diff --git a/ml_rn.py b/ml_rn.py index 37f4dfb6e8cb9a0ef2e9538565162cfaa11085c6..08198cbdf6132d00562c5770deed46abb62cd033 100644 --- a/ml_rn.py +++ b/ml_rn.py @@ -1,70 +1,73 @@ import numpy as np import pandas as pd +import time from sklearn.model_selection import train_test_split, GridSearchCV -from sklearn.preprocessing import StandardScaler +from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score -import time from sklearn.neural_network import MLPRegressor def load_and_describe_data(file_path): """ - Charge un fichier CSV. - :param file_path: Chemin du fichier CSV - :return: DataFrame Pandas + Charge un fichier CSV et affiche les informations de base. """ df = pd.read_csv(file_path) - - + print(df.info()) return df -df = load_and_describe_data('data_sup_0popularity.csv') -print(df.info()) - def train_mlp(df): - # 1. Séparation des features et de la cible + start_time = time.time() # ⏳ Timer + + # 1️⃣ Séparation des features et de la cible X = df.drop(columns=["popularity", "id", "artists", "name", "release_date", "date_sortie", "duration_ms", "nom_artiste"]) - y = df['popularity'] + y = df["popularity"] - # 2. Séparation train/test + # 2️⃣ Split train/test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) - # 3. Normalisation des features - scaler = StandardScaler() + # 3️⃣ Normalisation des features + scaler = MinMaxScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) - # 4. Définition des hyperparamètres à tester + # 4️⃣ Définition des hyperparamètres param_grid = { - 'hidden_layer_sizes': [(50,), (100,), (100, 50), (100, 100)], - 'activation': ['relu', 'tanh'], - 'solver': ['adam', 'sgd'], - 'learning_rate_init': [0.001, 0.01, 0.1], - 'max_iter': [500] + "hidden_layer_sizes": [(50,), (100,), (100, 50), (100, 100)], + "activation": ["relu", "tanh"], + "solver": ["adam", "sgd"], + "learning_rate_init": [0.001, 0.01, 0.1], + "max_iter": [500], + "early_stopping": [True] # Arrête si la validation ne s'améliore pas } - # 5. Recherche des meilleurs hyperparamètres avec GridSearchCV + # 5️⃣ Recherche des meilleurs hyperparamètres mlp = MLPRegressor(random_state=42) - grid_search = GridSearchCV(mlp, param_grid, cv=3, scoring='r2', verbose=2) + grid_search = GridSearchCV(mlp, param_grid, cv=3, scoring="r2", verbose=2) grid_search.fit(X_train_scaled, y_train) - # 6. Affichage des meilleurs paramètres - print("Meilleurs paramètres :", grid_search.best_params_) + # 6️⃣ Affichage des meilleurs paramètres + best_params = grid_search.best_params_ + print("\n✅ Meilleurs paramètres :", best_params) - # 7. Prédictions avec le meilleur modèle + # 7️⃣ Prédiction avec le meilleur modèle best_mlp = grid_search.best_estimator_ y_pred = best_mlp.predict(X_test_scaled) - # 8. Évaluation du modèle + # 8️⃣ Évaluation du modèle mae = mean_absolute_error(y_test, y_pred) rmse = np.sqrt(mean_squared_error(y_test, y_pred)) r2 = r2_score(y_test, y_pred) - print(f"📊 MLPRegressor Optimisé - MAE: {mae:.2f}, RMSE: {rmse:.2f}, R²: {r2:.3f}") + print(f"\n📊 MLPRegressor - MAE: {mae:.2f}, RMSE: {rmse:.2f}, R²: {r2:.3f}") + + # 9️⃣ Ajout des prédictions au DataFrame + df.loc[X_test.index, "pred_mlp"] = y_pred - # 9. Ajout des prédictions au DataFrame original - df.loc[X_test.index, 'pred_mlp'] = y_pred - print(df.head(40)) + # ⏳ Temps d'exécution + elapsed_time = time.time() - start_time + print(f"\n⏱️ Temps d'exécution : {elapsed_time:.2f} secondes") return df -train_mlp(df) +# 📂 Chargement et entraînement +df = load_and_describe_data("data_sup_0popularity.csv") +df = train_mlp(df) diff --git a/model_rn.txt b/model_rn.txt deleted file mode 100644 index 861ae8004af3cc49ac830d93a15e2f2040d16705..0000000000000000000000000000000000000000 --- a/model_rn.txt +++ /dev/null @@ -1,495 +0,0 @@ -nohup: ignoring input -<class 'pandas.core.frame.DataFrame'> -RangeIndex: 98159 entries, 0 to 98158 -Data columns (total 27 columns): - # Column Non-Null Count Dtype ---- ------ -------------- ----- - 0 id 98159 non-null object - 1 artists 98159 non-null object - 2 name 98159 non-null object - 3 year 98159 non-null int64 - 4 acousticness 98159 non-null float64 - 5 danceability 98159 non-null float64 - 6 duration_ms 98159 non-null int64 - 7 energy 98159 non-null float64 - 8 explicit 98159 non-null int64 - 9 instrumentalness 98159 non-null float64 - 10 key 98159 non-null int64 - 11 liveness 98159 non-null float64 - 12 loudness 98159 non-null float64 - 13 mode 98159 non-null int64 - 14 release_date 98159 non-null object - 15 speechiness 98159 non-null float64 - 16 tempo 98159 non-null float64 - 17 valence 98159 non-null float64 - 18 popularity 98159 non-null int64 - 19 date_sortie 98159 non-null object - 20 nom_artiste 98159 non-null object - 21 nb_caracteres_sans_espaces 98159 non-null int64 - 22 nb_artistes 98159 non-null int64 - 23 featuring 98159 non-null int64 - 24 duree_minute 98159 non-null float64 - 25 categorie_annee 98159 non-null int64 - 26 categorie_tempo 98159 non-null int64 -dtypes: float64(10), int64(11), object(6) -memory usage: 20.2+ MB -None -Fitting 3 folds for each of 48 candidates, totalling 144 fits -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.1min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.2min -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 17.4s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 17.1s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 16.3s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 21.4s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 18.5s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 23.3s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 7.2s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 5.2s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 11.2s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 10.8s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 7.5s -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 10.8s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 47.4s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 47.7s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 47.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.7min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.8min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.8min -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 46.5s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 48.7s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 33.3s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 47.7s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 37.4s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 30.2s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 10.5s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 9.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 1.1min -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 13.9s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 12.6s -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 10.1s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.1min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.1min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.6min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.2min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.5min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.4min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.4min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 2.8min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.7min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 4.7s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 18.3s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 3.8s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 17.5s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 24.4s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 23.9s -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.7s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.5min -[CV] END activation=relu, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.6s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.7min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 4.7min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.8min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.3min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.2min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.1min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.1min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 4.2min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 2.7min -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 29.3s -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 22.4s -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 34.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: invalid value encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=relu, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.7min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.0min -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 17.2s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 18.8s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 22.6s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 27.3s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 31.2s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 18.1s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 15.6s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 12.6s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 8.8s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 11.4s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 14.0s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 11.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 55.4s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 55.2s -[CV] END activation=tanh, hidden_layer_sizes=(50,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 1.4min -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 48.8s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 25.3s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 53.5s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 31.3s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 45.3s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 37.0s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 32.3s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 15.0s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 25.6s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 15.6s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 12.9s -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 17.1s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100,), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 1.3min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.8min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 2.6min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.5min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 1.7min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.0min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.2min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.1min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 32.0s -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 17.4s -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 24.2s -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 18.0s -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 20.1s -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 6.8s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.4min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 2.4min -[CV] END activation=tanh, hidden_layer_sizes=(100, 50), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.6s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=adam; total time= 3.5min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 3.1min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.7min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.001, max_iter=500, solver=sgd; total time= 2.6min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.4min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.6min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=adam; total time= 1.3min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 46.0s -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 52.7s -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.01, max_iter=500, solver=sgd; total time= 1.2min -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 13.7s -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 11.2s -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=adam; total time= 23.5s -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/numpy/_core/_methods.py:135: RuntimeWarning: overflow encountered in reduce - ret = umr_sum(arr, axis, dtype, out, keepdims, where=where) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:172: RuntimeWarning: overflow encountered in square - return ((y_true - y_pred) ** 2).mean() / 2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/utils/extmath.py:203: RuntimeWarning: overflow encountered in matmul - ret = a @ b -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_base.py:127: RuntimeWarning: invalid value encountered in multiply - delta *= 1 - Z**2 -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -[CV] END activation=tanh, hidden_layer_sizes=(100, 100), learning_rate_init=0.1, max_iter=500, solver=sgd; total time= 3.0min -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py:528: FitFailedWarning: -21 fits failed out of a total of 144. -The score on these train-test partitions for these parameters will be set to nan. -If these failures are not expected, you can try to debug them by setting error_score='raise'. - -Below are more details about the failures: --------------------------------------------------------------------------------- -21 fits failed with the following error: -Traceback (most recent call last): - File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_validation.py", line 866, in _fit_and_score - estimator.fit(X_train, y_train, **fit_params) - File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/base.py", line 1389, in wrapper - return fit_method(estimator, *args, **kwargs) - File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 754, in fit - return self._fit(X, y, incremental=False) - File "/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py", line 496, in _fit - raise ValueError( -ValueError: Solver produced non-finite parameter weights. The input data may contain large values and need to be preprocessed. - - warnings.warn(some_fits_failed_message, FitFailedWarning) -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/model_selection/_search.py:1108: UserWarning: One or more of the test scores are non-finite: [ 0.54900442 0.55026229 0.55175494 0.54449637 0.54619006 nan - 0.55486645 0.55397549 0.5576357 nan 0.54283811 nan - 0.5408644 0.50266413 0.49902525 0.17836774 0.54044313 -0.00213426 - 0.51490498 0.44610184 0.47578625 nan 0.53347605 nan - 0.55993497 0.5530103 0.55283927 0.5452355 0.52950521 0.20815397 - 0.55149549 0.54391725 0.5429399 0.53528469 0.53307444 nan - 0.49646465 0.48566926 0.51478239 0.54206741 0.49009549 nan - 0.48790796 0.40424641 0.4902751 0.53533079 0.48903065 nan] - warnings.warn( -/home/mohamed.sebabti/.local/lib/python3.10/site-packages/sklearn/neural_network/_multilayer_perceptron.py:691: ConvergenceWarning: Stochastic Optimizer: Maximum iterations (500) reached and the optimization hasn't converged yet. - warnings.warn( -Meilleurs paramètres : {'activation': 'tanh', 'hidden_layer_sizes': (50,), 'learning_rate_init': 0.001, 'max_iter': 500, 'solver': 'adam'} -📊 MLPRegressor Optimisé - MAE: 9.16, RMSE: 12.46, R²: 0.578 - id ... pred_mlp -0 7pQSmQ0l7QdBeL9X6CEMbH ... NaN -1 2LcJoQ5SDUZrC2qUjWMEdF ... NaN -2 6RzHyUtRNARYyn2AIuoLnY ... NaN -3 6Kd0I5es8911FZpYhFS053 ... NaN -4 0IhY390qx5QJEnRXpeuEwq ... NaN -5 1e7M98usgS7tK89PoEbqpz ... NaN -6 7mZwaEEaHSeTYC2hTAjUki ... NaN -7 0uzPDHGV0ZAjk8wLlryt7C ... NaN -8 45t91j2BnZBTBtechHEdEo ... 38.985588 -9 0CIRYGtFan5C3t1udR9A2p ... NaN -10 4qgBYQNjvnuwxp9a68LG0t ... NaN -11 3PHtZBkUc9dDxnaVH9lpTd ... NaN -12 0PFRTA04YOjj4VT3O6MpgP ... NaN -13 1uRKT2LRANv4baowBWHfDS ... NaN -14 6OgG8LnH5gjxlOmBrogYo5 ... NaN -15 3UT1XINeKNAmRyaCHWBOVt ... NaN -16 1ckIrPqEU43EltNMg8HzlV ... NaN -17 4ZHPfdvTgCDGIeP8fAUVpG ... NaN -18 5U1cEuyrUubzj5gc5T7uND ... NaN -19 0RbSPGMjoqjO0GjPFozPkY ... NaN -20 0Cwl389eg6mvLxcaAbV24Z ... NaN -21 0W18O5YKX34dnMqN8MQFfK ... NaN -22 5hNX9VwbZXJ29NW79dDeDz ... NaN -23 3RDMd9JiKdVik8zjGhZ0wJ ... NaN -24 7MER2sjr6GgSohO2vpNO2g ... NaN -25 7GDciQOihRs8nQFEFOrc5K ... NaN -26 24ejNAm1vGCiaB9GBLos4n ... NaN -27 1oXJHuq86np471uQGQjfqg ... NaN -28 3jfdw2ubsW6gUXrf8MAggA ... NaN -29 0awP7BRdUvnzBCaU9YOpiJ ... NaN -30 3vsv5Rj6zpoIvzl8ciwIpd ... NaN -31 15CxpYrIBCl3PX2sVdgDzw ... NaN -32 6vAyOOwgDTH5LCLY2glRTl ... NaN -33 7JZUD0GPmCKtY5XJWL0dJl ... NaN -34 3Wqq9SNrWfdQWqQg4xeYLo ... NaN -35 3ZgQhe1Sv7mnQjpVTJnOFp ... NaN -36 6IEjcFyfMHwQbe26jLojUj ... NaN -37 5jkjpSsMOfsxgdGScPZVq2 ... NaN -38 42alprYTLPWivGUUbuR4dD ... NaN -39 7C8FT11joTPgBCsoDqG735 ... 30.940608 - -[40 rows x 28 columns]