diff --git a/ml_rn.py b/ml_rn.py
index 37f4dfb6e8cb9a0ef2e9538565162cfaa11085c6..08198cbdf6132d00562c5770deed46abb62cd033 100644
--- a/ml_rn.py
+++ b/ml_rn.py
@@ -1,70 +1,73 @@
 import numpy as np
 import pandas as pd
+import time
 from sklearn.model_selection import train_test_split, GridSearchCV
-from sklearn.preprocessing import StandardScaler
+from sklearn.preprocessing import MinMaxScaler
 from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
-import time
 from sklearn.neural_network import MLPRegressor
 
 def load_and_describe_data(file_path):
     """
-    Charge un fichier CSV.
-    :param file_path: Chemin du fichier CSV
-    :return: DataFrame Pandas
+    Charge un fichier CSV et affiche les informations de base.
     """
     df = pd.read_csv(file_path)
-
-
+    print(df.info())
     return df
 
-df = load_and_describe_data('data_sup_0popularity.csv')
-print(df.info())
-
 def train_mlp(df):
-     # 1. Séparation des features et de la cible
+    start_time = time.time()  # ⏳ Timer
+
+    # 1️⃣ Séparation des features et de la cible
     X = df.drop(columns=["popularity", "id", "artists", "name", "release_date", "date_sortie", "duration_ms", "nom_artiste"])
-    y = df['popularity']
+    y = df["popularity"]
 
-    # 2. Séparation train/test
+    # 2️⃣ Split train/test
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
-    # 3. Normalisation des features
-    scaler = StandardScaler()
+    # 3️⃣ Normalisation des features
+    scaler = MinMaxScaler()
     X_train_scaled = scaler.fit_transform(X_train)
     X_test_scaled = scaler.transform(X_test)
 
-    # 4. Définition des hyperparamètres à tester
+    # 4️⃣ Définition des hyperparamètres
     param_grid = {
-        'hidden_layer_sizes': [(50,), (100,), (100, 50), (100, 100)],
-        'activation': ['relu', 'tanh'],
-        'solver': ['adam', 'sgd'],
-        'learning_rate_init': [0.001, 0.01, 0.1],
-        'max_iter': [500]
+        "hidden_layer_sizes": [(50,), (100,), (100, 50), (100, 100)],
+        "activation": ["relu", "tanh"],
+        "solver": ["adam", "sgd"],
+        "learning_rate_init": [0.001, 0.01, 0.1],
+        "max_iter": [500],
+        "early_stopping": [True]  # Arrête si la validation ne s'améliore pas
     }
 
-    # 5. Recherche des meilleurs hyperparamètres avec GridSearchCV
+    # 5️⃣ Recherche des meilleurs hyperparamètres
     mlp = MLPRegressor(random_state=42)
-    grid_search = GridSearchCV(mlp, param_grid, cv=3, scoring='r2', verbose=2)
+    grid_search = GridSearchCV(mlp, param_grid, cv=3, scoring="r2", verbose=2)
     grid_search.fit(X_train_scaled, y_train)
 
-    # 6. Affichage des meilleurs paramètres
-    print("Meilleurs paramètres :", grid_search.best_params_)
+    # 6️⃣ Affichage des meilleurs paramètres
+    best_params = grid_search.best_params_
+    print("\n✅ Meilleurs paramètres :", best_params)
 
-    # 7. Prédictions avec le meilleur modèle
+    # 7️⃣ Prédiction avec le meilleur modèle
     best_mlp = grid_search.best_estimator_
     y_pred = best_mlp.predict(X_test_scaled)
 
-    # 8. Évaluation du modèle
+    # 8️⃣ Évaluation du modèle
     mae = mean_absolute_error(y_test, y_pred)
     rmse = np.sqrt(mean_squared_error(y_test, y_pred))
     r2 = r2_score(y_test, y_pred)
 
-    print(f"📊 MLPRegressor Optimisé - MAE: {mae:.2f}, RMSE: {rmse:.2f}, R²: {r2:.3f}")
+    print(f"\n📊 MLPRegressor - MAE: {mae:.2f}, RMSE: {rmse:.2f}, R²: {r2:.3f}")
+
+    # 9️⃣ Ajout des prédictions au DataFrame
+    df.loc[X_test.index, "pred_mlp"] = y_pred
 
-    # 9. Ajout des prédictions au DataFrame original
-    df.loc[X_test.index, 'pred_mlp'] = y_pred
-    print(df.head(40))
+    # ⏳ Temps d'exécution
+    elapsed_time = time.time() - start_time
+    print(f"\n⏱️ Temps d'exécution : {elapsed_time:.2f} secondes")
 
     return df
 
-train_mlp(df)
+# 📂 Chargement et entraînement
+df = load_and_describe_data("data_sup_0popularity.csv")
+df = train_mlp(df)
diff --git a/model_rn.txt b/model_rn.txt
deleted file mode 100644
index 861ae8004af3cc49ac830d93a15e2f2040d16705..0000000000000000000000000000000000000000
--- a/model_rn.txt
+++ /dev/null
@@ -1,495 +0,0 @@
-nohup: ignoring input
-<class 'pandas.core.frame.DataFrame'>
-RangeIndex: 98159 entries, 0 to 98158
-Data columns (total 27 columns):
- #   Column                      Non-Null Count  Dtype  
----  ------                      --------------  -----  
- 0   id                          98159 non-null  object 
- 1   artists                     98159 non-null  object 
- 2   name                        98159 non-null  object 
- 3   year                        98159 non-null  int64  
- 4   acousticness                98159 non-null  float64
- 5   danceability                98159 non-null  float64
- 6   duration_ms                 98159 non-null  int64  
- 7   energy                      98159 non-null  float64
- 8   explicit                    98159 non-null  int64  
- 9   instrumentalness            98159 non-null  float64
- 10  key                         98159 non-null  int64  
- 11  liveness                    98159 non-null  float64
- 12  loudness                    98159 non-null  float64
- 13  mode                        98159 non-null  int64  
- 14  release_date                98159 non-null  object 
- 15  speechiness                 98159 non-null  float64
- 16  tempo                       98159 non-null  float64
- 17  valence                     98159 non-null  float64
- 18  popularity                  98159 non-null  int64  
- 19  date_sortie                 98159 non-null  object 
- 20  nom_artiste                 98159 non-null  object 
- 21  nb_caracteres_sans_espaces  98159 non-null  int64  
- 22  nb_artistes                 98159 non-null  int64  
- 23  featuring                   98159 non-null  int64  
- 24  duree_minute                98159 non-null  float64
- 25  categorie_annee             98159 non-null  int64  
- 26  categorie_tempo             98159 non-null  int64  
-dtypes: float64(10), int64(11), object(6)
-memory usage: 20.2+ MB
-None
-Fitting 3 folds for each of 48 candidates, totalling 144 fits
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.1min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.2min
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  17.4s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  17.1s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  16.3s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  21.4s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  18.5s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  23.3s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   7.2s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   5.2s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  11.2s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  10.8s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=   7.5s
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  10.8s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=  47.4s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=  47.7s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=  47.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.7min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.8min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.8min
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  46.5s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  48.7s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  33.3s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  47.7s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  37.4s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  30.2s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  10.5s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   9.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 1.1min
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  13.9s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  12.6s
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  10.1s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.1min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.1min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.6min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.2min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.5min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.4min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.4min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 2.8min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.7min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   4.7s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  18.3s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   3.8s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  17.5s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  24.4s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  23.9s
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=   3.7s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.5min
-[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=   3.6s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.7min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.7min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.8min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.3min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.2min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.1min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.1min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.2min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.7min
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  29.3s
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  22.4s
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  34.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  17.2s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  18.8s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  22.6s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  27.3s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  31.2s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  18.1s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  15.6s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  12.6s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=   8.8s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  11.4s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  14.0s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  11.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=  55.4s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=  55.2s
-[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=   1.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  48.8s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  25.3s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time=  53.5s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  31.3s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  45.3s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time=  37.0s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  32.3s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  15.0s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  25.6s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  15.6s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  12.9s
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  17.1s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.8min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.5min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.0min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.2min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.1min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  32.0s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  17.4s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  24.2s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  18.0s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  20.1s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time=   6.8s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.4min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.4min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time=   3.6s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.1min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.7min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.6min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.4min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.6min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.3min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  46.0s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time=  52.7s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 1.2min
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  13.7s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  11.2s
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time=  23.5s
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce
-  ret = umr_sum(arr, axis, dtype, out, keepdims, where=where)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square
-  return ((y_true - y_pred) ** 2).mean() / 2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul
-  ret = a @ b
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply
-  delta *= 1 - Z**2
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:528: FitFailedWarning: 
-21 fits failed out of a total of 144.
-The score on these train-test partitions for these parameters will be set to nan.
-If these failures are not expected, you can try to debug them by setting error_score='raise'.
-
-Below are more details about the failures:
---------------------------------------------------------------------------------
-21 fits failed with the following error:
-Traceback (most recent call last):
-  File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py", line 866, in _fit_and_score
-    estimator.fit(X_train, y_train, **fit_params)
-  File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/base.py", line 1389, in wrapper
-    return fit_method(estimator, *args, **kwargs)
-  File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 754, in fit
-    return self._fit(X, y, incremental=False)
-  File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 496, in _fit
-    raise ValueError(
-ValueError: Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed.
-
-  warnings.warn(some_fits_failed_message, FitFailedWarning)
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_search.py:1108: UserWarning: One or more of the test scores are non-finite: [ 0.54900442  0.55026229  0.55175494  0.54449637  0.54619006         nan
-  0.55486645  0.55397549  0.5576357          nan  0.54283811         nan
-  0.5408644   0.50266413  0.49902525  0.17836774  0.54044313 -0.00213426
-  0.51490498  0.44610184  0.47578625         nan  0.53347605         nan
-  0.55993497  0.5530103   0.55283927  0.5452355   0.52950521  0.20815397
-  0.55149549  0.54391725  0.5429399   0.53528469  0.53307444         nan
-  0.49646465  0.48566926  0.51478239  0.54206741  0.49009549         nan
-  0.48790796  0.40424641  0.4902751   0.53533079  0.48903065         nan]
-  warnings.warn(
-/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet.
-  warnings.warn(
-Meilleurs paramètres : {'activation': 'tanh', 'hidden_layer_sizes': (50,), 'learning_rate_init': 0.001, 'max_iter': 500, 'solver': 'adam'}
-📊 MLPRegressor Optimisé - MAE: 9.16, RMSE: 12.46, R²: 0.578
-                        id  ...   pred_mlp
-0   7pQSmQ0l7QdBeL9X6CEMbH  ...        NaN
-1   2LcJoQ5SDUZrC2qUjWMEdF  ...        NaN
-2   6RzHyUtRNARYyn2AIuoLnY  ...        NaN
-3   6Kd0I5es8911FZpYhFS053  ...        NaN
-4   0IhY390qx5QJEnRXpeuEwq  ...        NaN
-5   1e7M98usgS7tK89PoEbqpz  ...        NaN
-6   7mZwaEEaHSeTYC2hTAjUki  ...        NaN
-7   0uzPDHGV0ZAjk8wLlryt7C  ...        NaN
-8   45t91j2BnZBTBtechHEdEo  ...  38.985588
-9   0CIRYGtFan5C3t1udR9A2p  ...        NaN
-10  4qgBYQNjvnuwxp9a68LG0t  ...        NaN
-11  3PHtZBkUc9dDxnaVH9lpTd  ...        NaN
-12  0PFRTA04YOjj4VT3O6MpgP  ...        NaN
-13  1uRKT2LRANv4baowBWHfDS  ...        NaN
-14  6OgG8LnH5gjxlOmBrogYo5  ...        NaN
-15  3UT1XINeKNAmRyaCHWBOVt  ...        NaN
-16  1ckIrPqEU43EltNMg8HzlV  ...        NaN
-17  4ZHPfdvTgCDGIeP8fAUVpG  ...        NaN
-18  5U1cEuyrUubzj5gc5T7uND  ...        NaN
-19  0RbSPGMjoqjO0GjPFozPkY  ...        NaN
-20  0Cwl389eg6mvLxcaAbV24Z  ...        NaN
-21  0W18O5YKX34dnMqN8MQFfK  ...        NaN
-22  5hNX9VwbZXJ29NW79dDeDz  ...        NaN
-23  3RDMd9JiKdVik8zjGhZ0wJ  ...        NaN
-24  7MER2sjr6GgSohO2vpNO2g  ...        NaN
-25  7GDciQOihRs8nQFEFOrc5K  ...        NaN
-26  24ejNAm1vGCiaB9GBLos4n  ...        NaN
-27  1oXJHuq86np471uQGQjfqg  ...        NaN
-28  3jfdw2ubsW6gUXrf8MAggA  ...        NaN
-29  0awP7BRdUvnzBCaU9YOpiJ  ...        NaN
-30  3vsv5Rj6zpoIvzl8ciwIpd  ...        NaN
-31  15CxpYrIBCl3PX2sVdgDzw  ...        NaN
-32  6vAyOOwgDTH5LCLY2glRTl  ...        NaN
-33  7JZUD0GPmCKtY5XJWL0dJl  ...        NaN
-34  3Wqq9SNrWfdQWqQg4xeYLo  ...        NaN
-35  3ZgQhe1Sv7mnQjpVTJnOFp  ...        NaN
-36  6IEjcFyfMHwQbe26jLojUj  ...        NaN
-37  5jkjpSsMOfsxgdGScPZVq2  ...        NaN
-38  42alprYTLPWivGUUbuR4dD  ...        NaN
-39  7C8FT11joTPgBCsoDqG735  ...  30.940608
-
-[40 rows x 28 columns]