+[RESULT]: Val. Epoch: 34, summary_loss: 0.51978, final_score: 0.18581, time: 27.15020
+
+2021-06-26T09:04:57.774932
+LR: 0.000125
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.35895, final_score: 0.13272, time: 93.77634
+[RESULT]: Val. Epoch: 35, summary_loss: 0.54709, final_score: 0.20929, time: 26.41698
+
+2021-06-26T09:06:58.137808
+LR: 0.000125
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.35630, final_score: 0.13072, time: 93.70343
+[RESULT]: Val. Epoch: 36, summary_loss: 0.52367, final_score: 0.17882, time: 26.24896
+
+2021-06-26T09:08:58.270644
+LR: 0.000125
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.34924, final_score: 0.12584, time: 94.04265
+[RESULT]: Val. Epoch: 37, summary_loss: 0.49694, final_score: 0.18382, time: 26.55239
+
+2021-06-26T09:10:59.036067
+LR: 0.000125
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.35134, final_score: 0.12647, time: 93.65509
+[RESULT]: Val. Epoch: 38, summary_loss: 0.50441, final_score: 0.18781, time: 27.00727
+
+2021-06-26T09:12:59.884220
+LR: 0.000125
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.34407, final_score: 0.12359, time: 93.45072
+[RESULT]: Val. Epoch: 39, summary_loss: 0.48896, final_score: 0.17932, time: 26.24423
+
+2021-06-26T09:14:59.753095
+LR: 0.000125
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.34587, final_score: 0.12559, time: 92.97832
+[RESULT]: Val. Epoch: 40, summary_loss: 0.67072, final_score: 0.22677, time: 26.46089
+
+2021-06-26T09:16:59.374065
+LR: 0.000125
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.33807, final_score: 0.11560, time: 94.66201
+[RESULT]: Val. Epoch: 41, summary_loss: 0.49552, final_score: 0.18082, time: 26.82114
+
+2021-06-26T09:19:01.030157
+LR: 0.000125
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.33965, final_score: 0.11822, time: 94.31378
+[RESULT]: Val. Epoch: 42, summary_loss: 0.51181, final_score: 0.19331, time: 27.08081
+
+2021-06-26T09:21:02.591299
+LR: 0.000125
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.33733, final_score: 0.11635, time: 93.30225
+[RESULT]: Val. Epoch: 43, summary_loss: 0.82327, final_score: 0.20330, time: 26.72871
+
+2021-06-26T09:23:02.788337
+LR: 0.000125
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.33416, final_score: 0.11535, time: 93.97211
+[RESULT]: Val. Epoch: 44, summary_loss: 0.50709, final_score: 0.18482, time: 28.19489
+
+2021-06-26T09:25:05.132031
+LR: 0.000125
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 45, summary_loss: 0.33264, final_score: 0.11385, time: 96.39408
+[RESULT]: Val. Epoch: 45, summary_loss: 0.51801, final_score: 0.17732, time: 26.77805
+
+2021-06-26T09:27:08.545446
+LR: 0.000125
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 46, summary_loss: 0.32645, final_score: 0.11022, time: 95.46185
+[RESULT]: Val. Epoch: 46, summary_loss: 0.46844, final_score: 0.17582, time: 28.76571
+
+2021-06-26T09:29:12.959539
+LR: 0.000125
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 47, summary_loss: 0.32121, final_score: 0.10797, time: 94.90948
+[RESULT]: Val. Epoch: 47, summary_loss: 0.48355, final_score: 0.18182, time: 27.08986
+
+2021-06-26T09:31:15.141456
+LR: 0.000125
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 48, summary_loss: 0.32086, final_score: 0.10147, time: 97.38224
+[RESULT]: Val. Epoch: 48, summary_loss: 0.63337, final_score: 0.17333, time: 26.97280
+
+2021-06-26T09:33:19.686720
+LR: 0.000125
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 49, summary_loss: 0.32008, final_score: 0.10422, time: 93.71527
+[RESULT]: Val. Epoch: 49, summary_loss: 0.55483, final_score: 0.19780, time: 26.77048
+
+2021-06-26T09:35:20.347258
+LR: 0.000125
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 50, summary_loss: 0.31663, final_score: 0.10485, time: 96.29278
+[RESULT]: Val. Epoch: 50, summary_loss: 0.52606, final_score: 0.18681, time: 26.98395
+
+2021-06-26T09:37:23.811552
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.31386, final_score: 0.09735, time: 95.99069
+[RESULT]: Val. Epoch: 51, summary_loss: 0.75812, final_score: 0.19830, time: 27.13539
+
+2021-06-26T09:39:27.112067
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.30657, final_score: 0.09560, time: 96.74377
+[RESULT]: Val. Epoch: 52, summary_loss: 0.46112, final_score: 0.17283, time: 27.25492
+
+2021-06-26T09:41:31.503649
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.29958, final_score: 0.09173, time: 96.58630
+[RESULT]: Val. Epoch: 53, summary_loss: 0.48113, final_score: 0.17283, time: 26.76529
+
+2021-06-26T09:43:35.053783
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.29665, final_score: 0.08935, time: 96.72644
+[RESULT]: Val. Epoch: 54, summary_loss: 0.59282, final_score: 0.17832, time: 27.33035
+
+2021-06-26T09:45:39.301578
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.29593, final_score: 0.08773, time: 93.17107
+[RESULT]: Val. Epoch: 55, summary_loss: 0.46631, final_score: 0.17133, time: 26.52681
+
+2021-06-26T09:47:39.183202
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.28850, final_score: 0.08623, time: 97.48012
+[RESULT]: Val. Epoch: 56, summary_loss: 0.46882, final_score: 0.17333, time: 26.95663
+
+2021-06-26T09:49:43.803659
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.28930, final_score: 0.08335, time: 95.93409
+[RESULT]: Val. Epoch: 57, summary_loss: 0.46886, final_score: 0.16933, time: 27.33763
+
+2021-06-26T09:51:47.250412
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.28975, final_score: 0.08460, time: 97.35658
+[RESULT]: Val. Epoch: 58, summary_loss: 0.47102, final_score: 0.17083, time: 27.17674
+
+2021-06-26T09:53:51.950035
+LR: 7.8125e-06
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.28465, final_score: 0.07861, time: 96.19712
+[RESULT]: Val. Epoch: 59, summary_loss: 0.46858, final_score: 0.17033, time: 26.87433
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..bdd5131e8b8d99c3e685bff331981736aaa34ad1
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-029epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-029epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..11ccafbdf89781cb328291452c2c69b9eeaf1507
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-029epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:01c4bb7cb552f1c6e30b127786041bbd0f4b98a73807a99991552d11b0eb286c
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-034epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-034epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..4a69292ba467dc2d9a65098fa243808f4c812d91
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-034epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:64f954fefe8a73c5f72119e8c450e79fd13968fb7c53e9aa463df754087acf1f
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-036epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-036epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..0fbbac7e90989a0a17d7eb87e85724ab73f72a3c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/best-checkpoint-036epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d24192adfa3a101cc362de65325d8b7d9372432b034a7fe55aebe3436830b1e6
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..e70c426f009ba614bed0631773f8ac7d9e0643f9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:92b67befb33d988d9e6ef54314eed8a21da52bf5f118580813ca334037c458d0
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..2755480f94e51c6f90ec494d012253f01582034c
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_2/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T16:56:37.651360
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.72709, final_score: 0.49813, time: 105.30422
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69382, final_score: 0.49700, time: 31.48556
+
+2021-06-25T16:58:54.826176
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69366, final_score: 0.49788, time: 90.80809
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69339, final_score: 0.49650, time: 25.85338
+
+2021-06-25T17:00:51.825504
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69333, final_score: 0.49713, time: 87.98778
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69322, final_score: 0.49401, time: 26.01081
+
+2021-06-25T17:02:46.159829
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69317, final_score: 0.49488, time: 93.28953
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69325, final_score: 0.48701, time: 25.94451
+
+2021-06-25T17:04:45.573941
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69237, final_score: 0.48050, time: 89.92168
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69498, final_score: 0.48202, time: 26.55545
+
+2021-06-25T17:06:42.262478
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.68831, final_score: 0.45814, time: 93.65534
+[RESULT]: Val. Epoch: 5, summary_loss: 0.71851, final_score: 0.45604, time: 25.89995
+
+2021-06-25T17:08:42.001623
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.67117, final_score: 0.40927, time: 91.00221
+[RESULT]: Val. Epoch: 6, summary_loss: 0.68870, final_score: 0.38511, time: 26.51468
+
+2021-06-25T17:10:39.888473
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.63792, final_score: 0.35191, time: 90.90818
+[RESULT]: Val. Epoch: 7, summary_loss: 0.80654, final_score: 0.34815, time: 26.05016
+
+2021-06-25T17:12:37.030995
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.60451, final_score: 0.31105, time: 92.48518
+[RESULT]: Val. Epoch: 8, summary_loss: 0.83999, final_score: 0.33117, time: 26.23746
+
+2021-06-25T17:14:35.926546
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.58483, final_score: 0.29143, time: 90.98567
+[RESULT]: Val. Epoch: 9, summary_loss: 0.92284, final_score: 0.36963, time: 26.11458
+
+2021-06-25T17:16:33.224781
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.56831, final_score: 0.27068, time: 91.15269
+[RESULT]: Val. Epoch: 10, summary_loss: 1.05931, final_score: 0.31369, time: 26.35870
+
+2021-06-25T17:18:30.908579
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.55379, final_score: 0.26693, time: 92.04271
+[RESULT]: Val. Epoch: 11, summary_loss: 0.72228, final_score: 0.29021, time: 26.47329
+
+2021-06-25T17:20:29.585723
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.53888, final_score: 0.24844, time: 92.95194
+[RESULT]: Val. Epoch: 12, summary_loss: 0.57578, final_score: 0.27223, time: 26.14220
+
+2021-06-25T17:22:29.036068
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.53362, final_score: 0.24794, time: 90.93793
+[RESULT]: Val. Epoch: 13, summary_loss: 1.11856, final_score: 0.40210, time: 26.67845
+
+2021-06-25T17:24:26.814640
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.51869, final_score: 0.24044, time: 92.43479
+[RESULT]: Val. Epoch: 14, summary_loss: 1.25271, final_score: 0.27772, time: 26.60923
+
+2021-06-25T17:26:26.105333
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.51096, final_score: 0.22894, time: 93.37928
+[RESULT]: Val. Epoch: 15, summary_loss: 0.82688, final_score: 0.29271, time: 25.95164
+
+2021-06-25T17:28:25.597599
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.49975, final_score: 0.22419, time: 93.60636
+[RESULT]: Val. Epoch: 16, summary_loss: 0.72696, final_score: 0.30270, time: 26.59464
+
+2021-06-25T17:30:25.971731
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.50373, final_score: 0.22419, time: 90.78837
+[RESULT]: Val. Epoch: 17, summary_loss: 0.63920, final_score: 0.25624, time: 26.13885
+
+2021-06-25T17:32:23.081674
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.48579, final_score: 0.21395, time: 89.89214
+[RESULT]: Val. Epoch: 18, summary_loss: 0.64052, final_score: 0.25874, time: 25.86201
+
+2021-06-25T17:34:19.047831
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.47903, final_score: 0.21132, time: 91.72062
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69698, final_score: 0.26174, time: 26.18711
+
+2021-06-25T17:36:17.137574
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.47514, final_score: 0.20282, time: 93.67912
+[RESULT]: Val. Epoch: 20, summary_loss: 1.51772, final_score: 0.24825, time: 26.37578
+
+2021-06-25T17:38:17.363669
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.46617, final_score: 0.19870, time: 91.62013
+[RESULT]: Val. Epoch: 21, summary_loss: 0.83199, final_score: 0.25075, time: 26.53045
+
+2021-06-25T17:40:15.706674
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.45679, final_score: 0.19108, time: 92.95174
+[RESULT]: Val. Epoch: 22, summary_loss: 0.83976, final_score: 0.24376, time: 26.21160
+
+2021-06-25T17:42:15.068595
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.45638, final_score: 0.19520, time: 89.67031
+[RESULT]: Val. Epoch: 23, summary_loss: 0.56424, final_score: 0.23676, time: 26.31174
+
+2021-06-25T17:44:11.428357
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.44577, final_score: 0.18408, time: 92.91717
+[RESULT]: Val. Epoch: 24, summary_loss: 0.55948, final_score: 0.24026, time: 26.53326
+
+2021-06-25T17:46:11.200224
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.44406, final_score: 0.18658, time: 90.68171
+[RESULT]: Val. Epoch: 25, summary_loss: 0.65519, final_score: 0.26074, time: 26.64271
+
+2021-06-25T17:48:08.709159
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.42933, final_score: 0.17283, time: 90.73768
+[RESULT]: Val. Epoch: 26, summary_loss: 1.17679, final_score: 0.29171, time: 26.02287
+
+2021-06-25T17:50:05.652047
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.40491, final_score: 0.15884, time: 90.36451
+[RESULT]: Val. Epoch: 27, summary_loss: 0.56654, final_score: 0.21828, time: 26.33545
+
+2021-06-25T17:52:02.527662
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.38531, final_score: 0.14509, time: 93.31516
+[RESULT]: Val. Epoch: 28, summary_loss: 0.56346, final_score: 0.21778, time: 27.20268
+
+2021-06-25T17:54:03.227582
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.36782, final_score: 0.13347, time: 93.64331
+[RESULT]: Val. Epoch: 29, summary_loss: 0.55278, final_score: 0.20180, time: 26.28194
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:45.825351
+LR: 0.00025
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 30, summary_loss: 0.49592, final_score: 0.21795, time: 92.25341
+[RESULT]: Val. Epoch: 30, summary_loss: 0.57017, final_score: 0.25724, time: 29.66334
+
+2021-06-26T08:56:47.908155
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 31, summary_loss: 0.49014, final_score: 0.21595, time: 91.74696
+[RESULT]: Val. Epoch: 31, summary_loss: 0.59724, final_score: 0.25175, time: 25.73664
+
+2021-06-26T08:58:45.569399
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 32, summary_loss: 0.48070, final_score: 0.21095, time: 89.09000
+[RESULT]: Val. Epoch: 32, summary_loss: 0.68420, final_score: 0.27722, time: 26.34026
+
+2021-06-26T09:00:41.171289
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.47239, final_score: 0.20307, time: 89.29770
+[RESULT]: Val. Epoch: 33, summary_loss: 0.57392, final_score: 0.25325, time: 26.28376
+
+2021-06-26T09:02:36.929847
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.46629, final_score: 0.20245, time: 90.77793
+[RESULT]: Val. Epoch: 34, summary_loss: 0.55840, final_score: 0.25075, time: 26.38085
+
+2021-06-26T09:04:34.472983
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.46487, final_score: 0.20132, time: 92.17909
+[RESULT]: Val. Epoch: 35, summary_loss: 0.61222, final_score: 0.25375, time: 25.95869
+
+2021-06-26T09:06:32.806840
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.45972, final_score: 0.19420, time: 91.02904
+[RESULT]: Val. Epoch: 36, summary_loss: 0.54439, final_score: 0.23377, time: 26.04622
+
+2021-06-26T09:08:30.299031
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.44960, final_score: 0.19120, time: 91.88862
+[RESULT]: Val. Epoch: 37, summary_loss: 0.60691, final_score: 0.24426, time: 25.91317
+
+2021-06-26T09:10:28.275313
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.44531, final_score: 0.18420, time: 90.07762
+[RESULT]: Val. Epoch: 38, summary_loss: 0.58448, final_score: 0.24126, time: 26.40617
+
+2021-06-26T09:12:24.962146
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.44708, final_score: 0.18808, time: 92.49291
+[RESULT]: Val. Epoch: 39, summary_loss: 0.57727, final_score: 0.25724, time: 26.02673
+
+2021-06-26T09:14:23.660061
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.43791, final_score: 0.17908, time: 92.29894
+[RESULT]: Val. Epoch: 40, summary_loss: 0.94893, final_score: 0.26573, time: 26.26456
+
+2021-06-26T09:16:22.387317
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.43130, final_score: 0.17758, time: 91.57360
+[RESULT]: Val. Epoch: 41, summary_loss: 0.73495, final_score: 0.27123, time: 26.25756
+
+2021-06-26T09:18:20.398473
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.42127, final_score: 0.16671, time: 92.09630
+[RESULT]: Val. Epoch: 42, summary_loss: 0.75360, final_score: 0.23826, time: 27.10974
+
+2021-06-26T09:20:19.783107
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.42170, final_score: 0.16933, time: 90.26316
+[RESULT]: Val. Epoch: 43, summary_loss: 0.64727, final_score: 0.24875, time: 26.55820
+
+2021-06-26T09:22:16.780677
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.41630, final_score: 0.16733, time: 91.68749
+[RESULT]: Val. Epoch: 44, summary_loss: 0.55470, final_score: 0.22727, time: 25.69683
+
+2021-06-26T09:24:14.335151
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 45, summary_loss: 0.41235, final_score: 0.16258, time: 91.65277
+[RESULT]: Val. Epoch: 45, summary_loss: 0.57259, final_score: 0.23127, time: 26.06412
+
+2021-06-26T09:26:12.244542
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 46, summary_loss: 0.41238, final_score: 0.16483, time: 91.80882
+[RESULT]: Val. Epoch: 46, summary_loss: 0.62448, final_score: 0.22478, time: 25.93871
+
+2021-06-26T09:28:10.180031
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 47, summary_loss: 0.40044, final_score: 0.15334, time: 93.49811
+[RESULT]: Val. Epoch: 47, summary_loss: 0.56972, final_score: 0.22877, time: 26.13568
+
+2021-06-26T09:30:09.995909
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 48, summary_loss: 0.39987, final_score: 0.15534, time: 91.47905
+[RESULT]: Val. Epoch: 48, summary_loss: 0.76101, final_score: 0.24426, time: 26.20075
+
+2021-06-26T09:32:07.850882
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 49, summary_loss: 0.39195, final_score: 0.15034, time: 91.79958
+[RESULT]: Val. Epoch: 49, summary_loss: 0.68190, final_score: 0.24575, time: 26.00349
+
+2021-06-26T09:34:05.859084
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 50, summary_loss: 0.38096, final_score: 0.14309, time: 89.20878
+[RESULT]: Val. Epoch: 50, summary_loss: 0.62277, final_score: 0.22328, time: 26.40451
+
+2021-06-26T09:36:01.641088
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.38409, final_score: 0.14734, time: 92.03928
+[RESULT]: Val. Epoch: 51, summary_loss: 0.64830, final_score: 0.23576, time: 26.28069
+
+2021-06-26T09:38:00.139229
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.36541, final_score: 0.13209, time: 90.25057
+[RESULT]: Val. Epoch: 52, summary_loss: 0.63881, final_score: 0.24126, time: 26.09083
+
+2021-06-26T09:39:56.651050
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.35348, final_score: 0.12584, time: 91.42486
+[RESULT]: Val. Epoch: 53, summary_loss: 0.62094, final_score: 0.21928, time: 25.89097
+
+2021-06-26T09:41:54.129938
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.34477, final_score: 0.11997, time: 92.72122
+[RESULT]: Val. Epoch: 54, summary_loss: 0.56652, final_score: 0.21878, time: 25.98456
+
+2021-06-26T09:43:53.000106
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.33773, final_score: 0.11185, time: 91.89350
+[RESULT]: Val. Epoch: 55, summary_loss: 0.60505, final_score: 0.21628, time: 26.41704
+
+2021-06-26T09:45:51.473581
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.33794, final_score: 0.11222, time: 92.22696
+[RESULT]: Val. Epoch: 56, summary_loss: 0.61859, final_score: 0.21878, time: 26.35815
+
+2021-06-26T09:47:50.221097
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.32704, final_score: 0.10785, time: 91.92069
+[RESULT]: Val. Epoch: 57, summary_loss: 0.58576, final_score: 0.21179, time: 26.02524
+
+2021-06-26T09:49:48.333599
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 58, summary_loss: 0.32696, final_score: 0.10897, time: 92.93401
+[RESULT]: Val. Epoch: 58, summary_loss: 0.58853, final_score: 0.21578, time: 25.51717
+
+2021-06-26T09:51:46.950851
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 59, summary_loss: 0.32553, final_score: 0.10622, time: 92.97231
+[RESULT]: Val. Epoch: 59, summary_loss: 0.59006, final_score: 0.21129, time: 26.91379
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..49af53116a8b3a18649c93e7ba8dbabe5ba12e1b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-009epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-009epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..f443f94c089cdd9fee0073745f1c104cf42d079a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-009epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:3d1118076fcc0eda74057ed72993365b9d6f774be65def1729502b30fb4328cb
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-012epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-012epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..89723152f2bb22b6675a047c19c2b1f29003c565
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-012epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:0e63e0e4f118f8ff1e0aba24c231b84370ec20bb177dc74242568381071b3e57
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-015epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-015epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..22f01ec94bd36c8f8d3ef9121137e39c1344ce46
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/best-checkpoint-015epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9d45db08905c714112f6528257c90836dbfb39308cd2772aabd517013a88bd75
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..1769676ed36a6333df77cdc90990dcf61b5ea321
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:f023f0444620e35cbd5735aa0572b79b2b3b18c36183d5ece459f83df78c91fe
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..f1b4899e2869a8d9baf5dc394a7b95b19db6d069
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_3/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T16:56:42.029780
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.73304, final_score: 0.49775, time: 106.65634
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69507, final_score: 0.49500, time: 29.96007
+
+2021-06-25T16:58:59.000773
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69476, final_score: 0.49638, time: 92.02085
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69349, final_score: 0.48951, time: 26.85649
+
+2021-06-25T17:00:58.213162
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69153, final_score: 0.47663, time: 94.61112
+[RESULT]: Val. Epoch: 2, summary_loss: 0.77623, final_score: 0.47902, time: 26.66523
+
+2021-06-25T17:02:59.668325
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.62445, final_score: 0.33642, time: 94.11812
+[RESULT]: Val. Epoch: 3, summary_loss: 1.28223, final_score: 0.43806, time: 26.46771
+
+2021-06-25T17:05:00.417366
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.57626, final_score: 0.28693, time: 94.01227
+[RESULT]: Val. Epoch: 4, summary_loss: 0.82811, final_score: 0.30569, time: 26.71361
+
+2021-06-25T17:07:01.324773
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.54089, final_score: 0.24906, time: 93.71722
+[RESULT]: Val. Epoch: 5, summary_loss: 0.65087, final_score: 0.27572, time: 27.70618
+
+2021-06-25T17:09:03.091663
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.51383, final_score: 0.23244, time: 91.94190
+[RESULT]: Val. Epoch: 6, summary_loss: 1.24356, final_score: 0.23876, time: 26.60600
+
+2021-06-25T17:11:01.812373
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.49852, final_score: 0.22157, time: 94.72511
+[RESULT]: Val. Epoch: 7, summary_loss: 0.70833, final_score: 0.24825, time: 26.83797
+
+2021-06-25T17:13:03.570902
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.48372, final_score: 0.20732, time: 94.09734
+[RESULT]: Val. Epoch: 8, summary_loss: 0.69218, final_score: 0.22727, time: 27.03061
+
+2021-06-25T17:15:04.875077
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.47201, final_score: 0.20307, time: 93.18508
+[RESULT]: Val. Epoch: 9, summary_loss: 0.51477, final_score: 0.22577, time: 26.88778
+
+2021-06-25T17:17:05.320685
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.45836, final_score: 0.19120, time: 95.54773
+[RESULT]: Val. Epoch: 10, summary_loss: 0.52630, final_score: 0.24725, time: 26.85685
+
+2021-06-25T17:19:07.899403
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.45072, final_score: 0.18983, time: 94.63775
+[RESULT]: Val. Epoch: 11, summary_loss: 0.60439, final_score: 0.24176, time: 27.08013
+
+2021-06-25T17:21:09.806017
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.45086, final_score: 0.18645, time: 94.88283
+[RESULT]: Val. Epoch: 12, summary_loss: 0.48273, final_score: 0.20130, time: 26.68133
+
+2021-06-25T17:23:11.728532
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.44423, final_score: 0.18120, time: 94.60943
+[RESULT]: Val. Epoch: 13, summary_loss: 1.47879, final_score: 0.33916, time: 27.40990
+
+2021-06-25T17:25:13.911739
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.42715, final_score: 0.16683, time: 91.79803
+[RESULT]: Val. Epoch: 14, summary_loss: 0.49505, final_score: 0.20679, time: 26.60366
+
+2021-06-25T17:27:12.556462
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.41943, final_score: 0.16671, time: 92.93488
+[RESULT]: Val. Epoch: 15, summary_loss: 0.46122, final_score: 0.19481, time: 26.97990
+
+2021-06-25T17:29:12.835443
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.41717, final_score: 0.16521, time: 93.52364
+[RESULT]: Val. Epoch: 16, summary_loss: 1.30617, final_score: 0.20130, time: 26.52654
+
+2021-06-25T17:31:13.057343
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.40068, final_score: 0.15134, time: 94.25449
+[RESULT]: Val. Epoch: 17, summary_loss: 0.88678, final_score: 0.29371, time: 26.83796
+
+2021-06-25T17:33:14.322053
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.40293, final_score: 0.15271, time: 93.71139
+[RESULT]: Val. Epoch: 18, summary_loss: 0.55746, final_score: 0.19880, time: 26.99989
+
+2021-06-25T17:35:15.238913
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.38811, final_score: 0.14609, time: 93.24405
+[RESULT]: Val. Epoch: 19, summary_loss: 0.82215, final_score: 0.22328, time: 26.60939
+
+2021-06-25T17:37:15.261608
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.39053, final_score: 0.14709, time: 91.92685
+[RESULT]: Val. Epoch: 20, summary_loss: 0.49047, final_score: 0.17483, time: 27.16060
+
+2021-06-25T17:39:14.546023
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.37986, final_score: 0.13934, time: 92.62770
+[RESULT]: Val. Epoch: 21, summary_loss: 0.92712, final_score: 0.29221, time: 26.68029
+
+2021-06-25T17:41:14.026073
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.37773, final_score: 0.13472, time: 92.58721
+[RESULT]: Val. Epoch: 22, summary_loss: 0.83970, final_score: 0.24326, time: 26.59716
+
+2021-06-25T17:43:13.447536
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.35173, final_score: 0.11985, time: 93.12854
+[RESULT]: Val. Epoch: 23, summary_loss: 0.51880, final_score: 0.18132, time: 26.68557
+
+2021-06-25T17:45:13.452425
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.34464, final_score: 0.11485, time: 94.08140
+[RESULT]: Val. Epoch: 24, summary_loss: 0.62326, final_score: 0.18831, time: 26.59448
+
+2021-06-25T17:47:14.316332
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.32434, final_score: 0.10447, time: 92.88538
+[RESULT]: Val. Epoch: 25, summary_loss: 0.47633, final_score: 0.16034, time: 26.69450
+
+2021-06-25T17:49:14.117055
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.31642, final_score: 0.09698, time: 94.18202
+[RESULT]: Val. Epoch: 26, summary_loss: 0.57038, final_score: 0.18482, time: 26.62313
+
+2021-06-25T17:51:15.093007
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.31191, final_score: 0.09385, time: 91.94276
+[RESULT]: Val. Epoch: 27, summary_loss: 0.47115, final_score: 0.16583, time: 26.97862
+
+2021-06-25T17:53:14.208895
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.30956, final_score: 0.09260, time: 94.56201
+[RESULT]: Val. Epoch: 28, summary_loss: 0.60412, final_score: 0.18432, time: 26.92607
+
+2021-06-25T17:55:15.897680
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.30538, final_score: 0.08985, time: 94.06492
+[RESULT]: Val. Epoch: 29, summary_loss: 0.51845, final_score: 0.17532, time: 26.54854
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:45.500601
+LR: 0.00025
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 28, summary_loss: 0.42440, final_score: 0.17408, time: 94.27172
+[RESULT]: Val. Epoch: 28, summary_loss: 0.63739, final_score: 0.24276, time: 28.41873
+
+2021-06-26T08:56:48.378347
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 29, summary_loss: 0.41817, final_score: 0.16171, time: 92.34003
+[RESULT]: Val. Epoch: 29, summary_loss: 0.51926, final_score: 0.19980, time: 26.03594
+
+2021-06-26T08:58:46.930550
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 30, summary_loss: 0.41238, final_score: 0.15996, time: 89.71259
+[RESULT]: Val. Epoch: 30, summary_loss: 0.53516, final_score: 0.18232, time: 25.85842
+
+2021-06-26T09:00:42.666272
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.41048, final_score: 0.15971, time: 92.11312
+[RESULT]: Val. Epoch: 31, summary_loss: 0.69178, final_score: 0.19481, time: 26.33831
+
+2021-06-26T09:02:41.289538
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.40356, final_score: 0.15359, time: 91.66145
+[RESULT]: Val. Epoch: 32, summary_loss: 0.56930, final_score: 0.20879, time: 26.38823
+
+2021-06-26T09:04:39.533030
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.40431, final_score: 0.15796, time: 92.65079
+[RESULT]: Val. Epoch: 33, summary_loss: 0.70701, final_score: 0.20180, time: 26.25279
+
+2021-06-26T09:06:38.613021
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.39698, final_score: 0.15196, time: 92.06260
+[RESULT]: Val. Epoch: 34, summary_loss: 0.54496, final_score: 0.19181, time: 25.73027
+
+2021-06-26T09:08:36.568109
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.39517, final_score: 0.15159, time: 91.22365
+[RESULT]: Val. Epoch: 35, summary_loss: 0.87329, final_score: 0.26374, time: 25.89412
+
+2021-06-26T09:10:33.869135
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.39175, final_score: 0.14846, time: 91.79996
+[RESULT]: Val. Epoch: 36, summary_loss: 0.48912, final_score: 0.19181, time: 25.95037
+
+2021-06-26T09:12:31.813375
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.38559, final_score: 0.14234, time: 92.95642
+[RESULT]: Val. Epoch: 37, summary_loss: 0.55527, final_score: 0.17932, time: 26.19053
+
+2021-06-26T09:14:31.131378
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.38359, final_score: 0.14484, time: 92.82383
+[RESULT]: Val. Epoch: 38, summary_loss: 0.65271, final_score: 0.19730, time: 25.78120
+
+2021-06-26T09:16:29.910409
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.37588, final_score: 0.13922, time: 90.49892
+[RESULT]: Val. Epoch: 39, summary_loss: 1.14099, final_score: 0.26124, time: 26.45680
+
+2021-06-26T09:18:27.040171
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.37551, final_score: 0.13522, time: 91.73666
+[RESULT]: Val. Epoch: 40, summary_loss: 0.87688, final_score: 0.26324, time: 26.28088
+
+2021-06-26T09:20:25.243362
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.36995, final_score: 0.13659, time: 91.41387
+[RESULT]: Val. Epoch: 41, summary_loss: 0.60433, final_score: 0.19231, time: 26.11146
+
+2021-06-26T09:22:22.942601
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.36699, final_score: 0.13097, time: 91.06804
+[RESULT]: Val. Epoch: 42, summary_loss: 0.58570, final_score: 0.19680, time: 26.09148
+
+2021-06-26T09:24:20.270585
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.35812, final_score: 0.12659, time: 90.98558
+[RESULT]: Val. Epoch: 43, summary_loss: 0.76444, final_score: 0.21479, time: 26.62282
+
+2021-06-26T09:26:18.044777
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.36119, final_score: 0.12797, time: 90.11517
+[RESULT]: Val. Epoch: 44, summary_loss: 0.55587, final_score: 0.20430, time: 26.27924
+
+2021-06-26T09:28:14.619606
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 45, summary_loss: 0.35365, final_score: 0.12147, time: 92.34683
+[RESULT]: Val. Epoch: 45, summary_loss: 0.56740, final_score: 0.18731, time: 26.20411
+
+2021-06-26T09:30:13.337762
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 46, summary_loss: 0.35130, final_score: 0.12084, time: 89.34291
+[RESULT]: Val. Epoch: 46, summary_loss: 0.88595, final_score: 0.23077, time: 26.34657
+
+2021-06-26T09:32:09.212393
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 47, summary_loss: 0.34459, final_score: 0.11385, time: 92.52091
+[RESULT]: Val. Epoch: 47, summary_loss: 0.66677, final_score: 0.21279, time: 26.14063
+
+2021-06-26T09:34:08.055011
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 48, summary_loss: 0.33957, final_score: 0.11272, time: 92.24934
+[RESULT]: Val. Epoch: 48, summary_loss: 0.56747, final_score: 0.19131, time: 25.95035
+
+2021-06-26T09:36:06.420670
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.33757, final_score: 0.11747, time: 91.55127
+[RESULT]: Val. Epoch: 49, summary_loss: 0.49780, final_score: 0.18182, time: 25.94743
+
+2021-06-26T09:38:04.122659
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.33491, final_score: 0.11197, time: 91.97387
+[RESULT]: Val. Epoch: 50, summary_loss: 0.56627, final_score: 0.20280, time: 26.48030
+
+2021-06-26T09:40:02.752177
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.32890, final_score: 0.10772, time: 91.41768
+[RESULT]: Val. Epoch: 51, summary_loss: 0.54510, final_score: 0.17782, time: 26.47016
+
+2021-06-26T09:42:00.836939
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.31153, final_score: 0.09248, time: 91.77401
+[RESULT]: Val. Epoch: 52, summary_loss: 0.50145, final_score: 0.17483, time: 25.98816
+
+2021-06-26T09:43:58.775473
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.30779, final_score: 0.09123, time: 92.45866
+[RESULT]: Val. Epoch: 53, summary_loss: 0.57305, final_score: 0.16983, time: 25.91148
+
+2021-06-26T09:45:57.320618
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.29748, final_score: 0.08460, time: 92.84216
+[RESULT]: Val. Epoch: 54, summary_loss: 0.50509, final_score: 0.16883, time: 26.48620
+
+2021-06-26T09:47:56.817100
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.29585, final_score: 0.08448, time: 91.41818
+[RESULT]: Val. Epoch: 55, summary_loss: 0.50305, final_score: 0.16783, time: 26.25990
+
+2021-06-26T09:49:54.684168
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.29323, final_score: 0.08485, time: 91.79226
+[RESULT]: Val. Epoch: 56, summary_loss: 0.49923, final_score: 0.16633, time: 26.29227
+
+2021-06-26T09:51:52.938002
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.28753, final_score: 0.07986, time: 90.89130
+[RESULT]: Val. Epoch: 57, summary_loss: 0.50305, final_score: 0.16334, time: 25.92543
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..228a1b9e5ccc5df3e5aa23efafdcfd06d296d10b
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-009epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-009epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a1d4a3f1b129742b4e38c03cf42498663f5fba86
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-009epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:39599647ae54a83bac87795e09a9a2518c87553429c645e5dee7970e4efc75b3
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-013epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-013epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..9ee4b3c79f1f01bdffe1863ef6d5ce81ca0cbf62
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-013epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8235086deaf83e3fc95c0a1a2259407e5421d91d91427724c6ec9592b273d8ee
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-015epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-015epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a876c328ec6fa04bac848111e7ceeb24278adebe
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/best-checkpoint-015epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:d1f94470bb4ef4e8ef8835b2ec1fd98edd3ea1a0d4e07f2e240becb539c5ccdf
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ad73012ee14bdd8d6b0338e0fae730235258db9a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:2b2960709283a10e0962bfc5b164bb41812935a5a19585d2f03e7eedb6da48c2
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..7c0909ee533d0d3f09191255249c01a1942c7178
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_4/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T16:57:26.657507
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.74174, final_score: 0.49800, time: 102.43047
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69463, final_score: 0.49451, time: 29.81104
+
+2021-06-25T16:59:39.250664
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69437, final_score: 0.49700, time: 95.98288
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69355, final_score: 0.49451, time: 27.51356
+
+2021-06-25T17:01:43.088782
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69364, final_score: 0.49700, time: 94.01043
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69357, final_score: 0.49550, time: 26.55236
+
+2021-06-25T17:03:43.819074
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69334, final_score: 0.49463, time: 92.49537
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69311, final_score: 0.49001, time: 26.56223
+
+2021-06-25T17:05:43.256626
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69314, final_score: 0.49163, time: 92.68616
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69343, final_score: 0.48402, time: 26.43858
+
+2021-06-25T17:07:42.557850
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69261, final_score: 0.48350, time: 92.40720
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69814, final_score: 0.48002, time: 27.11787
+
+2021-06-25T17:09:42.256782
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.68737, final_score: 0.45089, time: 91.75384
+[RESULT]: Val. Epoch: 6, summary_loss: 0.70867, final_score: 0.46204, time: 26.94696
+
+2021-06-25T17:11:41.134847
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.66053, final_score: 0.37941, time: 93.49209
+[RESULT]: Val. Epoch: 7, summary_loss: 0.72198, final_score: 0.39960, time: 26.67507
+
+2021-06-25T17:13:41.489361
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.63722, final_score: 0.35391, time: 92.69990
+[RESULT]: Val. Epoch: 8, summary_loss: 1.00996, final_score: 0.39610, time: 26.46764
+
+2021-06-25T17:15:40.846488
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.61282, final_score: 0.32292, time: 92.84972
+[RESULT]: Val. Epoch: 9, summary_loss: 0.67315, final_score: 0.32318, time: 26.61792
+
+2021-06-25T17:17:40.684214
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.60307, final_score: 0.30842, time: 93.08971
+[RESULT]: Val. Epoch: 10, summary_loss: 1.27275, final_score: 0.32717, time: 27.05190
+
+2021-06-25T17:19:41.012377
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.58728, final_score: 0.29630, time: 92.44429
+[RESULT]: Val. Epoch: 11, summary_loss: 1.21055, final_score: 0.36364, time: 26.36820
+
+2021-06-25T17:21:39.994616
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.57689, final_score: 0.28330, time: 92.60010
+[RESULT]: Val. Epoch: 12, summary_loss: 1.54242, final_score: 0.35514, time: 26.38250
+
+2021-06-25T17:23:39.157526
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.57048, final_score: 0.27331, time: 94.08558
+[RESULT]: Val. Epoch: 13, summary_loss: 0.59448, final_score: 0.28521, time: 26.81331
+
+2021-06-25T17:25:40.392997
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.56361, final_score: 0.27493, time: 95.57172
+[RESULT]: Val. Epoch: 14, summary_loss: 0.60840, final_score: 0.31119, time: 26.31651
+
+2021-06-25T17:27:42.531849
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.54852, final_score: 0.26268, time: 93.59013
+[RESULT]: Val. Epoch: 15, summary_loss: 0.55693, final_score: 0.25774, time: 26.66852
+
+2021-06-25T17:29:43.149521
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.54449, final_score: 0.25744, time: 92.68493
+[RESULT]: Val. Epoch: 16, summary_loss: 0.68551, final_score: 0.31668, time: 26.14415
+
+2021-06-25T17:31:42.162411
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.53895, final_score: 0.25106, time: 92.61305
+[RESULT]: Val. Epoch: 17, summary_loss: 0.61033, final_score: 0.25874, time: 26.98066
+
+2021-06-25T17:33:41.931558
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.52807, final_score: 0.24444, time: 93.42996
+[RESULT]: Val. Epoch: 18, summary_loss: 0.60456, final_score: 0.26673, time: 26.42700
+
+2021-06-25T17:35:41.965525
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.51820, final_score: 0.23144, time: 92.09882
+[RESULT]: Val. Epoch: 19, summary_loss: 0.58281, final_score: 0.25924, time: 26.45646
+
+2021-06-25T17:37:40.697747
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.51685, final_score: 0.23819, time: 92.93836
+[RESULT]: Val. Epoch: 20, summary_loss: 1.78168, final_score: 0.30769, time: 26.50790
+
+2021-06-25T17:39:40.314375
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.50868, final_score: 0.23019, time: 94.31644
+[RESULT]: Val. Epoch: 21, summary_loss: 1.49027, final_score: 0.30819, time: 26.90958
+
+2021-06-25T17:41:41.721551
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.50231, final_score: 0.22307, time: 94.76149
+[RESULT]: Val. Epoch: 22, summary_loss: 1.21876, final_score: 0.26723, time: 26.77277
+
+2021-06-25T17:43:43.435000
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.49552, final_score: 0.21970, time: 95.56784
+[RESULT]: Val. Epoch: 23, summary_loss: 0.86628, final_score: 0.28022, time: 26.86015
+
+2021-06-25T17:45:46.051290
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.48986, final_score: 0.21470, time: 94.36961
+[RESULT]: Val. Epoch: 24, summary_loss: 1.00984, final_score: 0.25524, time: 26.57589
+
+2021-06-25T17:47:47.175814
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.47960, final_score: 0.21120, time: 93.89550
+[RESULT]: Val. Epoch: 25, summary_loss: 0.71979, final_score: 0.26274, time: 26.67676
+
+2021-06-25T17:49:47.931650
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.47756, final_score: 0.20695, time: 92.93487
+[RESULT]: Val. Epoch: 26, summary_loss: 0.94392, final_score: 0.31119, time: 27.00828
+
+2021-06-25T17:51:48.068332
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.47243, final_score: 0.20432, time: 91.55854
+[RESULT]: Val. Epoch: 27, summary_loss: 0.95343, final_score: 0.25724, time: 26.51440
+
+2021-06-25T17:53:46.322582
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.45049, final_score: 0.18608, time: 92.30296
+[RESULT]: Val. Epoch: 28, summary_loss: 0.63897, final_score: 0.25475, time: 26.58242
+
+2021-06-25T17:55:45.391963
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.44173, final_score: 0.18520, time: 92.06834
+[RESULT]: Val. Epoch: 29, summary_loss: 0.58680, final_score: 0.23676, time: 26.64959
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:44.788357
+LR: 0.00025
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 28, summary_loss: 0.51739, final_score: 0.24419, time: 94.05285
+[RESULT]: Val. Epoch: 28, summary_loss: 0.57996, final_score: 0.28122, time: 28.88783
+
+2021-06-26T08:56:47.904945
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 29, summary_loss: 0.50864, final_score: 0.23494, time: 92.83237
+[RESULT]: Val. Epoch: 29, summary_loss: 0.66921, final_score: 0.28971, time: 25.95722
+
+2021-06-26T08:58:46.898660
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 30, summary_loss: 0.50156, final_score: 0.23044, time: 92.17058
+[RESULT]: Val. Epoch: 30, summary_loss: 0.85950, final_score: 0.30669, time: 25.84512
+
+2021-06-26T09:00:45.086802
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.49610, final_score: 0.22569, time: 92.87919
+[RESULT]: Val. Epoch: 31, summary_loss: 0.61180, final_score: 0.26823, time: 26.31977
+
+2021-06-26T09:02:44.476759
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.49125, final_score: 0.22444, time: 93.03477
+[RESULT]: Val. Epoch: 32, summary_loss: 0.67084, final_score: 0.27522, time: 25.93192
+
+2021-06-26T09:04:43.608341
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.48445, final_score: 0.21595, time: 92.60989
+[RESULT]: Val. Epoch: 33, summary_loss: 0.62344, final_score: 0.28222, time: 26.25944
+
+2021-06-26T09:06:42.661193
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.48347, final_score: 0.21670, time: 92.77624
+[RESULT]: Val. Epoch: 34, summary_loss: 0.69273, final_score: 0.27922, time: 26.52432
+
+2021-06-26T09:08:42.165202
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.47536, final_score: 0.20882, time: 90.86503
+[RESULT]: Val. Epoch: 35, summary_loss: 0.65541, final_score: 0.26174, time: 26.41273
+
+2021-06-26T09:10:39.600031
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.47422, final_score: 0.20870, time: 88.86762
+[RESULT]: Val. Epoch: 36, summary_loss: 0.68928, final_score: 0.29171, time: 26.57329
+
+2021-06-26T09:12:35.212831
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.46882, final_score: 0.20695, time: 91.23069
+[RESULT]: Val. Epoch: 37, summary_loss: 0.65425, final_score: 0.28122, time: 25.87691
+
+2021-06-26T09:14:32.479237
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.46168, final_score: 0.20020, time: 92.58077
+[RESULT]: Val. Epoch: 38, summary_loss: 0.63178, final_score: 0.26523, time: 26.01216
+
+2021-06-26T09:16:31.231402
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.45375, final_score: 0.19720, time: 91.68467
+[RESULT]: Val. Epoch: 39, summary_loss: 0.73137, final_score: 0.26224, time: 25.58422
+
+2021-06-26T09:18:28.660656
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.45604, final_score: 0.19633, time: 92.80578
+[RESULT]: Val. Epoch: 40, summary_loss: 0.57553, final_score: 0.25524, time: 26.88922
+
+2021-06-26T09:20:28.531221
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.45061, final_score: 0.19620, time: 90.16969
+[RESULT]: Val. Epoch: 41, summary_loss: 0.83804, final_score: 0.29820, time: 26.36954
+
+2021-06-26T09:22:25.236234
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.43833, final_score: 0.18020, time: 92.40809
+[RESULT]: Val. Epoch: 42, summary_loss: 0.62881, final_score: 0.27722, time: 26.21496
+
+2021-06-26T09:24:24.018720
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.44226, final_score: 0.18583, time: 93.62541
+[RESULT]: Val. Epoch: 43, summary_loss: 0.59211, final_score: 0.26474, time: 26.23719
+
+2021-06-26T09:26:24.068344
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.43384, final_score: 0.17883, time: 93.65341
+[RESULT]: Val. Epoch: 44, summary_loss: 0.61947, final_score: 0.26324, time: 25.92919
+
+2021-06-26T09:28:23.900655
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 45, summary_loss: 0.42978, final_score: 0.17708, time: 92.48735
+[RESULT]: Val. Epoch: 45, summary_loss: 0.58857, final_score: 0.25924, time: 25.73346
+
+2021-06-26T09:30:22.278795
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 46, summary_loss: 0.43256, final_score: 0.17933, time: 92.94883
+[RESULT]: Val. Epoch: 46, summary_loss: 0.63783, final_score: 0.26324, time: 26.17231
+
+2021-06-26T09:32:21.558441
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 47, summary_loss: 0.41570, final_score: 0.16846, time: 93.21906
+[RESULT]: Val. Epoch: 47, summary_loss: 0.79863, final_score: 0.30170, time: 26.28500
+
+2021-06-26T09:34:21.231848
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 48, summary_loss: 0.41568, final_score: 0.17083, time: 92.76083
+[RESULT]: Val. Epoch: 48, summary_loss: 1.09785, final_score: 0.30170, time: 26.52770
+
+2021-06-26T09:36:20.677615
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.41415, final_score: 0.16646, time: 92.57003
+[RESULT]: Val. Epoch: 49, summary_loss: 0.72126, final_score: 0.27173, time: 26.04052
+
+2021-06-26T09:38:19.466913
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.38755, final_score: 0.14296, time: 92.07279
+[RESULT]: Val. Epoch: 50, summary_loss: 0.63823, final_score: 0.25824, time: 26.09400
+
+2021-06-26T09:40:17.792322
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.39055, final_score: 0.14996, time: 91.30418
+[RESULT]: Val. Epoch: 51, summary_loss: 0.69760, final_score: 0.26124, time: 26.13857
+
+2021-06-26T09:42:15.411032
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.36959, final_score: 0.13684, time: 91.16274
+[RESULT]: Val. Epoch: 52, summary_loss: 0.65894, final_score: 0.25425, time: 25.80189
+
+2021-06-26T09:44:12.584525
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.36389, final_score: 0.13122, time: 92.38176
+[RESULT]: Val. Epoch: 53, summary_loss: 0.66341, final_score: 0.26024, time: 25.94878
+
+2021-06-26T09:46:11.089750
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.36069, final_score: 0.13059, time: 91.08972
+[RESULT]: Val. Epoch: 54, summary_loss: 0.66229, final_score: 0.25724, time: 26.05637
+
+2021-06-26T09:48:08.398566
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.35871, final_score: 0.12909, time: 92.09954
+[RESULT]: Val. Epoch: 55, summary_loss: 0.66439, final_score: 0.25774, time: 26.62786
+
+2021-06-26T09:50:07.303339
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.35464, final_score: 0.12609, time: 92.84459
+[RESULT]: Val. Epoch: 56, summary_loss: 0.67217, final_score: 0.25624, time: 26.37938
+
+2021-06-26T09:52:06.696349
+LR: 1.5625e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.35542, final_score: 0.12759, time: 91.58040
+[RESULT]: Val. Epoch: 57, summary_loss: 0.67759, final_score: 0.25774, time: 25.64497
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..797f4ac7afe24f7a1dc807884aec4aa8c20e6307
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-012epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-012epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..328a3fcf587e3f2e186504a8b58f48461a8df3d9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-012epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b165b03418453d7dea2fb7243aef00db56530d8c88f692dd9726b6266fc21a20
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-022epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-022epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..01f2e5551bd1e95308771b66ce2a7d78e7ac54c9
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-022epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:9e8e0c9ac68f359d055ca7b175f83dfa79ac1f92a062bc9b406dee37134a45c3
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-037epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-037epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..a29214ef1f93e971a7f22e19a81f24485f43eb2d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/best-checkpoint-037epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:b5ca8710684fb01d4ae4fa73f58317a644fec3c511c86e3d397b368b21887644
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..533e5c66114f74dd2c137c53929faffbc692f6bd
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:88c61933e4ce63e6f0cafd4da72374f21f84d6f3dc82025d047ef998f20abc9b
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..b6245983328606dcfa807cf98f7cc062c0120436
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_5/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T13:12:29.983949
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.71078, final_score: 0.49763, time: 103.35291
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.48951, time: 30.46630
+
+2021-06-25T13:14:44.188466
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69308, final_score: 0.49163, time: 93.41091
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69323, final_score: 0.48501, time: 26.89489
+
+2021-06-25T13:16:44.669262
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69294, final_score: 0.48788, time: 92.62869
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69365, final_score: 0.48152, time: 26.15033
+
+2021-06-25T13:18:43.613752
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69260, final_score: 0.48213, time: 94.26429
+[RESULT]: Val. Epoch: 3, summary_loss: 0.69404, final_score: 0.48851, time: 26.56330
+
+2021-06-25T13:20:44.623720
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69191, final_score: 0.47413, time: 92.49376
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69895, final_score: 0.47003, time: 26.62501
+
+2021-06-25T13:22:43.912060
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69125, final_score: 0.46951, time: 91.02570
+[RESULT]: Val. Epoch: 5, summary_loss: 0.72248, final_score: 0.49550, time: 26.07988
+
+2021-06-25T13:24:41.183372
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.68931, final_score: 0.46101, time: 91.74795
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69166, final_score: 0.47303, time: 26.63301
+
+2021-06-25T13:26:40.084297
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.68574, final_score: 0.44726, time: 94.77355
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69412, final_score: 0.46803, time: 27.00278
+
+2021-06-25T13:28:42.043054
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.68019, final_score: 0.43764, time: 93.62301
+[RESULT]: Val. Epoch: 8, summary_loss: 0.67833, final_score: 0.42358, time: 27.01054
+
+2021-06-25T13:30:43.035741
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.67469, final_score: 0.42339, time: 93.88971
+[RESULT]: Val. Epoch: 9, summary_loss: 0.70040, final_score: 0.47552, time: 26.61366
+
+2021-06-25T13:32:43.718552
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.66887, final_score: 0.41177, time: 92.61757
+[RESULT]: Val. Epoch: 10, summary_loss: 1.26395, final_score: 0.44056, time: 26.48445
+
+2021-06-25T13:34:43.073788
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.66306, final_score: 0.40815, time: 92.74181
+[RESULT]: Val. Epoch: 11, summary_loss: 0.69250, final_score: 0.45405, time: 26.81018
+
+2021-06-25T13:36:42.806878
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.66016, final_score: 0.39590, time: 94.95226
+[RESULT]: Val. Epoch: 12, summary_loss: 0.66952, final_score: 0.40310, time: 26.78192
+
+2021-06-25T13:38:44.882645
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.65439, final_score: 0.39053, time: 93.13996
+[RESULT]: Val. Epoch: 13, summary_loss: 0.69517, final_score: 0.41558, time: 26.55885
+
+2021-06-25T13:40:44.744949
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.64812, final_score: 0.38278, time: 93.67645
+[RESULT]: Val. Epoch: 14, summary_loss: 1.26342, final_score: 0.44106, time: 26.87184
+
+2021-06-25T13:42:45.477046
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64608, final_score: 0.37991, time: 93.90932
+[RESULT]: Val. Epoch: 15, summary_loss: 1.23189, final_score: 0.39560, time: 26.86631
+
+2021-06-25T13:44:46.436963
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64371, final_score: 0.37241, time: 93.74308
+[RESULT]: Val. Epoch: 16, summary_loss: 0.75085, final_score: 0.40210, time: 26.64621
+
+2021-06-25T13:46:47.039147
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.63657, final_score: 0.36841, time: 93.49397
+[RESULT]: Val. Epoch: 17, summary_loss: 1.02548, final_score: 0.42308, time: 27.48435
+
+2021-06-25T13:48:48.201031
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.63510, final_score: 0.36328, time: 94.30813
+[RESULT]: Val. Epoch: 18, summary_loss: 0.86365, final_score: 0.45105, time: 28.24331
+
+2021-06-25T13:50:50.936676
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.62896, final_score: 0.36341, time: 95.79042
+[RESULT]: Val. Epoch: 19, summary_loss: 0.70173, final_score: 0.37313, time: 27.37891
+
+2021-06-25T13:52:54.279724
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62507, final_score: 0.35341, time: 95.71481
+[RESULT]: Val. Epoch: 20, summary_loss: 0.73935, final_score: 0.36813, time: 27.52638
+
+2021-06-25T13:54:57.690430
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.62044, final_score: 0.34591, time: 92.34195
+[RESULT]: Val. Epoch: 21, summary_loss: 1.41212, final_score: 0.42757, time: 26.88355
+
+2021-06-25T13:56:57.082251
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.61134, final_score: 0.34054, time: 93.89312
+[RESULT]: Val. Epoch: 22, summary_loss: 0.66169, final_score: 0.36464, time: 28.11879
+
+2021-06-25T13:58:59.447853
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.61260, final_score: 0.34354, time: 96.84469
+[RESULT]: Val. Epoch: 23, summary_loss: 0.90563, final_score: 0.40010, time: 26.93366
+
+2021-06-25T14:01:03.430902
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.60865, final_score: 0.33967, time: 93.70751
+[RESULT]: Val. Epoch: 24, summary_loss: 0.89307, final_score: 0.43257, time: 26.43749
+
+2021-06-25T14:03:03.745775
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.59091, final_score: 0.32042, time: 91.29315
+[RESULT]: Val. Epoch: 25, summary_loss: 0.83134, final_score: 0.37712, time: 26.35493
+
+2021-06-25T14:05:01.577567
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.58245, final_score: 0.31167, time: 93.35357
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66633, final_score: 0.35065, time: 26.37146
+
+2021-06-25T14:07:01.468159
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.56763, final_score: 0.30392, time: 93.43541
+[RESULT]: Val. Epoch: 27, summary_loss: 0.72403, final_score: 0.33766, time: 26.71978
+
+2021-06-25T14:09:01.786076
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.56047, final_score: 0.29168, time: 93.09140
+[RESULT]: Val. Epoch: 28, summary_loss: 0.76532, final_score: 0.37213, time: 26.29591
+
+2021-06-25T14:11:01.353374
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.55456, final_score: 0.28768, time: 94.56469
+[RESULT]: Val. Epoch: 29, summary_loss: 0.79524, final_score: 0.34316, time: 26.83384
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:44.671880
+LR: 0.0005
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 26, summary_loss: 0.64559, final_score: 0.37878, time: 93.02643
+[RESULT]: Val. Epoch: 26, summary_loss: 0.69745, final_score: 0.39311, time: 30.02341
+
+2021-06-26T08:56:47.894137
+LR: 0.0005
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 27, summary_loss: 0.64036, final_score: 0.37391, time: 94.56875
+[RESULT]: Val. Epoch: 27, summary_loss: 0.68689, final_score: 0.39860, time: 26.96292
+
+2021-06-26T08:58:49.584281
+LR: 0.0005
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 28, summary_loss: 0.63674, final_score: 0.36991, time: 93.62800
+[RESULT]: Val. Epoch: 28, summary_loss: 0.66377, final_score: 0.39211, time: 26.96509
+
+2021-06-26T09:00:50.336175
+LR: 0.0005
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 29, summary_loss: 0.63222, final_score: 0.36378, time: 93.08542
+[RESULT]: Val. Epoch: 29, summary_loss: 1.71708, final_score: 0.42857, time: 26.47426
+
+2021-06-26T09:02:50.105704
+LR: 0.0005
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 30, summary_loss: 0.63165, final_score: 0.36478, time: 93.66819
+[RESULT]: Val. Epoch: 30, summary_loss: 0.75643, final_score: 0.39361, time: 26.79681
+
+2021-06-26T09:04:50.766781
+LR: 0.0005
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.62658, final_score: 0.35391, time: 92.02761
+[RESULT]: Val. Epoch: 31, summary_loss: 0.84837, final_score: 0.40410, time: 26.70724
+
+2021-06-26T09:06:49.699822
+LR: 0.0005
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.62521, final_score: 0.35266, time: 93.86496
+[RESULT]: Val. Epoch: 32, summary_loss: 0.65490, final_score: 0.37962, time: 26.53874
+
+2021-06-26T09:08:50.258513
+LR: 0.0005
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.62218, final_score: 0.35079, time: 94.21391
+[RESULT]: Val. Epoch: 33, summary_loss: 0.66931, final_score: 0.37762, time: 27.57215
+
+2021-06-26T09:10:52.200270
+LR: 0.0005
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.61631, final_score: 0.34379, time: 91.47123
+[RESULT]: Val. Epoch: 34, summary_loss: 0.73802, final_score: 0.40609, time: 26.35364
+
+2021-06-26T09:12:50.239325
+LR: 0.0005
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.61098, final_score: 0.33954, time: 91.96607
+[RESULT]: Val. Epoch: 35, summary_loss: 0.67565, final_score: 0.38312, time: 26.86524
+
+2021-06-26T09:14:49.251222
+LR: 0.0005
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.60892, final_score: 0.34216, time: 94.48896
+[RESULT]: Val. Epoch: 36, summary_loss: 0.84297, final_score: 0.40709, time: 26.97912
+
+2021-06-26T09:16:50.879261
+LR: 0.0005
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.60903, final_score: 0.33954, time: 93.31868
+[RESULT]: Val. Epoch: 37, summary_loss: 0.64019, final_score: 0.36064, time: 26.87423
+
+2021-06-26T09:18:51.447691
+LR: 0.0005
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.59783, final_score: 0.32579, time: 92.79666
+[RESULT]: Val. Epoch: 38, summary_loss: 0.66182, final_score: 0.35714, time: 26.94057
+
+2021-06-26T09:20:51.367521
+LR: 0.0005
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.59383, final_score: 0.31967, time: 92.92308
+[RESULT]: Val. Epoch: 39, summary_loss: 0.70992, final_score: 0.38761, time: 26.71907
+
+2021-06-26T09:22:51.180622
+LR: 0.0005
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.59179, final_score: 0.31542, time: 92.03749
+[RESULT]: Val. Epoch: 40, summary_loss: 0.88503, final_score: 0.40010, time: 26.18716
+
+2021-06-26T09:24:49.571360
+LR: 0.0005
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.58948, final_score: 0.32279, time: 94.01663
+[RESULT]: Val. Epoch: 41, summary_loss: 0.64298, final_score: 0.36913, time: 27.05980
+
+2021-06-26T09:26:50.810000
+LR: 0.0005
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.58476, final_score: 0.31392, time: 94.05662
+[RESULT]: Val. Epoch: 42, summary_loss: 0.70108, final_score: 0.38811, time: 26.79744
+
+2021-06-26T09:28:51.814706
+LR: 0.0005
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 43, summary_loss: 0.58009, final_score: 0.31105, time: 94.13987
+[RESULT]: Val. Epoch: 43, summary_loss: 0.66194, final_score: 0.36364, time: 26.85305
+
+2021-06-26T09:30:53.005198
+LR: 0.0005
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 44, summary_loss: 0.57278, final_score: 0.30392, time: 91.96618
+[RESULT]: Val. Epoch: 44, summary_loss: 1.03941, final_score: 0.42807, time: 26.71078
+
+2021-06-26T09:32:51.856356
+LR: 0.0005
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 45, summary_loss: 0.57624, final_score: 0.30367, time: 94.99889
+[RESULT]: Val. Epoch: 45, summary_loss: 0.66519, final_score: 0.36064, time: 26.65314
+
+2021-06-26T09:34:53.689457
+LR: 0.0005
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 46, summary_loss: 0.56568, final_score: 0.29930, time: 91.72576
+[RESULT]: Val. Epoch: 46, summary_loss: 0.65758, final_score: 0.36364, time: 26.75529
+
+2021-06-26T09:36:52.350376
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 47, summary_loss: 0.55916, final_score: 0.29618, time: 93.11897
+[RESULT]: Val. Epoch: 47, summary_loss: 1.09184, final_score: 0.40609, time: 27.24711
+
+2021-06-26T09:38:52.918659
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 48, summary_loss: 0.55684, final_score: 0.28755, time: 94.35508
+[RESULT]: Val. Epoch: 48, summary_loss: 0.83137, final_score: 0.36763, time: 26.57548
+
+2021-06-26T09:40:54.044496
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.53440, final_score: 0.27118, time: 94.76781
+[RESULT]: Val. Epoch: 49, summary_loss: 0.75302, final_score: 0.35015, time: 26.84535
+
+2021-06-26T09:42:55.821090
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.52159, final_score: 0.25981, time: 94.99221
+[RESULT]: Val. Epoch: 50, summary_loss: 0.82627, final_score: 0.35914, time: 27.14904
+
+2021-06-26T09:44:58.138874
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.50310, final_score: 0.24244, time: 95.45624
+[RESULT]: Val. Epoch: 51, summary_loss: 0.70181, final_score: 0.33916, time: 26.69992
+
+2021-06-26T09:47:00.473808
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.49786, final_score: 0.24119, time: 93.98369
+[RESULT]: Val. Epoch: 52, summary_loss: 0.77534, final_score: 0.34865, time: 26.73334
+
+2021-06-26T09:49:01.352903
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.48757, final_score: 0.23094, time: 92.90616
+[RESULT]: Val. Epoch: 53, summary_loss: 0.71028, final_score: 0.33367, time: 26.95148
+
+2021-06-26T09:51:01.377529
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.48487, final_score: 0.23169, time: 93.67087
+[RESULT]: Val. Epoch: 54, summary_loss: 0.70485, final_score: 0.32967, time: 26.67503
+
+2021-06-26T09:53:01.923974
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.47754, final_score: 0.22569, time: 91.50838
+[RESULT]: Val. Epoch: 55, summary_loss: 0.71120, final_score: 0.33816, time: 26.69049
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..33626b0126162cd8c6d13fd2f67f857d399fdffe
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-034epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-034epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..ea88090bbafde5ec83654df9d0f2cf8a9dbbb89e
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-034epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:fbfba365e72b4ce79a5e9c538879b42edb403bd1270253302015350ddbae932a
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-040epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-040epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..d7d7eb48984f56b22f617931eb65010d1f651692
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-040epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:ea2914164485467fbc33c0cf3fe8b1d5c1aaaee529df0f25e40837346c629061
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-047epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-047epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..8f12b700f0bea21c8b6bbbbac8ff063999b150dd
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/best-checkpoint-047epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6d2c25b6207143048397d2569f58b7911af0d7bc9dfc0d02ffa508d3e4e54f72
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..89b912b2c5aa88d9f6b592f74cf5acbcceff0cf1
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:a18d258043e00104117cb4bbcb7a25c97d4817a4d59af121373c96aaa881f861
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..abdb99e5aa8584d50a5bfd1fe3124e4de2ecfb79
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_6/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T16:58:10.589210
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.71468, final_score: 0.49688, time: 96.45045
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69411, final_score: 0.49001, time: 27.60300
+
+2021-06-25T17:00:15.022725
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69312, final_score: 0.48925, time: 91.54730
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69789, final_score: 0.48701, time: 26.62558
+
+2021-06-25T17:02:13.404121
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69267, final_score: 0.48250, time: 94.46304
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69854, final_score: 0.47952, time: 26.75848
+
+2021-06-25T17:04:14.786890
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69243, final_score: 0.47913, time: 91.39766
+[RESULT]: Val. Epoch: 3, summary_loss: 0.73541, final_score: 0.49251, time: 26.13572
+
+2021-06-25T17:06:12.479501
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.69149, final_score: 0.46888, time: 92.51854
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69615, final_score: 0.47952, time: 27.08503
+
+2021-06-25T17:08:12.248344
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69006, final_score: 0.46288, time: 92.03778
+[RESULT]: Val. Epoch: 5, summary_loss: 0.70388, final_score: 0.46703, time: 26.33616
+
+2021-06-25T17:10:10.804329
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.68892, final_score: 0.45414, time: 91.56247
+[RESULT]: Val. Epoch: 6, summary_loss: 0.72798, final_score: 0.48252, time: 26.66158
+
+2021-06-25T17:12:09.215559
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.68614, final_score: 0.45039, time: 93.66914
+[RESULT]: Val. Epoch: 7, summary_loss: 0.69650, final_score: 0.46054, time: 26.02269
+
+2021-06-25T17:14:09.123150
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.68013, final_score: 0.43464, time: 93.00147
+[RESULT]: Val. Epoch: 8, summary_loss: 1.21081, final_score: 0.47303, time: 26.12485
+
+2021-06-25T17:16:08.423066
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.67864, final_score: 0.43314, time: 91.82144
+[RESULT]: Val. Epoch: 9, summary_loss: 0.75112, final_score: 0.43606, time: 27.15334
+
+2021-06-25T17:18:07.589533
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.67396, final_score: 0.42089, time: 93.42614
+[RESULT]: Val. Epoch: 10, summary_loss: 0.79132, final_score: 0.47403, time: 26.28408
+
+2021-06-25T17:20:07.555655
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.66712, final_score: 0.40902, time: 92.55543
+[RESULT]: Val. Epoch: 11, summary_loss: 0.75529, final_score: 0.42108, time: 26.74637
+
+2021-06-25T17:22:07.021174
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.66316, final_score: 0.40365, time: 94.21768
+[RESULT]: Val. Epoch: 12, summary_loss: 0.67142, final_score: 0.39760, time: 26.16014
+
+2021-06-25T17:24:07.720272
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.65491, final_score: 0.38603, time: 92.75517
+[RESULT]: Val. Epoch: 13, summary_loss: 0.70984, final_score: 0.39760, time: 26.44517
+
+2021-06-25T17:26:07.094037
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.65121, final_score: 0.38415, time: 91.57588
+[RESULT]: Val. Epoch: 14, summary_loss: 1.31842, final_score: 0.46703, time: 26.58391
+
+2021-06-25T17:28:05.433593
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.64823, final_score: 0.37841, time: 91.94640
+[RESULT]: Val. Epoch: 15, summary_loss: 0.71559, final_score: 0.38312, time: 26.54493
+
+2021-06-25T17:30:04.125290
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.64107, final_score: 0.37428, time: 90.66460
+[RESULT]: Val. Epoch: 16, summary_loss: 0.68852, final_score: 0.38112, time: 26.60009
+
+2021-06-25T17:32:01.572828
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.64055, final_score: 0.36853, time: 92.97776
+[RESULT]: Val. Epoch: 17, summary_loss: 1.03854, final_score: 0.45455, time: 26.53291
+
+2021-06-25T17:34:01.246867
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.63785, final_score: 0.36991, time: 92.29761
+[RESULT]: Val. Epoch: 18, summary_loss: 0.69509, final_score: 0.39910, time: 26.14614
+
+2021-06-25T17:35:59.856852
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.63000, final_score: 0.35854, time: 92.47999
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69155, final_score: 0.39610, time: 26.96618
+
+2021-06-25T17:37:59.471911
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.62807, final_score: 0.35929, time: 92.62954
+[RESULT]: Val. Epoch: 20, summary_loss: 1.42760, final_score: 0.38212, time: 26.91643
+
+2021-06-25T17:39:59.204523
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.62008, final_score: 0.35204, time: 91.65493
+[RESULT]: Val. Epoch: 21, summary_loss: 0.68825, final_score: 0.37163, time: 26.85503
+
+2021-06-25T17:41:57.897451
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.61831, final_score: 0.34316, time: 90.92122
+[RESULT]: Val. Epoch: 22, summary_loss: 0.69517, final_score: 0.35165, time: 27.09367
+
+2021-06-25T17:43:56.078752
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.61205, final_score: 0.33954, time: 90.83309
+[RESULT]: Val. Epoch: 23, summary_loss: 0.89299, final_score: 0.37313, time: 26.83126
+
+2021-06-25T17:45:53.906793
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.58838, final_score: 0.32204, time: 93.05860
+[RESULT]: Val. Epoch: 24, summary_loss: 0.71669, final_score: 0.37912, time: 26.57467
+
+2021-06-25T17:47:53.707503
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.58419, final_score: 0.31442, time: 93.28963
+[RESULT]: Val. Epoch: 25, summary_loss: 0.69011, final_score: 0.35764, time: 26.45782
+
+2021-06-25T17:49:53.620807
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.56618, final_score: 0.29318, time: 91.87462
+[RESULT]: Val. Epoch: 26, summary_loss: 0.66529, final_score: 0.33966, time: 26.26889
+
+2021-06-25T17:51:52.087107
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.55818, final_score: 0.29030, time: 90.78031
+[RESULT]: Val. Epoch: 27, summary_loss: 0.84170, final_score: 0.35664, time: 26.47275
+
+2021-06-25T17:53:49.528018
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.55541, final_score: 0.29043, time: 91.98535
+[RESULT]: Val. Epoch: 28, summary_loss: 0.78065, final_score: 0.36314, time: 26.92619
+
+2021-06-25T17:55:48.630349
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.54269, final_score: 0.27718, time: 91.66981
+[RESULT]: Val. Epoch: 29, summary_loss: 0.67896, final_score: 0.33467, time: 26.23342
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:40.981141
+LR: 0.00025
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 28, summary_loss: 0.63341, final_score: 0.36953, time: 94.40691
+[RESULT]: Val. Epoch: 28, summary_loss: 0.66619, final_score: 0.38412, time: 32.33561
+
+2021-06-26T08:56:47.906535
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 29, summary_loss: 0.62819, final_score: 0.36366, time: 92.78656
+[RESULT]: Val. Epoch: 29, summary_loss: 0.65997, final_score: 0.39211, time: 27.06141
+
+2021-06-26T08:58:48.100458
+LR: 0.00025
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 30, summary_loss: 0.62284, final_score: 0.35841, time: 92.97034
+[RESULT]: Val. Epoch: 30, summary_loss: 0.66414, final_score: 0.38112, time: 27.22401
+
+2021-06-26T09:00:48.455906
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.62185, final_score: 0.35654, time: 93.77335
+[RESULT]: Val. Epoch: 31, summary_loss: 0.83361, final_score: 0.39960, time: 27.05791
+
+2021-06-26T09:02:49.467067
+LR: 0.00025
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.62061, final_score: 0.35291, time: 92.44691
+[RESULT]: Val. Epoch: 32, summary_loss: 0.68077, final_score: 0.37962, time: 26.84642
+
+2021-06-26T09:04:48.922500
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.61810, final_score: 0.35066, time: 94.60907
+[RESULT]: Val. Epoch: 33, summary_loss: 0.69798, final_score: 0.37862, time: 26.89001
+
+2021-06-26T09:06:50.579267
+LR: 0.00025
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.61250, final_score: 0.34004, time: 93.67855
+[RESULT]: Val. Epoch: 34, summary_loss: 0.65729, final_score: 0.37313, time: 26.71497
+
+2021-06-26T09:08:51.332655
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.60982, final_score: 0.34129, time: 94.19896
+[RESULT]: Val. Epoch: 35, summary_loss: 0.68305, final_score: 0.38062, time: 26.84441
+
+2021-06-26T09:10:52.549341
+LR: 0.00025
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.60379, final_score: 0.33554, time: 93.12524
+[RESULT]: Val. Epoch: 36, summary_loss: 0.70012, final_score: 0.38412, time: 27.00511
+
+2021-06-26T09:12:52.836425
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.60449, final_score: 0.33092, time: 92.77548
+[RESULT]: Val. Epoch: 37, summary_loss: 0.66946, final_score: 0.36763, time: 27.07823
+
+2021-06-26T09:14:52.849970
+LR: 0.00025
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.60220, final_score: 0.33329, time: 95.77374
+[RESULT]: Val. Epoch: 38, summary_loss: 0.76971, final_score: 0.37163, time: 26.86022
+
+2021-06-26T09:16:55.639141
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.59467, final_score: 0.32667, time: 92.22996
+[RESULT]: Val. Epoch: 39, summary_loss: 0.68541, final_score: 0.36613, time: 27.30371
+
+2021-06-26T09:18:55.346427
+LR: 0.00025
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.59692, final_score: 0.32442, time: 93.96221
+[RESULT]: Val. Epoch: 40, summary_loss: 0.65119, final_score: 0.35814, time: 27.20194
+
+2021-06-26T09:20:56.912247
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.59330, final_score: 0.32379, time: 94.00207
+[RESULT]: Val. Epoch: 41, summary_loss: 0.68343, final_score: 0.36813, time: 26.81554
+
+2021-06-26T09:22:57.892720
+LR: 0.00025
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.58544, final_score: 0.31442, time: 93.91226
+[RESULT]: Val. Epoch: 42, summary_loss: 0.78728, final_score: 0.38012, time: 26.33470
+
+2021-06-26T09:24:58.312352
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.58110, final_score: 0.30767, time: 93.13773
+[RESULT]: Val. Epoch: 43, summary_loss: 0.66946, final_score: 0.36364, time: 26.92105
+
+2021-06-26T09:26:58.547836
+LR: 0.00025
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.58153, final_score: 0.31017, time: 93.75330
+[RESULT]: Val. Epoch: 44, summary_loss: 0.66849, final_score: 0.38112, time: 26.79230
+
+2021-06-26T09:28:59.265680
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 45, summary_loss: 0.57653, final_score: 0.30742, time: 94.91473
+[RESULT]: Val. Epoch: 45, summary_loss: 0.67493, final_score: 0.34915, time: 27.00571
+
+2021-06-26T09:31:01.343170
+LR: 0.00025
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 46, summary_loss: 0.57596, final_score: 0.30742, time: 93.06475
+[RESULT]: Val. Epoch: 46, summary_loss: 1.01886, final_score: 0.38811, time: 26.98095
+
+2021-06-26T09:33:01.547332
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 47, summary_loss: 0.57603, final_score: 0.31392, time: 93.41572
+[RESULT]: Val. Epoch: 47, summary_loss: 0.64742, final_score: 0.35415, time: 26.58674
+
+2021-06-26T09:35:01.894143
+LR: 0.00025
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 48, summary_loss: 0.56178, final_score: 0.29430, time: 93.76755
+[RESULT]: Val. Epoch: 48, summary_loss: 0.69792, final_score: 0.36214, time: 26.91062
+
+2021-06-26T09:37:02.763220
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.56338, final_score: 0.29768, time: 92.16812
+[RESULT]: Val. Epoch: 49, summary_loss: 0.66908, final_score: 0.34715, time: 27.23368
+
+2021-06-26T09:39:02.349149
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.56485, final_score: 0.29480, time: 93.84362
+[RESULT]: Val. Epoch: 50, summary_loss: 0.65128, final_score: 0.35065, time: 26.86967
+
+2021-06-26T09:41:03.235921
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.55337, final_score: 0.28693, time: 94.19626
+[RESULT]: Val. Epoch: 51, summary_loss: 1.18951, final_score: 0.40210, time: 26.88552
+
+2021-06-26T09:43:04.480459
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.55618, final_score: 0.29218, time: 92.04545
+[RESULT]: Val. Epoch: 52, summary_loss: 0.69321, final_score: 0.35764, time: 27.30256
+
+2021-06-26T09:45:04.000064
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.53387, final_score: 0.27331, time: 92.91569
+[RESULT]: Val. Epoch: 53, summary_loss: 0.68705, final_score: 0.35065, time: 27.35629
+
+2021-06-26T09:47:04.436517
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.53327, final_score: 0.27031, time: 95.62069
+[RESULT]: Val. Epoch: 54, summary_loss: 0.68066, final_score: 0.34116, time: 26.71274
+
+2021-06-26T09:49:06.945269
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.52019, final_score: 0.25969, time: 92.04044
+[RESULT]: Val. Epoch: 55, summary_loss: 0.69182, final_score: 0.34166, time: 26.88256
+
+2021-06-26T09:51:06.041521
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.51110, final_score: 0.25406, time: 95.86147
+[RESULT]: Val. Epoch: 56, summary_loss: 0.69746, final_score: 0.33516, time: 26.87931
+
+2021-06-26T09:53:08.969243
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.50561, final_score: 0.24244, time: 92.96468
+[RESULT]: Val. Epoch: 57, summary_loss: 0.69948, final_score: 0.33417, time: 27.12991
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/accuracy.npy b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/accuracy.npy
new file mode 100644
index 0000000000000000000000000000000000000000..410ccd254b286670372655b607edf76a5a3242ad
Binary files /dev/null and b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/accuracy.npy differ
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-024epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-024epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..06a62b5873d273b96ea3722595828089e465fb69
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-024epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:df2be866b0591f121c69e42f2cd7fe93b37ef18a43c279e73d2c60ea97ae0003
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-027epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-027epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..fe813e5320368a56c98accc83638081a23742b7d
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-027epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8ad06c55dbd0fee48420fad1a88ebf6cec7057eb00558296f91d133a19c45f35
+size 69172502
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-039epoch.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-039epoch.bin
new file mode 100644
index 0000000000000000000000000000000000000000..2f6594489bc9d187c27b2ef0b74922c432c3171b
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/best-checkpoint-039epoch.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:6e8d7035a43b8a5c9ae73cf520f34ec1f44d35e2b8e144c18f5936577cf9c72c
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/last-checkpoint.bin b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/last-checkpoint.bin
new file mode 100644
index 0000000000000000000000000000000000000000..c647de17ddaff50e60ce174aafb15a00bacfe18a
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/last-checkpoint.bin
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:8d3949b6dea102f24a74aff34e5c001a550135247bc060dcb01cb23049633200
+size 69172566
diff --git a/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/log.txt b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/log.txt
new file mode 100644
index 0000000000000000000000000000000000000000..9d94111811f10b5c32c83532385c04701c7ef354
--- /dev/null
+++ b/experience_512_75_0_4_SGE_efnetB0s1_xunet_srnet/train_xunet_stego_7/log.txt
@@ -0,0 +1,362 @@
+Fitter prepared. Device is cuda:0
+
+2021-06-25T16:58:41.159124
+LR: 0.001
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 0, summary_loss: 0.73520, final_score: 0.49688, time: 95.21252
+[RESULT]: Val. Epoch: 0, summary_loss: 0.69315, final_score: 0.49101, time: 27.12609
+
+2021-06-25T17:00:43.920227
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 1, summary_loss: 0.69306, final_score: 0.49100, time: 93.04697
+[RESULT]: Val. Epoch: 1, summary_loss: 0.69304, final_score: 0.48352, time: 26.64544
+
+2021-06-25T17:02:43.949087
+LR: 0.001
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 2, summary_loss: 0.69271, final_score: 0.48300, time: 90.86807
+[RESULT]: Val. Epoch: 2, summary_loss: 0.69590, final_score: 0.48002, time: 27.40147
+
+2021-06-25T17:04:42.411822
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 3, summary_loss: 0.69167, final_score: 0.47688, time: 93.61025
+[RESULT]: Val. Epoch: 3, summary_loss: 0.73618, final_score: 0.46853, time: 26.43063
+
+2021-06-25T17:06:42.627046
+LR: 0.001
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 4, summary_loss: 0.68982, final_score: 0.46976, time: 93.59109
+[RESULT]: Val. Epoch: 4, summary_loss: 0.69721, final_score: 0.47852, time: 26.91850
+
+2021-06-25T17:08:43.293972
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 5, summary_loss: 0.69211, final_score: 0.47913, time: 92.84872
+[RESULT]: Val. Epoch: 5, summary_loss: 0.69176, final_score: 0.46004, time: 26.60076
+
+2021-06-25T17:10:43.094845
+LR: 0.001
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 6, summary_loss: 0.69125, final_score: 0.47401, time: 92.39806
+[RESULT]: Val. Epoch: 6, summary_loss: 0.69276, final_score: 0.45005, time: 26.23754
+
+2021-06-25T17:12:41.905266
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 7, summary_loss: 0.68825, final_score: 0.45989, time: 91.81298
+[RESULT]: Val. Epoch: 7, summary_loss: 0.77191, final_score: 0.46104, time: 26.86178
+
+2021-06-25T17:14:40.745731
+LR: 0.001
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 8, summary_loss: 0.68520, final_score: 0.44701, time: 91.37273
+[RESULT]: Val. Epoch: 8, summary_loss: 1.40044, final_score: 0.47053, time: 26.55374
+
+2021-06-25T17:16:38.841234
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 9, summary_loss: 0.68263, final_score: 0.44576, time: 91.86969
+[RESULT]: Val. Epoch: 9, summary_loss: 0.99067, final_score: 0.47103, time: 26.81184
+
+2021-06-25T17:18:37.692061
+LR: 0.001
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 10, summary_loss: 0.67917, final_score: 0.43589, time: 91.65219
+[RESULT]: Val. Epoch: 10, summary_loss: 0.70260, final_score: 0.47802, time: 27.13233
+
+2021-06-25T17:20:36.643088
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 11, summary_loss: 0.67505, final_score: 0.42889, time: 93.54137
+[RESULT]: Val. Epoch: 11, summary_loss: 0.73454, final_score: 0.42757, time: 26.61853
+
+2021-06-25T17:22:36.973233
+LR: 0.001
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 12, summary_loss: 0.66992, final_score: 0.41377, time: 91.00299
+[RESULT]: Val. Epoch: 12, summary_loss: 0.69335, final_score: 0.41908, time: 26.31430
+
+2021-06-25T17:24:34.459698
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 13, summary_loss: 0.66566, final_score: 0.40940, time: 93.23484
+[RESULT]: Val. Epoch: 13, summary_loss: 0.78469, final_score: 0.46154, time: 26.06900
+
+2021-06-25T17:26:33.924265
+LR: 0.001
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 14, summary_loss: 0.66177, final_score: 0.40352, time: 90.67511
+[RESULT]: Val. Epoch: 14, summary_loss: 0.67287, final_score: 0.40759, time: 26.63251
+
+2021-06-25T17:28:31.661393
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 15, summary_loss: 0.66162, final_score: 0.40202, time: 93.08614
+[RESULT]: Val. Epoch: 15, summary_loss: 0.72969, final_score: 0.44955, time: 25.93172
+
+2021-06-25T17:30:30.851750
+LR: 0.001
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 16, summary_loss: 0.65633, final_score: 0.39865, time: 92.52313
+[RESULT]: Val. Epoch: 16, summary_loss: 0.71627, final_score: 0.42208, time: 26.60461
+
+2021-06-25T17:32:30.160540
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 17, summary_loss: 0.65626, final_score: 0.39478, time: 92.12560
+[RESULT]: Val. Epoch: 17, summary_loss: 0.84604, final_score: 0.43307, time: 26.24162
+
+2021-06-25T17:34:28.689516
+LR: 0.001
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 18, summary_loss: 0.64979, final_score: 0.38740, time: 91.44420
+[RESULT]: Val. Epoch: 18, summary_loss: 0.66119, final_score: 0.39061, time: 26.56512
+
+2021-06-25T17:36:27.057355
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 19, summary_loss: 0.64730, final_score: 0.38378, time: 93.60628
+[RESULT]: Val. Epoch: 19, summary_loss: 0.69502, final_score: 0.42258, time: 26.06603
+
+2021-06-25T17:38:26.892070
+LR: 0.001
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 20, summary_loss: 0.64393, final_score: 0.38440, time: 92.94526
+[RESULT]: Val. Epoch: 20, summary_loss: 0.77769, final_score: 0.44256, time: 26.09689
+
+2021-06-25T17:40:26.108239
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 21, summary_loss: 0.63799, final_score: 0.37028, time: 93.53843
+[RESULT]: Val. Epoch: 21, summary_loss: 0.85309, final_score: 0.45305, time: 26.23910
+
+2021-06-25T17:42:26.044453
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 22, summary_loss: 0.63757, final_score: 0.37628, time: 95.50904
+[RESULT]: Val. Epoch: 22, summary_loss: 0.66926, final_score: 0.38262, time: 26.56160
+
+2021-06-25T17:44:28.285327
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 23, summary_loss: 0.63488, final_score: 0.36903, time: 94.39697
+[RESULT]: Val. Epoch: 23, summary_loss: 0.86658, final_score: 0.44655, time: 26.30430
+
+2021-06-25T17:46:29.156973
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 24, summary_loss: 0.63006, final_score: 0.36166, time: 90.13190
+[RESULT]: Val. Epoch: 24, summary_loss: 0.65088, final_score: 0.36913, time: 27.66184
+
+2021-06-25T17:48:27.310384
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 25, summary_loss: 0.62678, final_score: 0.35879, time: 93.78113
+[RESULT]: Val. Epoch: 25, summary_loss: 0.72419, final_score: 0.41508, time: 26.81470
+
+2021-06-25T17:50:28.069764
+LR: 0.001
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 26, summary_loss: 0.62798, final_score: 0.35841, time: 90.89512
+[RESULT]: Val. Epoch: 26, summary_loss: 0.77097, final_score: 0.45205, time: 26.52522
+
+2021-06-25T17:52:25.667718
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 27, summary_loss: 0.60423, final_score: 0.33379, time: 91.30385
+[RESULT]: Val. Epoch: 27, summary_loss: 0.64588, final_score: 0.35764, time: 26.04634
+
+2021-06-25T17:54:23.359401
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 28, summary_loss: 0.60060, final_score: 0.32904, time: 92.77143
+[RESULT]: Val. Epoch: 28, summary_loss: 0.64957, final_score: 0.35764, time: 26.72790
+
+2021-06-25T17:56:23.017958
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 29, summary_loss: 0.59548, final_score: 0.32554, time: 95.05364
+[RESULT]: Val. Epoch: 29, summary_loss: 0.66295, final_score: 0.37213, time: 28.72861
+Fitter prepared. Device is cuda:0
+
+2021-06-26T08:54:45.532813
+LR: 0.0005
+Emb_rate: 1.2
+[RESULT]: Train. Epoch: 28, summary_loss: 0.64595, final_score: 0.38553, time: 95.28391
+[RESULT]: Val. Epoch: 28, summary_loss: 0.67999, final_score: 0.39860, time: 26.93565
+
+2021-06-26T08:56:47.919486
+LR: 0.0005
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 29, summary_loss: 0.63727, final_score: 0.37303, time: 95.89335
+[RESULT]: Val. Epoch: 29, summary_loss: 0.66967, final_score: 0.40110, time: 26.19428
+
+2021-06-26T08:58:50.174621
+LR: 0.0005
+Emb_rate: 1.08
+[RESULT]: Train. Epoch: 30, summary_loss: 0.63507, final_score: 0.37141, time: 93.81126
+[RESULT]: Val. Epoch: 30, summary_loss: 0.66911, final_score: 0.40809, time: 26.86840
+
+2021-06-26T09:00:51.020626
+LR: 0.0005
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 31, summary_loss: 0.63206, final_score: 0.36966, time: 95.05546
+[RESULT]: Val. Epoch: 31, summary_loss: 0.67791, final_score: 0.40609, time: 26.16288
+
+2021-06-26T09:02:52.413821
+LR: 0.0005
+Emb_rate: 0.9720000000000001
+[RESULT]: Train. Epoch: 32, summary_loss: 0.62928, final_score: 0.36878, time: 95.48339
+[RESULT]: Val. Epoch: 32, summary_loss: 0.67715, final_score: 0.39510, time: 26.61435
+
+2021-06-26T09:04:54.673886
+LR: 0.0005
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 33, summary_loss: 0.62387, final_score: 0.36041, time: 94.93352
+[RESULT]: Val. Epoch: 33, summary_loss: 0.66178, final_score: 0.39610, time: 26.30066
+
+2021-06-26T09:06:56.082676
+LR: 0.0005
+Emb_rate: 0.8748000000000001
+[RESULT]: Train. Epoch: 34, summary_loss: 0.62552, final_score: 0.36328, time: 97.09656
+[RESULT]: Val. Epoch: 34, summary_loss: 0.67647, final_score: 0.39311, time: 26.37876
+
+2021-06-26T09:08:59.730977
+LR: 0.0005
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 35, summary_loss: 0.62016, final_score: 0.35279, time: 93.83566
+[RESULT]: Val. Epoch: 35, summary_loss: 0.67780, final_score: 0.41359, time: 26.49402
+
+2021-06-26T09:11:00.233999
+LR: 0.0005
+Emb_rate: 0.7873200000000001
+[RESULT]: Train. Epoch: 36, summary_loss: 0.61605, final_score: 0.34791, time: 95.89333
+[RESULT]: Val. Epoch: 36, summary_loss: 0.68132, final_score: 0.38911, time: 26.49422
+
+2021-06-26T09:13:02.784085
+LR: 0.0005
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 37, summary_loss: 0.61021, final_score: 0.34329, time: 93.52761
+[RESULT]: Val. Epoch: 37, summary_loss: 0.70939, final_score: 0.41858, time: 26.35232
+
+2021-06-26T09:15:02.829843
+LR: 0.0005
+Emb_rate: 0.7085880000000001
+[RESULT]: Train. Epoch: 38, summary_loss: 0.61163, final_score: 0.34629, time: 95.22022
+[RESULT]: Val. Epoch: 38, summary_loss: 0.69477, final_score: 0.40759, time: 26.42527
+
+2021-06-26T09:17:04.644833
+LR: 0.0005
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 39, summary_loss: 0.60489, final_score: 0.34216, time: 94.69657
+[RESULT]: Val. Epoch: 39, summary_loss: 0.65758, final_score: 0.37562, time: 26.67467
+
+2021-06-26T09:19:06.360491
+LR: 0.0005
+Emb_rate: 0.6377292000000001
+[RESULT]: Train. Epoch: 40, summary_loss: 0.60246, final_score: 0.33904, time: 94.23796
+[RESULT]: Val. Epoch: 40, summary_loss: 0.84930, final_score: 0.40909, time: 26.50383
+
+2021-06-26T09:21:07.273004
+LR: 0.0005
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 41, summary_loss: 0.59631, final_score: 0.33129, time: 93.60920
+[RESULT]: Val. Epoch: 41, summary_loss: 0.74863, final_score: 0.39161, time: 27.27740
+
+2021-06-26T09:23:08.322591
+LR: 0.0005
+Emb_rate: 0.5739562800000001
+[RESULT]: Train. Epoch: 42, summary_loss: 0.59315, final_score: 0.32692, time: 95.23748
+[RESULT]: Val. Epoch: 42, summary_loss: 0.79510, final_score: 0.40609, time: 26.64147
+
+2021-06-26T09:25:10.376095
+LR: 0.0005
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 43, summary_loss: 0.59229, final_score: 0.32029, time: 95.02045
+[RESULT]: Val. Epoch: 43, summary_loss: 0.76681, final_score: 0.39610, time: 26.31017
+
+2021-06-26T09:27:11.871989
+LR: 0.0005
+Emb_rate: 0.5165606520000001
+[RESULT]: Train. Epoch: 44, summary_loss: 0.58279, final_score: 0.31130, time: 95.47593
+[RESULT]: Val. Epoch: 44, summary_loss: 0.67924, final_score: 0.38312, time: 26.73752
+
+2021-06-26T09:29:14.264247
+LR: 0.0005
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 45, summary_loss: 0.58291, final_score: 0.31117, time: 95.57675
+[RESULT]: Val. Epoch: 45, summary_loss: 0.77155, final_score: 0.41359, time: 26.11944
+
+2021-06-26T09:31:16.122309
+LR: 0.0005
+Emb_rate: 0.46490458680000013
+[RESULT]: Train. Epoch: 46, summary_loss: 0.57644, final_score: 0.31230, time: 94.31031
+[RESULT]: Val. Epoch: 46, summary_loss: 0.71888, final_score: 0.38661, time: 26.38289
+
+2021-06-26T09:33:16.995200
+LR: 0.0005
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 47, summary_loss: 0.57141, final_score: 0.30080, time: 95.64550
+[RESULT]: Val. Epoch: 47, summary_loss: 0.87186, final_score: 0.38611, time: 26.39645
+
+2021-06-26T09:35:19.199814
+LR: 0.0005
+Emb_rate: 0.4184141281200001
+[RESULT]: Train. Epoch: 48, summary_loss: 0.56688, final_score: 0.30192, time: 93.92024
+[RESULT]: Val. Epoch: 48, summary_loss: 0.73663, final_score: 0.37962, time: 26.16328
+
+2021-06-26T09:37:19.451624
+LR: 0.0005
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 49, summary_loss: 0.55961, final_score: 0.29793, time: 94.07254
+[RESULT]: Val. Epoch: 49, summary_loss: 0.73642, final_score: 0.37962, time: 26.91921
+
+2021-06-26T09:39:20.622625
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 50, summary_loss: 0.53956, final_score: 0.27931, time: 95.08114
+[RESULT]: Val. Epoch: 50, summary_loss: 0.78716, final_score: 0.38511, time: 26.35582
+
+2021-06-26T09:41:22.242457
+LR: 0.00025
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 51, summary_loss: 0.52745, final_score: 0.26718, time: 97.89264
+[RESULT]: Val. Epoch: 51, summary_loss: 0.70853, final_score: 0.37313, time: 26.29456
+
+2021-06-26T09:43:26.598687
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 52, summary_loss: 0.51205, final_score: 0.25294, time: 92.25798
+[RESULT]: Val. Epoch: 52, summary_loss: 0.80418, final_score: 0.37363, time: 26.41416
+
+2021-06-26T09:45:25.465353
+LR: 0.000125
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 53, summary_loss: 0.49827, final_score: 0.24881, time: 93.49706
+[RESULT]: Val. Epoch: 53, summary_loss: 0.72076, final_score: 0.36014, time: 26.93145
+
+2021-06-26T09:47:26.061890
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 54, summary_loss: 0.48582, final_score: 0.23469, time: 96.33958
+[RESULT]: Val. Epoch: 54, summary_loss: 0.75542, final_score: 0.35864, time: 26.58252
+
+2021-06-26T09:49:29.154160
+LR: 6.25e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 55, summary_loss: 0.48271, final_score: 0.23357, time: 95.84486
+[RESULT]: Val. Epoch: 55, summary_loss: 0.74706, final_score: 0.35514, time: 26.33549
+
+2021-06-26T09:51:31.504518
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 56, summary_loss: 0.47893, final_score: 0.23319, time: 92.95418
+[RESULT]: Val. Epoch: 56, summary_loss: 0.74524, final_score: 0.35365, time: 26.25441
+
+2021-06-26T09:53:30.895555
+LR: 3.125e-05
+Emb_rate: 0.4
+[RESULT]: Train. Epoch: 57, summary_loss: 0.47454, final_score: 0.22669, time: 93.05884
+[RESULT]: Val. Epoch: 57, summary_loss: 0.74395, final_score: 0.35564, time: 26.54376