From 74df17090b6ef69eec6861138b1cee8949b21c69 Mon Sep 17 00:00:00 2001 From: Selim Lakhdar <selim.lakhdar@gmail.com> Date: Mon, 21 Feb 2022 19:17:02 +0100 Subject: [PATCH] yolo --- src/yolov5/.dockerignore | 222 ++++ src/yolov5/.gitattributes | 2 + src/yolov5/.github/FUNDING.yml | 5 + .../.github/ISSUE_TEMPLATE/bug-report.yml | 85 ++ src/yolov5/.github/ISSUE_TEMPLATE/config.yml | 8 + .../ISSUE_TEMPLATE/feature-request.yml | 50 + .../.github/ISSUE_TEMPLATE/question.yml | 33 + src/yolov5/.github/PULL_REQUEST_TEMPLATE.md | 7 + src/yolov5/.github/dependabot.yml | 23 + src/yolov5/.github/workflows/ci-testing.yml | 93 ++ .../.github/workflows/codeql-analysis.yml | 54 + src/yolov5/.github/workflows/greetings.yml | 59 + src/yolov5/.github/workflows/rebase.yml | 21 + src/yolov5/.github/workflows/stale.yml | 38 + src/yolov5/.gitignore | 256 ++++ src/yolov5/.pre-commit-config.yaml | 66 + src/yolov5/CONTRIBUTING.md | 94 ++ src/yolov5/Dockerfile | 64 + src/yolov5/LICENSE | 674 ++++++++++ src/yolov5/README.md | 304 +++++ src/yolov5/data/Argoverse.yaml | 67 + src/yolov5/data/GlobalWheat2020.yaml | 53 + src/yolov5/data/Objects365.yaml | 112 ++ src/yolov5/data/SKU-110K.yaml | 52 + src/yolov5/data/VOC.yaml | 80 ++ src/yolov5/data/VisDrone.yaml | 61 + src/yolov5/data/coco.yaml | 44 + src/yolov5/data/coco128.yaml | 30 + src/yolov5/data/hyps/hyp.finetune.yaml | 39 + .../data/hyps/hyp.finetune_objects365.yaml | 31 + src/yolov5/data/hyps/hyp.scratch-high.yaml | 34 + src/yolov5/data/hyps/hyp.scratch-low.yaml | 34 + src/yolov5/data/hyps/hyp.scratch-med.yaml | 34 + src/yolov5/data/hyps/hyp.scratch.yaml | 34 + src/yolov5/data/images/bus.jpg | Bin 0 -> 487438 bytes src/yolov5/data/images/zidane.jpg | Bin 0 -> 168949 bytes src/yolov5/data/scripts/download_weights.sh | 20 + src/yolov5/data/scripts/get_coco.sh | 27 + src/yolov5/data/scripts/get_coco128.sh | 17 + src/yolov5/data/xView.yaml | 102 ++ src/yolov5/detect.py | 257 ++++ src/yolov5/export.py | 559 +++++++++ src/yolov5/hubconf.py | 143 +++ src/yolov5/models/__init__.py | 0 src/yolov5/models/common.py | 677 ++++++++++ src/yolov5/models/experimental.py | 120 ++ src/yolov5/models/hub/anchors.yaml | 59 + src/yolov5/models/hub/yolov3-spp.yaml | 51 + src/yolov5/models/hub/yolov3-tiny.yaml | 41 + src/yolov5/models/hub/yolov3.yaml | 51 + src/yolov5/models/hub/yolov5-bifpn.yaml | 48 + src/yolov5/models/hub/yolov5-fpn.yaml | 42 + src/yolov5/models/hub/yolov5-p2.yaml | 54 + src/yolov5/models/hub/yolov5-p34.yaml | 41 + src/yolov5/models/hub/yolov5-p6.yaml | 56 + src/yolov5/models/hub/yolov5-p7.yaml | 67 + src/yolov5/models/hub/yolov5-panet.yaml | 48 + src/yolov5/models/hub/yolov5l6.yaml | 60 + src/yolov5/models/hub/yolov5m6.yaml | 60 + src/yolov5/models/hub/yolov5n6.yaml | 60 + src/yolov5/models/hub/yolov5s-ghost.yaml | 48 + .../models/hub/yolov5s-transformer.yaml | 48 + src/yolov5/models/hub/yolov5s6.yaml | 60 + src/yolov5/models/hub/yolov5x6.yaml | 60 + src/yolov5/models/tf.py | 464 +++++++ src/yolov5/models/yolo.py | 329 +++++ src/yolov5/models/yolov5l.yaml | 48 + src/yolov5/models/yolov5m.yaml | 48 + src/yolov5/models/yolov5n.yaml | 48 + src/yolov5/models/yolov5s.yaml | 48 + src/yolov5/models/yolov5x.yaml | 48 + src/yolov5/requirements.txt | 37 + src/yolov5/setup.cfg | 45 + src/yolov5/train.py | 643 ++++++++++ src/yolov5/tutorial.ipynb | 1102 +++++++++++++++++ src/yolov5/utils/__init__.py | 37 + src/yolov5/utils/activations.py | 101 ++ src/yolov5/utils/augmentations.py | 277 +++++ src/yolov5/utils/autoanchor.py | 165 +++ src/yolov5/utils/autobatch.py | 57 + src/yolov5/utils/aws/__init__.py | 0 src/yolov5/utils/aws/mime.sh | 26 + src/yolov5/utils/aws/resume.py | 40 + src/yolov5/utils/aws/userdata.sh | 27 + src/yolov5/utils/benchmarks.py | 92 ++ src/yolov5/utils/callbacks.py | 78 ++ src/yolov5/utils/datasets.py | 1037 ++++++++++++++++ src/yolov5/utils/downloads.py | 153 +++ src/yolov5/utils/flask_rest_api/README.md | 73 ++ .../utils/flask_rest_api/example_request.py | 13 + src/yolov5/utils/flask_rest_api/restapi.py | 37 + src/yolov5/utils/general.py | 880 +++++++++++++ src/yolov5/utils/google_app_engine/Dockerfile | 25 + .../additional_requirements.txt | 4 + src/yolov5/utils/google_app_engine/app.yaml | 14 + src/yolov5/utils/loggers/__init__.py | 168 +++ src/yolov5/utils/loggers/wandb/README.md | 152 +++ src/yolov5/utils/loggers/wandb/__init__.py | 0 src/yolov5/utils/loggers/wandb/log_dataset.py | 27 + src/yolov5/utils/loggers/wandb/sweep.py | 41 + src/yolov5/utils/loggers/wandb/sweep.yaml | 143 +++ src/yolov5/utils/loggers/wandb/wandb_utils.py | 562 +++++++++ src/yolov5/utils/loss.py | 222 ++++ src/yolov5/utils/metrics.py | 342 +++++ src/yolov5/utils/plots.py | 471 +++++++ src/yolov5/utils/torch_utils.py | 329 +++++ src/yolov5/val.py | 383 ++++++ 107 files changed, 14575 insertions(+) create mode 100644 src/yolov5/.dockerignore create mode 100644 src/yolov5/.gitattributes create mode 100644 src/yolov5/.github/FUNDING.yml create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/config.yml create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/question.yml create mode 100644 src/yolov5/.github/PULL_REQUEST_TEMPLATE.md create mode 100644 src/yolov5/.github/dependabot.yml create mode 100644 src/yolov5/.github/workflows/ci-testing.yml create mode 100644 src/yolov5/.github/workflows/codeql-analysis.yml create mode 100644 src/yolov5/.github/workflows/greetings.yml create mode 100644 src/yolov5/.github/workflows/rebase.yml create mode 100644 src/yolov5/.github/workflows/stale.yml create mode 100755 src/yolov5/.gitignore create mode 100644 src/yolov5/.pre-commit-config.yaml create mode 100644 src/yolov5/CONTRIBUTING.md create mode 100644 src/yolov5/Dockerfile create mode 100644 src/yolov5/LICENSE create mode 100644 src/yolov5/README.md create mode 100644 src/yolov5/data/Argoverse.yaml create mode 100644 src/yolov5/data/GlobalWheat2020.yaml create mode 100644 src/yolov5/data/Objects365.yaml create mode 100644 src/yolov5/data/SKU-110K.yaml create mode 100644 src/yolov5/data/VOC.yaml create mode 100644 src/yolov5/data/VisDrone.yaml create mode 100644 src/yolov5/data/coco.yaml create mode 100644 src/yolov5/data/coco128.yaml create mode 100644 src/yolov5/data/hyps/hyp.finetune.yaml create mode 100644 src/yolov5/data/hyps/hyp.finetune_objects365.yaml create mode 100644 src/yolov5/data/hyps/hyp.scratch-high.yaml create mode 100644 src/yolov5/data/hyps/hyp.scratch-low.yaml create mode 100644 src/yolov5/data/hyps/hyp.scratch-med.yaml create mode 100644 src/yolov5/data/hyps/hyp.scratch.yaml create mode 100644 src/yolov5/data/images/bus.jpg create mode 100644 src/yolov5/data/images/zidane.jpg create mode 100755 src/yolov5/data/scripts/download_weights.sh create mode 100755 src/yolov5/data/scripts/get_coco.sh create mode 100644 src/yolov5/data/scripts/get_coco128.sh create mode 100644 src/yolov5/data/xView.yaml create mode 100644 src/yolov5/detect.py create mode 100644 src/yolov5/export.py create mode 100644 src/yolov5/hubconf.py create mode 100644 src/yolov5/models/__init__.py create mode 100644 src/yolov5/models/common.py create mode 100644 src/yolov5/models/experimental.py create mode 100644 src/yolov5/models/hub/anchors.yaml create mode 100644 src/yolov5/models/hub/yolov3-spp.yaml create mode 100644 src/yolov5/models/hub/yolov3-tiny.yaml create mode 100644 src/yolov5/models/hub/yolov3.yaml create mode 100644 src/yolov5/models/hub/yolov5-bifpn.yaml create mode 100644 src/yolov5/models/hub/yolov5-fpn.yaml create mode 100644 src/yolov5/models/hub/yolov5-p2.yaml create mode 100644 src/yolov5/models/hub/yolov5-p34.yaml create mode 100644 src/yolov5/models/hub/yolov5-p6.yaml create mode 100644 src/yolov5/models/hub/yolov5-p7.yaml create mode 100644 src/yolov5/models/hub/yolov5-panet.yaml create mode 100644 src/yolov5/models/hub/yolov5l6.yaml create mode 100644 src/yolov5/models/hub/yolov5m6.yaml create mode 100644 src/yolov5/models/hub/yolov5n6.yaml create mode 100644 src/yolov5/models/hub/yolov5s-ghost.yaml create mode 100644 src/yolov5/models/hub/yolov5s-transformer.yaml create mode 100644 src/yolov5/models/hub/yolov5s6.yaml create mode 100644 src/yolov5/models/hub/yolov5x6.yaml create mode 100644 src/yolov5/models/tf.py create mode 100644 src/yolov5/models/yolo.py create mode 100644 src/yolov5/models/yolov5l.yaml create mode 100644 src/yolov5/models/yolov5m.yaml create mode 100644 src/yolov5/models/yolov5n.yaml create mode 100644 src/yolov5/models/yolov5s.yaml create mode 100644 src/yolov5/models/yolov5x.yaml create mode 100755 src/yolov5/requirements.txt create mode 100644 src/yolov5/setup.cfg create mode 100644 src/yolov5/train.py create mode 100644 src/yolov5/tutorial.ipynb create mode 100644 src/yolov5/utils/__init__.py create mode 100644 src/yolov5/utils/activations.py create mode 100644 src/yolov5/utils/augmentations.py create mode 100644 src/yolov5/utils/autoanchor.py create mode 100644 src/yolov5/utils/autobatch.py create mode 100644 src/yolov5/utils/aws/__init__.py create mode 100644 src/yolov5/utils/aws/mime.sh create mode 100644 src/yolov5/utils/aws/resume.py create mode 100644 src/yolov5/utils/aws/userdata.sh create mode 100644 src/yolov5/utils/benchmarks.py create mode 100644 src/yolov5/utils/callbacks.py create mode 100755 src/yolov5/utils/datasets.py create mode 100644 src/yolov5/utils/downloads.py create mode 100644 src/yolov5/utils/flask_rest_api/README.md create mode 100644 src/yolov5/utils/flask_rest_api/example_request.py create mode 100644 src/yolov5/utils/flask_rest_api/restapi.py create mode 100755 src/yolov5/utils/general.py create mode 100644 src/yolov5/utils/google_app_engine/Dockerfile create mode 100644 src/yolov5/utils/google_app_engine/additional_requirements.txt create mode 100644 src/yolov5/utils/google_app_engine/app.yaml create mode 100644 src/yolov5/utils/loggers/__init__.py create mode 100644 src/yolov5/utils/loggers/wandb/README.md create mode 100644 src/yolov5/utils/loggers/wandb/__init__.py create mode 100644 src/yolov5/utils/loggers/wandb/log_dataset.py create mode 100644 src/yolov5/utils/loggers/wandb/sweep.py create mode 100644 src/yolov5/utils/loggers/wandb/sweep.yaml create mode 100644 src/yolov5/utils/loggers/wandb/wandb_utils.py create mode 100644 src/yolov5/utils/loss.py create mode 100644 src/yolov5/utils/metrics.py create mode 100644 src/yolov5/utils/plots.py create mode 100644 src/yolov5/utils/torch_utils.py create mode 100644 src/yolov5/val.py diff --git a/src/yolov5/.dockerignore b/src/yolov5/.dockerignore new file mode 100644 index 00000000..af51ccc3 --- /dev/null +++ b/src/yolov5/.dockerignore @@ -0,0 +1,222 @@ +# Repo-specific DockerIgnore ------------------------------------------------------------------------------------------- +#.git +.cache +.idea +runs +output +coco +storage.googleapis.com + +data/samples/* +**/results*.csv +*.jpg + +# Neural Network weights ----------------------------------------------------------------------------------------------- +**/*.pt +**/*.pth +**/*.onnx +**/*.engine +**/*.mlmodel +**/*.torchscript +**/*.torchscript.pt +**/*.tflite +**/*.h5 +**/*.pb +*_saved_model/ +*_web_model/ +*_openvino_model/ + +# Below Copied From .gitignore ----------------------------------------------------------------------------------------- +# Below Copied From .gitignore ----------------------------------------------------------------------------------------- + + +# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +wandb/ +.installed.cfg +*.egg + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# dotenv +.env + +# virtualenv +.venv* +venv*/ +ENV*/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + + +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- + +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon +Icon? + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + + +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff: +.idea/* +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/dictionaries +.html # Bokeh Plots +.pg # TensorFlow Frozen Graphs +.avi # videos + +# Sensitive or high-churn files: +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml + +# Gradle: +.idea/**/gradle.xml +.idea/**/libraries + +# CMake +cmake-build-debug/ +cmake-build-release/ + +# Mongo Explorer plugin: +.idea/**/mongoSettings.xml + +## File-based project format: +*.iws + +## Plugin-specific files: + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties diff --git a/src/yolov5/.gitattributes b/src/yolov5/.gitattributes new file mode 100644 index 00000000..dad4239e --- /dev/null +++ b/src/yolov5/.gitattributes @@ -0,0 +1,2 @@ +# this drop notebooks from GitHub language stats +*.ipynb linguist-vendored diff --git a/src/yolov5/.github/FUNDING.yml b/src/yolov5/.github/FUNDING.yml new file mode 100644 index 00000000..3da386f7 --- /dev/null +++ b/src/yolov5/.github/FUNDING.yml @@ -0,0 +1,5 @@ +# These are supported funding model platforms + +github: glenn-jocher +patreon: ultralytics +open_collective: ultralytics diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml b/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml new file mode 100644 index 00000000..fcb64138 --- /dev/null +++ b/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml @@ -0,0 +1,85 @@ +name: đ Bug Report +# title: " " +description: Problems with YOLOv5 +labels: [bug, triage] +body: + - type: markdown + attributes: + value: | + Thank you for submitting a YOLOv5 đ Bug Report! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report. + required: true + + - type: dropdown + attributes: + label: YOLOv5 Component + description: | + Please select the part of YOLOv5 where you found the bug. + multiple: true + options: + - "Training" + - "Validation" + - "Detection" + - "Export" + - "PyTorch Hub" + - "Multi-GPU" + - "Evolution" + - "Integrations" + - "Other" + validations: + required: false + + - type: textarea + attributes: + label: Bug + description: Provide console output with error messages and/or screenshots of the bug. + placeholder: | + đĄ ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. + validations: + required: true + + - type: textarea + attributes: + label: Environment + description: Please specify the software and hardware you used to produce the bug. + placeholder: | + - YOLO: YOLOv5 đ v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB) + - OS: Ubuntu 20.04 + - Python: 3.9.0 + validations: + required: false + + - type: textarea + attributes: + label: Minimal Reproducible Example + description: > + When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem. + This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). + placeholder: | + ``` + # Code to reproduce your issue here + ``` + validations: + required: false + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? + + - type: checkboxes + attributes: + label: Are you willing to submit a PR? + description: > + (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. + See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. + options: + - label: Yes I'd like to help by submitting a PR! diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/config.yml b/src/yolov5/.github/ISSUE_TEMPLATE/config.yml new file mode 100644 index 00000000..f388d7ba --- /dev/null +++ b/src/yolov5/.github/ISSUE_TEMPLATE/config.yml @@ -0,0 +1,8 @@ +blank_issues_enabled: true +contact_links: + - name: Slack + url: https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg + about: Ask on Ultralytics Slack Forum + - name: Stack Overflow + url: https://stackoverflow.com/search?q=YOLOv5 + about: Ask on Stack Overflow with 'YOLOv5' tag diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml b/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml new file mode 100644 index 00000000..68ef9851 --- /dev/null +++ b/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml @@ -0,0 +1,50 @@ +name: đ Feature Request +description: Suggest a YOLOv5 idea +# title: " " +labels: [enhancement] +body: + - type: markdown + attributes: + value: | + Thank you for submitting a YOLOv5 đ Feature Request! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests. + required: true + + - type: textarea + attributes: + label: Description + description: A short description of your feature. + placeholder: | + What new feature would you like to see in YOLOv5? + validations: + required: true + + - type: textarea + attributes: + label: Use case + description: | + Describe the use case of your feature request. It will help us understand and prioritize the feature request. + placeholder: | + How would this feature be used, and who would use it? + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? + + - type: checkboxes + attributes: + label: Are you willing to submit a PR? + description: > + (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature. + See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started. + options: + - label: Yes I'd like to help by submitting a PR! diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/question.yml b/src/yolov5/.github/ISSUE_TEMPLATE/question.yml new file mode 100644 index 00000000..8e0993c6 --- /dev/null +++ b/src/yolov5/.github/ISSUE_TEMPLATE/question.yml @@ -0,0 +1,33 @@ +name: â Question +description: Ask a YOLOv5 question +# title: " " +labels: [question] +body: + - type: markdown + attributes: + value: | + Thank you for asking a YOLOv5 â Question! + + - type: checkboxes + attributes: + label: Search before asking + description: > + Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists. + options: + - label: > + I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. + required: true + + - type: textarea + attributes: + label: Question + description: What is your question? + placeholder: | + đĄ ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response. + validations: + required: true + + - type: textarea + attributes: + label: Additional + description: Anything else you would like to share? diff --git a/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md b/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md new file mode 100644 index 00000000..7a3e1b7d --- /dev/null +++ b/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md @@ -0,0 +1,7 @@ +Thank you for submitting a YOLOv5 đ Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started: + +- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists. +- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented. +- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable). + +Please see our â [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details. diff --git a/src/yolov5/.github/dependabot.yml b/src/yolov5/.github/dependabot.yml new file mode 100644 index 00000000..c1b3d5d5 --- /dev/null +++ b/src/yolov5/.github/dependabot.yml @@ -0,0 +1,23 @@ +version: 2 +updates: + - package-ecosystem: pip + directory: "/" + schedule: + interval: weekly + time: "04:00" + open-pull-requests-limit: 10 + reviewers: + - glenn-jocher + labels: + - dependencies + + - package-ecosystem: github-actions + directory: "/" + schedule: + interval: weekly + time: "04:00" + open-pull-requests-limit: 5 + reviewers: + - glenn-jocher + labels: + - dependencies diff --git a/src/yolov5/.github/workflows/ci-testing.yml b/src/yolov5/.github/workflows/ci-testing.yml new file mode 100644 index 00000000..5cf1613a --- /dev/null +++ b/src/yolov5/.github/workflows/ci-testing.yml @@ -0,0 +1,93 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +name: CI CPU testing + +on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows + push: + branches: [ master ] + pull_request: + # The branches below must be a subset of the branches above + branches: [ master ] + schedule: + - cron: '0 0 * * *' # Runs at 00:00 UTC every day + +jobs: + cpu-tests: + + runs-on: ${{ matrix.os }} + strategy: + fail-fast: false + matrix: + os: [ ubuntu-latest, macos-latest, windows-latest ] + python-version: [ 3.9 ] + model: [ 'yolov5n' ] # models to test + + # Timeout: https://stackoverflow.com/a/59076067/4521646 + timeout-minutes: 60 + steps: + - uses: actions/checkout@v2 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + + # Note: This uses an internal pip API and may not always work + # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow + - name: Get pip cache + id: pip-cache + run: | + python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)" + + - name: Cache pip + uses: actions/cache@v2.1.7 + with: + path: ${{ steps.pip-cache.outputs.dir }} + key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }} + restore-keys: | + ${{ runner.os }}-${{ matrix.python-version }}-pip- + + # Known Keras 2.7.0 issue: https://github.com/ultralytics/yolov5/pull/5486 + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html + pip install -q onnx tensorflow-cpu keras==2.6.0 # wandb # extras + python --version + pip --version + pip list + shell: bash + + # - name: W&B login + # run: wandb login 345011b3fb26dc8337fd9b20e53857c1d403f2aa + + # - name: Download data + # run: | + # curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip + # unzip -q tmp.zip -d ../datasets + + - name: Tests workflow + run: | + # export PYTHONPATH="$PWD" # to run '$ python *.py' files in subdirectories + d=cpu # device + weights=runs/train/exp/weights/best.pt + + # Train + python train.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --cfg ${{ matrix.model }}.yaml --epochs 1 --device $d + # Val + python val.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --device $d + python val.py --img 64 --batch 32 --weights $weights --device $d + # Detect + python detect.py --weights ${{ matrix.model }}.pt --device $d + python detect.py --weights $weights --device $d + python hubconf.py # hub + # Export + python models/yolo.py --cfg ${{ matrix.model }}.yaml # build PyTorch model + python models/tf.py --weights ${{ matrix.model }}.pt # build TensorFlow model + python export.py --weights ${{ matrix.model }}.pt --img 64 --include torchscript onnx # export + # Python + python - <<EOF + import torch + # model = torch.hub.load('ultralytics/yolov5', 'custom', path=$weights) + EOF + + shell: bash diff --git a/src/yolov5/.github/workflows/codeql-analysis.yml b/src/yolov5/.github/workflows/codeql-analysis.yml new file mode 100644 index 00000000..67f51f0e --- /dev/null +++ b/src/yolov5/.github/workflows/codeql-analysis.yml @@ -0,0 +1,54 @@ +# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities. +# https://github.com/github/codeql-action + +name: "CodeQL" + +on: + schedule: + - cron: '0 0 1 * *' # Runs at 00:00 UTC on the 1st of every month + +jobs: + analyze: + name: Analyze + runs-on: ubuntu-latest + + strategy: + fail-fast: false + matrix: + language: ['python'] + # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ] + # Learn more: + # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed + + steps: + - name: Checkout repository + uses: actions/checkout@v2 + + # Initializes the CodeQL tools for scanning. + - name: Initialize CodeQL + uses: github/codeql-action/init@v1 + with: + languages: ${{ matrix.language }} + # If you wish to specify custom queries, you can do so here or in a config file. + # By default, queries listed here will override any specified in a config file. + # Prefix the list here with "+" to use these queries and those in the config file. + # queries: ./path/to/local/query, your-org/your-repo/queries@main + + # Autobuild attempts to build any compiled languages (C/C++, C#, or Java). + # If this step fails, then you should remove it and run the build manually (see below) + - name: Autobuild + uses: github/codeql-action/autobuild@v1 + + # âšī¸ Command-line programs to run using the OS shell. + # đ https://git.io/JvXDl + + # âī¸ If the Autobuild fails above, remove it and uncomment the following three lines + # and modify them (or add more) to build your code if your project + # uses a compiled language + + #- run: | + # make bootstrap + # make release + + - name: Perform CodeQL Analysis + uses: github/codeql-action/analyze@v1 diff --git a/src/yolov5/.github/workflows/greetings.yml b/src/yolov5/.github/workflows/greetings.yml new file mode 100644 index 00000000..58fbcbfa --- /dev/null +++ b/src/yolov5/.github/workflows/greetings.yml @@ -0,0 +1,59 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +name: Greetings + +on: [pull_request_target, issues] + +jobs: + greeting: + runs-on: ubuntu-latest + steps: + - uses: actions/first-interaction@v1 + with: + repo-token: ${{ secrets.GITHUB_TOKEN }} + pr-message: | + đ Hello @${{ github.actor }}, thank you for submitting a YOLOv5 đ PR! To allow your work to be integrated as seamlessly as possible, we advise you to: + - â Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name of your local branch: + ```bash + git remote add upstream https://github.com/ultralytics/yolov5.git + git fetch upstream + # git checkout feature # <--- replace 'feature' with local branch name + git merge upstream/master + git push -u origin -f + ``` + - â Verify all Continuous Integration (CI) **checks are passing**. + - â Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ -Bruce Lee + + issue-message: | + đ Hello @${{ github.actor }}, thank you for your interest in YOLOv5 đ! Please visit our âī¸ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607). + + If this is a đ Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you. + + If this is a custom training â Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available. + + For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com. + + ## Requirements + + [**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started: + ```bash + git clone https://github.com/ultralytics/yolov5 # clone + cd yolov5 + pip install -r requirements.txt # install + ``` + + ## Environments + + YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): + + - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> + - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) + - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) + - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> + + + ## Status + + <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> + + If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. diff --git a/src/yolov5/.github/workflows/rebase.yml b/src/yolov5/.github/workflows/rebase.yml new file mode 100644 index 00000000..a4db1efb --- /dev/null +++ b/src/yolov5/.github/workflows/rebase.yml @@ -0,0 +1,21 @@ +# https://github.com/marketplace/actions/automatic-rebase + +name: Automatic Rebase +on: + issue_comment: + types: [created] +jobs: + rebase: + name: Rebase + if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase') + runs-on: ubuntu-latest + steps: + - name: Checkout the latest code + uses: actions/checkout@v2 + with: + token: ${{ secrets.ACTIONS_TOKEN }} + fetch-depth: 0 # otherwise, you will fail to push refs to dest repo + - name: Automatic Rebase + uses: cirrus-actions/rebase@1.5 + env: + GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }} diff --git a/src/yolov5/.github/workflows/stale.yml b/src/yolov5/.github/workflows/stale.yml new file mode 100644 index 00000000..7a83950c --- /dev/null +++ b/src/yolov5/.github/workflows/stale.yml @@ -0,0 +1,38 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +name: Close stale issues +on: + schedule: + - cron: '0 0 * * *' # Runs at 00:00 UTC every day + +jobs: + stale: + runs-on: ubuntu-latest + steps: + - uses: actions/stale@v4 + with: + repo-token: ${{ secrets.GITHUB_TOKEN }} + stale-issue-message: | + đ Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. + + Access additional [YOLOv5](https://ultralytics.com/yolov5) đ resources: + - **Wiki** â https://github.com/ultralytics/yolov5/wiki + - **Tutorials** â https://github.com/ultralytics/yolov5#tutorials + - **Docs** â https://docs.ultralytics.com + + Access additional [Ultralytics](https://ultralytics.com) ⥠resources: + - **Ultralytics HUB** â https://ultralytics.com/hub + - **Vision API** â https://ultralytics.com/yolov5 + - **About Us** â https://ultralytics.com/about + - **Join Our Team** â https://ultralytics.com/work + - **Contact Us** â https://ultralytics.com/contact + + Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed! + + Thank you for your contributions to YOLOv5 đ and Vision AI â! + + stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 đ and Vision AI â.' + days-before-stale: 30 + days-before-close: 5 + exempt-issue-labels: 'documentation,tutorial,TODO' + operations-per-run: 100 # The maximum number of operations per run, used to control rate limiting. diff --git a/src/yolov5/.gitignore b/src/yolov5/.gitignore new file mode 100755 index 00000000..69a00843 --- /dev/null +++ b/src/yolov5/.gitignore @@ -0,0 +1,256 @@ +# Repo-specific GitIgnore ---------------------------------------------------------------------------------------------- +*.jpg +*.jpeg +*.png +*.bmp +*.tif +*.tiff +*.heic +*.JPG +*.JPEG +*.PNG +*.BMP +*.TIF +*.TIFF +*.HEIC +*.mp4 +*.mov +*.MOV +*.avi +*.data +*.json +*.cfg +!setup.cfg +!cfg/yolov3*.cfg + +storage.googleapis.com +runs/* +data/* +data/images/* +!data/*.yaml +!data/hyps +!data/scripts +!data/images +!data/images/zidane.jpg +!data/images/bus.jpg +!data/*.sh + +results*.csv + +# Datasets ------------------------------------------------------------------------------------------------------------- +coco/ +coco128/ +VOC/ + +# MATLAB GitIgnore ----------------------------------------------------------------------------------------------------- +*.m~ +*.mat +!targets*.mat + +# Neural Network weights ----------------------------------------------------------------------------------------------- +*.weights +*.pt +*.pb +*.onnx +*.engine +*.mlmodel +*.torchscript +*.tflite +*.h5 +*_saved_model/ +*_web_model/ +*_openvino_model/ +darknet53.conv.74 +yolov3-tiny.conv.15 + +# GitHub Python GitIgnore ---------------------------------------------------------------------------------------------- +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +env/ +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +*.egg-info/ +/wandb/ +.installed.cfg +*.egg + + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +.hypothesis/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# pyenv +.python-version + +# celery beat schedule file +celerybeat-schedule + +# SageMath parsed files +*.sage.py + +# dotenv +.env + +# virtualenv +.venv* +venv*/ +ENV*/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ + + +# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore ----------------------------------------------- + +# General +.DS_Store +.AppleDouble +.LSOverride + +# Icon must end with two \r +Icon +Icon? + +# Thumbnails +._* + +# Files that might appear in the root of a volume +.DocumentRevisions-V100 +.fseventsd +.Spotlight-V100 +.TemporaryItems +.Trashes +.VolumeIcon.icns +.com.apple.timemachine.donotpresent + +# Directories potentially created on remote AFP share +.AppleDB +.AppleDesktop +Network Trash Folder +Temporary Items +.apdisk + + +# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore +# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm +# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839 + +# User-specific stuff: +.idea/* +.idea/**/workspace.xml +.idea/**/tasks.xml +.idea/dictionaries +.html # Bokeh Plots +.pg # TensorFlow Frozen Graphs +.avi # videos + +# Sensitive or high-churn files: +.idea/**/dataSources/ +.idea/**/dataSources.ids +.idea/**/dataSources.local.xml +.idea/**/sqlDataSources.xml +.idea/**/dynamic.xml +.idea/**/uiDesigner.xml + +# Gradle: +.idea/**/gradle.xml +.idea/**/libraries + +# CMake +cmake-build-debug/ +cmake-build-release/ + +# Mongo Explorer plugin: +.idea/**/mongoSettings.xml + +## File-based project format: +*.iws + +## Plugin-specific files: + +# IntelliJ +out/ + +# mpeltonen/sbt-idea plugin +.idea_modules/ + +# JIRA plugin +atlassian-ide-plugin.xml + +# Cursive Clojure plugin +.idea/replstate.xml + +# Crashlytics plugin (for Android Studio and IntelliJ) +com_crashlytics_export_strings.xml +crashlytics.properties +crashlytics-build.properties +fabric.properties diff --git a/src/yolov5/.pre-commit-config.yaml b/src/yolov5/.pre-commit-config.yaml new file mode 100644 index 00000000..526a5609 --- /dev/null +++ b/src/yolov5/.pre-commit-config.yaml @@ -0,0 +1,66 @@ +# Define hooks for code formations +# Will be applied on any updated commit files if a user has installed and linked commit hook + +default_language_version: + python: python3.8 + +# Define bot property if installed via https://github.com/marketplace/pre-commit-ci +ci: + autofix_prs: true + autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions' + autoupdate_schedule: quarterly + # submodules: true + +repos: + - repo: https://github.com/pre-commit/pre-commit-hooks + rev: v4.1.0 + hooks: + - id: end-of-file-fixer + - id: trailing-whitespace + - id: check-case-conflict + - id: check-yaml + - id: check-toml + - id: pretty-format-json + - id: check-docstring-first + + - repo: https://github.com/asottile/pyupgrade + rev: v2.31.0 + hooks: + - id: pyupgrade + args: [--py36-plus] + name: Upgrade code + + - repo: https://github.com/PyCQA/isort + rev: 5.10.1 + hooks: + - id: isort + name: Sort imports + + # TODO + #- repo: https://github.com/pre-commit/mirrors-yapf + # rev: v0.31.0 + # hooks: + # - id: yapf + # name: formatting + + # TODO + #- repo: https://github.com/executablebooks/mdformat + # rev: 0.7.7 + # hooks: + # - id: mdformat + # additional_dependencies: + # - mdformat-gfm + # - mdformat-black + # - mdformat_frontmatter + + # TODO + #- repo: https://github.com/asottile/yesqa + # rev: v1.2.3 + # hooks: + # - id: yesqa + + - repo: https://github.com/PyCQA/flake8 + rev: 4.0.1 + hooks: + - id: flake8 + name: PEP8 diff --git a/src/yolov5/CONTRIBUTING.md b/src/yolov5/CONTRIBUTING.md new file mode 100644 index 00000000..ebde03a5 --- /dev/null +++ b/src/yolov5/CONTRIBUTING.md @@ -0,0 +1,94 @@ +## Contributing to YOLOv5 đ + +We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's: + +- Reporting a bug +- Discussing the current state of the code +- Submitting a fix +- Proposing a new feature +- Becoming a maintainer + +YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be +helping push the frontiers of what's possible in AI đ! + +## Submitting a Pull Request (PR) đ ī¸ + +Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps: + +### 1. Select File to Update + +Select `requirements.txt` to update by clicking on it in GitHub. +<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p> + +### 2. Click 'Edit this file' + +Button is in top-right corner. +<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p> + +### 3. Make Changes + +Change `matplotlib` version from `3.2.2` to `3.3`. +<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p> + +### 4. Preview Changes and Submit PR + +Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch** +for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose +changes** button. All done, your PR is now submitted to YOLOv5 for review and approval đ! +<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p> + +### PR recommendations + +To allow your work to be integrated as seamlessly as possible, we advise you to: + +- â Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an + automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may + be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name + of your local branch: + +```bash +git remote add upstream https://github.com/ultralytics/yolov5.git +git fetch upstream +# git checkout feature # <--- replace 'feature' with local branch name +git merge upstream/master +git push -u origin -f +``` + +- â Verify all Continuous Integration (CI) **checks are passing**. +- â Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase + but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_ â Bruce Lee + +## Submitting a Bug Report đ + +If you spot a problem with YOLOv5 please submit a Bug Report! + +For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few +short guidelines below to help users provide what we need in order to get started. + +When asking a question, people will be better able to provide help if you provide **code** that they can easily +understand and use to **reproduce** the problem. This is referred to by community members as creating +a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces +the problem should be: + +* â **Minimal** â Use as little code as possible that still produces the same problem +* â **Complete** â Provide **all** parts someone else needs to reproduce your problem in the question itself +* â **Reproducible** â Test the code you're about to provide to make sure it reproduces the problem + +In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code +should be: + +* â **Current** â Verify that your code is up-to-date with current + GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new + copy to ensure your problem has not already been resolved by previous commits. +* â **Unmodified** â Your problem must be reproducible without any modifications to the codebase in this + repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code â ī¸. + +If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the đ ** +Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing +a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better +understand and diagnose your problem. + +## License + +By contributing, you agree that your contributions will be licensed under +the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/) diff --git a/src/yolov5/Dockerfile b/src/yolov5/Dockerfile new file mode 100644 index 00000000..489dd04c --- /dev/null +++ b/src/yolov5/Dockerfile @@ -0,0 +1,64 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch +FROM nvcr.io/nvidia/pytorch:21.10-py3 + +# Install linux packages +RUN apt update && apt install -y zip htop screen libgl1-mesa-glx + +# Install python dependencies +COPY requirements.txt . +RUN python -m pip install --upgrade pip +RUN pip uninstall -y torch torchvision torchtext +RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook \ + torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html +# RUN pip install --no-cache -U torch torchvision + +# Create working directory +RUN mkdir -p /usr/src/app +WORKDIR /usr/src/app + +# Copy contents +COPY . /usr/src/app + +# Downloads to user config dir +ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/ + +# Set environment variables +# ENV HOME=/usr/src/app + + +# Usage Examples ------------------------------------------------------------------------------------------------------- + +# Build and Push +# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t + +# Pull and Run +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t + +# Pull and Run with local directory access +# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t + +# Kill all +# sudo docker kill $(sudo docker ps -q) + +# Kill all image-based +# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest) + +# Bash into running container +# sudo docker exec -it 5a9b5863d93d bash + +# Bash into stopped container +# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash + +# Clean up +# docker system prune -a --volumes + +# Update Ubuntu drivers +# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/ + +# DDP test +# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3 + +# GCP VM from Image +# docker.io/ultralytics/yolov5:latest diff --git a/src/yolov5/LICENSE b/src/yolov5/LICENSE new file mode 100644 index 00000000..92b370f0 --- /dev/null +++ b/src/yolov5/LICENSE @@ -0,0 +1,674 @@ +GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + <program> Copyright (C) <year> <name of author> + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +<http://www.gnu.org/licenses/>. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/src/yolov5/README.md b/src/yolov5/README.md new file mode 100644 index 00000000..7bfea7c2 --- /dev/null +++ b/src/yolov5/README.md @@ -0,0 +1,304 @@ +<div align="center"> +<p> + <a align="left" href="https://ultralytics.com/yolov5" target="_blank"> + <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> +</p> +<br> +<div> + <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> + <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> + <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> + <br> + <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> + <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> + <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> +</div> + +<br> +<p> +YOLOv5 đ is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a> + open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. +</p> + +<div align="center"> + <a href="https://github.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://www.linkedin.com/company/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://twitter.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://www.producthunt.com/@glenn_jocher"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://youtube.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://www.facebook.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/> + </a> + <img width="2%" /> + <a href="https://www.instagram.com/ultralytics/"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/> + </a> +</div> + +<!-- +<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> +<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> +--> + +</div> + +## <div align="center">Documentation</div> + +See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. + +## <div align="center">Quick Start Examples</div> + +<details open> +<summary>Install</summary> + +Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a +[**Python>=3.7.0**](https://www.python.org/) environment, including +[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). + +```bash +git clone https://github.com/ultralytics/yolov5 # clone +cd yolov5 +pip install -r requirements.txt # install +``` + +</details> + +<details open> +<summary>Inference</summary> + +Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) +. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest +YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). + +```python +import torch + +# Model +model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom + +# Images +img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list + +# Inference +results = model(img) + +# Results +results.print() # or .show(), .save(), .crop(), .pandas(), etc. +``` + +</details> + + + +<details> +<summary>Inference with detect.py</summary> + +`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from +the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. + +```bash +python detect.py --source 0 # webcam + img.jpg # image + vid.mp4 # video + path/ # directory + path/*.jpg # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream +``` + +</details> + +<details> +<summary>Training</summary> + +The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) +results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) +and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest +YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are +1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the +largest `--batch-size` possible, or pass `--batch-size -1` for +YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. + +```bash +python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 + yolov5s 64 + yolov5m 40 + yolov5l 24 + yolov5x 16 +``` + +<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> + +</details> + +<details open> +<summary>Tutorials</summary> + +* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) đ RECOMMENDED +* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) âī¸ + RECOMMENDED +* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) đ NEW +* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) đ NEW +* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) +* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW +* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) đ +* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) +* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) +* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) +* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) +* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW +* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) + +</details> + +## <div align="center">Environments</div> + +Get started in seconds with our verified environments. Click each icon below for details. + +<div align="center"> + <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> + </a> + <a href="https://www.kaggle.com/ultralytics/yolov5"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> + </a> + <a href="https://hub.docker.com/r/ultralytics/yolov5"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> + </a> + <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> + </a> + <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> + </a> +</div> + +## <div align="center">Integrations</div> + +<div align="center"> + <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/> + </a> + <a href="https://roboflow.com/?ref=ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/> + </a> +</div> + +|Weights and Biases|Roboflow â NEW| +|:-:|:-:| +|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | + + +<!-- ## <div align="center">Compete and Win</div> + +We are super excited about our first-ever Ultralytics YOLOv5 đ EXPORT Competition with **$10,000** in cash prizes! + +<p align="center"> + <a href="https://github.com/ultralytics/yolov5/discussions/3213"> + <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> +</p> --> + +## <div align="center">Why YOLOv5</div> + +<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p> +<details> + <summary>YOLOv5-P5 640 Figure (click to expand)</summary> + +<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p> +</details> +<details> + <summary>Figure Notes (click to expand)</summary> + +* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. +* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. +* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. +* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` +</details> + +### Pretrained Checkpoints + +[assets]: https://github.com/ultralytics/yolov5/releases + +[TTA]: https://github.com/ultralytics/yolov5/issues/303 + +|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B) +|--- |--- |--- |--- |--- |--- |--- |--- |--- +|[YOLOv5n][assets] |640 |28.4 |46.0 |**45** |**6.3**|**0.6**|**1.9**|**4.5** +|[YOLOv5s][assets] |640 |37.2 |56.0 |98 |6.4 |0.9 |7.2 |16.5 +|[YOLOv5m][assets] |640 |45.2 |63.9 |224 |8.2 |1.7 |21.2 |49.0 +|[YOLOv5l][assets] |640 |48.8 |67.2 |430 |10.1 |2.7 |46.5 |109.1 +|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7 +| | | | | | | | | +|[YOLOv5n6][assets] |1280 |34.0 |50.7 |153 |8.1 |2.1 |3.2 |4.6 +|[YOLOv5s6][assets] |1280 |44.5 |63.0 |385 |8.2 |3.6 |12.6 |16.8 +|[YOLOv5m6][assets] |1280 |51.0 |69.0 |887 |11.1 |6.8 |35.7 |50.0 +|[YOLOv5l6][assets] |1280 |53.6 |71.6 |1784 |15.8 |10.5 |76.7 |111.4 +|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>- + +<details> + <summary>Table Notes (click to expand)</summary> + +* All checkpoints are trained to 300 epochs with default settings and hyperparameters. +* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` +* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` +* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` + +</details> + +## <div align="center">Contribute</div> + +We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! + +<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a> + +## <div align="center">Contact</div> + +For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or +professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact). + +<br> + +<div align="center"> + <a href="https://github.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://www.linkedin.com/company/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://twitter.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://www.producthunt.com/@glenn_jocher"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://youtube.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://www.facebook.com/ultralytics"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/> + </a> + <img width="3%" /> + <a href="https://www.instagram.com/ultralytics/"> + <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/> + </a> +</div> diff --git a/src/yolov5/data/Argoverse.yaml b/src/yolov5/data/Argoverse.yaml new file mode 100644 index 00000000..312791b3 --- /dev/null +++ b/src/yolov5/data/Argoverse.yaml @@ -0,0 +1,67 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI +# Example usage: python train.py --data Argoverse.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ Argoverse â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/Argoverse # dataset root dir +train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images +val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images +test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview + +# Classes +nc: 8 # number of classes +names: ['person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign'] # class names + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import json + + from tqdm import tqdm + from utils.general import download, Path + + + def argoverse2yolo(set): + labels = {} + a = json.load(open(set, "rb")) + for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."): + img_id = annot['image_id'] + img_name = a['images'][img_id]['name'] + img_label_name = img_name[:-3] + "txt" + + cls = annot['category_id'] # instance class id + x_center, y_center, width, height = annot['bbox'] + x_center = (x_center + width / 2) / 1920.0 # offset and scale + y_center = (y_center + height / 2) / 1200.0 # offset and scale + width /= 1920.0 # scale + height /= 1200.0 # scale + + img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']] + if not img_dir.exists(): + img_dir.mkdir(parents=True, exist_ok=True) + + k = str(img_dir / img_label_name) + if k not in labels: + labels[k] = [] + labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n") + + for k in labels: + with open(k, "w") as f: + f.writelines(labels[k]) + + + # Download + dir = Path('../datasets/Argoverse') # dataset root dir + urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip'] + download(urls, dir=dir, delete=False) + + # Convert + annotations_dir = 'Argoverse-HD/annotations/' + (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images') # rename 'tracking' to 'images' + for d in "train.json", "val.json": + argoverse2yolo(dir / annotations_dir / d) # convert VisDrone annotations to YOLO labels diff --git a/src/yolov5/data/GlobalWheat2020.yaml b/src/yolov5/data/GlobalWheat2020.yaml new file mode 100644 index 00000000..869dace0 --- /dev/null +++ b/src/yolov5/data/GlobalWheat2020.yaml @@ -0,0 +1,53 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan +# Example usage: python train.py --data GlobalWheat2020.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ GlobalWheat2020 â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/GlobalWheat2020 # dataset root dir +train: # train images (relative to 'path') 3422 images + - images/arvalis_1 + - images/arvalis_2 + - images/arvalis_3 + - images/ethz_1 + - images/rres_1 + - images/inrae_1 + - images/usask_1 +val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1) + - images/ethz_1 +test: # test images (optional) 1276 images + - images/utokyo_1 + - images/utokyo_2 + - images/nau_1 + - images/uq_1 + +# Classes +nc: 1 # number of classes +names: ['wheat_head'] # class names + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from utils.general import download, Path + + # Download + dir = Path(yaml['path']) # dataset root dir + urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip'] + download(urls, dir=dir) + + # Make Directories + for p in 'annotations', 'images', 'labels': + (dir / p).mkdir(parents=True, exist_ok=True) + + # Move + for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \ + 'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1': + (dir / p).rename(dir / 'images' / p) # move to /images + f = (dir / p).with_suffix('.json') # json file + if f.exists(): + f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations diff --git a/src/yolov5/data/Objects365.yaml b/src/yolov5/data/Objects365.yaml new file mode 100644 index 00000000..4c7cf3fd --- /dev/null +++ b/src/yolov5/data/Objects365.yaml @@ -0,0 +1,112 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Objects365 dataset https://www.objects365.org/ by Megvii +# Example usage: python train.py --data Objects365.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ Objects365 â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/Objects365 # dataset root dir +train: images/train # train images (relative to 'path') 1742289 images +val: images/val # val images (relative to 'path') 80000 images +test: # test images (optional) + +# Classes +nc: 365 # number of classes +names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup', + 'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book', + 'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag', + 'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV', + 'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle', + 'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird', + 'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck', + 'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning', + 'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife', + 'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock', + 'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish', + 'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan', + 'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard', + 'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign', + 'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat', + 'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard', + 'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry', + 'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks', + 'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors', + 'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape', + 'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck', + 'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette', + 'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket', + 'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine', + 'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine', + 'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon', + 'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse', + 'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball', + 'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin', + 'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts', + 'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit', + 'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD', + 'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder', + 'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips', + 'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab', + 'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal', + 'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart', + 'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French', + 'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell', + 'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil', + 'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis'] + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from pycocotools.coco import COCO + from tqdm import tqdm + + from utils.general import Path, download, np, xyxy2xywhn + + # Make Directories + dir = Path(yaml['path']) # dataset root dir + for p in 'images', 'labels': + (dir / p).mkdir(parents=True, exist_ok=True) + for q in 'train', 'val': + (dir / p / q).mkdir(parents=True, exist_ok=True) + + # Train, Val Splits + for split, patches in [('train', 50 + 1), ('val', 43 + 1)]: + print(f"Processing {split} in {patches} patches ...") + images, labels = dir / 'images' / split, dir / 'labels' / split + + # Download + url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/" + if split == 'train': + download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False) # annotations json + download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8) + elif split == 'val': + download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False) # annotations json + download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8) + download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8) + + # Move + for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'): + f.rename(images / f.name) # move to /images/{split} + + # Labels + coco = COCO(dir / f'zhiyuan_objv2_{split}.json') + names = [x["name"] for x in coco.loadCats(coco.getCatIds())] + for cid, cat in enumerate(names): + catIds = coco.getCatIds(catNms=[cat]) + imgIds = coco.getImgIds(catIds=catIds) + for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'): + width, height = im["width"], im["height"] + path = Path(im["file_name"]) # image filename + try: + with open(labels / path.with_suffix('.txt').name, 'a') as file: + annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None) + for a in coco.loadAnns(annIds): + x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner) + xyxy = np.array([x, y, x + w, y + h])[None] # pixels(1,4) + x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0] # normalized and clipped + file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n") + except Exception as e: + print(e) diff --git a/src/yolov5/data/SKU-110K.yaml b/src/yolov5/data/SKU-110K.yaml new file mode 100644 index 00000000..9481b7a0 --- /dev/null +++ b/src/yolov5/data/SKU-110K.yaml @@ -0,0 +1,52 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail +# Example usage: python train.py --data SKU-110K.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ SKU-110K â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/SKU-110K # dataset root dir +train: train.txt # train images (relative to 'path') 8219 images +val: val.txt # val images (relative to 'path') 588 images +test: test.txt # test images (optional) 2936 images + +# Classes +nc: 1 # number of classes +names: ['object'] # class names + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import shutil + from tqdm import tqdm + from utils.general import np, pd, Path, download, xyxy2xywh + + # Download + dir = Path(yaml['path']) # dataset root dir + parent = Path(dir.parent) # download dir + urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz'] + download(urls, dir=parent, delete=False) + + # Rename directories + if dir.exists(): + shutil.rmtree(dir) + (parent / 'SKU110K_fixed').rename(dir) # rename dir + (dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir + + # Convert labels + names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names + for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv': + x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations + images, unique_images = x[:, 0], np.unique(x[:, 0]) + with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f: + f.writelines(f'./images/{s}\n' for s in unique_images) + for im in tqdm(unique_images, desc=f'Converting {dir / d}'): + cls = 0 # single-class dataset + with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f: + for r in x[images == im]: + w, h = r[6], r[7] # image width, height + xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance + f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label diff --git a/src/yolov5/data/VOC.yaml b/src/yolov5/data/VOC.yaml new file mode 100644 index 00000000..975d5646 --- /dev/null +++ b/src/yolov5/data/VOC.yaml @@ -0,0 +1,80 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford +# Example usage: python train.py --data VOC.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ VOC â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/VOC +train: # train images (relative to 'path') 16551 images + - images/train2012 + - images/train2007 + - images/val2012 + - images/val2007 +val: # val images (relative to 'path') 4952 images + - images/test2007 +test: # test images (optional) + - images/test2007 + +# Classes +nc: 20 # number of classes +names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', + 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor'] # class names + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import xml.etree.ElementTree as ET + + from tqdm import tqdm + from utils.general import download, Path + + + def convert_label(path, lb_path, year, image_id): + def convert_box(size, box): + dw, dh = 1. / size[0], 1. / size[1] + x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2] + return x * dw, y * dh, w * dw, h * dh + + in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml') + out_file = open(lb_path, 'w') + tree = ET.parse(in_file) + root = tree.getroot() + size = root.find('size') + w = int(size.find('width').text) + h = int(size.find('height').text) + + for obj in root.iter('object'): + cls = obj.find('name').text + if cls in yaml['names'] and not int(obj.find('difficult').text) == 1: + xmlbox = obj.find('bndbox') + bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')]) + cls_id = yaml['names'].index(cls) # class id + out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n') + + + # Download + dir = Path(yaml['path']) # dataset root dir + url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' + urls = [url + 'VOCtrainval_06-Nov-2007.zip', # 446MB, 5012 images + url + 'VOCtest_06-Nov-2007.zip', # 438MB, 4953 images + url + 'VOCtrainval_11-May-2012.zip'] # 1.95GB, 17126 images + download(urls, dir=dir / 'images', delete=False) + + # Convert + path = dir / f'images/VOCdevkit' + for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'): + imgs_path = dir / 'images' / f'{image_set}{year}' + lbs_path = dir / 'labels' / f'{image_set}{year}' + imgs_path.mkdir(exist_ok=True, parents=True) + lbs_path.mkdir(exist_ok=True, parents=True) + + image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split() + for id in tqdm(image_ids, desc=f'{image_set}{year}'): + f = path / f'VOC{year}/JPEGImages/{id}.jpg' # old img path + lb_path = (lbs_path / f.name).with_suffix('.txt') # new label path + f.rename(imgs_path / f.name) # move image + convert_label(path, lb_path, year, id) # convert labels to YOLO format diff --git a/src/yolov5/data/VisDrone.yaml b/src/yolov5/data/VisDrone.yaml new file mode 100644 index 00000000..83a5c7d5 --- /dev/null +++ b/src/yolov5/data/VisDrone.yaml @@ -0,0 +1,61 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University +# Example usage: python train.py --data VisDrone.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ VisDrone â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/VisDrone # dataset root dir +train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images +val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images +test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images + +# Classes +nc: 10 # number of classes +names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor'] + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + from utils.general import download, os, Path + + def visdrone2yolo(dir): + from PIL import Image + from tqdm import tqdm + + def convert_box(size, box): + # Convert VisDrone box to YOLO xywh box + dw = 1. / size[0] + dh = 1. / size[1] + return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh + + (dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory + pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}') + for f in pbar: + img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size + lines = [] + with open(f, 'r') as file: # read annotation.txt + for row in [x.split(',') for x in file.read().strip().splitlines()]: + if row[4] == '0': # VisDrone 'ignored regions' class 0 + continue + cls = int(row[5]) - 1 + box = convert_box(img_size, tuple(map(int, row[:4]))) + lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n") + with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl: + fl.writelines(lines) # write label.txt + + + # Download + dir = Path(yaml['path']) # dataset root dir + urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip', + 'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip'] + download(urls, dir=dir) + + # Convert + for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev': + visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels diff --git a/src/yolov5/data/coco.yaml b/src/yolov5/data/coco.yaml new file mode 100644 index 00000000..3ed7e48a --- /dev/null +++ b/src/yolov5/data/coco.yaml @@ -0,0 +1,44 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# COCO 2017 dataset http://cocodataset.org by Microsoft +# Example usage: python train.py --data coco.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ coco â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/coco # dataset root dir +train: train2017.txt # train images (relative to 'path') 118287 images +val: val2017.txt # val images (relative to 'path') 5000 images +test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794 + +# Classes +nc: 80 # number of classes +names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', + 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', + 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', + 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', + 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', + 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', + 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', + 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', + 'hair drier', 'toothbrush'] # class names + + +# Download script/URL (optional) +download: | + from utils.general import download, Path + + # Download labels + segments = False # segment or box labels + dir = Path(yaml['path']) # dataset root dir + url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/' + urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels + download(urls, dir=dir.parent) + + # Download data + urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images + 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images + 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional) + download(urls, dir=dir / 'images', threads=3) diff --git a/src/yolov5/data/coco128.yaml b/src/yolov5/data/coco128.yaml new file mode 100644 index 00000000..d07c7044 --- /dev/null +++ b/src/yolov5/data/coco128.yaml @@ -0,0 +1,30 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics +# Example usage: python train.py --data coco128.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ coco128 â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/coco128 # dataset root dir +train: images/train2017 # train images (relative to 'path') 128 images +val: images/train2017 # val images (relative to 'path') 128 images +test: # test images (optional) + +# Classes +nc: 80 # number of classes +names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', + 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', + 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', + 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', + 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', + 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', + 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', + 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', + 'hair drier', 'toothbrush'] # class names + + +# Download script/URL (optional) +download: https://ultralytics.com/assets/coco128.zip diff --git a/src/yolov5/data/hyps/hyp.finetune.yaml b/src/yolov5/data/hyps/hyp.finetune.yaml new file mode 100644 index 00000000..b89d66ff --- /dev/null +++ b/src/yolov5/data/hyps/hyp.finetune.yaml @@ -0,0 +1,39 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Hyperparameters for VOC finetuning +# python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50 +# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials + +# Hyperparameter Evolution Results +# Generations: 306 +# P R mAP.5 mAP.5:.95 box obj cls +# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146 + +lr0: 0.0032 +lrf: 0.12 +momentum: 0.843 +weight_decay: 0.00036 +warmup_epochs: 2.0 +warmup_momentum: 0.5 +warmup_bias_lr: 0.05 +box: 0.0296 +cls: 0.243 +cls_pw: 0.631 +obj: 0.301 +obj_pw: 0.911 +iou_t: 0.2 +anchor_t: 2.91 +# anchors: 3.63 +fl_gamma: 0.0 +hsv_h: 0.0138 +hsv_s: 0.664 +hsv_v: 0.464 +degrees: 0.373 +translate: 0.245 +scale: 0.898 +shear: 0.602 +perspective: 0.0 +flipud: 0.00856 +fliplr: 0.5 +mosaic: 1.0 +mixup: 0.243 +copy_paste: 0.0 diff --git a/src/yolov5/data/hyps/hyp.finetune_objects365.yaml b/src/yolov5/data/hyps/hyp.finetune_objects365.yaml new file mode 100644 index 00000000..073720a6 --- /dev/null +++ b/src/yolov5/data/hyps/hyp.finetune_objects365.yaml @@ -0,0 +1,31 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +lr0: 0.00258 +lrf: 0.17 +momentum: 0.779 +weight_decay: 0.00058 +warmup_epochs: 1.33 +warmup_momentum: 0.86 +warmup_bias_lr: 0.0711 +box: 0.0539 +cls: 0.299 +cls_pw: 0.825 +obj: 0.632 +obj_pw: 1.0 +iou_t: 0.2 +anchor_t: 3.44 +anchors: 3.2 +fl_gamma: 0.0 +hsv_h: 0.0188 +hsv_s: 0.704 +hsv_v: 0.36 +degrees: 0.0 +translate: 0.0902 +scale: 0.491 +shear: 0.0 +perspective: 0.0 +flipud: 0.0 +fliplr: 0.5 +mosaic: 1.0 +mixup: 0.0 +copy_paste: 0.0 diff --git a/src/yolov5/data/hyps/hyp.scratch-high.yaml b/src/yolov5/data/hyps/hyp.scratch-high.yaml new file mode 100644 index 00000000..123cc840 --- /dev/null +++ b/src/yolov5/data/hyps/hyp.scratch-high.yaml @@ -0,0 +1,34 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Hyperparameters for high-augmentation COCO training from scratch +# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 +# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials + +lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) +lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) +momentum: 0.937 # SGD momentum/Adam beta1 +weight_decay: 0.0005 # optimizer weight decay 5e-4 +warmup_epochs: 3.0 # warmup epochs (fractions ok) +warmup_momentum: 0.8 # warmup initial momentum +warmup_bias_lr: 0.1 # warmup initial bias lr +box: 0.05 # box loss gain +cls: 0.3 # cls loss gain +cls_pw: 1.0 # cls BCELoss positive_weight +obj: 0.7 # obj loss gain (scale with pixels) +obj_pw: 1.0 # obj BCELoss positive_weight +iou_t: 0.20 # IoU training threshold +anchor_t: 4.0 # anchor-multiple threshold +# anchors: 3 # anchors per output layer (0 to ignore) +fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) +hsv_h: 0.015 # image HSV-Hue augmentation (fraction) +hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) +hsv_v: 0.4 # image HSV-Value augmentation (fraction) +degrees: 0.0 # image rotation (+/- deg) +translate: 0.1 # image translation (+/- fraction) +scale: 0.9 # image scale (+/- gain) +shear: 0.0 # image shear (+/- deg) +perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 +flipud: 0.0 # image flip up-down (probability) +fliplr: 0.5 # image flip left-right (probability) +mosaic: 1.0 # image mosaic (probability) +mixup: 0.1 # image mixup (probability) +copy_paste: 0.1 # segment copy-paste (probability) diff --git a/src/yolov5/data/hyps/hyp.scratch-low.yaml b/src/yolov5/data/hyps/hyp.scratch-low.yaml new file mode 100644 index 00000000..b9ef1d55 --- /dev/null +++ b/src/yolov5/data/hyps/hyp.scratch-low.yaml @@ -0,0 +1,34 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Hyperparameters for low-augmentation COCO training from scratch +# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear +# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials + +lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) +lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf) +momentum: 0.937 # SGD momentum/Adam beta1 +weight_decay: 0.0005 # optimizer weight decay 5e-4 +warmup_epochs: 3.0 # warmup epochs (fractions ok) +warmup_momentum: 0.8 # warmup initial momentum +warmup_bias_lr: 0.1 # warmup initial bias lr +box: 0.05 # box loss gain +cls: 0.5 # cls loss gain +cls_pw: 1.0 # cls BCELoss positive_weight +obj: 1.0 # obj loss gain (scale with pixels) +obj_pw: 1.0 # obj BCELoss positive_weight +iou_t: 0.20 # IoU training threshold +anchor_t: 4.0 # anchor-multiple threshold +# anchors: 3 # anchors per output layer (0 to ignore) +fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) +hsv_h: 0.015 # image HSV-Hue augmentation (fraction) +hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) +hsv_v: 0.4 # image HSV-Value augmentation (fraction) +degrees: 0.0 # image rotation (+/- deg) +translate: 0.1 # image translation (+/- fraction) +scale: 0.5 # image scale (+/- gain) +shear: 0.0 # image shear (+/- deg) +perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 +flipud: 0.0 # image flip up-down (probability) +fliplr: 0.5 # image flip left-right (probability) +mosaic: 1.0 # image mosaic (probability) +mixup: 0.0 # image mixup (probability) +copy_paste: 0.0 # segment copy-paste (probability) diff --git a/src/yolov5/data/hyps/hyp.scratch-med.yaml b/src/yolov5/data/hyps/hyp.scratch-med.yaml new file mode 100644 index 00000000..d6867d75 --- /dev/null +++ b/src/yolov5/data/hyps/hyp.scratch-med.yaml @@ -0,0 +1,34 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Hyperparameters for medium-augmentation COCO training from scratch +# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300 +# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials + +lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) +lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) +momentum: 0.937 # SGD momentum/Adam beta1 +weight_decay: 0.0005 # optimizer weight decay 5e-4 +warmup_epochs: 3.0 # warmup epochs (fractions ok) +warmup_momentum: 0.8 # warmup initial momentum +warmup_bias_lr: 0.1 # warmup initial bias lr +box: 0.05 # box loss gain +cls: 0.3 # cls loss gain +cls_pw: 1.0 # cls BCELoss positive_weight +obj: 0.7 # obj loss gain (scale with pixels) +obj_pw: 1.0 # obj BCELoss positive_weight +iou_t: 0.20 # IoU training threshold +anchor_t: 4.0 # anchor-multiple threshold +# anchors: 3 # anchors per output layer (0 to ignore) +fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) +hsv_h: 0.015 # image HSV-Hue augmentation (fraction) +hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) +hsv_v: 0.4 # image HSV-Value augmentation (fraction) +degrees: 0.0 # image rotation (+/- deg) +translate: 0.1 # image translation (+/- fraction) +scale: 0.9 # image scale (+/- gain) +shear: 0.0 # image shear (+/- deg) +perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 +flipud: 0.0 # image flip up-down (probability) +fliplr: 0.5 # image flip left-right (probability) +mosaic: 1.0 # image mosaic (probability) +mixup: 0.1 # image mixup (probability) +copy_paste: 0.0 # segment copy-paste (probability) diff --git a/src/yolov5/data/hyps/hyp.scratch.yaml b/src/yolov5/data/hyps/hyp.scratch.yaml new file mode 100644 index 00000000..31f6d142 --- /dev/null +++ b/src/yolov5/data/hyps/hyp.scratch.yaml @@ -0,0 +1,34 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Hyperparameters for COCO training from scratch +# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300 +# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials + +lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3) +lrf: 0.1 # final OneCycleLR learning rate (lr0 * lrf) +momentum: 0.937 # SGD momentum/Adam beta1 +weight_decay: 0.0005 # optimizer weight decay 5e-4 +warmup_epochs: 3.0 # warmup epochs (fractions ok) +warmup_momentum: 0.8 # warmup initial momentum +warmup_bias_lr: 0.1 # warmup initial bias lr +box: 0.05 # box loss gain +cls: 0.5 # cls loss gain +cls_pw: 1.0 # cls BCELoss positive_weight +obj: 1.0 # obj loss gain (scale with pixels) +obj_pw: 1.0 # obj BCELoss positive_weight +iou_t: 0.20 # IoU training threshold +anchor_t: 4.0 # anchor-multiple threshold +# anchors: 3 # anchors per output layer (0 to ignore) +fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5) +hsv_h: 0.015 # image HSV-Hue augmentation (fraction) +hsv_s: 0.7 # image HSV-Saturation augmentation (fraction) +hsv_v: 0.4 # image HSV-Value augmentation (fraction) +degrees: 0.0 # image rotation (+/- deg) +translate: 0.1 # image translation (+/- fraction) +scale: 0.5 # image scale (+/- gain) +shear: 0.0 # image shear (+/- deg) +perspective: 0.0 # image perspective (+/- fraction), range 0-0.001 +flipud: 0.0 # image flip up-down (probability) +fliplr: 0.5 # image flip left-right (probability) +mosaic: 1.0 # image mosaic (probability) +mixup: 0.0 # image mixup (probability) +copy_paste: 0.0 # segment copy-paste (probability) diff --git a/src/yolov5/data/images/bus.jpg b/src/yolov5/data/images/bus.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b43e311165c785f000eb7493ff8fb662d06a3f83 GIT binary patch literal 487438 zcmex=<NpH&0WUXCHwH#V1_loX4+e(+4>@XFD>Bm<7<_#hv=|r|I2d>s`5BlP7#P?X z7#QX;3V_*M3=9lQ7=;*^85kHC85kKD7^N6k!E6SGb&S$*_BKWhs2U~)21Y}$UUmis zhJB1iV73SY1H&;!Ck7UXUM2=cX9T-F6UJt^)u9Swv)eH+Ffce46y&5bWCmp9=cOt{ z1cQV;AZCDk!N6!}q-UsS!oXl;U}$M&U~FYzs9<PpWngAyY|OwQ-!u#6LZ*<Wxo~z& zhZ4fI9qLfF00YAW1_qF;SqzMf3@0$dT+Wm-fd$U4n8*lG!^p(UFo}@?6he#)3`{+f znBeA5nZyhipEHRC&R#N!9cmXV1H&XvC|iJmVG<Wy@0v*>U~v`(2Bs~OYCv|em@zOg z?U^(Y>;@JKBV&e1lMw6$FgF_-7%X6dg&wok0%jPS#bS{-*i1%{uEh}dgHi&+5+<lP zD4Lm(*sM^t2?N6tHYgjU#t7_A76t~kPfLtJrh!rmyU-F7Fk6*@fn5R=MUWU`0>w5D z0|Nsqw%EZY#=z8H$iU#SkAd->Is?Pu`3#JHPZ$`KR1s!^>|<bL%jTNP(9X~YP8|xF z{=p0kjK01M5)6zCoDjPixEPo~VaKG$z`$t2zzkwDWH2x=Co!<V)i5xy!r5CG*x>BV z4D4_=BLfFG{+JmUm`^eAfZ0q849t%hc;RZ)8TjCA1_l8*n~^~f7B0-67)0RWTnyqc zwgLl#B#h0#z#s)y&&I&OBEcY!B(4aymyv;iMUFukEY8Hhz@o;W3TA`yWfOxMjLpEz zpbl5B$DjchX9R^~QbA5;afyL}zaSGs6+=72REA`RW~M3z4+b-aFa{k4amE7->ljWj zG&2M-m@pJD#4;o>wlEhmR4^Daq%l}BBrtwpY-B8CSjCXQ5W`T%P{Gi}c!If-p@qSe zA)6tIVH?9C#w&~pjF}An3^fds7$!2zVzgu~XPCm^#E`*|#qg5hHRFB8M8;YMKL&q> zT!wUpwTw@hG8nWOG#KI;(im1UxHA1>bZ1<}5XlhD;Lc#okjGfdWW}J#pvDl+5YG_D z5Y8mPq{ujdA%&rlVGctO10PcblOuyRgB-&ShNBGO47^P0O!AEV45bV+7<w2&8E!Df zGFdX{GsrOPVYtkY$-v2|$E3|Ti=mXEp23E}hT#ok0FyU^FM|_99m7lpSB5S|J*EW4 zSq!-hg$w}<-V9buflO`;_6!yb^$dm#HVo~IDom3ZA2YNuEMi#2Fo&Um$$?3OA)g_R zL4iSy!GvKsgEG@=#$OD@4AU5<Gn6w_F{Lo6G8i+2GJqn?j3I}?j<JYQlrfp1fuWos zgkdV99%CwlAww|33x-^V%?t+^jF|2)TxZB;@MO?uaA8PfJjGDVP{MGM@h;N=#w`qX z3^N&Y7_TvuFf=nXGfZdr&%njFn8B0bB10}?1w$r-F+(TgJjRC%#SGgS&M<sp*vjyg z;WUFQLkGi3hE)uU8KM~$Ff3uX$&d#s^+8F3feD;4pg9LD0wI`qV5#K_BNH<VD;qmU zXj)EUdU0r3VoqslWJzXjYH@O6PHJdsL4I<E0HZJi!=$MD2fs)PS<gDfAi%&OC@!n6 zt8ZZoF%MkmfS90M3Zh}y{{R24w-{Jb*Z=>osldQ+jrsroCprv_HTDb)4D#UGiGi^b zL>rnLIvN|Bn(A5_o4D$l7#q3iI$5|F=vtaMyI8ooIyxDcSu!vbS{fMS!ORAg&bI{^ zn3Nb8a=tP!FnKXBFbFa*fJ;YET?g_z$UUHX4P07*OBF<&qmY!CoUM>jnwX=IoS2(h zl&D~qo2!tfZv?7$82A~$r78oHAILsP9l*@M!2W{)QhzXogTz_D<t8%&1BU<uE2tg? zV^CcSvXzm6fkT6V9j?ZJfd^a;FnNRY@`A-dYCISqwK7u(NL&yu9>5?DQ4bcEfQv^k z$b!YW85lSc806vNIUwx}3=A637zdTvj0_9{pz=C}fdO9LgW3g*3=CY+3=9k@3|##; z7#LU#85kHqp#%ywSm-H2%rU5DVAyHE!25}tfk9RbMkC63P?#@kV_*=@{Qr<kETg2P zz)D{~uUIcJB|j-uFF8L~zap_f-%!s$pTWkyq98FjJGDe1DK$Ma&sORE?)^#%nJKnP z;ikR@z6H*y8JQkcMXAA6ej&+K*~ykEO7?aNHWgMCxdpkYC5Z|ZxjA{oRu#5NV8gBQ zimgDx`br95B_-LmN)f&R3eNdOsS2igCVB=+b_zB{DQQ+gE^bi0MJZ{vN>E3ZmzV36 z8|&p4rRy77T3YHG80i}s=@zA==@wV!l_XZ^<`pZ$OmImpPA<wUD9OyvQvjKmn3P{y zVymPCHMSzR0B$T+zrz$3WaO9R7iZ+-P!5*{2N+0Gft7PnYGO&MOJYf?tr95Mbq$Pl z4GcqI4I(`YBV&j{-~5!!v`U-`A&S7J<rjtI=jYfeLE2eL3UF(!K)S(7Qd4l-rf;WU zqYny&AQv|f6CC=Wn6OhA1*0J_8UmvsFd71*Aut*OBQFFHO}x~+6kDZoC3`!D|8E&8 z0$}YP1!Fw}1`8)oUlvfil!3ushB1nPSz6UyhKYfJiGfLm$)17D(AdDt*jR?ij)4Qz z;xRBbFqC03N9NeT6hX{_j3o&025+6D!1nuUBKHG^Cj0P^|BskVJe{561A_eBJbhfj z17%Dqi3J5YAj@;}N{WKqofIM>qZHU5GO#nSGw?EqF(@P^7Z*4N1o(j3(=ZyuM&NJP zAT9mNx*)SoNlk51trzgMm??bq;w#Z6ggUG&u9Vc`WCjL?KMV{EsmTRJB@7IVp!T_P zc}W3?-NC@XAW{?&8O6ZBI0wW|hp;z**hvuf5fHm5B*>Y8f$;_d1A{_xMq&yB1LF?{ z1_qrZB=K}4Hq>5_qqto%iwklRD-{BaL0szMlGKV4kcrOu1(ija=@}&o;J%lFXI`?N zj)IYap*aHsD9k}>7#KbWg2R$g><mJz`91@K?f(D&|L;bKdF^Ll*l5ncz_k-0reVRr zAjr+YaAIdcVo@U4JkXdXQ(77W!>8p847`yH48j*ceVyVoV<WIUBaagU1M9v2|39lS zFtAT%VE8-X|Nq~M{{R2Gn1O-$4g<r1y#EIn1UXnNn6;Q0l^B==8JPtc{~rN$SQ%Lv z!2oO!sCNYIJ#%t#|3AX8Re*tsk(rr^g_)HVl(-pdL4%1bf~-P{hK_8)fr;!&g(60c z6BlwQJ8e8D8g%i4ig8j=6DOCLxP+vXs+zinrk07RnYo3fm9vYho4bdnS8zyZSa?Ka zRB}pcT6#uiR&hybS$RceRdY*gTYE=m*QCi)rcRqaW9F<yi<c~2wtU6PRhu?%*}84} zj-9&>9X@jO*zpr5PhGlv<?6NTH*Vf~_~`MIr_Y|hc=_t%r_W!$e*6C8=P!`I7#Wzs zz5)>tpTR~2p#BnMU}9uqVPR%r2l<PUshok4iCK_^Rnd@5$T5&Tu~1masF6d&Y2w0- z2RW6EgFc8R6<y>KQ!#m{`Vr(cu+NC|SQA-3gL@3&uiFgH3?L6NGBPnTGBGnTF)_0+ zGcz-@u(E&vD;p~qut5Pk7;u09Cmj60&EO0&gNccWg^7uUlZ}-PE=M%u|6K+a2IK#? z7<iZ&8JGl_1sUua{)&89`f$sg3EPg|KW1^lHv4Mg?&uv{F~>#E#NVAMdfdP8+8%RX zMYZza`^{f}g|Ezfe!91;?BMaJe<5e4J}v$}OWS$tC7mx@q}M()+ws`!l8y7fpTXO| ztPU?=OEH_iDMfCwmWRE8=>DjsspZcO?hVhlyS;0Y(pfXF$!+g1g!gJIJ$aKGZF}<8 zq)NV!uf4aF`xmo4zin!J_D+M5Z?=&h#~r5~FZ)*bztUP0a8$eI597%{)*&k;!^A$! zpEA#0Dl?WjO42Ax$|Oj&>;7Su+k#=1GK$9x4CE#MW`{+qPcjyWeJnRe`2M`iPioR{ zu3J=myg0?^`HPA*>wma^(U^aB`&O~@ubEBM=l^;ZHYM>+xXHD<iKVVF`Z9dSR%TtC zT-4*wK7VbDq4)OOtygAmJU(|@OkINEpO<mGQLfHbx6g0iHLY_$&-<u*W=gzq&)ilr z*f}4&!*H;Df7Zr@?z`MnK14i_+rh>Dd3o$@n||r@nWa(*D^hQ&q`%&}T|e%1NJ*{J zG3}YT>Qj^z6F5(tUmy2%E9>tgr{+yaH(zyR8FSt$hJuika%PEjo+ZCUwh1o(bxcA< zj`92Yplc<IZ8xpaZ<3hc@m2J|ve_nyvmT_BoUlDwW%?!KS=)+7=WgfUIaPGyz`A_@ zc@;L!)j51Y4~`aCp0~DHcKq*$WxKg&<R1Rn+cS^N-SlL(RZZEirE|Zqzt8VzyfC>f z{&eQ?Yr9t*G)?XbE=(^>k@H!yF5+=xxH8A-IUoD{og<XW?#S73yquM>cgDt!Iek@f zmH(zr*>JtwJYs6LbWq$uX;yWM@9VgaL>*|4xV+SbJ@t+6$>-TB6X*ZsNZTe?&fi(s zcX(;#`Xdpl*&6E}s`?lmyFGnlc$oa!d}nrXZDY=)r5C<SSFg72R++d>;IK+5(^8?E zXX-1O%Po#e{8@dv<n^;$Ba<1=pE67QXRv);cJ0lQc{wWi%n~-GzpmTHF!|ni*`~kq z`q3qa^?ojzx>(2ZMg25hmrHSrCa8ZFw9;-kP-}etb!6G*J9j*1&S3B>ym4*LyOn~| z=UH0VO+E3US5|P%teq2A{Bggs<!qU+(3`z?H@W9cbl3Du4x3=T@wU;f#x0CTgRYpw zH%t9nQ)(~tBkF42<Je8!9MdkGnjz!)tt{gSvrJx`HQ&}}0&%`8|G4bx+*fht?ZGcy z_f+KlJdc)G)js{YZDB!#q)$)TlDSt>zRGG}Xj9v&tEg6ZO61AkCsjOF$uHZy-?vrm z`R3+!Uv|qf>(vPs(j2TR$Crus`}^M9llyVH$5f%`ewR&W@ZYP}KEKJ!F6Qycy&=x$ zm&{xjb@I*9Z5~JB(+{vtskwR~`hZH3?y`!-_6L?fJ%8az_(FHvqpsQMe`|VFrv>Fb zHu=xcCADwn(u4M$HukGCFU@GPxt%smZGv9Gr0AI;EAv`6&U*1?pK8XeyKAS;?^5da zzj|kpZ|dh0LSf1pn{piPFD<NEd-mLfj*?HTx4lIQJyvhMx};!9Q)_*D;kWhPwe^8J zE<d}Z|17&(lP^koN#DZ==83xt_-=eJjyuYy;{9X8_JyazwW|-#+gtz0p6$@KU&&q@ z&KIo9-O#M3{QIH%8P2#r;nON6AKImLbXnGPfm^Ce-Uw;0VCFnIb=!(E7Ey-(3<3}2 zcC6R9`cL`?+xMXM=<MKSccLo$MSj&>iZ-%Yz4b(w>m;>1dt^2oE3#a>H~nz=h2yD} zACA4NH079Oncg1ME;iX?%@UhQw{}ms!II*7uE<})ZlAdMp|gL&zFv4ZFFwdx`JPEU z_w5(oF4|4Bo-xa{HNr<PWOtG9bN!tif3kPWiC)-h(YkLHcjX$<=2aT!_lfsqAK%j7 zA*Wf<+TU#>ZQ1I7E6txjF6y46aI3<JiNd)hhVxcS=I30mUR>jSajWH;k`BF6j-@kZ z_<w7iGVy0h^V6BLYA59;aOiO-JhpfppWO6ouWQL=_laS`-B%-C>eunVuoK@GZO`+% zTq^eJnSAq!naUDfYWEGcsQh$EZLpp`=lbMqd9Jv7?=siE$<eR7aPrxCk^JT7)$Y7K zb1hdueez*9$M5Sark(qDEdH(c>KE^2FEcJ=<mgE*(BkGPvOI75a@#(QiKVeNDy<76 zy>=>RXl`e=l-qhUT6f9UC<(1kuUGzTe{}xF;Ro-J#0xC%G~Lg8=VjHj$(Fx$->&J{ zJWbE1%Xj@v_0kt&vG)?6l$<NjuTSCU%G%_f{hxtT_eT5Ts4WNf@fEBx)rh>ZtjO%# z;q6|3`#z>DvX%Pw>g17fu@@2+Tt_QUC>SVDJev4w9^=0&9hTE>UUHT0Y-vB8@Fek@ z;M=ZGuTw8Y>H5t`mfccjKjZx^`+uCTKkDugUYW7$-sZo{mpE(PJzAS5Wqmz^*+|*> zX-u@CR#{EY!WnG`WWt}`?SGT_G3@gpp^8=3-ZR#kz4x}5n0__oK~C@5WUW=VJ#~tE znpV$gj=#CRyG~YG^Aax;r;?%PzR1+{?JbNGBDqp$?iHz7Am^X;^FPC*d9xqB{_A(? zcI3q^Z{1WBPsiSNx16AHfb~?~!FT5MUzhde$Med0ye&AAxH$UWq}}$t`hqtPe((;o zdbW0D)Qw7u-rPN&i|@Uh%sG9+hQnnOHqWV-+R2i_H*<aDmHN!{LKXK9a~D3+XN|~y zuuWm=mA#9$2b>i;lA8XGeQxvJcCUYn-`mOjQNI4=b+`9kv)`_LkIZ;VX0P88{n+-+ zd%KGqzgU@nhM(A{`JbUF>)+{k0e!VAB`-{(YvXm!s(4pEJnNS8oY(eSSCF~H^W@tb zPOy9teHrj5D`-+_^7`uk42R`vefD`)FaMmqykge%;OnjX`}Nf>B~A-c>xi^E%*E$E zU3pI<`<C9zAJ*qxGg;5@!cNY&+WlkM?3y&+ixJaxi%v0~2;E*i<Ho$jS~G2A!e6Q% z+5bb8Z+rH_v;1v;d>{Gp$zJRT(VgG*<t1O?)>~I1U!5uIJve7Ov+f+hc%C1p|8f3j z`0e>aJ}{sEMn$;K$2mL;Y|l-v{o7lqF=0;qf~@m`dJ9rFT9-Y({9?n;uVPnLUU^!( z|KWM9eQZnDYTT96fB5l{Zk4mz?1#0k(`@@LIf~zLvq|+cFaCSz_^s{fQog7DP7Y2K zS^Uf})+M?0_{vh52M_uVd|9vmqn-cg`<u_+Wb8A!Y!m(A-KD$JEY5c%&o%jUX5kcf zg~&G%qBc53+uQ>u6vo<kK929G$|+9|ix+%($c0yQ>J!bpha7jG9%tHj_?^4Vlk)Y; zme0LXwcDgp)IcEb*5W1eAC|S3+{>G!vUQ@zr+ue>guI@k^=Ic76(PgEIr5H|_R0O2 ze|Vdw>hhagxlR8*`IqK<WyzeUOMUm&-wZrncxmBf8{ZGyuABcI`DizF<%{nZPS{_H zdN{+)?gPWEJ&h+VZpkTd{Jyc~#y@4x!j;Dt)>vOr-@Q#EratRrrpTIueLUV`e*F75 zzpS2T)TUSzw(R=C%dOM&IrTH!=l=D#`muR=<g0snP5&7jKct@Pw!e8xd}rIw<?TAB zr$szXI;kPa*ffc)lI42&hqHU!D<ALBeWRAEE5*j4Kjof7UU24ZrBk8bWbfpbCb&6T zYRA1Se{jBgR@=O^{g)K>-D^BEE!=QRv+Nn)Egz~L{JK6p@?M4Qvs|lp#jJmLY##0q z>uGM@@y_1h`=jlB;=DH2hcB(zwr$<B4`&MnkLdU*iC_Eo^6jtZNBrOV%Dq2aXW0H* zIk1Vn@0D4qavJ~pwRZ|W8b}5)Xw`*<COG^!cinsY#M~`&nNoLNeb{p<jj_IN(!}Sv z*8T6NI#|?{GTS_<R@?t@t$Fm0reD%O*UdZ9*8ja>>Ky|I6#+*X!5+cua|BPnwiC&I zq13H%RKjpyf&bKFOxtq=7EidzEVuR1(>>ZYT9cQ(o1fcXZu!_M;^tA)ytwBZDzYE0 zZ~YVgAnn>7%eqakiq7jy`xJBREYGwvr+1xur{tNtevk5ml!p1!wWr!?fAl``z3{bE z>Ab~BIr_O_E`|qX3cWe{^QU#{cq~h(%h#CGRNZ{E>R#ug2piL6-f8`UeInL(104#^ zc_!^Va9VhBW7p5ekHULOyZd_uyq|ez=P%EkkY}XyS?BWp8ME(l^LDK&JLcvo-KTx( zKtkb!<DS?2r-$u7@%^)m8`nA}yQAxJ#r=PjIIpP*`FOtL*z{b!&6O+8E?+Vs`c7<I ztlPIct0zr9s&rDIEO0yT+*5`J4t#mvYRCSgF?YeMeTvr}MqB7UYE*4F5ix(ON9fat za~#ELJiX^?i^FRqSKh1Gd~Dk+*L_nn9|_veEV$soI%U0z)|!i*Y|5El<|lV2P5!i5 z!+P~Q|86<?zw_V!W4Qgt>xbT?h-?FY-Mydgp0(P$<>F$4w(7{3j=5>K>fS4SoZz^A z?ZY^u<&Eb*TzPf;PWkR_x4dghZf{?De$j(-vVX69%v<!`D!$%%%@6k9f&b3!ll?LI zL;b^+@>%VFRISpFJX~4Pn6iChuCDHV=RKEljubyWJ#(J-3&~4HvF5S|SfBq|m~F7~ zTjq?_B`*pmzK=h8|Bd^~m%o<3J^La1P_x^{%kRF-E&KRYWLx9INVT2YXT8z6cy^z^ z*{z5>4eyT3l>FzoRs6T!#r(*Gq&;tb?)<7S>(BXPT=yf-?AvJjy!_L%vUrvLDF@Pu zj`}SPzdD!yW(2>Hkpzz%Z^El3d!qf^E_t5yGj*FNVi0tsR7UF1l~RrFDK!t~$Mk<( ze?nArm+cJmGfDTdCT5zwRZjV{Ttf1>{HgsmTWvGzAMV`4F5@#%{)f9w#O{=YB|j%+ zR@8Y&NLW7pDfPSlXw}<}OY3rj98|R%7QD^*`dInWe*XQL{~1JG3x7LQ<R6)3|I2Q9 z^24`j8hMMf)cUN~I{Wq>+VOMBmc#=G*;yX1T)+FlOf8EW;gf!Z%)cvE@T?*-NpqJ# zS<$Bbt2aK_zg_<A+(+8?ZwVi_6Z_z{WZFNe-QK*~f!-N+@4bDaJXOwoN2$OTl?k^6 z@_1%X3S({fbL{FL*N1bHLv~*KIzx1R(AFIuGoRf!s8-G{$?~L4w?}Y-ar}z=oa=H+ z{xkIaGu+xJWSw1dSx`_kRQ$Wk13kk(@l#9Yv$waH=JH3jAE_!``m#1Xv}p4|k%slR zo-h`jzES-#zB;;Fx_HH-%ipWMU-|sHB51WnaB0}~mw(pXJ%7^sZh-3p^$%^m1>eer z-O^LJmN|XM%a|#@;JM9{gm1R{az372wx0d4t(c_znOWIF|Dql=d7IC=lb1NDaPqu) zTYs&5yuRr_1AqUU?~nOAwuK${zy77xJIq`1ZAyy27N@rguUy$w>pdGABvKw+f3mz= zBJ*2R%5*cKgFICwUTLAKMQeVt9zXr^Ty<aN`b#_Fjauf+sj|(#cl@DD`NZ(ksc)7| z_ElSZ>)X$qGu(TfUVF_yyg$XarK0FcpZVizFOk+0=Nt}Ao>wh={pvnVv-^x0M-QmH z{FZLpka3RjILl*O`$KyUAD`ZM-MLd$a975+#&QkTiF=MozVo-?yMMm=(XkyLx$QYs zq!YGZdb4frPaDUnCm8sgndjZx`}+0jkl-%Qth(~P<JBI1`o4YrAu$!L+Y=*8=Grvf z*Hm3}$KiHQ<Gg+IwmzRPx;1H^<rUp!L17mYTiqT{TFF%}c)G~*^_*JmO&`y`Q9n9; z+Don7b~6(uikx_=J4L|agz8S_KEo@a^LvV3MwK6l%{#bIF6&(Pr-tYmN(Wxf`Rl*% zeT+cslAGr{!n?cQ?GM`DyQi~GHA~E}Y39zY?$X_|ub<}U6;ypY|2TesoYqINsSnow zP@TH=--?Bg?D(rIE^O$p*?z&7#lu{N>AV7i@Y^}pKYxA1Iqm(UEo%z}cz$i&G@;Vw zywHS-FR$Y-oLirqUi+IhW1sXMq1lxt(jvEI`X#lzp5!}8l)jwxZfT&C_{6U@s%t$@ z)*F7m|2BMG#<cp4s`FMCmdkFP`trk)!ZU9_B|Q$@$dLE_Y{l`ni*C*Dw3Em*sIkBN zPXFnSkG6|%IL+ux4Yu)N@l|HN$i0$#gN)3h-S>ZJq_^n&N&GF&&vmvSSLlA=hg(aJ zz2xlwYsOKYDr^2Q+M+1DXW|^e&&%KDKJu4~jjECPkl(Uq+0LEy;*qxB7F_&!?fc1m zj-rHFnvXKMU3!&QJ`9j)V&gwjD4H77?fLro)3mySQ!jcI<}W=z+fMt3-S>y`Z}OK$ z)<k6A4L(x*W8S~V0dwEntG@6#<9oi0{jQ$PYqEk1d&A7~XK0+${<`?_x4*&Pp8uVx zx@lWq<(l<-oQqX18@s&BGMTSCB|+$T@#4yKhKZA#SZkDjS61x$^!d^L)*AbVFP?bU zItOo$Oj9%4o;u-hh7$7`A<ihvm}SbT+*jMV>fZg>`DiV3$bW{W8Gi&n^saen`gU9E zqqn{jC76^aICA9&m9r;F=UFI5FBJW$z24k!uG`irS^NJ?{d@e{XS=f9H-340`uaWp zc5}~_*?}|HuKB~5)tw}yuNn0?Y`#(c?Pu@o{C$7>S;%I;nXNf3!|&bV{uR%Eh98aN z-`iJzyZ^XVzyzIH<qb7DXWCgFJrBMX@qtr8ws~^bZ)IOysiNCc_u6ibpY>e4xa(8= z)bk4#eARC;S}yaTYkh%~q|u#*ng1DH2OTXsUATpR>WK%xu3T>|D!$$I^SiWc#_@TN z9%)=T#>v}u;QM-+A6q{%AN<FE=}nFE<F!fW4_^z5YMt#_zADB!n<pdPA>yR5)?-=U zvU?hp&n_+dt+Qs5o`Y6FVNc<Y@B{zE{!aVPknZ1lPdQ)Y&X26)L08`8J?`Av8>Cpj zLMg_>n8jSYE@z^X=ZP+(6`U%3+4oO`n#T#vt}@;J^_R?yR#o2}^WEw$$ZvN)s4wvE zY`oyQI<A{Px*z%O_^@oP{kQ3DCDp5YB^)kzOMCy_Y~;M$L;2h@5A|uj3#K}E{nMzC zE?ggxRVT5n>720czK)H|I{RNMS32#KW@IjA)#7|neBSHdmHhP&Kgj<PtorbxKy~S~ zi682US+_(A9$}kxIE(K<+WwwcInnN;cJi*rPMF+akSVaaDe?6`LqW3L*T1b6W^2wr z^V6A9xp3+Czx+4ex7?RCjc=O2+5XU8^W*bauFm)Qs5Y~_bXiuF&cv)k5B45CdhFQd z2Gu7;m052$xIAgKP+wX-y~REwzqwwtRMKQWYxcEIuf#TL-O1b@z2+;2WSi6J^rDUD zC6yPXu=Hgg-^W_f9&+U$`@eJ7ChdFiMmV5Lre=4dxAmj$2}Xs_<o0`A{?Yqk`NQ<1 z_Wk=5>O144FWb1ReyFRvab@(<W0&;xw{6<|WOXhJn?&M`>$Or*Mf;BPT1}X1s<w8y ze{{}&hBJRU|1&f-W#zA^@z`yzEwLnop-QK)`9)Rpk8kTI)=3^)bnNGqp6LMvZVtDP z?~l2@@!xf;vbhiL%fF73zc_Wi?}q)8tSj_VswYj9n0TdflI4`QHk$gEyFTxgx^~=e ze&FSj)0Rqqp9ETWI<uzrdj6DQyR~$;@MY8Uo!y0-?4&JE-+6uZ;I}`0Rv-I9?5YIs z%hvv_)!y<UbW72zTdF&s_^x~T;^u>z?;LxQUtiiedCBP&F=x{k$GBHrJ1{e}Sh$6q zb(`ny`=#Y}OqWYJY;qrRYoCxan|xHtCNlMv)IU}UW#z@i&0p7fx^7!jaYKjIy=&Q= zlAZq=_H#c8|9Ef1^10i^(*OO8^#5e~Uf816$>VeXgyc`ApVJRjrc6FQ>$ZdYpW5gq z>-3x@JlD6`o?Ei3=S*_gt%eT;1r_gOc1(R|{HvZ*JK|^6G3)(X|1Q|Z%y;+4x>tt+ z5^o*fS~SsEx}@ZQ&SJ^ulI!{|y5BPU5?~mA%=GD5>-pRKbA7#E$lO#pakS|aw}#CF zuIr_}rjg1WxuI___k9g|XZr6PM{k>uwvgq6`rf!1`B&CSlqH^j7`yWKa;vbEX}5ak z^aZ(SxXXO`bF||5Tj9j=+7Hfg%^uFGhdI3Tig$D}9{0a2VXJ+eYr@$HTzzb{*+=a& zyMOnpf2;o}wm8#d+NC48UMIOlO8@?Po*7r%XYu-dbYj%Eu16U^^S_0DxVLt}y%^UO z2TrK;cIM6wXHHsYHmTX><E&rdkC;|vPGpyq%bI^g>gV)ti9aSj`p+Pqbt&W5-^;Ns z)80Hd)tch4AScMH=hvJ$UB9Z2Z#2BTDE0=gQd8CEiOuohr!$Pt&)X`t?CrM4%bfn6 zdeXnvB}MW-gZ;xOrke{kbjh&(^!GadY1tb#yQwU3zvlnH@R$2S$$qs5r)GpCah|ud zc>6MLa?Y!bwR0Wp{xf(Tza%D*lpc_zVN|<2X}5R8+s8&WJfb_^pVR)SEFQak<?p{* zWfyAOlK<Y$)rz)Ud*W`i&VuB%fo(GDt|)Fk8_^i2X)eGu=eg<g?M2Idr3xkfd~Gk2 z+*N&b#(_x2$Nw3wM_jPBIrVOL+2ns!VIAp0410Qt-$uJ9MO~Qm&DbP8@woHEw_XQC zPksK+@M_82Ik$HmD>&+Bd~0s{GtWHLDZB@GKKq>X_H}L1n)7(x)H>bweRHmc_D0Cw z;oDQTR$o`))<+>{JqHsBufwI%`Bs-RlEwJS`KBJvoR+EVv+nlnGs>?IJlj<p`J{wv zC)eQ*YwlXz7I%{=wcWe>+K<fY7dMx`nd$syC6i%A`!wk}g}3{r9`;@1`1#iKsRq?+ ziuCw>(s}HyzRa!D*ybq`={kMKSB6=S>^DwaFpWXXEx|5#=fPuz=a*Jhbj>}NrD<Ax zzEoTKy6U3rbjinmQ`~><_!s(YpSrJaj@su1r2;1=E$KM*%4QqOCw_Uos;=+5*P7a$ ze|Ed!DErxC+A}8mUrwK@Tgtf2dQy_Y10JJ!JI|ISyt;Q%X6nQIs^^^PD|HNVkI(qe zQ1bZJmZN{SPr5Fo$-+?hD*LWUJyVVPHIt)TX1)5S`Iu|9Qb&sKD#KGNdOJ_N-ccN~ zet-IH?w4V*!bc2pCN!`f$S#YSIJrHHy?OrE_T^0b`qnviw|%gQikv6s|Hvlo*(b}j z*E8jIoU45MKH{JHrK8_EbqeNe;yte3#BfsdSLdR-)BCv>Us(GlKkVJd#mwg13JwoS z4&|l>zPvJT$>*4`{l8US_)NBM{c5!P;uOcC88Xd(3g?u+-n6R5zGwM+jr$k>GsHJ8 zF}AUpJA32L=gV&FsVWiJ$hwVZ-rj7-E#Je=T|Dn(%YJR&<SX`R{hd)Ig|of&tuq*A zR|bXtbhF>H_WY$i=fgjgch=Y!T)VY*^N|B@wUxHy&fCFw;QYflJEgf%d0!Q-ud<aY zZrLXp^T0>QVK+YuW3ZQZl!Z+bhkd{3;^Nd&PWz1B311odFYSE!PR?W2Egs<s%WW%d zwIxn^zQ}lV?YZ?sSv}_B(t^X^=jAN7yZ!AygV$R<lNou5;U`$kW2&xeKDgZ}mO1rj zP?zJ|X=!SE#l-t6%vvAFJ(?Twdd16o$09FFId*VZ$RGXlH#@@7bdQJEpCiS6GgnSD z-*@EDguTD`uIA2MyNI{QS@gmDtf{_IpUo<J|IIJ0e9UcbY^G#%$B6OxY56HTzdSuD zw<LVUjl}|XX^$7=2*%u<IyvUGdDN`^C#BYS*?!!)`9DJ~*9!rI$CtKEwO-Bj++)H~ zn^aYX=Q7XdX%*%(OgY)K*T9{n^!>FBEt?b`?>L)(c*hwJi{tBUSI=6a(=I9gpP|xr zXV<6vEpFnBY5|WgOC%I&YkBNDR&(3p*4_CEvollM`~EX%ZS<=u+Pdyz<B8)BkA@a+ zY}$D+fA{>nt%p{foBgbLW0qF*qLy2^`*wYp>-c=i7iX18u0|;gOuji6_GG^@a4r`; zpBY@S-Y3IUn_n<XE;?cD+9zVuKTZj9kjq}X_55?~!e77iCUfq-n)|4D!a9jxfA;Q| zIz8)@*|x1+igQ;r@a>IWus)posKl+HON)QLD)!f2Y`-b($NER>kHj)@&sA_wTp_(< zlBMgD>ta4V>kr=haFR1dZeE%D%Gcfx&)?b{vteVKeCIytD>>^E&d)AQ&9=STGx4}$ zz{it9o}Y{u%1i!eyB|N9UcN5YVPd758RuTkpaYE8Wh>7|eg6GdV@)QHj#D4A{)xkV zXJ-5RX}`?;xHV*LV9cYH6P@Du+Aqx$|FQQ$d}kEvnpvTrPHfklw65&L65&rL_89Ga z-Nah?pP|D<T6_1xm8a#rYL@gd$Qt(@c)qq^*MEj~`>kKHHT7im-iklX_Wt5MV@8gJ z{GND2J~zj3cH7ryb@s{s@Q>M?oxQkv`NQa<h<j&NeqJeIcrMjF_>b3-C*eLn=C!&^ zx!RZU)KuZ!Rx9cCY$oP*F+FwXIJLO`{+T!Pe16u;HGfofcXR6W1WmHbxbcb6=EKeS zr?Woy=DYmpPhKd^Ykl;Yb&7`Ix-Wk}9q-Ya@lN+?!oGux*WTyLzAs^-8N0{(;mNHp zZir^@mAHMb!s4^txgOQ{Z_`gdnRDf^s9*h|Nr_r~+V{freoS}hJM>WOkd4=wO((Zo z8!R!n#dzRJ+TQ60@7YW{@AU8J$7K^)KlyknMO;cP@Gn$QW-UC%r+w(%KedXqUyrg+ zOKj!NT-@>V!<}0`laKeT+SoY3?#_2+*^}#iKm2Ft(pmS#^~(EcVZGv7HEZ8p>~o&d zUC6w@&g${fj8*5Xl`Su}Y_*&(vHwk{+TO&6tKZ7`@=3SU8*aI&ws~7us=}J0!@?Zh z_KMMIe1_)=<2C-I{by*(`FG$ygX~uBj&=E4JWD;3($n{C?b3D9a6iKo`|{bbccyVg z(Ptja501}>_z`{hzTno=YxRRJDen9vA~7v9PBXRlvYN+{9MQ`*rH|LgY1`U~zL>?f zxO{0;rs2zrbuV06oxOI4Bz8ZY@#IPK?&bTkuN;0Rs<d;#n{$>Am8+FM>K~Q=;O5^h zC%JKQ#E<aD+&_}H7Yp>eTw7y0=}->iuJaKM9t*i1=g;50&p*GjPP6`?ReeT3&x^-r z_I_BlZL)&v&TC&z|7YOKb=+MoIUz36IEAs_BzdL8vHI1!Yx$(hX54>yZTi20fKT2m zX>PYqoNkb5ysdjQa_6=9!{3tbJG5oHoMhwhnz8f!#wpBS?tWdLHeV<y{HXr^;I7JC zyN-YA`t_;(eR4vVmT&r4-eTipvcfOwy<=zTTd`DCzc5*|w241$Hb*}+DDGQ+c<mnl zMHS`|X0!A*3hrr(J-IwfDreedmz8~y>V0B9DNLMsi`RSoyKfWy;ko1WuQ&cF-hMHw z^y>4Qx9)wq`FPstw}#g2Kj&RBFjnSS(*7)Ff;7wZbMuA&G5tGlFOr*bc`HBb>!_*c z>q+<8?d!%tBN7?wU(l>C+jfy#1qn@9@XeFRRwSsJyyq`mXd(+gJQ(K4yMT&T7j) z@vWCHm_6CMt@BA4YlZgH85bSTyWRaEwf|wh_{&9iAAMZ5<5%pttEtg*Z4b>6s>?Lj zTA?iS?&SMx`zvj{|1+>m{-M7*BJ!0K@ACF7vYw3k{OzXE?|E(VkDpSwYr5vi{6`wQ z_gX%G<lj;M!DD{+Ez`qUQS2RCGoR~hdVXY<*Q=LW>Wse6rUYm86-4p$dwty?<KDV; z%AET3GY`k>to}Cje3L1^ctsrd(Qf}8QkSN(oJ^Lv9lr31SNFv8tdZ^Pv);c;yz=mZ z_z~lmQaxgmH74ErR?YeE?1o7aKacWMDBB+~ey8=lt3HMQ7Qd_E-^B;NS$+BTywgT~ zz1!!72cLO+|7X|~bF^=_GT(6v=DwPs+mHB<^|$<9Q{(!mw))_PslTm`uAjZuO4Iqd zwAvLV4^=0TFQ3i%iVS#b^`xze`gfZA^*37<vFq6J%{PuFyqWc_r(5*I4c8+qY_~WQ zKkFyIKmIhLPXCJhQ8~?6=cBK#U)#R1yVgr&!foGbo-8M}9qs(mM|YRxEw;(EDS1+3 z{fJli@UFuZvmfQQ{#&13s$t~4?EY$-j_MX6Ck9(bpZ-I8)5AWhALN&aa!&tH?e?+t z*b0f2+dd`j?d`J*^41AD{?4&f_Po!Fj}o3?q1l(VOurTXf$x^YokP8ni7&3z^e=ol z|AX&tUHwDzx2rd<w<)g{nN?$$C2%v=D<bLBGiBLLp3jVpJ#{9XFc)q(8tBGbA6Hd+ zC|c!$97jx@g4Dl=`sDtGdigEqd*=!NnES|||MrV2y~!(%7MK2ASkY;GWZ~wghgQ9d zNl7p}c+B{m`<LChk4|&nNZq|D_e8_odpji8pSJNi^6=H8g*G-j_ujTHDNnyxuuW`@ z#*Qn!bI*O!e551u*y30{*TX%YtCy}aKH~P~fnMc*hOeQFkG6iYxfz^s{JMQ>!9SH< zUGGA#=vdzWH1`HG+kTT4z4NP|Zd>!wzb8(6_r*WDb}J;7G#2jRW31ty{W`w!Kf@ON z<Nho!=S!GWSO5NEeCwq+r_}+L9Y%K#D{1Sb&e?V&vf;Sg)i2-wh&&JP({BtuY<lFw zy@P9S?%lj*le^r#pg@JN!|SKTv=$sLI3e9&`g8V&npeA)AF%)7Vq=}0yZqqab*lTX zF76FjKl{7xLy5aOOA?=?*+rE|=CQwu(VTYa*W#mRU%XrU$%ZG)s_@9M9<l8{_b&Wr z$gmf_TXFwL)cVFRVH4j+a+>>mdnwUoyYg8|(a|dPQ=Uscv>)e}`4R89efFCVak>|$ zJ)N2!SoHL1vO<^8jw0!TW6tTnuj;>be`wG8!k+Js<wJS?!`sa#d#s=P%70q9w=s{g z-LpH!ll-cZ_N+ei?N;o(l}pa9I<EVCrs_t)W06s6eMw<)jIqm{nDr$jwcIU#ubIu= zawJhT`sVvz8GSXc4UZ>&oUmY(^}5^Dw>Dq=r}C$8Py0g|DU;n>4zGLFTg`jrsMx)D zqhM=}C+^dX?w1$na579_SK6?LeeJf+htj!DjM^t<3ibp$i9NdhjQ4pv_xBA2j8FY# zwV(ChW)J$XZskYc8eY~V6I8bSXSl_a>#3bzZkh4tyrQ3^D&wBJ3uOKrp0|CE_QSh% zuYL99W*XlX+!A~9{8rJ$@za~zT-DzTFr@xI<+*<4!4whggvXZJ#o4$2oNs<4Q=9QP zWvTY3mn+>LiMQ0KKeGPaZ9OwZ>gw4k#Sz+#GC|2_RLq`Q1n;(#`QRWSdhk!m2lo#D z&K&hdrE_bS-#VUUbCj=Ubx06@f|11YOMA^8{!@#%X%oKvV@&49gv#<$OZwk++-Ov* zJzSkUEBd@xMfS04*TiOBo2d0_T9a~aIk%D9QMN<J)CvzNoIJ<LFmaOhy@hT|>ex%4 z)m8SMd=a{P(&pUUrT-c1Umc(EC*;HZ&gUP~Ha_Cc=2Y9drSELYj0CNXO)5e6k2u<- zF#qH_{qgOYaC^~GmELZ*=^5RVB3N7<7Eh{(DOtaKYrp6Z?U2js9$eZQVX9#&F-ha` zgpLm{CHfp?b_V!MH$9p2?b)9GWBWO5+_N9Otcm4zEKan&<9A5YaiZv<zfThOr0?3C z{CV9R)2K~T76+MaJKjG3iNSJK9pj>B<#q0Y>tej^k8#g5>%D(_;v^AK)=3X558mxP zl4m#b(f)<+1z&~zihtAoFlE}k%EZ~eml8Bta*dybx8!o|RQcRz75@4A!@K<dg!nt7 z`c_xlPr0`1mgk1UJ9dam22{o_c);Xgx5M)Jm*~U$1@)6BdvEx-ZD~zs=8BuQBX2t@ z-`O%hZJMQ+gzj|1oxLu(jnfKSZ6;`+I%gbl(MvPt`wn)^DL<bE-i&+xe*N3Y57z1* z{m-y@UgyL20<53%ZQLIwiQYbKJ?)#MfuphtgQr~cr=RkV^$%%0`f>il^&{nS+E?cv z`ut<6?({?7+3x?=)7Ltdbjjf$>oFtor$z#naUl;%x5rCu{m;-NzxjUC!XK}*m*2|v ze*9MM-npv}4bQ7C-Sgn~-IMuhKDjFKmZ{S2cTXx@=lqy|@bkgn{xxDh_OE_z7uq5< z_1?T~8;>l#6rrn{xg_ae`*gLdCjz7kRAda-PdJ->`qk%Im)$R)_#4g0U+eb#{C|e+ z=N6jH{3w1{YQx4!kKWxszRUaO;TczpQZ|&f8yRU#K2s`rPt=*`18?2*KLHo>*Z*gD zuzWttyEo~RZoI4$`&jz-&`K5?P17Z5YBD{>=ax);u3=C(F<$iF#qG29%$L|Fo9&;@ zvoUL)(X>|vOIuG%Yu~j_@!)@VVq!Aqv?uajzmr3*-jDpx(6pdJOSJRtl1)FdA8|HJ z^*{S<uiNo=6Q`=$tnn~DnELwmXZN`H@I?!EwT6Ex%=qQ<)-rmR?fr-T%?~cu=iTp` zFL)_E^D94lh1-S2o|;@?wSo7a>Lnj!G;3(iyyLES^Y^@K$r^SECuN=#{tQ1kpL^Nm zt^BvbAC>GX`FPrP-rR@Xk&pSf-NLv}Zrjv6)qXGg#5>_vUMlsTx?`sOdCn>SS?2#D z{&{?RVKRB+YS}Yw#Zo7#zT_C3v$v@;)!A+|@pE!x51;+q<bzK;ds^lm>YjFcru*5x ztB?Kkp2tKw{Y;X7&3E<t%b(ZVYrL~_CEHeP>#b4RwS8`GvgWR|e%_5fJpz`;#0!}% zPReHA%uCIEI%Purud7e@3ozY@iDWW2C{2FfGw<-Ny*3kX?XeAi<{J9W^QZB_f2tLe zL-zh>XcEf0wK&RbW@+(<hRSW*XGdN#+Z^!XUbKMZgbB;lGZm&<Xvd%U<K$VBx$LyG z#2K>*+fN_==zY-E!}9(0uj^lZfBdnU|A&&@+N?_)NB%Q#y?NW@*<&0N<<!+|@pI;E zh9bZ0pO%-?f*-AjOXGT*p10V7`{ayyRfVtb?cb^@vS0qfzvxHL_O20M`Rn%wjyuOc z)IU%uOHyRmbVY4~MeVC)*J5{bJox*c;nCZ3MTT)p<yNi#_@CjJ*wd8oZ6B8PPfJOZ zKU=tB1LManbLQ`|lsH>C|G@0-h<}oQm@g+yt$Ft0?3H`|(&vB4I4f4o|2o&b>dR^G zO#6q06_<WbaO+*P@X&LK>_^6zck?f;3W)o*x8I!e-NnF9fBg@hzx6(3UVgWoV)bnA z?Ah)+XFixzR+KW;%T>iIupx{g?`I?X?d`$U5BBqAUK9Ay9W(E_^PcN^#d+7cMb9q1 z(U{z^X^)V}wl4e5cgdUwQ%^nGWS^nW{#s7w$4u3|bEaKzEnbl&>~FG8%p!3cugQ0z zISfj@0c}ZDQ{&cXzo_rz{Gjfz>BG9-kNk(N?#Ss}*<<|hY{cub=^yv5==wNQPP^C4 zVW;8kLj@l;RH`0($G9%?^voPLYyCMgb2DzItzXug@$d2Hhq|syuWe;I&GYCMcgyFs zPd_J2QCaAH>~TiL4W88rdBJmvyWZ{NjZ}T!XCu4xxXrcy47cQTF223F_KD$1sgu=A zl@n#mZVD@2c+7a<gz1}=AH*NTckgj4(ZBil(b{?I*>+}D2<eMNZEGw{N#fS=E!W<1 zanq^#vNaQzT{~9f8@}uBj5?b?R@--N-E~PnPp>3<w)e}tJyvYXJ{~TTxE*`AG-tBQ zL{24pYokrMcMcZLdUI;i*N!7@-P5)5>yDqjbm02pFyp{yp0<1aUq1d8`r$vr9}#}n zJs<b?*eE~FRX%Q&*1qmlSXtRW{mVYVuQq0`);h90{8Eo+u9jWW#CgX8&R8&;zB&1y zfmJb{^^f+&eWw4e&gV7lZ~w*Kv1PB-ldM^}Pun}*B+L%J`K>xrapUaYK0ZeeXn#{$ z@FCvx$J74|EI<GD>@ocK{XyQ+{EzdG{L|WTW#R15uFpQrvAeqccZh8-7w0tnt*m_K zOiJj<;GG*B4^3Mi{^9)}q0QeMKD58t_%OfwKL3{$3D;}<|1)qbnI0VPDz{wd^vc-V z$8Dw+8MakdERCF9Qg}l2GWVxGe>G#yw)QQ(mA3LOTkriXdAFr%{+7gzld^19$J(!- z`K$lK`EQ5*PO#I8IPj12$JB>+y(-hUZ~AQ%@6P(@Zp@B0iMUHela)`ZpXfS}y5n_x zoLYZjPHSpV@5E0hxXd5U<A0F-bJmaV{~1`m{GF@(cafdQkNg7#cMh|6t^JyPHtpiG zX=M{jnDc9DmQ8(9vF5qLL7VCstP`C!O+0@yPI&td;}6Y`<&XOFyoleTw)4X=UGs=7 zJ1?0?`+D7v+}?KJW!QFcPO<4LU00mA_Oej<-6xi~2y4aw)_VOye)b26r^EGEs!J|c zJu91g_VjxF=;imFzs}iiwmL{RNomUT^x|(5b5i?sC#|<UA^+y;iNil9?OFb;jQz{{ zqxtRf+v?xmUQ#1{VSlD<@`1Ad4B|HCE2EuF&n;eZ)4bJp?b;(Jd4wXCe!Y6=ReXjK zyOB<T+k(CV-n!ejciYaNT`WIYIk`$mIyrgjojqokk2xGXmi@SJXR43!)7k#DbHDuw zKPz|C>Qwej0j*ApytaJ>e^;e3f2;Xu<gu{rx5S4dD=c?9SjM^A9<9}va4UTJ<<EbH zsWoSRN4Q=4&#?L1uFpo3b+65{S|RZ}sOp2=^8Tpjhu7b8tz7K3CH=_$jq?_Z{AUn+ zXR`CrEbE2KeGMb0Uf0|iB9M|4@q8r%^TG9dZOUeE*)ekmQ|Q?m$KTSKb>T;~*XC)4 zRj6&4>oa@mnckgl&RQ#P88*&o{$s(k@8yqH&R97+i_eSM<=(Kr$bOqE7uK(}X1e92 z7|l;pBkK8IM?763!#BVE$F--ATYH$Vl&*_ipKzzH_}6ul=}DQVo&R6_Yj!d9O56qI zn1e<u7<4|E`1miZn6a)}e%dZ;x4lKje9h0WB+k0_Q04K>R6+C4>ylmP-Lh2cO1rVY z!tjMi;dzO*x_0^7Z|U5NbX0e!nmCE^8~ciH>z~+oU7dd+@XpIGZ@s-6C*3Nx-OSUl z`Jht&vJXq`KfcRe*t&R!%59HHjaL>k|4KJKpZVRq?Av=O%R{n@C0Y1xN<Q2Awzz6v z>Ycz7YuL<{CKbN3eccqU<-OYM(Ux+*kfzF2&)*7qHneNss0!_twwNH^aaufi<2iff ziNC@owAC1XE`J+z-$J&nYMr)g(23_kFVfgmrcTJUcxQNUwSc!&Tfe<V4D)Nhw(QIK zBA=t&wN6T%aI%wr#_*WWmjC;zty{vLXw6u@P2%^uh13823OcmPbTVhqyR0M10n!U> z|7|tB-Rd&2z~8I&V1=me&Eolw9xa)~-JG>#-Lt?yHlHjXZF%OVWp(G|p6rEOoX1#Z zF#Nu@Y;MkllUnss%UmNXTAK7N{VWa~udmvfwIIvS@g#Ti<y-6dRo@Dhs=hNRHlH}% z<I<CKg@2Z!UgFUq5sA!CUd~@$^>+Q^(DcxN(5}ZH*JVAkF520VFn{mFxM_xEmMe3L z{zY3@{8REgFZ%4C>gIW`L$>tkY<4@ZcCX=Q_HOo`&;5t?rlowE8KhVIs@C>(_ns}; z(!SM?;yc#8-EyD5BI?kqf4_dcN@==xPhw%Q%B0hZp{}7{E!AJfN`_jVTht?Z^W=<E zhRg13aeuh|F#iwT@WXGN?w!h)ud%ys@@#78^7%eHHt*fuJ0o@DKJV&jT=g$I)Gyoc z@B1hHpW$G@{-pm5vTxh+Wt<npT5@ctXyW{`E$z6q+(Q;W%j2h>&-xc-WBXxkzR3-7 z?<*#E-M>2<?v_vs?3v)qx99PHhV?=B{uq3mI)_)`l77<)mD;JTr#{a~PWF5`C!uWp zi>{4pYm@5rubun&CAFM;@$c>r_Q&jbUVm^ef50zt>z=aS*IcWgYCQY}N)w)cly9wG zJOAi>`OIc<;iVTIcXu4~-{y9B{<;0<?v})wdtVWH`?%}Ui$AAzKGe?3pHXtp$<BX$ z)UV`+``@Pjj;fLSB>eFF5!)(>#RsD+-@7emlr59ksyf%{WB-JOvLb!j^P*q%z0sHZ z^g7Dy%k?kr-w!5!{HD{mCev^2-L+3y>iooiUJt9&tFgZRmT&gjZOM5&<prCU)h#fP z4~#!9et7;5UG=y252yP7h>DW}4RJ0OVt6l79;LIJUtW9RzRnx+-$aC8Xuqvztv{Hz zKmBc1zW%X)93RzMM7?dktxa8dXo=u~h&1n}>c=NfybpRbul?e~ip%Wgb=CGe{`K`Y z{Nt`z&Yzf@@noLw+`}%#?^Ye2|AV*k+}7U)KdMU0KD=A4J7>?7-yz&apKolc%yHkz za{cM|M*9a#=5J^}lCke%=0|D&3rn?@xIVIYdQmOu>=rHEKZW8s-+~GczHnT>qlWXN z*7>7mg0JFv_JrrIj<R5tI`m6>isj2si}!z8ueQyxdG_}O>z^)vn*6#T#^>IImGyJ~ zGo0xU|2uo1(u)fko0~3hyQG}ZZo^>K}!e=gU1Uq#7neK@;q)3vwDwoEnhigCNR z@#`@+Y1xmne%<2l{AYIg_Q@-D=ZpL7YX#lxgIX*9XfNCUWAT!T>28x9K9)7<uX)NK zB3ygz-<O<ITn29(&sNO1$G<%NP0HoZ*MI%-&*nd(@0U`ev}=yf0zJMe`L*@|`@^;d zJug(zPvCeT`)u)tpz7H-_4er2bu%O-w!M{934J5^=uS`JmDa$wG3H(SBr4v!U0i1x zeL`v4y{i(Zu3cLF#_d3+M9mse$CK6->!($QDe>R$e1G})#aVk&Tpu1!y)>y(dUo&S z3I6tbRQfNAE;+OQJICX-MPgO1XP0<?^Zpsd@u8zna60qC7t-@%uD+P{&+Nu&p2a&^ zAF1E}(f%^<O<#XT*@c{G3eqfJA8mUWbZPU(FXtb|=x%*_ch|J+>Q-inRBo#WbA&(1 z-k<esoBej3v#$@b-pN$R6LR}BqyKvfcg)q7o2Fd6Wz{=h;i!eX@}lXIfv*E@#l~tq zdnR_Hz?^a7{PjxPAMR|Zdm`}o^UFBXl51@nYq_i3=6<Vgw0dGJV9zz{+&SaQq>!Fw zKL5wzxe{AXD8HLG|J=G4fyS}78}=WVU2*c|tk248E?%ux?znF9bDinwm(g4{-<a(V z%m3ST;A%<3%ICFD1JBhK-r8#&a5>4h?5S!}#ALlQ{~0QnBet7uR5B6jlVDnYZ`a<% zyLW0uN1Up)vMh-;60s0A+Q5FxEGK-nGf$XcYih)mr=85Qmg_UGDyCj4+16WTXs`93 zVONjwkL$DVI9(K$U|FnJVf*pK@vT)wQA<)KZT+01XI*>lw`0@xK;<p|r+MDyE}ioG z6PtFv%eJl;-SZ7+_)2*#c)0He@39B9*^aX$awaM=H!W?DZMRq@#h9U^xGA}PyDsPB z-)kKH8pdqR$S%oPWxR3w)tcxe=Nqqt6x*LUKC@%96`2;FWMCX29`sVG_0RXHw^KA% z+-b7ADI}fU#Gh|;r@?)rbN`WRlYeeI`B_8t7#qLLwW+r~lBEmEo=Y-Z`%*ad#rnG^ z7i9%3x9?P*ed&+k18!ckXZFIeS>k3t@2ptM^HL!B<ZY!T4bNp3vVVNG`bYmEtA8z* zUe)t`wUvvmTpCtg{eAC-DXV(4I#n|l>-pE7;@=u^ZS5?7{`;#9luwpPNdBIY|1!#V z!JbVUyDG!WmHAG;vyz*4MC$F~LNO)1%btt5cKV9#Ty)F0q_+InGs!%g*oAj9&loH` zQ29WG&wnOMks5pPZuXTc6F%;nY;D@*wam@3-@eSn{@C)B@kOkz<;jnFt<21NCZ#+{ zblT>wFj?%_@$06d(>uSOlnZ_&YbSl*ghlC*!O!CbN5ewDKJuwf+q){p+w-NxmV%H| zOZUW{_t|K6>5y!68#9a4;*}Lym!3HnnjKb@V3#O7{&kIXy<nzQRn(Dh`uQ^J6hqtM z-rnInJdZ)WQ+v&}*@v%bT&gHb-B7vdvhLf>CsYdm_?qzCP`|SBPxghj?6wutb^bFr zw=Lsa6MLsV_*|aJ>fZq$qVE_hr%2prvRC5G%a|VZZT7PMHv$_^3Mz(JcE8@<?)dt9 zc0|mN*+KJ@GQ3wEZu(a@xsdn7<IT>BO$CKF6jy)ywRBsz#paJ8X{S6ls}$}j%HybF zXRWaOb-h-4d&#@xsB4?uxgW7@`&hbh`^RIwxoe(sZMd5Aa95DOWVqzPU%HicOFyVT zlv~gA;+s_Jx9K_w+OxHPrZ+4&&vfdIZ+;UWhhPui)UUBqeu-_i)|*(!dt19`qk+zh zuW=G}N_)+nKdhTIX=9(jpFc-`o?qv=-fzBfnY;38?x^Dr?R)JXOufIkZ{eeskA8h7 zvnADcbVV<j?kSdc(dp<CVQDuHuMIydx2vxYJeuJ9+bpUg`B+g!{lor_t^9nMtHo#J zF5c1|v85|hcB*1WRCng%?t~y??oA(f>)kUS+~p74SXjv<s=}}5!diHrCE-EyWtH&h zS^pU}^B<ahdv<Tots|LLEte#PejTYaKIUgOaeJF~<M+m2NqcV<964pR``4V9FPHcB zAD7l|vfrxTZekr9?6B?PpV(~6*lQnSw#_dw@V~o#kAw8Q#aj2@JX?`9e@ola4~s)) zyZl)D@NNC!lL7&Hsh9OqE_Z5AJNicB!xx(;eU1_**53&G!T2~k+}BH9MCaP0M`~K% zKE9u1qR#c^)Zt2tpG{4MM>8w-AG1^ZQU5S=>Gh|f4jjQ6%4cdGhM4HENp3uMC#=-y z#n#_P%AE~1UyQ%(|N5Q1?jGsiUVrRAPF?q(f#<bYRP#EUBV8eBPF0#Q?d%d3T2@zX zEkCkCF)YK-A}Df-jNn(vv(@$8`?za_KF)7lYuexYk8$g+>vLA@*}ZvdA9uf50?V8A zQnzEaBv0bhdz_K_bM^7B{5SX?hAu0uZ~kZak*&4k%HhlvG27Oscrq~Cn6H|y!+BCs zFR<~S;-x*EsUq**oIBdv9Bu#l*PA-Gx_kQ+F4cH`un*p`ePZ0Z=<bxhyxq$43N~xJ zF=rCDt+Y`196#-z+>g11=?~OD#8jmmDl64D_R+mvWX7x+GF_p0j>YR+`|JNRWW?Vn zK6Y)M(ACG+RkrN8^sM7_VfoV9b($T{J0#xfv7S11e)6=g9KHjy{^)(wKe)atP9!pa z>wJ#vX}=5$F2vuC+_zksr=<SP=RyPJ-6jrv^S1ud=LtUS&i%D=@7(i~&t_i@{kzqq z;@<8@^#a-3)@H7X^|syi;HAvk9cuS(-dgatK>OYw{i6C!YfWb=bbTvMl`+_}a-x88 zVTwk;>Tf4il2@2MvdUY%?8QC3Z0^V{zIh&AmY4O?N_I&cREn;VWcqVJ;N!9)?HhYs zAMFhf*dn&+hq3>K^p+=gG9Nv<(|XISvTK#gLVkxQ3E_8w*S0Sf_0x8%`KJ8ZG;P(X zsKt#xIzOCu`q;bn=-GEG*S*;OJ#f*^4cU=8&q~-cXW34?Q(eC<r?4?5cYfQ~x9ZMm zmlJn2?hD->ac6==?Z>AJRlfY}=J|8iKY!^T?!~9q-}cb2DO@=H;BCo1XN~VAtX>Un zoXWDFwC8@bTf98eoY`~QtK*?X{_jg>_MXXdmq-dMvwX8>e$|%`k-hp44@FhZ%d_W= zTKsHQ_`903YvWA+nf#6v^W1SDf0}du9{${$lDr2Jk4HWKl53{<<>{8o{WI&!-iW@F zPzh9%J{M3nEqR08oo&X)?md4U-h9A(SJI1pdfQLRYe}C-X+5A&d#%Rci^MVhs&#hU zKdN5c3x4>sOl2|8zQo$DJ3`{BbqP$H8Fw>({<h*uEI;2`vn?4vkB42@l6msV+LY+d zGL176MLb3A8!v7+&{yDb>UmGs!4I>uZrN?NTfF3Wq3KGEH@Y%2lWtEdNDPyC(C78% z^o6gYU(7q}_<vk>*y6nKcxJ6h^Al^A4E`FG1jRJl^D<x73x3G!{doBB_Nb}HI}~?c z)=#;@>8Vt4>Zb$4Y$l<F68y8D@K_bjy1V7k)iYU_GIL7u%h$QDS++hiDeq~f*u&K7 z5Kk2?=iaAW#te5)S{`3o^}JzE?cbHFU;Ya3I#MUse0cifpsr_{Jco`xpUUL*g6XHn zWme0iH#=Sl2v~5|cs}Z$Z@Ts5lO5cxmX0Dz-HU`7KUDRkvp3IaKJ>a=%J=S*Z`U_% z-6G_&;-XGcV1eZJ!!2np2`yqQ^K8u%!n?Z;tvq^seerDe8GduU-IKp5`+O|9r+$5p z?IX~}*S$;6>=T=G%vxiCdvD2a>C}nK%Fe8npJ|XfEz;ojiF0nZ-r0yRs<1wO>-=GT z{vVgVMb5hSI3jyn-{ZWpsQr^J%$Tiy_9xf=`!#*VM{A;&|JZ-{Kf{NXAMK7!*0ZyZ zTvW>t^m<^Tx;DsThQa~EhfRXFRsI|ZZ<j52d0%Lc>_cnq=v<>;w;o+P_AZrY&99=& zM;=f5T%>yv54(k|-e%lW`|!h;%tzYCmU7L?Uw`5^k6HT3Fq>Up?StxbYzu0*{Tt%+ zuHB2?T^-%MH|)hv;n*|D)!k0fr+TNkXB^IxX{+5+b6oWOe+D)?lONKLmcKo`^pE$4 zXUlD`?r*n~&Jx_@cQRGy)A<z&E*Z}zx~aO{6*_gwQMpdi&wjpjeV5b|aihCB{~2zn zc|3NT_I7z@a=vj9?}?CAZ83|IS(plsmd}&?*xI%|pKtERa~kizRIY#fUVoyCra{v+ zf1^z0X}OKk$$}EPJ2xJ$dbsk?#-(lsd2cnf*Iml{Rr7m(c<Y&^YOhX4niv1N_;=RV zdY+2SkNJ=COJ{uR&MaTKzU@h&PNwX`mdu%f7A)Js+)^!7@>rPTGt3@%9=CXG_w|S9 ze+HJ)EkE+t{PF(yZ0(2pN6f!l`StP`M&7>jQ|njn-b0IY&&>1E$(pchQ^%o|pE(OZ z&8uI)zj;Xqmk^ubdD9=?g`fUAEcSBU=}+!g6IUNA3~Jt`)YIf&+|{^DmD}Kz)|;~8 zmSkz|2?k~J+^>YC9zPXbaJ&D~zPtkWsyT7bt*gy0oY`y6^+Entl)kX{ht<*BKZLB# zUwtyUXj;)GlSWm8ebQOp%rezp?SB`>y{$R%v(vwD*2nX`+Y4Ua<J-GuSM9`usim4p z71D|IaqMzi?@rT;`ttPV`ZJ-a?@nL%@&2)Y``6X=KNQ7gF8HzT*CShR*AMLN>(!^% zOgs^HGI!~xr<^+b(!#l3Tr%>g`+lmxe!9wD_iL_qig-6f9tpNku3FOaME-l5<D>nn z_TOgu^78%%FWF$nsn<ADKh$+5bSrBy>m0gdC>Py(#?MNA;mi0_`mKr|zRvG|bh*ZZ zWt*G4(KCkKe+~$q=vLm+>LgUapnhxrriZMX?5A6-^DBM1cIy2Tzc)YJ-&&_o6Z4;; zh1ut0^Vx^{c{Alic3s|bb@Q%i_uf6?=-pCuUS;B<lk)Qw8Ci<7a~#SOd#mQR*YQRD zsDD)6t7~H{^KDy|?7X?AOSVnFJ~7sJpO~JMo6fqkpJlv0EmTMiSGoA%`s4KtHRY=+ zQkP$Q`{;_vU7>7SKj{<q{l&hQ7v1_<$Y^!U;F-E$!qkL0@^Q=FM}M4RXK;Q0L-DO! zXPx@G=Gvo2o+k{oZfl;>V&mhhp0}s^`eOacThCQ_oV`wG*X@5&!@s!3;zNJm7k|N; zs2^RI|1%_KEc%vxL-L;VQJ1v2mtvPL%y{>-VqwMfXXVTpH!pAayEw=0`r<zVR}ZV4 zt$q-p+tcyzu-WWV8)v=fNjB$Wet(Y9oql9K=MVjd-)29^7jtL*{zvDezWTLy4i=j? zZpwUoY02-~VUh1o&Jf^J=HhppxA{@*omuA(+Bf`DZP-#S=KtugSSGj8w%4+rTpHT< zGwhC(o-Gbra%D>X^)K~L%F={GS5}|<_Sa<N&$AE9jWcFlKC@bVX0l}BF{97!U(fkj zoVQrN=s!c6ZP{bzYc-}1-zo=PH95Vu{78LLtI6s1t-Ti?2CL6gPJE`cB6s5i$K(?S zPW*g*;8)LeJCTpJr}+(M9TK&WWI1ou^SCErf}<?|)>_x!Mit73|EYX<y1n;L@Jh!e zw<@wDjE@(Zp1<iGbH{C^j9b9Mi*~W^Lc4Px6x~?wu6M+%*ENXiZF#sIyYAsrOEV5` z-~2jn`Ir3P3@<m`tUGtl<noq@f9K2WYVTH`_R>r;`F3%Qv)d+RZR^L<T@!X#vOEaC z_Mbse_v=~VZ($$A`X5HGX#HbcA#_iBuAAA6n#oZH6BoA}k!*~4kQ>AG$Lw!keO7Pr z!{?3rbY7c<UB3S#?y~#dE04?WOt3MZ6mwLu<y^-_6Q`7!S9i-5d9J@c*Z%SK!|~nw zIrk{@H+?lYbU5n6+Bx60XXNH3O%iO}rCH#$v*S(ao%Q`wW_{Rfu5qZiF8}$?-+e;n zE9FCKj(!OKmbL4n_}k)#tbdoSfBIu)>57Wv*xmD<J?WOUx^w&P%a6|atSv!#pJdZ( zKknXTEVJ*8o^A0z&d!Au(ht*H_Gi`e*VtWNv!&MF`$zX9jkj;sOtX00bj?=JP{ynC zyE3bUmJHv6gywj!AIgV6JO2)>a1Y#KedM0tH4fzo=2=z=$_tbg%D=3iWS{I?^tC?S z|5pFeDowHJ=5l5qpLFCYpF7?p-eS_VhC4aofmvZ+_Rsf5=d>SZT$!60@1fVJU%x0y zSKRqaS433Ft$^4+{~5%~s;3{kp|bHmLz8Qb=H)vN{xcksez3*z@!yhPb?)mwCg0lc z_wKOzT!Hh(mdaO(<7e!$YffBNe^B2}>W8=gwC8@?+dV#r?lRr2Ka2hLmO}ztx*oKv z^A%3wJjl*cH#6=;*t<vip7KAhAAW9P`_uGV@n8OWu1Wp+N!lT2+QO0={qvVr_8-qJ zisgQ&w|w<a&$6aRS9yxw9pG1!__JVg;|U3y>r3698dZgN{JSi!{7*z}%cRY`mv1$M zOG*}Bwh5oyzT~RMuessAa`L}zDwZGEr}Od7b}QRCVc(x!>@00RrD}YxSSF>x&ARc= zzqudZ<o@lKdVBKognvHT5A|=ny833Ha{QWACoL}DytCnv@0o^84-y#InG26^uiy12 zU)ip!@8*elrjO_Ex&Jro*Nf_vM?SAU{(Z$X?*$*GO(=4F5XKo@R1{kL@6r61u{<AF zt)J#r_~*6Ctw}`^b;|!4*8BR-{G|N<(qG$)51lUgJ=lM0l`a2A8UFaHm+wrzU!G_2 zM51tWQ&GX`9Yt0jToWtU-7gD$_qRIIoydFif_b=*MbO0E36su$TKVbN1*^1O=2!Wa zuQ|U$@sP*yBp%+yKinmrXfXV~{>e{m-rD&WOrC|$uJRY*{&c>uHD;di$#b^trdMws zn^n3iT01o<hWT=zr~Q@d*2USj=eB05aePwF6x}WGME#X<|I!TK>gTW2eVUY&mY>z; z$qBw1Fz31YI))dP$J}bZxq5CZ6*Cv+E>>B6x@h&k^Etn-b)As1H2iz){G(+nYgb7= zILtri@rRXfn~tR=74MCgc*AwA=*HPRQ@0b3!p_}SwdY~b{KPEPIkAsDD&kyHZ>@6t zUzX6RT*+E@zA0@q$=EED6vX`C^S{c~lN@<i3VY@mcsyIN?(QnX3thWdKA)0{$q77e z`|7c-&n%5o`3XBB9_=pUpCshsCMmnQ!QqduYjUCa?IklOdK)~KN&oye>+PRHuTwV< z%D&hZa{knw$7}Q3=D(km8sa_a$#%_eM^jT0cgys-%UTux3e&wecLt|WYvRpw_iBx@ zR}@{0lDv@KH&=V^m9(iRgTl)ySPC!gU6Z>ruORXERT<l3y=!d`pH^Xg_&9%>Gyie6 zeJOwUEuQcHpP?zJ?vlZ#ss9<e%Io;t949(Te6cwAZT;H2ixSRV+bGV?I%SH**Ha1C z&-`cD{-EJM!$HmZOv|N4JM6?~Fe?9?k;9X#J}3Ro_3J+}-=}?9^xOMCgXhGDAHB2L z^+SIy{&9Bm@7T>JJQF7$UmtvHd(I!{)i*Yqm>V6Px0Ew}SwTox>>kg8sPX{DqTuxo z{`tqYTr!(HmE~9Q>-dY=e(jGhw*=Q5&rbdreslxNwrMZoj)XLA=i0=-kdLo^`lZfw zTjB+7pDfuG+S~gi>(cI<?oY%el%IwC^kDdSJnGSPk3DxhG*<T{TUh*QE&Y`@m$xU} zI^}cy#rXv`GUd<zGhB_SI92$qsLW=~tzP@pr@~%T{>~G-V0hx^^huR>q%Ds>{IcF* z$A@)Ot{Ln-dw1c?23^@JX|@Y`J}R>M8NZFu><Zl+XmH1;^GDAI_QaRXH?FUUjd}Td zl1z#Qmk5L57RKwh_T=p6mg@a1FMQatRwrcHD(xFjQa;FBQr2B}T-m~Gd-VZX_fsCS zzmj%t{%|i=J~Ur2;-<9qr=sf<qb1hueDZc@vk+6^6$49IchNgBHzV&p^GFKKd6G~c zxAmnx=a+uF(*b>I<%wEvS<f+O|FN|EZuj+aIK!g#Vzn+m!n(?r+)8V2u+P4K+x}rr zKx75`qqhCLOZPEs*|obr*vXp7G-6$R{<@nY-_A43r&aL(<2L>s^TWus`B8fNANxl) zd^)%})|q4;D&Uh7+ui2&y63orI&)*3<HPgqauU~6=IIMY9xb0L9eMqk>`9j5m-j8# zPx+@=k$3uVoa$_k%lk|7wtEP2i`}YFVY<8V#IrqJAEw0Kw)_}yJV9u+)b{x6#lQLf zPTHR#@t+}Ue$%b^W2<%b9v}XgRUCUDCw-b_tkk8l#{QY|r$SG?^XuKxdqAe~>--** z*WUTf_tcvNo6TkxN%pJ1llpTQROH{ZvEL})F6TV=*RpMg)m4~Rcs9nb*r#86pSSdj zgyrRR4Cj4*=Ej-H*<G|Wz3{hMd;NL0IrrYG)#X+A2hV()ytVmxK*W>n4xH<QdN=Lf zeDFo~^ZyJCZNJ~xwD$#1u_^NNt6P3)UsDO!?4$?P<?B0+9Qobl`{wNHh$FMjYTtd0 z3aNajwtcqHu`>ayd)Be9uoSs#mfI&<EpzoK^ZBv^_LeW-WuKe(JR~TiZe}X$+~boo z8C&+N+_rX}Q@?3>zJJ!+H?tl-=hnHzZqr=IQ>_2@tNgUbAI}yGu0F0moAYPmgZWi= zF22u8-lg=MrG))P&-LE!Sl<U#tP`)Wzn^xGd%^Oyrlj7N-&JDjAAhYn_DR+%<J`@} z64w}$l%B>L>mEiHtgfs}da~mQ<FV{KwHb-C6*n#Ur#>;xcIz(lps4PZKc)H>m0Cv% zdB%!*@EDo(l)S#Q(UfDEtF}&Rf&JXFUk@(#*{rw}yLyfR@BMo_6DGJSL|2?q{J?fB zcW?bJPv#FyyRMjCeU*Op#@@BZbGF^eUMSJ$ATHY&92cpTGj(QRySn7Fy;<4bE7quP z-O1#%xcB4A2j6*?H?cc+Jx<+tIWM5aGL^mKuBW}jjen&tu7^#UI9K!cn$I)d&b`t1 z%Ik0K(O_@ymYq9v+xSi^FmH2UsY}|$ecL+M(k?U3Ebh}{#=f0*c8Z>l&Mw&cvFlEE zvr78kU^YoN+1d?$+3Q4pPQ5sLYVVG~rdHiK^?F;^v^O4)dbGCmppCHU4S_w0oeUp8 zeR+Lv`<pzq30kc>Uhibe7GCc7xvr%C=E?fycMduHTsVQJ^!Jjm)6t8LEi$TmVDpzX zWb=bf8@0HM=5ajfn`*n}tnL({6Lx8xR`t8In@T37o$@<YdZjq;RLS2gc88VEG+$oZ z_N2owar=r_n#WX9xW8A2`OQjxZeg45Z*+e73HH0Y_}_kVRb1O$`nh4^amm;Bwm#Xa zUzoM3!hPnZ+M2x!_<z5eT`27+ryMxvpKRr_1-W7~XWhyX&)s<-slE5G{rUOVcFm6d z&mbBR#qDbzIM2GsAlXQ~U#?Z<-jX`ezUk@`+S^6fCKt{*R#m!I^H{+(zGJ5HW|P7V zRVS|hn&unqdHLNorPKQ?W}QmSc^kAj+Q9OF?JmBlcQR((nU=fnn)#NUKCAt1n+mHW zFbMg+&DUgJp)mP<gjwEM(>IrrdCjNH`1eLj{6B+}Zg@k`f(;VtHrIDIpW9e+{b+rx zzqw%JV*SnE<y!tT2-T!7KmPQj+{990`%^*he9g)jKCze=?y)?0{@0tbb)OH{Ss6v& z$+CLGn=72;a;lRjnbFHzcegj&o1Wfvj6uAWtPeX)GGa9TKHgV*Tt@KH&L@|*oYrpN zarr^tJx{)873`CqJeJhubgGy7)gvx_b=iN0N|wJS{~3(WuACg4eK-B)#8<cS7CwA_ zMJG>jr{J*^PMMA;6Hmx%+RS6Ee1Ak%%Qo!Zy;ElcABTBYrtnVhJ-m98oDs+I4bS$) zTwiu|UG6>C9TR%@o0M~kyg2A))~r<7#a}x~^ZWY<JC%JO<JRV;>&;yCDo$qCrxvAJ zv0om^+*@|s&##(3VVmW_#~U6n#(O&V8I+pL%D!4Z@wrXcns}4g^DAu<6U{sA4yP7B zz0b0zFHmM8`_BN+J!Tck?0+<Cq94R_>GrH%9<g?Du42^9Svq153ij*ARfQj)C;g-Q zWBbFmN1TuDGiW|i6**D-pW3eIgT?2{r|-V3GSh-Zz;}gAaYMzcJ>|bWvu2sTG3!n& zT^D_Cl~qhellHcT-O0((Gld?0Jbq?k`4g_M_mW#yb06}&bMT?I<Ex&0-iX(`dfzRr zTp#QG?1o=%i@BDdsF^13E;ZjL^Snim`xMXmS^Q{zo4#pn-t*9p@~vNfp9q-RRgsjj z%q{u&FBhH3wMECTuUMaO#Xe(x>ou#n3oe$bTvEA`UUR%Q-*#i=Y)PH%OlC228rZbA zY`bo<U*L7{%g*l3q`#kQ=Qe8Zo@)1aa^Ics){eRRgg4F6d#_UCxVDD#hy2H)W7nOo zeCh63)136^cy!nKsK%4Bf$IX-iHNb}8uRfh6vkCQp8rE-{$by&OWFI|C!Jh=F8S8} z8&!L+&D*%rlF{U@L;TC7$1k$ES+MtCtc`y7Z_f4mIa`ZGKAAc17H}3Yo~p3kZ^pWP z){<(M&Tc(c6wY#_^4Di?-r3id{k>`88zX9|9q})*&Y=FFu6>3*SKP@JFRJ>#t?_O9 zw8wwxZb^ys@4YKtY>JI`+xv5ygW;up1|QSkJpb)lk#{TC`Jce+-bmdE+OOn9u7pST zvQ_jr=WhBL-Sg+$0sZftkM?gW-Ezg`QJ!vW)0f(#i&X0O%zRM(Wu5i$mk(yIxE%EH zTX$wzLa_c!)jj2Xue{nmE$L03Vt@BZ5pS&=e^0jaW6ycMIn#u0JO7w@-KM_&;c4ZE z`z5od-%@?^JY&PPYmdFB9;-_=jCJMNRLZ?W_<YUv?1%h9e+;*5HQTkky_CCC;-l%> zFT0&f)XdoI*F_{;|EBnu|K{<B@_k>lyUnUkm|TsWF1FqH@XA|!e0Q(?YPu`&p-QLP z@n!tHID`KTO<w=b&H8l0hJE=<vF++YZns#EEq>V9VR8DT=$h$beh2!PZ!_Ljp7o1I zUFzYJwV@`z7oVT!8K!-=+@4eU<G%H!>)e-DBnOyX3-s989XIcOm9YhbOQ2|%8mFbs z<1g!zKeBgBKUkG?zoO4q?~_Yev1;$7xz80HBh(|F<n&D5V(|91>DTn5@jsORGaT*a zp1BTm%v9_=jVl{{)BUzwOO%xS8SgdiTAe@ZJa(Iu@9P`(xc*l7Q~RN?I#$~8;vQ!e zSGW5-uMN1{Y&PnruTY)S*dMei#qxyZ>v-4J^DjcSZ(9BRKf^(rs+%c~%PnNR;{GUn zyxtVJR!`Ja*T{`kja4k$_;Vh^pM`5@D>m3HX8R``V|x71d6qjHVx=;bJ-RECI1k?H zt1AgUdCSkp_Q%0>TK^f2-<S9&EZxoD5taJBEwSubY`*KRrn?Ocg3o6x-ZrtIdK&wj z!kE7Kk8`y{_WWmPX{tVcB{#J|bc<Pw+J)jnT1w5Y!gXw4-&@!<$$w_7oNLU!IdiY| zU-({;TjRVa>aOXX_JEz!v^!MmcO6xmV4!_DQP!|&U(=rRht2A=HeG*L<NAo(+FN(K zVj{=0Opelwg{K+!ym_$W)QWTLlBSzi*7#g9dF_$=N8?w=j)^U)riMZXtRJ7vzn6aD z0pFhMOEZ@r-L<XZ`>rWw#>&c;n&s@X!fnljI3Hh_Jpam6ub}W720tPLiwZaAM*N)o zh`;-*xAci;A9*&o=CeFho^oX3j`GkG32evm3@m;xXWYbF{jB-HYVY+8RoCAtrmu|J z@ZsO~B^e(~k7TRp+bvQNcYHiih4pdc_0w*_pSM*g2p-ASf3Vke-^tp-T+7a%ed%F_ zJ0worz3{og@zKipT+z3d9^E&2MO@U)d*|~Di_>`z|D9Bs+y8E9MQ4hUf(pCBHj5Xm zrT%QIcAU~r+gE$>vcJ?rzmTO%&)@d{p=k4M`JsA|XB*p3ZT0o{Zxi^bqb#s{#hoWR z<qdxynS1l3y6IoGjLCVMcP3Q6vhBMZfBrwiAHmkVEl+;TTxPmUA}!bIL(Kcb+J^H~ zw+WVUDC@=V%t=VvU%f^0=EJ!Gea$lE3fDhx@5s8jH-7rRN&Odg)c-xF|Le}aU30G} zG=;X;G@gGP;JJ=pbJ`=J8TN-y{8`0sTz-A$n%y@ab3B<}r~Oza@O`z>yv4=K_bhGJ zn$uHeQ#bX~{kP6Katc2}AI;}{<#As2-o%wIUfb?ZT(eB~)F;En^AhX*Kb~9JxoFG1 z#7uYIzt8@?_`d!e|E>QFkHg#RWNTzUUcKM3)#K>tANk>3_wJmP3Gy{PyZWGrVW)&x zrR)Z#C-WM@_fJe%8ZF3iG(Pm_oEfWD8D#zCyZr6$_KUjvA55RMZjPdmbMAr{f=+5` zK`N2COxs>^8yl#<7v6nu|IGCa8BU*_KZdO|c6*;&y!_T=WronWdyj(qj2I87Us=Dk z?)tx*{~2WW$yZGN=6q$3@`qcek4SAX|B$h=>|<v5hRjzR_88euEiUGAHa-9D+ZwTB zp4@V7jLIMNA3i@~Tc%;^&mXb*?BZ9~IaQ_!AI~fEOZ?<=>a4Uy?Tmj0J7gHVh5x3y z#XYXS?)>w*&7tb3kGo#{`^<8)qVdaIf4{4_^8=>bxpkDwD`59xNy(`((;|iY7?qjV z8OFBFT=HY}L91mGKb(K~ZD;M$=m>wC?Q4^Ib9VY~TKncGSF54hnlMGJZ?QY>a6Z>B zUCqnwv2Xi_yN6%y>Ytx)<f)V5CZ<&0tdlq~@^Ik+mXwlbd;c@IeZ2K**0HT0osX88 zh2NUCJ%2@<Z0M3bSB}lq_#}Ns?81zHmvuI(UCAs8Sf|v}<allR?)USJn-Aps`A5r3 z)FfTYDSaDezqy;cnlrI0f_;WqSX-pZr((Xyd9F_8Ja70sCEos0{O$beR`Lrw$q%`E zE-qWV^vAY;|GXJar8b=px)4;Xy=o3i_EOE=?`GNsp3{CRFZ@UU!`tueU%b~kegCcY zD>^#5JNxF^OR?I)y)&0YmwSA)n_YH_e^Q*ilJ7x|@Z0^xAJyAxG}Axw$9;T$G&6tk z{wvR7`EE%h#v4W3+Fe!OQ5rVE#V4_8O^d<jg57T3>~Y~)-e<mk`Xe1MC;iG#>u+U0 zEFaZ(eJhVD;rNv{eKmJ<@k*<AefFEri)`muAV15Y)oG=K&I94Y;n#nOH|&wG{P>^Y z@P58Mt_x2t_)+Y0)op&};uxd(TYOpf)%^6DCS-k>`_z$1N6fC-OfcA=b-s1le};|U zTWt(K96nU#{jyH$;vdsxucelEoNg>HT$MGwaHejEhQ`W-ZYfcPcbRMtKRw;^_*>pb z@y;60kGmiGzVF(~`Bi##_uIH1GaGbwpO|D?mcUjl@7Tlou)xCBWZA9U+#mDmggJR^ zrkd@2n*HtiKhEEbAJqLmJeki_r~Jb?q)p_~`z`+&1dk{PF1tJFc3g6j)h3x77PjCX z=39G{zpeaXxiF(D{_y?oeVoDRdW|bz1jWAm_TA`4?Ro=7vE$pcl2s=gX-Lb=`QV*? zuuk^Js(8-2llFo&(W?%AYhIpNKK&7Q^7M=+(KlwSpAjN{<H>^uGKKLA?6>I6UNl$! z&@R6HGG&*tew~||vC<&Yqh!-O7eAvlCr<G%bE`aBG2`c5uiy0t>>Up{uJ)9D-n3}n z$Mm;*Km305Zfec>h4qK_T?w-I&rrVouXWJo6otyvlYeiV<o`6W!N9N1<L?xkqFMTH zEPuylTm8w+UY>bR=SRCqxO1k8#hjC$*2O=qn|aVuLT<l9-7%}@-=6o{*guSX8d&@A zJ$K9vYqqf5m#Z3NG%at>t7L9`887lj@Z$UX|2WS6cF(j^pZk1Q^!$#Xvv$u|pKY5K zmi|*Fz4-WvJ0YL=9v=L|6jADZD{%HjuUT<(E|ve@Z~Wy%c#)T9N&5YLraxvs+|Tx( z;h>qFct!Uyjgq6g^4q7q=bo{+wCu{4H$67H4OUBAC!XZsd>g;~`vTK1pY+{|?#*QX zvi^L0?>&hNU+r(2KYZR+%3+w!w)MmJQ@xx%CQ-}g1WUZ(&uiQ7pt@(S?5=kw|F~s8 z{+uq(s`37;{)KND%U7#>dh+6i<vZS*{|vu_@4Bb{w$B!}<I~gKk&`g#2t#?{^()se z6!=N^F@Afrr~mPvDBI(Qv`_P<r8ilwTYJsCNA|QqTE=<C9S^>;gim&|`(?Fw;m7hf zX*%IYe>H9l5Pu^isuNzFH__;bwgBTnnZk+3vfs%|F#NJwSO0X6{V$32bL`XQS#G_! z_4a#5&R3WHLbof`Y*)xim&I(myY{97t6kf^Ngs<Em%5y?OD^X4&v5+pOPO`WC+$iy z@9}QrU&ou$Du3^2iFv`A7YvW*8Ai5UbUc3c=YNK;D{szJtN(xbugv9Am!|t~f4%va zduEc2*#|w2yFK&Vd5-^>F-PO&>sZ#QU-zy((7EJuRH&k0C66QHojE1JpZ?W^U;NL& zyGQy%|B?Nyi#tu$TKNm!&ioXcHERu9^=fb4*2SLd9z{<!c0Lw$Pct(5ebYk5e7%qD zhy6S5b49!C_;_!2a-r;>$u|#|r`z2<FBY99>$LKg`2zK4Jx}De{%QI6Wz{LqjLTWa z-+jqiRvi6a_iM^cYwH=IPR|Wj==eQazC(fW{Pwja(*pl9q_6B{;M_5(YFgSW&sU!R z8D8^gPyBG^<10I*Yo*>ZQu{7=%C6nOp<@5yV9Oe>jX$H@6L!cSDn45>YtFCon=_<W zTv&Pj%x!*|c@q53BSO+cl6K8HS&}^cG{YoEWri=Z_47s7XDu)G)k;`oZrc}fUGd>b z-w%_%WtRW!Fk0m(*!VrX@9+7&rPsdOC2d-re`>?=D@hyY9eNsm;ZmH7*K+yYPWA66 zhE2NDQFHXgoog=JnXK=w?cL{;KJP(rLYbDNIqL+rgJ0J;1*V;OuVay97iZ*}rIK|! z<s|#%ZN}F&#s@{~&wcb+TtPm+>g57W?VK_RTl@2(fo{5)McP|~g{Ho$3b_>$eWmR& z^ZLgj>q8$m=Q&EASX-;ZuRZHNH~&2~U-x&$fsY(BF7idQFu#vceK%#&{I{$*GKJ?Q z*S-6&$w94ykMoZ4tv&BJC%wBC-WVBX+#@{a`=h;U$`2I=L~WMcCMl)2GeDx&&HkMB zGx;AHt}8bDXJ~T!cQISeiJxy1|L>PYmcOoFF)tVJSJFxN(=e&}`sw>00=uXB|4?y% z%P*LFbPLmydHiQpvMjzGt*vi8|4&Tw{+9h;rd8aDtY2~ZYF)-Z?KfM!cPG8paJzM6 z(vjzqw*MK<X|HUKnXst6w_pzwpFwTi)Xsd<Et@2+u@o)rKV$1(H+TQJtnl59l56vH zy$s|JPrm-j`udm2&3FE!E&aLG>a=c<_7Wp20dbYLipQ@!crM>sW@US(*t4v|F=cx~ z*%#|JtAA~KroWw4p>)qQXUDm3FBX*A)-NsH$9yGMuQd9%watu$n+y8xnDp+*vv=(K zTOF=v#(m@DPdUG0bs3#oZ!%+ClG=ofj+_=_bMv@+{y)R2ty_I{T~FUxoTuZjknrV& z?JDaT`=Ub=_P<t=Eo|`jvwF63_S(4Y*tn-Q$8*=cD6ctv@OWPH&+y5UbyNChJjk@G zny;MLdUvPx-i^l>%0J&)ef_{riI=;U^f=xw=qf&Vej2~Of7FNF)i+WZ?tI))P_=%a zf7Y+*4^qS?XUtkAQnTIjN56(Z_LZYSTg}d2Tp7CCZrYD}rhDEx3b~w;=NCTzb^X}< zEg|0dk6X4oeww|~x$rnoOWBw8yX<6dca*koOZ;?FQl-weKI%vRw~0J<$~LR^YwnrM zer08^|EIhCAJ)$}qJ39RU(EgQq<<Oz`s^P}H2bXn#&v<Ww)W~*zh3&tybWC8v9O*e z{7v}b?23H-cXE!qPxi>jIo>Oq;P~KUeD8mT4<0`M84mNl$Xdg9H~$E8^Bn%Sn)S<{ z#&446x}Wp?$ydSU|5~zbmbH}hJHOeqYF&g@(7#uI`p^Go=$8}v@V#lDeQbuE<TkNu zMed@<r!2_j)yhka|K|Ae<>jrx5fZn19yFidTQ+~olcfB9@#{-Y>~r0^rn)8d`iw?P z?GwkUyB?LCzHPZs;Bc|bB%y+x42}O@9$bIU_{!pr6^qtPPJi)(?XJf5n?jN9jnA1+ z%4$2^^`GN4Z*NxV#b-V-EZp-JPn=NimC$?1EpDde-|XjFA+hJ(xQ^{H@cAL}Guoza z>-CITC53-3n?0(YpLKXs<OR1+td{S;{tLYvb*OCferZ33*Ku-c>zymgtt94|`Zkov z)Rh)#M*e3g?_s|1eU(}KPMufW;=$YhWWAjyx#!rsif?aYbhhlCRW31oy+oXE@MM7n ziF3X(@cBl5I?~v9Qu1inp4xX46>b?=zB9bFWvRANsw}@_0Sl`{g2*|3<#$h>?Fq{; z`4&E<E#l|T@cZ+O<8GGB&Yk6SM3__ZyY}(;s*hhgRr=rLEk1L5UTyu_YKxmHmn;kZ z`Ws*C-Eh#o;(&yX<YWn(B95aK<ww_dS?M2|&-b6<Q0k+So%1f8d&Kc{5^JO?cd0_7 z1Iw}plFf3(jdwoAJ65c^b}E+d+0ApF2Q7}VU7qjt=M3mjxr$@<t@AgVcl;@o-7`JO z`mP|0N4Vwepf(1^BKB~W=Uc09vT|Hs$>qO#<JtZ-FAtuScc{q!*8M~9(Zp_j;pm&2 zKO|pKo^*Zk?UL>d{~7LwzQ6Ft`9pa7;tkoWpX{0(5dMjE@{(7{{nE1)H!z%#1#K0p z{q0>59Usi!Su(Svd#XzA6{&khb-69tN0pTYs@^8QkB|9d|D!weLFK#IhrWkbX~(nb zB}P2!3iS*Bn^Uy#Sj8>J*Jo?@B_Gf;{}z<_bG~)^Bai*Pwa4E-Ykl;ef#X%tv1{L7 ztUneObL_C)8Mb<+?1h)UTr6A~by}EH<j9`o3W8tG)_GUhf1CHwcZUBqv;OtBTP50F z-Sf8elqojdZB;z4zPNvB^|8sn9e+dzwd$*UIJbI9%-a)_y?1Zh)iCE<(6!I?kC*LJ z7C$tz*ZOyt_sRbZGv5cE`*1nz*~afnwrx82$-+Kv@2lN93)mQB<~-j2G~PJlKZD#J z>!OLbZvHr>oo@f>d{pOK1NRTlN&<g$a(rJO*M79lblM?XH(s;Tk=rIq%=g(DIi-J< z@p}8H533Rl1<F?XuAgixRnb*+%j4CO8Rsi`7$zLD+`I3yo7S0&hOs+;wz>K5E#Unq zeAqCia@X6n&*nZo7P9$ROrDO!r<srYeXct$uh@NP*KPhcwo$hp-k&I0(0A{kG~0%@ zU$ahHOHFT0$l0Ngd(PdfO?pY=pGOseJ3jX?o;MA9A10(fQ6r>&m+}0V(iQ6y<2Tu^ zNip`^X5hwWbBwF<SK97G=^0*OW?PPD*Q(t(!}eLC>_0=5^PcavXG;Q2!X*+IS(0yr z>(&-Z%Wf=K@a3Dx@5~7I-DQTC*|vXk<MUtnA~)yk;^@PMr#Yi1zT7_X&*~Ywwr5wK zUMwUr@qC`8=$7q%yJQzmo_1Php1*(8^LOicCb7u!`KDd;@_HJ5)kw+M%<;rgcb3RD zV}ldDMs<tSp3Qr}!s;jS{DpSjIo4V`<=%7UZ0gq&CDv6|FZWSj_~@VhrQG!;g++C4 zy;Jx8{m<Yv<z;r|!}KnueHkrQ?N18sJKx$hH&6GPaHL<ua_+Az{~4^7FL!?OpJ8#I zsFIe&117_+w}-D@DC*s6@q4d)bUnx66_v{#vhJBQLq#qrB~P*G<X)qDuj3>ay||?l z?pbq7>6Vq=vs$&vlA8xDEbphQWL3UeE39ejxPI%q2jL%1ALQWQcIC0`hZ*Z<CT|X( zuxqDJ1BdL<YOOVoKb&}2=zF)<PWwlDy87gYyhYJ(7uFZ9KAvB2->hI!#I;LK?lwE@ zd#ml+O816GZt?sYow4?Pa=h-FOA!zI{8~IFo!^kJu6+7_f7Q=t5v|j^lng(A>p1oG zL|X4A!<SQ&W8VZEH<CRQZtFCU<B!(9ol$n5uS)I`nAYv|pP}PxzsTVlQ^`mBFTP!T zZ(r!8`MTF_1eMxap0775Fn%8w_%PdE=;buQ7hw_mHqClx9#T1R;!hhszXL~vJQ(=? zgs+c?eHG;r|50^Eg+z~_^rpQ34Aq$o{}ir9zs-O1nKwM>(p&xYYLhJHJvp*JL!;t9 zL)5&O{rdUy?Y_KByWsa#*yS|Sy)!o6xgR#iHJ$tPK4{0~ubF%&?)w;TJ><pzo+XV{ zCs?6*cS%Zdq?w#ZyIb|{yYX>5u9+N*IJzkIj^8tJ>Fw<;TWU5J*f|&;JYTV9o$|#} zjjy~?-$O2)lQ8J2crSV|!7b>YWvs(-*E!*#tFv}3?|NJOcllCp9m|sbpv~3Eg?$rE zUZnTwd~jZ@$8TMD@Y~C@De6m7zrQHBa`2q>qQFOU-A>&;f9bR%@0(Q<TVoFjFj(Xi z-l;QvE-x|pXr1wg_CJdExHfN`bwlJc%e4tHCM^aGDtV`tynXOq`*lF(Jf$D&AAXOH zbw5<KXIGBm1iLx9rK^*E?>MsUlJwMoy|?6Svv+L$IOW%p3*Eg^8L5*swq3T-G#0fu zKUG;}507xe5hjbXC5K9t-t{c?(tTB<v@5*X#9!$A!+4>6ix=%V=yl_!@xf0#Iz1b9 zpUe}HtJ&)I;IHwcsP%6q{?@Na{Alg^AY0ZvXn(lUvwyyZI#0tATPxph`Kf!e|9kw& z<O7fQ*3J6y_#pEm9j;yHTcX|ycgzY>n&7d=h_zVec0`H7gWuQZRyaTG>wMV#R`0XJ zmRh#xYx4}3Eu2u<%2vK(;v6@#o|UXs4Ml$1w-2Y4Y99NLYgV~+L&)tLf7brk`=5bj z%15b+!ms}s7_xq?^jAC+_;UM%S7PhuOi~knB)wH$U(WZSdY_SRUHy;q-#CBV{qU$> z>E)KUUUpKR`pUa5sst4jO2z1&U2~izrF-dd(Z9wOuMfzJ*#s8sl5hGdxyMrYh}S&_ z##x+;^DJ*T>&#SnY{5LwV|~nr^26Tq`KNaKUcI_ZVD7V`r+06&ImJw~w_{XaUmW+3 zxy!JiclQ4EUyGZz1-ri9Y(IgY|Bu|?1%G(gn$9tFe0bbodSvO%+`4m#K|48ZclmKh z?>v~q9>*y9)&J1_8*ZN;ZCPLYsK0Ah(y=#E5qk`Cc`hIGcN02sFPh2X8I#pKKf}LP zKjI(ycPL${e`s(e$K>Sut}V$qnFS}>72f23DRT;6$7#27y~W4l2kqOe<~J|9P!szg z<KMab`GHN*^=6k|Y3~froTS;M?S7@5sc1<FOZciE-GUn1#ZUd&|KQFc%UYJN;dWVn zC+%bUqxg5mm%nbu58Rrzvbu83(j8aQuBP_RbK8D*!;(T*5zp_pt;Og4RND9N!@uoJ zx6dgQ8cjYJJn>k?AMMY}o_{Of-}P4Yhx}uGp^B)Cr~PlO!nQq**bs4}-}F+Y>y_Et zo*bK(wX8z5Dm?wsPx}o2rh6h+YVseh?v+3OOK+n5{2E>6%<ZS8k_#iIz6)}fJP^t` zzmBy=Epys=LG!SnJ@boS6wK%fXji&eX7^^twS|Tf-yY6LR`_Q7dhV_(ZxtKoMT*w! zi&o!ev3^dC`s4S#R>xWk*Hj#S=-yRhp>zH0l(^fjB|Z@+CI%ggTz1RxMKYiD0-NyJ zxBp$K=ddZ-c=X}fdjCl;@BgzsdM5SU<t84#Acxwn>kXf(F4TRpb&Z=deb>45kIHsd zuX`EJD{d71sgW}%)bYf535)Y;`)B#z^!vF-{I_SuJ-rWa_qMHE(_5GAEo->Xvt#Fs zj-Y4nQZv@Pecb76(^oEI(5o_Ys{a@D6+a%k<@&w59}v6yVOiL*a!uzG-@pB5kos3# zCs>pDk^P{&SX9NW3$CkP24)Gzd5XO9x^p7^+!ww%8yGZo=gvHK@o3%Bhj-28v*u5K zRTD2{n_O@FOZ%gJgMP`;t9JS|iC4~d{)yRUUgyk`dby;7cTdB?B~d%`H4N<c?kc)& zF8OnAlHg(aPvIXX@#@;Bv;4Xv7m}Hs&pu7Xvgc=@sKVoC2c@eLo}2zk{;2<tEA;Vv zv0LYt{;~MbyT4UwSMQ@~&t#oExwSvM{-&=G_2-m_9^Z$`Al|yF3ZZk-w_oNwZ<M=v z$>K^rOMY<UmFLz~wc6iwY<EUQ$<Kbguu@$%C$VDMyAN4G(UDP}Iz~$hYbP;X62Ie_ z#I@{=x<w9uaM$Y^(}(q9ajrI2v700kRDJem_DOe$I;!-xSMxl!_H#UN+@@-NU!7cb zoQmhUxhu?Os;t?c(Pwd}vuS03$}Q0o@0)IWKI!_@_QSd`H#@&@#S(L)NV9~JwAM!~ zPdhD?S&IK%uexd1e(W%BXxNll27i<n{<wVfpF!L8(5nv&Z!X-O@s;&=>D9e^7aGmv zI&?4V*b*M`2@FRVmdyHoo~iDF)V;L}Bu(pCGI!1Ef8c%phsV2jo#NuFrdLgveX6;- zUnh3rlfN^W^ISijd=Sq1ck#pht!7sDTS_b3Hp=Z?;*p=Hn`9}}a6jep<DIv<Rd}9w zTFXob&pfqVPIRf->{Zb>;=NhIy+w8_`W`uT>1Q6#r2Xdtr!NfQaC>B6b-h;G)B4Me zFA006)V^DO^*_Vb{YQJtAJ;XS>=)d+!)@!@({|gJ?|pNvlVw`?_ktLAk#e!6i*C*? z5504Hx?J1jZ&@GiZBG8U{o&T5Pd9#gTk?BLC38Nf`J|h{n~V7N2;F~o{a|PHqkf5O z@i?82O|w_;UcKKa`e~PhQsv|(2G=fz1sbf%f!k$zk4*kH{h)q(ob=T{`3vsE`!CND zJNb-zx3!y**pZ;AkrTOg6qTKjUN!Of+W5^+`kvd#-RN598U5An{)h1HI*r4>E&n8c zIAbNd_uZ6x^7|^@y-N@2RIJFGDrFj)tQoUWaMI2P`I3*nW*^_Rz5D**`}|+yg>K)z z_3Bghw_Me|Th0~=o!C|TQu%C3=ZpzP_Z1kP@H`OyDgAgo&x<;N4{e(lzNj<3UL(9T z>s#^5kC_{e+}ab>bLqgF+`4l==L)&F1wJ`9Y4WEd<{Q|zHh<gr<K`oM{tD)!`&4Eh zj#|ulKkCZcweR+wToa*n`%c7xQfu+du!|~_+&(?!d0swk({Z_PnhzgqR!8|yeP4g# zcaE-~%Vc|p`oy%h+ut7ln3|{}u;KC+TcwKB5T?-RyIx<H`5vD;f47guai707?GIH? zZvW5FWb*G~)!VlRCvm^5Q<*Wr{kzTS*)tBDda~_%&NK@y{#3~|_BXY^^?YbQAm3-F z@#F4quNSlSx7(OLert8vchl8p&A*-4W_#`2k$EZf@|m|>$}s|$t#l$4(wC;zaD1G8 zc>j+g{bT<b*k4+0ZHbz@ZuaAu=Vr<tVaiyrcjqkcB*pOi8y}WvIX&K<^(VXY)2(^8 zN|pBBz7+o1``+(){~0>JTX20WnUcSDN!_kLVVke6wPUW)z0krQwtIH`2Nz=_iMQ9k zhns!2*&Q>1>1WDYmdUr(_8r-wwMn#d-+Nj9_3_8{Wqtf(_N%?wPRu#m$YWAP_hDAA z4VEE|OIfO#H#c9nezEw@ox_G<9SybapVpt=c;~Fj?vwxAuUsgPl4>;IyL?je*}mGp zE7#vT{2=w{DbX;g)>UoA4HBIOo^RtGiY@B-&98oMU)|r;>xA^1gnTtqL$2m5QRQS| z+*2h}TX?i6aM{nR=eC`ny+65Q?fpk#OZ88r`WkE&DSFIn#FMhS^juY4==b#QCeyWx z`Z)J=6n|ac|DPcxWKzA@EAwD6{l9a!JU^RcUo%s33jd!HR{O&fEPg#cHi>2X<xiF3 z8z0n}zTa)zmwDIk%<FGIEBw7$=K03#NZ8#dUotWBUQX?K``!|{!2ehN_1LNY;1B)5 z|3TPk=Z|3RdoO>PKHX9##<7xTn^c7ocem%mjh%Ad1`lR8?4IgzzkxC9V{P!!e-@Ya z$lc;^s8N<Zx6y8MetFut4u$BsUY1GyDdF~+u5EY!yp%taap#c4u62jBZ~jyLQUB=t zQGUUfQarPgws(JNnH_Rb@9lcUO}n=@EV_MK^vpyZy^V3k)9lkDWjO?Q<(*uAX1`2L zz{h<HW#-9$Z0}mThPP+)t6RtBFNs@oYs&Wv(>G1ho+&!LNOez+*|}v!GCz+O^3*pJ zP3>CiCOReD=-%($xzB&h-{Q1%>b$-6tL1&O>v{H6KB!i|Qd+B;qs#MFd}jW}wO3Ex z5jQl}V)6?S?h))ewCB?=%dKmJjvsD&{9RlwWs-79qS*cEwr<{BzxyAq?=(4U{$T0- zrW%F3ufFDoKm44&={1wcZ`~yw`pVlp%og2sRj><8x~MskN$p~Dyy&Z2-?|^Y@2onv zcEOEXH*VjKj=I&qvE93T;&xx1jjoEid=HZO#h%|d<&ng(e%UEw|21AqRK=F^etG|& zfv-x$kT2^})P$o;{!TIzJk}-t?q_nw@rQj`Pn%*T?*=Yq4OhtH;gCBbwfMPi*WS0U zMS29pnJrZs`?TY@4<{Ez^t4HwSfA+hOV<3-k<+$ckDuFgEaK1Z)Si_R-`ymCJ=)bR znOEj6eSn+6C^@Hp1q;`6*#}b}Pg%g~c#wH%Ml{E|Jv)|$DQtV-c<gfD*OnD_EvIVv z?wD>oaZuKH>gt^iZr20f&XJq<^~9R;Z)LA}^q<*PZMR_m_-xndqLdcysX;dmzIVx- z^DgDPV2tg|9>szK58D+AufO!WbaU;@q#42!e_czF@|!nl<}GF6=PJj}w9Nm($+YJ7 z{b<HdyV=g!CC++t_~Q4;#w%@g`ubjFoZY?p0gv$Hn38pgo3xyotOW0EU$55`J>!|y z-3m)diFHXY-|8*;l+qS@;((#i{68fRKF77`$y_u%{O;nJyPQ{#oHFNYs7|+7KfC_H z;ty-j{}J;4)}F?ae)vg$%$gPMuaDLS*5;;ui`{ryb@#f0w9ezN80Gs4<L&<4JH71A ze};pG|4br0F5Wq8x^zhptKyV3(*xMTel?#k{aPnsoi6hJR{Sq-8$X@$1E;Uq{|d72 zILmte_6;oqu4wCax%qxyZ@mf^wx7sg!Sdz(@mK6?YyBU^w>}U35dFGNYNMyBk>9En zmTcxekN-~MWT~^ce&+qd-uiz+8Gp=IMW0MBFlXy4O)2?%e+IL5gIhR@Oc94I$N4W) zc|x?b=TCT~VXAy2_nP<GxRTya9mUFzS0<G`{_vmS_4QSMEPKU+_U?@7xOB}!;PWKO z#x(n`M*k1T5ARg_V7K+r>(#9;mzQO*x!*HPE|hru-azub&yVurecuCg&fFGYxl>(y ze&cz&KVgwQ@7>Dm>g~Jx_?G^b%@)tL4wsp4q`#cy*R{I!V*TYSJRBX4Ims-PeDHbq ztLj-7+SzU$FizOAQOLvc^=;8ljvueyUEW)oQEDWiwy<QSf`oNgSZLVs9KNkjQ%aty zoApn8P_<|Ciun`2RCay#VRLZV@b2XCd&hTuS-<u_L)z=9)19u)62A1#u<h}`$mU<a zub&8$TDf~;<O8kH{T&+^t9a(5+ub#e&-=spp>E}(jO`O+ZuzI_>nRzYEa+LS_u}*3 zXbFWc5|6vy9rG-Tdj9fC=H}P`85rK>hPf~>DBJBVysW<Abv(zv%R<io88~nB=lO(B zS3UWkVcqKO^6^=}H$S{}Qf_Iv=rJLW$M)JXhR0>9etlhk{y)Plr&nS>78Xi1&v>uS zw|A#P<M|EiXRp{b&s_Yhj?!26FXjIkSUMB=-?%TCBf`7x_1h-H16O2=e@vY9x9dl! zX7yT!^nOkDe|FiQxc_kmdDR`3lSn_HyCU27_}`W^`AhpF>xAwY`L7VZe#)oTT<W%7 z?;QWNCm-j?T72vJ)8Fx*Au~4Z+xc%@R~HHi@=wj<>SME+dhqeevjH1-b-k0<3tH#! zFedL`DgRsJV$Qz{zb>};z2Ub0Qzn^fa*dj1O`*S+OPKy_7dZZR(el-Q&R^Vg^WQt| zld^w;kFD8oSooNQWRrWpe1mnp*QGu+bJep~S{N^7OmaPc)y({L%+W0;@`B4*zMs?f z%}+6InebR$()8ok#N?ZP&x5uL`F=VnyXSF3&CXfk@*gBcdj2yUSY35JU^~OsBjy5+ zWu|;)w}0yr|1(@$a!W;z|Foj|sZrat*2(D^9%pIpKeT7oh22((ths#8E(bL|D-@l2 z$&mfsJFfd3Ia0ScO){V5TG-T2j!6mbUU7^2_-B#D33mJr{#Da1I5NH2;?}W9EmERq zQo}ss=AYp#Q|CRK<es;E(xMGE<*SVDJe7FDeBCt4ZMT53$x~1HPZyp4Gw8@)oAKg| zsG8t@Wi_J{h41(t{<?PMyW--De|&BF7rPvnWHY$&{&?1d6i1yyj}@lI?vyRyd>t#c z*g7ur(5--zPX)qzzC1{2j&Kw0Gu${?r|7_j_~&u+%wo>UTnM}HuqHU2=UecBr)3)@ zZ9%gx`(^7NY}~cH)x`fseawfnwX1KruKh9Tx3jOhUpmvPr@5vUdU|pu=e&-K<ejNt zV7}k=cgpogGkm4pxvk_lnfuR#Kal?;CVoh2d3T-GAB)R5NxDoguM3<yGy75atVgE4 z&kM8<Ch_t66dtQP+<5ilmfJ7i*WQ}vR-V85)Zdcd=byFzwtII-S@!7;jx{pVtsC-l z@9jPCZ|cV7KNkJ=*)_35dUvmp#V*|?mmC^4p43s&TJn51^UL^{`EA|y9q+b8Ygbq9 zJ6~|^w2pCy^Az1_j0d=O1o`=&vcAr^@`w9jBM+6#w4hHWUMW2$sS_rI7zFMp@UY&= ztnhf&zpl1y$xMs+-C+-Jb^i#pU%zMJ!}?p%kJDQu<1WWaZSi6dcvYx+CNaEE%3dp> z@WM>~ecAW^*#EBk<G<kw`>m4b@NFqaHr|f$YuWJPl$uau|GOuDv!AWbZ>tL1U9}-2 zKiiP&%rZ@m;O#16k_r6#vd_LxzVIe}lJv}_8%rlFwpp#T>_K6xiiqXGgR;d@J08Az z@u=9Fc}8GZ%YOOK_F*ObKQzTAiOd(voW9MXhF{m^h5JRBiC=F1xV|Yvew+TAm-Q8< ztMdii7u_u>SAFyBy!>6k69?qXtG=&4vR2>wcTHW4)f90HmTB#Lb-{nUB>iPMWq*gJ zMgNuUx#X%oQ(9=Zn^nT<gvSdd4?f<SY%{H8%f^eX=L$EJt=sad-e(@q-}N@3kE#Rg zWNZAre@nDo@A6*pezD}wjS6#P+v8fN?Y5rZZD(>VNj&_!Rn2w5w<SBa_Z$hl*sQ(6 z?dAmcW&BI)bq#8wKBi7vQL3$5^w@XDy|eqoe;XzpSFc)sQr+^{Q;YR0>Nx&gh!^|g z{P?Z#q4KIJQd8TOmy0f(`7mN#vGS*XsXIMxXPjVMZ1?>7^Wr>#rKg^sn!E4w3!{H} zJ<C?QZvGV&e|!Its+z8S1|R;-UAcSX$xW4O?|fHhIKy~;oA!(T=J{LF+y9x}SDiL} zNqlB*PJhi=lZl(mCmoXQIN5e*y@q;GW7nU_AL3@}cl>Fqjug^ttnHtY9`lx6zT(NJ zrMr6Mrv8%uZCnxT^Fg?+@vt{*@0+}cKWCrC9#mA{sLWWT{ki9|%0jN7m0o5Uf4SLv z=gbO9zjw*gAjh@jrv2xu&i@%)?bkZpnzk~x)zH!6Kf|)38Mj|=bL{_9wPDNMH0{=j zhu?GE_B_AU?$<wt{|vhis-*3U6ZyUP>f|u%&YB=$&sM!@9^&QF)64kyKPo2nSDo2% zE$mlP&J)kd2ik1vAJ|P#--+QUS&`cQH0iG6*K?UV>nAzyEA@1bpXq4xOKyME&cug_ zj*BnsyIRyP<l=Dr^3sxBp@;uACaXU?{q;XX(GH2P+!293zFIQ%r`1*J@9R$d6&{^f ztTJKA1)n}k>lB}KWtl0;@>45ztXR@FD`ontwu3E;)z@FRR=P#VJ?|59!wJXlqMPkr z=ANIKKk+|<&mDtr4_Zy7I<9gFIoK`!^Pj=$IM3fltGr$vyRg+G$AzmRVygeXi)U;0 z7G@VFYda;MV0qZiWqkf}-_)-r;)1?fKXW7)ii|8}zOEO%zU4FPy07XiZ*PBn*&p>w zE@erd$;?Odv|PNat-AxCZVBg}7RM*AmA!Q9{-gt%U;emX+f=$&=T7Ezf#Zi)y^FnT zu6V~PI9FVwXE96T(W*;}=I9ihTO4HdWUtdvwveW(FDp!c=JxeJKf@-L;gNXo{EWrx zFU+~d?bGDe7j}%3ZN=+y`H#vw0_p<H8LCn}l>cPUiZE4Aj(9Z7mg&*Cdm*Xv`Z9vI zcFx?g+TgTG%k~^iWt*>WFD>1;pO?vc{=NnO)bA}X7fM*4H}h>w@FA72W)ahqm4mkA zn%(>=YjI+d%hK=7pY_-(Z0n=8*`z+w%|1LaQ|fhZ*fEd&SK^LM*Ziy}EmyVgQt^$h z_Q+`&Ce>?Fo84}*FZbIr?Zc*9ZqbZPJ>@U#*9t7P*q33=d(}72<NSpM`P?r*WbBe% zvu#=clW5Ye9lU)z(~Rx>mjy4EyBhScCNaNaR)6Cjf4k0tBhs^Ly{?*iTh8E%et%FW zrGfpF#p^!b(haWp3P#KCY4^?5$OtVrX-M9`v?|1~^zpTSyXH*Qyj*o-{^5ARI>pQ& zk9(RIO;-PyxlMYna*)|4G1-V)_mA@(vK30VT<?1QpVp5sfA;w7IHTWrGg-_wo#vT* z;If;!rr^ZVyk058-)nl+FMQHI@g*WpH-}+UTF|>sd>&6{%(GqjPvvra)Q2~_%9aWl zZJKbfSTf;2ljLFzk8dhH-`1D2&+;@`F5I+_PdDS-{fGCD^z*;|wn44^k$3iu$Z0yd zhrAW1CnohBn0DYxg0$`Hm$qK#KE;YXd+vAD=7i`GB{c?CmJ%UN6^ny+=gl>+y8gUI zo^7A>t8EjaD<->d*<YRWv-o_z$fW*9@_TM=nj=@F$~*DemM!~RjemrS#kb#6y}CtQ zNKz&;&U4#?$&;TuS53cY`F6L~4F=&mwY)O7`L@ix`0UC-ukW2-&ow@LeKz^1{Ozbu zTbeAMIOpa~T(#rQDwRxu%B9=B9A013l;tm4WBDWgQEt&~pQ}NhQb&cJbaus>1Z|!u z$dr;UVX4q2@yft0`#_EH<GbaDZ>^E)?`eJ&F3>6bHeAfX?3z}D$*h=9V(b}~W(yt9 zGuxETx_<0F-`{Q3>v<0AZIs;Z^w@9Sy~wp4_9kif9!2Cu&kNCUX(({ZzTBtOaw#x# zj`7k^@8k>b>v$>-zFl{`^-s87YL|!2MxBn|DlA(nC!dqFJfYCUZ~C|_e)Aox_=c1Z z<(>cJU(C8X_2}l?rxZ8!oKQ@?#W2^~?C%ciGg;1`=Y4&(OaHCp2m6psv%No-t((O& zc}Iuiy4$`>PNfD^IG1c>FR<k4sdYSB<=ZxKq5m?+WiN!*K4=n1uD4y5>Sh^NzEOD{ z=lSJ+npX}lUlVaP@@Vz(r-6Ta>yuA@@ih5skUh)wvsFjr*Y4Hxl@o3RIH?@uVZ0-y z+<Y$k^XkXb{|Ik;9N4+X_=A4b?T5a4^=4P@EZ99EHb&@rl8RB(o{5`Td6;F_ESFRk z{mb$vblY_kXPFC`->c^K^mGVu9C`mtrd>$$#q1*QWQlW?>lHs<KRlO7`n7embwtgg z1v&+ZA;OoldJ6l!j#;+WSnsvW$_&%mwbj@EsrK>z3>*J596!&RrN4aL)YKI-rmLUY zJ?YdVH)hM|>Kl(+o|K8}Fdnz{t&H!e@%-)Z$M}-4`;X@3+5hA&-zeF6nR8ocQr+Jx zf+w@s|89AICH(7*ecV?|q^oDFiF0?Hd*OVivZ7ysP{1jxBCGJO?0*uMOEn^uF06U0 zAG=+$<fCq5?%PR6mC{<z$4r{>?}M%O)k7b*x@TPL%Kr7Uj(v7;`^%-jw<rHh`B2}# zCV%2PU6)-ergnP1&HpI%`)5U}&o8FBsh1;b0<OK?Dyg))Lig=#F4lWL`D~YZ9Qx02 z-=XUI`{_siGu$}-E&fL@%dYuH;`uXPuH3ZG_1$FNvqvsAe)?&?%|2;|TbS}R6}{ql z#qox(;y<|WXUi75m>thrYWY^up?-68mOz$9O#jd9+|?@PF(r)ph7&JKp1=5T$7$|W z<^7K;B=&S|F26W`rtimK$7!w`ryaANDQzLv^Ufpq9Jl&^hN$gNw|x-rm@cQVx%bbF zZ>@W_D+q8X$R6NnzPvB{+CJ6#gO>jpvhv#}=|0I{cK0mLe$7euo*({fv_VqP=6=Su zO3vp=cUGwHv--36@qY%knz|37EtwzX5B}5Xy3w9G$7NUVI^)mGX0uh#WcPnNHTm|! z^@|QYzp!dj%jNy|DveLRnQ!Cy$M?7W&8%IwUSE1;zHsdwlfbjvqBAZQw|F!JbT+YF zQNBJo*8K2)2F8p!`Hwng|1|pU@k(qyYx3=+PI2YG;A1w+8Y(AleiyvQ;>N|cC!cKc z58DgWUD^~~QT5#CcZ}}uquDd19w}Kcc~{D85`Ez;*gU~4d(%ZbHGe7Tdf_a?H8Tz^ zDeGevwVAWngH!h3d(qeR8NSw@)-qo<%?jMTe7D`zEg#E!{y2)<=c!R$mHB<wLW8?6 ze{H?{{9Cd&kG5W<zOa1i72TM{oAu7y>E4UTzvpJWkLmS>EGxI2kFr4>$f$mi!?NAy zW!HpF`<zwPa#8p1)=dl3X5D+csPRUO_#`&rhub_>?6-WePkHCZkV(;*R=W2VGOhcz z<4D#Fxm8aD`}Q=(mbd;>%8KWyiOerua{tbc;(+aw&ulF^v2)@v$*C$r?k65hS~Ab@ z*4E`6%T-fCUW7z1zER_FpZ}lIkJAsozxnuJ_38f%vbQUYYSXlP^^V>9&)~bO@k#5_ zS@-V!(K=YQG1gt?<H2oihKt<}{?L9C&s<}>{*Tk&rZ4wze)hU(BmJoQ_UqR_x4gb& zzt!~pTj}o4#f90aOV{r5OtPy~ob>F~C)Tau_tn_4AMAB^zr4=W^Q-T&Yro9*?GnFs z=``=DxVXEzw_|lCcr5W3Y5X%yLa<Ysx%K$1`J1;N=Wp82Xd}M#$K;1^uI~~*Dr@xa z-Mi0$R}#&|qW*}7^B1a3UlHq|I>Vv--=jw!hi{)-6uU`rlBHd;?IAxAp~K77&&)sf zsl2{!fA6naF?M0`pwDHO?oX_Kz~5(|5iNh){h|4rwfaX7uX-s^vFgEVDZ4)2V^bHu zvhooR*Ud~d{d~SqNBimN>^8$gtJXhtS+nBhU%%t)Og4$mQ<M)fOJV#W_0Ow5f!8|p z`u_a$95un$)OupF&F^V_WSLbXaWhq=+w95&%_Diw-nshpo|{-XSHAz1N7nX9&oT|T z{<O<Al&n8h<I<CvlzG|v&E1!~ckh2vJD=y|mBniJ<3Cxy$WP4t?p5~OLZ!a7a{62G zhr9nXNd8fga_iZb)4$@DrKHT7)RV_T+v*lDztUc?>3Yr2Los>>ELgsrtvvr$f3;`g zhiUh`U6U2BuJzzlKIU;#&m-g9JFAaBt{-sPRAkqCaM{db|IWloUbC@(TpRt{?Z_?u zH!m)q;pvh5^XBc($i5K1A94-J^B3DGh;_U?Fz4Owo)v#wYmWcctGIqtPWj`$^~vi_ zTsknT%2WDXy6>ZaCCXN93Oq%g=l9lHKCZ0!ylmw^=^eM_-9%qG#l1aewf6Jfxl51q z$b7ysYmKVy0r_5|NB%Q6Uf%vZ@|oND{|s@v=3G3oGUor)zgPb*H+8Q3ZEfCOr&`gM z%YIC1b!C<4mA>f$@v*i$O80tf`EkuNsmYROy5Mc!8D?hOt!(>rul?ixvF+DwzmI%t zvsYxA&Ds)Id-v~|!aMiw@f_5g{yV_9cG<mW56q5CH#*jG%%G+5wVmJ(&h<6AoA-Z= zKaw4pc4=$Jx-a|rGJfrymG$ix@0JN}-*@Z2otvw>Y{sJ5E211Wu`-FtY_4t3e$3Bs z__x8)hxG#PnGdsjgN{nwIuPM0<aC+U{>8Q<l7HIVw4WdQRH@%Mca`>!vVECvR8}M= zpINtGe){8uzkNlsZNL6o``7sM?IU%{AFdys&z)7La`l~_-rAC<pYy^Zxhp@V=oq~D znOvzlajIg!1mEEdw%H%fJ6%cm@OIheM<&i|?yy%cZS6iZ$x`}=kJEb@Rv`g%R))l? zpWAy<`;YxIyj&;gb~1l)Mz83<g~A%ClRk!ci?~d<nK7|t`Ho`gQqeEhRzJ*_d2ydN z;bZT%_Oe@LNqzS+7TX2COX}e6`I*IW?D_4>J(G;T7H`pveD~FsKl6Q7(XZ7n)q^)* z+Io|x;KX`swQJUUrUmRTkux{2c;9Dztt(3)HhRT2A*CZvgq7ajv309Fcs|H-_2nPc zaUbHA7ccm+QN`E)dy!B4juM{PhR3Hd9(pkE$<xiDPqqu)Hd)oM!a`~Da#M|!u6Lzk z_x812bLCmZam-3?>&|>b_Xm90EgQ?Hy<IlZYywyD!MCxYTiz?@O#W~*pR3$>cDmnn zo(-JhjGZU$zP+}KTXWxq-B&)&)1J7cP4c_sl==Ft=l!ztZr2nx><EzfvQ~yKE_=4P zpLk*LAB#WPc8Bh);5S#<E_Y~hT1eCFKJK(tFSB(j+rm$#so$t7^b*{%#{9#!+}FL? ze<vHCa4>xEZe4QL*>sU>OCIjjsu%pambc7wx@UGqjN6&RldQv%*|%Sub}iB<Fw{}D z!E#-X_oX9=*QUF<tgX+~KAl=@;$z=po%^6lxc}0g@NaK+*1G@W-2AcP^!GpAOhv{M z^c9|bj60vTU3k7(@TA3Rd(yw1iMRj9`Sjxy&;IFt+b1ypJA1_aSNN45+0tnr>Vp0= zTuQ096aMe1e#C!<mmYr#|IXA+YCbSo@`Cp>Z~IV|)TIi~?M}xl{JSwdQ2+Q{wrdvC z&rah^oqFJOip#`>MV=O12DWWh;kWBIZ=J=@Fri`cvt29C|IYn$wyyHu)$jAO|E@{8 zbT26Ev`>%0>kYfC1)E>?{Q4LAJB-QymRH>J=MgjRnb}DF_S(7O?@ZPiWj(K~diuN` zhy@oMU%!xpalPn|K;grcD{SVQq%kmkeLm0d`0~BApC9>i{4uO={^d4%RrZ<{xk{5* zI}-mKn0=0o-{HudKFf32Ph|BER<XCMP5RGpxN1^X*`@<7liW^8MkF*isPq}%mhTsR zd0M>2<WbFZ5l0=JzubbwnF;3U`hx5-#eY^mv=>a>6S^jO@81*e=gge7?}_J)mtnjU zI5P_0A6(y6I^)lM;jGDh_Ltsq9C$95U00Jl>wateUi*nZ?{oYqwH1Gr|3ms%_&kZ- zX4luKZkVj1@oMo(<;}(C_@Bpbp1+Cx$l7T4AN8w#)KxsbS`ztQIpe{^lRe5umNv;h zIL~L;AU$u{e!i!jDa{<WJryRg@Bg~~Qv8kXsC`>MxNXeWKQEN!pjO}NBlukMpUm@* zzpkg1x5u5IE5G9D*Zg;zzltCJlo|YE(X(8^H19(36Y7dfB!8cZkaJ)7x^K_*XZCN| zEhj(vx9*hZ?G-x?JpbXSP-heVQoZT<uJ%BKhc!DN>&PTFYH&X2tJ|yn+4=Fk`#)l4 z&9Zp#%I`tx<NWJuYql#tz4GD5>AzR?P3ryaKlqg0{LS~nQ2Z%dY~aT`)32x{&p)?6 zc%O*(zE?l_|9pu1&+zv8)9ZhPCnjzG+fgTPqmbln-6<{kbk@5hf1Bsm_WRih7*y|d z`Ti;R)7{t|5=&LiZ#lj6-&yW5_k;0UzP>wu%Rj=WPhng9pQh#V>!Vga+&y7e)v9d| zdy+5T7S(@im@9kyt@0{wO$95rJ;~2Bc@qA`P1zM=cF!T=oYCT*<XihyA8Adj=$iH~ z{pb9}sTaR1zv!EFD=l&{ht&i=TWzmGOI0_I*B8Qk1VvNT7p&Dc-Pn9C`|&HUPqs61 zG9nHuOy_tme{NSroW<kApV;cP9{f2r<Bi+xSuac;b*z$J=T`eSyIH7jm3wh=O27Io z8Nsc7b}eCd3TJf7d^)v*eFGP3u~^lW&3?J3-k#e2wClyfD}n1;a;#dPZ@(-0)JuPM zaCmX;=E8iLoZ^iIzClyPEPGn!HrD?w@vfP;?t<~lkSAxBOK;rWf8grzV(WR+Rmzt8 zct#f7t~|bSol#|@C&$kwJIjMCa&x5a@2<@KGA$(caZ;ac!#c^<yL&z<3nb;PF}%Lq z^lj3tFpCwtm)&e$dz^R6T9p8epY6Z)UYu9)swMof_#aWFSC5@OzHeNxt!&EO8Q(f@ zOyWATDP`yLBo=kH{h6leTB6R$1u{~9K)aL=-F+oc@%}*J+AZJ3&M%9xUSjRRC(EE> ztZA=laja_AuX*g@$5ehBpFQ`uO3YsV-0J*w740FnRwPY&^sdl2k?o$-^Bdm+EY%mT zm$<rC>bIY_!!cF<-I*sW4@$m19>2C)`PDr6c^YrmFUl_MFSENS?e;2WQqhm&mnSi- zE7Ilm-0wE++zW5Hx_Fh<wT=q&vcJ!<Q*?d3^Fyd|apRBJMUKmB+}b3ra@VKdF-W*+ zUuD3?zh7-@p8AJ-DdE}O>34n_PF9lhD_X-T?>OsajqRej+K)u6j_C1lFF!AkZqruo zc8uLZp>&;h)Q4w_beHV$UCYusqv5cEp$Zd!O!?Zq`%T@|uPSRETyaz8>i32}qK`Pl zUPX6HO3z(XQPa*M$5DE#-s{tSu?n9Ts?%NfOfxOs|6N?IVw2@dwE{M)@Qe33>^Le; zKQ`~#@}Gg}haSVHyB7BqXK^GoiQ3y-GCgu({j`~qjNQctY_1pn4*hq^>OaGqmwc0c zo$oZ+TlqEMRj^;ZMYQMk0=KDh9#6v<CVZ6LAz@*`zG+&rmuaZV*L359z6VbpcmBNd z-PZ`UE?ZCC_eyiD3?~Wo_kW-A`1%~at#9Qw-J5b<UdBdh5j&^arp9}=x82MIudm}^ z_<lU<)7v0Z@o9pLJ!^LUT3fsEw`$~`e>Oi{H{Cz=c~5Z7CGXSu-1!9ym@E$5K3Dyu z^x0mUWAQsDeX5^qR~1pQ#wY5o{guC~e@OB^nWgiq=a~1*X^|3>xD6TJxXPY)SY<c$ zn|#wdsmoE@FP7?m@jmNz?_=`z*-z4^`115h1fQQF81dHTfxL5E>TjjUWpf{{-dk0A zFtVl4@Hm@#rl)-0{S)CA<m4|txLU*i(6{bQ|JL;#da_S#HZxoEq_22TdbZAawyRUi zZ2Pc-`c=nQS7ZmeY${1TkghKAq(pSp{ERuvr`_%@o@dzjWlgoW#pC+B32kXA{7(M< zUaxX=9`rde+}^#8w?<`F)VwFcX;W`)&e(RU>Rm!T&y}!k8z*u16h?DzP2SqR;;``U z<?+v>mb38QIQVF%)*~6;hpa_gx9EI)>c${beYIuZy!$zt^Y-?y&2Y?`7xyIjgng@R zVw0!&{+MLDtxrN%&A#$_S?`kFGj4CuI&NJ!@pW+I{iK_ZW+m>QCcX2~#(5TZx%gxH zwyFd^jd)OCX?Jz1>bh3XjIy$qEStp>_^#ZYH`i|J>G(TQnju2IQf3~vw_g9qC$(+O zQup0v=eU{$<>Rz_uSywPNB4z#FxG8-b*)OR&*S*Lbk6lhv+a_%@7wNaI7z*AvCdx3 zQ$m*ZZ?4atT$?TBwqd%!q`qLC1q&7a9DaFU^lrsIiDkX!b#IzP3a^;w{9-;^C;BJ! zN56XO{*3o>hacvaM8-tF-p*}wu;AmVH48)71$WJx@vu?i_~UOf=F?A$SGc}eS21&+ zZeYwM`vj${w?4h|E|FCDbL4~7@5^5^^zR)CohTtJ$=qjuer;Vwh5fgl>(6E!{wQ^~ zCN$wen&msz&5Jcol+3dDboMgiNx62leJvO4GwPd+a@vm73s*R$u^855P22zdjPJ8A z=Re3<U0>gMVq?g>3A;Yo{F0n2ne{aJRj=8zw>b#`H-5Ug)qA~q`;{qp+UxVC55wXG zOCp8y+xFxx$PPT#+Ed<fO}Lf$DVOREZ@C%lrZ2aP|GGC>rYQTL{LW8HVh`n7h3xK^ zYgy-D`@y&7oi@M8-xph|0#=Isy&3bO#=Xj~y{LJ$`}V$@tF6iw3oY0-=gp0sGU@$Z zkKdQx=Qy3m@_keEJ4LUv!pkk$Sstu&zqWq;#5(VnMMujFk575^T)y#a(QRk<GgTsf zJV|j3iIGxA&re@|=7mw&gF2h^7uu8hW1=Hk%-N?%D3t!`&0e-<d$x!}p3$zJUm8DW z|4iDp-1VKyD&^f<dR?b@**A*RIjziE6L#{zd4(tcL^j@GI<nm7+xJzot{$1-(&#Sv zv(2iBx8zd$o}TC7-V(oZKikb0Y58>XUumV@Gv~%Ra#JU#i!>dxR1SXn*pj*N>z9{Z z*S2Nc$-6!Eh5fOuM?96aGB@pgvu5LwS4AGm^D>(cm+iVYGw;`wK<~W1$e@r&aYcWN z0(X0_%hM#5HJ|=+&bI$`tlj*K<&F`;i{AYW7kw6b^kzos<wfrbwpW$jo4@3E^@5oR zju!5HlCsJQJu*ipi&YhG_~_SkIsAf3c1PWLYxm~;Z(fS5?kiH+Vs@^e@cZV=drK!r ztJKN=w$eO5d(Y#W8?-D=%f6~!R&S)O6*)C3@5_^m{@k3ID#cankMVb8%6yw>d-}9a zUZ+UVQKg-!$KHSG5c2r;O{wh37t^T=YJ!`iJN3V=Oi0YzxTf>TS(X!_Yzz|9%#?R? zI@ngMyX~_rZExgr#;(<jx0(MlT#wUV85tFkRes&<IKRq%p8^ic_@{BLHlOxP-}A2c zJfr`@m$#O8w`?<hWu@Blz2FJkgvy{*t9#lNWlzX0XmBg4Sg&WbZ00JjX{$OuX{xwO zuSik&d|04x-r=>C`&Q)HZ%Mi$(e&vl_XD<r^7kYxzMajl&wrJ4Ao{M$^og1*oRcgM zO}xyMI{C}d{IBnyyXZ)7-*uL^@_ovNNzuPGQa82v>wiC*+UIfd@Vf^O_#eH!@ku+Z zp6iEAW_kHMmWV~yl(y%q9lGXmO6>MjUS`>iOXj2=4E%AOdv)ZkiW4SQYbG7$-gF|d zWrp&dhTOlmI+c%AYHw!W8^7UF;^j9f8!x78+p#n3q<2RU&q{XQ=eL>F9#lM2Vpyy3 zOyqrD{+?6o*rMkg{rmoyub7A2w})Y`(pr@-E!{UwLMd4;#lq8O8{;OnFGUtw?q1h& zjSoFllX}*l$$Mmz@s<fWp10XoOcEB^`Sr;><EUR&uZ3>w_N{z)f9oA%&WVfmY}=7q zQ+waEMQB3hlVi~`#Yd}jc5Odw`nhCoVB+R|y;fO*d-Np}8xAgWP2f*wpY^^^*LFYi z%!hNz?W})H{~-J=?Z?qXnL52oYfFXpxXs!k_G^}8v?7=7Dcxg__}J9XSxNm=Keqpa z_x{EtO}%~c{^bkKs&tA>dKuMwbV^2qUZ~Djm%W>{3_pve$n~C=U-v7%;g6!qTG1xg zvfW|+CR@UJL?*Fa3*fs@mHzYEm3ti9E}L9tn<!K5$+E=xbdtZM^1{b`U+=b`e|_<L zqS?N5-56HOKc4bu`H%GfP>Vl$pD%Xn`4-cg`u`cq&P>cQ3v#s7ZmNHjxOnT;eU}d? zpY#vnSNM~;wnq5J%Ljj>9tSobT3MH~ztUz`$%JgP2Mbi*x960%d@^ETcy~bZXnoYJ z{|s$=T$i5CW$V?McG6_Nq4o3$Mh3wWwy(DSXE^*e_-LE|5AU%1;jwFlb^jQ~Jhl5K z=I*E@^NAzp_w|bpD<17BSv6()*BhT-r<golRc1dSw*L66Us(c?73+ig4izl)F}$VQ zdx^0@{N&uA7{2)ik}u=_KD6hnXn&+PY5BwW)<3C_Vx8i5on2^j)6DME@sfK!%JXK< zY?OJnfBEh8H&-91stJ5m)!v-D)tEu3c8=waPVXKDr5$?WeLEQHww`)@pKYJSy}uoi zKk6esq)d}c+wo!V`5QA&^Y2uVj7Ymx8FX=jOwWTyds~n7g@ruMe|=GA{*8^l{hmMh z&+w-Fx7fdHR_Vv%S^q?Q{Lj$D-}XgUI3jxXlYLimYM!?yOl5ZG-SgR4P<wH1l0{IZ z0@uGz7x&XTo01Dp-m(1tC;Ne{xclD)Tl589+!Oqe-(Qk1D(m5K+~=e0#ErXi*BHDu z;T3R{O0j<zW4w#?xapN!|1Q+a+VDQ|bw0Sy?uY9dpIJV3Ip3>zuSm7-QZs*|bL?JP z!hA#5u>5yz>!&{Q&!2H6G&Or^uHC=o7oHllN!gu~_1`}22Frcvyr6oikM_4>Bke?@ zEmYoIT^lX)pW(dajt9*r*Bg9De|z}1UB#leU!wPx=`sg9a7Sbpo?UilMedQhXK$5i z-Ui(`Xd(GBR{prYNJah;d7d@Fo>vy^>H8hL-O$Epv73{tc9Ud8-=4BRuODkY4P9to zrM{o*<?l7Ce=BAk4*a-nz0$D_$^Nk?mW44J^VD40s3O2-*uWkbAM@kn-L1ST`u^M0 z9KNuGAGhD6+j?*I<K9B`K)K%zOwAJvHO^U0u#^$LzTs?b{i9<QUu9)B{EYg_{(RP} zCQq5K|7`irz3poIB6H1hUd)Gj|9^WkV$VwUEALnnd;j^LuEos%ul>Ec|A%bJe}>IB z<J)dMTfQzU&f1$d=)t~~EZ?U8n!EMHj<i1M<$aMn8&^&~?J4`1LvfN>=&k+6|8Cby z*h#*K)4fn*on4<-6ZnYtR_fh3>qVE|j=8m}yK~VdmhJ*+!80O_k|pJbEk&=?U6J3C z-~7k+@1$9J6GeOGiC#8Yn;t6m=#lECJ>q7YGsFHfWX@CTlkQwTahuNu&%H72HI{D2 z_x_z$;@^KucmMJCTsIG9%v1Tua%<hjb+4?~O%L#Rd*+hQ{ft?n8#gvNUAq)5>Gsok zBiA4Mk7oX1U6a;#)NE|eoqP4`<#W&9h-iCRd4B)5pa1pp&OeG9F4ibNJnJ4l%h=}n z1VizB!5RLlhqWrZS`YGWd8XVv`RRgl+SlyFvO5=MPkb$|TWx!6HS3XZ?PQ(8wM!(l zl6R-`vK>v53Y{2TEkB({Jg@%HU-bvikH43#h>reI{a7~msM+*+rPJ2^Dw}3<LYKv1 zav|$xEzhUcDh7+0)!uAYb5Py-pCM~K%PV^>*&59cy?N_RYsEa&uWVU)>E4Y9jfr}> zPtAjr4sF|<n`+!~TAPU>%({Jj|Iwf$w<i5|Pdai`FLdXdI^#XL(Fe3jb(JFYzMS6i z_Q92RE(T|dleM-S%M`j%Dg1NtwA%)PJJ|V!Ch@vwe{g=JU86exvBI{VjE`?;9-RFB zp0lC<7M5dXY%KD#3yzgN+L!h5`yUbigS)~Sm;bT)(Q4NJaK7AJC*9zvd`|A#FiyE| z5!0+a|6N!wdT@vE?U_$Iyk5yJxhb__qTS9PzQ3LSaDGT{*`r<kFkk-YBkh-ZxhDS^ z1Yhz!54>vfbXw$+CjJeXZ)K`gekM&~Y3<CPuXC{T;cB-E8I@;OuY_LP_UCumg=fqA zS4`^N_3P!|QX6;w-JW^#B&K$`I85C(cjdg9ISJ{nV?_ct8BZxN`?vMoJl&7Wd;SU5 zIBehbLw2cb^r3x*SJ&mfTbI8kPvKH-g7f}2MbW1|w9Gx2pi*&HRAkk^&xY4aKQ8_! zGQX*GKL3yCN51dcAFR%vSn|!#bk8B{i85ZNd5<mFbnHxOx?D7?^?5GmMCoSUV<MrM zfh*Qb+Eu;$W!~|Wj|KUsf4!(Vn!d_>g5yN*WSf$;(e5ez#k@y1@3!0e-EH&giujlf zm;My4d~t0;Y(-gg#nWlW1N+=}^gdQHRX3a&dgIu|HM>(vbj;@Ox)=Q0FLOTkAJa!O zYOEjL<@$Vh`p3w%hmBTbYxkRODr>quMUPK4W?fxaU}M~|z#}GwxyLk@O{)63KY5y| z-j$$xe|O2--QJV2MD($QY53cVQ72|QKIxnHHA>d)_*paFV)0qQ_0wXV-<~tiRkt`_ zleBVA^b)SqbC)a2^l9IHUA*Y`;x$)P+%Kmp<UMY_BRBJp_N<vFHhA25(kJns;p?i; z=bzm$@;t^?uk|!f-C8oD@w~{#z`Zj=LZ>$B+i$*IY$!cD<CgJti*M`2|896!^Pk~| z`ut;&1w|#L4@ytnQL{?h>t;DI^loFSghI8{NBvvp%H=n>AJg{VJ6E%yxaZw2ALf@w zYvbFyZf>>r{Lk=G$i_~i{2*lgt6qKj^#2T9LXwQX-#kfQR&$7d`PRCqx{KkH@6_F@ zQ|e3Jf66Y3|C`-WL0Q`ykFU@AtN(-FNdNHdpaXM`&;R}M#$V$<t3Ta;Y>|EbcKlJV z<_hl(t3*n|wrq=Ie^mds^tT<myS-aoZEURam+~X?+3F<XY7F*Fj=Ye&j<-i_qQj*3 zsV$ot&dm9<oV{te>CcTHl@IO{`Vii|;IfT!%C^EgnUhYN>m2Q$w;-=vb>ntxH$Uxf z?(rL@y?!`vEr$euL5D$ouan^Q6&A;r);ZT?Hx)kKzwOMAE?L7w&7OHF<^Mu0s^;&W zdVcPs*R@W$c@<~(EL`*DNbuE%PpWe5+bZA2i)FLAcbJOE+FiFZey?3O^;>U;>xRor zj1v;iTUg$zw?BPvpUG7=8|RuMjQ^%vetQ-szqWdg-rtvh`p;CjR$rB0{z_?GfZzm< z*YnoSn;-R;;cr)D;)i!T*7x?V=v`3$pTXV9US{(AtRE~7oFru4zI=ag-@m_IKQ5M* z$s1&Ul{oPFiN62gz15Lx_7`3JCC3^UX7Bq?eq(IFN=r7Q!}}P&NdCJ1?EdlHd;c>? z<gc63;QMB#eCPq2FE8Vl+KGhp{R))0#Z@Zre{R3QKMSw_3?H_C)!oas*x>m#c8Ndi zduyg{vDs%3|K?@o{44wa2=7wg{I_GDY}-q{`6{n$S*{E1V86qBwr*C9`~;QhPd?Qw zdH?TjU2^?F`!vJ4BlmgM?si|y`h1;OB*XcK@k{<Qa6FUGxFS;eY4U#t=d~XSH@n|V zEw6~m{T4s*Q~mK=x6A%NuC8@1E>zlj^iYnol($^X5{aMFm9IC)oSph?_Hz!OZIe#l zkT<(C|8&(PTf=~V7t6&B{#5MW;nA(-wRWew_Ev^}q5X^R>77^?W&8A;vtSSN!N0cJ zAKrYuEg1Npp(=j1z28A=C%f)XwhAg|IK(DzU|ypubD)l8aotn_v(A=T4-Ri%e@khS zob747`_~pGsq|DXZL4lRaeis^mOWQ=E=FB?d7y`9b;^_QvwrCtdaWbYsW88p7keT9 z=aUyt_zyh)vX&z^t#?Ckrp=shYbJiH4Hk-zJg8T_C3}AUY{|b_S9_NP%HQ!U%wu>d zbAJ23pGBvCh0hIJdv3+nD|b4ZVs)}l8`z(?9-0;6Wpr3U|C8wP+ppLx_iWq8clwGi z*YkhBeD|N)uC%Kw^V&mYPs#dDm4lCOwtrn$c2>W5&AgC^nj;d&vzDki9cVI_bARX@ zqtJh*Vp&i9&i(%xT&JxFinV*>YH(hnaGt~)`^gEH`<^T-HxJijZ+kFjo4IK4SC#A5 zWnrFf&kis!SQkc#7dz`U@@}cO<ZEd>!C>b3_|nd~aS?@kZ!FYdI9mQlebpDsg{*0* z*=(va&O|>~UjE_Het!E08^4!N{Bin#P*n8kLg^cK-d98?Yy7?WWD=wNb<y9YE2DfC zE}hu;)6V&eP1m3J{|rr=E0T}eDO~-dx+<fp=K8c-WpgceR)|-282auE{47xTN8z!| z^;;jby=8XJcdOX>s_x*9`P~Aqw+E#7=q2c0KGR|)GylEI%~j>)vs~ZIf2p0Ry<Wn8 zcj4R5J^knQS|8dlbIX%SvP)_XUio~?<Dl%0uj}kiU4A?HWLk*T##<{Dt*gJiy|llm z*Yx6ijyv1at&?TkUW*mRM#m&f<v6XiL1qH8@d{b~yOQg|JwEa`ZSA~u-t~H}o|;qW z!_SX11vfeJv@F&<q0m#huIai@^Wpyt;tCtLH{5d7n{50u;or;t8O;T<=6vmae|JCr zvHZdMmQriYXFKHbJf|++v)xnV$>i%#@~q`5zOOrRao?m1C$DZ>b8FJ^*e$6$w?@oN zR&q_?P;6J6-os=qaG>k)p6bF!y+y~&cW=p_xj5nWm8T~T9-7A5d8~qcUiOR)KQy*+ z>Hje-yVmd}I{Nf%*AxF4mO1vg{H?mK`^flX@xg6A=U1Pul6c!$Dxv$_r|;AUot)ZF zH%-^dh}14BxN~To@+>o(<x!Q3uD&gI`Z)KJ@UzCA6ISWVDqjC*xW0Z%eR6KutNfmN z-jd3jVwbMR?3iY-K*4R=z1k!53lFe&{phSoeZ(78c42Er?sgluVBH-R2U8M1&A2%u zeSe(xoBEqVN9R9gZ**gqnsatS@qY%L=e$4bw!VLK`J3P0`A=&4tX5ad^5TE1{rAPc zsr%F4Yh8YL<kW8WUoksa9>}av;QDr#^WO0X&zi;F-&?op%~H3A(|1mu<S*a;Fy8o& zTrvCMkes>QMQ5)t_KE-bC;FwYbH(4~58pSh^>d1S9n>Sgt7fN~t@W4lIpI$t-`amG z+jH^PvAFwIW^1?BhH+olN}9mr$gbgV-p|N5_Sp2*=Zz~bA9`h-lknj2CsV)Eo|kV$ zE>)CBnPBnQHha;wOS%uWW!&4I6u*vVjw-lye5W6O^{mUUzFl;c_B7}(D}2VZ|9t<o ztvYkpg=;wfUdaAa>SRW~a<9{V$zztUyUtZh$J?LZ(aBwUXK{92GTWY4tDfgt^?Zrw z*?1(`&F=0i@5spLl&$T{ybM3ZcuO94%YFPQp?+@3wd=;5qJ=WMKY1tT-<3Pke`!zG zFXL@I+j*7-C&)C1C!P#`f86${!*@f4GvCfw{62B8t=3wqCj45(&%OiodpMrI?g=x< zpY>wpn~a<O`rl@W%kVs?6P;SovuS1rd$v&B%(c5qjbl_kto!0rbn-J#<DGu5=lb6z zy8GrHtukJ5C-AiB+Vl3iFQ@OjqR^1HqipgrOPMFtwc0;s{#|dU{-fFL@8*5FS$5)A z#eLI1<}DZ4wUuMNLgO_y_oOwOl00q*9C+Af9saHPW8Sx4*B{#Vyx(J4kn`1I3$N$f zb<8vV>~!7yGk;I**|p8Pw@3Z6FXg`}{pjB8rK(q|Dy~cm<=-d0;$582*Q7iyla@)I zxo7-5Ppa)t|FEg#vDVhC+?4(C7ykTb=wErRWU<$jHMjSl_;8-@-<5iClapq9@3yTL zN_4st%{uW)(R~ws0p9l;9$(t~-1F~N(`erIzz?sFEM63S@8@3*l}8zmEY-I?{%ZPp zdB;EDyBX!1GH%_Q`b~R=LC<>W!y4AkLN%LCMQ5H+wh8B6^~2W2dU;f~(fLB&wU>7- zu-_kh`s5vlJBwwl>k`7>yz7%%b}|0?!k<1HB700*-v6zfzx1Bm-<@^xF~?M|i@iGL zvx2iQ<I@wFdKtN_9{HH6FYAjx$iGef@UQaBJ)Vz3FF&o|d35RN+lW%jg!Pgqz8qYC zcxrKFQSO$#PM6;Hc?8{#c#yta-l4X_WV+d|)@@g=Z26}0DY8%@-pT5d)yGR4S5FA2 zYLo8xxaH~TFe~{>*IVoJ^rf>5_J0%ad3asXe=qN++wtrFa2E*meEI$Jc-5Dk^;zDv zX&nBYdsLU+@s!uLn{Rt`vds6NJ`H_Emao68e>zQH_D8q>{I?&nf+O#^Fs(hJlUT#o z*isS1@Rj}EzKegS+9}s~e(XQua<TNS>(^}8jq{##Ithi@E-=s#pK!*~CgJnRvo*&G z50xmh2TzUo)w8<mY1pPk>t@>*n!LX)cHQIhg3TZEI<DulWcAzbJuE51*l>y6E$I0^ zj`M2!nt!N&Jbh@sxa;d5VYmJ>_*qqU7w++xV>!EM-9ef5o|PwamtP2fZuBGQ{?Xix z3dU|5pG;V%%zI^hLP5oOuV0J5rGNPHPvDA;v&Gan&&hs?jSWjU``FbNTFAcs{N}L! zQi+|xVRoOnJEm-z_WZ@)JyoApIUT$AerKvK_vag{+2ZW)t<810XS-<jjioKj-#5sV z*k0K#di-V7)Fa3BPqL&We_6LXcz4?6`6|6PCFFLPem1(eq+BKMM@;137H8pwTsw}r z`S}-QMXxo@Jw8J?L*+rqpVjt<zAO3athrI(!C=8-@w(^twI?5<4eWf<ln<WqIr%GH zerd&wUA-aYwo(D#1G`n6+k%f-uAA%|@%Zx0@Hsox|NT6sHFZmZ@0sN+&xJH{s#9`J zcTG&Y<S~Kyq`kiE-q&rRlg)Z^+&Ln*eE(@={V!>StBAHu%L;o930rM1mQT88EK)5L z-pT!Z8<M_#j`aq{EB_fv{xf*>6}4<`eSWQGVynOAoyK`L{uah%o3+YJxO2*IYeeHg zl@-jQuYMUETiq(5E4<Eb@rQNp-u-U{PYPQ5Ju;{@usFUp^W3AUJ!<RT)cjo)aqc1? zTj-Q&$Mf3zmqyJKzb(O#z<+8lbI=9VNs^b0iWn1*v+vXH-{Bd?dw@sod1KrXRY~o| zljknxH9D?+r9SFe?w;cxT@D(s-@H2AMo!{M@%8!7qn=f-Ok-ebz9MJ*&*baI?An6( z$&)v%6Q8qQ{?ww9ix;KVugtH#Qls6I@Mrz0&u@zCy<X&)TCZh0Rh+TY^MJ5hmzjm+ z!^if@rM4kgJ+8_+KIt#Kv}EQj?y}VP$DhX(Ena(Z(VBU^B45r*yX~23>dk9+-M?h& zozsbun~M%>PRmZ~m{WR~js5c8s@lER)~r(S4SSt^eB<HcxdjUzzgN^|nfc{pe$92; z1q*V;Zuyk5%&D3)>vmVs8b2e(laF@RZSCmUGU2J$ob7Hkzqa>md0QxT?zs0A9U<fC zmCrZsN;_s3@!V7Qdv&LS-PKodqI<i;FaNt+zVyz^a}Cq_3T0X&EA35qm2!_OynDWk z-Rn{M9v-DFaXg<EC43L^%>PsB8@Q)QveetVV0Kg`gU(F%Cw=C6((CtDRm417^y6`H z-#R|sjPpS|u59^R?|nt*i*1tqTka`_N1wip*Zd@H?f2{nlhGZyLwg@x_n94ZIX8E^ zvq8Vsh4XU3S`1u{=dbP4=%`qB>Kw1*R>`F^c3YXAI$m;drAiL3)=a}b`)etDjH0Xd zX@30HWxr+3SL+!^Jm>4(dgS7K-LmaP+|hGY8a`FOYWtXN4&S;QX0yjH-a1a_E3f^- z^27H9V_wgi-tlF(NBZx;ZGTT27`|nG8m`VN@#kP!<Kzop*Z7)$%em}2S)Qe0+I#Q5 zH%503@6Iw({~)kDk;RPf#mVCgeOn*hGVl4P8S^7Q=<*-;<&o!g@7~;Zq~k@+($tKP zw(D;R7-$)-<&aRHr+v4E@#B2otE}f5S7csxtT+*Q?NUYl)Vcr*!Kw2n*#%r!Ea#_v zYiY;f(6XTT%ClOgNn32neSh$NG_$_^NH+cOJeiM9{`)ka?%M46+~A3U&om#m+akLf z4$Ld4Tt7M2J}v&{`NQ}0K8pAK34Rdk?K?Z7xM<_cb+?jkT0Jp7y7eLdj^w_=z8UMU zoM-!!@FQYcy6diwvTJ*P@&%pyJL}l<#_b(>EqPUC>}wrAvInw%%l`QEN$_#|sSECF z_89F~yXSa8__)IJy(Mc*r#{we+2eD$@b<FygY_HBrhn*n-giy6PBbg{Ro}KUw_nwr za&Et!^Nbg<akdJTA5{N+hQaikdbghBR$e7FOQx^<abG{^zcI{aoBXIY?S_ZsY~Myd z^Mco!s?j=bPK`|>g?FyswbPxse~U>G|EYZ8&kB$Bxouf*cD}SGYVOy|g4Y|n&VDLB zasKBYtuJTv6oWXPl&yKpQ~z94JhrFQ{{QvA(mxKbsEGcy_v62P`?>z9W^CUlaIqwf zQ}^!Kl@Whdhi$pGE<c@%B|PlfrxpXhHfNK@*)zf%?^mQhwmp7u;ra@`)4p4OR6ba( z?R|Pa|I*W14%?>Z%U<1jiDOd6pO?w}TWoR`>^t^z%GR3R{|qeu87_V4m;0lBwZ{LW z_2G{d@evy?ezh$=yz9(lSG|QxZ#yz%yS7Ctr%ZlZF6>`vQZ8t%GF?f)>&T2J|1AE* ze{6r-{b+Y=bijqB&AuPrz1EHLWjUJrpMf*<?2gv8XK$vptlgud(iP%!u!LKu{dDZ| zpK8mPrg~j9xK#I~X6oF3)&Ciy=dW|(R9SoZ-M{^7IoJGW$XRWx9Wwv$KB3EMSD$Yc zzpgLV%X~M>Y}VRYV#cxOF6nM5d(#)Xc7|lcCYhDD7Qgr_{#dT_fq%QX{Z_uE^|o8W zuVrU1HGMnVaYdH-_tRTmMy*}D$#3lw=}hI;WgH)mn?3rtx~FF6$JIwbS1Ej0?DeDk zp?GuHN1g3V*W&qKY#02`uy{?b%v#$s-@3LnafsP|Hkr=4O<R-Q!cP6+TIIL%x%)e9 zJRi$4U5?yv<%{?2-Fr3aGcv_aF28f)l1rz^p+^sX$`$*U3c2b$I4->)G~)8LzVNnI z)w8lZ>elmKK6u~#PwU6$-;S=2^W|zpK2+9odp`W#&HXz2#2@{&8M~G()LL1z>bk(4 zh@&RXCo>m5fAV>!!u*Tx`|LNcH~lGmI9ERMhvh2!!~LC64+UeRcb~7@c<(0ro|Ai8 z<8qap9=VmbPSp$Z*LX5T`^VQuoWc*~4@LKj|F93cyyd*mkLe-P!<xgkT}U&Jid~hZ zcFkJX{QS&!Lbs*!n(iDcPdGB;)ULnzAGbe#e?->UvH6(P{Eo-|yxFrvtp2Tibe^|% z)A1v->^pNN*lvBcIK5@_e7~s+I1Bdq3EnJt^SHF;UVhZtsy$N@*8DPGeCuuYe((Cj zoX1@rYuCq5{A_=)|MukLa?C$`*ZfF+7`Jo1M9IpqU!FDImGx`lUmZAh>az1w>zG>y z4d*I<Qk{69)1lLR-Q)Wz_QHEuAK0`0$@<8*^kKI?r`LM3*$-xGzYX_@(6^cKq}_kp z?rEw!rd6g0dlz&|q<XYZOH0})Ke<Nx!TejxL;fzZF<tlL+OgY#AKBJQTq>0ptLS#P zwm#~;ckFdz$MR*qEN-{%NoOyQxO+`dXO)X)o}B3PZ`}{r+v?=A<cvQy#nvCPf0Ugs ze>>`SMfQ;>x%uVGOz%`Bd6<0N-By{#U(b|Q9qT6I@wCtA+)dT~GtYihNqBX=wOji= zzuvv}Kf~%zmwflv&NF;y-<A7;`;mRS4ey8Atr^N2_w1Y<@zHGKlBLV$+D)(h{HCk= zd-q#m-Af#|gT&Ttx~<Y}q<erjzP?7`NB`sbw~Qa&{kQOAa@57VFRy3cb-V1icl&*t zph$O4<-k3&9!bO<aMjwdeVU5c=VccHrpN9#IlHi;KkmaHd9HU`UYhoA-1A*1jw5AH zo0#P1*nHh9hgh1w_bDBEf6{_o_mv#mjvuBE{W)%AWIwpgDXFjfcz$qS_}21m6P;q* zbpn|rgJ&jk98hLWFmH-Vo#waZaXiZ;uj{qB)wiE*x&5r_wd?awHs9SZec8|VvYT&m zUdzb|XU?QfJXd*NTddsjYjTvg)=3RjQ4g616aQ=setmN3jf%yAm;RVr-Fvwq_T04T z63k~?Wm+aLIQQk?IktMQBfFX|MK^r5jI>mcdC<S$%leC&t6!Zvs+v7J=#|nf*@H7y zK9)QmcjsE}wH?nau4`_Yw{A(}e}<Zgp<6lkolJeEe`dj-`|rM<Sg&%$CRC;DW%jCL z*Iqm?pZ`56)KYur$wN=dRrsr3l~itV3tF90^(JcDRGYfE8+YvGm6Mk*uliVj>w|XP zq4^R~susR-YRcDh4+;NS{p^0n{q6JLG=IoC^y~StdA3`2_j^yX$nWdTFJ4>Q=Gmt# z?z`O8DtcP})S7ES#~UXVM*U~lqW+fmL-(=z4gN=7Y`Gg2ac=L!A1arp2X5GR+4YpS zl9fpI>5721;5qM(SzW(T;1(S>E!A($gG*a>)fdiVtL^IbQCT!^d;h;F{q6s_w-i=z zT@xz&y}*6JNp<DV>rdx*d~(%)yZTXNqmp5<&<2@LN?Y0Or@3i=dH&$;-({;md^@G9 z_e{F&w@uAqC9k5>yBDZT{Hy)x^0Dthp1<=dHl1l`$?90@9>8^5>Eqj%_nG!b9CC~M z&#>^LY3U~WWE+=H+Ye9Q+Ir1=et^B9<l}_*=htO_%Kp~6)hfN~d86uQr&~Qe3Dd%I z{>@x}Wxmk8$Xh=|;!o>Ll+aI;ZnXAu>I<JU$>E^opVgm)AMbtETlz6MaOb5b!KQD! z{EMYFZ<?;s`_!N7#w`ws6QXURaYF9r3XA_UBu?=+-m3R)SDf@SU2e_S7YctA$IE4l zSv6i=zy6}R)Aw+R8{C4O(U)JxC%ueL{&(Iu;elI0mGJg2>nAO{rrPv3=Fq}vkDlc9 zye(sMo-^^~?LXRgAMRdmKk?^z_DkXOPk%MExo>vAu86(9{@T7jf4iQ9Tq;e~ooc>% zs`~y3&95p%Kk<IsomjbQwszR(wd+(`%i|79qy#x6oN2HNx4gUK`HJ<M>r=}v>-=Zf zrgV9&XNIY~<}^-EmKFwqP0hzGPi?ncA1xbricjY+KflP5{>%PcCstRVtLW}OzO*i) zCTVxepYSWYo9hcaj(?AAP``g`zwaK&TG^u~J<7EuuGF0F`?u5dXY|LY1UubVUU&N6 za&PVr-20zlY0aIhQ_r*asQ>P`y~}>J{tc$s{TtH{JG|Y~D`XVC%yZ&N``)@qHF7gd zk1g>0&oIry@N3ndgZ~+tYGU5~?bs*oKKGa{ui)$}Yu4?*wBK!?P|TjH)(>&TO!7zU zL0bzpOt>hYKJDxp6X7@em7kvPzkXW&*xW4j--{fK|1&VeEjR6aI8#y3RcaF3r6Z+* z|3sZ1-@Ur#KZA7X?(D{$Eejiz|4yh5DKm2ZlyfY6&dOu;Tz`~p{a=gPAJsqe*O_Nh zi~J;8t=!2@Oa0924LwCZy}!e+Y-!q>TXj;<U|UFWlVxyU^J^EY7Hfn53>9Bx{xi(W ze!86ba;V^)qxBry!g6|g_`XWL^5y0X{di;jinA%4imqHsp0EG;D|qhW1ZD$e8@aE? zPfU9rRBpB6{hH<dZ*`g{Pcpo3dO6y5&bJd6HDvuSn?5r<TF}*b{__c2?VwXn4jS}Z zNWQ#1IdWIl(_>+_ntH0P5mP%PWNlYPywBTrDfhXWOF~6~MBUb2o;Qc*Et;b;^<BB! zfr5I+YpYCli=XSe6l=$NG42z`Wt)Np%bj2CSan|MSb^#kCQEspF8lWj>gT%TpWWZ4 zG`D!0k4(wQ<d-q;Z{K=m-d@muhDEOOc@t~NwZ&;YE6*1PMdrRs6t<Z#m0kOp@)387 z-=~h$Ki>L*{cTC!>|?W1kM4RSaP#3znTbsm$C>YcUcXs=XP3mRk~!TO7d{-8Onm)i zec%4f-%}_3I#<)6y78yP1mg)t?Cb2;*2?p`U7f%9FTc6b^j$TvD}E?@d=#Cr``VU> zcN3UgUJHiFd~%tXxa;e=>}R$055pVl<SMQosya8H`#j&;wYP7@+>Y5lQ!va@Ay4vP z%*wdpS$}1Il&t;F!0~m>&fm8`)HX}~jDJ+qwQGIb^PD7k0f)DjwVWr<t4hAM-}7|g zRMAjY_2g$CEh<h~>H2roXZN%JFg`ecOK;oE2f6ldl;ZhgV?E{mUKGj`3~=A^XK~w! z7uHF8``$lDZ`zZ*{LPQ#$9vU-J}YzOuIoEFbz4(NLsi~`nwj5L)IV4#Rbp6o$%^%j z7PCBm?2#W2-bT-eb$EGa@{j9B<Fr0}I=s+x&1%_~91}Dd+Y0|(tDZ9_{6*nWub1mi z{M?!N*g|{0e@xx+`=VcNoZ2@#TWjUR2fIS=9uHW*;osEH?Qa7=l-0N1=lNs4qN0Oi zYi)GUPF?;PJwf+aTzwxJ?bJKk$i9s6%i8|7`J(&OGow7FyIo(uR!m*6r7uyZUPJz% zMyb3H*E9Rf`w|tKAH}zt?Damn{Xau)t(JR4^ocID{4F{Bdya`)+~WEeJH^m^wZy(> z!iTo9o75%T$?rbqvF&iu8l#ELjdTB0eZIi&m;HtPn_1_Q9~&Rs^DN)DD_!MlA?r!? zd6mku{`}dU$=;)KQdv-3wnMdD^8Inyy&%<kh5s42ryt@oVhOr`^8CteJMGW!tyN2u zziaROsF3T%t^D&}-QOQS%-t#faN*^LId{6}-t((Vkl-tv=cu%A(x$Cf7XFC*@IJs} z+flyF)y(_;Isd%WBdSnTc$)c5_EY($Te(m7x9M(8xIOQA-=1}6WaQTscm2-x**yQB zNPbiLXPyqz-^XsAWbHlj*rvp`sQUVon^)=!&CXx_5HC}|uI*gwietS-cMOx~-rG}h zwER)xX05uIl;kh#MK4IcQ&S4NwV<ftoaMTA$1-%MPA{}}53^LiGyi$~jHJco#V;Of zXOzol{%3GyklCOz=dY&HzF>{VT7K+ni`G_ca#=fn>QCld%Qx?7%yW=bDL%PQ^VG2` zud>Q7cre`AlX5+HnaAy<$6R9m*F~Rih>vcy?yrx38M}qgY>``i>&7n<>-Dznp8KKJ zclPdUy>)R{!;XC`V=s7|mu;2ZDmdv+m*S4rWC_a$VFuX?gUapo{-pCC<zC-?&-ml_ z)^}?cU;g6XaZ9b){AN&wUJ$R>qk}5OG0sY<$LB?gxuzJhopX9?zwkf9*7&3EyXraq zss5<C|8W1|*Yy$^=HI^Ouig`MJ|{QIQZ)C^;#}#~#tYLD4hV?|&Ux@_`|bMl`^<mL zKlbfiQ&INJ`}SR{=--z)S@ZOA7L>c+ekQnM?h(5Khs&(Eeg+@BFOk0g`r57e(lz!U zeb;OczEycSBe>V=V%#&<j4NwrA1(Ur7Tyv4oQLy4`nP+M6<SwRdA$6ty{M9WX131u z(loJYQ!a;HjKAA;)8y`~T<fplcD;X>|FK^1(w^my=gOPx9(h}GUDdkW?|JD+)=ttp zw3El(^7*Cx^YUA-%Q5}1|M2eB>%&&QTg<|~MU~|wsR}+f+>o&9j8opZ=#1x*&-Q24 zXZ~mCisSw0|7Q2&s~@E999)s{PvYvI-`cCayS=;XzZ5C)OxI}Gn3Ct1KSTDo>7Pw6 z_Dj_%zUW!Ml6{s&aDw;ggyg4QO*|4$^d(ike_vm$c_8@P*2S%t#G`b#xj&UWwbp-< zMa$2v_lqx-Jeha=nD^s+fvjIGN7v1I6v)%b7&>8|a>irb78X`^g;s{Xtq%&;HLv_p z@@m#0-M5=P3ypjY6SebaIY}G7u}f|;KE`Rwn*X2S(5XxBb>z+_x5o6ade${0*xR?q zdmWsbe94A$>5s7Yr#;g`i|#Zq<sUf7y!**t?Jr!MpS9=9YZY~s*_D1YYkc_D>r-Zq z-MJ*)Pq**Zoay{~-|)I_<DE(VYb!qgC_h!N@0Px;BSo|+oQqNBVP)VCzGl%cd*8R^ zoLP6RCuUCLeT6xE?(yrZKJ6`c-L++3rh%EpKRND%&%eSiUR<$H<UHG!c+)5Srd^l* z_{&(e{3|wUp2_swdgJ#gdf9LNZ!CAXmb*{uVCixlUxv$hs&h7{{GFDx`cw1OKNsdO zA2@IN$#svB|GMKWH5(iL7VntkZtti4CH-6c=1I?wZZ8is65aG+jUY2~QOJ1-9<Rqd z9+t|J`}SP#pL_OioX36Lrx80&{LQ(zM&;5U&cf<^#$EHQ%e1A^^==n1^&kIvePNB- z=6#n-Pxtd>g<Xz{&DvGEZF#n~Tg^%#-jhb{FZY(Ob9{Y{pKa%UcJCEgRbICuS9E8w zo_tb!ulPs!g(%tf8>P9zI%d%sIea2drUidapJ#lbZ2ig2okhX!FDumUtf^ks61vD! zByorO>!|YbuH0Ly(w&yCUvQeXFS--m5oGfF45z}!^H~@7ZJm}KtR(t#a|3_Wk6Dwx zZ?$dRc;QD?#gog5(_}s|%OBhQT3yI3LVmVP_~akCH<L@%CpI?T+AHlpOQj=a&YUOn zvpyP|zc=gqV|?NAO>L*t{`d2P54@ZcI^Qtm_s)O_;U8R0mTpxaT)iYcPyD*x^Q=_t zNRMdOB!eBt^R}FxeORe7n6>cVg>&{&P2N*nf3`39^J?-LnMqnd=Qg}DiBzs$yj|<W z{(CCPwv8v&M7~e#t9(04!EAHtoq~eGIcqa3s!S(+ylu0H&$jbrM6gMk^z_8tXLJv~ zJbARd{`8VF`tOa+9=$u~o-CCo`LoL+aq^pj!Z_)bwx7Mfg|@l5N_*b^<1oSfdf(K$ zS>N7V+;vdyro^8$7V8h5@3=4Vbw2aIi*>e_zr>dPI#luX_KG>TPAmFFM!#bUFn63} z9PfE}ruEU!Zv46a%JTia(w3$6sk+Mh{{D_W@L5nnQKaUe2eXC!srAy4b=RM>WX#>X zN3O7U=cE0KChKpBJwFmPb?x)sXY-Ft7dv&~_C4;CI_nk$-JYGaNGGrOp6kiS>W%R} z74hHZd^pf&T^(D0B&yh@Z2h+uvs*pM%9jKp`imG%Up?9pFY52IuK2j+f-gJ2*GOhs zN<5eOc0TLkyjyo7J=M(L1|1N-Q+#b-;)VLm6<;NzZr#fjj<t)Npi^WvzwAgo|75eL z?6N1B_EsH!G_7}q)5okRv-Qi36>mLK+12v2C^G8q+>ZF~MU}^yO&^7we(mn*@_u<& z%hv9ludTu-i*@Gm#4t+DU#P6M<;ny`CwH6q`Cgy3^<^sfL$1^veR#Hx^P$Iw)mk%_ zl>2VnHMPL3QSp{hk^kw2iglANhxciEc`Ys1^LyOHXH^^{YGBm;ed4aX<DNM_x3<V` zYoE~P&sfI)mut7Sx9E<Yea@$qR|Hwhd|k)vaz*M%?Ha!D?>X*wRfO)y{b$gO`F%Zd z`Ku4N_e`I}J~1h*XyRh)Z3p~B!&T<lYAL%<ci-_Ya{qx#Z=5s|w>kL#;qK}#nV&SN zV)E07PsNunTz(swS2DX&q-GsALsie@qn0yodrZ5g=dG+Sy0m%a#TNmGW#V(14Axy# ze0}2Q#+YwgAKWz$`|w3LYl3t6^H29m5`XZy*(DTIJeF9u*`?KOe*1$(ZvKys-@bBf z#_0-w|DejxhaTVAd9+|x&DpshrcQilXZWKuS@+Tnw@-iPsd7x*{PUyU1M?)wBNLe% znXR>-%@?f^_)-61w#&z~oeLfx-tgM0q-@vn8_C)6R+@cBd8VD&u<z}UBNKK!@7?qK z{n`@U<DH8dr@Zy)Um2JEtp3(9fja)|%NjRocC*?o`MXSq`Erx3RrvPC<6$jRLgvoi zcs8mhW!<^zZ}A_>TTRv`2YhsIFSU4o^lVQcLs!EhaUD*LD&b>X>o`om)OXyi-?Akl z;<5SZ{|pOe{h0nur0pHA_fdnGjrn@FZl}HEp1^Zy@`NIHo1%KgzPg*&n>;I*dOQ%? z-uZ(^=6adt?{Aim_x8KAg+^SE_o>a?m+;PhYM9GifrN@Bh9~F!XPEw<A#RI-{r?NU ztRLkc&ljn?CMV<1TA_ZZYJS_5+efCy3%*mVPLT^%+BZ8>^h@Qmd){V`zBtZs6Ovdu z_3q{KdHd7-MNh7cd|6oI;IT(?NoJvY=EMDbH*~j6$z5>9JHPbXjK}-_-bsu;?WyP% zz<H-9;BWOq{XY2*t$$Rm*vV&XzURI&yL{v6!WI5c{N|_jnF`)sb%L8o?M&~4(0>7b z;-WXR>?OCp7x<yX8}Pb5<45b_`-iqwb#4_nX*VtT(~_>pWNyJpY|oS)S1XI0|H%J% z>#VSaXZ@yHyZu{xf8GA;*`<HiUf2_~{qf)WSpM@JTldC&ek?oxfIXKh>$0ASOD@IT z$~>PalJw1Ic45+b<2#3S@2twZ%Cuy6;Dp8ryW?d|^~L@jpU3zyre5F=XW_E!s%>kR zMZbKxAamRLT-~W(kA0iO9qXGkPkZNMak*qIkFXe<iK2J+@BO=Se`-DJ>w2-R`5pTd zKfL~N?|IObeAUYjYpZJY9(iZ0393H5dTZ5;oV$xAxwW!nosxc<^kDn*_U8Jm_-?D` zM|7nhZSOZ-n|<UT>!xdQ*AJE5v*{DtxKlT=SoYh-r7>;_Q^fnyyWOWr`eX|m?{V$A zIBnOC)uGR7I%C(Lta(#$qib52cl{4W`6IK>_u0$*F<kWT{5`JgU;H~K$H!&P>RY-l zORBVQdKLG{&2P6wIZxjcvduj(=h!Vt`7?ZCsjcVVy3PLZpW(nYdG0Uuq7_}w9Y3zU zH+!|+?97#~c1?b{IofVPSK3Ca<UhM|r(Wq6oFvgQuV_t?pXcfD&o7r`&u2`$zD51- zoP1O3-Mi}rGp%(0ZuZ=MZ2m26nMtu(R<$>GHT&%84%%&~e5mf+g);{>yM$=fyU*YB z{F~imnT`K0>=V3FW4*>=)5W#xY<wTF?X@~o*_+EYzhc*t!Yz|x_k40M*w$^t$@O+t z=|Ohk;3Jlo=Zc?}xbIrMKW^La$x(BDWOZ8afBoy{gdfk3)bU@gPhVjt`KKs1IQ06L z*PSNOUq8G(du;iVm*35|sV>~QBYT1B%%soVho5L`z5P^kVR35Z{=@o>|BNq`{M9}d zCEL2be~b2O3!Q7PqPuq{RL{&adu4RO+w|(3g4=5@=_qGa_LLdCvie(n;2z%(<%eg> zzpeez_~eI}_3G2oulK4)T{$*?LBv^Q=e(NTJD;9%R9Uq-ddJU8`FB0#j)$&aWXBy- zclJJSo&3Fu?GN`}o!@0A`{UK=;H!D1x?CQ4LY}6UQkCjga&t}}R-9~@&|T!y^Qu{1 zw`OjPXiSRAhFjXZfA5OFy7u1uCnc`O7hkWgOTQd7zttpP^z5n{+p9I6yi2OGTv?W7 zODgVa%$16sVt8-+wCn6ftVN8T96x8K{EU9IU%0~fk$%&bw^p~0SE*Qq>}s*ka20A# zzL4@ZJ)lxjwy^7$`M0tkTkcERaQ$ZxwNrm7wZG*{^!+zCwtDPwPt!5Yc>hFA^a#I1 z%0|tDTXyzWGWV`xu+e|Z{`j=L#E&+8zRX{#t@HmVeU81M`fZL!*SEVVa-N?yZZl{x zV@Q*kyF`;|ubuGW#|0NlUhh7B-fhp?_4l{+yj^U4>SEmf>t8SYeEgO-RVn(Eh#7a@ zxguM3(b%Pviehg+wQpFxU7TBI)w%^e$@8wBzIW!(-5%fVr&azlw7-t8<cz)XV)91$ z4%JDYU3YBUI<avg*J>um;GR^ECxSQnvOn)WdVkaXgXabQBws3x@2pDtar&Q-<+gi{ zYd7DE5)TdF+%j?B8Lt*;{^?U~8u*I8{XKn}Z&LcsqIW7h{@;r#|1_>EJ`yH&{?UDo zS6p@}`|J{A4+j5dc=c#6NBC6Tgj-)Mo=v&BWL=%@i+fBTwm0m5(Dk1|vc~-3YL{&r zJ@@3TW{`CJ=9^cY!NG2GTt-9WtHjy5^Z%|&O^T>LXuD58;+V~D>w4ZJ^SpT6Hm>Z* z<@{bClAveUr~S$JXt>z4{U6-*d-|<e!uNc9rK!%axnj~64arxY55ixbe;Zrhe}nn4 zlZzwo!=eYzd*t=mm2dB@n|%0c{I`~r{|vL1|C>-VFP;Be^!j)8FWn#Nzlr>i{V--e zuT7xZ@`rD&1E%GRW-UIuV{4atK;Mc+iFHpH9oSilPo6wmGig@olm86cTlO(s($9NS zQhx1*bVjP8lgo<G<g|MiKY!+3!gz!0FZ<uF2NP=aKKd95iP=lMdO2^7VQ<IZ;;)bP zaea9D`jz~LAWpg1rNNPVZq;``<yu@;YamgZ{a)kB<dxww-}KL1S)NwcSa;c~yuVKJ z-|1Q3kKE^|nD#zkwpUxNOXjUBVb{afDCXbm{dko1KyBB-=(7sKr)K@R`J*-W5l89m z=JjiPZZ){Lo83#@#r#xLYxkb72VPEcusARI_^bZ6=jB`fw${W=6q0)EwntrNZmaBU z<vX9_r~YRU-Q$#BXYgaPllM$L#Y;;%l=iS0bbb418L05c!F$fUyZm0qnS;JWr?(#s z@aDU1v-{vajmvx7lT#~~-@5P2Q}okfn#Ik=-ohranE7SQlIxkTmY6h$R9lv6M?7tP zHucetvh6e6t>?C<Ok8pB3G?oa&%3_nx0MUY^WHr6ljWZ81i!}z)g|A#X&-q$>(S+7 zQB%(?XY#w`c2QVB_xFY)tDAPJd}4h5MdmMCps(AKD}f*Pm`b><^*C7e*H`_5>9s2@ zyHXd&xz#MY%dGRd!M)<<Ijf$J$CuXj{?<9DqP@md%P2iWIg>^3fUUnW^SyokA6?tJ z&9*OUwJy!x|7LOCw>7JJMNe~_C>F3ckGNT`z4GVG;-0_Bzilhzov*ChnrkH+AL8cg z<dMKxZuh%(mE+Hr+c9nj9#^$1)EwING00Ec?%LeR8-KY!u$=Qs=WP$`gU@$*()R29 z)4H4d$n;N_rTFz8euX(_)n$J1KmS=9|J!u?5#9QS=cYcA7x;1LRjt=M^K_+qmpmlg zH9I2~A6jRgd&gl)vW3L@cALtzugv9zx31L=-Q4D>v;JvdG0%D~?`L^QJ~^A-TAm9L z?mM<e>xSper58R}ERwkrzVdI<e};p$>lRP`rtu?HDVcYXa?M`Lsps>n{>uIE*N|HJ zDt!&Z*Z&L|;Sc7&S^YaaE1uns<q!K0`^pdRBd<#zzh->vg?N<i)1G_Dk!|x5OZ0A? zvrhl?{p98|384}zPaLhAmKneG`=R$uziQ9-?z4-0eUIUikjACzzv<pH-z=zn67g90 zUZnKujKe#*)_h`!Xl0qin%&Ye$#;I_bo)EO{+o>LY>zL$Q<HREZ*oB2y^M8H=AN8> zT^v7WFck48$6RZ-y*86GUv-`1i{w&e`<Tyh#UJ~>P5lx0h`)3D^n0uy*Uc>CTlLb0 z<9gu{8JmodHRW>AvX7@eW+}3;Tx<5Doo#{cse`$d&l*3w3T<PvRK0BR>)C$Za|T!A zl$OmZwm<XNo89!y<Ml4pb9-;N3mI9pN#yXcU%$64xikID#%)~Rjz>NCVq5Q%t?^Fk z+OzX#o<Es*K>0fF&U&wRxkA#5&L&qJetNev(e3f8d6Da<ty}Xp`9h1Ypy->9OAfD| z$S_`({JMI#YRobBz-t>juI2juPRuQBZhq=@(eTU9*vPv5rat<noO8n-oqDIxB5*=^ zs^>fVvM2u;9&df_$Md$?YIXGDt<39lLXSA4>dck+7kYNt;%w=<PpSR+nO7hEXSi^M z=eldkqxbfyB{SPIZdm?jIPSTomv55loz-nBeGmSXyi}ZJd1m*%7@n$Y8J`uMR9N|a z<hGVR4|QSfdpEzgBxviAyM6D^H`yvkMtVd{N!<Nxr|Y(+Yax@uc)Y&Y+OE<_n^rBh zZBBzEhfP@Rl71$B+wY<hlJ8?n7gtLhz2WN=ZPpa+d0YC*f-gUJypC7=cV(B4_@<0w z<~P4-m!+~6Pt{o5?>u$=@>0&gTkZ`_UMa=%XUt<*KYf4Z-*{h-Ej!*xr(U_%+xm@b z$IJJ#zWpeZe=GK>e&O?H!rucwx3_<pFLOAbZSlj`&ELvxlq}8}IiA{a`}&3JXYX%m zTe$w^FTVcLMMvTyzUE$<)cWm_rNkt5Klk`U`_BKUtQ5W9o^wr7v}>INlM&w|52bzK zKR(W^QMxX9+I_`(%NG(}JO8lOH8;lZckj3DXZX9@l>4s#<Gkj|mHN|_f7CtsJXQYn zg6Hxv*AM-Ael(u%)hwA=CKJx`p1%Dvi%*t2_m*AaiRV|s@5XPR-2WpkO89}-%7-uQ zVkXYNA1%Zw)AQx^<<INXAF21)r}d^EHg}Ks;lHF)jQ6Bz>$la*&n#f5n5I1~=j*|P z3fEsm)OjyeeyVP^_}zTjAO1)F$$$7ZRd?M=ZS`|1(gOS5tg~QV`1s?R{?2=bAFgeE z@Ns$ObT-c=Qze+CR~$$x@|3mRHS1ffyWbDyM{m_`JwLEdZqH>Ew@>dB_UxY?5GU$2 z<LNYsGzm-gV!MauimxBDQ?KwoJWIZ{?)K7K9V%@ZS3SxS+btB@@*My2mIwCQ=gglu zd8NANogYrVYabUIsyZ~R*0Viu{y#(XecRRV{BL}Fneb!#Lld|2a|??l51c%F`;NBx za)xL7gm&oI1Rdm5O?tYEFS2s|=K7S()cBq{(TV(b=RNI^k>QT+nRmnVtHjmcGppno zd)MZaO5851ciqqVSo5KEwzl)<w|Wuj(?Ax*?R$RVt!N$F4=s%oMrsR9W_$khoRrxY zEz{FCr+j_)Ki;V1hjaHWJL7Z7t<}%+7-Qh%fAw=~%NM>1I{BgeVA!kqR?~OR+)&XI z<I&xG*}7k$Z?5(yKZPs{%WZXAr(0j`|9WA6etyQ$d$-Q2Kj+DP>U@4jZrh&kVIT8m zr#{NGQOen>@%*>dIX$^kZkrEpjGb4N7x23GsDF~-yuzJ{D{d{wxMjd`E_#{guORPL z=ktwyQ?=Q&d&*3IhRCijsa2U|Ha+0O-?>||zE4=;%4Ku>M%|1Wsadk_UfJu7G#^?| z-_m{k^Q!N&_FS&0yOlkSN9Fd^Iyd8(GvQHQF&;`=Kb?Lut>dkI4F89<uL4{?FTVQa z`t}`iQM(Ln3l7YwW4XTYhPdHkJ+Gg6j$faIpBBjcHRqmce_(%v*|z|Pmn!07(=NFx ziv`J?dM(VfK$OAE((<|J%t!wjZZ&_4{SmV4_M`A4{%kKcYi&!~c}1Zu`Lacu<=pcZ zm}81gy}B~}-Q~K@xh5YcwA4PE_;u=S!_Mgv=hap^E9<0wKJfZ&{Iq+9{~4OL*B$sL zDD0m2=&p0@B!$Aiy-Tu$4y#N4y?f<TbhP}szdPU0`l)<0{zJTeyO`jcAJHG~2k%ci z@VRtv61Ry${~obJwjT2e50=XOef7PdhI!Vt9~%4T&7a$&l|G|%%len=pVT|+E_)gE zM&0S!)p^H$NN0XH%0JoS)04yXoHvfoyPN%dK1bbodA_%%x%$WB*-g_nY`K=_^Q$Ca z(aD@h(V3A#f{Dh-JhwehJn3mF{&Vlg@qgTBf5&HCKlc3Lv#AgJxt%3h?JuZaRdWlo zNVL84apl{dTaRC9Khf{J{~=ia_WQ?i7e6vTI^VIh)Bfq)J=cC^tyGrZZ56t=`}o0Q zqV1Bw6Fk;m-{Ie|`r*n`7B^OJ+g6=XX>sPaxY)ks>Y~?k>)gK{{q0dv|7hOK-)1$= zJAZVqQCnYG`jGpq*^x7>Tl&J!SsXpmJl&{a!I|ex<vfq}&-0i6cY6L-@q_gZb@G2# z)+9eTy}G{LPJ5a}$$NpQtX;8xmn{0wnDu7k-P20CCx0ec^F?btlxFy+@ni9kUE4cN zg;!MUd;2wd&pUDRH{Z82JdvMPy=|7O<Qs{U>o2#zdH!&%^&|T?-~Tgkv|fF?Zmvl2 zl+Ss}l}fG3^R%yo_F3HBE-Bl!O3hoyQ&Mf;Y0g7iKGa-Q)>XOu<<jv(&tg2oh3%p? zexH8oKZ8oK@sI89dv=(auid*zJmuO<$*=dt!uJQyTD?9d(~5Q8<Z8L;rKQ=coK;r* z%6}hZFoW4}vv$pa=TBJ*iZ9O({;}{w{X_dV-xp>^UGFlT8-HY0-{NZ3Jz`PrH%)e1 zdN@6NZhW-7l&6x>+l5o_uDAlf!H45-J;j^rlwOn>|1tSsw({X#j=%F_rH_<}$Eo$b zy4lcs^vw5igHw@wvNls&mUOM%+2;5~x#fAkoosCOzV@kK&v|RTJM$pr<NU+V!zTS_ z2%PPi^7}u-EwN7rR=<gzocLT;;+os44X+Gr?=`Q!73X}crc-G~!pA=<6HkhMeg2m9 z;eUqKdVxKu>__;U=83i+sFS(=rPuDAuDs8@chT0>?Hxa#-PDhA?=t(zK4DFAPxI#Y zQh(lm^lvdSyOy7`enFR~Zc57MSth(QekD%PlyA3KH%p>?$+ka!IetdEx71zP`m56) zNqlv`bz#OGra8U8J(VY3mwEho{qFjN>U!hgkC80(C)f_Q*}j|o^Fdwc&&>}H%<@~2 zuw~*Q4kKlw-EKx}7z2(oe6x5Rzij>nlc3tw$1dgC@4i$r!^o=Uy0LKc8}_}4vkqDb z{o6H<b=KL;D*Kc3x5Wu&=$cHr(0C%}@y^@FU&ftg?Y#WH#5T)K!E=$$iohFYcl23G zj`=UQKmRP3J;-cV*6m|Qtd3NCQ~2_I{jzmQGlN}Qc$P#7wMd>kcEkVQ+4xC?JmH)C z&-`uHuDbE1mhZ3nB&F0GIgXOBJAPFYxBT1sa?*c>^xD>?g^V|rJd~X9`@_Ngb1VKc zv|o`f_%nG<V^7`Q*V!REirGZIYt^-cKff_IHRXJrR9+SD+P!O1&PwfS3(Z-<W8mg~ zSLNSS!+nkZQ$<crylwGUf;p~s@m-%);p&XxUmny=y%K%eGU?3iDc_V$pCx6!UU|`P zdGgL}Wd#y?b#wa9tuwh(`gm{A$31pY^L6+<e-`a&e%p0p+gz7~&Xj}a`O1Hl=gj;1 z@SMh*o@qy?O^ul|ui~|*wCquLf3GSQ?a9skhn9$a*gVsc{YF=S!*?rP=BK+RZ*yS& ze73m5XtNuiLph6F^D|p*fA_fxdooj!0@hhdC_J~VDp@6PRNK{f0guYm^QRmw?iBtC zU-qA&Sy=p|@r3Ilr#{?{KD9CNyRo^eV_TAc0)x8kuInGoKYrY*-&?<Rdw)&rhxz_{ zKk~#We6;;?tK^rA(cP1U!e^g4n<QN@p0R{$nfdP}MxQ6g-`swb>DoNTkG^j<PBF-s zH957-;<w74&+)DCoAxyqe^~s@?b4&a^Y!%Wx4iq~q_fApbct4PNv3z&{<Q6Fk1Qso zG@MbI<gn(3&Y7j0kH5<E8S?W>ZGD*bCF<?{FLv5pn|>rMloBqB{(Jnf+S14GyW{xx z{%2@$kH50jR_)!{WZmSIw`b@rjC6bP=ft~*(T#iSQuLcnpPHn7v84Z&^CPxd4}4{p z{$OtVxk%xOoY&@+Ctfi1gundH@b>+(itCT+5B0a~Vn15C^U6P+)vvkpHt#WdrS3U# z`kS)vpH;e<&(BxSoRWWQjab5Jh5TdrB7e+&^gk@AG|gq~2tS}^sdP|ANY;Fz<%2mB ze<baXJ^e9cW5C}hLD}xNpFXL}osn{5me7BO^c8RamfM~E@cpfJ=9-_mkE+eKgt4?I zTt0MeMp~y&#wAI!Ne7*bH?U_-a#+82pX85;`;=;2uh@y#XkA@5J^a#};E2k%&TBHW z9&k*2)ct&(r>bOUg4+b%qZhM3wjYpBzqUto#S3$Td(kncD>ipNn`M|Ub)fU#f}br* z4#v(ol@zpUw@XXG{HnMgcK$pS`G>8hH`ys3d?+tsHn%o=WyN;CtLtwEUJZJ??`H0j zy{%21Z*t#Wy8q_7)fC|sJIVtKckuRpzWI!8PU@RQKU3c4t@c}fAvNOEl?8j3y<hp4 z;YaYdx*wYt|B?Q%|H$3A{2!h*w(DPPx*K_Z`JLnKSDo8uovU1Cs4<tLa)M8y{+72B z%um%Ulb5Wx?Ej;8$q$B?v){TNiax(QmbIypX=kRF-QOk8j3jiH$QyHc-r(Q+@1XpL zp!|k;Qh%EkeDFU$zjK?N{KvHAYhJBTy!QTKt=*|xmNqZ)TAwWxxpvIcZ1t_9BGC?K zcl0(r`D^%b{$u;b{VC`9j(!M!w7y;VxVX64^jm+ot<RQ--17T(XYk2+mmViC`4)6o zIX}elsR7rDhzE84vy)Z_td^*@UM}|jqG!p^FBg8V(JQUExq80YAMML~JQrt_2fY%! z>vny+eD=Jnos)DeVyr7OC8s(s$y*wodCXIWDSOwInn<?kk6162#;d)$;c`k!_r)`} zgN*l#LPbL-OghCEp;vh{YU|c3f65>0Gyi!0fOlGR;j$k)OS^OHjvqC?d*jB9*tRZR zi-RTsl}p#Fd`{24xL0|CNxmR^@A~#@_t-!BtzTDR9ohHqQ}$k^XBDLpYxZo;U-2^g zNqkiFVV2%+-P|h|6iwH7@^hp1dda{~5__Ho`K_&v{j$Gy|9bCR&s~aF)#pZ>`Y>&E z!7aty5aTUDyPlZ@m^B|0ud9+<zP8jk>Z0<^-1LI=I?YwbZn|+5n2Q!HVenwT(|F~& z{X<=;Lx=sloh~d9pZL7UQ$jU`|3oUgZWCYSbM<-IhxXWiWPenC<a}?`@;0RpDZ9ek zzWg<Fix+sc(!}Vz$tI;E(>56R9DBXv=bQ=QDm?3|md4GV)?eH28QPs0U;H*#a#E~P z(itPA{yE?Iiho|~-SzI0$&uufvz1@1{a1Be@!@F;rAzO+x5X-l>8z==HJ;eFByE>> znBmJ?)hg#_rX(%=a6q80;osI%``7PzzwBLS>61#E+*|?WJi)r%C(qWL{T;2@{NQ?r zYC&k^nj(Ma?io}1+P9m2x%=wwvTf6gSSqJ7vZPi>%36M3&-8ccm)!WH_c^}WGW&Iy zK0Ud0lA$J7i>sC8X^otkRfWf&UfWgh?rP}oh4w8!-+$AXerDfCt&O@ux1+Qylvye# zr7$e0y~kGMc%HpEJ|f%b?yXn9O2k=2C%v`VQ=*=o{GVZcynfw@dBPv%+qUi(l1<ZO zijBT`m}Rp^YfR^oTdTL;&{~n_ZSGegYj@=1@#a5~i+c5sNcArI+jl#9vVZoB)UJws zS4E73nmp!SnN!5?WF?e+=ji%-83o6(o<~I|wRSx2N}uuX`Nwr}ve9qF10(e~1%7TS zQ%KSHb2jdC(mVE_f3)*5HqYH{>;M1aU)3LpAGp0f=1AH8G4Fh&a+PJ%>HMX4Z@bDE z9yuuI`A+g)gkqTDtYWqchQ~NeUsl<_iTtP@^P&8Y+CITa_x_!VeAckaBUZU$dB#ks z*GY#Jf()N42yU~muv|ZXkL1V2kEVBT(e|FL%m3T_;H;$=F0b9=Ta>)f`zf1czE6Pd z%AGUyrrq#Jm?z>P=)ra1z1*u?f4<wZZ>{xr`?ziM^4OQNdN*ax3SE15@1CluM>cPH zTPk|$_Hm8Khn<aEJ-+R7lT4c0to)yW&sjV&WJ;Fxx2^k6fBIyf7%?+5t-skmJO5_+ zqc{7v$W8ohUlZ|R&B_Pa6?vxnh0}g{bIS`x9hjfi?jL=_u_Q9`&*^rDLLMgVshn0_ zKhA$^_;LCX|7~W+Js-p0{AXAml@Z7Kq2u4#%O-!L-gz&({yuFUw`Sg#-6s}r-(D+p z%B)9vW_b4d2?DzXXMdOf$0hpPH2&Z1{Tw>)OJ2Vhyb=9!*VV%n-~D%AW%4dvbU5$5 zZtL#+inVK(?eeI*qBMzFCsV0K@tD1?ol2$@d#g?4!ao)t?l*2-D;)G`$z_vD)7zPg zE(KlsqI~Z^L%REl)wkdG+HC!M;vP58<DS|$W77pIiyq#+cj~Y3tKTQz-qg3<vFha2 zrpcH0pZ@ZyX8lL)hxTt?X4!atSbcDx;pUx}OnLP_CSEnM$o(q$RbL=NB8*%6%H`xH zi-moeYF(V~IC3YZ9-qZ&d;ZPs-xfdSf1CK@_rq-4@VLF(F0ax3@;jctqDkAs<o0S& zmgD(<XG|A+b}2eKdUnCSAgd!XCq76ni`V>P{FrU)stWm|*JiQa{Wf#SkL!LPp7?9b zyY92U=|J?~O&l%r6B?Jd2X5>7<f*s+($zEbJad?OcK>JC^q-->KC`y^V4UXVI@uq6 z)w)WTgST$UO*<BA?YF(}*!|k0TP}59t4yAi<a%(DTF?7T7Wd*@J2};>z3g$OrnOSH zKm6NjvC`|@@z?Ul){FjUIOy`9A$_jc<45kt|1(JSI^8}Tbo`O@4{_IhJF*1}m7)|k z_I>lzEv<}8&F<IZm~i{4N7x-PdxanKKLj72r=R%1*WY2&hqkRtUoJGwEq30{WO?`9 zk}HW@ujo9i&U}+HD|=_2&NJU@AK9j?S`lgd+K%h*%Kceq_5At&SbbbK^FIUU(YtSF z*QaGy#jWXIo>f(P_T-jH@>|?4MSGTQuFTUHx?-cTz#}aGp80FhJ-hr5OY=+DxL?^K zeeB1~`iyx>A9c5geVAOh>c-3Y2_chQC!es+nRLTDe_zBA|NWL}g`d4U)xDO8DTxKw zY~OY7)b%Lc_0RtF&A1#`bNa)D2X<^P_VHb}WBuX(Ex-Rr)w+qRUha~co4+!?Vv=#i zt<_OR^X)umg{16`jO_Ng|N82Ovo|W|Eq)-qpRdN_KSOKfWAE3sMjYR~RbO;vh9*pO zc2#y2+Pv;TctMWDx$**|y1Cctv*bH(9Y45M?AEjUP9NSM)jYaw{>senMSJEa3rBM= z-WOa@?##UHSmeyMKfGru>?;20Z~AE7zQw<%YL?EdOSiZ7+za+k%U}EO)8lE+ONys& z@4B&j@t!7^oJBjiv~QoaXj&$>U8~<{+g$1LSL<Kb?)z5$P}qCgwfOb5+kXFh{Omu2 zR7TbP2AlBO2lqv9oaDXRGh0RDw34WOk!w!V#T^I3j$1xw@A^D@t+$)-u9>PGa{RMJ zx|ZKAySsmFUGE>q4?Sjaq94xO7kt`gk?=dNIoo#5`s!_xmlAU}?QrsXp3*OwW;lnn zEO5u4iM7A&|AbsNm6i6roD(0i^V*v9eIZ*Izx|#0&1b=L9ubiQM@!zG6sZ>v?-?%a zshJ$J`OVpT8+SewpBxqI=DYTY@xq5wV~gJ(%Vs|sw#hkrc?`#l8Sj-Wk1NK!N&dp{ z`B&&&_cQaZE}kb^V6<B$z{B<+kA?CMn`^3fw=TI=6VTzrGEadeWf?=_<xGk7d#Add zE}rT3=1<zSKdKM@n*ZZ?`*HSRvulQ)sky6u+{#!y-<W0E`S_W+OZ-hXhIhENMifcp z{XR15uif8GZ*xuhf2e&wwpZPuQL*jvL4DCZf_hh7J4M_&#J4dpaQ!*@(Pwkie};o< zb%qmFcBkzBc*QQxG3fjw=>^6+gy;N{x&HF_+ld<fH<%yylpn6@XT2lF-#BrDjM+WQ z<5_>L+f%Nk`ks!jTK{iC&9Y?nuW8f2+kaX7!TLe{Tfv9&4U=BibN-25Sh2|ZZ}E{| zt!D&oy4;$zc#(^0r)c@68B^FN%g9VS&n_39w4bj|{@=|i{v*-v1@1(>xV3Qq?p=F7 zif}La+gCj8##;lIiL!HD{F?0#-8WaiWheZ@?83i`yK<yLCPzqoy)Sa4H&fgB>3pTD z*YoZqH#xp@b9^u{q(0xD`!)NKef$?qSGQb!Jm2$r-eU0$NA-?1dGk51I`;I+292Y$ z6D8MQu)My#u<OU<Km9X{VwPW?zuo<aJafhLZ${VuGdyJe$To5Hnp?Uj6Emw>4lLN7 ztae{>#(RaidrA+O{&aoxUXVBVaeeof4<Qn)^S*}h%)WPxT`|7*ftdCrcIV^kU+#a~ zotXNF|K{SOA75A1HovmcYd6_;>6Rly#y96JDW1DhEG>H{d~nbDQ}|(j!+IOTO#2SO zo@uwHd=FeOVcOKFdufh)=D*iqNoFWv?lO8MP~rCe>c94Lg{7Xgae>|omwxyZ9o;K- z`OPJEx7{=S?@1i1ux^i=DYx(I=X(>^zWSB6xO(;N-G*IGt0M9wjLa%e9Q-BoPxQ?` z{#oG{bEMQx>t5OScy;>gSH*Fn_1}K`hJD<++BjEvGkeRiYo|`h{J9r#;GE&DeUo)I z&2_!=<DG2p>(HNd%NO4JvE1#-^9wGwvZKyR-x8Z=X>>bzO6ubr?dKUUj&7(7p7neF zx3I}RTd(YKtbW+*n$Nj^;<L=MQ!!K6Cn~UZvdFnPs(f94jyt+v?X}N5%_zx$RZ2Zi zrwAQkJIK6Vxj!%a&HkJ7F1>f#e)ahTXT@nx(|Q+`%rf3()4a>5Ky*h!!C{F5Yd4lm zR|>Q{)f!v-_|5*Cse=0?GTt<-@D7Wa^Sn65^ZJ}`$Jf?X{diSqeoSA`x<ERp)V998 ze*5K5>v#WWNZI}S=0Dz-yfuQV){Ta3oLjur?udOqx&C~-*ee0~u7AoB3HDo6PO1om za`ztIZ)=d<=5^=wuR9-qEd9^0S^mQFH_r{_`SvHLp8R|1b)HdG{gGK8i@zSO3;lNg z?KYkD{}~ec`>vHwbT_I$#J|!@^ojw$fLm{aO`aR$l&>r);m^z8ynU=|cKy))joW%n zif69N{kmR1Md+kZ>t#Kq!>76eB{u8xxu2f)f)nJ{T<Jys88#e0uJlCjJ#$v`<YQ&a z*sovOwEV;I3%_c({~k5HseHpe!*k2(`yJcs1h3>Q*m3zk!{hrWXEM8Nn4NLKt;3Ol z)#C92hQjy`dA1tv-*$iW{!aR%b}PO;r)_EBx5tI$d{3{;WWDlw>O3{i*a;dTtbG^k z?QhxNlB-Vpv9mh2*nCP<#?-Q}MY)SD*e~t3-k;jb?edZR&Dn?1wO+S0W7eKor55lz z{_W&HhZP=tj_(g&t!1jMc6Z8uhDiBELG3n~-=F?xP<}AKdB1#}WkvpxIPL2-jM<OQ zrn_CS30zcB?YZgdAJ@v1TQ;|LDIL3XD0%m^l4+6VHD{RA7#KHg{dN7rf`2#VSpKfo z-N#)M_M>;%kK2bnRiu56H~!C%ax}e0PibFt%2rn6837(UruNTxAbUV=Kii$7=57C! zeq3c^^zW|cXDV#{w502z!}0w2Dz(M&OE<qd^Pgec9_hBb_n3A{?={Q%D98Uha@8ZQ zKd+}5MjiXD{budzucilFSKs|=cevK+-o3PNmi0yKRoioGb1q9fZP$9-eBsIC7umDA zo}bxiBz{AJr@8<2ooi3bHP-&V_&Hs<@9WQ=N7Wyv_O15cJ9X{zKBZSSoqUm<hglVP zgzv34onoY6?3}N)Xwjb!3v(tIl_%TQzUDhs5yrM7?BrAl`4c@!TOV0p$+NGQKec1Y zR_g`tdUptk_GfAKy36k_mtUw7d@0+++1TR&6X%_U?bjFlE1lA~_Tf~UL**0CFOa)( z-ssM)y<0EOUH;+3mp`wo*h*7M`V|a+etghV#u8SuFXzN%K6YlVyPsbkRoc7v43nz7 z_Bw~)%d*-hY)T*ZvLA{HKKsblN!CpD`T3o*EW)22wAroa@ctNE<<aUXD~ezAafWQX zZ@bLdP1SIl=Q$&z+QN9Hx@%IkTZA*KCbOw&*lc+6FoJPT@;XP$Us5+O?$27^`0Lox z;$;=(N555ly*sIW_vVY{udW-2vn-#<+vN9pH@hT*jMUHINAKU}f3Saizs2Of$RD#S z`Rhz3+g@F`YrfZ&waUL;cl4j_FS+*0XvxFt_L{Hb-6y7suDo6<6L)v!!Jeb8N3*gj zst?@1B^HnsReI^z=LNNEIBt2`<OTnFw6FT_lDAv`GyDk4Gbzt_()7#rX$tqn)R>h2 z3|n8v?fmfiarz<Muv6!~FV@5^iH$ufb>zd^C((x&DmI2GJdxvgQ?V}i(G~l=ACYVC zI4yD!ir$fU>OaG}*AtIhu3vN5sc_ZKiO+qP3qSL}ZTINqKjW7MulO!`?2|oV$<D2O zd&7(RsGqkViLK0Co_Xz_{B++4m0epkZ5o#bRRpZvc#z@Y?gY85Z|t}6zA63_aB*GW z{%aL}HxCyXNuPdFr~GC0eVKJqk-Rfh-dsM^cz=0d{GtbMPiwC`ek^RVmuBUBIoI_^ zA8NABG2ra!TW*&=&Cx=x-SUs+n*056#+&zEPQIwK=J9qRmMOdT6^L%WEc5Q=ysNM6 z`4;tkkMFy?ze4Uqid;o+aYNySM?25o+9&OpBcP?I#ALSO1iy0n^6d{}Ey|`=EbGc$ z6?5I*bnD8{nsnuTOcE3HE+2gA$h_g0#h=3X<htW8uFn_WV^_fGq4)IpI<ZTSx7!xK zj2Fx@nmu3qWX_qL9O8X^-b|JUA2U3de`>$Oe}-gj&D=VZA89Y!zRmX8J7Yyc!LnNp zqV4IDlEEj=Km8)nt7-ksPTpYA)4s*37w2D;Kg2TEMmRC;hil(m+5Y(13C!!&m#cjK zTi1HY##8E#;)it;t)4FHuL)xA6Z-gF&+vSJzb(7h&;EzY_FT7O-C)sW$TfH8$-@i` z>RrF|E<V`ygY{v0#pykI^V3sVrl!pcc(CCF!+M#o7VqPye`K}G(Yg3*UbMEKxn;M! z;Jw&Wxoc1OMLce({<?lbeUAKXZO^|`N_3f{uYQUAy8L>cUar9LLfI__dki`4tKO_T zUT}^{@qtkGi&)b~v+6BX?r$+*shS@X{?z@C7{BYk%YSEl(HC}MI=$$}v>Q8)-}7Ew z`L>TgM=bb9(mw094I$adD=)5DFKKQ6Qtn!I=UgkHxwaQSm-qZ<c(Aoz^6Oetll5#B z)rW6cv~Jfvp>OJD|NX;F_cw;~7d+Z$@p1hhk^c<ePJgUDc=K^|ubCQal&qO_wZ;d3 zh1@PrhvV|EH}NZ6e|~lAv%EXWWp6fok+5X`Aj*39={XT`TZZTB3tz@x`k^Oy`i1wM z#qzWEKQDf4AaQH!%i^oE>#gg;Y^{&(7yqa7$K7bYZ1(hBrws3{UJ)B}Pg$t?c)88S z=N1RKEWfM^_uaRD(-hMw^HYpIozAi8nUj*@B2t&M)45n_pM^x?fj8{&|Mq6yx)XC? zO*oJ7{MkM0iVWjj{aQ3%iY70cs-c@xD*t-I2U$1C?@Vv!eDJh?^3QZ(-iuWNJ?rdZ zN`CRLe;FZg+J^6?I%AtB`_%J0--j)#QDSlkunX+ztC#!Qb8VNb+n;hzb%SX<3=(!b z{xfi0=zFbw^7#6d$AA91Zq0joP45#!9{~rJ!rQNZT-|RO=8&Su@WP*ce(<@hD67QS z+J)24KZ`wa_}!+r2kmEkf8TsO>(}cC>yO3;AC%{wcTnBzSMAd?(NFG#E=V{f=6mWu zYl?4=biqM(#s<@mf6vZ+`{vZHB5x~JNsXoZk}t^US(lvm`j!4L{BXU%D|!B{5v4mO zox5st^T>1~ccHi3bDG{5mGktZt2dr4xxSn;$g5g@#<PlbJ|TbSJ>OQ7b8T&n^TXA; zX|K$teY^Hb;Ct{{^%FfFF0CSOL+?0?S)ONJZ~ADOc53-*r(H*{giSp0W7?~tLlz-_ zf2wG#I~c;Vk?Xk3gX@A1*LPISZEwlnBf0u^_iE|afjnw~yQ1CFJy|A-$!vP?Hpt=} zBXie{3vc>+RQ7Dv`4D|CZ&L@4B>OG?X)+ThL}!=CFyHyQ)R}Lk^Q8Qh&mOJ*U9~FE zKD$)^ruQSm59aNAJRe9GR?D87p04waSE1{X<QYd9trG`h1e^Grli%}A{i*ucoBM}N z;@XH;9Em%-zCE)H>`+zdyesQxWF+Zf@%Y~UMdz9SUAf10Rn6D@=m-6F{fDWY$;B$$ z@|1oG?s+UF(XA2W(#&jQD0BVu!N=Ms_4h=sf1Tf~dT;THm^reiXXd3&erkIq@27uZ zbG+unN7<)B6(gf=%dNBOHJRLO(|J?z>do!%K0WB4U?d@u_~n(o)Zgg8Ev6igyN}I^ zXkiz4nHO(g8RZ!o{z1z>?(0vhBj?xoGCx<+IM04j;y=UuYx_g&6D<r2A4|^o+U?!5 zxm3Zk;PCCfy1lP`F8*iO9P?2m{@YrU-SsnnJzsp&?Uu{+&MkJwxL<Mg6=lDg>+JvU z?3FLGSKN^OCm$mCxpDiOr+psBJS`sgFvgo?7U|US@2R-zy(CEF@zW>57pi_;zx>Z| z=Pd2p+<xY_Uwl~A^ND+n>Xg2jC(hOdAE`>5{n<Y1blT6WeUA@sK3vevtia>{vTy(2 ztjkwQZUo6WO4!dWsFT{gySF<w+QiY};QKG8x9+?$yyJ9nazo|wm+@1s=Z0MP<+9G~ z(%HqjTWWU5pW3>pm@RbwubaywSu-|B6o~g!hvc|DW8Sz<>+0=X<BZkHu6mrI=MxY9 z$&TWjxwh!|ob7&hdcv(@TDV_m-7%Ngl5V%W|J07<!l8E0y+xi*keaJ{W1Uf@<+?oW z1uJ(icpar_w5zhK>dUiDCO)rCs(UY;VDr2^|46vC?1zcZCb@<sy#1WK&bs;9mM?9& zmp1)pC@J|Bu8=-a_Zwr+zT&T@_x>}qOq?=rx%|h;!Q0}S?-@?|vdL+l{FR$GHfo7P z+r8=Y_xJi&@lUcM{(zk3wKxA69`avZzGXfa&#si`=LHXM{UqQioqIy^G~=8U;rKoE zTWY@))SZhLQc1Jl{bAm^v;P?y)?dE2fA;>HaUmD~#ICDo4=_3@H~Hb|+t*@GYMW0< zJ`v}rvcf`A?n&wTt2Ne3&$g|4e^p-nh~K4d+v|_*rrXW_9r`2L<5HenWNuPfU#49; z>+=cg9!@^>=Ah*AKOrB=kJWNNyt`)Bmk)7gD-Gt(Wpa7yeqz6tQVRpyfwcGYd}~74 zJHMW&$zA#5vg<Ch?~`ANhhIFY@b?LCVX4mPPp9`<7$vi7&uiLSd}RMt^W$stj;^hV zF*%zjuYM}#K<=qNOMd26(+(W?X?XI4+J4uF$h#Uhe%{*Pr`~q+rJT-3^P~K4q)(iR zx#Q6J<e}e#H-ZJnE%?rU=DlJ2`i*|Wb$RyXKi)p9_V2E0oBUAPTQ}bK^82UP)*Za0 z)|uCI$Cv-+@%ITD5AGeb>=cq%I?X&@C;z9o&yOv)@{cTh{QEE4<G1q3zhw$;`Sh&R zei(SzvgZlU9GNGLmuLMpeiYyQc2D?%=s)onbW2ZHr*wUNw|M{7O;$Pm39Cg8-Eu8@ z6XZYRxbbmguji+Ox>$>!8@HsghP&qe`7PMqt|Ofvf8iJVF?;qs>A!7X-RHN@>~Ebl z|L}dujDOZ2Ro~1K|0X`WazTV|Zh_i-&sm&vQ+nSPK3OFxJInSQhrGt`{G(R?85;kY zF7Mu-F*hQ!?fQXj8#!zIO{dH%Z~O9kt$mPVF^`n(?e*XG&0TgtZR4J%Q*Pm<y^AWI zm1XQ_x0AbD@$2)W@FpAE58JB!IkP8rezo@X_uJYR{rdFm(n%Tj-ad&GO4@Mf<Dq^D zw;1i`z56%+XV|>|=>0A^z7OyF{d;QyAKve%I)B91-{;c0J;rNZHeEaBx@&UooN1lh zOQ*;uPnh&FOXsv`@6$<TT<!<c__S8F{(T#}YwOy1*Yx$y=vumQT>bd`kLd9S`5pQ4 z$HeTp^VZrZFMMt6y!1uztBuEb&jd@VM7(*@WvQ>5ynC0&-8V;Aoz66wXP#F0745yL z`C)jEjrGTTzYF<aYGv0ZUS5||zonFOVbiB?PxI2Y{SLWSaLXiH?0V<2&d@m`suCOR z8EbU@PW-3z$8gKX@VAx^=d$}<t*QL*{n*AEuV%S-tY3UN&*WsjZdCN{(;5$^J>vCE z$i6A46zS0yahmD882b%-mi-Tw-{-ZF{&4?rJhy#DZMNG-yDi_o%_`fdw@`MI|MDBB zRNMWeOH6m{*mLF0C5?Y~YeoD;{EJz-PK!)t`O)*b<-^zcW>WLseey4xH>=dMW_n6V z^{Q2&rS2ErK6=j_`)d0=^^d%LOO&?Fd%EVq<#)PEw<jGwE#TkQInV7*s4TZ)8IRy5 zne-aH_>O5(toM7CZR|Sjx@WJmZFkI}<9<7LmvKt`oE8=qF`Gs4_kzji<z#=`{)mqF zc&@wj@%q*}w)rtze^futT=SKC_RMm(3sKQWRm66!os;=|;oi>2JB8h~q7TF_cK8>e z|MhtH9?pk1bKm?^du_h$W9F`wUEPr{qoQ1^&E~Gi>{c;4@LFZ#xm8^?yPL$%GUxPh zu&7V&JM0=BcQR7r=3QH*ZQ0BI`mb%%<H}S|ef~?<_3D#4*-P*CT{IE=yX>C*W~Cho zXWlGy<Z_hMv9yr1U^m^lB)e?;uezyu(a*O|7Ghenyi&Pby}9`~OXKCW75^Cycl=ZT zQ!;mt^arPJ+WhjjUK+iYQk%QxRHN=<O~v-$J#B_6dKd3RANtRbD%7mwyT53c#Oq~0 z!qq!cf21$CU*o)Q-<29yk;(rVGVW(_%M{<ecPGYVx{;AXXP$EA-C1ngLpzS05*5%8 zeU`AXC?ez3zPDQ!eg1iSdGM7($vbDYZnfR@$jwe~yU*VnoXS^Z?_UW&W52ET?7P_? zieA0<pZak6*$s>nZ<$H2+fZ;Sq|fTXbGfZwHl2M|ad0M|SCrP{%Z2MF)o1_By7iyo zp~$Y*C9753etU%`)cHs^F`jrk&-2UrYM$vv{~3g=*Z!25{^sPWEa5+PJFnRUuB*@R z)je}jZGPUeSC8)9y2PHob9UyPl{)ixcdAI=f0lB0%i3zY?#u_AM;BH29sbSv$C~#{ z)zm9*t{dD}5;3@Q;CJsXR~e%flL}SZt0vrz5U@-C!MotcvfBY4-Me&BryYy6)JgW4 zdSv^HOQ(Nt3Y9#?(d~Astl?+!3HFOe;`#rWmnT2em%0~|vCZnswe`u5q-V-5y|hj$ zeMj_(wd(>78~JWspsmE<-5xW+x$K!lc+k=}l~Y&jy==>WL{9I@7T?%Cb{Arl53+3I zEm}8S;HHhgvdtwAmpUKU&5C!{iN9+v?)e+I@ZW{`8>dZQ6!~(W&X4Lxzu$)4<9M`Z z=hj`@415c^#3Gf>UYf6aN6cr1wa0_-<M##snf;0Uap6*i9oO#dn?9yZT;W=9>*>`q z;pI{-1r8@mF5Q^nV_<u=vtm)3hJ|FoMRVn&i$Cmd+Ir%8)P+64$?3@zEZ@F8K0IBR zW6|Vi9)GU%teG9sxVIuFr64Q4Yl>;p?=LqVtPB(Sar6JBkMUCSw{IU8H@8}TXs+Jn zhdlMEZ6f=wywgv)w*EnjiO<KQ+AGD)UaGy{*4`BvZOHC>wEb#S`{Dl#EI;&*?MkVa zUVb_6-P8Uz&wl-9h~h1*wcRN8<kriJDuPBy6-$J-6#O(2JviH#{nLL2?mxNR#|@&~ zKYWk6yr(q%;d?IcN7~OPRqxhy-IASQb9Be%?fc|YGkE4Dx$yq@tm?+-e}?^;{#*Tz z^AFVv?9p72E&h+M>D2d=TdQa9-ZJfRz|O8TZ7y!tqM$R&zGYYZ`^k7Xmv{a%$p<Ra zH%&E_F7Xckx&5=fU(400^Ok?{e|TQ(;Dh&_y5dJ}=StcnuJg@(czb2q73O<!w_;V+ z7nw?*u3oukQpXuNVfpE8k&lYEUaedAcVT@>yjaC--+dpBAIgog7yOZ?zp0|jTXBWt zd$EGnAn%IYM;&Xzjx6xZ<$F0{!_=5HrJv^i5x)Ik`x{&H#`R}*<*k2|FY#h?=JO-l zrIu|^yDnvW=aTU9h&yqS-hXFjY+Cb7GE98p)9oRB50{jN*e|H({wMrGp2J4{@$LH7 z`2uT0b$id>__C6B+wSGku^ZzhzH(f<#(rS#vhA&tVvmV-^O?;!{`6;Cq}x2D(8-(f zu3h`?eeQJpt799E+`k(?ZGL<5r~QZTZ+O=K_`cYU8iyadA4RX_J~~fxmUQ)6-5Tu` zx7|y)Pac^*Yt81n-i0QU>i+#qHay{A%{2A)*X0NEf2iop6Zqk}@`v%!UwiNWQP-~) zTQ0kO%KjT4VodTix^6r&+p#P5-Lu?Ht;#Zb4BH>e-{KFrX2beezCDg(-}WmyTje*M zmAyW<TBl0%iQn4i(MPR3l$$Cg7ln8>B=m^nv1Tv-VgB*-k$nnVtkU`)$?E?TvK2Y0 zHgUzPf>m#3aXdY;_PI~w!V0I}Wu`Md(+qcNE#`^8_Tqf#nI&8ApZj+G*)Ca&S=n!1 z=KH@sVV}a!lyRRkzsB=J@G+^l$!ju<V|2f_ug?$r?Qu0q`&ov*oTKPw_itNgF_f=a zxMX57gC>Xn^7^zNs}J25dYkvhpvLvFJ$J=Q*Q1BdW>=bioLBx^=oR;>=u>Oknv;&p z6g(9(i+t>Mtgy!V<KYMA+rRFYxL;HDaoyB~_wL2Hu6vc8x9!-mjD>xo)BLx`G3{zP zxznRh;)+V%#>vtJw$}cCSJarAA8h|I`@?+Siq!f3`}bd1cwzA*m)|zU8z<a3Ds@UJ zQct>w(_qGl2`Y`*Cl@;Hjr0-~deWW0sQhbfxc7IP@8Q$pmc@71n1Ap;B4@v^>({;4 zhr_j39?hDz`B3w3H`5-KZqe>dyH52n`-ujr`yS;o`@7%t_P+!1;&nnb9$P=Ue(x&n z7kwpcqIUX7VB`(G#Y?t+J~8>_wrhnxNmpbimt5*RDfaDQ*~TL0g7W(UU;TULiCvLD zKA-=qJZHuAL%Swi{&zvyW!|+Xx1H;@udgr8`vw|M=il_K;^~A<+Ed-;*}jy2<Ne$D z$3m0tx9N}8_^!RF6tlGT?6k!xz00$zik)+1!u;!QxX!a={p4<_ci~y-T`8l!Kc+e^ zuUCYJ`>uUA>yQ2VBR3zZpRVve@t5Jle};~KT7RrRysELea&q>O>D{(>za9~L_*SWU zTIO2a)Y}?qe5s!vP1wvJI$;_I<7?B@kE$y^JX@N+<o17tq#yp_-oLqD7d?9TR_}4? zB<o&VmEJ|=Ix$<cP8(^~6dd@MAN6|w)^**#Jx~2-5HdY$eMBm3IqUJcD>7IAUA+9& zNuGjecbT;b->x0p?l-;OcGU@$KG*PLqWgU=AD<9;_>q2>oW{N_mrc95^EY_rCL7HA z7TRR{U5($&;>=`MIiK_s?Ab<hc7OaNxs=C^TUfQd-}Lv|+_l$pO>SMUQY#CXe=Ggi z{jKqb?}i_mXEgs<`K}pP`?jx$bFa9~5)>Wpy2)+(L?g#QmWf;Z?7md!h^~HeH(h^e z(*4XCo;%GaZ!Y7zd$cYmeVyf(XZt<(>DEYG+NXHSzkb1wnd|dv{8#bj>Mgx<QOD3@ z+orcp4&IIVTFa+-2zNNT9cO;1-&N0Dll@`Zv1`wd^ye0)SFhx@u3l~FGjTWLvtu4w zYv$!RoS5sz%zJxk!{79_AIsXbCM|igcS+8yS6_U#`iHLkb0qVco#FNW3=jI`#op97 z77Lp$@A#ViV1lpCzl7~qLf<`_arfA|ja&XDI<<J6-g<MATY`O=otAogjrDKlieJYc zg+93+RX6{^iv?HLEo;(Loh0$tb(VXRfl_jVrwgOMW7nSr*Gu*byuSazFTZP_?1hE% z180X^t;x>LPR|!UtL^nqao4Sl$0gFsk}o=_Tz~ie$bW{L+{fy-?EfPi|LAfJ`|jC6 zALTYLxRY`1R_w2XY1_B26*|$m{LYqp(W{FkK9|WGMhF?k?@cs*V<#`~w@%H=@cGJh zC#ySa`X?VxTyCQ?rL?U7S-r}ChRx>3_w!e{KYk)!r@wdWEbaTkuZuWy7w+zoNSt&# z$?wIpls2=7D{pw5CPmI@ob@gK_Uy;?&0qI-&f~tc<@S!Is28`+lyg0uF*9%8{f<)& zo*oa9l_uD1Y`P;DzqWqU_CG@3kJWE{|CaZGeqY!<l}mQUv5~%|g_X;G_*p#J`Qh2t z(wt))Uqfg8v!1e@<I~C=o!nwfmbyMZH~+r-yV`{R=Iw8je`v4xBl_e1q8nMa`1`h` ziGRE0v*BRz!uz)kJoFNFPr4VKUEOctqL>-UWpMHyNAT$*cAAMFZceqTsH*vx9X9LI zuiV`7sG4s!J#vwnL3Nki|JEP0pYDHKagR0ooBEH;A(OJrBTEWJ*G%&1xSzFKQ-(2q zj?mjf+n8l|KF|8ob7jp}U*iYUo9_p1%eeOPt9M5lk4j`>b(`U)9Zws1C%J{lH2Aaa zE&g`lV_NTr_hBE?59YUo$LU@&;nueNGB^0}JnbEu_wBr_|5mkP`IfeCcTB>k1t}d@ z2{Kx;z?kh^!1^=a|5<!g+xT!U|G`<)78jN-dtvCOtNUDGiBgTnzc{;B&l?u-Fy6WT z@@CEDgX;2I-v6kNe^ys~)N(7I=f&>p`A6mQAMS3<UL3hG^_HGW;pcQ2G1dOSch+3L z-hW&Ex9^{FjpUDq59Jvvf>b{GUhmRbztuXrK=^!0%dsUVMOqfHcurM$_-)>!eR?03 zbnS|rwAjq<x_0W^`+4k+JLd2w9)BDk_d<Tl`Xg$8m;aNmalQV2UHbM9kM?Ni9J}Vy zbnD^FG!H$MGaXCkswn=Na%*>S+@&cG<AVBK{xc{af7p4cH)>V>*8cvQ^u;%RWL-M# z`H{WdG*&on(;m6xEQ9lTox&;Gr!9<<EIJh;P*rov&!BGB-}!G!G?rY=+atg7c(usp z&dAPQj>#tiLK3$>Ej*FR8=qNszg}dI?#J2R>b6|3QCt-jcR%CTySe()lJ6HJPfBgb z<+$i65vdYZ*d(19$H`}V-{tT8KWh6}u5Gm!`XTgJU!iqb@7virDbYDis~oJG84o5| zr+3}{9b|V(&+B^r7rUzuuNw#cK0nhwZOcZ`XnL)a(wn^R9!DPMiFr<MU=J#&dMvsA zEWf1Bq(1@I9hCps&$qSUJAdV$<$ng7f79yDU5>q5cf6i|Po#-BSN=M^gz#yGGDS0F zKU_?_yKRDBdF~S#o}zl4Kd#j*_XSO_HAQ^dHRbjd5AFo9S2K7Fj!T}D)n0YIc>nxo zHQPmYR&y)=68<}RtG@n$`b|ePo-^qSK9{LKJ?F=-p72}uw>3p&?cZ?z*lg?974N3` zbKI-U)XEFgsOa%y|32}<DR;#NrTymn)9ocPcgaoutyxi2GI9By?bnxtJG2Jat~p_I zaEDP_^1<6%=1-A5qWPEi?<&)~TIavH{g`*_%*Wdfx5TIKO5>P0>DgTemB;I9vsNCy z>we`a|M!y1pKOJ{&4|v`e{3>s;_)X@ho)sqxs+*yZT0x3#&Iyf;<)3beP(|<w*0o0 z{+9G%>fV;kr+2?)F+H>1`fc{ft`(J>IgAHbK4`zae=9s7I=@%%WUWqiDeG*F(B8+# zr?5TV$(``4ZGFf7<loCT|DA24IrFVbNL%S`r4zjqOAXG?=qV~bVV(Uk=A~VYOZeyY ze|P+qXI4My_jmt^pVN<D&idtl?7ZAe*K=$0OFvdWyyPmnNATS?L)A6MD|ObK2o_w& z__ITOr+od+k0J5f|1LeaYqOM91=~l}h6Dc@GCtdHO=eiK$ajhHgE<Rst=^Je7XEO) z#QohhX&=Ad`F1E%`Z0flBd12{k*L~k`LB&dp3;qvd4FENV?JvO`?tHBXMNJ{sJYJ+ zJ4Yh2|Kw^X$G_)iALRYAX0!V5t^e5nGb}lBpXc5CXSGu+5@#m&J#ON-`$MkY>xFPY zPs7PmU*vYI)Bl})_<O~t^^ZC~pE_|b^3M{k>?K>a3pc9HUUTB`dqqC0{|uWa{<{8r zYJBmnt>;eNi`hPl&CbbgPulit5nVi=KlLB(dh*u$$eK+(3Gz>UvQI9WTwozn@~ghL za&oQTsp8Ct_lu@>u{iH2XI~+^a{DHwLkIh1E5EPHll3y5AkX72yQ=r-l{XL9%hW8E zo4+<jE!FJo?O3Nz+KJEg`0h2YkbAzjCi&y^hv%DY;ve7VtN49nR*rf3uGA}wj=hRl zJaz4?h;7rI9!yo=XLbGR_Hc_WKcyv)6~=`=`kkS^Nnllz(%(mIwg)YLrIfAD=Ikt( z`l$HSq{8%ue<$kXFYU4Yc>3|arHL{Haj_NWz1to|v`<TQT<~%;!-2v^l}+~kd!Bq> z&-^1%#QV2N#F7l9l#ltn(chEPb=TkJy{~6^Kz?fV@;4XPzBIR&-e={RUM$it-}B|M z(&E)3p&#DOSh9g-0`uba{(F{`vV=dmekA`^c*F<)H}@ZA{u91`GuClU#q?uZ-&Jk? zGpP2hH$5~Z$Z56JsU_2b$|g3Rty_Hf%c@7|K>~MI)W1|e{aDLsj>z+i`>*^;e-M8t zpXv2H)gOxszqw|ne9ZjZ*<~3r|IKbmK9{Zsyq}B<`y!st`nfv(L;N9M`$zmoZm3*Q zy!<XN$0T#jnxlu^S;AR-pG!w1riM=P*Ys&fR(bO2roCc?@#AOf_;&m=zM8+}-_0w% zf1a5o%518gCt+?=AR6;X!NSRawcsA>N4@4nuXY{3^-g)K@C*-i<#N8`4VJHL|7L&T zvNX-`3ZC*y|Iqy>6{dwH%Rel>_)p`<y<5K@t*Huc{kr?7ZpmA=W5*t8FEOfLw*0(e z=er~8pBilvSlz-}7iSzHr}bm?Z-<y4Gq=Qx+HSofZkF>XturiMO?l&Yll->dr;J1k zUs#Afnl)`}X7$JQ!Fx7L@LO-X#_NUO{b?4T&nI!d$i7umsFL|OBFgA^UU&Wb{|ved zU)4wb$})ViC2HT?J^gB{!gjqYEUx%{>=)b0Ouo6x_MY5brm4Gmy5i%5Ih~?q0&_kp zK2~1OUi^4^|JU8KUq{DF+&;hLxRtvKr|!<#XS6sEozDBDp<u3ciu3KP1DB(`d-I)p zdJn%9?<qW~{N~5)pFO`X*IB&UUe(vU<nOMq=_mJu{%m)Rh-FW_eC5gS>rOqg8Lr2x zXU47yD!=iwIBfIweBnF3`IXsvFRuKw%jipB&P!G)YRO^jkF(YOviMu1RE@l7jc|S5 zMT>aeSm~9?r3va4bIT0b+m3TBpI{;PpJCdp1<~il?%j*2d7?gJxqZn5qvH8~`>wva z<=4G5JGjE{c3`V)`jwI$eHYkI>wG-+xIpsoVu8ZfajiL8b4}L&jriFUW_jtTliA+$ zuXaCN+qPD|J+bd^xx|BQtWCS#g~py?PQJZDCj7FT_4O~>_HDD=HZIljOw;q9GC_7h z-6ub*R?CCR8`huf?~{{gKfHhQ=ZeV>pKO=ozH)5&;#)_{7vAyDbBcR4A<}ED_{=9e z49_^+Y0o^&c(nTYTh{!?@7wD)T(L9xk@_h6^NNhqGSjZz+SvBpKSA%7xe!}}AGiCC zrp-KN#uF#ho1ZI?xe*!pe)*&Ri=XcJzZaV=_cC!^Mb-s>-LCUleFyJXwKMNLKFyE) zVZ2EFLHD;?*30}mw$HHd&@)T5OV_T4xGGNVzws`)j9H=7>2TMRI^&AjkLDk$Z<}@f zNHzCret~VBS$Sz2r(N?lo1z);FXZC6hYlyTcwFWrD_gEt`|<p-z2yBG?vHb~_msT2 z?*H%j4)2pX`gNBsbSD3t5q-y*p<d^~1eKEv4@%ZgKJjTgkFVCp@-5RJTzvgZ^vX)F z*|Gf3eFLYx(zw#R<<DP{$Mft3FD>4+dz)U_t|lYH^Uu#${S~|XkK+%+hj+7i?hDnp zRxi8l(OvMLA@S0rhl+i%OC+Cnd2bfT`JgKJc$ty*+xgu8j^5wAb#Cwaj<qIpqocN_ zde0PyIhn6=?cIXTWDn(zcaH6!PEAxeHC1=p{)*!t>%{tx&A<CE{lwE5QCl8nD1Y$P z(SMixc|qgdSkJo~w>`dIXZHBxy48p7@q9GzS^jB{akAb*tpt;>EWH#93&!N_pH<HL zKUAM{{cGWe{%_TPr~I+nHhrGd2esZx6|Y{og)5@e78V_xuH;;37TI_Ca8*M1OaGRw zd$m2c^&NL=)8=T(3(V!%?!b7=pu6YEuj|Lt>~s#zdb-$ke|Y|9+ZRu_E?ch|ed3?O zpWxp%HGUuR+uqouKYq<UpFgu|&b-jQ?-u75@&xTW`#Z^KN#dzv+=em<auueh<0{NO zF1%U0RkrBUms_tKmuxB7nlY*3I>Vkchw>G7>`EU`Ja77!zy4sz!mC@j>zQNXUw*eb z-}Yu}u77aj+Q8)k-h~W3x9;%nP7a+GK21|{YMIa+5$XMkf4m>ccgJs)+x&1X`+<1^ zSKileUh{1G)~;KYYM)zr*1b~+jR+Mvwo2lJGRwmmLfWr>6n8%ES}1k(t;qY@k}$hu zlZBnV?tZg#e%5*Z5zJbZ`$kW16L;RE;(4}>@BcHrezx6YZq$W4EgLVtdGmc`>}k12 z6({a^oX^|(YvPB;|2R(m4*Rin((7Z>qxhR2Omt5A^y1##g$EAVuAQ}|Zm(Y9<;n47 zKcxS0Z2XXY*eodPKZEd}*tOZ)#Ww6|yY1H}Yj({oRHf#Ke;HfVql9dkdihin<-EFl z-}(o2>b!dLXSA(P-o85jyhxqmN0$i+MlS6QtM=&K>)P>r-j7#W?<PJtFZg43Kv%?@ z^;?rqyLF0eS|$H2a=TXYcAt{<FV(+w|LwC+(Qlr=DZJ0d{loQxW@1st<|hl?&K5rw z>-6vLlO3Jj$4g5td9B@g;-}%k0|y@Mm)v8%KK4bhquTs+XIb~;?>NjpM_A^Gh=t$2 ztCi-GmyZWcjS|@8ck7q_XPYzERp*Ii2~WKpZZoAu@?&`0m)*VfN5q&;S%>KSOV@8c zpjiFa&wg(8zwQSwY77@2t^78{ZD!Kc041%TE!ykPDyHd3@CdM92$y}lzVlYw>W6>R zxK}?e&UmpZF*|piIm2S16z0!z4stiwbsvove(*s@>|4~o*<wqRbyt~BIkPP2w!sl? zCP`6uo5u6D+F3tVO`el{CnTs>?YC^`^^O`x-l^wy7G3t1-6Z)gB`Idn6U{W0=L{PH zzsjzDayRIiajwn$648mB$_;#;kM_-N@^7yfs?l6tvHH!DTX72}uKjb(S-AILglN** z11FT5_&6Tzu|D!oc>ARq`xUPWPa1gSE~zmHvMN0xe|~RSqD*q#bDLF`CjI>F^0%X! z_r<w(yj8blNuFOEzrudwlyKvWIIUS%g#S%nzVcWV$5V@6OulvTnMDh)mX?>Ytcf_y zJk_FKW`0ukSLbisd$aR7f6RM0WwY7JjQO$Co^J5Ja9u5ZEqig-ocZ7OBtQL^{(61$ zlO6S(v9^b0baZyy?%|P}`sMzS9S=5M&w21ub(XKDYPx1)!$&1GPwNi$_gp`U>P51} zr9_X2y$IuYoL0Lh!N9ii`ThPw`)>T0Y$ATopx?)h^{q*?Ym&5mmFwet#k!a0*H``7 z-<7jrze(NN$;ZDh?dOm4lK$)Inz+3r$mru2cKM}cFBJ|e&hlMSB%{;3{DS%Gm}T>y zs;**Kz|+U>^&%*CRn4BNI?<oLUUSa;x|Qv`dee>)rx!^%4R*OF|7@?<y6AcCQXE@Y z@>R)*x)}LOJ38{eeK@{;ecshfbp_ep-OH8syxQ_r@3_C}*ERVwmwcM?pP^Q=^4Htr zufx~A%Uzcv{pQkfvzWif!d~}Tm>xb@Su~x&U6UbQ`MT&v*=z6oB)+Lju1WQGcxsig z=Rkvf;N=%uXNsmY^ET9GYiVy$NLQ9?TO)m<Y|1&?e_OO_4~LXVxgL9=K5@sX$C6*p z77Kd>=^OmIx;lEk9#iOanQJlo(`PB|?zfcJWM7*bG=J9`m(uk4HIbVxmELdNr+;DV z^GVXuf5kp=F732A7O|vb_0*W&Bg_+wj9<t1@00mE;my|hV$MryY_Gb$F=FODb3M$$ zF<(Pl%j~hton;SREo@|$F#YxP<6^Ja<Oj!lN;KZ3G_L=Wz1vY~U6ip=W%c#t+H<=8 zto)FEV87gt<lN)!f09e{OS#!LP0?P^`MoGcyk?!XK1<_{r2Rn;#5EGNEcWLAlGmSa z`gXz6ji2Sa>XUP${xdxKw(vvEE?2&l$*RY1b~DQEj#~5SXI#p|jnZ2j!^_?-w|Ol3 zpkA~-VSmSbwl}Tk7P2jU_<Yha>!nUdi_R?U(f*c}GAZKV&j~#Zjx5cy{;JJB^q*m? z`!V@j!Xe!c<~Of1ee3LZS+VQavm?{CZ{ITET))iuqK`-O-YT8`Ji9g1Iftt(<%68z zkHa7B13su!nIBne_Mai_!`Cg}J{(<fOXc}*yO@5XbCz8#ItGhE(<Yit72M}qyH)1U zrp#p(KlbQY?!8uL8S_Wy$7+^~H>1y8zdUvF*}l&?iIYtEeon|as4&OinDNB;wey+& z=~Ng$j6b|Pp8em|IME9=sUJQ+>OK8(HQQpFZQo{z?P{~o)o=ZfJ~KBiRUlqx!Y-?h zCqG?^W@i378_%&P_2YKmkNY+*zFAT9^^bg_?bo~K)~sBfEfjrHFkatt-;NTulN~eH za*6Sr_<h0Z-Ov1^@}lz(&S$6-&AQL=ZrOa_tM9%}E>B&xCVblUX%k}(U3z(I>a;6e z)s-pI%R6Uy6}?dDUtlb?`S||TTfb*sUi{*V#ab=H@+#wZy}=L5-+cU_9&^#g{bA}y z-Fvgy=9d=pE?Zfe$uq69@Ofv+&1c=k9xqE}PUJ6``1VQb<BHS?Oy{59<M|P}{!ihD znp^MR{4QPb@}J^`hx3nEy~)-IH=9+~nz8P1(8PspnUT{1H{De|b?){>!>u>#Ql}r- zZZD-%qTlttdeKX%)^~H$m)<y-n)Ax!b+q?NMVBp??>!2yXvuqIaaf>xt3bZ>>(~A5 zx9&IZldCcLD1OA3{fO0)S#c|K3m?ATYZdL?JL~Qvm!@ym!gVu}sv8yKwO)m9ah^~v z*!XkLhRFwZ?7AxR$~^tYi(mG!dX+OGO}<9Yd;Fh)<;joy5BqL=T(^_lx_0g=&xdQn z9WL6qF5LR}d{+*C=h9jKuGOlY_HB!pdvKP<(_0s}uF~>28ePn9|0DCa=?~p4z2XP| z$y}WG`<NYnlW+R5m1<L~t=(7Iv_5Oy$}&|>y7uCh-_N!w?&R@4J?o=>OZlzm2hJMR zi$q4>$~?Wi`=yDj*3UTKnD`SPZ`?Lrx^>y_pZSKuF4F~-k26^ta<ndqzsi5J{^)iq z{WqUKD!YEX-}JV|^ijTO*0;dS>aX_O?A9dj?)Ja(J}mOC*sbX3bn}A9$=}lE#zr}- zyx;oxdE8Xjv*CAVUyina{dMCP3BSm&z{$I9R{LMG&scx+`Xm0Xt^GH%BO7Z>KeF9A z^IFQiBlYvMOC=Rj*~`Qx-i&!WIV5{wq3Dbq-QTC37b!RNc=bNMDE5c>x4a))<vJg& z_UB(Wb#+CW_gdqiog1X;r<XHM%v+>j<Sle!nUnlkPZ6)4<b#=#-~TgY$F~%}j8nV% zr}p7_;p1!mSY0yhF5Puah3C5x_imOw9`nkKPO8jS;}pJqXf4y?V=@A#<Cs6pf3&@? z#`)pf@}vJ5nAexe3LpK&?UQhM+2y#$o?Y1-H$#&?uf3)j_D-~NQoi{ad(B(BCEZV@ zO(`@rl)JQeQ`gftuir1PFJCs@_KcmR>#j*xzSTGFito1L%U1X2uU>omjv@cb-BA&z z%ViRkCo2CtE1=aDKFM;4g=J7fE`$7n(wlpjS5=fd%|9G<W_ncX>btjMGC%d+PZRXw zDRz0lkUZ6c!Tg-8^r{E_6Zi4P{+J)Rt4sUnjM%deXB)0KxcFwJLG&HAiD%!Ky*N7U z?)RgblMAQlG@rS@z2FP`_0m}9Bm3kozumJ|**AY?sjrt~e!8NOMeV1Zt}ebU8zv_k z8!ehVG2XU$rPn&e%RTEZ)lJ`Z{kkvzf`jLTzAyS_`|sadztx3Bz1z<=CacSQe}8-O z^@;J8bysGEe*MpI;PqRtbC0aM1J`7htu2;LK3%Tn5M}doUqtMwl-nEL=Cw2J%?|p} z_~0!2Z>3MUarYv({^XsbZFMqjV@!MT#-3G?%tr*TpY!P2+;Jyg=8yhwmp`SOCqLf0 zzwyiIMzj47ZIx~uTy*F5v0fEzh2oV5RTPt^pL9O6UB|Ov^`sW5Z_<UcHeLHJrz|gV z+<D255|jM4DBJ73Hi7kdIhT%#hg{XsW7~8;)pHiN>Xyx0xqd&Hu`P9ygRDWQ2eaM# zkKPCO30<#ashA)7p=_^x*E^kD@!wXT{kym$#Df|;ryYBC?^{H^+GpKEweupBN+&3b z9%kZyW>WQT_s8Q$<v%P;`Y5*f!CvvBzmk+I;@-vEc|X@S+2mfXF}1nz>D&v>>Qn68 zwC?NHN`JIJexLK7@GCR1{|u6G@56Rnf3xLxyyl%4-PgA@HJ3$iIdpbb$=td#uhU{q zik$9!<7ZpidL+1K+0(LbvHQ<_tlO<NZ?E6+M`ja$+gE&hciH8_*66chxxxWkc8W*Y ztt`#EuA84V?R&S~!h9R9>tfqGi?a)tYoEFH<haSIjVDAmzTIb8V|aP(;>&MJthrAp z1j-a2Uw7Ya(xM*iReG~dEo?XuaE8Hx<?DL!ACo@@d;BO}c=AK(^0s$}AHLnQ>A>Wp z`8rl*OIN!5s|mZl*)_lB(?O9>4%dS;grdDxPfxfydC|XX^2|CV+1}c=X4g-)NnEsl zH2H$`(@=(DwKXyy?=~dgVUF$Vjq3hha%cLo<8wQXuGs7U|MDX{{y%CzVt)t!cz$G; z{qgvYS;yOL_)Xko<pdM8%vOGjlzQg5*dsUY(nSTqy;mmQaXK~o#!RzgF@KJJO#T+} z!TrtI-*K52Ykam{wp0BP9B^sfl8eHTm!5=Q(b0>XB;CqcZetJ={gyj(W%M(l=$b$+ z4~O6B->&bqTK;DDx*D4wGnc&hW!||}ULbSYE!*#{YwXTfXZ*^&!e(5Uy+nO#*+fp8 z(>vy+&7E9zd%*<7`m<;2_#5Pz>#TnyM_k;${cC^Atg@A<iK|{&HPx>6n(gb+6C|B$ z6;>O|y60Wmw(XxDwcRs5ca3rN&+WWnTfOYAW~$d(z5KlYPVHW=TelZ}Nq;k6zp+03 z{w<@^-oO1j-l^{i@vhF7zLQxM+B@}#|1;IrM>jYU_h*JFO0PZ9cK?h<u)5Lpch?X1 z-<CW0wO*nk|IvhPA9~+zeY)k__gxD&@7ijXV$-`MHtw+O(J32Tg4~64HcK>Ah`ALM z|A=0eE!DR9WB>8^t>OpY%X+TxOkN%D`f&c6$%}5q9?i}aFpqk(t878}(dE*bQzN1l zox3jGwf3;rDO>eN*WX4iuJNjG+qJy6PX2bqELqml^?a|si$%Fq-F?@THj8a`&}6^M ziJQ}ek9FF18D@S+iQJY~vVPLpPgXNdt@STkyL7sL$os$QE3bPkeO!C~LVeHV8tEUm zKiv9$B%XcCTm6uKH-GEC?Y(k+`$XM4ZBO?++5Ay%u5$F*RBn&6nJm-ZSgo$i^OQ3c zUAFY0KXc}MiG7y$v!c`wue|X>IQo88@Urf_Z=css+m*IB+bBL>wEb*G&%8u)uH=jl z;c~o>@^9^bQ2p=Bhm82GcTao_neZY$^U{|Jo!-6E<}OlO@;;IE?9w^kwhMZvvT#;x zxbLt1@;cwDrPuXpnvdR^x2sP0W&9TR{yMpr`}i)bnfK;L*{@61i?f&i48FbPSKh)@ z?YP^KQLl=%?zl<{oaeO9p5iCwELT!dWOw#h`L>nc_ut>XY_{D}o8r3H_dnZx|EPbY z{m1hMXZaugeSi4pR_)yS6VcMu7t<?CS2@bWl}N3fdgb|VJC3&jEt3Q;&irwYrDN&7 z&>zk#{$03uIQiq@hk7&D{V2P|dPVBit@FO}H#bIT?a9(TySmcI<)oxxwBMOaQ$C9> zk5o+jJiVnp)3*B9J)IArsZN24d6CzT{5rRERqTs-;#U+e?XgeS;TI`47dn!xB%R%z zdG*<zjXK|*&rH&;D_j3+`GL~^3~g>d5+B?5+iwXe)Nk05oBL(0*rf-)h5FwnnO^bQ z7<H#TW14qlhhy6IbILs?zKo~z_0+X1qA$0|?5z9G5Px<?b;!j_8S)Z)<UgE#$hZC@ zTRdk)_aX7?_e6K>{cuM4^xnutlkP6+yZ1Ng?}_Q>dsZ!}R@_$Lea52fyZ;UK<Fjh- zbuNvq@x5ZBy)xnz`|qk}*&0nV_k^mhisFoV_cHF0^s(yBNV{v3G*pusQuOM4|F-PU z$d}I2x7%pexyJY5dztL-8!D1LuBhz!DBiZU`n-{M&#mJ+@wdYGl(&7J8Ey7)k9Ao3 zyvPaF=MP!$^?tOzdr$hK^&R^Zu6@zxnr78AJ^Zm>)9u4y261A0Jft4oG?mEZnP|Fa zZI$}=j)i3*w@%FC%UZR=pVN26&6V2OwOhVKt^K-n=3T$3|MXw~`nT0q|7acWkNpqp z8E)11{g}VLBJbC`W0#%>?b!3-%JpgCyQWQC_KM5fzdU1OW|~V^#J+3aKDx#E8ytMP zxrP7lQakb28-A#+TQu)?@a3<X^D>rio%crm&CPtNY@=V7JT7r6<X%{kYdA5^;09}l z-Rt~Ck$<E<<kYj<ST6WseZWq3`>v0I*Wa(xS={e*<;&`}(!kWzZ}TnU;<uiu&xnZ7 z=}ToS+mcc?E9Ac59{1n+%MY&S$q4%uu`iIVzm{#G?iBOz0;}5P0>`?o6t@fgoZ!iC z9bKTTSLYadB>1S4#j>q?XNAS=HF@!VzxRvTTkkLR@_hTZKK^Qd_dm`*4nI=!*GAty zue$f&^3`!mmR({lT%mhJI8pEL!iuZ!a<AE2RZi_br0&`|voY#7`|&FOCL6~O-|oGB zWFx%4RXXzWvF?iPK~5KLzY?xbJO13=YWd{y#WO=}A~>$yzPo*z#m~zR%=$kXAK7Jl zZ+@A{3B80XvwbhD-`YL9V{!kR305)O={*N+uB~ZsN)1wI?XWkV+%J2%K6`K4e}+eU z<OF}rU18fJCmpH(_$sqETX!Yz9P9VG_X8$H`re#&waHm`m#@N(z?~NlupE9WG|wzz zj<MhQ*qr<G?oXdS%Y1Eg^%pyVzde8QAIjg%J`|^Z<)3}VuW2*$ALMt`sZ9GEQ<1lD z>-MJDxXMQp6DD2Ucair@vAa&N&c+RHr#3L`_*?bk=VNO@^NuAy3fIJE+9}UFcI{Iv zZ%*E#>4Ce2+)dX^xUYJ2O7`=HYZt8y(s+NLG@fQ+pYxwVzQX;{`u45!+i$IJ%q`8< z%|7_++-|YCt7BBx-u*jw)>QfQmIZwkvFU#w-SuVcdE{`aQod*Z*3c<c`fqlAERXtd zzvIzIwplf7rQDK>CY=x5w5M^cPxrQh?@rkPC&EncO5QTt^@ORu@WdvK=QqA;?YWpg z+xOb_==JfT*WGIFCH9tNSn6JipZR5b&({A8GXJjaQ@&E8{bBy0fY^%qW8XDPA6f5J z_S&)SN}lOyZuau%-Am`)^LCvRxkl(ttW8!*uOeTH;IzM5KZ+mJ^VHp`XMOVF`cYrK z`-jW_8GUHkHhtSZncaO~OSC6#JXpQ-=BsZ8+J8=UTz2#6(NjuloieTd@#}A?{~4Ov zUhL=JV_5u<`>b^E)~)@)TlfEF?OU%pckZ>-sVaHXg_bZ$s<gS@-NzYuXyYxGiw*4W z^xr)F?O&n)c>a;hI=dJDOs<)%b=(@Ue#wWg&o=6an@!v9`9yv4@>`}`n<JeCxc5eO z)=m;Po){M|_MuIi>2g=*(dE_ev!hRM`yDA)7eC|D`f{<Yc6|RCnwtMJ92Bg{f8fvk z`k(dRX@C4z)ws@gy7=gdjsN1T{TVwyvTX9;nQk?==b)Ue-@SrE57eISxHb8$(TRB; z|Ekwcd$8*?^O|p;j-|APXt&2UEV~xRp)h&km8$E%1T*Eg%w6AW<G<`bLsmuH>%;SG zKCtdvT>4P+Yk8mY`rA#(dpC8x=+v|6WLD0bWGQ+%_lnmuHtkRSZ(Dzh)gQF8&v`8> zr*<iKpVXh+kBoi4PQ7-W>_0i;%95@NYp+PP&WYH1CET~s=Jx4qPq7b6guGc2r*eM( zp?`FaubvNEI=kBaBhzk`#?7r~ezs$JLq^i#w;6WfKj$B2>-gZBnBTJ^dgly2x1#+I z1Mc06^?sxgmLWNHZE8UG)=%au?Hg>fwT^|xZ`@^LZs=NQ(D&&6nTU6c!P_b>1*}`C z_3&b(Gpm*a+lkfN!yB>-D-+MOUHxYCIL}-|aVJaoSDEBW%X0ru_AEy(7p}F~Z-2sH z$Wvxkjlgm4qnbOKr7!0(o#6bri?3;Ku*;9bAC(Uu^0d)^Y@2lP#vHAza-GG^*DO;~ zY=k(p+*hpEzW&~3t&w1X>;!+tqy|F<3x&rDG86lFBX(U8U99#*TV3Hf`_o@iVKEcq z(rpSwHIEi~F1}qS|0nXt`Xzt3cU&s@&miC}*8Na1;hR+W<os`iYD=pwc%9y+sG%TM z{QKO#rhO&5ujQNi##R45_Mf4DX3Mz+iOicG7syP!EOAb2?V4xz9ky=zbVjbo?UMc( z<_2#?1p#T6r^RzhCDu&I*ZRVm!1jn~Ql*8(^V?t6JI}lqX8kd;HLCYe?r!-V@l1ad z7gsdh{ucDnZz=DZPcJ8C2R7PnDcUJ`Q0K$j2@j_nd%4r`j>y~tY)@(*|IYdm@yGM; zgguoHkIeE|^4oUG>8E#2=k8DayK8EBXUtT^{!=Gj&k<VA5Pmp*^U-_fS?kUQ$?z_Z ziV=RDSloYU-@6|#S8b|0H_v98^F+DnGRObjym#C3FKg+;HH*dSHcpFmoBhfCLj2aa z8Q<#kFK=0ElqnVQrDJW)&Ha~_uqIV3PBThAtDfig$$Z|9lk3mw-;npYvd8wf;*Ye; zQ4yEiroBGlvQ6x%@LL_OO>G5dA|s}qV7FjqR{yg7+mtJbvmaG;&gq?Y?Fi3Td&_@2 z*Pr*lnI2a0pCP@Ur&;caq1R333CCXL{9CqP?rc_6MMwFpKTGPmTf&z6U-<F-=zLK< z8|L4RKW@p(oJ`neK3}9pQzh@ZFQYT--rdF>&-xQxw%<s}H<{pg=<VU~7jvg~?eUra zA;{PK@Jg9<-|hqAZk9GbrhfR<w5KQOmWqm%QsZtG!<>)JAJu!lc>7jAj_=fYcPm8f zKZ96}vK31zbHOFu&O2+?ELV_Q+<d~iVg0^`JB|O{n6}+;PW@5AlEXH&e}iQHGbp+x zYt@~#&OUMdp|nwf(d69t^*`qqJFbgydzxmKFrjer#N!*!X5Biu{Em<P1%;FL)d^we z<5n@Q*WY~g)S*SeO}!0{EK+Z-JwNrcJbg}2^_TT$RtHUvnjgttTD-s8z;l~&A>)6B zq;w7U-)ka5HpJdNS@<om<gS&skp1HW!7=;hua31{v}Ok1ViqAz`KdYXE9P%1V3?q1 zyZP3hm6tPTN6w8Ay6bkh+TjVG2e0I>uZh92cebn&i!guud);#RdAFV=DV6%$Jb66v z$CcF<o6DRmj)lzkI_Y#~rS|mayBpjBIF%F%yz-dkeXfhI;n=?^PjA@{pEo(1=QhYK z_#Cxes@YrUgn!I++v>W_FU<peUN=fAD=YWM2gZI`ywIr3F7@xM^lj~r(~q6hUF@Lt zv2Xg$2@Ib3{4d*8`uxv${+d)h>rctwMPIoq>(k;noO4)=)I0vftXq&g_1dy9b%}F@ zKOgN6{m+ngU*LuN<MLzAKP%s4?>4zMao?+B$`^73PpTv{9J_h&vCQ>H^N*dEdbv;S z2m6Dy;SST!Z`}P+y=S=&*MzXg5!0%Rr|K|dEaBm>P<WD3RG;x6%G7SBdftTn|Cr8q zp4U1W5LkQvRe?R<AN7acKfc<(&9xGnn{PHfa6>~vM_;hq&R_G_7TgoLkYgGf9RBY@ zrAOn#8><d5cuguOyzuehS@#F=okB18YqL!|ro_Z{vR&7D{50a*!zn2bnEUoz^Kbj( z$=18-Rngt!il67{?u(P)T~%SJJaJz3*OftYmrVR5Fr{SQannK(&yUf8AO3E;EPv}^ z_nDlT;x&al=@!b*PD=dE-g51a>Z*)7oxY2CLJ_x)JqkEDmupRsM(Pb_=G`_$>`|X( z&BM0s`LTD!tDoAO`<vW!8{Cd`H}^blIsZED`lEiq7r&-=Px98Du~hzMdDd;dy0nRA zE8p?Qua9~)-Dpz(q(2?`&W$^_T>WYr?&q!P6Mg1YkE-FD64xXThDl2~C4=}XUdH@q z=-!eqoU!ejbL_szMbp9!k3Y9=IK{7EA@lZSY}xFUx1zIldB@#RVyT|Qy@7#QXvMFZ zJN)anrvHh$mYY{HS5G?fQowcAlfBKUTn6XmzLu==^fTE0b>-Zw!jjoLKl?4VnN+dp zMf3+Bn`t=-GS62&ZjAf<(Ei??3eUwXGuD53e&E4`>4Ngd8RVvZ&VBN5Pvk1s!wZ`e zY#ok0J8nO<mifVL<;u#Xj>Y1$MT#Q5x*iz4pY(|3fqc6C^}SV}!j|>7pPl{dsY>0i zf0v}1-G3WLI`A94u9JE$J3VHz`q%Xye;0jSq5iiucgw{6XZLOAxg>jA{On!@w&Rl4 zjq4fzF1{K5Eq~L-%%x7h-nZLd-FD6Lny%+__BnGtUTDa^vOhD}_Wc{(%<SZ%Z$8gX z+T6G*yD$1rvJjh(`DME~*PqYaVqY-1HvC!t<qg7Fn_|zK{$1y><L|thoK<UNUX~a1 zlxn?MwSe);yu!cQC;l^J$hY2;xbjEyQNHB;Xp`;RcJW+#=B_Iwu_%A1<WJ}3J~s~A z*H`yviCua0ckUloy=k4L1<I}L^VO%xNY9wMT{P^uZCwEW){wso)F<gT)S2xyoR(=4 zeIQJEo|kA6=Pi$*;tA#g7C{Bt4~%L;ULKn}?{od{%r8G)#PR-=Q+;@!|Hg~?AABU= zl<b(KvHXL{_en=qA3j~s7Cy1f!0+??c(1?qm;P8Mav#)PwZ`w%DyEO$MVQ#El4ba= z{ydnu`sFqI558uVh6?QmPG>7Cq~BJbq^#w{R2TMeujR@0SM_<LUq&rDZoBPCNWMA$ zrychgk6mJvl$|~C-kx_VN3L{Fnf<%?FK>Z}xK3rY;;j7ECm*J)UiG8QeAneXDbGCJ z<b%`1b2gvN+5hQcWT!s+y_33fo`&0(X4DJV$(=5^WfJvlUV4CM>$>E=fC?3fC#eN@ zPfb1XPTSjm({_P{b;&=cPWUAlyCyK=%tXmW?t(nW_l9<Tz9Pob{EoM#XS4NdldAcl z*~v<WkC=zQa&Mh*&*|XQWoe(@Hh%fcq2^Pfq*^1#DY|=6=C7qK^E0!zPs^MdR>{FR zm1Uxg*K$rFp|S=487jLC)z(z5HfFeg@c88$p__Fg9p_AaS6dZ&`Hbp^FRBlx{q=pe zbEg)U8Mh42<Ck&SAEO`LZ?6-nvAp`H^0E4Fvzbc|MZF7%_*uA9@MjO3-&Gy%1R-_> zsaIQNgWnkF{5<U{nHqfVk&(On(z^H>zwJLhethix(f{zZe`hY1ROBV>{m<aHW5=#( z-=x!`H*)kU_A2y+yY@Cr^U<(dwy$6F(6K$&jW@lj+%c<9D&m*;x5rmh{BPtRn;7G9 zTIX6-($g8aY|*<5_zL*zw*I;Pa+1kgoePI9PAfaK&FJ{f$IO!JugCY>Y5utV(f%Lj zf&UB=d&<|kY_C(eyrniMSK4=D6Sv6rU3;2Rojyx<Py4h$aYkpb&hnm`tv|y{KTLkS zbba&sJ>hC|vt@gNqHl@uIZNiNdRH9smQJqwDUy5ec>Ma;HNuS{8$S15KX(1x=?i~8 zcV+Fo-o4%V%(|Myhrj<C2Vb6g_{3`!t|fAjRT~~RwC_A_w{`PJw``3+xyhw#qAeSB zlsPRD7RJfGIe8+%Tc6S6c$nnDb<-cGzj^+V`(b_S8XMoox>|>1?Y!?R#J>D~>{-%p z_IGJr5rTWR9#s7<SM@3Tbe-Owp!lWtmMUzTa$Ae{q{>akh<9qt6AV1!IMuh--YIx} z%js`k&E=qo%46Qqi(jv2efewp5r6K;ig~AQuFcI)@_y2}ZNh2|z15$Tn74YctZMML zkYzi6w4Wm~b3dz%{|b)JS}#B4CNWxCFq`rp>=&<yKlG37!}9j6)tmFpmM%NC%`HML zbZ%m=x5Pf@IhyPXENl&9*B`eRtjPQRV1CD!UcFzpUcK{H{m<au<!UT&N#j35`1hX& zWwp;Pd$#J+(xvBil|0U#KXaCH-mdGN=YQ=fw@g;??kQF8oBFH#w?uuW^MmyQ&iTUA z|J~}1XMPr>E0EHBzUt3~4<_bf_Y|*4ebbyc>(O2DGj9FU_OwsjEj@*gf93jX>u+-X zlHXLZ=$T8Z@sEi&Dq~i?ZPL--AbH~3x;+=SdM@s>Nd3EHb^Ox(#_vThm`d0vnysxb zu(`0xEcbB21cv<crr-IG+zs*ms2?t5KV5e1+_}5TWE!5!2VMQ}ZM%HOS8a*KLaw5V zPfL5K)WwP(a|mU4F7x?6!>ixSk9wbO_&9Aj_nB$WJQhsl))qL<-m}8C;rNB?Pv<17 zZCG{pKf{^7+RB+%f7VajoVf1R7H+`_Y%xvzGS{Xa+aSd%Xcw)#tUA0Wa_^OgX{~Sb zxcPU>oRIj-sBk?pYu2LMni;W7-yZJx)!f|mXIsF=ulc@x@9qazw-|h$s`BLXy)8;t z-YExkxId05-OVv~R@nP1Uyf$ChaX&{cDiT%&KuG3n+=%P@#eXfc<^3cT3FU2@MNCD zfwedEnAJR)Uq)Ko$qKVNUEOp_c9W6u`K%54%J&>?8l+#(dj4pROm+Ek$(jSsJmw7Y z37Hy-G4Iws3r;KS5vY$kH!tE*@0`CE&$$}idj3~%a^IZ(r!oIFuT<@uTU_zr)P`k` z8mIb+t2D&4%9N|{X)oHMFEY`f%p$&9%5C+d_*Oaf58wJLt_k1I+~g{H;Es>Zo82jl zUfaTDJAPe%zHjCO`&;RUH)>_vQ{HwpbpBKC>A~}s=c#v>|8remlHWONf6o?vp^Ey$ z;sUqt-*dOQ_PV;7b+PJ>X=cA8ji;UoT*kGiDMm)Ga{ZjeAFm&^HILr(;Y-!sb(`V@ zZ8m!5T)Q3rEUZ=KfbbNHga;alC*r5=4|}lUZ#=KXmG{5o)#p2&+frFA$6ol+`q9(< zJ$rH=%(e4eFMi~fcIK{ob9i3oUFe<Ulb4%2H|UkbE(vuZ_pLLMXT7kKt-El2njPy^ zlhtS411>+>H}!q6>*Y6#CmjwnGg2~~xS-ARQgn@Bn68Z0Vm@ys??08lZGU_|U?+Lm zK2yFUPJaLH3x5JjKA%yrUbw62#Z)70&7Y4V+22oA&agL-5qv)V`z-OJ{Osq~XPE7p z6BXaSr1f3yme;Grwp?EORWiop!@;7D`M+Z(O88G}-Sm5&k)_=^VZrt_%QdWT-uyLB zWXhtS(YD<W>wERT)<%7Ql(u!n%P>314}FvVS!d==y&ll)e^a;j`9u+|wI$OVXE;jR zPc7=YZ+<G^@{jxK2k+kwe)zoQkMIM2v6s0Y>;11Zd|1}JaclK^fvDJMSMHa=ucwu5 z6O*c2$?bC4Zg#nVzwv3gva_4R&&6pq9|(-9m>u@v$Ij@pL8mfx7hK!&B-<nD=RD1~ zNtv9<avr=>9oUjAb+X^YH`@z-`Tf3O*84X<KeT&X{_=Z%r+AdvcE0(=l{(jxLtUfI zCS4EQIql+tn><>aU3XhnZ%?20@n`$l^_|OGr)=zdslV&m^?%$-i~aO(y{XyzaQ@BJ z$EMe_EVVPZm~W%I%8|pn^XqBvUbQFwEDNKR-f_H3+}>w&bZJDy(-<w|1i5zCzcb(L zDg5mcQFmr@d@u9iY4ejN`Fcg>z03Rhdt$Ci)2CC~&ELE$WiMWBaGm(T!P7>mRG$AI zd)=jY;Xirb?%7|l34JV^#j@jq$;++wLWfuC%`McKc;}wm@z5)(hBI{+OjKmucmBEY zOwqfc+PBu)r~hXV{c+xJ=Z7uZo1P!56T2>!tEjSjoB8FJO`7q)ZP&eFUe(I@_VFz9 zBt}oRYe8S1x*PR;%v-a(;`GB!7vt_${bx96^WswTB=6*hUq85aez6zHxMeeI@4nR! zwPl?y-i~kfFRYpF&o%qI#xcvM^RBswotK!HEOBpV*y=jjAJad)ez<PQe+F(l)3}P$ z0UxrmPe0DJKU^jCa!uU3>adMBYfD$0Oe|4M$&{#_J5AE=xBBc(?mv|e{xjUNejtCu zo1e|T#WdFVNL5e4-4_?6GfK4&7KGeCFd_P|+H%p4z2avK`>oI3df0wa={o<q*Kx8R zqbst%HU3?^<-Jsv*{y$TOP9R5Ubf9lZ2zsO+TP8}Z<K5_5i^^xb;-q}`6WF^AI6*T zZeBI{ZIY(u(Q4PyP2TlC*lx_Q;-5A7+F$>d<?$cm-^?uht$h36wfSr%{}}`$;wrYd zK8?6@SY}`C=0kaJ!#KoL3WCfHCYjH;DcNn1Z@7p3;r!#V?oof|nx60bzKg$SkMDzQ zS&yUZZ@d)NVLSBdfp+DzO=r0lN4raWz7^dh{#2_cqT~D-c{V%Ex(oZ|>(l0nANnU^ zHsQrB@lLU_%c5&PvRF-Y$Vu4Ia{G?%zWF?!N}dI+PYM#l?ke<Dw)fhn?eDRAe#BS* z;qjyTQo8+zs=c$lb8SqvxBFjR+jE_B#ojwczWMpAw_8uuZcOc67NPj}a?R_X*Ob+J zHKRqfRqwBU`}*g6Z=Pd$+|xtqrd3!!V%>hE!bbPeUGCUe=VPyz9bS2Q#a**mJ-ss* zY;S2byzOtgr=WJ0gXpGHjW%!J9e-(m%ly&vH?^4`r2Y48uIGLc%--#B)nu=){(I&u zt4@#H`R>~`CF@kR-<o}5o}rSfgyPL>rg!7}<F|^x$^3BtXrS%0%^!tc2VPy5v*mRx z_mSe4A0un0$(qdHm}z#cD#T2H{Zm|uT+o))b}y$z@*P{h&&Kh?z02QDfABxJzD0hk zc+Vc)r4{Fo-IJa6{
&aM4{^Fy|jb!ncFPwzNrw>a;5fKAWG&3h8VRNZgvD`Qva z<#E5J8S?DerNF12KTW>A{xz3xtA~0mfBN4UUvkZ3xBpnY>QB)Jo?pwBJ~+1h-{s3` zUFUqgJ+rgZqs6vuFP88)y?%Px*?mF`95<zBpQ%%;aDFhq;Y)7tBfZUqg$pYtN6+`$ zbv<v7=~6d+y}YoK$q`fT#ki&P7=)y#CJX8bS6^rTP=9E@m`&-&V~@Y}{fK<DH~Ep- z-iIA37i&UmcBwv{dvxEz!l&-l%X#A>!|uK0-4a;ICj8X%sr$2?xh+-4kJmH(Sbbza z&!57F7GHPoO_OimcFXkX<vlBT@BGT$nC9s=SATkC$wn=sncTj5UxPT6S^c_0l{I3^ z{kQ#Ru$z8YdE3;G`zHOzd&M8VoBcSyYr2&9p?uzoWv_#;d^x>dpy&3{Wyj0EDJ*+- zOLf{awYH=)%Uq|q)zAK(@i6;^K4VS!-$gZyqU$z3;;zm5&*1lA;qGnQFO=Pl^Gy`- z+OWs$;-N{0+A1V|u1F1=m9eRDUy+Uc<KxHX=08-tytTe#AH&tRHL<m|+0_rrcWtZg zp3Oa5V~Mm<yPb24f4=^7-E}Eb7pojIUs>|CUc4sqNAHLK3^A7`2Yz_^y{ELkbJpqC zR@-LgR+i>2vW{9K_A+O8>MYZ2lTv9FgQJCt_J@x2?_WAKWUfYtZ|?p2*Pm_7mu$CL z{jKrux;nl;ZXZLhO<Y!CcReoG|77%Cw}1D(9S+-2VRNHrl5?)kgmbTC4B{2HYi&_T zialxGQX~6eb<~Gt)7QL`<K4e|-n&bjOXi)9*s*cj#3#Lx^SHw|%w78^sc6EMOA^<) zVo%(u)qbSjVN<=hruL(Mf8Ia-TUq-gHeN~=|0eZ!?;NYpIYKVmwN1}#v)s}5vvo7K zzFv$_N?W|<zl={`@^AlV_+~oaW6M1M*7-c;HX6r&+pb%)=2M9Lm+C-E0q6e=Hjn-@ zOv`S48~06|U*fWtL4Exn!^2TQ`@a9%>;M1CkNdIRkHwp61eZs@{Kp;7^~2fqx>Em< zIKhuR^K=DnyR)c1+d272+aZpm%hxoOcFpt9-E(7kXrcDZU^)8_mmlaKvTyBF@Awn? zNT2^@xK!`at>+q7O;lU@kb6hk+^74z&z4=S^ANgcuqcu#=9x#zj_q6rUw<|Kmj0pr zEpO#--<SLBJ}&RfllR|$?a7C4-OGQhdiu3mTH?#@OtE_(-{zKDM?N-Nu`kNEkY%!n z!PBS5!q2GuDE}yaKu++7|3hEti27bR=?i;uSN&*u?f>CVSiy^J=2AMHxs@y9vaWOH zGWBmg{Vg(K+T+u;zaKiQIH-TB|28!)&LjBJ-%Ho7Z`*6Wxo+2++FMO|m&((RS=Ar* z7mKa9ec)I5G3kD8|A+q>#IqNdEl<uaUu!nAw9uw7^Yu#c=<MT@&k4HbKaFk++<Ga! z$I$;yeMi*%xAknT3o`2T`wz^syj*&tZ>hwF37l$I6`C%wT;aWY!Q8z3<2(It3DZs~ zavAU>IX{cz+yCKy|Nh*)-f{mKT5d;w6kD91Uii3QG-H}niEmcvZnc}Dt!s{jZuxDy zW3G_qg(Vwp9L`<(*?01Zyy$<1-2V(s^F>PPB{KGN)Jaz?ciVG8Z_%!6(!V_xyR4M< z7MYgr@4akGfy^<L?US685AEr0Ri4)C6Q<;6*yVL!_jmc$t@|GrZxT_Od+%v}&wPpc z)blJA`A7FD{W!d8uK1Db6SC^$`)+-Ao~gEDzTe!GOZtnZ3jNg8T{^RD^PSx7QyKq0 z>}}fK{c@ho-^KqK(pSFin^^zouD<`ZynNGq!ORIa)?S<W@b>H1GamK5_uYPDTc+-2 z%TG@$mnPcmxBL{z^?4t|kL4@9*T=^HyC!x`>deO<p3@y_rLH}XY(6qgYL9q;XJ+j; zlU=)Z=?e(mJF@X0lS%Y!L$?Ptr62BpTkv;teTKYvMX=Y$^?mv^x{F?Q7O%Sh`j^^d z<$JEnUrs!lTe>3ZIP>473ufl%9_d~tZ+hz3M~lDj-dA%r%-Q>kf9n0%lB$wgv)lgG zC7)NF^!jeM^2gB+%a88o@9+L+@p8YwAIVjj_Pk-29=+2Q4&S~p`{}M}8FeRB_ipml zU32{rTZ3zco=_(DVa~e>#pf&ZAN#iV{n32*zGYgST=QW$DLL6Ix;3^BfBbQ-U9Hx> z_U@gth0ooWISSujy6ULOg|;^JndLeKN1q4_{Q3Q({h>Zr-8p%2{;nG4%%wk`AC&4j z8mPX1+GGDK%RejbXf@4<inj}EE1#s+=NVz$`_>>m)jqN!P~XnxhjaLkw-0pX4+j2t z?HZjOFZ?6j|6+bg>sIgX+l9;Tzqt6a_^g$0nT)IHnfD?S?;Lw8Fr7ntv3zr{hIZDv z?Roc$-u%8_x2sR;q<l%;;kCcL{+Rt;y2tiI_JiqtU*_{>O*d4Z{LuTa)w@e!TZ&bm z-%6EQb1ak5qjOtD&cmF^jH+wz=$C#h{?_~P{&C&p<5uiP`x)+JY?m{=D(_p%?3t-! zs@)OG9slfi*tQLq-aETRm;~O9mQ2l&pJjCXb-&z;eHI_(4`s*S;(C89eEp-l#fQSn z>trs~1X`K@QI<MB;iJjwN5KUvR(Ke=T5b8XBiN|@WZ=)qAN1XS+<#=>^G|+m>1zGH zIKk_SL-rfIGPjzt^lQFV<=HuxDs^*BCPk_q2^ZL-md<zP)G@Cgl8;|rUmvu^GN0T1 z)T>*W%kJ7$?Vh{kcK60#7pwm>aD=zosD3znFkWhp{NLHjD>i*GUAO*`gvoD<#opG% zGTUC7{(W?sZKF=$(XtOJDKT0*dY9h#@tgZdz34vP8nz2xy03hAGf(luxm^vJx2`qn ztgpCr@}|;_b@NosH|+7+<gI;VRnFp`B}<dfo#8bO`(gWW`oo<2%>NlO*7F~H)a_a0 zvWtgzt>5)u!3Sk{b;J$Up8V|;<tuHv_Q;wx@9arOW-3abe`Nla{kPp8m%rWrY$}@n ziB9WZ7WpD-@7cS1_jf+svwyPRg*7$KhQCFZ&DAM#)ZKb=nr7fV_IYaQVbf24dYt(A z$_9y?)cn-I*QtxE>{W06Gkd-Bwx(V5oBs^!Umd?^wf%^GkNuY8O(paDnXX-W_Wf|3 zg2BsK-e+cCx^=1kp8u+jb-EAsdFWjgPIkNCXnf+?!*8pv?r)o?|99qkUHyGh|1OE& zTKoJ+Z_%p{S+mOaCW|iJBII8^!_1FMrR?KoP8H3Wci8UhUFD2d`FGl0z)tOt;)iF8 z7yog{){XjiNjB`*E7`m!OSWx`T4LB~TD^RW`7&)CkB)uWVs2Aq51aXx%-<3=^*;m4 z(;qA451+po{#d=Ugumlf?YEX&ynQ>_whB1s+CDMg;90oJG3VK}3i%SL8ntI)yQVH_ zKRL;gYrUVcT33A7O23$mzXPs$mv7$s>t$^%Z<rpJ)#elS4;IXqU1KL(WBH@~QNP5G zZ1)TQOkPI0Zd+!O&FlA{A>_mNP8-8@$9B0`9kDcwy`ehE$kQhJlHgOLJl#okMwji( zYt(*B{a_sN;p@DGxs~~k^m*?@+>g|~65#jZTceD%o2RGXG3lO_Z{xSu^N2q<e^mZ9 z`?34tdl;APTlhGh?~m!_8oPTkS9{W;?Rg#T7K-0mAgI_LuyJqek?#fFZAULe$az;P zOV>}^FJ7bgL-s@RxB3s~dulAj`aeE@c)u$*b;IV5Em1Mw!Y_I+<H()uKi_{>U*wwg zYZve6s#s_)v9t45c6ow_{Kg-#-OIH~K78)(_4u@V^{r3cc~&n|)3bM<jJtky9$S9o zsoBq?qVAV}t=Hcv_@CjRwoT~LKZYMIKlUHF-xBrw$Y1{BLeW3UK1u2%ZU1oZ_RWQT z*B(6&-rsTSaG~t&oed@{#aXPaJFeDE`n%wt(U0hFRv(`3oqlkA>)ItTuY3y^A72&k z+U=g5slJ0>_U#s3-lJEnuT?xu*ZN>FvF*}<e;NNy{AbvDwf)V`2lpj@@E?_v*!i*Q z$9eB&@2;m?f6ukLcgf<U-afDBShbfCP3pdrG(vmL@-q3~iXZyV&?>+A_#YAbZ_%?K z#y8tkug(bnw(E>R=C1axT%`#9&PSWNGT*#;TX*sKj-6X7nb!Ec`=E14pn2k#JK@v4 zBzGNow9?#l%k16dm)$PaO5eKm`bmvnc$8_uyz|_qXQs_tuK!!=Kf}R<KeivP`|SMq zpW$t9ZsuCO#cazLo)zm(xGsJ<(oshIR*7%YTOGs0vUjc*9M}8GsA9O!iK#C1?@s%C zSyMZMn(7~_zs)P=+C+Z1e(av&hx;9WtXD_f@#egw_a)ZqoaTJ@dGdOpLJso2(_&9N zv-tL8Ls|Xl^L_T5HMt+GAHDDR$MoaXYu|a_ou?*FdhRj*?X+U??M)9=w(an3@>tqd zvBX`YC$u9aEJ*vzyzHIpmt1+5@S<<M;)K>0R+U|z>dX!GQorV~x82M-qEjRKZnF2A zm#P|Dc9~rNIbU~1VVc=o{*@<hd9T0Mp6U3=L$QNnLX6R|E(WgEa%L+eWRf>9ls#I1 z*K7Z6LHDNpFD~)16>%^B&k(h9>)s|!-L*4S!#ix2w6e%PUgw-Jp=#oBr4>;>mLJ-5 zPkQB6j>Q=dwWU4IEbL71vkS72{m!@d^;iBCC%0YvP+IhB)0CwmH?RI^N+`K<zwO9} zf{Jr8g+Gh?v$kuitZ-&1er5Ha;p=Mgx6|Sj`XsizUXd24lk-$E<(Bd8VvU3X!|N}@ z=2>@$%$%~3rFr6ng8I0r?N^^Hn(RJ5oY&%*;gsC{FN%L<c$Az@VB<PIr}UWT>p!oy z?wM?RV7tz5Ij5tMo6H5z+1gKyIx@}dg3b!2lTw?eCe#Jbk@@~BMBuni@zIjipDJ6J z=TGgk466P8J3Mx4YLVwT_qX{6PAs&O|2xZ+eb+8eW#2f}K1;8|3fY=Z?NTZZrzbpr zpR7HBll|@dTXFG%r+*v$_-D`Uoy~gl(m~!z;j@DNTb!S%DVHQf6i5hfUw7?gJo_Js zf`5X4XRA5(ZhqzRyyxAe^;UJJ-<}`$bxuE^FFBLX{ACJb&(qc;EIj4stiq-|{JrJo zuYZg$Szpw8{&tKzRi_$#H@33aOK0u(7FChcZOoE)LL+yjtMKhST37w=RMfSNnZK=n z)Y(RzRhao`hg?k2&)ZygP8sjc>hr5OF8a0nc=pFf{5_wKC#v2FJeZ#=Y@@YqQGmpr zlst9q9qCUkR2qu->;nJJSev73$N3^W+^Rd;F#3j+rNElJx|;@E5epyixm})kZ@<b} z&80!R>(A`}_V`PV%<bi%;|o41ua3&H-{Rh>BP%QA-z6uR^x5rV(_&|7C+kF+Y5mqA zlLXoow3+IzUHYn>{&&;cJw_ML>BS%TylG>Tzk2$&DXAOHZ1(gd^xizlyx(3n_C-|K z){nm<x9{7!ZQs@{KbAhMRE{(|BjmW?2=lTB#V2I?{j+}OvG3UScT>sTm!~U?zN}ZD zuxsi*|7Z0w*Yy$>pPK&N-bF&fRQ>h8^y|O;+b?NHvYg$|vVH?Yeblubm*1(DOtR#9 zA9#%O?WN6$vqBn#&Q3oU{&DTgygc4rwKKZ}42tXn<7bDic)#-NMz15ga+gfI?D1LS z3y;;TYu$eXxhL+J=lOy+aO3VB#)%ua_|N}mSRa+TA(Wf<x!uiQ;X3nn%|4!-cF8ly z;>`1c!h^rcmi&(0`=l_&>ByRud;R50zPyZF=Hq^yWqt9VRc3k%7!Mq?cw=~LQ=ns# z_U>jG>4-$<iLZ~ZO*=EYWM#yh&1zXwuO9hX5_~}2{$Ysgm$j+IGIJE-r@y?nd*$T| zhw@i``2Obc!+gFU*^l=hd;M1K5_e_(p2+2g)u-|lPL|Fz+wQYG<B8<D)FO_9<!P4b zIseMC<N0lr?sMD8RYZrdzIpahZHHutJ7=QW%8GRn$2vG~%Q#Ow5L5E<m*<D7h{=z) zA9J1EbWiW{DZv9jx9D2$zdY;D(~sh9rTgVy*z@i&UK~05N`L6J_v?~{I1W4QI&=KJ zA@ei#b(QC=WUjxyqi(f7V!HOWiT@ccNq(HUMB(MV*!#~a^AF_nyqr+uI_uEMt^+k5 zE1BO_b~>{7Ieb3N%Gk}oz&xqe@OVTG!?m@05+AL|d)o9$+t=^hJ!37ccJq%jLly*_ zV|Zfr%;LD@x$KwgoBlH}*x9|d7k+llWJb=^lKVn2wYzRT%Xl=^b?Y8y4UXLV+Q)km ziw`P%egD<J?LUL)+J7oPHoIN=!ri@7=W8!t<RykpqOKd$?ta>S#=xC>{?giKO8eAA zWfou6KU+85uGVRC)E9fzHGk}R?n{{FG8&4oeNw$O@r1<YMMdi(+zj}*-rk+(zQ3^e z!E0apN5K)drd1a%*?Z>9J7?`ByS-MmD6=bkI(%Pk>(_ej8pjXvN4@|0AHT)=t+Oa) z`)-4~PAAIDlzBK$y-jyoFuBQ5)clXith~jKFBa`fT6yuEqB56dW$5&sFZ=dpzjzo| zw0-%D%E`+n9;(o~b?g13Wv$Dy1iHIDT@NOHvKL(DdE@Xi%VP{r`eqz7JyjF+VcE=w z`-L~%6m5w$xwPtGKw;afRgS-JC^yf~`pVyG)nX<uQWD+0$;<8X<i?3-bQmR%Ka9)& zI6HRB)jf_+Ugnx)%S<w9XzNM5P~cW6^L_2hZLgPX+ju_E^>VpgvUmCZkG4Oy#-8~o zyQlGL^wsJ6_qkPtU$*Cax8`!}C9#)hQsQ1RifASr$r8JL@W6x0>e=dj2HDTNQ@ZK} z;(sobteKvm5^z^=ha~$lBU`Iy``SNDYh3#JlOx-59^stHKJj`fLaQa$>po0j_|H%& zv%0FuU14I}p1F@E+gTfh9}fbp(#*<UU?&pcJYm&7#SfppGE0|MCsn?@{pEGs!jHeg z{cm);J47e$ynJO{MeeSqiN|C9nSLsN>%RQeuj7Yut+>5cCd%KwWx>^^U|(G=qkUwh z0;}ZVW$Zi)=AM%D-%)o}N^S3>^EaA3FPmgfb8Gr_ab{?u&WY^@%MIs<o_b>SAZ3H( zg9&xg#tWAE8RnPmH>sOE{q*;h6aQWO{!G4k*4asOZ$I7Yux6<r?-$Es4(F^N%<BKv zKF>P;=KW(u3_JSW_F4u{oV&)~XI}BGjrG|#zTOpoV0-75$-L4__g_x1oOmk#el1hN zjKvd}&NlpTFz~zokZt|jaNWDx-`sp;)@gGxt@%XlQsFFLt>emh6PA^=sY~)z>7Q+k zpZ;{p<Zoit=l?TIwA(GdB<;`sGmmPl%SGxpu+E#C;xNgc_0XnO1qa^v9(cT1Zl=wo z+U&32efD&Hf2*0dx>aF%(2{8iHOpnbJfHP1|0{oE)z;^4mfhbXw|VWW?YGKiE|0!- z<E2%}l4wDhXZ%{PR6d8a6u0FrSjScs{&xSH+aHt<%xBmmZQgDt>ROwez53j)sYl9# z{;mt#IZfi~+_Q(+!nhWQ9(W>W?A`OhMASS;cz5x%X_tP*#-FG(Q_5Yj<7UKf<x>L7 zr;9OrowBqky#8g~sbdz`PxBaw)XjXf=iAw>OtY6wQ$Mb-h1Fl~#gD(*JG-7Ga;@p= zIgpT3#AbZ(XKP)2n3>(2n@L?qz8^ProtykKBt*Bs+vJ!g-y`Ggynp)Yz1Ei7Xzae( zle{xEvH#MdDYMFy$~MX^=`0sosKQV@p`h^V`gt{_ix20jZ76y<n=Rv}bY_rZ!JTjC z?9XN2TefFw0+Uz&d^h=jyFTi7pDyO>TodaM$9pUGLgeMljGGCQpT!=WGVylN#Q4am zk7UxOo>!Lkc01p0r*dC){~uxD!@Ft}SgzREKFns6N}jsA+M;HwE!*4Qj&J9DjJbc5 zx8C`ZefoRtL!AXBzw-qv%7U(IbDh}4TXlhdo>;=g9sLb{51Vf@xPR<-oqX8-gKs>0 zg;RBBcVzSrt2?K5^f`CmHf}wkSYZ)x^SJcpILY6ke^Nj4tzGiN`C;lNSK0j?Ur&4b zo<6kRq}_X}p0d!ET&YRX3pu!REzj0{JvhTXs%MpZYEb;bpX&uY-L^!>^5p-}n76dB z{=@!5*NVKKo|f;_OUV$O&$0Q|`3-Y=@^Y9PJdVf6X@B;A9Jh3N%+2|#soqZ-Z{C0U z>7EdWPrYD5ZN+h~--o}Q`xrL=5r4}(-qLMMPff+5+fLVgbJ@Nlz~M0~<ITS3^RgfC zcS+5u(wUqkz;kCdd$&59K?=`|g2D!8x#DBm?|$Y+abNkl)AN*2_b0peA7rNW+8_R1 zsK_tc@>$10W)-)`gdKH-O%DsNJYT0h|L^iIcg?;@pACAaGU*dP-yTh4o=x4oPAsqI zot{&A-1JgK*)s{7{0ILT_-{me%9PELeLP(?l4<)*k)C&V4+j3Ru$1X~QlI%Y>hf>n z$Sr*?pC4Z;`Ec?1vykb*@w4S-1pky@n&>s}?tg{{vz)HQUk`rpmpk~1&imzUr#`(> zRJ}f3LfC_;;q)Bd8<H=N)-C^cv}~T*N4@4pbG>})zA5IeInEPsOd&P?OGHXqzLC1# zeGAE?0*3GFPuYrTidDR8c=%rB$@kM5$Cpc-kFWdsoBKDTe=dK^*3+3rXG_-^o|hH6 zc9%V_@}Sas!=|Tu`_*;V+)Fn3w()EIVM{yXisr+!*6dThZnE>%>G)ljbwzVzBo(*K zOzt`LvQXl4<c_2j;ul@Zr~hY=tuuHvpHCHZ5(#g_jXTR`ntnaoHgl!7>Y<~lDkrxI z>+a~hc}*>0>E(6C_jb&0tU4*r|5Y|9F7i*}y8RE?HkxGBGs-`Y+23gsap~V7|3|J* zpZqA*ea$?7zwOo|PriPw`t!JJrMjPB*1u2gFC%@gdYXK5-<T!8W$*IVI(gTR`j5g| zSHJjWvLV{*(^=NNpB=w#TBJHnJ2GXCVS1=yvW5CQ%k^HD?d<>PUY5FcJ#KHe%e+s% z(=KLt+RaFtEWPbWUXW^;7U!)VKcnjKQ}SC?kN%NoRoHZKd3MFqT^DmA7ay$gEzcIp zIiYO5@uW<xw)P|c#vIfB4tusQ{UUL%qBcxE^1Ue|Uq5XUyTQxy$;us5j!it#)BMa~ zIZMxjNBh(){lu1tEG;e9-81#qygM7WD!tuz{8e1%`WL_6&W?K-yyivm)(11y{m+R1 z%`UnhzELqbUEw)<5l^jMO!)Kt4Rt(!ls}}u_5RPm8Q%2AK6P>I!H40MygiysXH~EM z^tTFiusPYZm{B=(!|{0)zw^|~LJJQnU*21@FR{7RQkA{r>iKy7sNmiw{hnQchCjtL z?e7*XVSeK%zc%C8MZPoqbv^bxQlDp6E{Qao{AuFx70I!_dp4<X%PiQ)WmIqfVZHgy z*=Fm?0z7)`g0J7`e;y^c@7;rNW!A$h8H?B#%3OW1{$FnIIotNCtln>I7jND<qF2&A z+t6g%v5dJkH#R;~d#YTOBDkYe^1SKK?%$68F4znFll_tS=t_-ac52xq_nZ|UBo@!Q z)4T4h^-QIE<;&--SaWJm-varIORuW8=^L5ygsaQ+&G-8A`tO=L`5MO`tqWe>WB6ge zeDAf@MrYL)uZxf0x^-8Z*6Ey$je3tu-W^eL3luV*BfI3UUZ4}-l2G4%V@XSupZxP4 z{9R<n{z`n8{-OPHw(~pRehJIm@_J_O+w~<ozVbTyuz9F%^UO=0bip8FIqTDo^{3d( zu3x+_^R=Jfy*@WJeOXjw=4z4Rm$!~hEi5=&wCTu)Ud=qcwGXPNwP$;A3Z7XOCX`Yf z&secK;6wd^^&IjH_bcXmU8#xHK9Ilcl1|=2gQdIMf14h?^7Mky#0j?pZ_e0vU~ymi zk&78sX|1awE1rj3`Eu9mRHEGU#WB8x#ipBLC2m=Uu6wGHtl8P*vO<RS=k=c2D@Ch9 zZmsq`9cy*-=g&I#LyrnSFOQz*9agvUkICQlb<ExmR(!3$<sD=tT+#IE#ch6`7i(9$ za(1ycx)fx(g>DX%y3Kuc9;e)^v`MayjI<y8XJGho`C;4Qk5xZvLN<M1{r%D|ztf~U zU+V4UEwf)QVvdcd-QuLDvg1nbx1(wON;>)Sv!9$=xN!ZPT$}7QKmIcWcOSYn$81-O znON(Zq(}zu%4W8C!36<l6?ROW70EKmB6w<V0mItache8;a&OZ!v5oiIkQ*GdYhvB~ zZ{bHi++GnoZTp#@sRz{}u8AHK+@!VPrmBr?W=KoC$@c62_@5N+2{+l<f3cpqM&|EK z`|MusNAo-DWc;f?JU=lZvV!;B)7@9UOy80%vF`02d%Xppy;*y%3GOysI_o$~QS>g6 z@*`dIO@6#S6c)cZ{Lp!ZKfxd4=012YcJIgGLxPeze=?VyEwyj^x|c6x*JS@~Z8uxO zj|X~s3F^FjuEQ28IJ-u^>Id_0{~wEw*jZlM<M~)$_*J=_!qIK*%QB=gXQ^D;(w*Vb zTVrz9ieruXWwBeDYgzZ6T0Z-kSMp4o?a95rqyK3Buz#fAbTKQQLHY>i!@t(Po34~* ztes}DM%@2W%1-%@x?6XZ1e?f}UFBMGq$_b|EQ9IMXtQ3O9D}cOr@T$g{u%dIf7z@z z`7<6VJj}A5lYihpgV3Lx5A_FRg%8K`)a1-k-QQ>O+M>plMajDRKf@-6C8riHk*nQ$ z<Y3e6711Tr-u)<eTvRpv5U<zchtt2A?fkIOq&C>+L*D!qugc1T8^5uNU6fRcZk#B5 z^Voyw5-~+<{!Fqrs|jE8S|G#BPP{pEf3y2M4spM2^Q1HK>duNW+1}Y8=BOcEzD50X zrcpr7(b77eD+wRnmM_<vzoPz-`O5Rm5$8*nt(m5Dj%j}SE~ZB(R&U*Vktusd#4ca8 zuQLp5_?NA3@7lewSL@uL_Dk~2b{g6H1^+WVl>RaG!~4Tgu2U|aEv{efnavWFbnEr6 zBf6Q(ek}I#$e;J@sm`9ModO)UB-Ll1xyyFU-|_EaJGPptkN$_H=Q<zzXYi4|W6>2G z-_(`aRogpU{Js~)MNLZEy5*;w#**EiRCKxAIUQ9G?_TwEpW27x2lKoCGf3`JJoxZG zgGg4`t=4&KS4U<(kKfz={X@i!dwR3~E=<y$rm4KOGw+fmkKogT5s??S8~%;|`26Vo zM)|Gshvrs4ShwxEoz$g$a#>ZYVk#yd*)?bS<X2^8ejjf-f6GvvRFbxHdv#}WpFxwP z*wr9cBi0{%s%zh5U0&%{rFZMqt-znJKUr5M2FdT;WpA?Oto*Tffi3av_8c{)D}Kly zlvDUoTf3as-e>Es;B~LBpRYJw_{e&(>dusD(x%bfvl9*59$lT$qT}}dra$W+>mSP> z{AcL3`nL9?@$q{0ywcdBbLS&2Chgx6X`?mm*V!-gZ*II98FilZ>Ar>aT<1Q|-aRug z<(Bd^*KqC+&$d5YtN(4$)i3qJKfI$RAKoXkb$8$OLsD<#WOPgaZq3Zm5Bv7+$f=D> z3S(R@7;l*r?X9|{F8s8D{+IV}o`1Oiu>MVN>XIMZAM4KBx`IPrZ{PJb(OX+rUJDQC zd#OKDcUi@MhKhOBUK<oM7a!EMnJjem^vuV$dqwLzOEz9@J$Op@Q;lkVPgLC2!Vi7N zkIYm1aBr<>PgKT7oonAd+%=K9v%sdR^zYPFZLRv8;cXF%*-DE)b6j(XKCJX1Zr423 z58?;nyJsz3y1%`KIkB+h*WTBwZ&WlN-u^a!wX<Hi`?uZMt~;uYOD4~5^YoY|@NrH1 zmLHRUXZ*WXC-NivQGe_1V9yWy?a!tMUskU6)YVJhxZ}pOZ?kHT?(!{O=5M3dYw{s> zwY%2Oi4)%V)+~N-R&&XZ`K#|bKIFCcy{J|lw*S)G_4`hJ6NqDylztP=pZjf_5!>#` z*>`vSOxdoLt)u4~f8$i}+@;!O+wR-HUTFH{&dy-FTOap6Z{5fKN9R(F_HzHfogZeM zj<y&4WA@8$L)sPfiSL!>zUe)>_39$M+4&aY%Wi!$R627rKuUl1x+^u+rK??Q7d(1= zde>!>iW=|bQ7>-IUAHKYf5yobQLkq0R-3PNhvS|3!F=f>dXgM7FW8ybiTpbimEUP% zEt~h)z3H;wwKpnKQ{OH6^m4jHtIq_TUA4<6OmbE^`)$UvUD^e9B{NJ?R(^b2|JdjL z=JN-%=Xc19?6F<XoIE?8=Ve)b;y3nL=N|kFpMD{B?~#v@ol^0eC6fEkeRiG^ujF{N z`>?mTc*}})_qv}ipSUzWWBU6NpTC;BE-e2jeq^n5$ki=xjSpLuw;r8%G57hbU%DoT z^=CiX6L4qG$y}3<UO{f#f2t(hF3Y=P&-rBY-?e*0S69qC{qR3S&zCK+!6B0_9sBIx zXQ_AZ*}IZ0+qXCSYwJurs=~>1*kt1l!QM9C1(v^)kJt;@>HcRp=w>JSBl_|6x4z46 zy!gldBlF>pud>F6X8CR@-1_(I9&NK(z6ZFrP4LWX{m*boJv}6;TZT2hKJ-HpKjYmW zN}s>2_@P_5@Rgie*E`*)`;M)C-McEA50%GO8oA`=@zf=1-79w9ImPH>+_~_$WkN*@ z-s;85Ub=KFYt_n>Z#JhNJb!cdQGKhtjE&)=_}lRj`|I0og-uK>UH6|M^=OH{-X2qv z>)xp=?s?~=2J=o^bgyQmws#?in-Pn0bzSlw@5}o$?*>1z?=ZDztw{ON?6&jDx~Chi zs&D$RC+L3Eo--Hjoap*?P%cGVS))mSJHc&!N!{!ky&w4>zJI&^QNGir{Gny3y?9O1 z_78_DCLQ)|HF<07bH$|OYTl&kTs`mZ%hfhUQT$q(vWq)@dQLczdj8z6_&3rYuOF>S z-QHEB{Gt5lt!a~2x=arXFN}8ydUP+9Uu5;Z7iQO;B=Q&@d@_!Y^;`2w``-BzUn&*W zo?rO?>Ys@p*w#Mc=dTDpHa$-BL+biA(*=1cm-I}HP2X+LxfRmQaVb~tv2Io(gO+p7 z#iP0Tb}#>2c)<EM;)meJ<m2~w>_nq7f0;MFDS6LSvFp}v|7#_+-Vw82{bx8PeDlb} zJBOFMn<%DSN!=l|cgN(@a%s;dh27k{NBPiwq4i(vg){8A^-IrlM4mRhlE3C%P3A(i z$q#pDuG<jrdO3B%-@aGh&loK+H_V+B<~s3Fa#LN!$Nvlm{RKTg9zSX|{q5Z4KMq;1 zjXEpsH|t)m(CLVarAs~L>ldyRu$kS|nD%MWq|7;PiKU6t{$<be{JN_5s;B$1UrST= z^UuFC@!OZzJKUYWoAKY+{4L|hylL_*b!vYsKeji2T`TOh#W(5Nw`}g;&bp_L%B-(b zo%cxC^4@pp+(WZl_?S|(uRp)ux=(O_qiKHkJmC-g-M0__Gx(6aZ(;Gn`ND@~d-rW! zel+c()2zJZg?Z|I*;}?(hM&o9iOzU@X!XV^75^Cy<agF{?NR-0m0j@1|H>c7#jm5- z)>c2x&drb6v~8#NPNgoB%Uj;6pN-h+yy8x*?8TYM)0o9)-0ZT~;aB{-+|Ii0=6snN z_J=p>G#%MHOW*fSQ+w^P_j1XG?P6k4$)|arlx@6yWX-oX+l@S*zTL+aVX-4fscT=b z)``zDdU}g`<FfSga<6W!wYDy)(ysh+TI$K9N&of>i^Ru8WKOde*SU4?lf1mmE%Ww& zhs$zJB@^x%&iZu8Qt0kwKTov`;h>BQmO9Egr<VNX{q6h1|Ka_P{b}`l8HTSqS7rZa z;Cpm+E9aNL_D6P=E!Wtkom-x|^mb;Qi_<ONhM0E^%A1b8Q<xU?+upJ!{-avG;E%M+ zN96=RiXQ)VZF+X$!|b(U&)${yyM6dOcS3tf*>rR7@_d`%RY!6iGA`t#_uh?V-}mo? zobul#Tlr-&<At|$-?a|A{D*OA)~;;F^_E*NJ-PH%Vp(;E>Q1pu?`Bx9z2lVdY0Jdc z@Q9gHYU{5)^!yz)X;b+9+W!pfm;W&ymVT{L^HIESORoKqvimZniWxS6*(Ja7W+pHM zC+8bi=9?Z~rGHB(_LKIXGohhZowjLz`TX$vTW0g_{|rfDKSUqNw`Q;U@%-V|vlA}q z>+JC^eE9low(FIzotJ&v{r(;Ay&tgg(lq90QFqj5Z0t}8jbyj)uhaa|ye`Aev@5qd z)~dgIORsK8<nvuyw@lUh@|ek;Vc(QvHMcj+jMP`^@ohSD*`~SR@2bCDe|SGgACMQ_ zGGF$G6I+*s-LY@?L{heFR{K+FZq>GM#op`F<!@~{{M1!+&Er#jnTKWXrTOcn_V&q5 zUU~ZL(yQ+;N7wvkh`rkCw7AIEtQyqN{GoBa+dkub(=_|d^8F^(wmj!m-)?VSnwh+R z=Vhh7`px%mR?PPfRQb=4w&n97(-W;cIqbg{t@%3jw_U~lhtvAi+w27Y=v-2rcKNW? z+&fjWfA`O>*dEomCw$+mcdsrkHaIC9b;gB5=DgH0vuSg$dq0xzv9bKEQxpATaqb7L zL*BOjNABrgvhkEXw>)9puCz6iMXt>Dy|QlRqP|N>av6_WeNvz9*ec|7QSJUE>zRK{ zKMEhdC-r0FhuQ9)U$f_W*-K<!$}-OUw#xgaYGc>iH+fE`k6!-Vx~-^Y(=mg$J2sm? z|M}0JlXJNruT$Cf_0PATdcE=0<#K=LXZDg6ryqQM-ccjG_{FYo`)ik0>^t|&HgdtX zo!hon&#s8l*6u#OWs*hG6cah$JKbuhXC!wry_2`UCTI6|X`Sewf)DzK{oAdcH`G`^ zl1)A;e!5(Adgr31_s(6~+$F~MXFdq5*zSC`V&QGci4%;xW`rj``OmOrds`iEMfNv_ zD|QBdxOVT^a^Y>xy=(V9vpdu`O*?+nYRSg?FTaOP=v2C)?h@@1$+J*&`m#Si_jT9S z|7YNMJ8kNU+nM|LKQd=se(@{hR@+paUAh-`Z0!zc&OO6zd#HAr?=nG=r)L&uoJ>1^ zD$yWosz&n5-LEeH%&(m{f7(9RLq=8J$w%z-^KULcP``P5*B<dl^V{lpc6@j?`O#gk z$6nX>XfJy0bnn=$de!pd`F2+-OMd^(d^}C!N%zU{jwOrK<n<ftF4S+7Z`l+5VcYX> z6(7Tv+a5jM{_f3}6OS(3yHuMen{@4n&BR;L4wvkf?^2h~jx=OSZQWrm(7Jxz{+#^I zUE2@NDDiK!->Tm5hySDYL95=yKbnpomR_{=n(kN2$g5kcvsY_8s?JFN`7NiJ^$Eu@ zJAt3~yZ$qz#!7$l>Zq80=)MSF_k(<%*H-37_=Qg|k2t*|Yg(Pq#q~*7-mZDpcKLL# zUh98`cX?-wPAyIT{AX*-@%ZAlW1&wLb}SA&<{vWY^=;R(U%6@bPCb3};bO>@<=21R z|MfNfLH-{R?a0gZY4e$C6n=#NHv4h;XkFRF2Xno6-9xJHZ}u!)@MF?1>)jeckNqoJ zw&^L&W7~G%)3?f;*$&4K)${F1{>b+Eu$lXzsFLeZGljRVy%R3<h<kP66Nk1lj9G>` zW*VudkGNg;?T!zuKN$I+A&uAn;q~Ly`){3o_`YMyeDNBSA5Yi6-luq>RG)w1x6mo~ zX6EInho;MCbf&xWM074zz2dfUsyycp_v7=dKB%5O_~GoAUr~1xd?ut>Jkv7ReI-GN z-A&ncb7TDVIh@lIUq2OD?iX{ZYTMP><-7OYwto4^-sEiI<km>Hx9-VN@=O)YUOQ@~ zgD$_%S-!2s_@E8r&Cqu4ZDwgXUji097rmbGpFzk@yT<NA*ya!G56@G)T9V5gv1`-r zD_^!vi<Vfr^RoPz%@g+p+88^Wk(8CQG~8mCaY$q3!~C8)`wt<TPcE_D+}(QTP=!$N zj^ep@EKbVK;d?CkeCoBdO&^zST$R1+l83&jdgScW6AvkC#05(Bd1!Ioo%4B~_S-N| zv$uh2`-2~6B&@ucdttKA$?l*_Tb$Kqt1ewSrA%X;tXJ)vH7yUCxSl^d_h!ZM!aiT^ z+gBz>FbD4FIr-GHrBcL<&v0Y$0rfsM<GAG?PU&<1@IJCF>fh3Ay(Qls&ScCuGI95u zcbzvY6rM|}OV4I!7kynOXLRLD_wTj#2g(fHAHM!^=uYPO<g_!Jm>6e?XDns>v%&e( zYQ=+x=4>ra+ECQ8J~^`BNuk)RX?y*9ZJg6rW<`l~>g>x~v|!41#~n?{H_psp^?IA< zR`pmxX7V%h6FLvJ^?v29W=oZe$*B3-o+r?BdR~#O=W!nGH}(QGnisB|UjD;L`{bM3 zs=lZAEkhf_f|fM+9d7(Q_l%o|Y}Sv@-#jkfK78$0+vG<TPp0nl_;*T1s9@EagejE~ z%!^&;H2G(JdGSa@Z2980Q(Bi}*2+uWIbB|9?Dt)4^V#_Z4oR#LatmetGl>6|tvsN< zeQ`y##}&QAscRR`lhpHinw%`rv#OO>nt4awv3Cx~eUfK=>vjI-`!T-Ngyo~|sT=pB z76_d!wx8!e&F)7RGsAXkx4LBGiP!t4{Ab|*;eCAb&08<bHr(xXd*#}9>X1b2y-cq6 z9txdep6X=|9va;CA6CkQT{V_4U94?zAZ$uVQlHv!ziYEBj((Of=u(}rF_n*zMeV`S zwkigWKdXaoAKtb9=8-b7rjqhZ`>ItvDat)843iFTe7>~aNq&?3AL)a?6KhJc?WO*d zRNJ@8$?v%JbnAxiQF}g4;{5bwN34(H^{LgJk5g?-WLN)^`@#O7frafqLsRA-$-aA^ zkN<L8{n0+O&8WZdk@aEOISrF;<eD9bzGc<(Kr-|;Lu#kwdd|nUCU4q#w&7u=W^q{A zAOFXTALh6Hv&@d?`zKwo`rxc-oq09NG8;3c%vQZkwEcVUTGw0WPWdygK1+OFN^iUu zp*6w(&aLMy{~0pR_s{3iw^9A@-1X9;9amy?pG|uf>m-@`q%E|(&pUn7<ke~y4kfK= zu@Vc~`S1BZsXr2b=ltW(xb}<xkUYbW{KH~pS;|ei<~~~+0~t?nx9G4{zP>)|`wE-j zrwUEx96OE)F!t0M27mo|>(274&isCy8TCxR-rhfMtA5<-?DdX1k&11Po_TMQ%C+|1 zv2T-c$Dd2dlPnHPoK9)K+5h0&e}-v$UO!~2iThxF@UOY+NAZT5{Osyf)dNcMJlQ#X zKW8O4{+3jJ|DQpqp{h9kMSt$2(@T_3?<`<nyxr^m){mk88M1e>|KZ(#Y+u+mZ%(z{ zyZ_bIrEiq^Cb;$G{pbG~82&Su_v$-++<N>-Z1Rz+@9n0mCDzweE_f|yws2`&)a3N^ zq-~Qt?v-$EQ9c&AiH%wFeZ0fXiuDIS*WIwPT@|xv{ts7uUFRcDl>JrjlrtHeI*=#m za%BB7i}&#_H2xV)6_`EqJ5TZc`Ojy4+%NHC^26ypGMW1{FMj#`HF)Zz=nN^3+rK~V zR@8dDLgBYepQd-)-c5!6OZRivwOoG0vHXwy@qdherbXG$Y|JhDVR0*R;_-hr{PMl| z%fB_B(4F;2?UliYInQ6M)BZJm!;kb2@kb7Bc`xxp`0(dD2M(rwE;(JG5@fEjvL$|+ zt74l~O5c_3{~0#Lzo}e3_xgOkFDVwUS@JpM{dKSH^A>z~*1LME;H$$u8h>}#ANUt1 z`hJ0K!L^UO7ESW<2)FpP@?YuVXLpu#d~!I@@3gl6O8A%V+TR>?$F{#JtB8sYEpQb3 z{@uf%I#=)Tmvv768UAq||E+P)GTZdp8s_r8A9nngJZ|k-`J=Gg-&248KgR2F`iE>U z$Ls%4|9pDKbbG_|F#@%<n}ci*pXNUkVrG0N{N3O0e}uk2uzfuJ(x2dUx8)8_yA=4J zVbPWAysQ2*9MrJUE|jiM{^Kx{&yV%ooVDloPdED4v@@RJ@uF}3&-$hwwNU@IpRG>j zo_9fF>CH(D%rZ}A9qF7G9jUwS{274{?r~Lhp}%!k|7SR;WD{v6|E6B<We{J1`o<mI zU&E_DosIv;srlQ<S(;Zq?!(*XGWol9w%gsP;P{(0oijOckG*1j-b2+@EB4EOvY(sZ z6jj!o`tkf@(Zg<`>;6P0*`=k0F}rUnla82RZoJ*`T;UuB_5;7%cGiB_e{?=qjrjv! zYrm%Rp;t^L)H*M=PnY?1X5z*cWv!+aOL(5}XdJEglT!a9IQiR=5B0q@@sF~zeT4(s zk5tXwwup7xYGH#<xr$pA)?7T^{Ch&xW4W&%u6Nl#XxqPi>9UOv^aULsRO+XHIJeR` zrnc|bDHpNg`&(Zd{QZ%ZQ1*e{()5=&f1=jI*XDuNCi^+I{+h>@9yT?qY`N+8#fSe1 zSIj?H&tWI`C-+D5(#XTPa;=Ya(}Q-Z`rVY{=1`5jVR`(+oaFsgf6o2z|Ifgx^J9PV zN9VYYTc5X>{AUpId~|I4%r!di&Q7>|w#Pf;5NDJo&+X&!ChH^w=lkDTFZZ9}pxJ+h z+_(A<>W`e~jQV48UFpi6=yfr7T%X)JYWBPG7As$wP1pV1Jx$W{48kSWpH}?O!1Dg@ zzJ1cCtE*R3FdxnMWRmmb#ilbUp}IG7V;x)%^(0^0_e-d`bxF+=gHKcD?wT`i@5g2D zzs<d3XZ+((txTrbKKT#J+aF|Ss)_eLyOkv#o);8xz=`jX1mpavRZ>5UqW6l{#1@yb z?r{=ca>{%q*CDrw6}JwQ%l7+xSK9BlKm9+$&FshittI{4Rr)=DY}dY=E~kF!VMf}% z%lQiWN+#z*OfD>YJdHWy_kzX-!+5n<_3VF=?rGFIz4!j)GOfvW`-NSKMhP1Z29)a= z@XLOV4xW=>`QXWHPkG}S(=FTMyQI9%uzZ-A#uTEUE+}N4f6G13pvdD_pZ24B?aQ1W zvCTWC(&c%pEO)u|26vwiRsUjFzql)WAZmH*pJ>tZQzZ?TtP+hi7fZd>QvCDD^%*~Q zAC|hdvFf{cV^qved#lOQ6a@GRDqnY9GOe##GH;sUJg%(SF}voAMZEkTlx_aoa5A%T z?iay{FArLNeH-ugM}I^0>Xv)=_e9T?n7~$KzcqK$;mcXQH=phKSI=_)U~&BnmCy=_ zWSRHcJx@L!cxRpPXz%QY>s#CwuRi>3wy|a3Yfr<xxX`|Z97&u{YG$6ZmaAAF`6#Gu z`SHgFXCJ@x-}uY_x5JsWAFlhKm$?2#?HB8n1<Ie_zK?gPiJh17cfyusGb7`?Un}fX zSoL#PQ?l*P^KxGw?3ewL{nr1$w6K6Z6Hm;#H(61O@uB`B3+v{plqv!3n|9W7qyI^! zyR=<d;<`0g%{<-rhy1OA6^ABSzMoVbej;si_d=1~^XnUy{axfM@b9v(<qz-jT(+;D zwyss&{#f$v>Ray*zP|it*8bn&(Z|`}EPwozd*^NUy($}I_zigK?DnpD|JH7M|A(UD zrH4f>>n&VtA+%dTC2QIlgV2cQ1rosrU--KJ4mzw<cRJ2^+xE^GC(~7g5*uz!x}!f+ zK}Ghckw+Y-O=0}B)ZUee{~3<|XE-rGHdZgPs($9t3U|lLi~ln;<^L#mo5#9q>+TC% zN-|Oy+CINq+stIZ_;b$R?5{@NVtTHtI(kx;8QzfLzYzXZZ}OwLcK5%DUC4c#`!2oh z+V#U?jSo7`NM8GOyX<PeZbLZB#Gc2K<JZp5H5cBKu_LsIuh#wRdh3o%&vQZb=j|`N zI{j2sF7&3*ElK4*i<#v;Z@){vkL8XzbXil2Be3zSXsi6G18oP6zYbb$sPIIH&vE_4 z)vmVwVMZ@XTqilru4>-h?7TZ=l3%6il$1#lQy4rYL{pbb7x_PraGGT@d6RaQ*dezw zEe7f~4TbR*|1RxXyT9E|_{ZcUMsEUB7rinv-gt|_JCpOIh3xAW-OF<yFwePuynegw z8uR;``j3Rnw%2brWsfn|yfeX=e}|*O1S3lx3xy`f@1IsI595k9+i!gGn0ea8&)46! zC|tBpjy2;x#>TO}My1PpzRs%H+lB`jrb;+ZetBa3310Vay;t^W{z?9@Wy6aL8MEU0 zSJ{5uv+<<vX^R${)c*`um!AskWYDxcZX+1KcK-JE_AP6<znNd&(%m+3vip@9Yo21Z zOm)}KLF_4$-0s92JF_#Xh>t(&Pr&@c{~366O>Gr**tT6*v@6!Y%=(`4r1w&rtU9|z zAN*;SWROYz#eaC)w0N~$=i(RsOcz_J<CA;im;bl*AD<u27k&|?-u{PkO;px(fmiv3 zg`z9(f2;7xS-MmqQDQgamWR9M6l6b`-@~TsA9Y11ajN3kwUhQtvJ442ce_*BB6dl7 z*O&hcf|+r=7xfi(f3Ur_yf9bOW0r1`cCksy#8ap9oCMD=dr+zJMK1jDOOtHtxmn-C zw~Md(&yeP?Tzy!jOC&k_XYPc$oVN+?wpHPGFZ@$CkCwM*+x6Yv&qO<>#`U5e$Ib1B zKQ%O42BkI#lo#1Oc$a;=J}Woi@ZY7&g#R<hn^`&WaWZi4?%ddTUQMy5e7(<w{QT4( z8<oy=B{Vy4<MN)G5Eu4Oc80Qc6Z7-NqZRpYHFc(M{xQ>Q!>4e^Mv0XNIZZZA-fi(x z|MdNJ6|d*XnNM39@Yycl!)cH7jz3G|Dvd1FJNfPXeTuZdW`EPZy6D6AmUrut1UmD+ zc6z3%mnrwDNV_?GQ=jw6w=TLOkEQR@u|$<3ukS*72VPxLRBbD3oO)jJmG)QTZ#oyY z*b7vMX|n8ow&Ci!YoVUZ2|GQ7i&o|c^j>%{Z^w!=Pb;kD{NjE094dOV|HLot2hWz5 zE~`6#UZy<AyRdX+_Vm>zE7lYju88&FWX`ai(eqV(xug5BU#0Kc_a|hZ<$8K8a!sA= z!Mq#N%vvvBPH>vs6uR-s=g56R*Vb&YznP^keAc4x7B{ck>zd|_W51{KcqjMGnWuf@ zpFzg94|QkDf4MNKwmm*vRl3;hjkwUke6f%Q$Ga1(y8is`yd8JyKf}5HOP^vx{hjCi zU1Y!I$&boKne!ayW$tl*xTU1GfjMn)zM^GK%}yVl&*yyeY650Gsmc4{HZ4nb;dRsM zWdRR89G9M#tda8wR*)%I2oL^PWRaKp;p&_V^Y2y6_lgm7lixLU={d&pa&c8<Yw9JJ zO*MZj`Qd@D(CpTYA4Ohjt4RhXZFT<45G_4Nh+Xn+ykzUV&gdoo86@WIxz@g@qBwNR zj=w8RU(1`!)ZL@F#O&-Erq1>6XZ*Qw%kzen%-6@w@hO>W(hfZ-JMryU_TzrW4z<6_ zZ8F|{JSie4@!?cHOYYroy^&o{9#7mMQ+@r$H$z{^p!s(1-_7~p9`&>5rK-vF)St>% z4_>L6HEW${sPxJpqk6d=YhPE|m+W}u@Z3J?nH=ZU{nb-tgbc5(KUrb&R&=W*vz0Tq zSEzXL+^(|?)*G1_%1s}smM5>BZE#O)_Nj^O?2^aj_FVm;zGW`=(bLV>Z|&3lk@-9O z57Up$k8bO?{o;MLc-fEc5bNAErn!3WPK8fQ&Wtjx6gU={?3VnQr*Yz}-)j1I99BI^ zbvJ#HR3N(H)04Gg^Jf~Ylw5sq((Ciq71@E_4)c<uPY9nm=`;0l!I$#^_FjMXeH1^O ze~UZfN8{?7KctUro256~YWajtPR~4*X=Z)?TVvXEm=u+a#Glyw?!V|S`s%w>c<Z{a zD;ECtDciWGuVKOyeR~at<{uN-i?km^&+n?!|7hMZvqtmb){kuSP3KIy@65R~^I@OP znpKPLNrpK;t^52`N0P5x&p7T|!1Gg2rr)caar#YN#UIP7@4u`UJjvN~J$7rX+a<&5 zviG_-w_IL#bH-t7uLGv1c$Yr)^z;)?RBg}xsD5;oQH5Bp)ayf=URh23`q;RlPqyr# z?!0riDqA>axs=UMJ$2-m{1)j}HQ)1XfkGU1s*%}sydUT7e5C7qxH!Y$)sk0XLU9_6 z37ck~ndmoBlWVn7^Xb+DFIY?eGjQz@{Ahi69>0H&ox~-*_qw@xXRd$dNUFB{@-*ag zb7$z|DJRO0pR$_soJCXg*BtGgs%AB5O1f`%E`1o^E>x5K@oL}7#V^i%$odf3@jfmi zcj?w%!KsO28;*;Z8~KzSm*|}?#IQsx$$dfQ;v;g(8$Q+_(yfo%^J(6{b0*ujZn0Xr zr~H@h<3kr5bgsVB{deW!-#OlCCx!Epjm|Ly-^ti+C-PzXL0`^)A{Fid`*MRLuBz_4 zwrs!Iq?g*tYs_Zl?!OtHb5T-q*`$Odc3%D|D-NtTf3W>OLyP+PkE+|I=cbn~t(|ly zW0KBy&4M@aZ$8~#HM@4v#mgmn<r0#QC%Vkgjx$+(I{bFxan^;e;y2BzNUG<3{g3a* z?b_^z+b(XoeR@C3kBx!PYuWz2@Y;NHOMs10R+)LvO|ehfo;-)#`K4_<w&az{3;w(O zkN3m*H(&lU2z=Sk`9u83uCr6j+K>DT?UC~D$jg<BesM1%a!KR5WjbrWFWOVDpWv1$ z`DfmLhKJXWMLfD}<CVN;<K;h|GRIwgy&~7<JPFxR;gQ2A?KYXmSL@hQdA*QrjK7r+ z{%7DU$#08O*?G;5=k@msF&zuSc22Tbw`Av}hb-I8ded_zF}ymF94XmZa#NvHf7_m% zTr0u#GOqreIe)f`>IkoRpZu&|;1AzL8&$Ej59K?`%EE5#>##doke=S49hu)*c3!0} zCG}2{%^~C6>g=Kq_p_C1e4Xod==0HEvEP=iyczw{N@m(dxApl;UwqKAx_kDilG`W8 zg6@o@nHNlgXU=na9l!dX@elKl;>WC>O?>=b=8UPW{E_l--MZU}`^snR32e%JEN~)4 zda57?w}$ohlu340KNvrrI{q!p&a(fIlz8Ws*syoMp4qzPD(1eE^A!$leKYIQyGw7p zB|dHCXgy%y{H@inC9`a`c6Djty?Zhj%6Ehu_;fb%&d2w{e@d_YQ>$V7=(qCW>%#KY zKl}rBbEhXOXKW7(zn|6S-B_wR*(<e4U_}H|(BqV(jO(X8`2|1jf4IGUk5!HQ!}sl0 zu}AMUKlbJJ`{<R;;90!t?!l^0?bE(E#c2epg-ue;4E(UXX!Vo%>-T5HcUrMNe{=uA ze7+w-y2+m1ewS`#ci05yW{P*o@usDShnWXQs07@(ec)4GQ>2pTxA}T*Y3J&+F4kl| z%8vDR-~Hiy$C{Ga`b;KeyUH5#SGwojYCZGJegD4g+d4(!buJ5BPZ2XP5E3w-sol@o z_^kO!*w%lamrHW&R^Rx`|HH<0HL4%{y?z8g%KmHZe?|9ZPQpjQJ0^dvOm`TnOfOsg z*_)x|XAkq5h5J5>>V-eIm%jJo`nQ6Q`rZ3vD)Quov+I<v<kWA`|Jp0`>v+KBMLYL- zoZa)-=zK!=)*^<Uzt>teCaqSfN<Ws*T@!z`l%M(TkMbkG%;tRStX%H<Fn>eEG>a!4 z$8A2G_;vWe<wMPdLAlRsQoJP{o4@Yc_-OwRRleO~{f}hr;>BM{nXPBoG287&b<Qpk ztL*4gDwF=b_L*dDarn;pZElwiOy`jEsJWmL_%w0Dq=l8&`kvQcd+EjL_@d6`$MnbS z{rNhJuGlGLeV;B6*FD>N$~E<^mvhy&ZEcX5JySIPZP=$pg4#lFb|?Rw(NJh-{^Q;8 zBldh-eA!*=?GNoTos+#f<9oK){8ZgLD+?}d*)FKfDZ%NJRK(NKYTjoY@B2sQ@6tN; zAKSyOnEJQd8MPle^<C@Qt+|(ORc?>Vy*W23=%Yl)-c6OpOI#;sPva_BWAmRO{)3D> z^ZrcNAG`CHx+XrT(5t^#de+~kHtN{NwU3*!H?nS<a&b#f3Y$WJrcdhj2hU%As90rp z(=Y3++TWVJ)zQHxj<{-j>DTh_wG;l&aL~yn`mt>hKUa;;kJQ?a!9i9oR=r2Bw<h)3 zMBKW$X0mVjw;f?-9u3MRlU8k%Y!RGOd|&cUik<1pX;$~U7F}IBO;^b_*zLo!&V<cz z&ZhTNuISnHnl6dB<XT-e&3h%MYmd<c?pYuIGu#q>IR6O0i032!Tl*i*@0on;R(w~< z@7w!@egu2g2K#UM7&l?frI+6rqBx#RanDzFH<;uZUG+?~<FvwhyC0Ju>i3kzsa}8j zQN<wQN4`tj!9|-doGBMucE~#-RB?;Kmfl=87rk{UJHn+?gm~B0cqA76+OuiV+k0p4 zegAA#Sh1>0Y~J!Uf7t)7+Q;!j_z`>SpTtML*?|}8q_gKqZt^YmxwJ;-YwM0^^Lh7< zoe#SF*7eRdf0fUYi*|HOyAolLF^!{J?y<{{-iPZ&Jy+I<Ua6D2mnEKl`0b<I;6rhm z|IS`1xhs9xY<fYjOXl`4GqYby|6KAcRk>#9#BlFC_mPuw?6Yg6|4!VxzPpb3-;odL zeI?!Z+tcGWT~}`p>)hh~y1Lfrk^T0mZE4xlcg;Jo%RR@Z*f8Qu;qn<O@{6kcwkLo5 zeymRGqxhTGvim!AO{_agcy+Qauo!QfZ+hsq`pq~;<2xr!?)iMwWK*-4oaeaq;}(se zNmDt#`+j|yH!rtl;`Ql?d-wHw%Zq3JXAm=8y<fKCKf}X?mrLaZ{}^1}cXsi8v*|_m ze8Q#nWJ|@z?ol{jto7FLmWr?F=JWeB6*yb_H~q-{?eXu>Kbaq;3o5FEeps%&dFMvv zwr!to_e*45+ZTM4Yq9&cinmWZ$|m;f#!fZdV#ut1uRgQZ`&;*q`HyO=kCj~)tdaO= zI=|z~dT!t11-g5;7~JrFTA#XY(e?1+GfEq-{JWf+rxfxjb!y876Na;KuOG?Zn*5K; z@x$WyeLtcfp7<wlc6mkCqgbtL-uF3UeTy#K+}UI{&%<<D=TohQ-ELmSDJvDaUbIZz zd*c4Gw>jHyzRT`B@>^`N{%8CD*M2PjHsfRboA`(N;+ew#PHy+kesDM0=yjD}*V^nw z5wX*%BU3gsy^>Ti+aBnmI`h<)Q=4Xdf6x+F{Ahl!o$0~y<^Rsrv-}BM9{1{3?b5AJ zuT;ryiTWbGUF;(3=6|>MOg}O0+9!^iEe*ax3sQs@H#Jl|o4)do;Pk_{RJZqht(E!{ zcj8yewOL|Yb2&C&S^D=*)2)L`=UuWcpBq$j=U`9oe+Fgq8N&Yrv+L!&S9I&ktnd8e zs{19obUAlr@>RCE`7CxRU7LRHOUZC)(r$RmbHi}qp*H!h)IC@B9xcyXAAR?q`mJXX zJg)4&e^~rlEoskV6QBRl*z58?(TdLprf>VFeR(T~;-30#Yp*S5y|Z1uic_uP!oiMH z$MZgQB)@1_5%o=5U-<5i;KyOxe>+u3AJ>}oye)nEWs@z}l5Q7PO@FzmHZUn7?B2~Y zGdemZschd7t}S+Vl3e!V?}znye*}BR_k{UA+%J?-wQ;)Vyj%Zn2kzM3`iy7xfjx$6 zwtJbYqzG)7=jA0X`l-EXPwblbi2n?Sv@=)mb5_L1?T|8C{7Czv@~!B~doh=s3l4Mg zq)ai|sc<weW%g9};BDIaHScHU{byKR=N6Kx=|0z%Z}B7bqx;1w?jH%;6@Qdh+vDT1 z#mh4`Rpfh3`ngu_)S<IWlVz_2-_pr5^>)v^CVjhqi@-W>&IrBx=|9*%W<NUL_GNCm z_utu1_kZ}$(5?SvZQ|G2E8gnn>8vriac6enviF%w`IM42`714!bW?VcoVYLVO0JFR z!XN!UAI#foR{vBp)VW@8BPQ<ly%Q}*&Mv#N#o#|fhNH>EQ@Oqy`p@=gYaG^Czt~Q; zLi@;nhRt*TGqnD*p7C~F;<co`yDlpKyRf<X=lV5y)6RzFT6sL_PZ9Q5ZDTCPmEyEU zl`H#cag43St>)e-rN6gwntknj`0bv|NB4fy-TP&-r4GF`4|q8-vr1$|r|sXncYBXd zUw-?rw7bBZ!__+TGk4xPoxM>kehTmW_4b^0ray`g$BS*z7tfCWFeU5Sti8{cW>+qW zIlL?@&Uf!0BhSCPO05gF8*y*vTK2%QR7hZjS&se8IH~<VdLPBNS55xo{n2&n(SN=5 z)oha&yxbRicI*7P)vAC0T;G>jzsdR8sTAciyv52Mq5e~D{7w9!{$cfzc!@o>YqIPN zFPTQ47q0P$<`=lTY;M(~Tz#iaR|KVQefGKhWP8Y#E7#6Fdzc@USeUNt`n!M1iVvHk z;%-)p=bHR1*}iPni!HyuEVfuyW&TGb`H_Enjp3T88qpsUA8OxqkC=DW#&u~-=A^yz z);|1kvd`90zGl_#cgnrrx7F-!pK>bx<b>8||M+U6er*1*KB)h|J*6M1>5u9~?!1s{ zTev*tRn?PUxhpqZ?Z1^X>9yFe?rn=E+)>>b^g3_Dnl?{yLB+L?^jq#(e`xR4TX)&# z!d1P+6<bcf=5DUm`BgBX<68E~S(?iO7H6jCo^wCbJtsW)!}a6;86@`cR_wd}NNsY~ z_w8anZQcc+<hQ!>-)-&8JjN%|a5HeL<Ad<c6AElUeGTHCziRK>x^>^*e-bII`y7=1 z)ctM!Z|%BE?;my61m}OWkN(k~b!&Gfe|C8}>)o{{FD3BjuW<cVnX^{!?PB9fjkg(_ zRemoCOQ}74e}B?zUhnAZi+<GpcBz;h`6FkSS+B_Axais4v(F2@&b2zsceAu|{g>a7 z4|<)Vqu1`{+;g=}K~!aZegBbt+S@O^$uaHU<|?~tzSgbEO&ex%=rNsH(Y>P~KJlPJ z${em2Ho}kiCGJ&hySaxkzvkAj)w<iim9E&a`$%&#N9*>P>Ix4g?37!)wyt$<YSEFW z=h+ucch9%qov&|XaQW%nYsV}9Gq864@co@o6ZCh2$?f%x;#F#^A4+qS>IQw)S)VpL zYTM;Cc>?~Xd*?LHyml*4XS;8HfsC`wwzru|T9*G@>-2xz|2FeSdvzxNvA^y|=4o{M zZJF%9eWLn~G_$iCw(j<}xh$Nob~IUP?iz=rC5`>>UO#;Q#`Sl4MR!ELlyhS8gZyog zrxV^*7Jp;=Eqg_q<)ZEq`^<@95eGgqvy|CPp66b^95gLcpI)nEvFykB$01V}G8<%0 zo8Y#J%`VXP!Nh)<^wTWY=E*-5H9DhpIIL;vw#@8x-}8TMv}_d*J7=_g;=khQQqz0n z9qsrpCtX`(61+mz`L~_>wCv=H<WIAnF223RFUc-)vh+>AYdQ=}@w}%$3Lm|v(0}M3 zleyKk#l|Au8oB%K+c_R)%+HqgKkolE{oejdM(4k2{%2_NtB}{UKfKys(tAQ==}xsP zkJ8w!dpC=2d)@qRJ=4Cq7wqhQ1V7w2Z5RK6^UM(yd6x{gnQYjy?egOQb{VI}jX$ox zoU+lhyho?<y++H{$^Z6!{vq{4_&)>7jQ<QxEB;h$>iW-cct2a|!c67X=)GBobcJrq z{5f}P>d_^?trDl*-C*}3&-mBw5BLA^uKl}e{UY!G4E_7eK8PQ_ohhTtp?1ae<(vji zu8rIhR~!Dxn>pTZJX-H(9xrRB|6|dE)78Zy99ArMl_$U4`77M@@qCGj??>kGd{|N^ zwN3o{E#9+F%F7OABu?^p*HWbN@>{2p`>hifcku7wUCttPE3~k;xHz(sr6448e`~$> z`CnK5Jo+K~pMmXq-GMp|kFWmSb@m_a`+9Dt2;8*Y)}KD-xu)uxwAY#6=X^ZAwr+Zb z^FL0<{|qe6AL{1w%@#j6S33L?`)Re!s>hb=?-t)V@soe?wcYVdu~`#eY;<1Xmb>(% zE~moJ9KXmSPKk4c&0SxsB_qtDC&qQHEG@78HKV#}Vp-3uFPA^rtp6uF^FISi{gwFB zyMFLLl;C_^Bc>!K|3Tw~?cVJ6AC3PRSgQUrGzC`7K0MtlPT)uAa@Q3ncDl5E`*n4u z<LNd2GA~?OYA;UUd~B=z+B!&HCT)-Q<LSq2vmcgi%wGO-!|gNEf2CYHy4QJ+`NTVi zR;0!oMjTY()iW^OYxOzk<>#;L9c#_shfMyOesKH#56<g<sO)byxqbCV>x28E8RgQ> zkxS&%ua(EHPA~9ywySowAM>=I1+^7x_up*(X7jhNKDjpOHK^YC-dcBZt^YoYueC|9 zeB(p5Z>wGY=0aS|(}nF?oE}YV%DR(7OYe6^{oA|Z{F*GIE!T~=Mc(dXcV#FLtzxhc zZT-){xo+9&^OmywUe_d8MOUubSgNu!UG4hH?~XrOb+4?|nJlJ0sW@ueKQrOP=I32M zn!P^G^188ePuKZ>yV;fhGsuLk_q}9#pX-!i;iJ1|O7(lDr?bCOuvoiylDoNb){9^B z?jLO_IIeKrG5t{y+k^iMGuO|5WB*XBF8O2Kq*w0W*G>O<`+Dt?%v&-~D&y2H&XNCB zsr{c}q0%)YkC}&ezAcMWx_5BuzD2t=O!w>Y8_s5aeYDbV=EK`=F}Jg=N*1p_SuSor zn`?ITWz!#Pd8(?9TTT4WptG#^Kf@O>)A?FAo=njT`ndgwxyL;V>Bi&N_SAb`fB!Ys z(XHa{InC?$_&@5cFMT>Y^5eWy{;#yRU;M*ZyU0x{LWTF>$uL>Ft(Uo8ab4p$y!3qb z^rPh;xAm`!_e=S#lxz6CG*~QcyXA|zu#&GYV;MhA$^ESS&+=dBlc*l^;0mvAXB~Ap z``+1Ec``HiAN3SH=d;;eQG-KvU;C^F-<H;f8QHbOOY+pdKXZBZv56~xdN6M*@~wGv zJv_sJ|6z!p{(6CTP6h6JO+!na{+*9Kzhe5a3C|1aYJ2Vf32*IhEnusj^;7d}^@~16 z`?YSRXC0cnh5by0ji+(yEx%F!VMD@1gENeFbN9Y{{rI%N^4x=WU-lILx_(suQLdw< z%KRf&cpv@V^RT<F<j#o*)7<mh7yoG5_+`c?`}0}*`Hxf-|2`gPZ}r3apD_2ih36l7 z-Ltt8Qgod83jgyik%I~G#b4O?I}O_pPVP_s&+uyP3Olu&!>Wg?9#|fKk^Q;ikK^t* z&%c^UKYGihnfUXa?APjN3fB7F^}n?A$CU59+dOaXow@nXC#{f=dXrZ+%3g{-dH?&y zV~77U$OWIRD|G*8<y3ULQTDLlU*5R(M{Cc-zdBtlbGcL~D$D!e>4o2?EnHS(wLkyM zTXxSG+k;hmH~(j_czveE_k;7d<d3DT$0k2|-@Z@cO76Rhi)W@@T3c6|*krDgb-3@r zlTx;QbsK){H$9UO^Y`fkx%u-&m)WUR&aatYBmZx!U5WncYq9?QU+@1=dj3b)-g(BI z?0HN(=DS~woc`8(Rs3NaNeflAz66i{#hNmD5+#;DsvqgU5&h4=^5KX4Z>OyLyf*3| z-uqlhygcvx>AhEdX7yg!5#qget<Je}ogxFn4`vgOJI1e*7x+^!Jx;poo4aaBck7N6 z9S^h5Q=6XKZeUhv|F`q{lk(&5`7350mKQ6H&HB1*lJ)OpJGSnsb6L!FySzkK&Pnh( zgWT84(=Sa;waN?Ibm3Ldq^wX=yQ6#m&i&8uVCFru4|nG-Kf>P{pR}`g;<H+%U+?ZI z+vv!~nR;$otY8pVczJ?0`;q?)8<zhO7C(MZy8BSt>!VeoQ;ZIqWQsnYC%RyQ*UZn4 ziyR6#Sw7!eT_N|>#_^%Y`^Mi7?Du)~ztZ}1E3@aR_4WC0-c2{WENNk1<Xdx2{P_M4 zUhi+*e&pA7OT7J`Zq}?U@521T*{8KL{eEX&ddPTu`oR*0$J>46vZwyo{GWj(Z{v^U zAGSySD1OM_BPUmK^|4|5p3QU3p1DqVqVje^+2a-KV?Xixgih_8lFRaF&)3O`SEfuU zyPE$m-T8R<_GAAt>nDD)Tl$}Y#pUmUHFfMS=X2LcuB!+SpY9*4>+|vc$(&7po1Ssb zZQ7&GdQC}0s8U&7()6{}`9H$l-}YZxl9~HQZF_T}<)%GbrzA`&GS(9Q8NTbbcdZzY z(4M+iN9(7ST&pwxcx`6?o4;YNbgF#*Gn_U(+4*pnXq~?K{`$#g3uir2-0c7KpU<BM zKiWT-KiYrr_YR$ZnlHj<3E$PssJkwAWCH)*O%7g$vImmf3ykB6bD7K@#0c!LJYj!r z|APLThabJ~`sy#I-nu8d=2zd`@?86OdSz!NW{OxD@bU36^I0{Yt60DOt3Ou_-$%B@ zkL+zG)pwrT<+g6L`Td6F`uXq&s+#ucL8s5w?f<~{^~k?-cRpM{`LF-a`KKa>j2KUx z{Gx6uGs9J-C*kp*kMUPr@4wmoTd|^d`<)7D*WSH}EeGm93F{U{P5&eO`<wN(aP9@C zGvby1iU;oM;V+Q95k5Qk@T-@<C&hPedUT85({=ssKj)vtz3tu>-k%(=S9kqZ$*ul3 zS07ia1pQ~oxR|#{`#(c$h?{No_PzCy+wXtymcQ8_tY)k9K4y#hyN>tCljZ%*#Qv2& z*e`1TpfjFjpVklczz??XyG&24`6|)m(a$?)k2V`iV!(5yt%nQx)aFL)j5@h)U&{Fo zgH8V7-|G+0KY9P{--q4zh3d|?AKc~WSiU0rmW$Y<NHcA#Q!zYW58R&I;30GUso3n_ z3N^X2<1Uuu)?{9LyUO3TMabFu4$I8kXFHifwYhVYgqAiwn0S3@eZqeRvHE2Do5%fr ztginM{m3Y;qR*Zy>w-UX=f5NCP4{Gl^lL^eba?7<nz?6ApY{u0=YO2PL6;YQ3|qSR zN1MOUkNv*0J*M2fbyR2D=QYAMY3ApDS?D<=8F{jQTz_##Rj7eQ{OXh0W&i#&{78Pb zd5x)!Z)kXQ^u|A4ul8@?f6G(jyyQnMUu$uFT}sB{rbp2=(xINILS7#pJmeGMJ#2eC z@KL?g{*?2#>|RI7vCTiUIrgqZQbqFR9&`B@-_|}ouPjm!oij<pl5t<+F-!S-_dEYH zJeYld)AX)Ao=YnBAC8wct<`$%?%naQ>(QZG87a|AUF%KFmKBI3tPHaCEe_lN!K<Dp zzQ(cr__q17CDxOs8AVhEz2s+>crsO0f2ZDw`!lYT9Am9jleQ_CZnNDced-~5?mv=$ za&Kiu&7FT#){Xl_O6%J%yFF&A1<Q2ZOSu`;+a$fTV*l~G=4Urvd$-8t^OM=`9UG5- z=#>5`_3y#^{STV{Gcf)se$?xKY@Yg$)h4t07KL_4+Ri?}#2{L;vgs6i@V_me{F(O1 zKbrqX+RCOlyOh1*pU%q{*NvTxy8r5&Fk})5h`RTt>bXKewbbq3MYA$OKK*!m_UHV= z@@-q9JKpFd&e)tg!AiiBd$OX%lgBo~^LDJi^8Ti~OZPuf-A(b<MzQ{N=lbe`_m%rK z^mVac`IP;wJ?uY2bM*eKdj7Zdd=>qNr7rXq?(i*5y<Bb`C+S}IHYh{>gUf%0+tVM~ zx8!c&s4>i5buw%7#$4;bt<#G=-aO8j_)sO~>n*#fbA2Ao^*;7Y!lw1|idV~j%<q`h zH&d?lH-r0<%u9k=6-m(xwM;t7XUq%m<T?Lx{){#m!RD@Ci@#0#kb1iAeE$Ppp+^<0 zD?WUiGs$|*CIjzok4-7NBFiU5Th9?w;j4P?|9JhIogcFwv>*8P!~CPS)2<6!SIhG1 zs%+is(BnQ$`P77?DsE5m-BQ1w7kw2kSHc?}^kL=J4Lv(&$9(v4g5@dO!mQ`peOFYj zpZUn^RnVgAp7EdlGc?u4g||*gR;egI{<6kZzN1d==1U!C`)=J!L8qQP(ooMmekz4o zQF?`zr^GRX;y><d?rneD_(0a~nA)ecTXc&eJ$V@VDs`_sc%!)CqJl+&xN;%Og8Y~t z8z27uX_NcFCFOvfQl<1$TVemb3B_NPcAiako@t-)o<GY|XwSBN;#URsUEovQyIK2u zT*r-Hvwr5NMyxnmUsm6H-l<?x)!h2SvSq&m{w}doj?Oacm0i1ZS#u`OyX4d<OM*Q( zxZd2bE3`LS`FP&VU%NO;ZoIQO)+o4tPjmj|r8O@<d^#6dr&@98$!Z3@EgS9>a9qCd z&u06>xX({x?!@LfoH1;gYfzhg=xn06$=i!{9`6qCFM0D|N5&kjvs%JEf{GT8H{^8P zZ2KIrHAqi2^Sb2eMLdGXKeVplj?R>4J@)L&e+Ij$3suC61vs^D^e122!_J*ozG{}d z`42_)58IFb4f`Csz32F&?hcjBbDP;b*XEw_<^RZYQtG|)92ujpufNW|>#nlfkKNY1 zF19ev^HDuR%#XwVJ1#Ap{N{3-XKtQ_F6$8;DM<&rJ_hAoldP{7KDg^svHGyUtLY!P ztFNXty_4JLd&E6w<K#CF9(<3HYYDG2{O#ekq$=ZIw9FT&=FL_ty9{r7bGo1YIDwJb z?oa<2!8ne43>Uua^}2q<Y}eFdCf{~uT#DQ?mES_+KZ8lu%%72yC-w*)XWIKuyZ(#2 ziok*SE7#j>W&0dI@5r4ujaOs$6`Y#H6teJK!3~B@k1dYI#cLjXk>1&FxBTh+!!v6v zKU_aPEndJzzHmik9Phd9E1&ND?3=~AcglLx*EYdS9s5f9desgj-+Inc#(pR&_CUSZ z>n82B!68oGjzY=~hnyq@1p}4OD<|=GtudSDTh-d$Skf<ABOfn#I<wa||9xWkX{|Tn z#>NaBl6(s*j)lt<PmDYIVe^CeZFzr;#TGxZb$fVrp^<NL%BoF9Y@weX&r3-DEUh?) z!OM+PdNz0bvfy>IHdU?VpSfyQsy@ej?jPX?F3gR4tM@+cxzLRz#m6Qd=3?Kz+dP6J zHPV4i#leB$-O*~#D_>>nUY(A<_;&4=wcZ|+s#~w>&dN;RJ<UC=G5JWG@5VkcMYlHw zCsiYQUS!y_$;Y@CHCYtY?C8!*;McNbR$%V=IQeCKP=)`4NiPd@&u~9!D3)#s@J{BP zd`I|-{Cd%|9jhf?om-=-ZgEqd_xyv;k7ip(n4S$vtld`qbXUdmX>PM3*%Ce-X_Gj| zz^$Z{c;d`V>+Dzjt@HV7^7T9Sm_NABc2i!!f6dFxwKvbIp4}r}o@7?CqwSQj@y|;~ zE<Ad4FU<1*-x@O(_6w!!o3;tOOfpURtfF4!wr7RSUk<ygkHzZwb+^oy$t-Vr`DJ&t z_tL_8L63L3964Jydc8Wa)c@=xj&q#sqK_YaDESyrIQ8qB;%kSBVq;$Ylm3(VgR%I- z@#9izI~Sa<RNE)Sy`SgRv@-L_-sRuIK5gZWHF0Grj55<p-0^vy^^_Ys!(75-#1F?e z%-^iuXlI@w#ryZ^*{yARADUcScqMQBtXMBgAxqJ>s`Kp4w7a+L?LM`;^~lCE5yHw$ z9{V59Z}fa5FMsDh!y)@bm9^gzN~_!ES^reqoEEZwk9%TH-naGdZKnKvcW|pC^E~aC z3x6a(Fdwlx-}_JC=AF!0_RVk9D%AE|em?JP$x-d1?c!}O3uX5#Nps`oJEj`jd0I}q zX|<EgmUq`(|E1e+S?!-%J%9FonbPd|&N$(ZV!J;q|0l$}_DB9dx9(0=&o}vN-s{b| zaWFHV@22jPElyF-ELl3{YdTK+^h5q&yzGzu<6*PH4{>hk&VQ?G9Ju=$=sLwXlk2;6 z^wwMxzqIblO~Y)}^)q*UlWzEUVmqVTrG+#89sU#a@qPb#8wH#A^%XS-ALR?Yxl-eq zTAr0S*}FgRli5$>O0)M$(YGIlc`mkI%(?&Bv;AiOG%F@OK73zhi}iax-(|OYy`A=K zzmjq#q(gaYrAMVI$B6^SH|SLRJ<|#JaOC>V$<MY*&66wi{u%pQH~;hgd+EW9fhVub zzVv)={Xu*C6#tHYYM0-wS+hl6Fe*0tgWB}PUc06)K5BL6_Uzl*%OakBX1t<v@zKPZ z8_(`;o$H~qH9G#o^`qx+8b7Y@-s5#oAXoo*IM1h(4}Vu{TjrEh2C`3F?#g;{ueimQ zjESjDnhg4iLM{@mKcyeMYkk1-;o3^|wh5WxRXNvpEsBb`Ydd?(v<(K)&-&N`4L#*+ zd>-uKIj}J7<oZkeH;cced<=gZ|8RG$@R3h9oFCuk%J5vD$sT>>(T@2?#GN=3gJmXJ z$Hm%kZ+evQUjAJ2Vb3kCPtIk9KA&>+?!A>|rV$aBm%poznxp#s&C-YOJM5VMGqikv zY%}q+&99?(3^?;bLzhH|dU#h`ES_}DW9B@CvqFc>L>~q1nScI2Lzg|zpUe-Fk4mW@ zzR#O+o$b8C)~oW)+pddQUi)a8**~+;w(I2P>^sW6%Pi!a7Jh5Fk^R2@W|3_2fhg1Y zhuQmdtB-Atd-W~cyejpJ*{!=vkIwNd=eafi+su&ZzFooveG^(UBNtUHntP!5%Acga zQ}*P3oc?IbN7=O6x=Y9X!}spEk|t&PM~!o4>gFw5KZ#z?n0`j}QISvT;v56f)6<jE zTaN5s6Y||kx1K-v)RD_QFZQ{wJ<t0i{bTe|@%@{=_x)#hxO(x<4~r_g-S%AkqrW<H z+F}0<o311ao>JV^nws4x^P*+p_M2ub6Bn<ZaP^(|wt0FxnjeWD-_L%2T}Ad`vE;W^ zzUy}D?*02@_9WJMVFvD292@#xDzB_~n0o*B)d|<T{{;Ndeo)K)E$8F@&bNy%9^LgL z?D-L~TYc@zUzG)!p7z{!FZ$$}`$;nd_j%9w7u~V{+MBeT@C7w;e;5B#s+fF4{zLyC z|1H}${wROsE!4lV+oMFnWQK}!&bAMk&%9?(NUMwR`Xs`?b6dgk3&%9BFV_j<)RkME zYf=_hf9cA*(+bN21J|l=`&XCr$NZyDyvWoo_dB<hPtLTOy4$qprHY`hNuA%5+7C|q z61r2m`l1VYC2H41%n!Ko&nBv3@}XVtJ9O)GmUo!$(930AHox-W^)1`BUA}hD;}-Ya zsEZ0MqC(!!j81BAUUdAk+w9eL{~3Zlh)sVit9Qv>`lVHR<7w5N_o{o$gWOleIBH}^ z&*;gXE&POa%3{Ti)AC#k@06=Qiht8kr}@YBVvXX1)3duDu74GDdPP)J^viH@s|Q;n zQkh<cChcj<S8~gaaG5sA_1|Q1ZD~2pG~O*!&E9SCUb_3&yuUU)4<%Jq*6yFb@LY}i z5Brba-xmLvzB1axZ1SIQs~of5r3QVM!}qrR;+QA>J0s3a&3ngU&vZeL*^}<x|K4Jd z6Kj9Oj(hutCf@2ppI(%olv;aiwqE;!sJ(L*B)+|MFIZ;67T+m`yOb5By_yVc-uwKR z`RL>x?~jwe_5TQcZ0mn?o<Vn{9P5YBr(dQ;<!+mrzSwl>-!8Y*KFRwbms596iHyAM z^zkH<r|2zjk(T98;=Am)>u$#Be>7YC=)6?L?IV-3rIuc~UjB(U=n4DIxo0MuzgymA z7u)$$+4bM66$j+j6n6=J*Sgvx<?WgA)xEiQil*t?q`Tkj|6l(XoN`%jN$f?BQz1{w z#bShyIX;#@w>zG(Ci2Jj56dI_13rZ9u3d7^mFHSv%<U74Di+R9pDPmNF-g?3W(kjh z`zgboaNb3Kl>aW)voU<cFO?Z5bNyWZLy3j+BX-O>SK4(<dU|PBbjuFc(#~0CY`#66 zO(_}2)wK`*)7ySk!8<lEFttcB&H0nrJ2$J=#}Wq*ep}r6ufK9#tXIUIO`Fy&Tpf7H z``_Jb{~6ToPyAbYc)q8e^!Zipdgng8Yo6CV?;P*jkG0cZO<(y-_2GX8!MY3cw=O-p z`^TequaEqb_^|Zun(y-@w(Z*yJ$uHPnbRKUZqYZ%FOXQX-OKIJ*{7BH)7CFB>2H@4 zpZ;*`^+We%URRYho38J8XEOUeXRMCl+O>P1c$Yu-wK3YWT6g1)Pmhc}6+F7;TSm^2 zZ`vpHV{y!n@O4KY%k$;Tdb@bqwNIQW6%S?|%Hi%%t2ni5$*Kk7PLdIt!4sRmFI|4f zpRFePhu?m|FB<bBcYS2Jka_XPqW=t$^SxsgrGA_)R$DE)jeBkDY7>L#bN?Aq`&1`| zrIqQ}i_X&veZ0Cn&i(k0)enzs%9?oOq3J^P<=^AJeg0IhY=5|F{n7h3vmYP*&+sO< z`0-p*`-j49r;qFt|LAk^#@Q^L^-M7~OZ-KaWv-j#JHd&G<8GXj+k>sI_p|@;6hG1} zt$n}qpWw!i+qxf2-W<Ad``+K0S48ZmCKp%o)H(i^?eaB=O9>a;eNx5xQjGZedH)&G z<C|{9cW#wUe(c^lu~eS>Zr1c$d{fH{XFlAsWrP0mqu)w|d?h2LRA-1ykoa`Wa;A7{ zZT|<mOScb-M}3>U_(z^UUzX5wkGAN{urJcKL27NkUd1|DD$mMLo5H$jCP(QGK9z`r z(iT59>m9wiWVyuMoZt6<{o87<xG*&C`3wF7?{BOQ{-}SXUf}gU#t*GqueX<WTkA$2 z{BZBCO;n40((aa%BFElDw^e$dmeGnzo2S(GJHG9m9s3XIqvG*f!aHn?m%rwGQ1NW@ zybBps73R~ud3yJ~lF0w&@M2}bA?q3M1!t;$nqpJU7x^f^>wWEqtjphOu5OK98}D{G z?Amqzt6QaegPy&U4pPdVkvb_fGf#Au(nXUc{@hwCr<Dfy#2NivVdDroX6n#<(LchE zq+`{ORGIb4O<!sHu&JWdx@F?wSYOdYi+9JkC<!$^*nEuhoKaml?}49-``?MqjxyhL z+1K>i?|0MMu4-TU?Q`JT*STERtovE{1=UvlvRkMlwrZ2hwugLAcTG$#e(tI>Nu_$x z?^U6j%z5UpZ7(wF-cil}VZF?i8so>cd7rBHIz9Kix^(BnXA|G$=q@Xt6sGs4W@qDR zV<A854_e=w>bQP1ADyRv>5rmV>(bl2P7jqT*RtN7?J8HSv%r1oDTOqK4J-}D@fRzr zT6t_Tx31lKd42qmpDzQZEU(!7YJO`xXZ}9Ldt2YFxh}R#clXp;5oJF&?fB0yEwFNC zK>eOK9Pv&S>o4ACuQ*VnezAUo9dCx2oK))pp>th%`s$CRm+h>v-uQlUzXNN?MH~Hv z72%FsJ{)TnY&&*LwTa`qn4&;}Seok0*{cmzCV8r@ubriOOnm+N{|s?kRz~qJJ)hUg z%5ihXtm9pEiWRMAW^G$vP<%Dn+VMZbzQRARr%pcHY5i^&Te_{!^1{Exag%aYZ$8V_ znsHJkfx-5N=#d}oNB{AB*t=uLN4E8uS<5^YNk0wpnS5S!i)Vx9ozG`QybLG3TTqmF zY|GLm;&)2!FZ8n&O^jWj^{eootNM-UilIeS#j!pcMT@2TLLU4RUAQQ7*{8n&Md8o> zHGeg2zZNZT*S4&2!D^9S;TDPWE8o>yedX5WaAM?cve$Z3WB$;!&tP_id|&n@-91Ld zt#Nye<DRH5Ti)F<_i0(>zuBo;0-+Y7w<8@6q^@4I?ZfqHY#)Dx-u_{-m)UFQwXdCG z_b#1No0TcOXc5okuW#6kkJ^<K+m_kPf24mT*ZN_5+w6$lj;2p;_MN+J@j2zI?UBr@ z=P&SitUt52I_8><@0ys3=J=WG^7CfbY}#IYgYkk^pQt-SVeI@P`7*EU1#3d>JM}}3 z%h{}s;Cv*(_%rzL<L`66Csi}{u^zMgS{^jDuRl52_WbD`b)lhswXg0RwQuRKIydo3 ziOsb>=gf$<B#!5M)BG0bxyyTP`_xqVGW7oQ7nVzwUlmT>I4^&zba6*o>d}nIAID?1 z*qihmUgvml#jI1|4o6DAt_sS0-_vI|<!;=wJo6i0&Wb;}wlMYg%9zF%mFqrTe)Rh6 zCo@L%#=fney>D1p*UvSxSl-xX9j<?EtNzXS;`j3Gf1D;oPJJ|Cxw3@CuP>%wueaCf zXH6^XWHFyqcw^_kCD)&_w|?!O9VRoe>)TuVqnC~gz0ddaO^n(+@vIf6wfvF^HPQ24 ziFXHhtP^ro=v40A&V0T6^yHscW2=wtlXttcm80agy;|9{b0va_HHVlF{a_Kb;91h# z#Bt)$KF+Nl-%NX~*zsuVx;<6b_lfT@w2Qkr>7nEE8K1JbxkSR9-v&SGXWu85E64iH zZEF3u;!yi-c5<hs4t(SP^ql3~?Y@X@oVSX59tckoVLYe(xc)~(&X1{ShxRMmwNLb@ zsX5>F`O1Zm7e`C&c24te4>DA{_0<0E4(I<23tc1M=6-lF_f-DkKZ%Jy3bdb^eY~CA z$?8y3_4?d@hHFhJiza@}eksql&NBM-j1&L9aNIw6G;M#&9#+f0_cm^r|Ngf5m*jZ; z`5lJ+dlgLuf3)lk^4eEs=X&8+${(8#d)EG*TXd!Q!j_`-|4#X)->K2tl>D!E)s20% zDJB0h<E_k(2;Et;<4=~@k6xt$m4w<|fs!|0rEBG9&v&#x__}ldmG}t5FXGyN9aiOk z$d8eKwPb64VKM*L#5e{!jXR3}8KRrtMos(^z4Lb44tt-gpO0_2%2{qZ=a0n4>>gJp zkNO+4l>f|IP~R+P+fjeQC{6Bm^iScqfcYXzED|-J@Bh!RZoT_QuT<;B^Vx53O;!Bl zzw?Ftht+#B1<rqqz3`u5o1gm&-Y`3Xk19qp;?AW`P@lPBG21N(J*Nqr3={aQ(sp+I zGk6s!xb5kW@Aj9rKK$`<or_5AF2}w{?*AF2>Mk$Xnbx`9MsZbkS@4g%U!04&gPXF| z(%dA(4Yx!}%62n<75)7FaCUY6E&c~vr%vx$EO__cjU$)&)@QH0HEsKxo=;q-*7RAN zIAQu_O1$*@<v-6YEZ~<_uc>pnp80TnpIM>F$BI>7w#^VeH+9*q-;okEH@PCx%lPb; zEix*cH0h4Yk_V5IAM3Zq@m<{#EA`xQZ_m$ZMO#vM=Jj|S{545?@9e|nUEWqQ{DJY| znQ<l`)=gh=fBCnt*`-E4Ns}sbuk2Z6mvOV>Sadee9G*F|Zq`dzuw~wR_S|**k&aat zk6ltpSZQy-*coPdP~kyON`ZE0{7kbml}~GxYTWf&i;SH9P4)dU^Fqo>(Qi*~?LU;g zaHdI`pViTl{|qOuuGW29#~;&sh}Z4@-<yer{~7u<maI~ATeCi`e}ckRL*6y^UUL^6 zP!|1ab5Ht5WWnu(eS5mq`;G3Y{rPsnerjlb`#!ea*12C#JhE-sc4_^ykR5BIVtGY= z&(r;I=~=Au@n5ljlvz`?Ct3WwIGz3T`s&$_d{#V7xg$|3xvH$5Ys=~E7y3D0S998| z6#e)6SX~h3?-N@0R)0A5>s6%s<<zE!b;%vidZr!oxFtD#^2^tO+Uu719^C7>_MgU< z^me<w*$cM+*s+{(>487lt-F8NKRR)D@%C-T3<XkVVZmRX$e-alJo{mL@7kZaW{>6H zEX;p8D|3rpRM^IMW%iOP+Y3$1b=EEKyL$iSeOdLLu4k`F@Cf(^zsY{$_94G>t=s8t z?iTyEF8>)GhTitPlIvk~>~-^9kAF$i4edjlU)7cWyS(k5@`vkhMc4nB_fc}u)%^KE zTW5Tl>}<&L)^1f%k5!Z9gPz}QjY?TnGT|IW{0hGfc<i0y&VGzOaP7X}9!az5rOl=3 zv%B5wD^mhLYuNSeWU1xP`ZT{?O7!_3<&8I6brR&F>kn`;{BsFk+H>U4dX-C?y^eio z4#?cJ`c}dx<Iq`mjlXMOO#Sfpxxdb}l3gMXKDF)nm+R$!=5bPt#jPV;x5BO@#@zN* zD*qYL|2pX8V&AzdmQ+1kdywVg0#7!EMVW>xw_dsXq5g=z;E(Vlv+7nBuekGfn)D3c zBX!wtCkecMrp)tj>I4DD2VH-|wtt*{xW4^AgShyi4F{jS*mZ~7rY`^7#u#zK`5NYm zp10QR?Q~*4<6Gx^@8$lCZ511PU%5ZizO_%UV%58R)|d0N^;~8pZrzo3{?DelLH8cB z-`3Q>X7zZQl+C$lDZj<D0^MKbAF=2Ach+9CWJd{q=RBFqrN6z)bVZ_C=ah3w+Q=?) zD0{xoFy1P=e&g{!!q<=dXV`i5pUlfd=hZ7aQ(D-arzR+uGOT=29X=(aURd?&mL2)e zb39(yod4d={#A7Ae+JG~b5j2^c)h5wG7e9lDYf<Shr2@A^FR3hXZWGMyeltZcP-bm zYu=eW6D3Nyr`~w#HH~pe;@l;Db9pPjt^Loy(*3t>YivwKv(J^%)!GXgw+V5tSjwdI z`_v<k=-$JoFE0K#W+rLWwVS`ENiQtU*7(xKN>{cu6EAF*38~urY{`FyCZoD@VYB8f zTwRfUd{*z?V@s91_2;wh>E5N$;(4g!9Mg*Tk+<6a2rjzj5P$f-fbJ6Z1+z}{{Pj9l zKeaYhyf21#wfgI@hadmmv48c%zFF$&+QU=SSO2;HbFRU8!|d`O$`4oH|DoJ}RJ-Co z!=ungu~M%$+);0t|EKV1!S(+PA3XDKSsneD{&#BG;yvZ9{@1@xTw6CUswVJiQtE#O z&&0kNHsS8#$9Qw(r+stm|F*jK!&15VGxt<9?T=Xg$zDdk{=v-ptzy&uRMf=i*DJld zxrzPimFv^*{AW05_n#qiKVQY9=ONoalr75r%F16fQOU#R$FZYRa?(zg9NPc8t2X=l zuk(-7I~E;?-t^<&H~!D-rrmygY|Z@Fvy5!Z`d`MJZ+Wyn?duow7>_T{mhG4SY(M*M z^0&|*XO~C$ifw$Tn`Gd4>TlQMIln~W{v8RQS5f~k{fK|-ckbmc?+NX-$~`2ybBoK4 z4Z$Z;YG2CzeR0^*#$0jptbfaseta*Uf6rC8F8SBBz3Y#6TUzYc9#ei;{<YV1-cz$L z{*(XUx1vy1{NttlfA{8JoPT23-rsgFtCYI!Syhinm2|0^T`%0GFe@xmwZ~-5Ggmi@ zNKT%^Kiq5mdH-nc-ZW8B(6wP<g@W9YFVC-Ut&eqoG{1SP;?wwu#eEN(Havf&74hDV zFKhL#_wE~$=On&O%>O%W_sfUb!I#~?cU5j<TYlUx{6B-xe}*Ui&!0co|K|PrAMbwZ ze6h8CC&9C^Uncp=#K!o_4EYW5y;67Mp19}T>)kT{(*CeNRyB&b>=PgEc>8w3e+Cwf zjdcxNuXe2COx>zw_Uhcd`5*Fx9&ud$Ua;j-T-D}}=8vww>0kfD+^_PTVPUq!fms$# zbIQ+gCr`e%->god#<JF6msY0(3qu9(9KjRE45~iIUrYVlI&W#ZYVR+d38%O=ZFtZe zKi^*HKSP2(-;Ybbs^9a!j!(Sj8IihOXw~G~MZ4x->Q9WCywx`Rk;rE)(??fp<(JKG zTk$WoCij7_{J~i@x6*rZ-W{3#Y2xy3?$hzpN*orS=YN*hxV_a<gF|JZ4xi0-ufMD8 ztZTIARK!30+Se^}tM{_&D%rRrclVxhY81NmvgP8EiCU?Xxwtl}-kkDie`I~8{}1)@ zx2z9WXRP1it9Ad#wy3IotdqK%1RGD+&fK$;Q}Ts*Pea}Q^Yf4CGi3kr{d?u3*S7F) z`pPlR)~0(;{d9C-Z>?QEp~&5N2kVn>muub!_X~SznYXR@HT{9nkA42__so9${_yCP z#Gc@Xr>k$zKF=LFW!jS{_Z1yWwwpywx^vWS)&*wKD+VW@uVD?+OrD}4FHoWGw&};? z6}SJme|XlNU%EJ>C~nc6*w~vl@7#80DV&hFbr)B9oB6I#p(X21g>DuT*;={3txmJX z|3~<v+4trDm|c5cqxpz8#5Y&__B}7|!wP>N=HwY^-u)yg<|9`;FI)aW#E;bckK+Cp z>}+00E&b2XuA8Se?Nu%Bg5R}U&s;0I9c?2R^N9E14fed~(=6-muHC(ud16hl|Ai0f zy_3qS<@7&1J{YyMy(xdIE!%C*l<(%de%-pW#eDiLpGL<vNhaT?hax*Cc`UjsX+7g% z_Vs-V+4k%<%!v=rcggWwdRIDM=EjZN5gAslPmfG1Uc+;iQz^PTlgVw>dy%3Q(x(d! z7bfog@Sow)^#ki0t(HFTvf<9pfBZM^+#kE?^=oI(Ra~=Hxy$2O*_N*4XWgySPt3aZ zq*8CkuFk_MSp_!kAEh7kcjoBo*l8TNwesTPN&Y|F-<R2)5fTi&u_nzjQ8A^->Gr0+ zkU1N_|63{PsV??*SNPSkx_HwYk7iG5&WrwTbNXAW)qjRJzdv3${cvU9bemtb+qO(t z`ej$ow)eH%Z1LO9iWG4^I<wJ><F2&cg)=STz8^M+e3;(yPwT~gsXD{%{enjy*$SPH zir&6w&$emj9z8u7x+~hfQ(sQCB~3CVLNxwt$&_Ove||r%?~l{@G4t_kf8ifZht9ow z@04iTqI5O2PuDV4=qT?+otpdlt)DqU6y}~Xm-;R*|4M59q3Ziwf5I>Q(O-IxU;0O7 z>2J2VdMx>w&n#=bB7|aYpHh*wJG)I{Nt3-HXYAE|`g&6`H9Ymw*1rC1GfOb$(n`sk zFYYhdyXx$+rH&u2bv`tY?SlTB$D6ioxb~l6t6pH<mnqxKUz@&tbKUHi$DgHP9#4Mu zaX)QI5UPusrLC*~c;4&>y7@<pv;Q*)?eQ+(@6sJ&<e6(6H`6XPLMbwFgV_BHP33*p z1w=T`w#yq=lz-dtG5w&1p8DTeZ~EIy*D^``XLzW3b&Z~0-HG~bdWRho3t5^hq9m8M zSx)fhS#wrr;>wI@k<<LQ7C-hsrfo0qC-RE^vgwc7TgqQcIehrm(<>8IV|4rE>ho1) zzDm&s6J?JC9g*{Ba%-+?{B+f#SkSkA(~_z4e&4(Ix-7ah>$UUU$|HG`?_c<4-(k<a zPxFt(kA?Lg79Xsty?pbBbNJ;;k3+Ao3lG`3UA!VAEy?WWk$=esH?w)Vu5E1AfA73u z>yo;|R!_ILeyQiHDf#%k<LTxf(^D&U#UATi?ElEt>eeUg*6lkdN2fGpF4{aPq@&}p z*}GHbCw{ZbdHy!7iP$mk_#??HrO|(xkK9w)bY;Ds=?U4{-b|IMm3r4$c`n?K_BH&} zQ4wYPpJ7+QzKrz?_lW*yU{$%iC;hif#J^MftTy;&KDw~J<gK#zr7d&a1NMG2+r8qH zLWSPDg<Tmbdv;H}e15LtB(wBST{i9gd~0)_P2VwTcJGum)3$G0x%+0`+fTN8bh-3q zt?Vev&))u%@8j~rYn{J^e_&g<<orkT!*xm@k1c;Bxz)Nh+oL*GI^v>VThgX!+;3SI z?AkI-dUblH(yquehf7q;SN(hcDfq}PpLyyZ<rY5jb-L|nF4cNwyOB8Gnz(Si+wC(C zo_tbu{ffN2P3pt>>~W_b<hRV@zGP$jV87sxV%P20OCr{$dUw}`yX@K%y`=Av$HRGt z9;#1pU9qs;_&>wSxz72=&x)=8Q2yrPe}?R{k3@IhvUxD^mQknS=T@Bq6X!gbz+0;q zJ>6-I?cS)YPoKi$+{Nq-S9AWh@Xt5@=l=h~pZg!!|H%0NPJUr0ckQj6!izfjk6~*o z^JT1j4@Yfn-8!YcezxuzfwS6iZPH8!q*(3Eo-;H2)5@M_aCJ}W<GIm~>N^)~+;+uu z_UZ2DTQ9#&-n1oBU1ewAE&WLnoBWjHmQ0>A$@`D<L+f~EXWnD;3*{E%C!Z`~k?<=> znozu*eR0X;RUeO5emYS;>CfaVzpj6u&z3q<<V9`0TG!JR+r$5seYx<*xIcMrqG9l< z;tZ?eWnca4r@QSo-DP|Dz_0JOmFGK^Whw<u)iXF|lRU5T#$DSDRnPXF{yXQNT6|_5 z!^imt^abNzP5USE(Po<Ytez^{P3Magw$2O>6ch;ZH+pokW~xiUk-SvKE9sw4A2Of( zV%Ob$yAF!o(_|@<ta}-0=N=zaHs|p+<G5SbEkCNw&$@o`M&{?!GP%~fTU=)R6!uqi z+_6e|^W-L{=B|HozuXIajAA}XwuwfGZr$#e`my%A|JBWZIe%Fe20yyTeI(^(^Rt!C zcY~^SM}4S$H!J(1^7rls?8oyvxBX{ey#J8Bt;T%mkB01d2D6Xs6KVI^G40ZIudUOp zJKvXlYmzn;37l<ibf>a!HS>m=69){w?r)J7_`|!jCg|cn&5T`fyY?A<P+Ph@b60x% zb-&EDm%c~r?Ys5vTxICdRR>;+ZasA3fUBM8L&F$Btv?3)S@-E>$xG&adA+`8`lX6y zr%jteu72rM-h654h5R?SIFy^7G3KcyId46Z^0s1Tz@)RE-qvXR*!kGM)#_dEgZSou znpaBpGySpKwQKkF(&*^u6-%y|WGGeSP7eF<_<djW=Cl{RS$c~nc}L2h^sW>VlRqzX z`c>ePyRwRA_p9$_U;q01-hYNJO^vh5ciArlt;iDl!}`(q&_CmATh=q&$qbJ3wpzDd zcJH3a>lP+fOL>(tr%L~w6c*{sA+jcwani%XLfs#2Z~F@*7u-wIIL!Wpsn+rQ&)2c? zt@WAr+XZU8W`C>sVBRS8I(plN-1H-}%qG^C^G=(ayCV9i`Mcz8o$*l<6LxlSJek_G z>P>(BOquR@_nLJ7#yZIlpFK8a{1e{$p?TR%*_QI$BE2uKOEZ^bZ~7N$zVWb<$5K6& zJIj+Twbt0|V|iSWdUa{Tam}bDw|nN^3impBKQ(o^<Kqu}>-YNnSRZiNq<Y%tbvbW4 z1HaFb_}+M>h@E+V*6-`ze1F(iK3r^mq_^lsbnUv^CpY%I<KN_Dek$A|;6P#pkE6=h z=U3{u|DC(fZxfrEc6yOPP{N)$vAmx-&t%-T`EW+1f9}ELgqF#BJrBgM{F9$9*8gbr zTs{TSoNF3=77Q&s_g9C%lkhqI+GK9T(WTYeUq64bG>FKH{C#_#?MLIIybsnhX2mIO zs}Oo7;_<fkq@&=Dnb$0u*{9u&$V>b*Gx_d!XQtwKt%~1|k00%h7x<xl*iPcoyQNll z7yGV^$&4yJdZfU=+$1|ua!Mx)mol%)({rIJ;Yq8OT)#1E>+`le-FxSwew&{0<4c?w zlxib*${?XarN}mGQN^lL(uLW}jy)7%<rLz$z{<eDCX&F|!0s5=#w^Zd^lXadUjL}2 zb{R!$ZO)(1<$tjJc=g%xkZW7BW&L9|?%ZBoocSm=^Ne}1r|Q<HTQ40sYjj}R{+9v< zpM?A^R<oqE@@D)<{-$zu(Z{v(kNjtlu2>iGm3#Zf{nxhqcKR+hIX?5c*mbdqw`VsA zX?yq-vvG2H8}BLFys|^P_MqL~6@HvuBK@`}b?SY%j?a4>JpFIV@#gtc9sV;&eM>zu zV`r@6iu>-V7oJB%91mVP>wQVDg3psl{?~TrGsQ+mXUS(?UE-n4!}gLR@KeuMyJvf1 z7w8yk>Q(g~ndcfZkN0_T&-~!?ud<IWZ{55*?at|xx~`Z18AR>)UVKdY9ls@L@l>Zv z+n-8pwadSi{lK@KySma+{`09*F?D$Y;m=*HYM(y-S@t6OXML;V$_#O_Q<w7if+y`z z_|Fjau1{%F&8Bo-A0fLxd;V_xClYB8Eo&UQhu!99z!8i840SR8rhZ=jR`9nEf0sRf z%7^;HuPwJ!A2#xR_R4Fz*rlA`t98mg9oG!CH{g1#BW}a>bLQiuJ;jm62i_F9R$a*q zPM29(^jdV~<LS)b8m5IE@AzXXV1M^QzVv?vr>m{bxex1ab;nIOzVOF<&$*iqZ2z!l z6JPDQ74>tgCSLt=mg)K1S+kaOO6Y{Py<t38_-Aw6<=@)>uFPk()2Y$Ey7j(XgzwT< z0<X-s&GNY=x4=}I`-JWtE#GH94Hx80P<3TdX?)Ccn_F(zjvgD8g{N14HSV>#)IIl$ z`?)at&E;=TuQw2=nC`b#ZqtvtYl{6p<d*oq$llQXP5$o=Q&HXj4BYOA%_Ltwdm(tn z{fcYp`RDNwFX}}eO$^UwxcOXN^re}-u*iygZugTT{ip6eX7>9;&nxrn`Ft<;fAEXH zZT0P8o~isT@xumAg}X#QSf9B0zTIjO|MJsuGui(LFMs@YkH_hck9{Wve($a@QWmsp zbX&HD{p#vB+4?e3cif~bIqX`BV{O-W1|C24)8b`Bi0`zI#<%@<)=&KKW&Vcxx89lD zyylPfTjcy7X76W-75uR#>QnU>rS->u%hX*qJHmZmzC!4y;ko;~S=(;@aa(I<uN+@s z-!U_s>p#P_1>3IvdAwu0-PHb#F5aTnCBG+re7pZm{ckU?B{%91@veH#koG$Ka_677 z>kgcM9L@es`|rvExz`8fWOw*IJA71s_lM}Ydh%CSzu(XPqapg-2Hy+wcCKG%BAa#T z+r_epI~dPp&su9Tcj8H%T#vnhKU)4XY_fmLzx?U^hwIioDBpDDOZL+L49DNCz5Qjy zvcL2HncPq-<!AZPcRS<dH;Hxj(blVb{xR*ZO5S;EXAu8dpM3E?hvQ3=CcjJldi=(} zN>lmvI*ZGUvEGi?)^=F@{Wfu>`s;5=_E8_tckMH+Z;t2s6Z&{}uif|1otI5^&+af; zon6^`_szzIw^<C0v`u>axf|yscl}#<IcN$Gdrq~G{aT+{OAh>fRNJXGckY@@o-F^+ z;y+(<|1&&TJzrptb*AY2ej8!g-M81BjEgYM)|tv6+^M_lz<K|ytxM_;Cht);z2F<| zc4?8@^PH+9tJSO@_$Le4cXRz`aO8gRCHwvKfQ{Sc$p3sPWd5&Z>(Q+Fymfr9yH2nD z;qAJI_lkdFu3G*36=yZv46FX-y!&_Qu;;yy`}g+$6#h|iss6#5`7EVd!=g2f93{73 z+49rPJ#kmX=bz!Fpj~vHc6{+iB-eb6=qqf^*4!_D_pWJuyq)sjp8pKV{1Te}!Zm6i zdSB%6&s=;frT>s&oc#LwgKG5;X4t8m|F-`?J=>0)=V`M=V%_YY&bwC_?Y6}A>mKFn zQ`aB=)BmjK{68-74|*?V%>7ysQ)X4u|LaIh*rmEV{~4H4l+RxI%F$>cy=C<W_bY2u zl0UA$@9X`KBmX}G%gn2S)9jnAV%y$K%2~d9+qp{nSI=aBt~a`3|KPs-57pAon<IZX zhhOe4`K`8h#WD5^k~8X(=9}oRJ^AfN*q8lx|1+@sDckmUi+%d;NrHO<Cd~U+yY^1} znhE{aw!XE`I)C$dSnjs{0)K3|nR~ZKP2Iav{Q~D)qwFuwUjO4g{hy(!<hZn6<BA`* zz3)z{nJ?h0$^P1C=O5#^$VdD?%;tX!zp~Wmg}rE<!pof!%x|YnW_(d!$@tQ9$M$zq zRwuq+Twngj@}tRq`G3Nd-6C<O7gF`i^{21A<vH<k@1*(Hw(0EC{ox+)pJ77Y{$=MU z&cA!l>Hcrq>Z9NPNGpDLqY*3o_;|OGabtDj@^k#ZZwuK>eB1R&U%39@da1Xsr(f7- zdEoI6*Y9l$CiEZi4t?`(-Hd84%|G?c{~46-$m#XHQZx}Sw32_+7n=A>NbAy%zW)sW zB6ikP$^2)~`Y<>AA8*l*{|r1!UfdV|qiXfI(Y&2Uci!<T@ng1zKd#Ta|DWODmiZq7 zY-MNe(f%lY(0F-b_i3HS%W8J?e_7Qly*8yO?)Z}b4ECSw4$7%t72#Pezsy(u!?Y~r z_lx-tTt9SO{)40c5AAnttN+ejR}uH0A@jf|8~@dg6Thf3n08l#cJ}>eXu9_!%~E;8 zmbRB=U$%VAc_-QKQ+b(*{ej)Qsc%X*Wxp4Gx^?HoUo17*MeTe`<YwB0ZJYl1^k(bZ zr;ez6^cI#+?`?lkkp1aN-NFA1AL9BMJe6PG<NL_cu<p{eTg#@`aLtp*-CN!Iq?~(4 zsf5MB$`6zOai=d?x&K<7RK+q*hFe0q*1mK3#93#*`7lTL)!v^+U891WpT0h`?@Qge zANh}TZuMlZvVL;!=54<_{~4s(-2O9Ma4q5dD1Y+ze}?nF()O$6+S&ZOai8DBySjS) z&F4oauHEBy-}vRMsR#3x*#ENe5Mg^$o_;0e`kYts+s_}HE2a^A<UVVSYqnO8&-=x% zJ7f<$X%!3lnS5i~uUVP_bN2~HJk+vpmEZ39QS0Qfm<hGL*8jv*C(9m6;@`Rc(C7aQ ztj52knb-c{dUjA;df!FezdN5_K6mL#-In)1s{S(^;LhH^IeUZdN_C0YxC1+sS7;XG z_CNjcXl2m!Pn(h()~YXw{Jmnnz}x-LHy*!kx|IKjb=l9B``7l1mF)kassHBnnhhc1 z8=L=lo6R-1o6+^Lw|rLp+ruA}zR2r+59;~$pTTjO|21J%;Z0?mfA=hJUNvu{ef+{7 zoqaBcnXg>^{88M#%IEv<JK;~h&VO6`K`S(Ta@>yA{>(S}kB{%Xn`b{aKdSDUJd@tO z_dPj_)c;jWDoXr1(Z%Yndt9n$?;QWDv*SB|{H%HZbk?=*M>((Cx*mU3+OPj*et$ie z>74r1io@<R<|L>7-C^@vT=WKi=Pa)EGx_!=oj$JgPE78u+|uLGyq9AGe;JA&la0DR zyZUAF^B*aRf3v;rKfd0XdrmlL%KUG0=0BhH=jE1<x9%3^SLf^ho~&H2X1Z;k^8NzJ zfDN{0a}U2hF7h*Qa!<AV!o}YjuPr^Wdxz)Fmnwz(|FtYzdg-6uOR*x!2bW8(l$TDN znY-92(jxd1>)Ri4Uw_^yeSL>5_krA<kH3Q1JJx;tWO>4tH)rWHpND+MU!MH2_2KFX zVy_S1@?KqEc4y(Ai^nwmkMOs>+cE#JnB{+lWkq+~|12^6xiR^%_is1GPUXF&+x}UU z`Olrh{5G`o&dI>e@4*$bAL<@At|&Qv+c3`iKf`8it{E|Zg!VFcC$2bp|9g4C_J8dh z>)Y7-LgZ4FzphOB_`rFms;K$4qgJ;3yOKZLKj{6aiTkYEo$0ZUQd*Cle{`^?e@3Y! zi%h~}OYX=0ZT}hgYJ49=pXbb!Q<z$JHC=T@=38mzqPc5l-0f#)mw0=$CYJw5h>gvR zbzR3F>3L*4W0vKxSh#$Ln{2S%+zWQ1F*kn{v2D1PtN*NXl67m3ja+1bXw1x}-t}rB zRWeoA-RcDYxTf&tr(N#<mGbfAe})A+*U#MYzGKs!wfAQ098Z0^W}_kR!~^&2m3FS% z?((CtRJX-=cT=RJ&F6Xl8P=wrz7Z6(@A-QF50@XAF8_5`?X%p4-SsaNuI0>=`4~H2 z+)P}<{rkd+^|P+oPCv5O?M_=;rSRY5%0I(n6F)9LGC^>A(4LsWe#`$1)7}I>P4e>& zo^NpfNPVsJO4$zOpI6+n7v7llRl2@EPRqt@xyg*j-&^eewJh6u{juNLvfJyT?iIdN z-NOIpvWdo)%(tmGK3>_eN1<kU|61>FzZ?Ike_fx^|ERR}{GZy)sFaq{yXg|=|9%o% zzr43bys)|W;a`*I>#j_)|I6kTwBN~g$>co~9|>kn=RA4hkH=b(YtI}{D!-1qU|Qe$ z`R{)Qez%tY4Cl31PXEu~r0W~@BT(@_!-UXF^*bx)|K&1vnsV)M>EwIrlbs(~wyW;= zzE+~f-Tq!!aNMe0@dr;{mkV3UUG2@?f7O-yp?<3o)9KO`dR2Ar*#7xw#a1rJlMR1R z`NU3r*NNojFKbWdOL*<CR!Dyx>r%(|BT=7w^_`>t{;sh9#eKQ|@Ooz94jZS2GNWjp z{l7S~rgu%c9`Izze};!M?dE^vdL+s!(O{dsZR3xFE2A|+cc#h*|1&-JQl7&`eZ_G@ zIjt>jfu9~&JimYDR^gYkc`xM|*M8;h-S$sq<3vYhLAz(lFaKJu(MndnDs^b8>Y|AY zD?d*ASK$*JGmWL><f_7&z$=N3`CEQB^%%>{j#jsIf2O_uN`0DSlz_?Gi2V1@+>gKT zt+e<d`cd3#@4hXDu7%th8n2CtP92sAa%5>Lo}hVoJ^Q7DLA_?{mQ;oHeq0|mDUff; z>4N47GCcp1S)?BBGyQk|Kf~tzZ<81MF8SkoDYTSxVaDPsxig$=CF&OVEdJho+3=L4 ze__nj{fGWD$ahA#XKr1r8vT7^deI!g@2^*1u3`VECeHoMfBE}I68{;FuU`0DQ@>KK zUS-kGg~~s@|1&hT)E_k1XZG(@Rn0w>4?p{l>|^shGi}!#gQV>8luv(F@AK@}zHHe$ zn?+_$_``FXO^<vp$lTR!5SheX+{u(bpHJjn%oK?Pz6VwFEZ2Yeu<66`4wVm=U*0p@ z)b{DrH)Y<VdmgHKDit<OT6iK=d0lb*$>o1UzyIS5wm)>bdVc?Z2IkylJ3o}2-F)K+ z_t~WuVcJqXHP_DExN%(7Eo9Eyb31B^mo9e>m(Sle`Oklb2lJbw+}ljvx9#WC-KX(G z|ERxxuiw<2Yro&}txPX^`K|Kpv%Zjd=B=MjscBE^(KA%Ke#~4-^@`Qiwz-cz^m5+5 zd)Bk>XUe2xfkVYxW^$<Hs=wDOZtkmF`%$&O#U!7jqeie;_4WPQS(##QR(Z5C?LPc; zRjcMRv6I1{dv~adKK=FmNagzn{cbzl_FOvpDn9PU7LLhxO?N~Fc$PKWryJF*XnuZU z#{|LV*n;C%TT(S%*T43E{jB0<pJep?yCrs$|IV~it~<A%X=}gWAH5$dKfI6qxUTnc ztyQ-6^vkA#xs^G(X=zQ5eY!rV@D^>CPM+l5)@P}dz@U(u&-i2K(wje|L$3T`d}wR- z?)tG?*EXhYjNH0(>y_(eg%NiYXW2TJeO5VDGgJ3+P0orlTv`j(O^@BT`@%o@J2g>1 zte5<VI~L6^;JqSNa^9s!p3kp_M(J;ky5lMP_tGt`4NmsOT&#+90qhfA)XV05-RtcC zQUB<Ao)@#GT#C3CVYhb4?UT#0neHWOd0dV?tTLUgWOla8(Zxqnueav(+v~3kTe5e{ z^po%FrvGPX=bEahm1VZ^LQTq!kMYg_r0)DtyRQG$TH}wa+WcyrpxNbZzup}^sP-vy z?W3L39^I9?fBHtmv7{Sslo_ROmcI3Vp#Em<vX}J&CCrOo+o?=VF^}?_sCvhLd42kZ zE<xEhYm|3XUsjHZS-on>Gu0HsRc7xeZ}sQ;6Mbcm^zuKPlRctigOBd&-TQ3vs%+ju z?mgE&E?Ur(`9w)W#Yo#H>16G1Ms?A5@sj&frR!VcEH6#@(e(Pr*%h}di(giC9lNgP zB6vjiado_wy7k<eMI8%z_-9Nr+01b$Z?4wVob_strXOFr_1^v3ciXqMZ8&&k`hMTs zWc5eKkI3^@Y(DnS_`~rx*Ha&sefYP1`K>J9`p2nlmm{y_iM-$2?0fc<Gwa^Zt`a-9 za6MfdHnYj_P6hw1_(%2~>+Ce6f6RIx(&YU*L-$=t^TQ66OSxNCPMJMPw{^<G$2+&| ztpD*dOz4i0^2UG_E5G+2(!aUg`A7Z3z|xQ6ZtX{AExl7!w>&v@wRic_wq4uj&dhl- zi*1&qZj?uGk!QYgitMS68ysi;XW(i6ZF%@n>GdtQeWPOKK6$s#yI1R#J$2ized;H= zt~h>+2;=Bkb~jwwsU_{S-s5F#Yc-Y!9-k)o`rgUxzm>Be-E|jR@-_CC{5&%|&a3-$ zGV82=?EMfQ)%MY3cDJRTNxjG`?!VhouPxK~{4?A*IWW*-QuXRBGkf%2otIg=v;E3{ z2EP3%k~Xd%emi|+@0jl#>-5`i>yBOgkN)c2ZMk%0y+Vd(vE&`U;No1Hl*gu@j=vTE zaQ$#S-#&fMWi_T<;a48b)p@)2l4xU4vP{{&(6vXFcHi;3B&@u;?(GuSQ}eRF>OZ{x zM^O5~^X`B08F4xv*^g#xbN>zY+q!$_HrI>a4x4<`ndD}3bDEE`Vc;IN$Ilp^?d6)h zSY^qp$dU`67Hb~Qxby$wzp#?K?mpMH>@=0Nlzcm<bsne0W`~#_<vF}B{C{nKFu9@N z@VxA>AJr=}qEhUPuN*VU?w;Pn)VEgK!rwqKj)SFM&TLNd+QKTng)1uR{+8+*^jou< z8NKrq+>tV|zEh%9zMmz0?~mvsaq=0wSIp`&uK2ykTk~#lUq;x~DXS%BO#0nv5!3wi z!%dZ>{R=+(%$Gk9u`{jGC)S7M{(H@@?X$kT_!soz{H{|!W@~+P*6;J3;~8}3!CJp% z_b&fle|^=@<Ew0>L$2tRhDSz=z2vjm;y*R{z~lb7C-Z!(|F(6n{?TQt?s;*_$rVNd zGbC>vR<C4N=JI=XK5njW<(+-(=C{5W{YcY{_nnp^VZ9_f;hfWP<Ht4=L{oC|ZT`OL z`YZf{_rdL4`-sb1x-)vdn@<-!YQ3)9LWf&RZb2@)#FKed*Pq3E>6xG29An4)+b*j- zXzF#BpE>jA_4_M-y}$5&yW})iopX{)&3!f9tls<#nVtDHY*P8P=Nn({dfsNA+8cjl z+kH-@OZ%>>o;`c!p4`4UckdjpO#YViA^LUUkzV6C?nxhybX>~Ui8K1oQ2k;)&!5U4 z!M}Z?essM$SHJ1yulqL>cWva_82{4TOwIb(tZ!#l8o4|R`<(Y}?|zO+o+8bnAD1`T z$^9w#c=7tzevxi_&WwFFSM^PP`=-b2l!~1?ZDnGW*sJHKHg!(QKCwvfmRIs`n-dpP zVziG=`&;zm`O+GlD>kAJ@}=rd?^C*9`tXsj{TnOK3wnx;NxQa8i<Zo(IjemlbKUaD zl#C_woOOB?GhG@B>}Re>3k_9msaiJozQ6T;+uRp*ru`+$yXQva+}^(Qiw*OU_$}&( z{M+^!T-am3{KvH1<VXH3y<h)LUY8Z-aWV3h@KGLfIe}EJxJT#S#oxQ>wOzP!W`yX( zQ04WP@3;PE*!=w1`YtK`j{N@&8519#=Xnul))l>aKTk!p&wRh?>eIIsvkTs8--~hU zIym=?w2Gm}(ZzFpi}o|tr{}l-XAu3TUJ?9l`Bj(c*X!giN_%!iHci=4k$!f~ddU-! zZzgzhPX3#{S>ANUqU5ivNtsh}Px!~L4U3*|@yNlDV~%F~{qDuhUVE-9>(s|rxi91e zZ9*TMHPRJ7sK#r=A)@rt>_vRzl`V}wZ9R{x&wBFJ)6`xt{`{IBUC+FCuU>BCt<tV@ zu4?kddIjx-=v8`GAB#%%q?`U?(K4A*r6dw`Q^MJAs}D<j)ux1)l(MzPLeJ+-`P#aK zrGIK|ZFZI4(`6Go5>EcC4)M+NZVB*~Yhd#H#kckD%@?yOdsD8cE0_P-+>w|3HTl!} zXZ~9~)fRpWR$bOD<goauu2`I#`o^g{|1<1!SY5HJ;O5;)kJY|eY+MwdP`l7(s{K)Q z`DMmoYqxZ>&$xYTQjCZ7zEFm*3}wG&-H5oceP#jo#5+Pq=KCMonr!^j#bsY$p0~OB z$G1Pq)~k!ox-zYEwp&xwoWEapXO_Lp&urD5#Af{C$*fadXBT(G_$+C&5xg$9e{STg zr|(M{r|B4p2-vsC`OEE@Rr~jiujJiNatA&)Ubg&VH}$;N?tM!?t(Ngyo||23cjDBV zH5Ca4(ii0GtDfX37*6wKldMqabNsUI+D#Wuy@h7XMM~`JY8}3<3wmaD@_f{<Gi-`W zPu+YTwq)LN;nhE?{jWyYUP!!b?PtX9H`VL5&t;Qpj*?nAj<>qH2O}PKIw>`I%V;%N zCV75Une|$w%gtIq$UpJqn$@eVr>cnL^xb&=X?>Q&*X70*>297G#h?6jc=suV%Nj;) zle5^jiBT_NSO40yn3vx>_9eR={-Ct+*@j)yb!AdFzA%oRaOB|H>-Q41Vson1rhnAB zUl2Au<I8!|S62D`k0%+dHhg>K`cZMSaxYE}|I1sWwp=UawP8)TA)0&e%^6wsi}KaC ze%!tDGgCh<JMR23V`sgaGZ^D}ZvObk@z3*_;f8l^tmVJrkML?0Eb`uBQ&8Uc=d7xq z{z~EHsT;qybw2JmteO6}!Nc-T_N(~zI!l(E&qhX;?7zaF)=hl0LUm$I=i{1RR`V~L zeyKlvUo2+Li*IlIiVP}js%x{kwoJb9e5JRy{0hU0HXpH`Yt7j?6OXGjyqzG#`J$kp zUOC=2BTjW%wn=5X#rs(|V=IgIOww*#ZQOLt_Ly#F%u{WLR~e^wnANU6^!AU_#;4sW zRo9&}A8Gtr%~My>nZ8Qag|Db$h1+KS;<&OJFNOopUw0kab?uN@=)Ne1Zxh$J@P%Ay zj_O!{e?8}ahL+y4r!!<qmaBL86-mhazA)k9yZ;Qg1;17CEnDM$hPR^qkBT2#ar4)e z!AJTQ$iDt{Q8n3B{KB`(<##>oy)yU7a;}$_Q<*N^t;fIfU#P-I<;ioplqPY<7vFIG z#`f&F$k+Wod>-pH`j5;>*zo*H+ES|*HPaG*6uO?d_k1O<3!mt&08>lz1mQ2|O`oPm z$(IQJy0Gio<+*n*h}lNGGMB&iH?uup=D&|Dzq>y3|L~aepF#X_Snv@)_j@wsA{<{L z_2Zl*zdflAYhC(h+UaM<Lel?yTd(`?uJpdN=dZ&OuTS*5R_GwN$#nL%fXHpn=j0{+ z%~HFzj-SW#_-~i%vzK=$O0w?wdNxw(iSDrn_VWL>nn>Mv{Vv*fkNnHB31{qY_kt!v zL{GnxWBZZ3hH2OFwvyEg4zr)#xUJ4!;;c!w2EY1JKU0et{8g4S<YL#?ownZ;-=%E$ zWAelH*8IjNKX19tPXEuK$n{~p;D3gLdix*Dtka!-_9Od&e5N})pBTT`cDvEmLxG9^ z(!LYEPIu2St~~P5T(LE1rRrvr<xvIY-5Y;?E(9IA^`D_BYDP`BebX=2rst|T%Cj!k zYotbfKAZfHqxC-n%dxB5XV<f2Nfl0>{EfFdeA_Wwo89xYzbf2ue;u?~dk*ti`)s{u z`(xHtf8M`${)EZ(2iff(%!`(i)wPLCkyh7!<o)xQ|JH-kKfQb#SGx8;!@<4r8}n8z z|E+$^&g63Ezo&Pn{Ac(TnD+Be_IKg@y`EBu`?5qM;~sq6y1gj<^W1gy2e;a9{<c_g zy2p>RkABDQ75ws_f#1(w_E$yn`zCv?!_EJA_g*Lo`)p(R@pLec-OF7UO}-xZBA;yb zC;ZEtB!vdc<+_{AEmv1`O6@teI&A-g{U`pV=>KPUaDV+Rr9&_7RM>xOZ8Cka+HUH~ zl`oIg^u~s-|7|+k{Exu<e_X5y2fw`U`=$G6g>=aAwb3&D#pMN-zvPeYUlEw}B=5wt zrDBsbSOmW=`6zU=H!U=1+x(*c49Y)a_x@*Sa{bS6F!GDVjf(n5{B2u<*yZw87V=+~ zE1PNm&&L08i2cKR@gJgOh3+^de&|~i^5JpV)+syQ&i$3T@sE+=>-ejk+vb$muT^Ld z4xE~He6y5d++D^rp;r_C%=Z7S{GZ`q>KBVUcWW#!mgdN;*t%n5o$db1Yk&Oe`Kvu^ z#}D8C46K<K4j*0phiT_th3B=qqXgI&2)_Cxf7$Np-*Uz^=}(R7@4H<2z4hqx=N7id zvT7H48`dW6UqACtLHxo046M=@!|OKxw#uIP;6DRXj2HjkpPyfMUHNDJ@7g~R-+!uq z=huWvt@ycTHE)s=!|O)5sp_9i|E`|>HZ!_doBs#He+I6~Yo!Zr1Uda)r}13N;z#WY z<sUOI+h_Cl2Z{bRKlnE7;G8#iSMoZYblP$2jLWYi8Li3JB^CI-emmCr+v$(k<xBkh zukCcUZ{B-PA!D6x{sm6y<?mfLwlp8tdQ#l;q42M#+V&NT-cHf(+i#$@`p$jVs-^jF zb<=pS*f?(f`E28=+jY-c56gP5v6uhB{^`wshOPVG+)q2i`1r3<%%q*+a~+g_AM*%i z_-1+`(|&9Fo1ZHdOgewOO1jVL{-Gtp7X;35{Bf=K6pxenQN7}6X+CdeIP*G{Ev@^% zsF)tkif7)R&YNBS?fT*Qd@*egreDtWRQ}kvGGuz--=gMw`tScUG}Osw#>?!Je3cmO z_fc<p;XJm}Cn`Z>6Bpjpq%VzAd#!!Ca_^&gYQIX7vcLQe`rElbv0p&;*6~CBygUCh zr293<|0&TeEWiK3PyUDcx&`-=|L9)My}#^ryp<U9YmwE#=YI2<zA()Vzf)tH`KaQF zyv_{U0}1sL*WTFUtXI%D<G1Ge<?8<#nj-5C1gG5m5%%lA_Uc-{zaGEp{;txfe=se6 zlj%Nbw<|V*%cuTcrknJ<|M&Y+{mk@LCc%fdezf0NKlAg`eLJlgBqJT)cU|s}QGTlD z_<eoee}?vi8ihW8W0#NLyLC_4N`13r|7R=yb?s{YAL<sDZ%d^gxtlwAlivjI<NNQb zO<uKI$|=O^{D<_G!>iA#aqSmf%eTCQ^Y7DIPVqO|kGe&e&L1!KaR2jdlau|I)RL(1 zH`R|$XHUuXK5FPMG_UNYMv}dl($43BYlEy5-&mckvwu=^@!RPK#?OTKx4M;D?>NYH zf5Q5`{co-=QQbe8_or@8>H`0lT~FWrXGp!hY3Z7+8r-EnA1c)K#=I7^+n8K@*fdr7 zQQGyqM%BKo#TB!jiLr8q$#Pg&u8;qi|K{b#L&wr$<vq4uS<K$v_B2_gezzjqp6rMp z#=l)7HI)yV2S1+tG{)inG^t%8m%}r*``u@mesBMo{pLs33$CgxiuZFf>^I!;H=A`& zcJZ^yv&Q*0PbSYwvFH7hDK@SBh#dFFDdP8!>E`I>C7!cy-FK<a{i^$=J+C7!?kQjH zHSNL=<)dr=KAY}!vwzviC5xs;6;x$tURtS|e^u^YP0Hq5QL(2SCk1@mdCW7T<DlhN zH|7s(UjFerxcx|E{apsGPZ=iX#p5%V-SQO<-BNA&-RREEv%-u@rIJA$k0)74o!+x; z-xm3oojU1%x2FC}2(K|L%r0(QCKPb#_(duGqqTX5KAB{9a;<mOoqxDFKB~g~xKw%9 zmX#%ILzQ=L-_^Nr9_JJ*Uzz6YW3MVw6Az01^v++iCgJDj=%byIlb;1VEMSxDE}oOZ zQ#d)^?T_J)*2TAdg}hfpwLjKM^ZC#4BJ{fJrAZ~vDrfAm-oB;p#lMLC4_3|JaQu%E z|M6J&!*cAK8*QW?r}~B;{?+rkQ%7n0#C;bt)L!fh_7MC$>Eo7k)<)&e$w%dwF8!1K zW42-M_53yZU%Ri*aWrk_T()hN`K^^@jYZv?g^r!w8D}IT_}%?``+o*j&cCy^tiNsl z&FT6c;l-wVk9TZ|m>+%NW@PNYt9dgk*!Y~z3#8c8zFodz{iDMHAFdy{&Chl7&E>gE zb_zwC&*)R>P+)n-!@w2VtUO1%$ZF+!)oW8NtIfVxi?Vh$t<JArzy6Q#1B=J;vUlUM zrBnn@KGK$$_R2Uje^=y#?V8U-B<z*uE@|x9c!$mEui?rca`|2M>|6Q!<T(4iKAu~- zNINp?^X-GP^^MGh?wl{`OYD4~*cSLquPB&r<NI5DrSB%LxtVq8>_f@Yc>dFwDckxU zUf6SLji=xaZY8(6pjB(<ajGyemTg@5$LFJ7w|HY}=GPZJ>$RhrKAbL8IknMf<u=1D z^OAVi$(PUAuetiDZ^)cfzWJBq+F5lrdA$qV`Mh4p#MeCPgMP!-=(Efr8!nWVROhmt z_uTP0Pj@TF56`4+6Z@y;mR#gij4nG>(|WmDc7J*e`$zFNH$U!v7~WnZ`!W5n)%=DU z$477LYK;yb|KwY^D&p*ljBn4LRdc59+-#Wn!B@uZo@2hTk4mw!(``A&=@0Zf<;DN- zKC<Vl@%qvIP<yvV$=RUG5u2~BNpacDDfWVKThNP(n_N})MQI=F@wl`6{q^fn_mAth z&KI)D|0w)u{UL2%@$e6My%}qiKE}6im0Z6*?vdm3SD$a+@y-eRrmnT(qSJ0kPSr^z z+MjQp%lmLK=EJUcbHC=DjEt{-Req}H#YyjlAHy~;`6F~~k9g+86HBL`-nwh*m*w-M zkMg~FX8B}e#xz5j^9@3egk;Rj=ZHmJ{&@eb;fLvm=Wl*{Y-`~v&)iknMV<>Y&Az=C z-SX&_<k>Z!Y&So>XAxy{QbtJSU<c=(rmagKME(<r`62W<^aJmb@6)nN3t8H}X)l|z zLp7z(;)%XWhUh+zhktLLykWV1+Lr$eJx1n7L9@qk3iGbJ|CpL6H*<xrUT69eUn_@; z2Ti9g+2q=*#;?XAbTVHg+{lPY&9mI&ez2QRMZ{5E`7h^ce3G8L-x-uI^Kzd2g|GP{ ze?mUW_Rfj2>tEr$s9)%o>CwA~ciGI^y0>TAC+nzJ=9A7$QkdYX_oJs*(=|bQ`M<Nj z%(f@8ZGPN;bN^APwyot-XII2J@=a2j_sT&kGx@W+P;Mo+(R=9)Zk1<iOjo{&=ilP^ z=q&#c?Uk>EWAC4s7<*E7>D|RQjCZwH%AUP`>k6yjNy&^S?y3ip3~zca|5JYDNv^k( zox-$Z4`$}x$(q&0*7?&(RL@K=q`CD$iA>m+0)y_$C+p)YpKRAV{{PZH_vz02F1<a| zD{TCnb>r(}3@6v^KM>FHPp#s1bWerWnJpKeIXrXiP>6dI(Ze6ppCk1q-}J80um22Z zFMV0D=CNL6a{08>mNM5$iQSABte^JRWxrnEUi4$W_lKDmuieu%RZCP}x<|?KnF?R} zl+^hWKf@Ir-p=!XcgOR~g46p}YgO3TEH_*GUS;v;tNW++uYah&u&>lzmh0y<J%O&w zd%QbeuAAQFeeIXb^p-ES(FeC}mkL{)FT3{Ml8M|m7EC|e=hnG>S>b^j_YDFkNUO+Y zzkJ{F?bq`5hyNK`R{M3G%HF6`_R+asrSL%FJV((hlPVh?DGJZ%Zq04;JyNr^|H1y& zs_k7i{>vlody37N{^_{r=DQ~*oGjJZbetvZ+r(3W>-5ql1#CDpGd-t)kGGchkv)6- zzw`22*w)&v@0e7$c;Z9(AMU<W))s4@>|8$SRJ~pV+rs2>z8_LCCoVN9YpJN(w-ifF zULAVHQ!nlAq|1A!Py9RkQF%v2&1Ri{rw?6uwp!!U_UbKb({8`J{-sC0-H!3&^rk=D znUC)GSd~qFcsGH!?DNBCyVI5GQ(f1*EV2pK+gzP%bvno7<V3};+iwcILT!HX98KZ; z^1fkD_~ZOr&fy;x|5y{_`uMy+R+#bKbJwb+Ts}!fzU!IxZDl&kM3&61$30pfQhaKr ze^7rEe&lS}`vdZ#sz2V<h(0QOBrkD%WySQPAKdHHvw6SXDZcNhHd}VfCLM8ezRmHT z<wa6=Cob;J;k(3t?fnn+^n>yuQGeWiH2!w{@h8LZPL{al(wAlT1UuL6F`D3Hb93F6 z-D#6@7rmUz()-NLBVo7u39C(=P7!U3^X`_sxOQ#ZtnBM&{uzZ-J}p`MQ+`#P<cDK( zAHEg3ez?l%P1{X|q{1DOPo^C+dQ+Kvx6}0In}CHP35-1<Vjn%ZnALfXtF7HM!KkWi z{f_29FYV-g;Ww6rOr97Kr|^-j@u98Z)_UQ4hZA%7%+K7oQ!85cSw5BJcX%S({Bon2 zVd^(5?}$9^uWQ<GZJ*oge{etl9_QsXsn_>ZF3gx!+Sb1!GiqDs%2%^$XUB7H^G&wh zGQIf7#+c|kY8>i9#}$LPS=Y_t^$JTXm0eu?YCmI5=!fM;-WI)f{BSFFb>xBRJf9Cg zUDI_*qQi0LY^@t7Qe_N|*Hqui{Fqr-yF5VS@)z$U{?q@i%xSQAv9~t+=k34!^$%9e z-}J2CymL?GTIWaI)iZV8HbvabsOno<v@UY_Jf~|L_5?cZ=rhSw@qM$-;n0&`-@EM} zY>^Y)Jnfl%`+o+uJ=v?aNcmpd_bKaA<}N2$qqEnnXYbdGo|#wX@<z0M>V6wm(~5Q3 zx8`+UnXx;s?n<ohx0z9qPl7ytANkntz;NLB)|5M0n_M}%?(0}Gt7kCpW8YtVZU5Z) z(*GF_Cf8?k|JWya>xcHk>CHBv1$ZUPzp;K>xGMg&YmlR~&U68H)(%%~1&h18R~&P# z3H=@ZpW&eEe})H(;`#q6{AfNX_5P@KuBMIo^4s@gx3_%h_Le9v6+Wd9wzun3(Tf$! z3rhbpL|Clzl1R7ISgHM=;o$aXS*vv~{;jUve#ChBFDr?Q6-*lE803DK9{Mr+=r8lO zwP(+Fe|>FhW%{)D?GppWub*YJ|2+Fs{=2H~@_oTG)9p+?)_0m#sxesZ`N+27;^h9H z-?z=W#rV3lhxui^cE#dH%QmjO>ydVOOQZFl^TrXbI!hk^ShC~u%pJ$o_TKog)%#WD z)QYBgdv?u#arTk^4-NG<x({A=>i%*4xc=a^%Z?L1x~@KGv#Qq2A?Eq5J>o~=KSY2w zE%x>9eN$6gxNb|b!b>T$<uxtOSvZ64xK4ccXn#}U<M*<v^XKYqv|7~UQz+W$)HsK= zH>9fX@U49<*S@Tbe{}xPe+K3(p)+r*X6Xd;zTw`pJz#p-lcycJC(mhTe)y8<rR5*~ zOXferZN2hB_pgf|?f;>-{7wC$o&OGec;B;i{fyp6r!F0>`1-r{j-KtlnBU>O+50~f zs2_Z>c3!RV!}N}2jch)fUqyv@SRPbeJk7D^tEI*Ir~TiaUx^O*yW~$aN8pxhp@~<% zZr{eN^7;0kM?0sQ&lCDl%wxW7+UJ>H%4P~Zw7GHUZkwh?fWv12!xVMJ7$(O9>(`$6 zVb-Q5G~f7=?%(6Bvp(v)@UnY#b?JWwmVYa3O#d^mzTW?_{no-Ci63%JC+9w$dE%oO zOH$aU$NEohcz>VY*!Qn_)`d;~8Jf=5<nO!o{L&gb_M2OuZZ??4_L24ejNML?JpP?# zcwq2*$=CG<_y176;`lXQDn^S(M=Gg*<&GJB{(fTnj(nJMDYm9~*VenOQ{M?&{M<OB zKltnM{|r(4gpC50#+58uf2x1gp`_ZS7H1c~UoY{W;b7)J^NJ$r<VW+HXW7jZz0J~c zr=sbDPTvt$F1J}lo(T+JE!GtujsFmRzN?OLQ&+uIjphZD9q%|j?ma(Z-X+-{z;M~~ zL2*2LP57lXUuESF{kr;uQ}^f;W7GXJPc5#Q(6p+8JyS&{C1uX_Q}t3gZ*1a!TUD4J zwNvN*yLk00L*I(~1wS`M#JuyLF-gow)ZyE~lh3Ac9$NEQTvmE}{AZ)1*QexNwohGW z|6sGcbV{{%#y_qb9{K(6SgM}BfA1OlM|jzTnmwOm_U--8z`E?m+(n)`amqim^Rsl* zyKd#~`g3qn<hB`)6~8>3mhj5mmScVI7O_eBd_U^m3IE&W;bHNLC-774h9d3b`}86r z>kqkBN`|uOMtjb-NjYhF>&X1yX{&4*n6@qK=(p<E|5`1v>(k~*=`UH^|A;NJ4Z8W2 z`+RfM^$DAF)Vy=uIK`{exu<vXJ?@)v{_C;X|F~;EWWJNS_xs_yy)rB6O2u~-Pd&db zCj3#-kM$ute^jn>H(8px{hG?<g%y3*T;@GFy8mjVXos6DpXGVcPwRRU6Q-|E<ViSk z>C}Ss;@qH+Iu*X!;#>QEw^x)&y!7<kns@yCvl{1Me!1N9FU$YQXZ|)nv-qtY-$xyl zIdyNp9Dn|wfoamNSo?q6p1<`@ok+0LyWDAU{^s}GKM6bXtPA5$u`LO^9k`><fNRY< z2Ajt`u34@tbc$@7J&s-TG&<dPBta(Oi%n0sYn=E(u}hO>j8C0aU$*?4^uzZ*bkh(1 zj`05$-@hj~tGjtqw5;z3{+dN67|z!2{qX)D7vp1n`5#%gkKSYZ`1IKF<#&!gcULLr ziP2!0sG{d`aZ^LN_Av<oH|-yJA3~D+`6{|J&Ty*kn<@Lsq@DL)dnsp1$0WYzePJj5 zsRmhxznuT3`@viDLsiQgYYKmR{E$2D_u)T7$JUffx}~r0ns6SNXDS%aHg(TK)jdm$ zP6dXaW(&O|Fzd<M$r?v@?7s1G`3x_=Gyi7R$^U0K7+4eg(dpJ(JKi7r;w9pu4nOOz z_Vi$#S?;#UTg6f79*4rt7e$Qgx7%?4cBs1+wY+uN^{u_GYu4qM{O)yncTX&OgU}`Q zSso9{`|j*%6==OD==r`c`}ux`8nX}bhq^gx6d%mB(>1$wVn&l2JBy5P<1x=yRdb$9 zj^*$9r+HAUab=C!huv-}ySL1{^{(Rhy}QEvsvckMU;EeZ{`=~AWv%H>`S{#dz483@ z2mNcZS0CiPa_dV}_URqmxlY+`Q>RL-pLyu$r=2nk95TIUukH0a{*O!cqg3shS?gw6 z9ADzYSAVzapUOXtEaN{3Kjc3&KW0A?&tECEY+>@+o2LuwIV<$f_TJt9%XLeUBTrV> zB_pe&&lYWFh>g~&S?s&>!?Ss!{H=csjs7!Su9f2Ce11iAUFL(}ACjSl1wFIogn#{H zzkj#<?dOlISCn=8&8WYw_Al$}m8iOV`^;11@@6jIe!*-1$=-T~ZE?nzOm;?oS<g}7 zrS^8S_cR5E^Xeyecl=|xzC2_87L}@uo3#(#^Pdrx_-!)l>BKLu<<{Kzqa_xr9Y6cC z;^PnBZ-21gWAUFMf4zuSqgi)W;oZ2vKcAyM{JS4D;rJ~R3;*AnH~nXLv-OYG!QX)| zItwEH*a-D;8dN+!x-D+6koC$C{$snN^>4jD^sP00`;YonPA3?T)C=2$|7@M4$^Nj} zWy4nGMfKOeJ_|aMIQypjovF*;eoyg;?&WFzcl5x&m9cSie-~C%{rI!X=kSdfMf+9P zKfGT2?{1xZ-@~NYhyJN;ZuxY{`6GY8j$gUadv*G(61MtR{?0kC`ups|_kuN^mqbHn zCT+d8rTW1eOOCeJUhL`{b;N(4(b~5%aP{Z<_(K0z_pkr4{Cm~;cT$GSzt5h#nD^aG zwtpC1Hh-Ib6Ti5a`N#hZ2a<E@{NoQP*B^BFr~I-lLiywQqZzzA67FSH*yV^mZS>S# zobz~rf>6c!6?HQI?!<4ET_Ux-{g3CP)wNNdU9UXfSlwCjy7cqIL;ktSI@uE8)s@M5 z;!k<}?ipmiwoq^Qc=Ma?gAJ3qrq0>>Uc1bH=O>xuW0GZ_&A+~B=^lHTxo`XD*#0;F zZhzbQBh!*wW%@+nzb_>IGrUl_cBg*J_d_qIcmEXs`yxgDw{E@St@yVuKYn6Aa@>7J zvclG8p82)gnRZ*t|Imm(Ch_sxTYb0bH<RYtPdT>VeeIXrM;W^vo#MZJ|GA_t*ZC#u zq0iTXrqsW^|7qvnRQ<Q|A5I?NT~$|jg8yH0(E7LhAC7z~T@f<>Jv+!A?QQWN0{J`q zb&~S=GUK8x!b;~o^<Zi6<FK`QY<eQg{zH(jzstw4#SiU8E7l*D%Dp$++S$f@SJ-OK z-lo+FC;8_}H?84Fv3Pz(Fn<2W_O_YlTvqNm#%1$;>#XXi-}c5|<OCkinQm7cnd+|R z9rtqW``kyn<*&2uKYqS#(?0v{xrYBP3;sE<w!_Y}f~!vPy3W3RRrSH~C+6(`5X8^n z@M?Ozpq-TE<aaYob=@v2|GOO}H}|jByZQeaSS3HK>0y1|^H0QR-cp+s#$S)TO<sSM zSl=;~>vZYQ`kCMEhc4dwpJDxue|y3o^|vjvfAQ<+l$l@V*?(LcUEdMqGe`C7#`B3f z^?yR^)vD~@K7VjG>-C#m=^g)M<M*?yUEY(Ek~lxz<!IHs`M<rgqBcD`bo%i2_I0^7 z{!30Czi?v9e}>A7_3;(8Uh_STe@*B=W*}x4dnEtgo38qaYa?o+wO4T5ZunyQXV<}x zkB?27plc(iZ+R@|Yp+)D`~^Ejx90zL`s2E#U{j67N1<euE#^@*4fXeT-}yJC+G_qO z=L5%=^uPRNFM6)`GgI}K)yYRM9V;^8UuM6w-f-K0hOOz{3#`>Xg!k&6_|GseV^ja1 z)`F|c_HRq?*m8c>XV;HU7s&i)IAQk9r~dw?D?7F7)xUlh`e3{CZ|(ChCu~v<OPE@G zJgs=kU-`=Q&*AKUM3~;4W&1r}^7ezrLYY?c+^>Jvjb-isBjW34UNJqoakl-(ugl`x zfBu|y_^Zj!l<l4MH#fbjckg`c`{d7^>Z?;e?%-}uJMp~9F#bI2{y!q+em%L9k8AW; z`%47>XXrns9e4d7SNP%yi~kAlRdTA||0Mla$kDrRoDbMPbN?bW&n7`!<sJLV7p_tM za=X)Ye_nrZbow6=yXuZ<k8U5SviZ2*?MSts#VeU`-{jwQF=uZ2I=jyK&#>vvze&MU zrYG4gwCk;pSN^X4PdG$-T3-G6y%F8V&&|nWslNVLZT|1lJ9i!=drh`I(r5oIIkt5D z+nKdy9ve1HsNY!dpW#8KrgNJ8iV*u)`A5vjP3#hnX3HPRR}pw)x&Bl~efI00_0Ra3 z>#tic{u{Pc@$VXu{x53<kN@7z@SnkCwcq?AIle_N>efWn1Z`&xy<(nq$G=l5r=5qb z)++qTqq?j2<odgN^<HwmTi0VhVRhlZtM_=qn4+tXeEZ4&?~KM)^UbOc({|Olzvlm= zBdej1An8|mQ2tcMKII!cm2>&+=12Y6(En}42ZtP^xOMd}XU%_dHR<)Y-9L(#WL}EP zD!!+>$KF!TQDyRh(4YH0%P?5a$`iP`*)s7}nSJQxM{2$5ClzGAs7w3{t&*4h5fyr* zt8rH{^Q?b$e>DFyuqOO4PklHy{#d-c$?Eld8Mgu|qXRBWc^~UiWoTAitoM`8?~c>a z&KJw}9oYPL<v*cUW)ogXm900w`EIf2qRh3aZBCOkN_C}~0wz=j6={hi>h>;eTFY84 z{ME50@S$V{x1`++$<@xWAF{V`yU$4}JX#kQ{qNFzo|K>U+eCyf8-j|T=zxD0;`wGX znx1g0V%}5#W{Z`k?un9Bx{uCZPTl)qO7qi-%9T@Xj5SV46#o1EpCN9)S?)iZA7b%S zvadDEf4MAwChU#8)E|{oQnp!_|NUps|8eEFyup*{5%U*uFMCl`DB=7i|KDB@6JP69 zEC0NHa5}#Go_y)wYa6rbCaeFr_I3Hu?t;T_eyve|Y4xAsW5`stuRdYhUi^;9*v33} z`RA3>y*E2gSpIqa)HQZm@sk#5KP`N#HUD+&wfP^lLvku7Dfice{FdYj_W1sQK|*Bf zp_g{1+xLV<Pr2n^YAJfvbyb9q(Il>Rwk;YL7On7HdBgSJrclw~e?qzvGLlz<o+ez} z+E8`1@=}rg#Z%4iw9V=TGrqlwd>+SEv4+!5A;WNzlmo|OmU(q^f&=msZ@h?jt#x1N znETIP!E05oO4V-fST*Cpx~jiL*%Rf3O6(r)XX5qRFZjpqt~dXwKKC1ze$%3R<J1qd zM%Fr-dR4#vIXPvT_2$2C=D!S0`gp&6sdddEJ|iQm-?f>KkITvCxg7trG)>I%t+W5u zy^r3zZ!P|JhwDGXnJ~@|$7Zx_u?k({@}HsTlHjj5XR8E0u5b7Mv+XahmrdfsPsY#t zPh73(D1TRZcUwDex8$3*li1YP6e`KtdaXDcQO&kPI(?fbo0W~>_Rmr8|1&()x!~{l zpTXJtKLcl2^M3~0<4-cZ%wKrL&U{u}q3ycg|I1mSV>SO7&U;%(|2!VEZS!yY8o7@m zx#Ar*oD1W$AD7Qwc6(Cci6;s+Qs3i$cx`dM6n|;TkHsF$*5{uFyu80~NtWrB{-&DR z{|qcI{`UN-T$mN5d;RcUW2f1n-KVDgXYgpudDk8!;nB>}<oUDlef(+rxBLGyu$=pG z_&)>7=jrhu?;kebbk$BK`<Cyu$@OdF+-)W~CYLasO)nJPd8l&=^Tx#)&nGHNU!0o# zyFFhtvqkh^esavSt?aFPf|tft)JJV=dw1xcTHB**55+uEdyh%VN(h{C56GUhEYdIP zm|1$LO|t*@S?gaX|2e&nrzY%&Y2K~$!<l<rbJ^CedR@+RNhOlm+ooZLlfVLIP2UCS z@69ewzW#alk$7=C-XDt({Ca-lt-ek0qwc+4pR&2XZ1U!|Si8i?TVi+RwmUI*IPWf; z@H2NCYp=-aW2frZ`Tx-R{zvHY;r|SqWS8vUs{ZEW!yC&!Y%!0|+V7#zm%UdhHBp7l zEJgPTXVaSr+u!vu^YC2%`1`kOMf;I|Mjy?#epEl2E4%dUn;YI4jxIs(jxO%cU<~Cp zmOFE%iYNSX@DaC6N9pT_RjV%6y}mimc6Iy>*A>y3`?z-s-iT3|q&~N0iaDF_pH0Un z?ckD_#;h)@op=6`?cTLZ!ZyX<I&pE)%6ikfBsSygd!v6ueoQ|&PyEN@#edvB&To8c zQ@kMa=*2zut7E;U={>soX!~zxouZk^ZE2Ccdpe(-TfOlEpZn^}s{2Q~=bGJn_WD@( zTb+r@mfJ6HInuH*z_Zu2k!$Af1;UMuv(5|0UY@S)-WtyswEFo{ZTbI~f1G#w&(M_d z@8T`~j@!Z4xBQk=bO{!{d#-c6W~R)B39~CoelPD%;QnlEw8Jt!KfnE(^p7bydTKj< zG(Wg27C$x2dw0IT%d>JGe81P5IIMB{wEBSVmB#qp`#&`O$=-f(ZOMNIzSpyQ=Uj-s zbNu<yvd@!sc5k*jsh1i)$;s_&{oUIWXNVN>rEIg`x~?<5=vR7=DX-Jx+8x`)zi~@> zO2t-w=XrEj#pCWnrn@W|4m=Ut9FBMDNgY02`eXizM>WysUahZNe`nHP{=@!4btf)V za39$<zspYaPvnop$I)xE7&ETPseP>7HgDUji<M~+<+s<Lm06e~xF=P*STQEqGEVhx zdwuTR<j4GN`_%t1@BQGnb#3?e-M`b@OXrFurq=4jxlB(?*`JxRS%b6fW>6$!8Bc+D z{(Ir<`CDSDykoMfR_xsKIbSw++2t#@XDpq@wzbQB(hakuo-;iMrx<covYXC-_@9A$ ze%C#v_Ji{!_DC;$C8c_8hR<f-)U@gKIpUH*rv>vhTT~Js+Uu;6jFDrrm?wVNGwRwG zJEO?0o~P$6Tl?<b^3U~;;v3|}{%BV(t?>UgX~*S1q92)k<~?`Vvh|~JX1Um}t$WWb z$(+9X@s3Hae%-sqskUcF_Vvui6aH*ca`UZQQDOe={@>>R3<>ue>qLIoew02sE5=Uo z!k62nSH9G9-m+V%74I!Sx6tI`4P_O#XJMIpPR`_6`sa{m&HNerv;CX?asAl4`emH< zNB=hdPMc)eb^XhtvjdMyXL06cmwnvwUFf7r;hx0gN_DsY3{l(~taG^j`Pb+C&D7fy zUR$?m_mY1K^D4ei3Z1GH_>9Fy?SZ4#{-g7j&-zr9#~1Q(Q_Q_L``7+@`!{ChvphlH zy!s$}@%jgk{Mn+|H~(P#aOrWt1nUL6Kk6+OU6Y=vTonDX>Fasrsna6*A5XA1vQw`= zm~a1Jp`6u}TQBx$ZvL=D=Wx=Ge6OvWYvdmq$Ny)@^f-`i8L#uC^tkBH++~^5r+?EF zo0@U_^duLB1m4>x&*v?8_oq0#z2T34d8yErY`JIWb>}sFJ@BXM*}mueQxX?nIJPZ2 z@I}ARkJjH2b(iOhE}8cJQTP#k;cV6G&pp4cekd}#s37;zEbaVtiVR<r_BcCk-`0Ix z>gv%&w*~VH^BJby<5;M3jD1>?q=4l~?zw0DD$kp~x@CXJx_kE5{@`6nXH`76h7?Io zFE6S}mo*OmC;fx}@Z?uky-#n=wBKU7*X<EgpZmLoX^jlW*scXmsC<3p+UF95`C3;V zRZP3J+rD7`gNaQ4K7Z5su}n{8@?X7kiaR~;cy8aBc;cMD!sjpRSwE&+za`gib6rtw zw)@}tdjd_bOgQ;mvGS|Nx2Y2v_r@G~8qZuHd0_pe{vRsO+idI~-oGjT$U5Vf*59e` zPR%^65fZT`v`a+ynK8qUpatvv_zcgV-Ou-*AuYaVpYadbwLhc}*701`-{Wro=IFz> z(*E1Jt|i)h|9&Y>a)D37(uMW<XZ|zHOZ``5&h_WL@e#Ms*`MS4+BdsxeVA5LTl(;= zcfiN+H;NCMh1Xoll+QY>uW&FqUs2+l=*RN6Tjr^M^zXJ)etoNS^Qs@yj|xW~i|4Z0 zYo6LES;wK7azu{(oZ;*EEA5^3DgL+A-T$tv<NvWc?8BaIaWX#=KRk}yIWM|>OT*uF z5^Iw`T{D}Qsv|PFHKy>&tRMA<=6`VC-*<m&+Vlr^^L)!)E}6W|_rFr=sB`SqyF{Dd zBh%R;auW;p-g7$qeZR)JHz~}gr=(qZ7-c-&_2<d`pUl?kMG0;G6kq-`=AZAII-ZJC z51Y=Hre`#kHL4t5DEqCs-*2a=-{%Kgw}=aSuFSqR$-`{X(Y*4_b9x#)4?MoLf1Q4J z{Rbyq<A?T*dotI*winhd<#j(iPk84?*0p=L%}D6WTs!m1LG75>)vIy?%C+*Jzk5*p zvHXwF`G1^0KZt)@_2c#<evX=i*<tf8-FMr+cXQjJ{EaJiG%gaHKFK0aK5NdOnOr}A zc1nnT4}2_Tyj<(9`1BJ$L#JQqSu3`tPQv`)eSYt>4+jgYmG}5C*hR?n{b$f)k2~I9 z_4{zp5Bs$HTbCcQo)Xy+ezCjlKny42%ihB*W#7(=eocSl_}ik!?8naEZWZ1S%lmqk z-TL+I9{1f%+Qwh?r509%<ZEx~>0v7Sb0GX{p#0(Z8_ti`ALAGKcg{}YM|}3;ABzus z^Q`^5TDB$7Q~KtK{=9A99pCFQwR7$;pC)OvWWtf~&Y6Wly%Dzc56=g+aXOmbu9knk z@OO2_HY@hGfsd`Ti(7pw4>g}ZrTg~AocU#I`n#SAANrLU+^|pR;)KS_#Zhces{TAy zH+>oZA$W4y{jKhuad!heRlgpYl;b-iVdFAR1~z;3xclW>E5CP`=sF*hVq0;mvOll$ z;cn~gpE-Xn+}L$Wj9K!uu+oQ$W0jBgXFm8faVqE4eRKLhZu}(U%vtO->+Z=qsrj+> z2X(%@ZoB*^e}%^R*?Kec=ACJJ<$t|^Y2UODE@$eD&sGW^`ng@t_&V3c$NOV=!n^7Z znktCx=d+2l_$d{eWO&zsGvn+J#(jIwKisVQ{b==Lh3B~sk2}w|<dC)BwR~%x=^T@f zrMLcVvv)hazgbxRaoS$F#{Uc)a@}@UwqJRd)?oNgP<PLI$^Q)dF4oVjnfg2V{NJe` zw%PM;YM7AyZM&epgHU#K(<y%+b{_YKao2yxMxL&I$j^B9;P<t8Z_{`$vso(h_Iy3% z;b*IT%szj$r^1K0-l`n|-@BPVes3xC-fr*PZvS3t&!l^|CV&3xaYkf{>WkXUhs!&D zq#qVr^ZMEQj@HMjLJ|j$uQ;q);eL#_&i;po-rA&7KkHOCZ=W!geNEYQ4dd(5X^Hoj zi{7c=51#k@&^(46+XDYh&CPogJx%cMEW5e?KCQHTdu`AD$8RS|&yCBj`MK?%+9g%h z;`4Jww?x|QDfH*&zrW-^!}^M6v$J^rGepaYufC}^|HHQTf!o}t2^O2JELv6NF1KP+ z0$=l!W1PP}&ibkDl<Mn$UdKRX!n~h<AH1mkdeU<JmYRU?`X90*%#uvRow73x!WXzF zHOS33=qdd9<@~WYuI)Sa>}s-{>FmG5U0NVz!Vc*&g`ameGb{}B7CykXKl#JA%#cZW z$B%xLHP<TZviZ*t6#wOS!(E@gdUexx@+|w)^SkZ0xc6K>D9>$@-5d7t&$ij8rIok4 zzf?W4{7IJ$Pt$#4{vGQo)?bUi@%$gh)sOm*L;u(d*x7OZF?@Ks)8@w;rngttEh^rT z7akL(DDkv$I{Uk0hxV`d&(L^(^Ynx7Z{9x?Hjn2=@zUs*QMD`1PZh9UQd9J4ck0s# z^SpQJ_^Vv(U$a<k{mP52&717i?UVNZP|k1MC&H~S`zIq}kN+c!CU2RdbtShg1D=-% zoG{kus`Az^oZ|5-{AT=zK>ubt@sIQ0*nebp*uG7_d`af=_$^#U@AYQbJeGS?u<7tK zmjlIHJ0#XG*q?F#*7pbN-&}mK`O*EZUss|+H>c`82uRtrtM20M=w)$kUk}`3^Hkva z=e<9-|A%(}(fhZG9zA~epW*P)*@yNC>{64|eK14!?W1YOe}$eB>Xz=wYto-AU*#SY zw#VZ7T+iS0jW708O0775^*mGkLANco=?}zPN_CySMc)@Ro0*%tdJhN7v3ECFjAneF zdi#0q{pV)l$xKUU^i;I%{_Xk4^+(TthMODqf0LW88TwmywLw|f1D(qs&i;G#)<5>p z{yBe(kH(pPXxpsU`TXy!X!Q*Lo690YDsw^}UYMFV=kvY2n;)Kk>-*9DFt_O0&j;7s z;+!hQ4eI*b;z)ifqIHMQT;Se=(seT)JoqPG+_g2bb}s+se~K|Rjvwy7`TQWhZNA{1 z%asdX*D0E%ZdBsdOzGLBb6`S!?ZyU+Q=*zXjoi=I=gg^JBkP{^-M)9e+#dChvk(50 z?RV<?cI~(K-aXmf)i-$ZCd9ZbNj#Ww-)O}N9uJ8V$9OAvgw`__EGe=3IweCRW8(R+ zHA~(rXIRagI$_Ek^K_Y#b5?y><#U_a9H+jYR~&NhlS-e);+P4=`~Oa|;`wK?x|q{% z-=4o#{A<<bel;@p@K@Po#_(j4g}hfooHuvN4!MMImgZxHw@qbRzP(f3KIL)I6XDzP zkI#mu1s&Wq`Q(3wuUE8c88`b?pHM6Pt@Sgr!Q<E+xgzWT3|3bzzMpjHtDdf2-RT16 zoT)L#URgesEePCrp^4+1^)=RYXCE$6&y!YlP@j05rSV@qSF&14qyd|8Q>~TMxqvs~ zJ1=>!y%!rVeJQ1KneU{tHf@<QQ*ZCs{CU6Z$@5=-b3gQ3ShynY?5aD)m9xH0UGO?* z?u0upFW%bm>*qAziC5&;)`aV9T(oAprH@>wo9FlE{m<hQY7}>EvNCTiU8roi|Ke9( zbBPzb_}1HG-g&H9)BdvSZ}$P6q{T<RDE+%M=|98C=)e3Y{uCUv`lH`jcFktf?<MPh z#QaJUZjp{&u&$4z<ae*?^6dF~pEN~Xcq}FvA1uu~>VHqx@Y0Ue)&CjvTqid-@!Rs| z*Jmt!a<)J;u+K;&p|<dK{EO-(Uo!qP*knEmo#VT@_SvnB2j||d{W&4~as91-Vq5+$ zG|lzoQ@)y8^4FDX-fA62ez~1JU;k#mIjffPnfbZpgX^d2x7DuMcF*X;ysdIieVq@V z<h1RMICt{rqxfU{XaAdQAsVc`Ffw2A_J0PZ?*9x=0{`lMNjQFLUV6vE`Y!SR3<py7 z|5U44_;+<l@4pQVe2gd0FHa7=9=k_9W13(6ZCh=dW5?fpGW^f*YGG0@)0{HP@9Q6( zxa9HgMsHX*@2c1hsS{70bGP~W_3J8ev8cG^856R?0%DF7c}!C&;J?uPbxFd}6M;J> zU#S1OI!J}1OMK$%+kd{V722qkn{(Dz{Gr(F6&dFr<=P*d7=PoS&IFqeFSU!gPKzW( z3b}WwaRiAAZAdbhZ-1Ai!!*7{tSWTN_gU@DL05GP)GABzRh87@6)JnKJq-AHf7j2B zzb_2`eh8^MRew;qCNg*Ny&BJpU%Ov?xocRmn>Xo^XXmHMC#F?LJ}r%(xxZY+!{1(y z&2ZN5!~eKk7af08e^dKdmCdZKt<NU@ox099!}++;?b}%sJ=7+6F&dgQ_PKxj`$oXG z^8NJrp(|e<n;h6bxBpqxz38(_XB-n{wh5kSU6jEby_)gUG^g2)x9-R;Z{m2Rt#tdC zopE!=9_O_O|1-pFt#vcJe95|%d1;k@kI(T3*PFI#dy4i=Tv@T)eS%PV<@L`uUJER{ zH^<#%Np*3YGG|Wy?A0=J>f5jFwULqXo#&>v<jUIOOK<D6YC^Uo>FmjTw8A@C(Z+R+ z#(`gP{D*eG75~=vcZtabw%H$rk9M&;>g`|cdwl!slCPhaK8ib?Y`SmOztGc1l@9$8 zm}E3zIZJWd!RMdW-|ZLtcUFGWvdtgOzg6$}@V#Y0`{8(jypqQ&m(IC$Bl~o2xXY{x z?mH*DCC=XtjI=v%KgaKCDVK+F$2WtzUuK7_F2}vLw_meAXa8-XYj=(={}cAnb^95v ziKQ}oZJ&1q6~B)z{C9W%cFr36qxS{8$^~jpl$6U<y}ul_Z|9GXzm@)-+rQau<A=P@ zN3C-2cW#+4{`yiycGT_Fu{UN$hwj`y+jDQ9ho|Azxs!LF<Vh5J{Oq%YDBFJ1{TZ_Q zhvoV9>Hm0rxK8lW^9x)0d0$6Oo133pS@V6<qL-U(SK4RqzVZIs^p^ATGYVE49p5?C zS)y0VR9q+gLFvh`zCE|+JG=fa`*+L8N@u=MzPiHm@3;Khp0Lk<bbs+Yd#N|k|F~Fx zhv>xBK3lmUE02v~--m16DmnGHB6J?8e^A;t=Z7nJeZS>CwIAW$KWZ1&lw980-?3|t zmU69j=$46MFBjiSY&zt6=0v+PU(NM{2jdvN<lkoh=5S$8=x_UbHSRxBANm>}zGwfV z;F-SY%PP_36ZsbBY}7tkn9mbwl%_j<+H#&}`bKy6SMc4-aBG>b<F{4oV!v_vq4WP4 zSQ&o&Hd$R*zVMIL&VHHW#Sc!G1%LW380&n{)^6X;wX)vd-v5}NSj@G*sZQ+N_OODO z=Kl;FbI(+K4xV5$H%X`Fz~jqZKb)dl%$jOeh8+xJ*K!YVly#J8(yABrc&*zyA%J(^ z>`dw86=^*u9Dn6A?MiNF*|PCqu+ger^Q$xGZ=c_hxK)4sAIlH6M|$icb#lLUGr#`y zvue-$GuKl8GrZkcxaLj#568D}ZmYc8@X@_v%?+9V45fN1kM|j$_xkfIx>GSwT-Dw2 z@_L()5BE;XTzsSIk=P?VZ{PiEE1z!g4{_P7)xYwW=fnNC?T^e8zoN9`KSN8=e}?eQ z`}@+oBWv>4NBy1qAme-P4v*!P&N_>=l{6$J&Kbv7{$c;|^<(>Ez3%dL748q`p1yJG zltOjqKE-%fiRl@|GVz(0Qj9jO<~`o9Q|8?X`L1b&rte#o_q(Wh`zD`CvUV;{c_REK zWvj&Z_18gbc*Kv!D#i2N|HFOdBkP~w^Q&II@nby_%=+6U`QNNVkL#?D-APYQymb1- zsjxZj!N#jOKIgxxotnG8CaCMC-PH&Ef~&t2W<IvH%Srz|uWruFKiQAg-zt8T|8{o$ z`pjGMZ~iX$vD<6wMxp-<nRe^zAKrCM-;uk||K^!Qt|i`k?7r~Cwpp<4_uAvRx|iMm zNJ{OpnvT8g<$tWJug|XtKFt4!`|M}tZxMZ|`9W10cFXrKcz$WGR;8Yl(euKcr)B<a z-Rkk@`QO<#+P`D&{MhvVsQs3*&d1qj88%G1?tfA7!<z|r?|7ZNEPWzxox*<x*Z!v| z0;eQSPwdwz{x!u;DZABWQ^r2?7Oe+seyPn@eB6_CJ^UDZPIA|qCm+pQxBO=ieEE-K z*PbTc@PIbYoHhMIXL<Ks)OOkNbDHfbnf~27i+g&$l$966MY~s~J@Qy88Fo<epz=b7 zuM+FLcG_z0UYhT`$i_KRwL<^+pYtMnek@#ld(N7F8e5t7%oEr#UB1PtXXhX7nOF9i z{n&M}{iaRms#|K7+5PRm-ZaQB(R=bw^vkR1ZYM2Fr>?HJ?D*l_;w3Mu-YuFIZuR!& z#><Z<o|@e~wez{5`;G0>rT6itnl_)*v^|?R-|OEO{@HKpY%BggYF+lDHDOI?`QPOS z;<UC&9#_}t-y*lerf=%y=(-DbM$HUAULWe;-H>OJTX*@(q#G0CK0dOScsY;v!{7T| zd%{;Po4f4Bv9uk#c1&0j=*Gc1xAOqA&8&-;Y$B7_#@vs1Db;k>cj-CZ^~zmNXIYM! zPH|WGCuX?If_>EnTaGnLCphoC^rJ0o*Yf3GpHv)?-xA-w@X&mT8k?EB{(Y<UyZ@iT zEh@Zr`Jd8{CQEtdssBhfE1a)?L|5|p<+IzJe}z{kKhiMOe6O3c-00-;^WU;tpFf#? z+S6=KkNm_dA19u(y855NX2)$M#q-}M`hOOk{P63g`1U_Si;ooE3iwn1K=jLhhQ41@ zXRyDm<KJQb<>e#qN_)9v`PM4C-jDB(Oy^m2@4WAn^?yEG&*^_UJ?i1Y?U!ZU=ceb} z{Mu&x=i1iXFY9@}PWIWPz_&JE{IhmseNs`*yNu1Va%<$P|1-4NHD1_fU-9Y=+rQI0 z9O|F<Ezef?V`y4+Zt8E38fU|2+OfXj%Y|JYf0=Uqcwt5yS5fGeY9aT)ZxuiOFg#j2 zpZACE`9F<oetzlTf7<nYTDbVGKaqiFSMJ}?zm@;3@<$0xl~-O2&pCJh%v-bLKSNf& z?8yp~*Vesm&mJ}^X{?>)ZtdnL;y$_Y<m06^x&IkB&NrmE&f?X&vbrSWbMx({wOz{# zAM&$^1<fj2sNOWmYx(lc*KIas)=n#NH(h*<{f_T%-#@|W5wm#XpFLr}tY$y|UA9sF zt>Q;9%TI^yy2tNX@(eP2`iOfz$B)#Cj<`dI|5e_Pb#uR*vsm<;|AV{sXVSJ_`FcC~ z?~BsCZpQDwr;9kNuKOppUnq5EqSf&a?k^PnE~(QvAiAtgNM?e~i6rNV=PgT*Z?rg{ zb$Z|5O{RCb>eVAB9TI!_S<PMUrK0@W8h-U=y{8QeKBo5sB+ILJn%c4F?=`LyjkQsK zWOAVS_&qb9!v744znA}KxbQt~Yo(d?F5_vb&2N9mFSvGpyYBp{-?}@$oYyIw`_#?f z|7Yg4neu-`<PUhNPc2-Pv2a&$naK0~Ve6Zs56f9hb)WuG`&gmq1NpZcX^$^|zji)i z`+o+$eQI&XpXeWxmpat)oFSv=>wkuIx1zr+d|I)u(|)GDY~!oCd71OK$G4cuNNa9+ z-BA2**_-W-lTX~eP*lsBcf0QPKCYcf%JUBPFSrsg{|a;bgyRpkA93U9{@8ys#o(CA zr9YZ_wx50}=3f_`U;W!I_9%1gtNViaPyIx;UT^=S^H`_AxK~Ba|6$OkJJDr@e>yAn z@V)$3|D^7A=6{B*+gdADeQ*|O_}=%)?5|<0j{KH;-G&D?O)lSZar=+(2XEpx<;^TQ z7V^<{>OtOVMitSAHwo4L*&XrmSJ<k$)53>8-Kv=E6Yo@`y==Y3vHG%$pWjFSXGpsq z%X3eg<=4OT_qyBPN-nimI`!D@%<`X7H~nu3`_!;*+NpkH{g3Mptn1F+vvm!*v?qP( z?G67FAD+1K__E=>rOB`CH=DoJxn{J!eV=B=w$GckPf7dm_TGUTKg%nnc9|JpS;xQB z{ab0?vHGZkad+;|{3{gwr}h%}+i9mh8CXpc|C8<Wr}V>{`YP>({}~wM|Af{H?-$%> z`|tLA#yZVc^O!$g@3`%9ZI3<cvemrTCfnY>nWr=DmB_S=OP`)SlUz9Oo@cYpgm=9Y z8aG}rt!A0OJ^yWeKGWgc$ER0Dr0ac~##8b5Uv0bBU;f5F>c`WsERW_65`0pY6~6EK zzRvmV$Nnj&&J>LZI_ebkJlxN0`=g70Cq)0r{E`1iR_pnpe|nAUOZK{{ZQH$VM{`Zl zQH@(CUY|&CJSh6FUj9QI|Bd5^?{ADhCizGG!L+as$GhH64*zhaU+G<R{gzcR(NoSn z%Dp)?wnJX~_$1HuyG{CkXr#aGOkBy9FR6Rz_|}=J8#X4mRsP<v-s1cEdH)$6?7J_p zC-LL*hxP~8citC#-uCoMuit+LPtUb)uUSgTdi#qXQhwS$L-NgpZ!fQ}t&Z`2ke5CA z;r=a!Ld`vKd)D5M)}0d`wrid{PsRBuX){_I4r?ygf974X{^Gtf|ME=kmYqMePuP2| zu~+up<RCt!os#$3?V?uPS<}j|dtCjBVDz<H-@DhYUA%q!zIhst16DOXs9C_n_?_MH zX!MW5Y}r!>lOI{?@rYM==;g|(PP((%z)`1&|7*(P=8fJAj`o@-zI8{R=XK1L5wKe# zD5CXd!)2xiJUqPZ%$N3ypDDJgsJvBnedqVn2CZh7C;q?kH@*8{*geC`_77#Q)Tn)k zxV84{7xOTwC%&9}cL~OHxOAQQv14-O??!QEty9l-@ryaH&6HEQvVO~d2L6h+wEa6b zUwbz1&<{`UI}uTu(GibR5;l4z3)*CudHhVf75(hlx;OizPA`tD@Q?oCxn|jv>7GSl z(F#eE9tnLsZc{m7!m0fhg_kST`FumKn#A9HfAH77wGU7JF<gD~cuMT7)UNVvNkIyi zZW~+oJW5!yLS}J~jLerCckkXi+Up#@`(plWUk{tyykEV);yZ=zoRwixD>ZwQ@=&pq zah^fl%h)v%ljH6`(C@S=KVtB!t#A7V)vZ?wJf?5^bX!na$@>#0!@UJ|cVADvBUyZK zo&DiBwI6{GvMayrRSw=AyyBkyJH4LG7PBOj+(KAV1y;nQbDiJK-ozgN@O@_-<Mln^ zsSj`GrmF6rmllzG$78+vq++!LuZ#qk=g3{vjVbiIHNXF#^_BHs3e}bhaoY6iWhSd` zFqS>~xJquu<Lg(#KVJVG_ap4=AMYhEI~6<c=ATwJVlVG-mEiJM`QR`4XZ5e&e;4}p z&HwN^eoxZ96f4%x3I`7++uqV(mpB)FCH%<!jphgT^VeP2FSO63M&io#H!mN(Z~Of6 zqR-Czyq8|Fd3!EWFgvL<&o$w<2fOqxp2B3q)7-!R-Cx&kW~6o2_|tONAI=}O9v_}w zFSw>ex?_)C-op*^L%5}GA73dQXg}eYr;zX2ye8j6#&RMn3w}iXc0VZp!7sndeE*jJ z42Rb@%ooYm{o=W&a_P<2nkK1t*Xrsk%?eQWoOaXZN9*oR<w&njyHj!=)NRe!zd7dD z{y)NxAKpJ)8+Ie|)vxdUCAHCkeL)*%=<4UIZBF<k>9j!X!U>~?j>k_$Jlf0st>dFy zW95Ga*6_b`Y-%5xc9!gQx>X$^rL@SHwfE}N2CWN!c6&^3<Lr@hWD)#O{HSVc?JMi- z{|wCUtP)v8u57>lA$m@Kv;Bif@f*Vr`9^&|c3;XSwe(Rwliw_-%<^fMrHf79{=Kqo zO~2aw{Hk8=6P+?{mIs4(oH$TqC-rx4eNun({f)o=*fl>CoA`85=B&4C|6cjzUv%Ak zT2$kwWkuJ878&+#o6xn&-SNQs_5UPZ@0VI{pFY1ko@bwW=Jjo1aXeSPMAq1gzMGeG z^76xvGKbG}If@v?xOlaB&OXC3cg5)*x$FP9^HW9NA6n1<N>^d#JJYkteuX<DrtT7m z(XfcPGrwGxlX-2$kC<C~J_ZJ_tp4)(^>-<+>3g=k|Ead${=o0_e;nTvmplGe@->l) ziu}9#Xn&zZh{x$uy5Z7g63f!um{o*(iu<O%|0Vy{`{DkMe<u0uv!34Vs&U%7aaZTs zK>3=owj(izey<lwN&S4K?#;Qn9HEA<AO17koPYF|`kT$a`F|wUcPrJJiGH-$)8*Fs zq%AvoX78d??Ku-47fMf^>9ry~m1Fnng&)-4%>B@PsD5is{g&&8)=SnO@~$jgZ8vev zL6#3EMK`|^b6p(!O)W`2Y2i)n)=xJj)EL$ao38(N;mQ0zw&zY6_9W`nPn`Hc`rE7x ze;2;rdcJkm#9g~T<~2Uljd?Yl>5_G|zkYC&S)0VZ)9QMSY#+as`UrmBcyj&ue$gMt z1GfF0YM(AIocU?S(f%Xq8)mw!*uBWe{?vmtc_+LI);#qyGAIatasQ@boxsh1_vJ;_ z*74jqx#Goi|J=oH-?e^vF1)nV_`tG9*6FILJ#$)*No#q${OGV_=Z^mjP1zOFVRM(b zf4G0tGxmvE?h0q0=xm0M^E_ErusnY^=d*-X-0z=t9$$YZ*Tqh*pEdF8zR3^wZ?3y- zzx960gYBX9f<HpnS%mi(igB#ovtquDp=41lqfGb{_CEst!IA$NvU8=Fn6|BcczU7I z$)_{ReR=YXS{GaIbMm{Ul0N6z{sNQL(vqO_dxcC~49?iNe)!MumVsaQbl&z(KAY_g z4{{i{{rY5U&ussoYkKCx{|vX+AJ`_er}3Vo&dn4ZHnCFyZf2)us1{G+IA2#B@9Y>g z=fU*(kL!;;pZ2iAT<`RM2G9Qt4F&ZZ_ui_||MvT$&V!r$H}}M=HlzyW@v<#dvA;Vp zd|}{08Nnu_>|fJ<r2jUk@%S+RkBIm2`Yp1*BKmoL^!u2JEll5DJyCh-KL49n7nVpr zDyS;6_RoK+cggs}^M72*t9^D0zlj&fj}aAY65YCevI2Ym3fqd~$!F_>H`FBln40^a zfpv2GgL$hT@%q*n7C(HkKJn7id4(yHPO|h|;+WyJyW7PtLU6|%(SO=Ue_vj%nQ_bQ zT&~re-P!vm+n?wD$K{_{EB`k1k@wEPqkFDT@8%Zpn%4I!r9k3|(2f9ymlF@1O{`FQ z_1)vcyq&q#+>=-Q@OpL7h%YMh?845<S4WN?zqD`Ze}<-6nHMYSAFtc+$(dz-(nq~z zDUqQm9gl;jJaRCbw0tq!v2f*{S)b}V<0P)`F<hK+ZP(l8my@^L3ca}9K!SauVqa*+ zg)cqF4lEDcEHiKGU*!W=LVZ@Png2<CUZI}q<ztt+{-ytvPpdy@UBmu3|3_$?GPB2w z$?LsNH|$-rD0cB2A>$kK+V&bhRBx_{+b@!*(sw95=L}a*YUhmS`;3p9{$l>k@bX)j zJlBy|^J2>XDPECQt^2gLtFOq4=Rd>O*9(70Km0!Vk?xhZO&dD5&oe64X^@+@Xg|;K z$LpiE{^`G1U|L_y{Hgofv=8Pz3YTkSxicrVM2a*NREG3cJpXvy^hx~o`-kJDd_UA3 z51sBm(QW>kW2$+4VGm`67ykR)^>@zSRev;#i<ec{JrodiYjQF?tr;P@v3X9PzmHs{ zX!GyjAAYBg*l&Kfv#^Nq)7#wq#f+gFbT_;!s5pP(=J}<?Pb;2FUHKjJ^7#2#Q}^_r zy5Ihf|6@%(Z=G~@*sYRdtlKVMIl*x3=EALR>horvJij-&ruc(+Po8c~eEzZ<K6&Ed z7iTC+JdHb{E%WWk=lFH=L_e5r>;AC%;rq69hc^>%x;HFHS+Qlp(~5r|B-T%`&+PAu z=gs}kkf9s>KqheZ4pZrl$sv2T&N%YHq|kMCcBWFoX#)-OZ3Q!L?YArYs}?IYqsOaP zw0!;D;-f3Ox>}c1e1Eh4w_uI;kBtu>W`1N<`>=1m>E}DHGp_%3s<>sTG;v{Pw~oe} zkTsWAp5wbQLp1B(n*R(B=E;BXm2atIx+s0<pZJHVQ`=_N=j(2c^%t1-FmI_t?t8n7 z8b&4`&vdq*zoWB&)ndKee}<;&Ka!WW-se61cy8J4H?wqiX&)6fwpp{fLFB}p&B>B! z>i2f#-&X#|9sZ&FTX^I?`HD2NtEJICPS>gmxMg<>w?sbwx#7)ihhFB>(|+&He)nu~ zTXT<{TES7T&HJ6VUD-P0k2cTiDzU3;o4Xs88I(0VCK%c>ZBUr}GQK5#+x|ad?T6>{ zm#q9Ee{<F?dy%+FNx4-XcfWK<%XG*V=slHxv+0QSPKB<Y`ycDS4PRS#&CY1&p1-SV zT=O6D^PW}M?a!Y1=}t%LXGZI-+DCikUKood3UEq1Fi0|v=l^#@s{CNSXy)V4AKvSu z@7%oca&@ZQ>}6BEGv?V_yw5J<3Tf5Y+3Uu~osz(BRq^flNz;Xs*Zb*RNPm9(2!Gdn z!TlNX9hr~%yJp=zwtnTSprbt3r~61AvR=Wp&}ord%hP1n5ZSUOPrKAdx~5-j<378T z-^o><#`9RZC&(yW?ssu$$?9dz0c~&Fe{I@Sv$xJkUis6y)sH4^sk6IQ$*Qt{S3&K( zpvPYl<K0CwKD)aVc`csu=DP*UJXhX^9X4NN`zjvyf6{(k-&QtHV_vNJ(Kr=fyX<Vv zx~ut1V{aV!R=j_jV9L&I@p_hwK@9BA64({OXZ|tzkzc*iH~-PxAe~za`GpM5&pK71 zlJIAz43k|>Rq3zk0hh#otN$+4bKEKJ%X&u0iphCJ$vl-%>BZ+>Jh7?F5n$E2-9GPY z&9YLh*Qa{s*0LU3ZTqFHY#Q5xpS`(>3|qH4Rl9Pe3ob9%-CyK+wpi)cOQYFS+}Pe( z{R+Dos<_xmnw=};`K)KNBxd$2vpoM(FZHg)O0KrjdbUBFUrNf3z==J{J@Oy^ZCx}y zWf{Y*yZ(tUkJYa&?i2`M5-74z_)z<wfopGOuIjN^wue3Q{*<4W_;q<oPWs!_JNKfm zh2G(mJaOpXR^!;)jVD#if4+=(wMl!%<%TN8zt+LCS<mFTv&;7{74%-YW!biL=k%H+ zAtQnChT@*jFYM>~<qMTOF7uD6s&6g+eI{Xb^6kEgwNo1uZXKQYL88F@RBipjr5dHO zX1feicBC+J&$}Uc{&Lr^+YhEKX1#t`)+)P|E!X;JRo`4j=4TOGdF5^gB>2aeOv|fg za(I>fWM)pjvRsMRJFDIW+t`Z_oH%CrZT;f^4C&oZ<{zA=?Y;an+w9d9!GR5>x4v&T z-{o@t$MJ%$%9mf)Z~pLE@@vg|&Zz$kdD`#G{`${+T(kLgq?umR)l+lUzE00S@|(*n zcd@M2lcF6t>vMW8KiqPgOa47i|3aDImT31ghG*-SU0HUg)c$nWmPuL1j?FB)-BG;d z+j`}{TU41Jnm5=4>QtYRI=6huiTYie9rUhWSNU0MCH3V+^1;_J%inskM6G|*zS85> zTD9&+bLBo3H#yx~9I^3y&O6f|-}`RXZ-01d{m+>Ae?HS+)m{Hmd%T)Ybt&7IIjQo0 zrtUwh{P~#WwTPCEqUAfDO$tv9?pwCwui48tMgih}k1fvc|M@yLC;5Df;d2Yy>>o^l z8UGm^kKUht&v4qC%GDQq<ORRVxBq8|TJ<yMZ2y0T@THbl4n2zbV)MKFKZETmhri1I z8JcqM`>v?FAbyW0dZn&=myPlxUNL*kuFWwgMa;#Hdi-o&9c>u9r}>1^{_wB5`j7RG z|7W<#X5HU&eR{x;{^%cx>t9s;U3$q?q<fXo@j}tl&O&dTm2aI;QDEG&>;mKSpF2M2 z_t<!U_|I@us=RNHWVPDt)tTj-<*DVIOc82M1+O9m59loQ&^mFZhifDIdwa?M3<rJf ztbc4iuxokqTa$XOAN9c>S+`89TDN=g%iP=*vCc*!Qv-gU*|7Qf^fN6yZ@D~DKWkl_ zZ+pqM#!m0b&)EIzUw?2v_9$C7{ej=Q7lnVPKUymuH^sp6=9<jwvz%6aJeJZV^ZWCK zu3zsT*1z$5_@ANcK1Ydu=RT>O(;Vv`tSx=d>^o7s>&x%y+c#-hDqVYWTqC=nK#DEk zz{c}OcGYeDR?n6FPkPgK|IHO`x<-}}lca=~#;twBW>eVvaIwP2jpsNLjJH2H-)}Fo zPa<<-Mfw3djs2H$a-LN#+}3_VqhIyN^xQ@j|J{F;!l$t5FdH&IvCiH%Rnyvy=kx2N zl`G>szG>&*Ja_+}NdKY!z6)wgzv+v-4imfeXOX1Xt?NG5zP4|<oR_;!&QN@o?t-a# zN@sc|dooWA$+6%0(vENENArG@`HVm0kN&gE=lW3{_mRK7<UVhG&cdCSYkVKPF5iFo z;boP1ip$+)uW)RNK69<(+Bqp>Wv13T(e6jzkD7frRbiA{_2b3Ij0r!=wDryZ%GsJ- zy%t?DNr6da!ilbrcN)JfIBZuax!&QU_*?If-ADf!U)oduh&Sx^+h4p#-`-tQwoPo> zv_<a&J0I-ZJ?$Pxa^Ius6?4{HIwQ0F!`tU(AHM$j&oKX)$i^>=>(dv0mD~Jb^$|Jk z9}9Co%s*ByXyaeM<i&pm!7ugvZ+1?)Rk<cQ;KI{+x84^D9h6&|TeN<e^|IV%Hg1U| zhDU!)KT3Q2@c-@hL-^Z@t9;8J?-h>Sd$qLl?baP{u1C##b>{riSJS4qa%`ORh<oOu zNt(xQJavm%v`IXFo=%;`k6*W5epS8Va@}00qUurhOoiTe>N`Gc&b#zZZOWfZ{&GyG zwNsym1}a*d_5CRP=zfo#_A4=|^<BxA-qvqkw4?3PdAAL|X2<xqp37S|PrD?OW74A> zPwPE>=N`y0FoYOv4tkpH|N4a1GXwiY^_+EAZ~6EAF<kcJ_2K$W_q(_9Y6te}>#Se9 z#>U>JSnbV{jaGM=+`_foIF$RcgTLi}yneL5M}GVC?tiMU<0P)yFfO|J!`koidy}<g zD&pY`cm2Kzp9|Py8I<oKxSO@R$umj(!|ez1Z_obr{&!YN=AOil$Td;2a+N*zZ{9jP z|Mpvja+TAno7P<L=04$(&J--Duzi~B%-JvJvj5`>Uw@<S{63oxW^0$dwrW3ezC$=} z@9{31-=-V3_LYild(FF}-b#N{WbZ_m2|v?<Vzx!z+o{?%xw_`OQ(vO@B+tC7`{j51 z`TOJGiVEfUAMKB7y&uNz*z)1&xz#JYmpZJG3_JU*I4@aYf>O!hBaDZRo!TK?7!%$- z^Zt=ypZ!H1YiHWuHT(GZk5={6E@?OKiX+)V4@F8C-9+6J7#R2+gDTERJpSl<c8-0~ zS%qyebLQW5>N@hD;lSp&yV4~#GCo&kXFQ%`Iay+Dua-#l*M~*>?d@*9y|<u?!S7LF z^e@w8c`bK%ciQ}7{8zDdNncc{-0`&)Nt*sGHoh`hu?H^YP2oFq??1z-sqMBd<thIe z=3LKTRxz!<{iFNi8Ts@5W_u)-%id8Ja`-5-TAfAwJfnx=<}FQ2nvea^io99lo|qGI zy7=MR*rc%MB^QoOFYI5Jd$uS}=fjnKc9#<_-~0GB=bEGSDxNK^b?;RY66CBtpU*lp zC-l16@#K}M#oz9KbNsv3<o<2H%q^!+EWTtDoz``|EdJBMx5t?tUHH!+lsr?B<)rW= zzJSHsU%Aa+6!}uD@Z~n{jz_Y;Hrht^uY4VU%D#2Ynm?kvvnpI{n<F-z=Gk!Kq>&Gs z%|opTk9__!NLW6X)&6SzVErGF;$u;!bFA!->DvDjiU@xCyL4sW{Q#~V3@3WG-7CJX zJ0s$kaIC(xTwZiWamb-!?Sp^%_tk0K^j=<*_9OIB0@v}sD_3M1ZFsru*U`I-zfN*6 zR9%<-`1zQf^#`||tJk-GwceeP@F8#Ux~Ri~@j9_DcD3&Io_pfR&uyP2?sDD=NnyBi zz4+n%Th-sfeym^SzU+SXwSdY=ZvPpQuPbMp3mrMQIQ4Ub(~Ad2RvsP}3fC`es?dIT zzwfd4&NW}&=JKxj=Jnus5%1P(Hb2U>&5~y`p9w1XA-%aVII4SA&6-^j^V1$ZmtHdK zPqh2_`7&SiWp8B93i`nxHs7y3?4s#Mk%A?D%l>hz?A<u!=fs^qS&H;7IPJ)vA;V;u zu}}TSPUlyj?sw1Df1A%9fB2arqvrC8CX=Q|s&)|yI!|xP)V$z~JzBATv!0#oi}1(( z(Qj2%rNZ8CWOMt^;C@%IanBx^bxFx`^*cOXWOLMr{K%H=|K?IBx2^9^^v#<cQ)5G- zU!F_Z+`(}8$@Zcs#XsyzMGZbp-g~;wZtj#++5PALY_W^Z7yIM2v-&(wY^-C&cYz;= z4yT@7qA#)g;xkX3ZnX<*q;7Uhl~(+rpt&ll{79|y;eYD;KbFl2T=VtxeYW^}Zpv;# zhu0t3m274ByG=7tCb^025{I&U!u&QnF01L^PG@%M{kvLR{j7b8`7M2=PkO4qf85oH zS1wcDnsVz8&yUd5{Oru^#m8mB3No*4RH!uTFzKB2=#Ub(?CD%%@gBMMb?%~bUYt7_ zzr$J5?brJFeQ$owcKEUXqj})vxXWIfw(h^W<l@)YE8afZF1Y1ZU;FC6Z4Wf=H>Gs6 zx!A_bOel<7z4A}g#vMOQ*^lY7c=9by*17g%%d3l1o1%|wpJBD~lz*N~d+@QZmIrLA zT-y)+XJE{<Q;ZjSSvKkR-Q&7{F3xzD8tQiCsposM1-T1+O|lgw9v)PdG*y|;S;KGN zxK+MgH&^Lp)Ryh$;u({TJXN+&p51x-OpK_$;`x)kix~@8{Wq*wpB8*HaB|%H_`|FI ztSOvO<FYHZ^wFMeE*tzsVk&Z*o}cYG&i5lt-NG)X%h88Nd!bD8w2J6sy&vUHAD*^- z!qJ=>=OxSbXR$q6d}3-?b!6i?2hV_ZnRj=mJ_uj&pWzVe!?tVo+h>V=p7l>Q@YsKb zN#3_BeD{>|?Re%W$M`~G)kc;TCYkp9Hl~a394=kz^6~Gad#|otEPtxIXz$dtxk(c2 zJg>}}{EkY8Gi_Yyw0PPtvDcTj@7nsGq2WJ6;I^o(^BNyUuRMC-N}frz+Oz_`>l1Ff zgwJ_C%`jnJ!A<swak;B1Zaq63amh~cm6@ubNpHyd=~KlurcL|RlBRp-TgmB?RF#74 z>u>+)F1`6G+-j1t{8p8Xdvc29Zr-t3z?1$waq{G2eulFieYxMVi*N4oOevG?*RM~T zrE+QSns6g`g$UK{)xlXF4n9hn5<GK%9@Hsd)tXURJO6cXmgvi4f9_xF|GJTNe&2lO z9hYiUm%cFae0Egj#DvYP*%42-`kM)y-g!)K`$mfc?yo%7)qDR~`pA9zg%az%hFf!; zgLhrYz2~7KFd;{O+NJo(d3F&?K3CY6@>kvSZ_{S&>*k%ef0b+H0*}|3)xX<kM0u?0 zPdm6+>!OiT?-NOLhTEH1Eov+_T;94nUhsC@nP$JM`dcFuK0VgrTeKj?DgM2P?o5#n z2RF`XY?eE=XmkFr%l|lojs*A3zaIaCO}=HH%FDu=8T%wJz0qG+)XUOx`rFKf9$VQi zckj;S)d&yzWG=0ItSIY#>p$&`e>#`fnQ}*4PpQ~aU0Y_sCi`s5PT?HR9)1%Wo}Rfg z)~iUx+CQxS#<n~45ifJ}&MiB(?7os(q}VwvJJ#z-?AfeSHyJqHk|)%>;(X<ob-vk7 z>SY|~m3jXeJon6;s>3%st7k!_*!`?|Z^ae<JX4#UB*UZB^JG%i%Al2E>o-nQTdOv^ z??1x_pY=RH{xckwGyNFf@_x&TwCVqZe1(2}_S@N&GU>u$>034@4tnTn8Yu*Ce{xg7 z+Vh#{kM|EmdsXK6@)&1jE_JtAX7Rw-v$8m0>60Wen>*1aiP6v0Ja+v2k=|;@@iI>E zW9jxT6I;gxeYeA}l!k8ZV~q$bwf0#1tVu!od&Z@s-zHx-+W0_UwA7C4=G}_)qxF2H z(J%7<Xg-SW-o0bX?(V>Uy}G|`u1C&Hx%2v4+vmhXt6gsXoUNR9sWoJa%c-T@w|><h ztna($cD-+(ens%Zy7i*%-8%2fc+Gs%GLt;c6x@uCxqUm<X7-Y>Gi=YyO9TAQ9xVzN zeO|}%W4CyljWt{UN4M(VdmaCHugSQd^V`}}N+s&k%V~8rD;A2|XKxK<e`fg1e`er~ z&>x3C7)O45-d<z+;lrIf_m;kI+q$3a)vnV=_deQw<;#yG^GT~Fem1%G!l}9UjgeDR z_Og%b-@JSzFKV|_Y~rIOo3>otYQ5LbI#O3IB5_(p4vW!LVZEPk-|5s`ncg5)8KC#Z zR`a*ZtuCo=g3G1%#{Fkd-uk2VWAvf<f?qke>}8Wak=B~er?)8L@LcPF+1|TD4{tnU z9$+-5K{8U-Gwf{D&W)an4bMwVbiBLe*Lr2S7P+=P{Ri(e=hw)7w6rNrUUfjnWuE%P zH_DBd%m1j%>fN^d--ex%+vjN(l>K>>{N3x%z28p-EM7NXUjH!E_td?A&s8IXi?`bL zNgtk7c`<4K#x2{tXRpp~3HxO3rqbpkQlOG<uW{<JWm*s$=h3n<b8+*a=+!T$Pgr|k zdhv<Qj-GS|&o&GFtA+Dx!g8N=nx4IU$31zMb$8^Y44Y@tGknq-DtnH!>722!@VmjZ zTD?{O%iq#`os#bIK88b<y?;(UDH4(B(ERTCWK!|1%`HnFOL}Hq+P_lB(<{*LrFp(z zdo|m<hyPwazP8nM_WHo)_i<If^j7C)^R*{0J7_w0&;H%%`=*(N#2)2*dh@(Zllu$S z@~G6a+ZrF9p6h;OpWEc+FDLG~<X>1KC9(E`cxCF;^CwoHD>ppw{?@u*GtXJc_ul^y zcAoEcww&GvzR9UuO?}f3&(pZ<&BOjFGBIP{?lgP-ou(h`de^CUm`LjjL<>HBW%e;v zLzZDC^Tc1*uD|vF9eShgg8kOg`A2$rZ`$ZDIG?`k#cP9G=Tk*bZ9RH2$Xq$r*!r!_ z&ulS=gi|)#5174O^m0;#?&r;pd-q<N@a6B_-ZRrae*E`H^H26K{ugg&tY4c{@K>t) z_qzQdb@E?2PTSuo*!t`EO#8XBey=GHu#9dH|FPp}wf!HF%l`SI{}~RNZ#ge=`%T|t zuPb|OjeI_G_Bg%rG}##`y1(Oi$?1u0k`J1jY^;)M4um{tj*qS>+0uPH{)2bCoO{K* zl3n5L@83@-;5xbJtmvN{P8K$QZLNX=*LuevtDC;<vFzCHvHiQ+e+K8D*AJ~Z82CuW z_CLcc@QB8<d8Z$~(SIDBy}!Nil~mtk-AjkF%~t8Y%~Ka#WvqMdxL8MO!a=qVrzK<m zGuVBMOI}x#^JD$e?C@DJzd|n9Zu#VLan;?aPCX$jGzEj$47fhNJX%{U{^stZ$aP!y zsvr5KvTMo&lOpeBS>`LVRooukvR<M3+sa$&l+?Y5yG9Z@lb02-Pd&ci&ONv76S+IX z0%WYb8Y9dV8ax!_7RY7)*?4BIrQg>_OJCJjC20mvxxMlK)xSDY_7k%jvi_O$E}rf) zy>@+j{`dML+l<;|Ztgv#W87rkD!uu0%Er6#VV)mPA830Lxh76wo6%J6{fBowQn+U% zUVo#E$+&rvLDlth%OBRix%f@{#@4s`2lQ8G+_Knvg=e4K7EeXrFn258D<3<AJRaW` z>3X?^z4V_<@zTXLf*<Z4Tddx`#aI8JZ>8v#@HA`b$hAv9rO$HCS9WIEDAE_fQ=!n~ zAuql8)7PMKE49gXjeCAP{V+vy-sd9*w^|%x?mCv{gz&%Te0!OB<9X5JS@v6wzqz{f zq}<9C6`v2Ue!5}8s(TLC`P>);k1RQ>()&G7FmlF(Rh$apN9wo4zjglL{>^jV{e$vi z2d<c|eOX%ka6fxRbC}d7w`-R;o+OlNxUTWn>bP?51?NeQvb^;t@ACiSQvB^!<MMau z7hm>=-xjZ`vAM8yc5S-%rmg?(?Yq9D>07MPr{{iG)aQqOp1QQ_**%d6A=T|?*7T^c z`j%cg=ok3Rqw{J{x!v@?o8<#PEI+)n<h-DA=Jj9O<}MT2uv1(1TK-pln`0N#3nyu$ zGPz1}74duhdH#3aK7)$M56k=isZ|_4>>>4^;qZS3&Oh#tJh)e;M)!&bUV694(yjNn z;-=8+{RjF_zrWf1c>PiTTgKnkHy@ubS~~kbgGl!DOxCO4mag)-ZY~|O_Cl}Zjy{!% z4iQNakNi5i;}_g#NN7Jge@l5^4b#LeYuDEBe%#{xy}G5hV58?2p4BOpHIG$z3cEi1 zSj@`t@TuhPwf1L@UJshI^H=Ndkbf8BIR9?=C;X@UdJVt$tv|+#Z~fqL<@vVhSmWgI z9pXz4+JwDfpR2v@S?4r|MXnRCPU)ZePy5Hb-w*E}h`$;ANWbyvZ{6>0CHDnxM|ewV zc+B>`rhBF^&q3BfUaNmfi|*DPEJg8~)@;n)zq$Ucb~01tZyUv>ubxiz*6OzPKco9; zLVdSo%<~;j(l404m#nBhyno~MH*X);CVgYJZ?nl=e^SNq;pZR;Q;Yn^`D$ss#~$(t z&fJ!F>>5K#UCM`f=ll$MuipLl`u6+VC%!6+E{e53b^P_x?QfYM&%ZVMALsqY{(bgh zY%}I5ZoT-&o%hHzv41`RhnL>Fb)HLf$E@lGLCXnS&MiHdqkcEe{2$lLT)Vv=<PSu( z=p2dpaqnP?C(qg$@3vH^vVY&RF4En)>+8#FyUt7fXE^Av|G^A9p%4G|rra~Jv;Gi% z#PaJ~_oM8-*=xPuJPzs-oyIZg()HriTdMsh7sVOxJkyeJeOATfe_Vfm^WS@Ui*4qA z2CmD&ACI-KdM)OBctUJsq`T~_=vxPKWv&ZmO*h`;wd#hhjFE>xgG18kxHNIr-rll@ zzFY1;t^V?FjYg5S>fL|dpRRoGzjgUg@Q>r)tbT-l=zH~2hre@C(so8EkB5D~gZwrB zIe806r>qj;5pFx?`7Qot_<?&WKf)j7cg693lqs?avlrT;wt07TS)X*rzO%Wx`|en~ z`6O=Q=)A*xtf(-4uKo7sZ#f^!hCg`U_)qmmu<O55%^sIsk4~N2@}D82!uQ@{k!dSV zZQHP<Nb}f%*;l5XddtB4dHRw4KeXQe5z&6ke{AE2c8AMbw5|F1E86a#sJ4#oRNuLy zL!-?yW!Dw8u7JxM-Q649V%TpjWVE_|a@C{U)J4}nT)AfSy)tI%p1=MV*SFYn<k=_9 z<v%XJmH#-ea>!*>d(r2+TJuyG^-OAA<4)#@skXgx5B+>|l9~1FjDS7Oan>J~KbY72 zke};^_CL;(AL@@>lT*L;Py5HJ*GCJo#JwgQUVh76Wb%>K-^6!S+8lG}lwM`Mu)P0i z=hb>i`%M1Z-T%1cKmKQUsIpJw$J9qZuDkBscO`M&asRCwnohlX?6>Dr(@e#Uec@u0 z6}Ucb5<2}^%#!=(=0~={-=^=}b9vpmn&_3c@4TEAka;cm_C0@|Ytzh*{^^cT>%0_^ z;QM})#Z5tGqZN!DcGs9&wXCX6o&8$<PbxR@k+DVain;D}yK<lIPcQ!c_@n*--t<H9 z+s)hlGi1pNWNma$Uy~vKq4RXIQH<Ngle|lh9DC*Y?(!+a%?hqPD=Zb>pA-3)@I(5W z_TNtXg!-<3l0W{g{!@5qcG$(z8)|0Xr|+_zx+m=O=A$+}O8YY>Cboqo9q7@T(~}bZ zDRNDX=#TzK@tflRI9*+OrElRg5vw_8E3MsT%ii2~;nJz(yH7twJpESAEWNA#&F}Km zWyf<9>%YaWIevP3&my_v13`<|+pn!MsYnX+`)c~v?(?k3dve!m*Z!P;CHyVpe+E9+ z`Qab)kL}Ly4wJgxyLDxLskd?Rnmch(>z1p(56&qo3tGJB?3SsM!leCTJI<z8<bS*K zceb4l=%~p*j31{zl>K^d^U~OgG-=MjlAUXwXFl4pr;J<nQlt#)EW`azW1f05ajbvl zcl&|p-qX{r=C51QuihYTd0y7>;P?0O3;#20oPTh)KHt9!b)p~VcAYMmCMR*dWy6-9 zOC4`>9y=UlyBfs(go$&4P)P3#>+pxa4F5h^TDJeeWOwtHzc=da_4Sn>*#FSF`)_&S z$HlQ%=lkxs`1b4FwC_<{x9^@LY`AUOm(!h#n_fLXHOXuWo2P;2osbPI*ZV5wd++{e zyKeg8`{#A;c^&G0?r}+^OJkE@x!A4l`BU8(-muncmj1T-V{+w)dH3?D``q2!Wtl1I zv(Np#_3-A+ePznb#i=_aO}~Y0{cT&p?7C_D&PyiM(bdaJd%Q&)QzS!K(k*{|zP3N@ z;hj<&waB=xs1-}<YUiGQE%D1JR@!dE-xeF=+{HC4mvVEG1pclLy!K2&rQx)UV1eiP z?Y6bM!WaEJn=jvCD*awKx*>7@<;A=GjJKTlWGQz;vHf9m{Ko5T>vQWkGkT|%w#5r> z7Pw(yesR&f!Z|t5|7f@UXJ{&o*|ze-@*wjEv-iqH<~(O#5vj6chvQdH4f(+M^FMa& zxxC)q{_6Z?iSu<7_Uw0F_jjR5bZpxD15&P!-t~ocO2`?`T)W}s>tmksUeD_@^qF7% z5}R&1Blnv4#5>VmKNw_=y<+~xZd6bu6Ta<F`K3EGP9N%KYdt<WN#*vJdHgS|!mhvN zf5a`Tb?&xXhxYl^F*Di<4!TU+<l$}`@mAW+s9x*y3(vb%^ZJw@x<AQ(%lq3U{zvq; zx*xgge$<6udS99y5Ery2eakfM?4VanY(EbxvOH+)+pGPt{b=KokEzQ$_Sor3M4yl^ zY`wDCI6v)7qhor~(V6|0I{v}&3*@(6@A+f@C|)k|hp>CPS)K6oz%Jhz5&JGys`!0e z-M{x~Wt#aL`J(>}oa<XnZ)a~Q%e6C|;5l*fi8$-;>u*_DR%@(`I(z5mnUc_1+uFYc z{#O5Y=Rd>d^xpa;<`4D{+q+BdDnGK>pf+17?v+&vC;yDXLYrLO4@O=a|1+!(*m<Y; zLfU?*{|uS(H-aBcKa?+Z<B!|NWvz0H7u<=RVRHM1zV23)o>eAi3kzlUOxn8JhcVD( zzou$3pGuAWiTfY?@^1wnzQ1|>k=wCquMc00bgk<9)wiBU>Df1zM(@e{9CwDua9lDH zNtb*dzu7GQL*)K;Df7-Jm-Fnz+}BkU2laXTI>n3JpPs3^R4%6RZO-CJMy=d6YYUIF zZ<o7g%ys3?`{MI+Jx)zmvS+rlcoFt}pU$<dvv0~u9rn1a+M_3ux_pxQXEuJuP>*BQ z-&W1?KM-+j`ig^(EuKyD?yk4GWN&b6kx=2znN}w!H?_B(I9Gf;|KqiD*L=&56+|eC z)!!)WU`%>)`*_78!@VbUJG%ZHnN+DhZ;ReP>x#O!>ve0KKHZMb4Eq?ZyLH!laVL)j zGnW{N-sX_e@bhPx<j7DNajR%b$fAC(-bZh?*$ZDhK550Cni=*T2iLp)yKt%0Q*HL~ z#7XZe!}7PbrWM(2{d<4Pezj|?5!=iQ8yjamOsiO@mpbdJ&5FA>r@AYK%oC}4P#7!U z6@A`2(t~SL^sPxZ{wZ_B|DC*I{i4NUE4OUl{`Kd)HTU=QyI%g2y*x@@?Rw-cW(kST z?L2~)d%nr;*Ltz&$4vD(xy!CCnX}EIFFI4&^7+)qYJ0K|y8B$-<C$5y#!>a?j?XqH z9wtmOnv!6)Ikk9>T*cdX*9vQg3;S-DR-BcYu<mr}PR1GUC$QyC+!3yl>S)0rGw1Q- zrIK-c#oq61PJQlCTd?k5_Mg5o|4y+@28OQ=nyup$+r+?sndL$Cw^hfFe@l2HwI}!Q zom-ne-{_xGv!rfs_J#8;`!~njyA}18Q~llz&X~D(zS;bB(`@(pDB0tfn<sK`&P=Y2 zUrw`~PTs-1-!V|e)q2k6BTM(h-z!*reA|+ab8FLf7jgZavEukb^@->G=6zlNpMjh0 z;9KSG*?Uc8wtXyoYBW<^x@I}c&l>sJ1=5WN&heI;-)H?3T>MC4i@%U>{^HZd3b(B) zyV^Yd97(#+7Q2aw@8R5qn{FIDuDI@xpqW(F+136tKD}x)ck2=SzKy}SuiYl^b=TD- zjqQ24UVTQKx4eJ-?w(k2+~euet0tRnNbq<G_OJTS(CTwf@AA*Wb(xkj#asKo{P`HK z`=jqjl#Z~g*1o?V4eow^W@O;?m0>jle~sXc>&t#5dwe)DtHeH|^=YL+bmi^y1v}o} zpZsNAXJT#{=!_MX>%wt!wX*Vl&D&5Do^nHbO~%b2e$~Q>UraCdck~?o=Nu)hDeaN= z_KsXttzqM@Pf>RL53)Vd#itc+c5^<)k>sBDocH{S6{U?2cE41bciX)+Rx+}D{VBt% zGR&Wwe}>B|P1zY$x9vYeQ-RK{$uG`*y8g)Y-t<zrg^ROysjj&wbL_+Ur<;CF+}arA zF8O8Me};$md;V0sU3I%6^vhbWOW6_YzD`Wpm$Eu_={@JV>#S2}pBAvvY3+EdTHm$L zv%YQOkEv?^8CuHZzZ^?T>8$W=Udi%dLCMJn1(v4YmcMa-5Us7>HKE3=Kj%`#Y1fZ@ zt>ya4N}t{KOmr$|KGVo>%&78w)|brCKB>U9;+y^7rN^3k3;SLUzxLv<N~LgxgTaCX z9=^HOfvxriqDLysBl86-lD)4t&lLK0>fXbMuSyY9kJX-gm%XDmx=;JB*Wyr%W8SOm zPrZqg3RrF7nKgIcBNv5wueBeISg+cr@ptWtS)pQfOGIi*Vq3wj)JMKMs@J`_@>_!I z^%h<Ae?s}(Kh7V#E?*q=Vcyo1!aI8yum5LoSU>5bGS}-T61xKbdD`!ezwn!%d!s)8 zkqWEczgzbGXDI(_FS=*B&x)UA^9;YfjIHY~-FM}%#%Y(^6<=Qet6y4qu6tE|=F1Q9 z7Pp@t*;Ic&i?>Y5_F$w8<Kg1V>;E&ve_sE&YpM2K<G-3Mci)x%Zanq7@NCE|ca~g+ zcZ${t(=3=(8W>N!a**|8S}K(H#;xw<n!7F=yHr&sr22g9>8oF--97P(RjPGfmCHQw z4^ztWls~T8`u^_J+!E{V*{-DzTgrpuqP8ANe|J`P*RjJBC!Q_%)!W|@^l-A<j;2pM zb2shrXBK=Fuw}-7hJC%I6ISQwJ-2-FFEqtS>y3{_oV`@x%JhZ8HOJ>p|M+%8zS6B* z1>p<ltYoPcdHnIbX=8o%N1<15rL;W?9zWOCP$)d+ovVCVVtt08N&9-{1@_n09@?$? z<T3l4Z);yZno|1IO=$7irRV2<l|J8bEB9j8WA~|t)Ev7aW*FF{v$n^dsS1nPr}S~g zA@7I3pSqq%5-^sV^Wlh0ecabCcKh?6p4eo_d+rc>eEjKqoBo_w?9fnrqiWvOmqEw$ zqIb+G%`|yid{oya^^v!`e9lEv*~X$!1s#T8&)07kT`*tJ^r^n&#jWf;J&M1zSLc3z zE~$K9cJ*DJR0AaynXj_v*T%Go8;XTK=xM4hKVg4uYv_Zo1%LdqHf)NTr<?ycHm@N1 zx7zO}yRW->nyfzDSl4v?Xw_`LMbF)@a5y(VJ+|Pv{M#M!>+80@3M)Im<MBF&gD>aD zl>f>4<@o!&qQHs2Q$;4v`w@8ldY4x~_Cu4Fx$Dk3=?lc4&&|`_a{F3Q#7SwFl}{V) z>z_$E{4Q{JPp-Y@*LB}+9jX_9_5D}R_E~;yll(3zT-$1$&3o#N2lJUEes<ZauWRQT zAGoJ=^@?}u@)Mz(m<_o2>|2Dd^gB+DvYOtowN}`>`ft)R?R3NG9--aVat9tf5PmtS zcC}uG^2%b17X?=Ty4U=04$75361MDCsa%qvO0lbs?|0R<j3|$#y}xa84sSfnw1`(f zK&?=u^5+KrXPTzfOeIE2tV*6d7gtCGe46-7z*_uO;ng;On=5frm!HlG);uTt^{jS$ zkjR?q<p+0HytmW&QFrXYo2GBiqAhE^?nV3O_WXJ`CA_u5`shAAf4&IY&suk8SG2r3 zVKF)B{o|g*&6oC;A6)j@<Kwi}HEw0IW5W(T+&f8o#oV9Y9o({K@A^>sc7D&+zj80_ zAD@oA^7fe9#ixgBO$zIun8vS<dVTo8&dbj}{dEso*U@+TSe@o%)tQF3OA`LM+b^rS zzVJtyd{@-Eg}KW!uH{zNS20K5ym@QScOgy2?Hr5weiyjg@W&KntN+$Jbe75T1>@_V zq1x{SW7XFF?Oh)0Gf~=NYSYGmQ;{=P22?UMHWXRNq>FfSExsHS8fjMRE#CCc`ej)1 z+kb2yg{Gg#y(PEEU2b85GV?Zn(-T>8Mn75~xaK+se>nTCS8C$E=(TE}&d8J=Su0X; zetpif9j9}xo<#m<$mLXP6@PksR$y_D5JS%7c}J4(Z#Dnz_1I<B^<zwBJ3i?#+3uNa zeeCgKrllJ=87B58U)ytQN6VH;wmvqo-))UU{;u6x%ei>xhvVJPw{M@y%yDjUweYdK z9I26)WxiNQu3PW<ch4TTYi5_tk7TdlnBZ!YyXMaHm`MvSNO~&zNw$ACDn6RZ8}GQQ z$@;{?S<fpOLzhW7xxHH$G5-ip)vU)gkqdv+A2Dn8tQOhn$+dr~lA`w0uhvt_zF8hC zVy)1Z=Dv02OR}GL*m=K=fA{}0oVj*E^CS1EBCEAd7OJgRcIg*XV7iy7V8O5~c+R7B z?*AEB1%Lb!d!yf{=dnFd$?yt?vEuPx3yyAjGJlsl^Q@oS<3H@1nW?(^<l@`zvS)lH zT-$_Vla&Gw1Wsiz=l#B^Fs5wggZ@^tZ?0RbEiPX36mbzUXcRqnNJ2C5)8oFyTLstq zm)$gK`87W!rv9Ltea39hKkI+^<zKwg{OO*fh9yITXHP@rmp`kMJ^nK^_0(Oud_tn) z(KDA5ERt`d*ZXbz&oDjf2bVo#h081b<i#(yJ<{&{vm&gbX>OmnqL6^${5T_i(}W7; zL$ge;>`Hw%IaOKDeAkg4$0y9Y=T!AMn&vGjdsct_%&zk2rQh{G*?YbH&+uUJ{w)fz z_dm?^iC)GXDNs=OpTTZPb97n#hama>%dXo084e|#e$soq@bbsTE5#XxuQ=DAN%_#; z+QVJ2E$q~8@j?OjdG>prb07cu)%4bjefe#A$=7V`E=I>3YFsqSG~!v$bA{FG{f}+j zva|N4{hlq0Z`K}v$y5I!=s!cZLB_{y@p&d2xeE?BZ8DoyUV0~T&%zCQoG&WAuL|4$ zA;i8rYRj2@;vdcCu3D2I{z+-Wl+PDhUCv#;BHYt=^^?WlrS=&uO}hKct|kR6Ett-A zdxIahwsP@p%VP{LsviDW{OJ5q`%c4KFX{zsTq{@KTC(8SbS1V=GyBXJMoet3jb>kX z;?crg-EZypl(m0azf-<c|Bp!bx7Gx%*eHYiXzsM*e?NuDpWFVW{)a~STkf^-(HRrG zmz^%GR&rWV@?%O`kU;8@JvB$lEY_dZ{HiuJx#zHuKUZbA?)T8A;o7^I8KZBMFUy># z@5>*w<?80Mtw+pNKe3-?X}mo@KwR$8rf*yGPoFtalJGUN_V^2_`h$UXHg}x&ESoG{ zF7&dwd7k^p;wwe`d#(I`Xt^K1ofM{B%l9y(aYyDl<G1}=SDvk_s&TsP*Z5KX$S-M) zPiwyJb!7-*yHedY&8BDanY`Wp3)eZY?3$!>gjGj?kKy_LOS|S~>aBk-zPUg3yZlnn zy7;^wSF;XD&$eYu$$1;UVTXEt40E0F?TJS-*8dT`{y0Z#Q+-NCirm>mvwE5M!k7O{ ze;)tv{n+;l6;|&L-%7usFgqwyd7^$!&a<}C&!^XHx^r6koRme#BDXaw%*{_ltXyw? z)yDW?%ARS}t8KOZ_#D>E=JW`uFG&sQKOj?eEnhNBce$Fnmwv_i9e-;!|7U1AT$7k7 zs8{04!Bh|tc}Ku{p4f-&Pqa(xA8e49)_v@`^uw{vr`B5SX4j?N-oKaMI(PA%k6+fG z`Ona9$MA!5MWpHcj*`DzCwmXhd}qp5TDE;+MMUsaxnRxn_f_Ns!h0&358Pv^4SRLl zebe?X@5p_@DLw_hB6$U87B*N<XU~*3_@dlnzcuB))@1%<|DS=sW%d7vH9tDLTjKWN zDq*8Z9KTJ^S^a0Ih<*HNwL$&CbUSU2hwQB-mKAq*xEC${&)~IxZJpB#Io==cOR`_C zsn~w_KSO@@4xvvsnPXLVFXNmhua~>g?pmnzb%iI3Cie7e*Xkd<)!s2Zc=v_3$y;@f zuGPI4@pjv$2@I|U6%Rh$nRj*5G0%IKss!Jxyme0F@7t~a8JbSl1VrChv%bb~LDb^s z-#@LrKFPp{vvj8g`-1PUqon>b{1G#M%+|<Kbnl0=bLotlzD3XT9d4f3X~`nfWMmlM z94}m>`mk2~=;q8@WplQ9Ts&;K-SeG_$C6nJpWOQ1aJt<6wDQzK70qLY=?~wC$;qep zdta=vU!f5`Rr$KfY2UCrJbhBqEAD){^FV+<ZqK!R;lQP)=1H|vwQo<A-zr}JA-cYM z5t~$f^B0S!%Izh)3zmHO$$RMe%U%1VfBa|o&%ny^<MMC!qhkFZ<HL95DzQhhO<W$W zI&DrYr?$4kq}}HZE6devVsP5DYQx!@_oW}T181gmJw6!EJukI@>)?m?ZcP^FD%HYR zyZRmWl&kIGkJ+>P(jQlo)iPxt?)~|A+f`1n`x)aj7W*=tPpjr=oREm&x;Hn|-|Zd$ zB)czyuch`M)#d(e_w12I-k+mgZqk8{_qR;!pD%e{`QCnq`mMR^>l7<y{kuJ5{knuJ z$;adMex1AZ+P>SXUh2=GZ96V3-R7O^ck$+F4dJ7jKN%A^4Bl$JvU*;S?;KxV!4{pJ z@kgJ>-0h$Bde#i-yqR)l^P&xlla-C^&#kFDw{+^hgsSUr=dnDtZ7V&!-6ZNy@L&Gp zH8}@=*UUV<CT0GE>#wTcZmwMUtlXySFZU18hrj(h<2RRg*Ga}OnpE{z^|nmhz_Vso z+ia6+uL+JkM^Xfv<L8?x&J=n4=hyWY;ctBFMZ|Ain_F<h|BLpt{|u$-Hx>Ug?33vF z_vGA%iASE6uG~9o`~Bsw>IG6n@ABN6GwtQSsDJIBx)=S4-2Sok+|+e{oUT3EyJyFx zwNhW#-!(sI65z0bA$n@(f<x;nq($^B*GpgBVjJWe^vs(#J3zo>UGk?jTiN;(leZ_j z-U^rH`rz)T{cZDu?|+0Ie>?f(a^b2!Vjq`HUXfAHW5fQKH|dhB*XK7~+p@lQP3K<f zker$SbXRcx_nv8|RdPQsKK60@i#_u{<gu82GTk@#<Muf364j*mH?=ko*}04iEaV#a zv;H%vZ>*fF@^{YFTlSYTKD=K2`)IBI|7*YbkI9SvXUKTZQX_r+pI*iE$bHl9d(XPX zy3M?-F84^$c@gWw{!8vKtvWwJzQE$K=#TE-@&6ePX8*Iyn6<h_{Ri{<*vO?vXJ_6z zwz)WW>E2r>e)CUWeD~(9o0WE6YbM&97n!M2sbuE#_3QPw4?h<DXL!i|#`e+eZ0VP3 z^@8^@cNrahZm6w$^-k)Oo<E1o`!sG|m{Vl+Z2z>keCH3})BG_z(Qb2U**4?-(|LQB z7~PFImGt;@pLIrh{VqPg3+!HBjaC%|?@eE1IytZR(zX8#jkkYn{<d)A2f2QQi-&El z>#IDAl-YdVcw?qYrF_k#6KA|VwWpOAPfPMNeKMctKSSpI{(lBPjy{~5{_yMiTc+Ky zVK?6>1o=!CSG=NP_=V>T-{py|ygN^=P^sNA|ARMwPyJT*V|!IH^u=3Ca`P(Q=Hzaz zNb&BtvNECRYOG$$#0`EnE6zJq$<#aAZ%%*X`hfrD??cxv*D!uq6eB&mr2MM0quugC z=>@5k@|7hqhIT$$D_SOq?fw`!ZCjJ&LZ{RB>?QWG)E%_5{X20_=z^?$w);0&o$s9Y z=;E53d(n$idAII9kuvQy$E4iPqBc8{EY$xd3&x%NI8S<iyU>s7qxPFZ!Y5XoJMEb( z9CFR;<!67>WgAXr+c;f&5bHAWL&P)Ni)-3>pQZG#t<U=TwO9Yq@urfwZpR+6O0jpY zTk`qgB&BuIer={ot}%H$KhCqW%ktKoewZm(x_Y+92GMi#RvhlhnPd6q$FJ+{adH={ zZ_Cvw?Oq;eG2bZjKLcBx_5EoZCVl#M=#tODLK$=6+eej3BA$m%W0_?TKI6%~mai<2 zZP_ONmQp>psB~`9Gtph8oGLp*r+(|v(3Ppa!FS;F(b}W63Nw%HYGAuid{BMIzt~lh z>qFe~8Lg8KPknjl)8UWur*=Gc;=HTe`K)x=ySe={>`ecNU*5;}hi&_nk}2Ev?lQaR z*Ig{UYx=$&Gd8H++03uQQ+VN5$rt^b-_G$yKiJ-A`g58_-dgj!5^pai^;9-RvY+m0 zV3A;$^F{R4e}?U0Gq&B|yk<J*OtlT0FX(Qv(u`PC^E*#S@c0VRr}spP7yM8^{B2fB zM1)C79|PyD^96kio|I~xKfit*Z^1L6nq6{za%<+As$ZSIc>ag5-1N|k{~6Nz+xCh7 zyRfryoyl1aYsJ7Poq9<jx7byi(*k!0w^-N+)CfO%-)tlNTfOeoJk=lfKU_PiQxjcZ z{<nQ$?6PM&qW=c@tFFI0+xp4I&C|RWMI<hpDl*~7tZ()|bowU$-TZO-!}>$n9!D-Y z<}P-dpdgns>D{NtJu(j}+v0T{WTq$I+UNeCp=no5%(iVmD$5_*^2J+w|46wuE$ib0 z)oTm#AI}b+Z}WuHq0gXF&W){zHFe^po;%69>&yHSV~-xwE<XHt>-E$hst?xMA7M&q zJM4KgLp@n}3%~J+OYhQ>j%9KiCVw^$K3jQh`h&aL;rpkDUYnV?akFz_xwiaN#g4q( zyBkDg{@K31XXCp<ZTZq4=?4stKfUv#`p`c4?YrY2eNNx<x#K~p&VPpa*LLpB_WZo= z;g8fDX4M_t0oUfM@V;@5itMwz+iw*(Pf(eMW7=-5tNqqbZoWy43!nP@!spkyX5Zs> z&p%qVM?QVlZzk@V;@ose`}B?{{PS5(>M!X#WyD~5QN8U^!VFi{#^WD8zF@!npW%93 z(=TI_M&q4JUNNZrE4_T@N9LyW63Q9Oa`U~86>obkJa4;AVvWhCIjd^^ZsN;+yZ>hL zq05<d`dhAhZ!p^@`qA}7!0Jz}@hU5G@~r!$=d>PR+EZoEFDYV^eYmjsnC;ox{NL6Q zvorQ&mMaVGs&C%v;y6$Iyy0`XnMt1CU&mCe{Oq`RGrN7op93HHTU37dKW@8f_U^;g zpWFLNdn0=7UNqQT?0Ix8e~N*Gz{$@tt0&E0c<Wv(=cH>F7l(ab7r@ufUL^dpPkX}E z5)J*Y2lETL&ddA@F*<fi%Dnf`>eb8#gZMa1Z)aWe{c!tu6n|@}TjdttpdV_}i<R>X zPVcq9uuOf2q=Dh@*Hi6{p8O4qkNxYnYWl>-j}p&!wDjHo=D6)jULAkzlI_7Ai~5f! zDo1iLq+ETb*<_WPEbq1bx5^LK8vX2#ewP^Th5u0zQc2yso9QaUlfQ3_1?N>I?OuN~ z>inDg?8~<cw%*NEY2d5ewQpDIACKiVVppFvAO2^vXEM*}wQ=r}Z#!lN7=B}Ta{X!O z-Nn(@zuLPr*Iev+ll1TMKh0+UA9o+hYMo&&t-7!$d6WK}hMj)`9+WFz2ygm#+iKm$ z2mNhU^2bXb?y+3Ky}Dw4>$Lh!F^Agxp45FXkXsPG@W*?ne93>;<_TUe<!ryPCXACa ziE-wU%Nu^_IUKFr{zvqE@Yc)!8B%8IdTUMl$lAK?s=}nDyBTjV_$E$Xs^g;cYxBip zY70en*De1XpI=$fCHCs!yOaRuvx;{<?R<Lo#@F<m&2n#QvqC0vacnR8Q(O4YHhWf6 zrplD2T7RbPxwC8Ec-g%;d8~HFv;7HPx8-fs&%8Nb`NMEYRA=ejv`{A3ZEYfU^O85_ z?OVv|xjwRGQ^hgE?}gWU>O`|2?m5ZczW&U9W19<K|1+dY%TLSv_4)m_2?G8n>gBXw z7|iFg*%K2q+vA0uX4Jc#R|J|=c6`|Lu6WMWt_+Xkmu*)+i0}M0^;qlU)z>#QS^oJg z9ocn)TcD;TuA%3-%x|9X7v)E#^M9<$O+NPC{@|`_?18P>I`#Hhe{TJFtTLhE-Oa@Z z#HDmQPp9xm-1+*)erdX^e&(r46aBOG%1@>x?mokyX`$#^8mFlC{P3-kSDZ?>R8D;D zed=T%^=!`u^;<tIZ&iGkJifJ7_R(H`|BXNLAH=4eQtk7eZR@L^V1Lba-%6#0c1x2d zx?f<7n-uu$X|2E8;<6z334hG0J8I&SRi-)pRo3&}v*KJIi~kj-<&Eb9FWatu^S;%p zX4dg`X`jov-0|+ydQ&T|E_-pXk>$^ga}Ebz6vkzKXgU^K{;0qGOYQN$Y9ANgS<?1% z?X%z$PvorXd#l(F{T0jHW1bgOyfgQ4A<qIUYonD<3(v7jyff04Nmb>l*>01Q^WHS* z_@bDY_}&Z4Zp6Qv)9@rAp-JNL$G3jDiVx$roiBTEYKEe$h2*PK234Odm%pl$-=p~C zN}f`Kz$UG=`;Pb-I5qt>ygmPA$l5LXybC<l_omn6B}%H8Rf~qI2!4HewBqc`l_!JB zqhx!x>=WDgv32U(bF;RIO*HbD_Q@xj{nRPz(@K*BpJ|&kXEI7obd*^0*Kv#MmYrKB zz0F&ew6US%R8QyLSuSauz32X@8E-8rFyNcIsKVIcTH>zFoBIQ|cGg#@cfYxppt<#f z#6EeOPKI;u=P*<yW&Jw3<=R=fnfXry*3LKQF|hB}5}zYKqpGKmU*=;=%(|wY?K?l@ z_tdDbdNph7k*XM8rGtjSeU_!c$NhHv`5f>0$Nq=qquu9uBTr2`J-7L9vOtl$E$8E3 zU)GhW?%aOWl>7Gd?P;GEvI=(OSZxdweA>yqr7g*WrGee_yZXV^E7sfa=PMgTJkHk< zD2UE{&hYj4&!g2p-sCK1nPmMsaq_aoy8TS`H!mNxi0)L~x+!9lhlb4dfZ|D3AFuo? z&G-2st#tQ@zSG+Y0`~%c_ilN6sG-2fsGx`~`^`$dFKOE+g><=c&q-jO@AK>T6|?K! zCW&{Mnorze^Q-<h^+|n3XjROk3a-q%GVHB?7#CHfJ5Tm+VOF_e<a3HK`9f8qd;Xcv zG4^j(uh4I`&(d$(b>{ZW+&`hqZdo<3i(jr!Gjn{!uq&yy{rOw*O@al&KbTg_9lmn? z)PIIs=O5^Iiv81^(Gl)&ea%;M^+m@M>qT#>Oa9~79F?f$Rde!P)s3ve?l8NTKa!X9 z^Zu|qd`MiVa?*>ATfsXY8)aTHo&EfNiMn0eUMCAinNWSvjG&6*N9+4*tczy+R`1^W z&B2Og=auEVJL>Q6oN}#oO?TsY(SJ)n^eNwZT2Zy~J;(k(Q{|s6mr1-T^H|)qWTpLI z%}FyDU&c-T(05VoN9W>O`!!2-rmeAR(o>iwSG(!a4*wv_b(0TPwN%A-Z^?C?ow5B& z&XXkjU7MHH`&{2V^U}8)SzGF7>DInneBiY9E{j>A({E0yFZTJPeW6D0mv2v%?di#? z9cGgR%qD#>?A-BOX65VH7_&v!75#N?+BY!&yq^D2+pGU@yo62m!v_m}*LRk-hRQNY z|Gew|U=91jnCtIu);XTAUt2$Ys;b6r<G&u0eD9X(D4$sQS%~BH`#-NNmr90B$h%d% zrSQc2IbT*PJB2qkzx`Lg)b{bI2@WUO8-HE%^0H+=b@OJlZ_cz89~UPcIQ9~>%jdrG z+FZw#FFtgf+z_UGt&)F#;r4!?aCMF@@6w(I2M2ro!(G?(^OCt<9Zoo5!}xykmB(8X z0`Ej;?UUZyyI{xmJ)Pg4)XsnNc9J!}VZeWeuP-Ow`{Ad4=VO+#e5Fs>?f&I*X_j_7 z*15T7-Z*J3R+jtb$S2Qp{_Co*-J4o3Q`DiaB<#lbcxuqi*H@Z2Y&mQlO@8XHoU=SV z`O>1RcG9oR-Y<V8eAijJPi4{}OBo?+i6?pOH<)icTYjmezU|sIrK2^DB4>&>F1?f& z7U%h3&JKyMC(c&R+}7k7mvQ0Px}#J5KQt9Fe3M=6cj%H~qqGcjUv2f5wJRU~oVxCk z;hd@GLoR%gZ{B4c<5|4wZkFDu1=<l-Ey^krcl0f9ej8@0UElm&Z<EgT6C#3}Ze2`b zdA#pC_n*DCug|2mihdWfky>r6VeR;5^)id<tlP%VKH2JB4*3ziJi5~G#dPufN%wNk zte9#4Ze;@d1K$kKk8#r6&Z!T3^)CCJRM-7|$Y1`@s?OW?W^aCn_vP|_nml=)t>@~% zn?GmTO#B(vHOpaX@>_q_e>bD*=04nA&->%`!{hCLLQ8Y}Zog#MGRyT`h)v*akDkZN zzG}~V#c}e&uD{FwalGP7yZVo@BF-)Gv+*fz`Ew_pe_lU*&6g8zxBM>Mkgq#~eaf%x z-z(p+FOOeqt8_(qcO^?h?gO#VoF}DE<m#GsD!25TKH4w-FXighj4JtK{&IhGfAl}} z&gN&XF}rNTU&wRT<hoU6&}a22C!d%pbT@bu6jcTuE%1D>SL)U!?)7}0g*rh!9@pc7 zll&HEb_OtRUtwvzxw(nqUf;ju<+XjUoIdu<T`uc!%zgh_*9ZK<p4leb3MVK}6XV~_ zx5k2p!*22Vy1&_1ma=n1JenhYQL0LB?(!S%Cf9j)s05kJdHj^C*0}4`kIU<i@*m3= zb<GkD-70TcIB{ZmKJWEB`={G~nl88{St(~NdB$6jD|w30Qh&>PMuq1L+#koKek^(t z^~a6Znr+9t<KC5p^J1co=iU4H_r#N5T(>0pytm1n%ClMV`l~K?)W@`$scSR8g;nJU z-d4IB!zT7&I{VXdp0hI}N<UrKsZ`qV$A0M#ch8RnTd%5G^<KYu_^6U%gtPLl8Be<M zVm(t2Gf0%)a?OqX@jl?g+dcF6KiW-;JG<0;S4r0+^S~`?U++kG>^NXI@8)`*k0J%9 zSHAqUZknw5o>L+Zw|&^8#~*iWM|%I1%f08L`XqJFuQlcGj^}@}weNJmkK#p{LTV1a z+}_>3T}g$VD$!+jC3_g3rCU5^p7mkA<m<q7w>!4He3N_k@G4JfB|SGIPKoz{ng8rR zicOWwRQ8^*m|<thW0k((^>Gy|w!D{*xw*r0&GnPDr-G}EW$$|4op9H<`LAzfsk+*` z^KO#@Z+v~vcye`2M%aIbo1YFO?9f$mEi6h(z5U5UFx2zd$9a3cFweQ3pSbAN)5*W1 zLUvZ%*6Z>NleG3`3+#VBF)sbVUU!!rpG|u0Jd^qu-bsm@t#RI<V^GAP!rb8Tc;mWf z`T_?RzcO&y?sBB}_Yq^xO+8C;jm)Ck4);6Ro~@WM?ati37pGUg?0i_L!k=A{yY^AS z&FG2`N91-U_k6c|wy)}g_sjLQX46+iyXgli*Ld~sGIzbHRS;5otMV0}Yt`;Q9$jH( z8=^gTGwfOS@h$g#jy17;)~tWBpWBPSxV3Ee<J~*A%;fnlwebGal{XH&jY$z=;BCHs zndMoJuDRNy<6$)`O-kkTwB@$xe>v(F&~ap0bhcYvLclbOP=(Kta@yAtx-?9r)w;O7 zV>WoS9X1v`vzcL4?8iU8bIO=@>|U!M@gaN3v|#t&H=eYGx`lI{+Z`Lhe9qnZ#&?Ug zvgMEFR4r>LiG0%>Gp)z;n26qyV|N&*sW2E%?s``;??kKh>P>7Zsa%!n6DodPU0v(A zF!71qwV%`Tiwy51|7W;*Yo|qNXqUbIob;dRe;%70-IqQwis8l`KCk}_bAm&b@P*kb z-4EHbXQJH0Pak=ghB`G^K4)$|9vpZ#Yqwj{gy}L(l?T~>J_$D#3G}#Ey!stW-<;&- z{vTIsYb}1G;i2%nKWe(4tL(YWk7nl<hwhuCF;mEMmdockD_tgN&%gVC`J{?a^>y3& zLY`|y2c<Vw3O<%D;NV+YWIV6(SGb!^l)kCAJ$qKB%(Pj(Q`_DgYkOoFYj^&+!}}A; zr(|lcJ@3nkb&JmRJtA)2k#ec&7*CgDg~*hkwR3WPs^=~(;Nx7Qb$+^=#cpH&$Clae zd#bi~TzjA*r?%x%>5jXbr}jPf+;W0}`C7yhi+4wUJ=@{&(COf^nV}qar#|`M=67$8 z)Jr>+%oE8U)H~L4L|4ye%e+;jJ|o5YOZDm3o@|d8i`b`e9$#AcS)=KC?X4;Iw=9(P zd}UR_{?)|K>xJwt$vSCq&Ro+;%u0uKZf}<hSh8lZ+;Ig4%XQPFV+B+`$Gz`LRnmBz zuJ!a>k=M^0v*SGmddnyFe2%MK>RD=fZrN<{q?l>Uc^*cKJpBE`EKa_>5Mut(UpPPE zOvQ<VuV1*vU%fN;o$|%^rSkk7xnK7BoqER>Q+fHQ(T?dm3RyZ9B*-wR9(?8TX8Szd z4^O9rZM!G4XV1KAC!bETSii6}#%3wE?1gD8b{G6Sx%({D_8dOHBX&_lce|`z{^h-a zO|LTaE@iHr<>B^zN|RL+yW@>3{_LVV=X!4GkG^W!JvYvD>lMA^EnVU_rOq(x1fKl7 zeY%vkN7<&H2M?IP7tVT;^XBP}KHJ*GGZpz%^HsERGft>ypE|YXrmTn=ulu4Oi-OCV z{xkTQYv`(Mb$YK@aVv(|q^3c|rbni6eq!*gA2TZI{rj#RcH1^9Oy_>q&du&~7BX}1 zox1Ho^V}u%QD=j*U6NMCKQh@<{>az+5!<?dT33?Aj=jiDG76k$AUY#meVx(bhAN(L z`(?M|UTl9;GS^8-QcBo#^QPu!JO)AGw%;ZnJfBk>^Zwh~JCnAaYFg718T`ZXfpAZC zo!!^ESDyp7m+jm)^V#IKbgh*qm?td1yxjlX){vb^i!^<0BW~aI51ZJv=aWvt8|H#n z)^bmN&6!mDy8ol>)z7cLg@<qU2+-*L?zyAp#Q_<)x+DX?iUXp{SG<bP+%@fe&`h6m z&)jvKo@}>#Eb&LX@A}uZBGI}n(*tx5pBFmR7V=sCIm6qSNp&9|6kqRpbvU^EqRiXP zOPU_;JH0ddd*a3|$(G05CC@v)ytVJj2foeO>`iu3ucC^)nk;Obm*3&MU2JphS5LXa zdV8(hJ;_4zLiuc0Kk}B2%uQvL@bF-6ob!CW&&R$cf3siPvwJ4g@xKhbv1O8X@}ti( zZxwEd#J`m8a0vCg^v%o2JLO4p57%G$LvO-2oiBL%HMjO-_E$UWBR=+9PZkQsivD{x z^Sf>DC9SqFR)7CP`>y?+qGxyYG51+1rI4&B*C&y(&RS1vD_La1pFf*e6nAINlhvR2 zZR?lTp8u^7uM#g~W1mssy)x=b-~By3pZ_!TeOdoSpWpne<+5Mq-?QrH?$}Y3Ch}z7 zTmAjcUzLx<e+cgH+sFU$+QNt2?;CH$?O*!RSVb&q>H3bmx65}nI7@d%u{WjkZZ~9g zo;V>Q*<wAz?0?)h7e#wryFP#OvGvc6dF`M4Xti5^!Gkwxjh-=IR2`K!tY5nLhw+Es zksq!teq393{>ZF*%d?kBw_Yk)sk7Gg&$o*rV&A@-yNb%Wcc{HoapftB;QFJ`{f}Gq z!?a7LTd&urt_{+D(cs<EeJtEp>eL<!w@-c{W)8MT>nGlcoOa>xvl(5yH{FW7^Cs1v z|2n^YvwFDx!qE2`u76+3|G)lc|9^(21%G0<{AXx6{qR4-A#KjUEx#+`kBToWs5!oq zKQr;dXZfk$rdi5YXR<f(KYD&NzU$WfgZ&aWvf{Z*E!S?%Oq{tc&g{Ua^aQ8$_q<Q? z4k%k!K5qW1{`T?5?+>>h`_FKz@lWoDe)lV1Y=tg6T->s{IyO?J@1^gQVoupdQ{IJ6 zTym#j&f{k<T<b#qI9*k_T9a98bM6xB#N?o#zgI10zQN>MbwkUj^zJXQS49sO&AReU zSNz+FzsvU6KB|rv`B8jaYToqvRHHl5cOrI0pB7npq9irwVB`CF+1&1b*Y3|+EA&?3 z!}}xa#cnM)<St@$_1F5lKg09qe|LXjRU9YythHm^)ss$a?poC{&)3UHy|NMKx%i{& z-n$5qwYNlD@9?e)HQwv*voc2B!LRE2>aP*!$~->b&2-b9f8qJz{kOvXfBasWdCgAp z${)|wng3Wn<a{%}|6|#kd#}R7gYUBK$~Rp$&t+Sg&v9l0mw%!XYyUIw{R#UKpZn-+ z+O62SD|=TTI3xJynCs7Pe^#GkSCIS95cMPan@{5(`w!P2`5xVOQ0j%*nMqDX?QbW? zdTx<DZj&HaIBy2ip34VP?H?+A<f{wi&KGJtF8K36VVurO*Uze($}F@G`jw@>`u(Tw zhhwh%Y`sk!@9z2RpXc<SL2Ir0ThR}BPyCl3U+<DSO}s+jsL^KTPZQYAOpt9j?^hT< zYweScGb?6tES~e&@<FYpiLTJ&_>cSB7G7q%eY&^WV^cug>)K7<B+51(JfM0&g~`pE zH7DUnhHKVQ9+T*ezb${)SDZia>-gdIf)&c%S07r<`q5_Xm^XXVbN@}D(+s@&1b8N2 z*6!OA)_-_EV^*Ek<vp?wvwhT3FCWP%Fn9Sba9rz?MUEl&{G97g#owNOd{XaE{=-M} zcU@8a*tfs9Jmp}^#HDB7-&h<x!CZOq&OSeuRowcr_C^1MVlw_oT&od(q%T;zBJ-E) z)1`M0Zfab&F3Mt^@{C1J?ZuN$Z|9KwICs_AhPrYSKf`eAg`(1~cFTAEXE^9lr(F?z zVE$I~u6>3_g2H~}?b4f=sq$_u*N^Vd(CwES-3yxE7<lWxd6L+~;Ln)-Ve+?qANg7z zoxl11$UM<YrrEk#--EL~5+m}IXSq+yezC}t@0!KW`_I(p{ms5+|6t?(E$^G_Z2#n3 z-O}IMX}iB&XWi0k?^|9e&&n<PbkEw{*uCM@w=jdFT+AmvKM7~N^7ym(x4g@5OXWMn zqN<iXE?@nlavjGl&OY6&Ywii|_BvV5=N<04ta{ku;a&IrKV^2#`MFUbcJ0sk>$jT= z|B!#Q{Fr=CokCmoY3<s&)2<hDI<&T%Th+F1og#3kZ2sLXM^^7RrFJdtVEFOy2lv^t zr1*N=_7`p6we?GH<%&D&9;oe}Ju@=2TeL@To60#M(-0ZPc$puwzuo*1`G~)>|IvR2 z(M+r6h{*e|#Am5ZOi(%%`%0WIZFkzNlyF{2HL(ZB)Fu{q3m9$n|DjpmsQd2Tapw<u zD{WRCk>7Uz)}ftp`~2s*+ZN6VGbz|QCnWbm#Pai&#$WPIyKWDUWRSEtXZ7)AZ0pu3 z5<2dFjQ<(zzW!8S`JdsS=boBr8@w0)kayoKZa6)B*0)#h^Z2Yd7O;P2+O?j&?&AFq z0rFk5RBnAg+{^4!A^4x6MCVIuvYOoo`K*0u*6z-mc`u}Vj5^O8r1kmovs7<ROKaz_ zx&@Aj?6aS;{AVbstq#8w&sMT~M~&!5y;l<R3qHJPNUT0vu==m|&#OOXe~kafrM%!j zLweRdy}cjV+jZAJiHORMHM3ZoJSkjj;?^r+lMYNuka1JLXJD|r!1P*;?T?)wlU_ei ze=GG*=VRK|`oiSYhjTS+ZofS2s{3rMiC<{QVz)C3jm%bRxm6r3zILd3<x1V$pY!_U z^;a#q>|4`+TYIhUTbsz)hc;;J=q%QZIB@JjWs;TD;@_?{K0g9eW#lBU*Z40!uKVuq z1lzaU=X`S2vNCblS99X7bDPXMb0&`UPuD&6nt$ZJoWj4W{~3Jyp2vK8Y|fLWxX^kw zlkbh6Ne2&pU0?k1Y>WD%zV_l}?n0_l*IYUgDCj4dUMeBGY3}NGnJE(^OI}%)x}QF` zIpRdH_s+j&|IU9i|K<MXecq=Sy~TxG6{$hd<%;UlxJ~yYt*PWzp7!gx?W^?%{N*yO zmLK}-_UOG=r*6VW*-sv)+<$qUuUR|O_@;BNa=vxtx$GT3g41^SAJQn9A)+C^D~WH9 zbgi0zhup!9{m1r2{+)07TJj%j+)FX_nzfHszs_#j^EUm8%c;;dXSUYKEafL&@z%+9 z=N`%}o&IzFvc&7}Cw;Oy-&McWwY|MQ+gA8MnVrP;sgv%R8=EXFd!)V6om=qn(|=!U zHvVT|P5<$7WyRwMeytCq=jz?NcR%QQuAa?{r^!lx=W#AQX0!3INwmK*!>{YgkA2fl zACceQyXV4u)7*r<Oa6`qn`W84zqu?<`?URorQt3$rXPa#t7K1hDn7;)8DsG;$KLC5 zd(u6<S<}DneErNIaM|t~f2MCcedhUkTO%vEuWOT}e|z!#*>CPs^1A1m?&OK3ZI87Z z{9i|h_4mdJA9LpU_V&g<``)@e=O@|ze)#e3^1E&YWhQx*51tsD&G^yuh;8f4kb)IA z^ZxP{$VpyHyqve}^Jzw%gpw0KqwQB%KH9c5`{~Z0-2V)nT>U2=_j`T&5WdOgPtf<- zwv!)q-v7w$xveL){-MmZxBc5*<UHZ>zapglS^4n^^&?U?pLnKSc(cJ@X62mX_wh^q zY3-2eKjO_9TGo~ubYq@T`OPNw2g;9M#?PHElVkJxJfE-T&v@5n_WqfRCp{?s@}Ggr zpy=<X{a<%Jyfkh9_2MU|TNAY=zpy-E+gg2X;Y$BCf7CwouGty!cD?EB)Wmb#r!x!t ztp7aQ6Cb{%BBe2gfhQrQcuwj0y;bk#GXG~dG-K<`;O=^X7!B?7MlU~_v0p!R{$bpj z#o`v*?|e;r&z^kCjwyOw|HtHmv%b$*6CHCopp-Qzd&S$^A8#ucU-*6fLR9YlMjP2h zS#t6pTZ(IUT|HCgFA%#hdBVbAxu<t`=NZ*K_&G&*V!UFF>6LX0KC1OrtDi`?YVuqn zZ=t?o&F2FLWWLE}zmu2y!+6P5UOanN>)X~h-wm_Oo7~$zxrJ&Lt2uBzGh_I2@OIyv zq<!`FM|b#XJ@*T5SQ@2&YxRwfw#kq351-`|-Mi<*E3d`U-6}kXuk<t($IPkU^87GI zW7G9RZFc_|G`7k9buF(KuH%1UrQW7{W|HKjhjSSx%zexy&C=Jtes4{So$QZlzYkmQ z-hKEv-zCVS!H~&DXobbGM-}I4D^{I~<vLls`*qUBou(Sz-?P2zWBnH||GTn=?W0ls zAybuxPYdVWXXu;DxOC&+<$rVyK1UyBm|{^-cP@15j>AlgmG((Tb2Q``x!V@TGM!BP zmYtE4Ytxw=yXoXJYsrXhMUD?0UNHReH2q%kBcJ!r{%*UxO-<c}|Mm;Nuq{5mi@)dV z&#nFZH}v{h!ag4Qpcy22b@TowTn3KEeSTlRD$n*$`)0;JVJp?IGxyv!7AkK&=D(8V ztL^Fs{G7SjyLW51rQH{EmjC8>thS1;>iXq*EMnIUtWJwPnxoBNWO3YY#`kqPd7-}k zH?}TV9iBDa%5L+OfBHYF{rfE5mMrF+tj_erGWl42`(=saqI&HgvppugiVVBaw94(I zgy`X(bZd8o&v6{v0!$iaOqo-vW!&%cXm_sCz3bWYH611FOA252X`emz)Fd-FSJ!7n z(v+vk*W-_DyR}OBNE!2l$ij2(m#^*f`f<OSD{G(T<_2TaqkEpRS)a|me1CF$ctzYf zWhH~26d9SGTC0DekLHV;>~{Pp%+nZ@T^*KSc;cY*e})CuyBh<ZXMVMfKBf23-n~va z+vxRtnVQ`7z4yY_mo9x(_`D(Lx8r5CJNu5F{(M>C`<feistm>NWAge}s{Wh%z<X-G z!M#7mA8L>EUY!-OaL>lt<MLl#EO@qCyX3@y^<TChS`)nX@D5M=C*JQaf3ZJbFIlio z#=E=w-TeC^{~3Z~^PZ#}T(#N1I!9$s_e3G_p!z*?`k#gcdNP=M?R=uLadw$xn8Y8B z^_McY)&~A`jmzynH~-efgp2<fvi&=*b=~OwI<cT-PC{(t?U;YdoO~-y#09N#!h`Ns z*gt<AclUQzW`OxyZnKR>sbBl~Gpr`&wchg%&bw<h|4UA}+P<=F7pK|J(~OmQQ2W6B zk>StqpS?#UM7?FBCjT~?^n14Zuf~aw|L$XJ&41Pse_!O>HjCpPCm!#3IVW^_7{iH% zxeK<-$XOLstdYny<+%KG=ZW)9h9`g3?Z323Th=&g?leIyu>_~4C3EJ@+cV!MX-~T6 z=4+wVa{n0~{%2^ZvfH|FeaG9H#H?-l_36thH)Tp))UK|Resk^plbdI{K21&7QRb%1 zc+RaV*89Qs)-BfByWi#?4>Q|%E9-NHu<?suzdF8pSM+?kxv%7%s>iWU%NO-6+vl?9 zgW1|u&MP?IrwP8|<(SFb&?_U;;h{X^q{_rQlVh)SKfL|d?9lU|o%?2e%HDbQ%xit? zid!?DzgzTx-)Hijt7~+Wr9Wr?t(3NLsg~QbkLO3##zy)6l1qh6^_#w4wW&6n$9Xm) zp8bbyh)$fzrKgV@zwyS@?N9j6@HL!!S>)}z?<SwUxqajD$M@FpTDEIBYQOgl_Wt#s zp&{kf(JxjfZ7d(2j<on_H|Le%_uNv0dY+sA8N7tuFPgpSK5~u2T9|F|&pA<PJByci z?m2aLLv2;nl@A%8?wox3iPPeZ=W)}R)e9$QFS0uE$9#czYrR<J%dgw6oU<29Z~h@w zRN;L{S0mCUcR7Dz;u`byOWR*ZOxq_naZVd+!<*Xb;#k)8t&jTUvmEa{tz>?AZ`)Eg z-xuCfw{F~;{^9w->po@`@4aM;c-yv4u>P{)Xt`DXq4$i3=D(~L*s?UKg4y@F^!m&G zk6*`F-E_=8rS-Qk;M{Az7&&+Q=l>bj$L4d3uTJ<V81-r1sd)lFibb^4ezY$YV0ivp zKbBc}`Jco88UB_sRYX7R{kAZFX=IJd<$I65WjtsUcKygLHYq(~vE;vV%+nKWjjvp9 z^e^bXQ^23~@Q*J~)S_*(i=HPx@L;a}z+uf{`P1J`;z{VC7NxI$?N79Z@3Omm<sbX4 z%<!;pxsP6`PJ11ArR0Qiu5et>>B=Q5Cw*ezZRA$rXq_S4#D2=RX70nc!T#dk1vA5) zUfpvvY)X_qrq=WK8n*)9!s|Su4T*CEIF$CZN12O7t%=%FUao6(&u&3V=4`b`9)Bi1 z`Kp@yGvq4+<2;MWURUFe2Q}4+D6cs9a=U_H;|;!St#z7_*0a>bH*I{$yE=B_(<Psj z(p$q5|GHLw?|c7F^`i`Lp|*8x6YFW=Ny?J~jE+2cAZK~D^!m25xwWdR4YgYO{1b}j zFEfmbe*E&%{g}(|HW^$y*HUsI(((EF?>kJ7`>lGm@uG#QwDSGbk4tY{c>DNjlK3|B zj!i#>1h~8w=e@YSN^XBi<15~@msZo7Gizq`Y?I1cDdRGA>-C&jziyaW6pI8$Z~My9 zS~|6G@|-5uqJ6?UH(f1}e^Xii_>owq;=!j=o-0)UX1+YjHN@sg;qCs<vpy|<ciMRy zxAXP9J%tNmcm6x|Vfx{Wa0WrU_L}ADD|Ac)IL<3K9yP1JeVh5&*$4dXlUAy5>TaoC z_IQ2Z>N(6;(nX)RDJ|AM{xV>Rno6NusOL$B34FE%l`Dd?y=NWs-uNwSZtjOZ@A@sT z_VIpbb}O4&yeu}+$iVMm-A{%&B{9kBU9W`??`PAIFumVgqnmbugXz+tXG#SgckD0E zUipr-#yNLQwwPhg<#(~-Wp9_f^ZE7Q`RCWM=jK0Vtd)$-icBmycXIkXckMY(K2?A2 z(>^;-uKdo6UXM5ZtMyFfTV^HC)zfA75)wM~>d{-XIZV#NWg=qi4VB8vvX9oO|Co2+ z&OyH3hw(h7yN<2Q$zPMdu36~t8J8*XO7q|6%C8N)w8#5lt#|Oo%kP#)yk+~o^RD@{ zl&J>6?0?t!pK*}2zP_O%{m88NE~#rryrn!dIpgo1+&TA}Lf0!Jr|s+(kLS%Wom6)$ z=9*bpRm{(4_L8r^?Q+?E|3g!S*CTF8F~!o{rT2dt{OpPq?8<V<(~@{Fq3m-5;~HM? zWB;UfU77t`{Xm^Sleue(=a$<iBN*pDmg>r5Df#JUDRccz{hOt~6<^nH`Ok3ZKSO^# z@0vBY9tUi^RAadIh0A;`%dOGcvwt4ZR7#xsE>S;Mo4IM-Vj02sDgU%T%-hX=<7>1v z=T~pWoqJ}t)Ni>ZRF_g@sP#*x$x%8cZHLi4okNc{R`iIPzrR=*6#uAeQhj&a%5Gt= zz}}nB%l=thR+(h~W3i2t%l`6zs^!f({P{m-e*OL{X#J5$1>fff?{OCR-Q@pf`#o+! z`tNAwiSs;HN9}Ll5`LNYT+h?Ivse6Pl{DvEJocnLAZFPIyP)NgvJ&O1<9L1qKCYLl z=zD%ZPG;jYU$<A09Ffc%ldQR`XTMxp9-6RXqr;CJ0Y7njgY^rh=?QkvndK?7A?QUn z`y-!^wfC8SFiu%l@JsgNAIoc2-(Chfe{}N<e7EFB^@k_NB^c-YsQTD{{?ONJ)?d~e zneWfNl#{RE?mCU(Rf^Nn=FR3>1&)#j*%v+*y^^Jwxm?Fi{L&Ng@H6*PFS#r|QOcmD z8S^gmq;g*6xx%AXz4wkyd1dydYJSU~$_F=XoHJMa=s)yJZPEqpj=uI(-QG#No;KU= z_AWcCnWp;Wvr)yv0?&mX-48SSTzP!e<R{Cu%?dda9!}kPK>CUy7vss7Hwt6kZO^S= zR*~(seb>fW7bog<mIW>IR4*v&J*?6iQ)l{3<C=+W+@<?ITXt<xxOuR+kmurw*NjZA zH76&m*Pg@>_Ir2L=dMqyd{?TKxS88|TzhsUuTG@KeE+T~_BY@CiCwniY5nzAX64r& zH*W7(mVC}?PWt4S+^v5%^m!z)E9BZGK6t#rZqLX2xAw9hHH^xZ=gfV0S)n>ZXP=_H zj?xn66MHU1{8=H}82fF9!h~|BDz1-zlkS?F4SICwRLPE3|NA^D2OldJHSqf%Utje_ zbE$4*t7p-hl9!JvzGSLx?mx6o=vvD<j>$)M8NIr$*?P;Rn0rQ$#W_X}#^-ZBH_rNJ z+gEm5zhR%Wd-Hz=oj*!5zde83{&ihk<f2r!j%}ap3jEwz9?L%td|nVTVWaZXV-D}< z+5X#lQT+7Amet0qnjeWwbJ_k!`#(e5CZ;8cdld7Y&-c9^Tl@Jx!}XeYLB&s>|1)st zAMU;V?TsA&mb=>}??f&s{q}m!=bmt_Rk0oc(K38XewVxs{27#|5!$ur<HYX{Zzo4? zl{7Ee_n0-#zj)`Sk7wT=J$*bCRMzD<J(m->JVPV!vmtvKgUoYL+x16QCiOo1&(Pxh z@at|DmX7v=vmz@EZb!Hs6ARU{tDi3!Co<XpM=e{c+19@^&8Gg{y5g0ScXqbs6M==g zf(ieUJ%yClT{?B{xlC@*k9E0|<3H~GR&v{P>RVlgh=(qne`ZwN3z!glK3sX4y2Z-n z7AvE)j_&k29x-3uCNgEB-PDKgIitMH^FRI3UzA%je@d%ay`FgUq?<NPR-t#@zjgkY zZj$xLo?j_NP3gnArXH)$$L8PoJ?qncq0H@3zDKt%eR_1y?YE0|u-)C>Dy;XR?`X(O z@x?3IGasuI$NUV~aqlMYl@bZN{|pbKw#-{IJ<Qv!y7m6?_r1GnTi5<Q{qozlUp;Z9 zOAa5NCm%YIjnQ!P%N)K-ZtnSBPfO?DVt*XAcj4V1@kgZI=qFdoPb?IPvTMzV<z&y8 zb=|kA<b`ElNPbPY{-b)SAE%H0vhC}9Wb5U<I#$bG>y)`*Yiq&khCq>xS_@LU1+3(D zK9&q+^N`n9R+eS;YP!4D?X~UX3$G;(W~cRBZnmyDQ{Z&G$<a;X=gfA6CXte7dsjcG z+i=~E`A4JZ<Gj9OuMbJJWcM&!dL_P1Xv33vK_%?l*d61ooh_z%Ej-K+(ev$H@#UZ4 z8*0QqvYpPC`B5k?_PN6CeIRSQQmlI5<#oy0=QtQn_&xAnW_kY7hqdvkGZSC!o810y zO254A;<p=0S8T05=KaC$Kf{NuFDBg*ebUJ!)3?`R{kr<}`-1-&4jF!oKU~$aPC25~ zIy}$1vTMmdEsymb|77D-&rQ#8u%7D1T{w4*d)$omYwF~F<R7V1`dByh;eQ6sn`c+N zy4BJxJ9q7-{8^QD-vp~4=RLFJTE%S`%F_R(pV=yFcBt&sx$kcs|G9qF#g%V=E?9Rt z%zN+ojr$)gl;6_-R`<8ozYBJ}`+rzJ((bO6d+vQ@Uain0iFaF8AI_~isedc6<o@TS zXOay)rJEKsA7p<a%l(i0=Wp8^8Pm$F+7GN3zJ14;rSPQK+``3wdu2n|qU+5fo_q@V zDEGzfcJHa>3U$%-2h;cG#NW&h__)4(i$6!a|D*R3Kdhu*Yj3$Moi~%``u!B+gQg!; zQw{D!S)J0o=3~e9ux<Twqu1X$e$2N$Guc%oP<vxS*Cv4la~e1&Ok($|T>sg)Z&O#r znOl3S!V2?VuG{Xp|Jd_il?Se7T|BwrN}*v^mRaU%)79G_CjY<iuX_K3b^jSy_89)Q zu0QBd<Nx9N!!KrG|Kxquop)W{zxmyzPq#9bZ$3X$WMA^W>nS-pjS|UIL$&-Li+6CD zZ7+HKr+8mgz1H73{~4MNRvbHgeE)|4dBGp6eaw6&zqln)c6nLfGo|Eh73bm%#0wbM zm@N*7{y6(+M#{fCyKfn93vy%M@cd8q3!|4Nw^PzMBTd#6msc`QJ#L}S5Wee2M1_0Q z)*V-C+}Ew^tzm3siio{CExbqDr%h7Kq^9o8lRS&NcajgO_AZH0mg8ekzy2rtrm22Q z)!aRkB}}<X+N|rhd3_SMbKR}eW^NraEj>g<tI1vRb=(%INoDD?OBdM(?N9fWJ9PY8 z)W>Zb({-ks9sBHgaq--R1~Zj@8%+84wma84<w2f`KvDLye!kb4>1(sf*PCQ*eq|WB z?~@4cNo6+XNkwPaFYm3L{UF-(!heQjjl>o$@6|s}K1p*sm$Ye1*9kW^OQ#d(_{^E- z6(0EWb^hU~FW;tbn^o~S<%+4Gj)eByW!IH2vsV6kFwbKByj+#X&vKiWth!oj|FD0_ z-JGC{PbWRmo<HUI*6zZu2kf6ujNSj{tB&}5SsUfVRFzFJ?&~6Bj&m(wbK8_yWvRn( z==MgHF9Ckl;e8RY^|>#m?Yd-S6?<e7Z;$^yi(hg@b@Qga`OmOfw)brR@xSs%T>qWX zG5H%F$lq{0#j5m_b_1ir_E{(YGccXsu`~YW?m6GK?2J70@A|B_?LGSx|LDw;?o^qT z^nLfC-o<alPby8Q+Q4RKWO?v~U-q}lhxgfj5S#nZUgSsjqx<dl4-G%;o18VtZeq)Q zlei!u5sw#(JkkQSo?hl*KeHrlKmR|~41M*t;ve207BIVEl52hV+Y!N&lV_&be5(8L z`o{CuzjuDnf4IHvpU#g}j~}XcE|``pe<Zx{<@J*+y*$hAJ-u^Ad76z$`l%phJ&yA% z0@_bM?=Et)bG=kFWper>^S7BF)jfV}{iu9I&g{dx&fJH&{3o_-xU^-qOQ77`<q<9$ z4su4EJ2tT{Qzg}AbIxfNo|?-K=2Y$3&u9AkJ+D&t<+`^rXYNI~Z0|Z_(mH#>s>^b0 ze*O%ze(V3^vV8E@{BZrY`#m<A52`uVmRQSXAHEgayM{|hJAx_lwu;2#Ny!s;PxAbF zH0nP?Q{5ld%lk9qyXPtX2!AB&^xS!)cfDZNci~7C{{rW1F>fJ-87A3#L;jp;XDHbD zB)8?rj)yXtYjYRAO0}$$+m|fA?&Pug(fO&X-(M`VH~d=9yuR@(uUPS_leLA#RTED* zO$}PHa64PknS#3DIeZVej$fz|T>oS9k)W6NWVe|cZ$7KNSw<)8?6GeQ4~j1^`6m>{ zm;Glr=vF82NAHL3@01tuY;_W~i%xr8(k;pEp1J;=>Yn;-cO;ih3fJB7WR(+>QVYAh z8t3^V_oeJ~e%wB&VPp8<tnZiA`KHgNWd2@zD{boRbD2KT(R_Y|2cG;{a6OK1Yp84S z?V0yKr>~s<bZ2SKv3#aE87gaQzlHBxA3eY9Mg3;>1F_s*AHFU8?eNEW&jshjhrX3r zsXm$KJ@;I%+HwQ2Rck_+xsH67une5UTYLJ0_>p+7FD2V9>`${7GX45&#wV}q23sb^ z`7%E+>CL;a^htEND7T95(>8V$p8jX=kHndM+_rY<EzjZ={;O{Ptgbs>|NEt2%)3Lo zpPqP7<el7jS#;{d{ysVT4|cm#AL%pS^G_^YUVnVgMN7}cGHd~_Pq0fUluEoavRwUi ztJbm46YsaIZa-`nm37@d^H2Qm$Uh!Uzuvt*eqY$Mo-gy4>({IO-(sp-z8^VLq?|eF z&T+w$4yy~T`Z&2>PZ#}N`<uC@;BV{xT>HkeAN;>9yznKv`}9hsjV)W3Ogveyk&x8& zb?T{e%Mzj_XI}G|(Ny4(^-t+f_2aqKkL=dlEnRn3W&8C>wnw%LS*isq-aC3ydQ<cy zPwW1eIa1%`dH*DTG(VWj@3H-Z>yxDNo7SAkk&aJxZFD=qUS?4B&-D2-N$0}AC2uai zc<`}c%F?&f+P@~&{%2rO_))y}PvRB*I+2=)_CwpF^w!*J-PZZYL0?ay>v>5~l;`B! ziZ@F?i@ZBOC2{|mB$<Cjb+`6!n0_q(rhWYEqjJ__)8nM~M$Z*H9JY04nfHpQn|IG$ z<ml9w%$Q@;rebi;xNGgl<bPbRAD_SV{qQ`g>ou_t?;1ONG;etvUGbGy!$W1pxt04o z`K}zCaEyCF44Z30_N9Hg|1Qeu{#|LurQfI+es!|<Y_EMg0wV7jeml}|Udz1VNbk<; zDvAeB94)@^Naj%2uQ~U3+}nQt+M{D1ma(m=+bWu=Qv3X)`(wMs5A)m0>-ax>t}MSE z_4Vn>xsG>P3^EHAubMbP^$ypQK9P@~llItu6Zmj$<-`9BH+MUHC|fS4m!oHrT{+R8 z@sfA5rcAm5U-9`<7NX4`yMwlD+P&Fr`uAJQ);~Jy8p1zk>6~rX&bUh`dNUOM_&n?T z`<r#z86|V&LZp+fn8u!+_xz2|W4rmr>94YnoLR82^?TSS8yWkLTi?{kKD5pA7pS{Y zr*Pd#Csp4xgpo7xU$fC|wv)2aY5redyZ;gScg^CD@xuzGlY&{-&6yWSR;UEjvrgbY zw(<}2Myvj}@{d$^+}XTlp6Z<E>%v1Br+;7<UHG4Y)xPMLdFzs%1dlYkJ*^(+zr4I` zdiZes`z`<KC)=L6c1m9P6W=*AagE25_B8g#*Z<p^eWYvGj<mN5%pa6CuQ_NgSefv= z=)w1IM>9_e>cyV?y~fdQhs}S6`B{H+7eAh<-chQUSjv*ne@|!Tc_-294eZx;%k#Wa zd${&exWY=U!+rj)2cP#<$rS&*KC#Ak>e_cEFQ*9k&*5NSf5*N*>h(Uk*xK!(+ne9D zO|+1mt=wnv&b5|LZvH!wiH{$xit?5B@vkf|f847e`jfq5y&@l<XYZEV^QZJ3FEf6B zv?ltuL#B9f<d4)x>`yK)5A3syypvG!^>N?Sult+7K3?_e+xDQ|)|%LgCF#p9m$O;% zq=v}Z|N8n+UVhDzc8?3mtqzHzcU)`jFa3D^cGjntet~P{U+;V#*t+EXg&*a|17tOG z74+6ChP|A}ar@+-*BAE4*Xn*hXzO*)_eexV+p&i?_;+m=3oq!iIDb|`;#Ky^n&h%l z$<|+=XL9NPUg%~&E&KLA;g><L<XLP=Ixlh0WhzteN&8g6c>eF!^+k)HPO1FnE4S8S zx$mbrPnUNpU&>uF?|ezGfYJKX+jS-GaGqDTczb!Bar};10aN#QuF8Dle%_>4GWPJZ z;<>vk&lOMXUs@+#pBk$-(|)S-qz_&T1yZ{=860H3QgZxZ{5Aap(f=84ia$8oT;uh3 zVV?e0e^HMOGfJ$(yn}PhTy9^BpMNf|wOqtfURyu-^PO~wV}^y-i?2P5usr2CfBJm! zeR4l$hkfY(c6Hv=V%v2yOQas9^fYvxIyw2m_A?GY9Tg_d2|sx0kK~WZk29Blh;QCw zx%&JnZ#|XHlGg`LZR|JB?pJ@B7I<hQ%k!Q&>A$x9IQgG})$vEX?!Ea7{+M0l@2J_) zR9Qa#x2)(DEmuu}`o;T8f2I`ApOMlWANR-N@17dvl{KE1P4wALFOR+xvmiIz`|7%- z`}Z)cGj}#!6?^DZ^Lxp=JQar(Esvi}oq6TM`MGZ2uKfBF=PR}0>E3nq^W8iCNIuf% z$`+53@6cIi@_V=W?PAs|L5?~s4TVNND?ZK<D0sD8!j?mA>e@{z_hJ?_S<CU&evW_H z{3zm&`QsCpA3MDelR7qa?X7Kp-5opgm$f?Qw5o6Y`(WqR9b8YB#%m|WFdW!s-yi=& z)Ba8BZ{rH4^Fcp0{x*Cicv_@f$o6mVmY>_V99})OjepMJsVW@IxvsYYS`W>?Xi<J- zR>Z2;{82V*U(9>C|H6+qj~icIUhwMD+)MT{HO8~!1y)!j8#NeD?0F(rFMn#^^dDtK zpZFeHGS6d=KajRB`BI*X)zvkdTJOjP>lmJUc=G$BebYZkb9^=G+3g@*Jg0f`<xisD zDrarY*!=lb@st%7o3Hj{HOxtWdcxv_%-3I~>&`p6_NLu2{O)0Q=lS(n&qZy{&$9V= zTyE-(jA`#xq6-@g*z+vEh(3Gv>F;f$(>wPrN?%ivla#S-+1m$9e*SeHFJH!)e*AUi zR>flf`T1v6SIXV&bN<h8G<<JGkjyD%=7Pub{xkH;`(>ZE&v>h&`mML@_NI&H<qTg0 z?)nveG~wCa?V4Xjt`}ebC-2F7|8RfXuI2~UFQT5!;CL_B|44gD|9TtMTYrt?HuKbc zFn$?t|3|fQ|HG&X2DZDhZHpi4+V&TGpY$?nPL}Pq>FXCg>`AxP{>%G8U*PHCDM?=o zi{gJ8*RTAe|9Bsp!6U1w%HI}?|A_vgqyF1zYp(e7=NncTE<C?Aw$p2lZr!ofU+l$0 zroO9*{+*Y3TD<oU@4CeT*Y}Bf+xhd9oc_IHlhr4d2X&#J&hFjqWn|bN^?UZWGZ&Za z`_O;bxBj$ruKbZ*CB1iSri+;u>R(PQe#2Xn%Hq1O{E6I*$M%1-{xjI^aXVD4^Ie=} z%k%vA*T33dSkJfmcT78{`JajLMcZF^=O=NncAQZ8cxhL*cV?K!5&QZAhUP6PbNKuW z&tKYfv24BUU)w6as~2Bx54_d(d2yte<Cga4lJ9K)Gn_a5sHdA(yU1<t*P~a@o;H2r zDRW1AmEOgjc0nF2O-Fh*$_Sr$9k%9O>b8zU#|6FTzA|iMzHA>;^75$K>a=OoIUa@1 zII-}b|HHfA9qk_UFZDCIS^RXL%c`<X2FLD{oU0D=R9~r=y>j~B*-{F#&iV8^aeP1i zpknpL^CewzsS14y-DOJbz3yK&nHRc*Wx*T!mFs5N8j4SiVS8oO_~mS_gjvC<MLy3= zPF@O9Q7JsQ?!4co-lsbJ)^+n+BbzSWGu(bU$Zo361V;&G3Aw2^z4=Anomt+M?~-+x zML?$T;2(RhS<gIN_M4dt&f#BMIQcY}(7|)opN~I{DBoUGxxn36?_u-g^ILPZI+de} zXIIV5z5Bvb%JjLy+XL@vS1VNtF0SNeU^jjKtM&Aj*->d0vcJPkD|(G*s?7aWs=oiz zI;|U1vlp*3*lits*E2bG_lM%fzW)s8yB^+4-?dA<%>BcE2Cs9`CB1yHGrl~RwLh1! zX=l%!pBCpV4_dswQgXJiHqYNJ^VG!fSibc;_xo9XStHV$;$-V6|NQnx(e>+Fj0NRF z9S@xR@}I#ro9&wO?(CW+A7B0mUaq}*)5JGbYtIDzH2xwKedMQ2x_0xICo<Q2YupQ; z-iS?*-ItZnAG^kWn)c4C%6n!VJA5MfKZ9IH@13WS?Vs0MeQfQ0@!{C-_TQ6MoU~~; z*d7yBQQs>oJbl-@*bjGKWZVkP*S*s2e234l|JdHh^@_VM`|Y~pA)oTfD$iD4wz>TK zdZrIoAI+G1okv2OXTG1k;NR@)Ho7IsyEv8Fw(auQdgx(cxV@m_7{BQ}v$@O8YJ^^R z;d8;NE$l?jmnVhS=5?(9>~`ZF$K#imc6R2hNuGM`R?u!vj#Ga8HbT5A#;*+59eVZl z_}LRSCErYsl@u>t?Q#CjiO0&eMb>gxH9A8-7&reDZO>g5dt|A4hXL~sONBXg_JP5& zRoB(e@w6}BR{im<W4V=dbg6Zxd`0ra`NzLJT2tG1FHG=E*Mn^g+VecWtO}Ew+wC|l zK|)66@qE9!DYK4u=GxdVx}UvMXts9bx<JP#GX!=V-{+=1D}2h&<SV=Ch3q%k|4_6) zr2U_Px$fwtKap2@I*UK@N6in~#;^8aR^GhT%Wur+&v-6idqQs0<a_&7|1&(;aDVgt zuKG0oTRAnZA8d}@KJcGGq~@>NEkP+0v#KlcX3I17YuwUfjJ^?)+L=AcBP76n+5N^S zyXFtZ-`s!1KUgclT`jBb@nKs(#~ZOHw{AaHU-ww^^-1+>dz$}ob^o@z{qK_eM)95+ z^W?1b>o%rBKNh>*Y}DL)$#LdGH-)$2VfRWm&wuCPT0eb`<fFSa`W>d5qt1Vqm^EqH z<(Ja8`2XGcUKbwgzixF)(6Yr><xjW2G5@Xc@524<>|I~^c`HO-ev6a7c&0GB>fc(C z$&MMH)MturDRevaJ-kSf{|URpL_w8F8X4F8Uz|Q@|G_uDL4MQxgX=ryDSzk@&fceg zrABs5X7B2ItR2VmRhO()5i9#x_wJ@zYP?}%W(rs1lY}nz(Eki9r!U&c{X1X(!Ka>~ z;{B2EfQ((K-`j2<xBC0{^xHoDw;Jab7uswx{5|2osqV?2j&&_&V2m%zkXmwIuuej6 z{py#OGM68b3i-@!`JdssGw;*gGm__&2y@)6xhkVQX~6`evX9ZnW!_8A2|1jo_VS_T z)hC-S&z~0c+4k<+YF(kNm#en=vn>>t)b;;-bkmR7OI}CWE?c=IqwL$o*ytq}Cl{J5 z6pA>kcQj%3#5qs;s%EXt{-_>*N!je5T-T+;PjBzz2tRYaOwV1Xevjkv1migC2U8|p zK4_&n^}(l<cHb?%SH6`riZ&jv=?V9oQ1r_7=i{#b41QNRimi>GFAt7o&zf~@{pwiV zZyQTh&%9W|sgkp)&m!(X$%ACmb6Mu!w}(w~Eww(k<Cf@>q#5UZgu<EU8Fp<i6pGOd zzPx-JyUAtN726~H$|e~3JMpW`KYVFdh|rDas{`*HYi~E@%&%kp<8Wz8o3DPrhu%N6 zj=aUS)yq#6&$IIkm-xDlPvVZt0wDtng(t;d&)NH2uU?pC6;jW?Pw8cuSI?&($-hIa z`u5+bnmYFq6QA*x6NO)Gu5&(o{X4hZZPS&f+R}Fq^(9L_?08{(KC7^GU2<5}w1-`m z$%4kMQ|D*3X{{=5uuDFm@_Ze`ihK9|-Fmp@-J{fLN}-D%Jb1n=Wd50ys?eJyI|9TU z&QugEm*Ly<?LULmxve_|eJ(kjYDt!MWZ?I!u&I-u%JtVrI^WstR%WulAvY5re_ml< z`<&}H{xfXc{-*ws{B7l<v;H%*zxfk1kGJ1>)0TaGm0zOwCckZal(}%CV&An#cMm%x zh2<^^a+#^fBy?ZadzG(_{<o!(<?F<mGsDi``&l^o>+7%Um;Yx-mcR9%;mG`r(~oMO z@7gDDnQwJ*d8+IR|E+5m_Me(^YK`RDbyKG{@3NZ0&bu?x<KUBH$5t;@b$|52H{zu0 zj=b8B_J4$=<F{?yb#<$5^wFxla~IisiixO*y5(Ko!E`Srb?ZzihtTpKrUS`ZYaG_K z>HkpK-le-P|I2UFA8XPcaWCKa;akUypw(K(pZS)mF@}Yo$ZN^V`uXquKd#Fkqdx4~ z*SzK=&%T6={|pZ;_BW}0_RJJb+H&zxXK1IrlGX}#2F9bs+xLG6elHW}taARr?~_sP zpE)N#V%vY3flV^#s(H-<J^s^M7{9w|KTGwO+n(O8|5kR<rQiEc&i8Wv&%jc6MP=je z*+E-=tX{IEz}F~C>S%vk&?$96W4G_z%zF<zq;kr%DewQ@<;bjK&$eZ*pKrYLhO1p1 zy>Hi;Yc*~P@o7AvQhKcLgskz=y4k*<>)d~=l<z#=6MS&nq*vah-?nAn7p-XermXk& z=A^rOcBBN{`I*j9RbbeE`mdg@-m!DsJ{}VfO1Z7tU8U5@=qz`jj%n|kZEZ@LyUu;T z@nwU^>lLP*<+Wyih0GV1ZhsiQ%{f`!Zt*tju-?9vmC0+Oe{8$&zpZ4`Ec1-B+kQKp zKJYp4yLP^^j^w`NNd|>6zv4Otb=F=uRe9o=<H2(tU%$VPP4;~x`BvC%vcavpE|XWJ z^4V-M&pRc&A))v1ipOPq*_YD;&zes+JwBsZy7LahfhV7T@LXT@M{?u#kL*Ww&*zFf zq%{4=JgMtnEUtQ+Ma8N;dmyGVd0KWrk;OR!!?@%X2l*zi?zMZaT_|Aa-4|Xp$@t~Z zve$73e;aKHli%{bL0|8_;j*1PLVD&YaR*JO9aDH%|M>O9cedGC5;KD)t!7W#D!u&d zV!L%elxxj99&OolIoU4vN=CBe?_)j|e~oGz)VC)8yC}cqdB>N0?yUXX`{eHIo4)Y0 z%&fYF#d1N<Bb_|WF70Y~xjauYJ4GReadumYn%2`ghM25>d>`7TSA70EsaESA$2t|8 zT#v<{(qcZJew)I){%pL_pQx)zANdw4GN(^@cRT#u+~W;akJnk1d^ub9^YMC_u%4Gs zMN+f!w1T$Z+FcemD|X%TC-<0s)VBWpR~Tn=RoR>)Hd8uZKepuU`r;?+H^smD?q6A| z#w|GMt^@-ELt%q>t9+@O2oHmHt;v!Uo_%Q?{~6}}_-lCl()O?1p<BE3HH$p$&D<H1 zxA_&%KeY2@UTUOd(9Ii64%Y2<Uw<&4QMV2JEAYY7zB>5-#Xrvf8JZrxw3<5o?cPk= z@9lbfbiUu?xu`Byu6o+&xal9&3pRywTb5m5;z{V+x&GjP20@pNufu(oOiNc`m1{_t zJpbJORsBCKK0lOi-edjI`oZ<1_c^l6Cok``QC{V&I&W#lweo3imt`5SdM--KUGjHh zTliD!A|npdKN~7~owCh2KJn~Y_@eMa$$tjE`=>9QGOW91^YP~5#WshWCVwk=dS-fb z#DjOj7KV@KS$ws>wAbGE<M$4!SI2$Zq;s^_@WqK1mq<v6#LE2pp_6xNao^4-5Be=U zmQQ*lk?g#8N$e`SBu^U#2FvFX2hL}G@wGl!r?g>zbIerb>gY_NN12L~ESY|$S8H<J z)N8G;SjBhn%JnOWA(g6UDvB;H{<i;!RE?eV-${1DN8W_Ip7!Z=`{Ym3TXxLcc%QN1 z!20Gt@@u1Q+vcin(H1>6XFKcXQ<6f$LMPb&7S}Gf^|wjeAG|;JKLcOX59NpR558w| z6l~1dBP?<2=D`O}OHxvJ-Z6YX_{Uyx4=?Mp#moE>+F6g@<SAHC*(2zAl7(^NB<<%} zw_e@0{+DxGXHsb1pR@h#a+-T~Y@F{{@z5?<XCqs1@22D)CXU1XhfTjsKhS-9cfWK+ z<HLaIVsU&QnY9*A)z`~SjQCXFGP59j<$?9xYn69>=-ZjSa^wA+=clJ$m_Ic_pz^C5 z*X`Bs{cj%n_9VMb+f#SZv|I0ew{4D8D^TgnK7B*<&|{S~Z6@dUE3fA({(EHo-o7=j zdJ<#3q-{NGDzmE})&I~4_)*QZ?zHu9YmIMn@+N6}^E~MhV7z<6^1%8#=Wi_cu~Yi^ z##K)*=cD>8_06fCk24a}c_w*m(y;0CnzwxC`os3juX|V4A9OdZ7qQ-4J2~#kQ@I3% zoUM1+|9+m~o>yVH{{H$K!M?G|N2YzYQ1Mkgx@e!_^k~<d>Jt0jn(0E-8$HY1`2?d1 zf6nif-)c8EQT(mqBk$_#nTLNo_KfsQo8)3}^ZZJNH%F!y?&aQSGs(Z|>-`^!@A`{# ze+T|?Y5P&Xw4ZZ!`yrN8^IJVdtG02TX1wx1c;cK{pX_h#_T9Pv$KH>^M+3Z+1%5oa zqj;Q0X~UMwP5nQF&3~lr+w`BI$@J*b8~?7xOV)U$M*8lXn4NdA=c(eh40+uN>}Sdo zn%vk`q^@hteW9;i*S_R&)#XqApR&K&tJXhQAZOeDi2d#FkL;0~k`Dh9O55Dra6oN# zF7LLBFFTbAU(WfyzNPevuWS0`kS@>lNhgI?@^6$qcfsSy&STd9WS+16Xx`1=_s{6; z;~5gqW3KC$3Pe2SuCDr|_~buB;ZcWO3H?Fy9qw(Mk~2Nv%=yo$#V;qnZvJ_F$#s>a z^Wp4a!fP$o^?!H~biu|ndtF7`Wyg=UTaUO{&3M|O_m%&;^roe?Gn$XHcl}lTq4}SI z<;+Dpg%{U;J^gz4aBhM5n)O@fG@rP`)L?x1>7Tzg^B=BnT0H&8E%&yPjwe_2^i&)+ ze%|Mne9Wyv%eI1f@`3d)&L5~_y;39pph7&T$z_tncfS|wl6!dS1tfkJHx*xJ-lzRJ zPy12Smr2W=!gl_8&i>)9)a6n`!Cmf8?EC5;%-Y9(q2&CgOuoq*LM^5_?U3Gi@VVWd zd3&xOmecy%loma?IK5CMH98~UVViYv-{A}YM1Ole>c6G`t^WE}_e%?}<*8^Y-n0pv zuQG|_$sF0epSS#KjE|{1eSfq0;q~ILW=-$?6TSXs{EdtY%hs|8#NR%(J*q<Md|{s3 z)14Yirg9Y&6rX24aC%3#*y8fw_jb?a4_QdQTKLIc<)8F_hJ#Z3Ob>sU^!}0P{BD!g z+;7c}ZjC;x_Ue|yhX}VdxBq-83siRF&e1+;amQ+Ujp>Jf8y~ziK2(%d_I9Ctm;RR5 z*6C9?=KZ_5+_Pl^LtRQjPi$G+p~+qU85~a5G5kCCPxD9Ne+G{7#**E-MyDe#^X~b4 z-{3!k$CjD(m8zRpE9kvCB5JR`UG$I4pM;P6$93)haWOtT-}q1U-=)icOc%a>#LMq< z^-bNW-eqo+IP`L(yi2Bes8^S#%rAC(Gk<qZbKJ4$nKrSWhk}DL<DEa>`OLB+=-G0y zX=m-`moG0~{&(Y_;3YrYkHz!k=%#rW+n!t3TWt9E#`ddUIig-hd|}w7cDYZQSs~p% zzDBg~yUUO0C9xh-=DqLo4$9YXY`O8N;=I<O{g(S5tYpaA#k;Io?Xc<7sk;tq{ywR5 z?B@-6-&cz*zI<JOp}sk4+3H9BH|INEi(*b)arfn|4;8c7Pfb{VldU?z=wsZpL`fY{ zwO`xn(wz(|I-|GlU%%(a_ir)tjvtYiTDQk{>6yH>?{nYhg$4g-&`sXEJ1p%#L!<b4 z+j_3E{~4OPUw*e!nSW@X^!=?1+e4>T*RSZ4Ui_b7QODzJ)4z#b5IR)-*X}G&K&Djb z)Gb<mZ&xdKmdQ-2IL4^1wwL|ek`4Vw?#tSUE-9$Hn7f8Ypzh7JoCUugvtQntIB6?S zNz{wke<WX|6+LVEDc==VF)_%=@VmeK+{|s)SSExk&nf=%n%&X!SZ~_oCnu76EdMiP zC!A-#e`$M9j^hd0kN+92t-rc-=cj8i`_frI?sMCEspNE1rFSR${<C5Ze+rM5*t46e z%#Odj=#I^?T@4B4XHK8AdA#G8VbAw9`F#eGd&JYr&TgIbNv_u1?N#CR<qt#a*gT*A zIPBBI5OAi);>~i~e{)~I*zoFyOU2a3zaPKS=erjfnH{LQxn1zbq-XI{p7dM2i)5O3 zTvd(#^_J!n>-@j<Tw1&Aa*p>IT_4}Ng*#qdUMM&7^~9L7$99^vKi<8U%Y!B3dsx&e z59xx_2eW3o)ry*@Z_CQREtcMY_*X{5Cg#eDqq{_ZE=(|fdGh(zN}Ek{BO-4-7mYr& zxXVubqkn7C<r2pg&c)C9w{%=#?Bhv!F8RvqpXe)lX1zR>ANe1Z-MbarCMK@v`J$b; zI?DK;x1rLa>4&VQo<9^D9(i@q+_+=Uy(Xzo<XXM<c8sD$0>8u3TF3JXt?x6vb-47W zK3hs4?L*!g|Gyh2oy+;p@ObLm@cNy3Ra?%@kqy`QWVnylyLGqtOm3SX&4U(PfsKE( z_su_UwQcny>D!%KE$6+JIb?2q>S3}ZBe$IKZF#M(52tOto}CV!ej-q$@uoNb46Df} zRh~a%UueVUS}Mo$!EN#CibIjh?|f38&Q)H@zWhSpzpLkGIl2~mCtrPdv-;c||DYeW z=0~jW*1w&{khxy(y5P?_vIjfTV{iM%9WN`s&>UYE8C!Qjs=Rwkz0i;KetWiV-z0dF z`Q>(_+cAeOY{<PB<CZwJTqadw*E^Z_!SU<kH}t=`{h*%xkHp14(YA}uuFNw0d3jHl zx$=|VRfY$c7yK<gTbuj%J@b#Mip9IDBj&JLpI)JE@yegQ@n`sh$oU=lul0Hq)@<4N z*L>=abjgQ{!`5ugSoxoU<?N5}->&~|&6m4;MCyBwsYi`@YW`EL_@83$t_!J2WnMdG zT{`dKi97FvG|oA5eD9g}{2!O%e+HHb*J}iq{5b79?OtwNZNA^MjM64<+tW@<*7)4+ zJ9g(_u$K1<#gjJIxBq82XlGMXBm2?*H?vb4qfGnx+DUIpd&8f7dKCD%_?)N2*?Q-H z+8h2ew9fx<?~`xknN86?ZDNykx5_u4l=Yewk@L#v@0;XI-MYu8AIZs8RBD*bk=j1@ zUgv*?ng5KYIlg_rCV%;vgiV$_Mn!IgJ<ZqGOMa7BzwnQK@i%{g8Bgx4db)XnhlS<i z^$%x#vHzjbe_;0fo0q?x{CNKGjJYmm|CF!nnJRHxB71qU+{Fn@YfkpawNw>8yQP&L z)|K=1{Hw(>;a_!DS4RY`zN=QR9)9q*<dvm=*3NsHTb$P;BT(S@YyPL~i#E1}A{#f) zYk&HBg8hm0>YbwD3yv>jDE<06Zt}xcp<An*Z?Ba5TmAgcqn*XG!WP`JdBbyktIzlO z>^iwdUTd3{PqLEv^{alKw)D4Y+j_UiD!n~^Zo82F->=ez*Z<DC`C;lR+gm$>KUJ04 zEvWB*8vO6#uaeJyEI01xZ<=n{bZ<dh-2VQT@tm&PJG<;A8F}9M{JyzdjlV6dd+xsQ zBS8k%$15L}%g2ask^CO@>z#@2IosEd>l-io|7YN^@6Oem{p50KJ^MYiN{+mDTeaDr z{AZ{>>-gjPEwl6z#T!NS&hO*z%e$}ob5qr;{&e6!EuDWhzg#YF%XiDoc)9*i(0>LK zZ=n@`_(iP*`saKxS;#4`>vH1d=lPfRm)SFx3O=ge+VyijV~wTN*X<wAT%0`r;jRly za%zq9_#eje++Nf_wc_Br;`r)+7cU$y{cZm0ve&}>n{C_|-aS5{qI%1o4eEWBLX1B? zAFbiecx$v+fBXLHUtY!^`DgHOuARc#^8MQX8BPZNJ^0|6YUsmPyd_2PKaKx07zdf& zaa8`#us-_Q#r79_*%_W+-tm3SZ|=w#Z7Z3o`NwCy|59yHprSmnfB7TrPd{DX)y;XD z#B1)F$rrzzC3)dDbsPTrL%UC`^}RAbXWzl8=e*0+uguz<C#c|jcZ%@D^Oj#;`&G|i z%D-dyGihOPte@8Pe5YGZq6HS`pZfn~_<7>-m21AoHs(sbvxw=b+5dcRu<*&!^lvjh z1@HVf^V{0R*4oOFL6h%F2WJ^Xt^0ehKi~h<rrR-n36B}g`i$TI6FnB6r6FAO#dcTe z+q1=&vh;RZKKSzWkM_J}TDPSy9a?+yT5S9w#$NZ}a~1agc0J2`x7f&Np7DiQ$Ev5N z1s!iZu}ar|wn>lQqa7??e-+0}I$~C)n%kQ;LDFmenF6c2`njf$WsMI={#ng`R_9Nt zLRI=&k31LeXZ<q-drBTW{$Mw?x!k<(*py$TH~YVP>o^{ASw8Hgjd|{$w`>+3)3V zV^f!2+_Aa$=gGj`1@A9^T9KI6_eRXVy65*L<H;|IqRvfR;ql_)iln`j3<<T>|4e14 zwby+3yFg9YLcPFx<KKJjAJ0d9(XNho|NiZp?IOY_l+PJA)$1>HlsPY*qi*rgT|(k@ zzt@hdWt-S$84BJ#5q3<lOhefs!2bO6h+AuS#aHBgvfTGd>D2LgEO~4E>zXH3CtP<f zF9`d1@W2B@<@?v~i*9@<E4nBAQAUmG(|5H|(x*cM@7_9B=JVzJnWkkzSB*1PFFya| z!_@a}UOH`@iBqO~zU?TPus%SVp~<?rYqLz>6XlYVmh1c<>UX|<dRcdk>C?0gR}wo< zs_XJhVh9U8|Gm8U?fj@W@7AhZez$Dn4$BIaj2nF|E04KV%PqcfZECRZ-8*6436)O$ zvll#GRv&+As#|>DozNi9obP8Nd?&7ZRM`LdM!3nvEs}ND95#um7ao`1TlG2KsqTzC z^W<-nf1FPJV0Zawn4Ivn(hrIk)vvyNI_uE4zvcUHq|ajGPgi-d|HbDS%X*ivsfVU@ z*Pj<#{{3OU<NfW+FFe1rF8WUPubR~>e)uJ3ufBa^x>V`8f`mPdE!!sdG@mhEQpCrv zec{V`dxO@@fH?)9p3e3=yL!nlvt8?+r^$KG)Xb?n9AAHs{XfHlC1IaVev6eqI6YaV zt^3HE-TfOT`#OI)A^Oq%t>JIRx~uk^?c102f9w39`n-Khu1{@a=?*#Wx4O%A`D>`( z){Q;lGX2*4Ob_mTg3LmU|Gw3y*Y`-pzvcbFeBi#^mc(uRQW<7ar<NInu6qzZ(c?{+ z?}7fTufEZ47xy?WzE_ccWLiO%RoYVS+i{V1-8LO8WNFSms*}UD%RoiIwSJC;{xWvK z2Zo;xKbw(N6fij`FsNs;-?_6VSFbL0zx<yeCHPWc`jh27c9!N{`ycfG<NLczsd)Li ziHm+{ANkePX1(^h(^Zp~UnS-|E(^?E>Mn6Uu<LKhw0oDsW<{$VnRdPL(Ko|$OY4=^ z#`o_ke{*`_AJZS9ADjPi24+@Td^mnYp0}bu=0~;ak*?3GeT%qW?F!m0mZ@?n|5;na z%?o+kcDK}hd^~maYyKZ<^N;_m&&<Cu{bBhr+06Zq^40oz`!>yvl+q3M{LkRBuXk!^ zs!~M6gd_8^Kgt=M(m2iW@dj_^s!xUWcUOyQ)fcxc`g+N8UHd}G-8biR{JY5Pccngc z{mtlaq91NXtf|v}HBaV3DMxt2J-H8e7rl~dVP#`>E!ftXt0h0>*c%ChQ}b_I<_Vvj z_2tjT)=ADUL^SOu$b^5+{;l}OW#iu^{~5C8-()_P{(Zxb_yhkLg!XJY{4VB3)?**t zub&P*_$3&>!Tv*l{4KWI-(vsv*eU)=zO#CT<5KVC86VB+>sMzrzX=oQsjtd(OuiTz z*~uVeyUzAujn~-%NnVNl*_NJL@0DtM+5hrM{4TU=Iop%-pYLonx0>4$wQPFH{`8%_ z=`F1`D);xqG+%zI+!J~@b@h2A%bj7eo9vnAuaEgB_vN>&)qVF%4==9umUz3c@1D{9 z&*xMkuG<=wtvI>XI&kav?Ur9{>O}wT3%(es%il9+cADwAx$E6`xy~|)6KS4Q<gPwX z+p^^MWA>?q3Q25LldrE=+f}`jXX3+M>9!VYs%Oqj`eu9lWz->a!zued{by)M+}>-G z&ygVY_<)_(wv*c1)vj3{SNUMfW_%%S!`EExz>B7pCh}r0uUq*o&R5u;t^L|_&AUbE zHw2}wRXm;<x#z?;rkQq039_%}$9=ee`1SG+eOpsyxOUB3yXbY;sWV4d#ic@Txyu=E z5jtZ0@jCad{k!F5>n_J{-uk^ar%t+J*1JRBkKJ0{)ZX)W(<FuOzDxC{%5DGFQWnJj z$H(NxDTdqMk8wyyuD2KM`c`~V_C}5J6n*6%Rv+3A^2=8&cl_Ai@g?Fp^FgW7X)8;Y z`(~G2pUzodH!F8f*n}lIZ;q8Eo%x;Y+S_c9$9{SL2VeV}$sT`K?$51f{G<G1@58sb zdwA_uZ2U1TW!u#p<-U8ayS8oHHtF9j)@sW<QwbNr%_q6GZ1B&!q|><A{@T^!Z!>>e z)cAgQ-&to~!~3Ig;o1q8P2NWRj@`avyU@1IhrRhxJFZBlJdJ$l`7Sv~RyymhWRhIk zaiPrr3|smSoaO%3{PF$4UiM?V^4p($VDH{z{3ti~-^IN3dec{#K3kWtJ=4=O@~iX> zg&i(JUK8(3T4X*kRc6z1&t;RWm7AB%z4*tYCh3RuWBrz2-<HMu@2%%J`zW{C`C{p{ ztvlQOuk>|SoA6EhE^c`I*;y_Hp_PZHMM|)7ow0FT_jbxeYyEpSLMAM?zx$t|`quuX z^*^+x_tc5}xcx2Yf(>u+nk8~7KdK+!4L=-E5q7KM!Ij{!=ICq5SM=8_1YFXwzbSmM zJX8Bk@6q$&lQItdlRWt0cFCo<sMpgae_KcOZ*>*kKH+|q(5W2?GM~ch7oOAJ%-`u} zKJob@gFl;g*<~4NINP2%p7f!}gW-35pl`;d0JG0G<kwao|D!$A#Ih{&yOqx~F=3s} z(RsUi`rOnfKfT4FqOJIRPS?Y&{OwWy8E&ZWzpVFm-Lh_Do3PJICQW@_ekaLOzT!d3 z7n$o$E9H8gl%(vEk%<c0+InxPNo&|SVZA$i5d!S$cY1z@TZ$eDYD;mGwmkTL{^|b= zSED{>Nm*xHa=5m+`&)s^?6YjT3ntZ<1s83z_<elhJgcA|#)o!2@7{VkmjBSVa;cU} zR(0=qm_jzNKU2{-VZn2pS>c2B#_A0<$2_;a6~19|zUlkohfXzNQcnzHPBY(gUv_Nw zJGld18@vm5rm%*3KfRvMeXLw2e6nxRt{@JRPEYHiv)j|m4O9|0zr22L-?m*pj6W7X zIySRtvDbfw79(G-123-y+Qg@}MZ0yLxp-{iZu>bZf$GX96Ml#MeN-|3R{Ftxf*;Nw zt+n?1QMhDjYwP>=Ez&R6>LwrYHGR5Ul8;e!URc06>q*foO`kmcD08VW=f!%*W15Q( zeBssl&k%j}L3D*wqVkFa&!3%^$2_0*f9U%+_4Rdm0X_Gl{w%9b^`}34TkX_#R-qx< zRYvUB+|@g|o8DY9+U)ho*xJlnCeeNNk2G)7eVL{edV<L{Hf3)Vwe~#8n;KEv#D1!( z^m%uk+P3W<o;7AZ(&w)<pDwsL&N!Nr`?yNPRNZ@bKQXd;2JAe?$UbY=#GrY5xfadp z{Ib8(^mVM}*YoU4dM2HG#2Z-l_Thq!SJovR$aAYXyQjWfZtLg$oh38Z&h%aG&LU8J z{P}U^d;6CEXno-89(rw0ba|qQ*Ddu9Q}1nIK`AMFc4V?-9Gs$W)b=#mf}!+mMcH<p zAUA~>eU1Uk*DFts_kL6xb@|M~jur1EFE4xi^3?w5dDC0>hgZf%g@n$@x)SvDdHvG< zSzj~#Y9_4IJ+fxvv4tD=&iS*-T&DEobLJ+0nfCdNKkjzsMD~1cuFnRo1G;F(^F!YJ z$XRcX59y61E4S_!shIY#WUbjH*3Wu*dh0x0`V5W+R;X;Av{EK<?#<+|#P46^Kje%5 z5%KqIG})HV$egoCe|Geg`4e)V=S}bVc)Q>0&(FsX?oRw}`hjciT+jTi{r@lhx&NP` z>D~|R=nX%jKa?LiviIz|*?+e#>g-u-CBD1qdVtGk*_r#xww>8=;NXcD+COJ}jFi8n zsb{>)<nHbX9w(G1$6uTOM|AzeSwGspsc-wyx%F8+|BuCfvplC+8f?6;aw~h?v)Bb} zJKP>Tn7|(O&(|hgMriGlW`-%LNfzw$tV<<L-zI9h@vfMuxifIL#ckWL$4(!4m+j_i zpLfn>uDH5fQtD)j<8BNe<1Rk57drlUy-a2u*T&0_wrt(EgOOq4vx$0o2m2zoZ@YW@ z=C>)Sx5ODzdgk-~w!OB{V#}6*OB<}2jTWe15K~CMkgoD&{fhl5?^*8p|Bn12edy;M zy;51DfFtrd(wo905;zh>r?W6|d|MxDvf`Bg!efta+vn_muwvGQ`mS4{i+6n563-WX zTWMam6nDE#;iu;d<jdzr{ptR|wpb*}SY>e*CzEE*^J41+{f(06<CD+U_5Ei!=v(@6 zRZZ&kgcR#HYj_yu2)N&T7{<QSGH2eM>ra=ry}KI5Yxy&9&k2SXPs>)<GFr$-eN?pA zTP>BKVXn5P+fM!Jv|pBMTa*k=S?U#WCm0@JD6_l!`t|!8hohT=uRi;Cfp?pAub6bx zD$jcD0Ev`y7mi-(DQ-A&{a96#vE(e~ZAqP*)ma4A6nV<>@mBl4xnE{u|9Iur-EA`> zqWyE!W{D&@v`%|$^L*;$Yz>+3l1qalEavqko_bNac*_sr)puXlZ<*gy`cppp=dLq5 z54<j3W%XoE`kIzn_o{!h_oqliahh~Gul~7f>E*e5indLUd{<$?{DQS!+kVrQ>p>OG zLDx-%Y<{1<?eR{wNVNCp5u<(lG1ikRZU1Kf>i#>sRKmvaVXb}G{+UTl$1X=)SvGM; zz{Z10dC!-z%z1tz{B)t!_30-*Wtg6u`6KaT`w_Q){Iai&4K@CmZ3{TQ?sRVule@pG z_U*=Nd(;1M&V2mvVLfNv)q1&Po(;EtL<dX~Jy(#Fe!Fk(P4~F_UO&1YuiL5Ge~@43 z&RON-h1HK%2d(a(Us5q=n-RxB=F5`nm;Gl*Tr2cB@IOOS&7Z^%=jJPRJwLkb{*8}T zy=Q0dbw8cFz3AN`w<A40*W)7F0uNf2m;LEaW{>{6DEQ5~x|ko*57(_<Uz74-{-M7n z$9A<$%zX85^G43*w?UgH7;m#USa#qXyR2(n|DT}$3{ANem)$;W?LW%jSoLSt=eX7P zVsG4!Rx#SbzGPdsWYX)&4Vw(}+HC}?^f~L!-1^VZXrH~}Pi^{&*)P_9HO~9C@zy4r ziF+4bo@bhGxv6a1)1Un37}j6W&aFQdC-q}~;)B0wFHQ7$UrLp3-BNT`Xu-V4yu#Xk zArq2ISQexlOo$MS7d<}npFVfo{0*1Pe*b4!Qn&vhKhM*heSCXfWe1vGPt7&?y7Nct zhx~(a#<6LKAK8=(FWD#cF?8S50;e_kLiY|_*!ej?`@<6r#tr<B<Ja$(-(&wc*ZSe| z&Klu|EAzKX>*hP|j$HHa!o{dNhK?4Ii|=j=&lL1}Qt-e$K)ds!{^7O!&hp~><X<Y8 zT>ZLxcD!(A=hV)WUE3p;MjTXV+~rYJc)f7_W)s=!L-$4Y@Ghy?@0GIa^4DyObxBFf zmvqiawn_NlzP7G<ZrZ2y7FWHl{by+Z&tUx3X13yTFQLVnrS^UA1%5;ynI32GJGO16 z>SCYY+m5_BlD@C1r}@0)>p4>YcGo}X+RtM8zIz|rmLJvs893t>KkOIf-~LKYbo#07 z^DbTcWc*Co%3ow(PO%TSO<uu~NfHI@&z~Rt&v4WH;l9a_epj#Oi?E8#5|-Dx#ktI* zS!PRLQV;_}%7zm`bz8svXE>05OZ>oomao;3Hj=CEytr;B)MjbFHUG)>ZCjf>!mC{p zGsDU{%l;fWy0P)6=UT&=Egu6~VoIWKegAVlS^u==!=G1D)3x7Co&29c|IEkzH$Q)S z{-2?#`NjUN?|b!Z!b=~?rn_yp`Yt%~vcl!4N5`%{*!5dyx9c7@?R?#dvr^sqjCRk_ zkh%Qje8+qyo63*3-pLD8tUo%>{$pA5qgdB18l}oARpD)qX6B`s{VF~3^y$1y9vA8t zF>G+(DrvUibiMa~2G0C_BLA+&3zyn=++(_6vR3}6!O0|>)N<b4nU_zOnrIg2@?`k* zZCcqEKFRf9=Qo~d3HwhkKk}aE#t-{{T+1K-XW+`*Zs;%mZQ15kJ|`Z2zaM+Jca59j z)8k5R6F+V>JZ}1Fj-=b3&wHG|`ArJEYx@4v-g|TFgAaX_7WA7JDLcD*`M11vYxC~P zXIsk~*B=ZjmDS4c+$Z<p?&f#iE55wfH9n!s`nc!&lSvluvcEbXFpkQMXZv#UoM`;v zTSu=|*c<Mc6bIU#{!sqy{nh6m@!w8&`0)1GW7)0enmGb0!#daAJ!UO1o#n~bvvp5i zid9Yh&v0;Ou1SPk_3C^MufPB{>pYud!RI9o_e}2dt$RN2^3#J4AN|%p@h{`x>3M5r zy*q!t{>JK<jTioDzMduf>$K|kuCRNb>=p`LI+!Q2xyrJ#fuWRn{pq-`A7zuLe_Q(@ zg=fC)w#losQ~omu2(6M|=M+Bi-w}B}oAQ-^GB4Rwu8ugKw(XbeyXhvzp7OJPf7h7G zpu&Hz`Tj!N>MHxAlIz;vx@XsOZ91R$@bu~i_RxHbwi7Q5+|_o@wQv@?V?XhqyKmSX zeZA+8+ZH~|^*$W6_FVs}!%xohtXt|~@w4ya_S@M^`>swe|K=?t{c>@;vc0v2O4Wac zU#oZhXK0#qcHIy8$7kE7<~8|RWK1(SwOI3+FGoVmRE9RgDKgI&NIVEXA@I`b+}6cW zKib_cty?$g!x<$(r_cM}#VpP<)Mh=++<PQlcJ<eoRZT|%TBC2h`0*!A|K{1F+Vd8F zRLa&D{$cp#ELZ5R9l}lz#i#wf&2;?V&$E@s4|DemSJ)plyL_Ix?#)hRdGj+p;&RI^ z9$(sJ&;G~m$Ig|nKW3Uqv3_0c^;@cbv+=6AJx-fei~Zc#Q~f#KrAFw7^JD&weTtV9 zeyq0tqdcwcYv|kDwYQ%A3V3n5eAQ|d!?xpR4$k<hwd47nrf(*9#8y1|b}`rYMdkft zj`FSl6kMJLSw3%aQ;q%?xpdi_jd~vPg)J>5@@Cp^wDlP)%8yt*>wNUS!=O{w<mcJ5 zd-p6ZvOc4H<I>7kBI`muUVoNr+PnXe{Xu@F8-Jo>i-R|8opPMpbWe}agR`AXOV(?$ z>&j1I2oRSzXTVx?Pf5ye^P}oop7RruJ~tn$h;%NTIH$~VotMazg<`vu&m4bjUvbIK z`|oPq`EHkO;+Ndfv)^jUt?R^lWbR36r*-1n0-gxo5WLa#lm9{OFUPeN(|voIzV8$K z$fMCbDdMIi!>{=ok6*^;{=0tJ^Ka{_=%3Z|yjk~kO#Ch-so0k$d))O;_M`rr=lzBM zgkOG>=aFo?ZzZ?jm7lX>Up<)oKCb7|H(&3S6`Wi1XP!LFyJgnQE;IX=fg5ETROU3e zKd4_@`}ae!<HdJt7JQUF?6PrcUzm}=?zsiWEnoK}%kr<SQGW1qjZ&_4*p-KqDw02` z?Cer<KFg6(ndFnuHj!Ct;t3Uj>g!*N*VP}i`p=N0-(%1G;G_KE-Ns8}D%QJAd+fI9 za(<p`&oWVQCXZykQ$nGsx;q|Bd#qCU(Wd^0h(W+of5B?6UrS3rUzJ}~k$qV7<GZy! z*5R$|W?x@F`Rz}+{|pc8d*j*aME{6io_@?u<I<NOts8bt^3+QXX#AJEusl!4i0uNW z$^)*S#>eeHg#Kr^Ip44CweLmUt!tAazAI#`6_Rjf-u`UbGnbg+pQY>P{b$J7|3l6H z;QO1$A1rVGr|`#e+9O`Q*Ws6s?a!~2-Fol(JazBL#2p!RS0$pixoB+WxMO)|?ZNd& z_jk?b*m65wxN`o73Ab6xe+s2m9E*9r=n3y(=4bN#ra!Oqeh7=~pR!TzQjqVyX@5-r zoWEThr+s$Al*jHjHMUHT{%2L^{w4Rr^?zK33u+W2><lv&T`SoU?x`aj(ss+4+1Oph z$WvNq_jT5;<_2a4kLTZxe+&K3(A;jHvcE@8aQ?%*r4R3hd+nceDbsga_p{gQUb47s znRu>&X~mB7vrZgo-s;C^-+%sQ@;}b2OaEP*&$4xY$M(;Aq}Fa*b1jN>?~2y7?^L(; z#vT@ypK-R(F84Z1u7ZHM)Gz06g?~GPA5MQOzW9&vg*_pr_R_Jp>$6_(nm3d8?wonN zmvTENJ(HfPn(=vM?2(sw$y&>9ctmF;PyZz&&yl+JoZzZ=bLabiwz=bGZ+NU)y>rPF zm36c7-*11q_>-L`sKBYo`r!Z8{o~;y`=$3-o1R^IWY+Wfy3>}Xf3u$Ey->#EfTZ-Z zn^Jo^7&Yh5SovsQ^o5`Mwx5sP_*?iuyx)(%*_(dcet0tZM=5*n)*Dg2;YXsnU(09j z?(Ds}Y342Ij3v9L-h3z8AhhuS>w$#$_u=XfR~(#mzC2(-LRFhGvux$dciG?8sDu=J zY*8(h75)@e*Z%2SB`Z&A#M0cj{|uFH!^|%3T{yMRX(PLBUp3F?qgCn6i{cWMHzZi` zT$hyL%~f`(NKy6pqHM|D^YKo2^}~~#I}O!1wEX>y3}43XoRZ%@ec`8)cwN`zTYKb< zxZ4~mEi8XYy{ogi`FHb!KbPDXKB>3)Sr<>fywCl4%=A_VzL52nEc5<cU-HLibM$|P zrm7<;pJg0B)bHWE{p)l5JV(`z=FfIrMtl6H+6k`meAqAlGSG8V<(9efp^}n6O>FCq zRT{qE_H^U?sNYSebX=RPuOF=Ebv?T$&U&W5`org4OcUqHiEiHQBe(NEgR9zp$2Ccw z4?L3;n|m5;f3AP~e(}=$Z#ALXU%UTE{pEjZza&p`*9@z>SFS%6|J57eU7fVXbhW|b zuWNs2^YD1z+wypGt6Slv{flCL%b%OFqTH_b$M>bD_20aH^xA3m%ylN5A1oE3UtO4% zzrfvceX|L#k=XXg8HpX|4Ci0k@4rt!;<*07elbPKWAjv*?^(}~sMq>)^YYS&h1@-* z^3O&8^gdpyvbo~Qwh#ReZvEwd6VJ3t|Bbt6?ab331M63=mTEj_e2(KkgVNR<Cl~%1 zPHpe}>=k3aOg}9lEI9R?#jARmYrfAmb<b2uXy_}KYbZVWvg=Rm>4m@k%zP=;wmwJ3 zmH7+v%S$_}?}jkhG)eNae7yhXvyZ;)x2?GkzkIs%?u+}=jfqd2wekZZi~9^G_ATMt zdLnv@`1kD>w%!rDpBUNqGGawp$6Jkdna%Te&q)cld38HzMUcNs@9(u9$ypl$3g<1j z#_~^b>e_1>%ZufVL_VM2Vf*pk>L1zudp`DetodV}c0Ya62cy+HG8wd5f9YEsnt!~% z>eZg=4}G5x-IJVu<ie}MyS0-l7ETllGYi&cd6AMPp^_pvrz+fLqxMY4-DdeZ(*D!j z8SQqLJ#qUaCdtC{<hkvCh7(J~Kb>m4^JKk)U;Ux!PSxH&bGGzWy<Gd|UX5hYj?N_y zcHS}Uo4xsf%$0uz7m`05TW@0J`rvBL%<|i@N1WaDWmcq~$`AV)!F*iuShm>Kjf)O@ zW`t(Hbmlji^SCc-`mLB4qXkL+DqY|HGYHq{epn*MfANp&!?Q`czk083-81QK%%a0H zC-bd1SoYr2YF%+p*T?@1(#zX*YEmmxAH4i`b=lD^u8OLM6LRwkjN6vF1x&ioad~o? z$GYh&twpEgp1Av_{_w4J$E))SRIL41%GB9MJ=0zH(0j+NH~rdG;>X+q3{IR+a8Qt2 zw0H8O=PiE>9|opYKg{0x>8onGce2KmpUx9aa_^a)kW4;kBczqO*n8)4?J%D+m!56? z&1Cn_&+!kR#UHK1cO9jLmdMRzE#4=+cgtkY+tNLYr`kHo9&=n9=@NA8T)Q$0Q<3r4 z^I2#2#-6z&xnz3Mwd(38=agreAK$dW)>bQeg;VT#35JGucFl!<R;df#y}6ye?83dD z-<Mw5sCy^;_QC8KK~4_0+n(}ozvt}txW%%E*T3qO^r45bjt>%23NPQ<^`D_d>Pi*+ zv3RcdJAaQ|FFC<itG90Pw)_J+$L+2jePwR+^Tl-a^3$!hY{v8Mgw;eHxbStiZte_s zzPaU@HRo;|5Zip*&aXoL)p^@pSBsV}Hf!sZsfm;7cQcQZ+s-rpX1KXj)uhV*3{JDW z6X*PAxNcV%dvBw4?D@=9OddP7_ISR2c6i49dF>V~f3w&8=wGNh{VnTbevZu=x{u~Y z_oOGq+&^t4WbuzP;6bVAi}L#nHVONLcI>|VBzoiWSWVRh6-|HFh;qdjGwytR;ylZf zu+1y~9PvD+yZCvt(YzP|jz4x&ZOl2fa{J%&Jdu$z{8zE|_x$#Ffwd>uy~^$HwLZ?N ztxN1bKI?eD>qpVG_b2PkEts^PXPLT+7|UY@xy33~-&Rc5cL?@RI=Uix&&reMmv8^N zmfv>jcbBS!k1-eH^^#h>HW{A!WZ>~drP$wDN$B<o_7$(}_2z^X^`4!wcIV%n^#{53 z)UzKs|3iK2{=?C?4^6k@yjJSVcu$6X+qNBrD>8qxF|bKzuQ*iT7A$FV{l)qN^0$QD ze(YWOWAVej-JAV>G=KQ^`M33vUxo^v(q_Kv7BjUa{i<8cce^{&QPEi<KIfuG^H10R z3{9eS*M6lRn18G7_k;SrcayFk{?8zquzkz+c}~h*vQ=j$Chz&eTPxC^y|Y95ag$x- zf%W(1|Ik?fCiP?YBl(Uk_P4FS>F%BE_~YRN>GUoBn@tK%ug~~tWH(dU`}a&0x07w! z6B4HD3QNp6T*&@2`muWZjU0Qaqz@85t2L71w=50(qZM>@Wqsl4S^8^gZ)UBp-*qTy z=SsKq%lo&BA6nmWU$Bn-<YW1U^RoMo%D0O<AKk}2&-KpokPTg~lP<ZQxXZRMQ{`H* zp4*e@O%hD@qV*3Z@87omP|Dv$c1nMwJ}BGGe3;);HoabOkKxi-L*a~j3bW2Wy>7yO z@6PU=?A?x1Zz}@Nhno67%>N@(oc*BEz0p3qzRjvd&fxOh#2s>S^KPAbem<1ve#XVp znQzzSEL9N`=uAEId4k3IL-TKGKdwI%FI0D>{6E7M_BZv*e@uS(b<eMvA9;JEdZyWD zUEbQcbkd_&(dL_`Ju=x|DYNUSvE|<<7cDZlmey^4sNOVl^XZQ@_D3Y@B0Sao78Op~ zRdYJMx;QHEV!r8e!=qhi7E5Y6{^{RV|De&%;_ABnS@&DzdG(e!E`M3a_A&aVvG5Mh zRqJNf7Vf<9ply<+imU;5RblUc2G+Fy3{9;ObvNoIa{p*P;B`{{5&Ix}d$;SHU2CfL zEmo3HyXtIs*zMH${3JGG&PunBRyltj{qX%*eng&iPq=wcjryn9(~Do-viqWT|73gk z=1J$mJB}?;cH1=FHI!LPScA{~Yvq3i7S_K#{~6NvCV#WPvOg<dyh7UR<Mhs&;B{G6 zylbL*_pZ74@|N4wl3mq~*|L{@3hJ!sFSWZW<YDGIP4LL#UuEmtB{&M5ALY1It}4=S zEb;qXJbksV>eISkMS(}Fy=uCj)k*$H{>S<8KLcm`AED;s_8)@&+8+(JTm0Z{)~Bm~ zOtyXKPP=S!ddHi0PqTZM)o-1aHcLUm`6+Af1WTj7{olU-?XXX)zfu3d|L|F<<ByKW zS^T*9$hzgq*S+$-X8#!ywq3}}nR_W?L0IKOmz@HOd~Mc!XT6`3DIpjBwY2g#TMgfj z^55G3F34}(emKo4y|E^{%v7V~bR<Kp6mOn%#=Et-{<<RGx?46MSmQrMg`>f(WATQ+ zTlXiQzp4Bv{LTDF{x`di&a!X)Blz$<Uq(>OkDy;-TQ={y@b1mR8SdrzawleqHYly$ zF!9<$xrnE+OWJ;4o#8z@eBqJ}1=;8SN&IK9>J^=TWY*PbjSEjR-+wi$N6L1U$pN=p zy;oN9gdKC`5&eE*nFF&)=5)=*^DpAxw*O}P@%|gr-^Fk3m})YwY<XLD=SAU<DHTnJ z&b_l{-^{BLE?2bs^b_vv7D2C1_ET(5NEgkVX85<b?q>Yf>4(<;P`!V!p07swgZ+Wr z@}u{}Kb&v99eY{Nq}NdO!@vH&Egxq*xw3AOW!l!#1a)(6kv`6Qj?x`}&HgjAHs`PT zQ*_Zz<oxp6=d;)SaC;xu_9{SS>O}pVh0|^)>+z)ci}aq8Y<j}G;M&w;PxFcwO%kjk zORm=+_-FYi|F?bJsd*fKo9tL?f-bz9?e=4P?IY>6(#OoMuP+upU$pJIer2ZW+H2=G z|DCz-+_eU`bsu&-Y-wHn@%^J+|E}AaT>T?l`rE0Z{>Zd{N|O&)ski*G(<`z5t5)lD z+^2V~PVU>q70J~*Z{|s+8m2xqs(G>M)z*KF^SSJlYi$1Rx8twye{}zdKF=-p)MYh+ zlf0v)4{fiDeb-uFn3-CvY^3#f<r9yk7VOCry3UDM*F2X$GXGZbBmTEDAKJIYOa0?q zH}S*cgY%TG=+ziL{#oi_%3QnR_!9s8wB*gqXE$d)p7%zQ^Vo}NHt!PWmG)-d^ZKT> zPCQ(;|B-yee}<-_f49x<DQ?+%&5osF(e<Ex*K)T+*j-(A@Y%`Lw!33)J5AcM)cfyT z$!ibnZ$4%?c6rId#d513*8foc&+tb?{fL$76sh_Hxp{_V{bqAB3&mz;Y;vBo*&;LV zlC?YIrl991COJG&+JA=q`{V@`iy!mtf0((Izb8(<{qXcE|Nf}+zJ1({1=FK+syeq` zUf;=cTk6%VfOqYz5fd9Dtgau+myLY!&u-q$T$}qG6|dbcOg5N)cUk;gDNmo~Gm^7U zT~WKO&gc<#tFYPMWaR}h;hFQ#pZ_Cl{Z07q%$maACKZz(%fG$*;b@KTN448WXI*XY zNdH(PUbSy+?%%m4W!Jua(x~oyqAhmF<Fog>J8MpaTwn9=*!_+AZ!&+oWc+8?qB6_A zxo4K``(FJLey)43rcD?7HEm*g?y_4}f4kpiO&2?8s+lM0&2V0zS6*YG`<s?)QTto} z8P>$eNjBZ{^?DtAd24jVy0q$y)On9xw``Zox#+IFXmganxs4|d%a=SBeQd{dWl!mc z{6q1=|1@giw{6(Cf8WQc`&Jk1N;zx0VAHOC?=6u+o<W)t9YrbWu1OEi8MxLn7j74S z_GNR;d2V-MyZTH%mt}9Jn?wcn`*m)4o2$F>#i1T4-}&>4{++bnl>g@CZ?-?`KR*9< zt+BuSHP`!L?!NwYKej!)bx=<)f7Um9<*-Sw%x>i?wpF+8iY~vq<@WL^v!{mbjsAA+ zNBoEIN6+6}U05UhgZaa6@5#sROFiz>XS{psW!SHhF!6~8W;I;VUpL9%+qQ4lc0Zkw zTQ<?zMeuHu`L+KHTh2{hP*eV)|JeQ;?>@PHUiPCzeWsPf<xr_5f~WfyR8Dhfd%&dq zH2$Xlx9LCXKivM7^ta=m&Y#GAO~<Yuy%si4G}bLV;_ch_U-kL@l#M*zernsXIl8E* z;L{2VNs}F1>x_-g7*y;j&HU}3UtMfnbWU$g$*t@Dez$UjT7oi_fA)YbBdI@V_Rp^F zz^(o5ru|*}Z{9lA|0v(?*7cZ+HBYxrd&Cks>)IpBL#KI9bXTjDui2<<k+@~SkM$4s zt$k8a9&}0cE>rB1c9sWiJsNWV8OrxBe;9w`_#c_lhp+GR|7SR8nQPMP_5AR!)YTRL z89e44I(g)Iz-}SWf={#Erui-k5wf{%E#zW$T7%U&FaGiKZ&}kHJbnCXmip1z_5#sI zm5(aDu9Mx>^e8*$&uW=nu5XgKS1|Ib^zvTadsBXQ&*aAV7k%Qw=N)%`u?yR(D%CxG z<*TUt&aH3l0@dc%+pzl8Mb2TKAHc`|NbB0t^u<3ez0!3)`fbs#jNApAJ<TO<IA$$X z?8!NBNb|r6^((X9|4ILC{o_Bwf&S&MrSz6BsyKZ3p6aGtXP2vAUM}C#9I&Y`t#N6e z_KGtTVw{ak%(t0Kr*GQ9CdpkhX`k!UEpf7q_7Byz&G&Y-j*1K}VZMK^`Aon3dr`Zq zT?NxNvY*+K-d6G6@uG>W*2O*M`3BS81wLOmWp-(&vuGw?(azLEk5wLg(B6Dy>wUo= z@()?oKiH}0FEGcQ+s4!SaJGhicc}Jcr4x*WTX*J6aAVDQrF1*^L+Z7?%kCa6Oce5X z_Uz7@6D#%@uRD9wy123Dn{0N|hmei;v#jd6MYo<kQfB0pI9FDT<I#MbO{exoHm$oL zE^k)k$~Q%BlA38u?8O^Dnva?9>WQ<O6rMKiefZ`{HN8uZTnjjRUM6+J4T&e$&s#11 z(yt)6?e0wbewjJt>(f8_O)g&kYMx4afQt9Zm%HND?^wZOGdtta?*&ukbu1)Qs%L%B zjVhE=Dcm`OJ-P4s^5t2-<g5?*p5~5xs}<n=?{3WckM7|N$qQB_8GQV)IIR3X!}hf* z|DOMlFRD9eFPiwn{iFJk{|s`o3T6K@9M*5I)BY&e@pg`El}GNExfa?CUOTO(EHu9I zTvBOYX#2NKKRTBknpL*=(SFHS<zf%qbsz4%8ga*};L^0uJ3n*i&ilExpYzVi1^-Uj zseNRft!3Y}r*ct-xVmi4mRP;l@x6`@dhVU(Hc#5P;%HHF$Q&L%d;5>;Pir4DoPFVM zzSfFWn!dkk?<@bm{C1yeP1*<dBmOtnAD8Ff6I#0N$0U2nAL)S?ljjFs*3W(G_rsWd z%BG_t0V+8yOI9qXS#`g9*1yR5%(vp-3@_}{i20-N@z~r){Ji%v*9#wBmC<zT8C%~g z(H!qgZRH7TuN<FzT;inY@3{}||4{$W@aFx8-3O)KACt9s{XI_ma>-dIk9GN_o^ocX zts7F>OkAcGREC}S(<pzI{f|iOqyBG;uPVAKPCD!#&QdQvaq>Kmch<9h)jVf!=ra@9 zAUwG_YTKl1|9oHmjd*lg`|32g;8j!KRjfZE&t7Bm!ESf{vKotz5g$X$Gi;9UxU7C@ zCfmbLk6zw>_I_$k_4BUZx4-d!aQ(OQcgzp<z}+6pr=1Vlv1{Jb2#;rmqNkl!D?Dlb zG$(;^%e)=yPb@g3&bz&T!O8y&udly3|3^svP>+39Z`>>68DDN^%Eo6NHt2IaUG?uv zZIQN5)VGRqk@pv-ecfft{Etg`)$#g|`A4>U*c@Uxvf{br<derQe~<XKzTr>iB3@n{ zy~RgzSKj96i<Y<2NJ(HkS2%IrpQ`XH`?s-veidhY^_JS{J34_YWtmMb8J?^9&#>nC z=k**vW-c{byX2(U`Flr%PpSXD$hhGjOL+VAqeVCS`6Dl{TGD6ywjeh4r0kJn0v;Zl zjCW`WoZ|D4j^;m~<nZMBh5rmpy7}oJ#G3LKMyg!<>g)FIUQ%63-wjWmF3;Zw=N37> zFnjQT!OrT!*SX&(oG#w5+FAQa)9o0&`^y|H-dSD0x{u?dNtIsb16ie%Hf>*V_jx~` z^A*b9o>!S?-gZlH@gXsZ1oQO5^QX5~1qB3kzE1PfzFX(^yk$#uK2t@zpP8=UwrhW! zm%6efJm}bSwMJjrny-NUL*vo92Q{%Dg?{*d^S`oYlB4viUlNzDwBIUR5$7;zs@*c% zJJ0q@DPPE4|EK!FS(Z6#*X?HcXy*3bNPa#$!{4XsA0F?mTk!9;z@3c$44b#jUwVdp zcE+t7-SaG~(<Q&0TtD&5^YcMkvHn^HffIjB{rK(Iv;Pc-u5Z3`=jX=rE4I7~?Up?g z@!s<F0cN?muiwbuv_Bs7Bl&@Q;~w6;uK1%-Z{MEeGg>b;v(oyMC5w>g_o^P@Tl-{x z?34T>s=*+0$0cO)>pA}t=7e9dXRs+M$#2`wR~ncodS{-*#X7~fsMQ`xXFgBe-d}m^ zj^cb}hWRJLFFjl^Ps||pKf{SN+tylKS@o*4WzyHo+aEXnwWvE*&#*^wagFxHf0jRv z`$ql=eDp&)yfQygam$N$Dia@caV%wVc{PdQQ;($8hutBS=5M<n#Rh+?6v$q?@XqU5 zvVV^l#+$CYY!l@5<8w-%i{XsR3e#BxcK1~r{JQ^#y8My1(U11O@qBR8COlPi%Rjl+ zKQ@<yE*&q~6<j+v&talS>bEETGo1@0zOFC&@$^B2ox+byu}{Y4(>AGWd@xPYjpMfH z&Rc$OcUsD3f6{rEEf{)ezgykiLl&*mk9u=2%6@Opwx|B1ppEOtWtZOjpHa(}4qD|Q z#ME<Oabh3eImfW)YyE$l*3@3C;hJ^)@O{zE(YG?ImOf~6Pgc??@_wdq&*JzQM_c1r zKl;CIxMWlRTeHT$>(j67?zw90UDtHoGI$ET9{O~3&v}>PykUab28G6h%x6u`_eqJZ zeU#m~CNS!L)Yj+~GYnmhr0A?tW_YW>$7t(mYZ&MLYrke-;I{Ug=R3r=7W)Uk%D?sf z(Z9VPwI7$*iGO&u{XYZ8`}W+oZ*!OJ58+oiRzLsAK^F0}&>#thBJYHx9lFxr_^)pH zS+c)JN^bdzxYN0%tarqXv!ZHmx3#Q2#-sIIy>a5STU9kTl&{n$pO>w%y#DSh#~$a* z{|v&;pb5C!+RTjVCtIF#EzV<zpRK;%^i3Vp-zD}L{*Cju&YgaE{mt-0x5O6OcfV8G z(#5f5wf9Z++nQ<jCTlM+Tv2|<W*@^z6^5!0TeX6wU(H+>t@~!{zrFrJQ+-UU^7dA$ zzplUd@^xC>zxsoE{~0pZH{G+Heq`6b=2E3s_iwEHc0)AD;5N7A(gdE38lSnXJ)7Rd z&!5e<e~zux_pl$of9L-RxH36l_L-Tb@mfDsdhe+PCQ4{3@%C;Cx*fr1_SRCd^Iune z7JtX(KW3Lr<vXITH|PA(eSBXy<3r~53pZ~^MxHLuldrjM+}kPmDZK334F~mX=J>Pk z{|IY`|7U1<{%C*qo^WHENpVrN8+Nzy1P5PLE4e4a%KP-tP6oy~4;UL`EBS<@cFZo> ze(yiS1Nr%d_Y&V}8T^R$ufBD9f9SgQ<NLSje{0+QpMjNS_qE7SJ>}~{mdVVl>DxAJ zoSb;hXzf#D&2!cT*}rr?${q>(&#>Wsulk2Nh3oMLw{3ftab@O}^Epzi0gN`rhOvv+ z2UM(ocKBPz$J8nFx86TuFZG{cP3T9qWq|=HKc{UlT@g?%dvW`PNBbAacg!=3Z~4!_ zT9dy1xYDs(b<>x%q&?+!m5JzWuRVG|?#KE?k7oIWY`9n}^w-4R_~g>lLH=icSpVak z_uXpR`tsUut?Yl5g5Djyx##q@+`~3=1bfnZzP<mlz3<EZt#w!86!!K#lr#OX<aVgz z389lRhj+d?V^tid{-1&6+vP=9zQp<mwb^by%5vR6Gk>=6iFTeJEFYe4V0qqm^?KBg zNv~u6F0RSecKfhw?qb!ZISF=$rNm=CZtNDYYujlYv472#?4RK;vR&7wr~f(sIW4`j zKJ9$_e}*mJ-?Bd1&t2nvIq^!)f(s?aEGM;Z-;Itrb!o|Yo>iPqPRoj?7Jk}s;Q2@P zfQ$P~{up1;uaSRnyElnf?AWhQ5(_u%+CI&Q^-PEVB(L4#THLaG3>6D3<S+Oi;?0sZ z{?_?pewiNUBx_qEk(j@SI(3@o{XDMxas8pf$EsIrVpp8jxp*{ht;r^DMMmb6W|cPc z%2SdjpRK*m5;A4y%k7)`=B@bYr@ZpSqbnul=6j?+o<ANZ`(yILxsl1@0{dQG`gO?L zbF)mn#^>!C6NDsZcIC>jK3@9%=KF8Gmr{RxUVOV^(V=X^@^uayJ@Z&z_3JznSk4;H zb8fH5gURQ#mtWeGy1ZilBfB}bYV1;5x9)b&m3cki^!&T;B9_*kHGd8iuocdFzEA3h z{J}V-zbpUfG9S)oTVDL=N94XkHcPtSeD|+za`<$!qoc{|IkV(B-rB{>m)v^$Fa5mJ zTD3<ztG?K6{5bvST;=2SLZ;sK9IpcI#J>D=@22<ibzzC3Tkl-lJjFVmVgAgGJ&!Zr zR8-6I{eGLfva&geiSN#IuF8WJ&-=Yz)-XQGXYiXfzipquOM|1OYxnG0w{+#bw?^kS zd8K_eGE{D<+$^J@wa)Xg%Jmh0^tNC8<6kw8f7g{u7Vp<B+EU%Go0>K)Db8u*GUKfw zxy%+4(w!>TkEF%;M)ibRxKGvJ^P5MWJMoperT47=422)xAG>SkFY_b&$gH=2_fOcB z-?BAQw0!dKqdPYl&S_<4G=CzuZ|?C!{~0#tbn_qI&$noj%k`oowVc`BE%v{}m)2db zyKtZRt({Db%EvF$%@^G1=gs=KbVWi+#Gf5Yc{St<H?007Ji*^${bBt^@#2U-bsu)0 ziWJ>CBY?qDF4-jEpX%#-5BHp^xFtMi?%U*3XAA@nUk!-Pa(p<YQAa1G;AV7&$CJ`e zSDqyNHGCg`P5h6L@bP&vSNEr{=YJumaP_+X)j!t7>w3+sJCijFm(KpQU7+JhYL4@# zmQ?%QtQA^@@u$ohj-9)9>sI{Kg`I+XjXK1Cg}*j`voGzc9qW&>OA*r|f`hN!ZDu%m z^p|0bOkeTD<3-uKJ1l~x<+uIn%`E!ro1NCTPxA4qo2=!13+3{9&9j&PEwf*}w)mi( z;E(AKtk1XaGv3r4a$#$B{$~HYpPV{8j6sqfTJAh+mWV0{IIcgrzUM!~2XFqHt9`Dl zd2f<(Ep=LEk?Xy+#U@_j@)g_PbG-bMGVj@b7yIP>Vlfr_ztw)Ydu`F}b!(L-`_G)c z`{s#@e8qR2=6pY!_3uKEH|yRlWmdV@HkS4r&rEwU>EwCED7Vm{iYK%Fd9^7^PfcF+ zVCB`UOPM!sT3g5byLl+=aGHfx#7RfHiskEP?fiJI&5o}^{=m2UY<u|2_1p5+-s7%S zi~b&wAhhKb^I;R8r;(|O-}gz>{&^x(*ZuFP{brW^JoWkV!kPA4@(<574&487?fhF0 zKI(pLk(%_%JX`9t^1+oqUDJeF(n}|Fn(IA_>#0|^)5*4)c`4!QyBeigZtFS~yKX&| zJ)~{M_OrWViMqT6$6*_;zmxtmG-dv~Qom*E`=i%Bu)obsDe10NcedI-RV7;_Y}&0V zlkTG3p(2$RPTZcIA;Gn$c>a=})zxb6-u*dmZ?o>Pe`>1O+U>r&FX}DoKNLLgDOukc zzkU4?lZ$I7U8qRnl|F2=Xw!t}p4)zVomjO)@SXXoMFtjv&wsrBaNhq~;+9RD#m_%| zA9nc5E$4KVk9~{TukG9WcZ;3f`s44r?DT(}U+F2i>qq07yRSDMYgny2<<m@^BMlQm zk8WsE<2@JhAR+vOR9d5Whskb>cWjq(PqV+W<lZ8mRD3)z{(7VtW8$V;CacyaO{&{= z{iA)$j>(d5H%o0^_GRC^>6bs){`~sv+WR0!qa~YJg4K?NTGxFRyfd#Z@A>4|<4sR? zdu}v-uU=mNP~y*C?S{*HbeUe7T@TYp)@htE?Oer^{=%*=>$x)jGo<eiQ+S*xcYtqC zZT5cYbf=iT{WF(aR)?Oce%_jQSJLLm&;F;!3M}lVzTee#>y<rMjiYeU{^ZYWbuj`D z3cuW)^}(LUCFr4uoK^GnKmSC(T<iGg``~ZdHMfISHP0trmazH#{oDGpuU*|T=esOV zEvd=;ZJ&8|<)5eve{_x5w|^AfwsFZhey8bGsy~j|J_%vlcj`xB#jf>DC9wg2j@8;- zi@pE;P>=uXc%^^mqI#!I|9Jbr_Rpg6`f-=v9?Xy4={nE;fm4ya)UVSI<!16Vet7MA zq47V%gxp0DpQ@yN4mkeGIrv@lZ}pe5)u-b{eZTg^-+B5k<6qG)#|uG+A7+&XP5OQ5 zKZEimk;WiSh8LA<Uhm%0zKl2d^ok<CieJ~iimt0Si7nOq6KtRJBlyv6jbo8tydN$2 z&rqp!Z~w%A>`#8SNl%{?O8;4SJM(zn@h0uBN1ycvZr^n|^=V$N-b1Y_*>9ItuzytA z&-cf2^~uWR(RWT9o#rv|_)49HyM>$2)*DoOb-Qs(_&s;++5ZeP|GGXfE!SbK(3>3J z^`D`kYVFZGmrm}lKjU!B{+#8y`46|8wLfC3XWcvL>3zoQ1&`Ei`r4NjWS?|ftXR}L z&F`>;-Tl8+U+i1Ud;ZyPP02A@(zhUaMZlgqo_ec)RYwkg&-r^*<?2~`@y_U@x9)eA zZ1ecfu*sCWcGU_qrgMQ_j~Q|^c1paDs^>m?yuD5#!n5ME)T>=F)1{v}oR*lSDJj{m zxUDksh4GK@&9N2Q2g|C$w%RRI@%D9`R=v!~;L|C~(og3@f1YQae9kzo{BeGVJolIK zEmum;n*a8Db?U~AL*^$%cXVD@cGJRo!<qxKOM2$WeEBrBK4YhlRl$uJ$G%0+%UqP1 zyRu^0ZMTc28m62oolm28@HCpM=)Extjkec3$7U&EH|d3)?8VYZ8}<5Co-H4F-&~B5 zk-fOYXi3h)oz`<KEsx9nxvsge#(DdPZwq#{PV3HUVRPIS`9y1tf!nj>Nr#nHs>2s& z$_v;SByMZ=x;TmLvSWqlsfnERdxDv5=K0%Ay&Pm5wWaKlvBdU@#j`T^7|ORRZ`-eY zvOg~O)06h>R1fDx+l=S#K5^prafOmKt5?TL+`Dhq@vh{i+Jsw`ebKTUJa=!WG1^w8 z?K1n=KJT~U_RDL(dwgb?u<-BWzu%?5*PO9X|FACn$gI78&&_3to_?y`E@(|gSJ#cZ ztpSTSoUgAss+*(Q-}mhA`nmE=3q937y?J(R!7N2(hP4(Q$JLClOue<^_?g49#Q_z^ z9WR&ki@g%FDylU5cq+^!_`r#C;<jvlhPM~2Yd^Hls#cEM<w{<n*v6KhDmS+oSvOS~ zJ^7@4`cM3t=qx+^D_eE#LUwGQ6>xD+?$iVko@-NHdc6@d(|zS_yQJGNwD7Qukd?m7 zyvj#g)wgcD@=kYc;>??gTiVRi&r9fj((~W{Fott);lwQh{GVR_D-O#&KAWTPz<IxF ze&@4UFSq4<oKPiqcFD`&li5a_RdRZ#@_uUK>c7BeeCLYUt==|CDc8sBdG3!dT%X1= zsVHgYEr*bTBijlu6xGZ7X;tJr;JdVI^>+5DU;bEKs}GCbR(x*Jww~{{nn_~wYR*qR zALPdM_3LwmYu|hN+ixGJa@(Gz)RkT9^x11i#$)YgCL51e=kNHE#`$c8%!I|FPo&b; zC~T-TQwd55TDon{s{WeC>Ng5Bcg%Y1e`U)P))_~(cd&o7VR@%g^)u&yynoa=k$AI3 z3oY)tx%GU$6}v^rjHkdcN6z}6!uNH`$IK?hR%8cn?)h`+X3R0Ggv~Aw>lx=Q{?D*B zJZHUPq}<ufdn+Z>WqwutzV5&L#kN^T*7Ba|S#g71x{`N7Jx{&W<>}LluS}J2jrqpk z7j`+W?oyrpRo#?O@mamCw~E|c&&^D<mk}@*SAUiL;yzc_rMoY8eQ#Z0yz$DH>}eg^ z4Pwtu=RV=NJ)?lf$KpwP<E?#3Kc=pWa{p-Uc{M**D*i1$$B*KWO5yjF^OMA$&Ja8) zpBlhhIxF_r-WA!~41II+UaHJEnP;|Zo2`4{r42_MPfx#C=ib@Zw(7{|*HTOT)SBL< z+9bTUX}-PV&&&Rg!GRZ+cbyK{&-b=1WYRs!t`#;iTPg$mohSHbeVSVx{?Tl5g3q=S zXIA$<?4El2$_AN|U)QI27TP}Edi3F$_Gc&mg&HhayK)^f^SSkE<yA-Df7`dSa-}8f zy7Wvd)~Edo80wgprp+$RlPR@$Z1Z@n*6tb3GCY0$jy=WK?`^R=(!2O<)$UmlcSA$u zxHf$G^?c#dv#H5<Lmo|?c&*0ZN9;%T$MSt9>s#wNzgXWFs%Va#a4<D7xzVPFF)dNq zBvZ&`arK!`ZW|dSc32nxT~T*l%>F~v{APLfH+zgf2K)ZV{pcOAvH5i4`#tWp%U?Y* zk?6CYeWPUCmOayDD%&jl7<fKyOR+cn&v0;m{pRqtJ*FSLkH~K={gYj|`p2?g&kz3! zd1rL(SJ+hj$t5fNx$;U`CY(6k`|&8(oHwF(>JJ9nKUfwoTqj=RvH5R%eUeA|m4Dh< z8y9DpN9C@1CBCa*X5hok8@E|c+{&pmF>O+0;G)fqlRT$z2J}D3m)P-K^r(!_k6_(H zmsavv*L+?vf7jKW_l+_S8D6x`R@*E1{=o~4puOMirR^UquixhWM@0OQddJfr-oGPi ztT+A$X1(<Gw@8#uaZKEy8LGiY!j&Gsogm!ypTViZ>x0U1je3Q7*NVzlZGJqD!M2|3 z@0Snz{|LVR$F=yk_ub47|E}0s*~x$S`}fxU*!5jC-Yb4g`*qHDoloatXXRTu_YEC3 z#vNHDZK<`J|22R6{s;5+e{kCWLp`oHc}3l|d0HRdciK2Ae4h0DQQY!;lfIWHvU9l% zrfrxi!!&K_iDS=`Jnb*tlltiAE~8VlXWd#&zggcGdxd*1y?VRsYyOo_g%O<RVlLhI zr)grn^kd4Wm;3l5O>gh$yQ#Zn#gi+`gZ%E#l6IXIcwT1x`la>G{~11b*5980=s&}o z#0U8Tb?4*d>R4)AKdwJ)FBE6DG^b=gN7m-E%kSP%T6@cO@7W~<cOvhKL`txK4k|jk z&2_@h_^tLI{?-3bu|MQ(yr9PNqw43#Ta7ZwhvfvWw9X8$__Va^lEhs0q&2QZ&;Rj( zZimSAG&=rw;p0o32kU>ht>5<ey7cD8FK6p|yN;Y%w7D}P#w62L^27OK^*?k?UuDi0 z-=q4#{^sK2^8_!~gg*4xV$UBNmofRJvFnP%vUhjxy>k6T#Nx)}dBS<Rv#J}E4liKI z`CR><;fLkPlKiIp2lG4b^L*((-_`6@Ygg;_K77;Wi_0^W4fh_owwdip(&vzwQD;LR z8_CYAJCq{7c9!}d8OQ$&EGMo-Chzz-y=#rRz>>Q^!eee2|9#eXFMxfeEo;@3_zw~O zKUB(l;@?!=KjzQ2_ynV2_5|s$gU_Eu-%dULIA-IMz}=nqe$Lw4|6Kf`{2!V8kN5vc z=EdJk`+jH^f1gdLSko^aIW4P;j;5P$Z(Viger6|6r|y+PQQmD&m39<F{ItAbUCaEB zyZN_oX1we_p&#ciADpE%pRFP;pUt25%64nhkgIZsttNZQRJ1;v?%#5p$JfMvrs&hy z-;4h>zO^&2KPY5p6=OGNpUMx_M>C%W?lYh4Jk4qO?^CDN{=ByJKf{~C{|qeYKW5kG zuRi-AzGc_aJC0%8-RYOZQaFxIKV7jbEOw2jw8z0`b5>ufcDU#~P4njb^Zu>&IsX0j z{QJ{wgTEDiIC5><wW#*aq>l+#1m$d<ZvE5V@l`y!j3+7L$(~lV!`it&C!|Vqe|-OT z?tcc>nSb}!sbxn^KXCl|mVTb-ANEH+WEsAyles+Wa^S9=n@aa@npBymr<W*r?9*}O zqas?9tr-3@>`ZI<&yZyNpW&d{{s*(|6t?|6-?C+^dywPi>v@Y_-~V1d_iy%7`;Pk` zoc({O{%7d7sa#vJJnX}<Roka;=lbNC`RHvBYk@+CCdc$>D+VKWizk!)dZP@Yjy;$4 zDvi5jKiyuw{$Q^CgQfAJUw-D6u9tdgW!pI2dxyb`T_$EedM2wER?BR(nH*!a<+GOV zt<5&UE=?wV@^j~(w=w@+_wV|D2Fb1d@-O0yKR$h8wqK}JnqRnLs*YmQ(ex`O+qN~` zT$|GBa&4nZ*tU%`7EjJz!m)n-JxTi&+3SCpKmNzr_Mki0{Ak$e%irsau2lSI*!MJR z{lfZ#OrRsbgs&{QYSO)4<n~z|H}%goVV_n8Im>i5^DQX8w*K}7&+5fX+t*DFzwpl= zv}2{O{-9Hh^>3$&=0`U6;$I)H|FNt(S~loW$mOOO$7QE3L>)^o^UdezP063fvABNj z%$w)5U)ziQyCyGP<D0+cNB-mK9X6id;)U)w>aCW!Bz@QJQ?zSn>yt^BY&Wja>SCJG z%E4TaWE{WCPUAmA6KHZ&?eUf6*Y@~6imkgA`NU}F<YTWn`0h+%Oc1}p!+5)E`Xlu> zoBuPgn0$y`b1VL6efO=hY1=1m@!1|PptN=3)W$pFCnrYRy*}|aE=^tM^z-=Fh70A& z_v{Qe-gdog-!zxsTr2bH4fYxQT~%jY6MW@sz2GZ5%PV@zt|d)&o@4uFgQs0Tx5T4u zJ4$b)Ha>nW(sRl)r@>Qw;)nD7e+(a|Z~0(<banO84>`ssWw&mzn!W1Q(GsRRUbAYi z_@?wKr&mbV9JRMpnNVN-HJ<N3!@)KG8Mt%)^!gv&Sh4y<+4K_|uJ7@Eq$xQ+!+!Us zN^{KvC+szz%v*AOPHf%H_z(H=?O%7AtZ&-C>FN2Svc5|9pT%bcxa<xQJ~K~wx2FV; z%-i0LcfziG_@Xd<)3WK=+PTZ->+)v0-J0JhzvbN850k_9T-c-h;c&o5^-j~zMIW8h zSI0)bntVJ>bfavGS#Dv$!l$8UJj4tp&Y!Gh_`Uv3_J0PJX@6JNsn@7~v_E>kb3^^1 z*&p`KX>xufFCTe&Y3A!p5tow%j~-=L&(WU7WUr7PdS?@BVt?7k>wjc=KSm#_@~%k! zrv5|wfq(NifjtwBTRWIqZ|OAG;@^DRb$PU_x>H@{#exv_bFcpF{W1AJ1FOW3jlca) z@~!<HU$Os)y?|+T^y5;dJ0?oUSQ#p_S?4%$XGBWmMY7l>sQ*o5;QIcM$A8neEUP+o zoj9@3^_mfX&3;UMSl=pkZ6D7M``<P{7W;n;Z>y8f{I$hw*VeaJqUx5edNohs3ft1P zcV~0{*}pk*=A!L=$7J6t9co>gR(|r4^nrcGn>b5rm)u#yQ?{j}E#lO?{d+og$=SaC zeBJf$;yP(>E9>Yib0L+5+dT6*nQWJanM-QD-ZH`C=Po%9wgn&BkH>Sr{C4Tkt)tJT zsu-V1nsw(S^QL{zI%j#bJxb=;xIwjC^n`?k%*MlEecRG=eM~w32)m!UwXJhag>&HU z%PEmLPduM)(?651<#c9Y1oIpNhN(8?FVEICe@J?Ne4fdrOJDPIRd@EDiHrI0RxYMO z@%y0@d!`-uX;g3Zx>Wv_^AU5kvs?Nl)OND}vO3e3`~J`79cxzk9`X5oBll<I4!f(* z>V@{?*FNkQx%Z>~;n#UH7p_PZKD*?$W5Rd7S1R`vJ93HwFH46A&Plnx+%K>0$>Oxi z9cxxz>fe(0;>+7&&)E1!?X9X;r&%UkGhw-$)+Kwe{C4as1K*y{6C~X@PiS}j@INLt zYkRwC^nA`NpJo3J_DHuY`RhE`A#32q@t>huHv5f!Yn|eiJ)Y$suH_5f<$U*W_q7M* zPOHpZSBeEr4d7(*^E2`*o|N74cZnV6>v@W^!+uPDxV`<&FCYH$`n`uFk{YH~7I;{D zwVsH1@{N7+Z?nq7n~oJ+;}`dh3;8*D`=`&I@lR9g0w+Cx&3>d}jcKGR*PONS{?*gW z;!W$r3Zl{$7uhFuE)7v#Yp3aQ(BoCghb0U6>R(S^Tlp#b+PZ~jZv?p&7&gAWv}e}q zN2+J;iP>>n(tBzZGJW;R(|ivE-wTOt6@GKza7XN-I|W`s+TG?$Cb<OuEB*1*PNL`C ztF?LOZ)iUMytI^4{{NM4{M<iIW&f2wx{q!5g`}%$+dpjYd}peiePVyXq{xUfUJK6O z>-ZFJW7U)LIsOP}VUvT2{Z_lx=>=zXCfs=0arSQiO@V(k|4jd`tUG_{rBwP6@4Z~M zUeBZF2Yoo-nYcfD|Br8T(=V=@<uOTVN5+i>I?<L2N&7qY-`@2s^FKo-udiy+S-IIu z7M5A2u^kege$Zy_o$E{e^j{a|Z&v1J*|7fl7rW#uHnNX;t&Xn$Dr@&lLhPP&v+_Zu z<&%s5E%QC<^k(wE$bDt|KZvcrTmM7(@1AS_Oh0b#`YIMFckj;6R`IOQvbz)bmpOht zT4(oKeyjTNztzqk?c4XbKbrm4@A}b`%hgs)pH#c}oUdBgtfP(vKG`|v?gbqQ6pdJS zN9yl_{|rrDUcd4W&hNaZK2!X=**!0_;$5D~Q%Y^-E);)J96RHvx!>p5z?NCw&QJJn zNpbfJR_uE0xxH9s(_LpSi-QUr$)^RX9yIwDUjL{Q)^w-$UjXOjbyt~{U-$eoeeqB2 z%EGI5im@khlX$=FOpWdlR;qNpoHgfzL~>8@(SoSUo9>7xKTFk}w?pOI>z6SRvZ8%e z8@4?^GyRtB)n(gPxGXrDpP#Gx+a|#<#HVt$<73sX27bxBif4P>4@G^Oyy}nT^}IE2 zKNcn~^pWxMbpM?*?b-{bX^;6PrB-Vfcs$zizSF97%dY6S2l;M&rVoUFA3ONu<D9zC zXLXEMN_{oA<};hj3#ob{xOj5&?i0m2Ssc$<+mmmz?OnBH^3vi-rfHXV+XvK1MjbEx zD15N9+Gy#CN%t}yC9zC030ywIX<nTx%bfIk``!2Fdv@0dx0xkGKD`{%SJ)}@czfyJ z>`$)`UOH_5w)MlVTSAfw*(=T2PNY;vesF&%AAf4UcYWT>F#ndqqnfwsx0viMW$)`U zTk)SEV<Q9Kk~w^f_FJDx%(`I9S{Zfxk^M1&_YaoW@9n(u@y^4h?|=NV-`d|W|Cauv z@wdkh?L%==ANI{I_!a+c-d4WNYc#m|W-q^^y6c3>#8Y!Gomg}6$j-DHv%9MzYI}d1 z|7SR;QIr31w%f*!>))!X9&h=hU6j0|-KV#3^(zj)r$X9=snTl2J0$-lICM^*e>b1u zNB+a|1Nv>#>bdPCGYvDW)aI<)c1?S4pTslI)O4NC-pVN_-bK#rRQZ&>X<eaIM4gAO zf4=&|omW=A)q2tIvUj%Ihq~U(hx54)%Wj*!)LC@t7R}y?hoxFW8A`1k9{0?uJ+?DH zGjDUW#>~{8(=+Aw$T9>}p7{Fq(w_B4#Ai*p*z0xS=fs~uF%ljeOZ26k8mcrUBpH5P zmwdQi^yRF&rFxUgc*?dL^)5Z#)_U$LhkHOz6;Fzs=g~Udu4l^wKU*)WJL+aQMX2Ao z=kLn>>Hitp_siJHy_)5>lkcs4KyT8-$FZAQ^d#FN3QqS=XV-A8SKKdZpVlv3qxNy? z@k3XqtUcQEDK>MHmrK&KTftkVrbwJFkTCoi-Pa=Z??Kw0w&?1$+L3)K8z=HTo${pV zG0z#sm-COC{+$0ir0z`iN3TmSa~6i|-9Gv3=6S4<l4+@F0q>k9au-NwK6z}xv~RN3 z8PyXHugcX%ao^Iko%v^zYwgGAhxc}E_;K&ntMh-AEW^ATl!V^ODDD2Ue*51^l?>lR zzn_0||F=Vp(}(xnxqAOZUx-&7TcjG+Cz1U5iE#5?uk!-Q(mChD8CI%Jc_8@P@x$zg z>sDqzka+XQJ#EsA4bug@I!ze6bF~ko9;;BF7@zlJx5s~mR?82;{y%~r&gXDvy|-Zc zuf1>IZZSN*{N^du&@Hnvbr0{}*r&v#Qyp88?s&H1=5e`0bItYBc21i;f60gRwy&Fc zq7JPzSu*?gRM2d0?7tKDH<|VSXJ8fi(6jb;p3Am4#cdbVF28%bWp@9UwTfQ@H=PnL z=!;w@#(Q0y%b??uTYFW*@t<4%F0M~}e=GeT$Ijo;H(veI>puS>Z0`zLE7|O-lj$p7 zx;}Q@F;kgKX~*VMcTP*I-Po*j>}h1ze+K9H55D_vh1v7|sP?<~I9Ye;mqY&<&hN<a z`gF%&R;0~?H7_>tPtP{&6k*uG5dJ>?t>SN;KP>+ln%e8mi`#S9nK|aKJaFQ2#4Bzg z)2ppVHcs`PUG_M;C211l_X(Sxv+drI-y!O;!!!G8`G1DCmp^{il*<-;I(WV0RW|$P zS9|{Dm)_0|{O7Uj-`>PW_Wg1iwRWkywqLLDEiKG07K@d#UK@J-jN6OQ#S>G4|9D@x z{w4Nz$gSAd{}~u;k{?=IFWEdh?4y3WiFEZ$fh~o9m%Tg2sJt%x3A@gXgaQkN>*w}w zS^r0P`Vsq$$KQ4@t>O4Mzs+R7#cMI)h*yS@&Me{I{LAHT?+CBCq_rW8HS)Cf%I6a5 zFW=w3d{`>`-?^$~Qw!5XP2)vw?$+_$GG%LVA*ap624VSj)9*WeZ9EcsxY~C5&-I_u z9~bs)Shw8l_dM7C3@o>|)T$p^$@^H`z*Th1r{cE597YnK9F<G$A9mfz-Y;*b!F^M_ zblu#=IvH+unR-%|5hW*7)ZV}QP<?&fzoYW}ZgU@q`AVggIOfR4Fa&No-}87*1Lu0a zADLo{^M89)T>j3de#J#Bv0uCWwt~VJ>(oxe>(hQ+pF79-?{a}Z)1Ni7N8bu+-uHI@ znYT5Z$(tYFKf2fLg}hGIw6fp3O_C0FC+|2soq2D)=Am1zd%FHve)GFF(d+nBl`S4; z%K83${JQ>C{lkB|uJ1GYakuV(#<r_ZZyn!1aoLgE?H4xlAGrQmKQS@eb`KxhF|z_a zzv6$(48OcR`Fv^ZbSCF%Tf=@k)<0Q3^N3NF;n%ePpxewPf2{ZX7`x=-of9r6F21e3 z$t8Z~_X$UdPrqu5XMNMZ@%xzZEBh_{EvCHQr$e{w*t37)l=i<*qDt@d9OYN-lsxY9 zF;4j5?~E^VQ}dtIcBf79DzK7Qz3T958uQDz^}m%eK6-u>54gHcCGc<m!?#{9xiu`3 zWx@_;+FI<eQ25Uf^?T02qk(gGt^aJ7&3Rh$SeVTzd&!F32S2Z!!=p6moN4EzqWH`{ zQy&2do{wz@j}^xqe87Ke^&|eaH%eF5nVfjGb5gNv%LcKn5ofZN{+YwZI=TEz$h&~U zijFKl!@Dl~TrSlOj=dsK`L@vd(9ZMs${1(JSw7l4{n7Fx{sKSZZa@5TtMzim+e+CB z8`IhDF5Bib@r?2@mR0SE6ARAm2-g#JsBB~F(=#k?GCOTpy3(@RJa75EeXKtYKAzwA z;g9Q;n(VSfGdZS@IumYBoAlt0^=-C^e-157{&e7+^faAHm6RIA4=eXS`d8s5cR2oX zy!ssGS`L}{KG$E=zlr})AAQ|qf5$z=jO2gk`VY>U+HJCl;jP-r{9-8<hqZg2-SU|f zQnQ@()Q0%8`&*~;%O5$<_iE<tr>~-%d5S+v&yab%U-s|o>CCN5JwsbrQ>NXoEIM*! zZJ^)c-8*k(i%k!!)4r;k6!?4g?;FR85A;2Ak#FEWTRZu~?8i3yx$QV!{%6Rz`Sf<y zt<4fg>QY)x<u2jsIkSShU7e?JV!U>Zo5$NajUVkEDYxXKt}ebmuQmT2o9za+?1|TE zd~36p>9<F0*xL5wUZw86^4=sp`?s?itV_SHPivm?Xvy4uySUT0EY6vS+i%nVp??1e zKVwbQ-}#R|mLFcLRV(hjW6um7b91Lx57W7to-Qp_742E@r?ZuTk1hLUzmR8X>I%ts zPd=sjPgQxbq<I4S!e6ugh3tPYMSlC#`EL$?REuwq7kbxX$NVwoRocvd&t}$?Es7PY zdm_X?>G6sfmH8S%QvbGn-MvERd+eQKn+__yEx3`mb(eun6aR`w`zO@6p8ROxb8pG( ztYz=!*Z;6R|2CiRbB&$8=29uCB5l*#{}?}%AJ2}y{gZ9W_JmUc3xp<p{7|W`-nVB? z$*TBm`&u8%-}L{-87SXdGV_^L|8d=@`-gsA{WI~jaO98rH=kop=kk4=;{Ci;=azHR zY4dj{lA89d{4jNXd+;Ow_R_UMm##!dy}Gu^?8iYjN2BLe^QUgGb*;_)&%j!KWsmU3 z!;iw7>XY>)Ug@SUsqy%*yh|lhIaF0mD8e~iC#AV_VeX})pZ+s&eiOZaF!ajCEeT&^ zPJg)a@bNFxYeI!hRmc4Pb^K?riI;hE<!krMnabAtLKWH$TB<xLyuUTG!rOOetkCsS zcUXKv<~29=6kqR=cZ?6JiT>O6pCK#0d7s&pKk|?KS?|T4O;il7PTSC}z2fuKo!csx z_ShKdaWLz&OsO$2eZ1jEeB6he+=uUlZgX2dN%|CBxzXoBo4wX<r%wx#_}(t;WaxSD zG5-3Fo}#&;BK5*HGB2+d&pW>4#l%&a28(4rxaY_GXRvzxC6v3upM~|jP589P*G9K* zcbG9*rOb2py0rCUc4q%GBh3T@b_M2t)j_3?we)2DT)n)?(=YF`y>>}5+@^=`>KFHx z^$W6jo!_dc_@@^19B<(4R}h|HU3mUw{G9n8wwqe3+|L%t-SMHw$Zo;opZ&*np7noJ zwsY;9-!-3%)qibG{<Plmp_}-}gUZ+Tl`ZqN+;V&4i)z=r;I$vtZMzkJ<UU^(SH;$k zdfkS$3<9sNU8*kOp8vV)FWaSevyS~|h`oHcIDLI~*yERCON&<jXXtB;pHyzA>8r87 zLuPuk{Fi&u^S>0Sseg`}`D}mK9{-G6_DAf+Uq1PJUf@;Gx8uKjp1mmfHf#T~x_;5? z-_~a7uaW+}RP@*U=2}IS{|p;7L%VJ*imyri=k8p*+K|h;PShbjec`hmvwOWVHk@)R z{t>KrHRM0Tn%CF%uiv+-UV2SYy|AtM;c$hD>Hc?qussx+|9y6z?XO4s`E!-5Y$j!@ zFn$aBRP~@y{B%$0gC^~7@s8INWAhF<{xJ`GGCxu4`eXK9^{(TO!aH>&9-q3Jf3e~} z!@Tmz>gt!7e}#Xxza-W>Pt3R8{@<<oz`wGEF&~Z|wAJVTyXU3SE<VS^2LI)<hOza{ zrrl?yk6gReHb3{<%*S_FBDLa`r#=uq@O+_6_=LZE-R%mP83a5Yl!;!chz{Jo{rZ>h zdx|!$X+C3X=On#S;=zB0IpLqh)O3&hoAdO0PXB^G=^y!z{ZqV{r>nOmI5Ded;WO4H zlIQQ*YcMZ=I6p4?h`w_0l9?&85&~A`$FeW~$^Yo=eRa#qKgJKYs}^*t%six($FfM{ z^}K&Kf5{8)x*8@c6sR?Sk74TxnFqp`|NIMm{_y3C`MRA;#TFfR`CxGFsq*WeSG%=m ze))Or(J5E=es<N+Z<7yNM+i86QRsTu^UTjX_Z;W*o?j2XzxUmq|E1MNfM4$C_h02_ ztGxM_-aP+yQrX7W-jCjko3JjsrhZ%DiJOqBb;V05HG8fXHQo>B<{vH-crEq!!|v$) zUsIzz84kUFuz!WE<*(~g;<JrhCAWvktpD)I!PdHDz30cc)%Eos?mJy^ITWmzai+Sk zUGTvtPy54fv?r}Ko3-uCa+Tzp8Ddpu_usnp;E?ns!-?}ap7gnYUQ>NqJJ;%8bar^U zi}q)OTYe$w%VpAKwcW0EMLDIX2dfl%Fj$;OoM(7m?%&h{_p-Kst7=(Xsbcv1c!kCB zn6HoT?aB<AGIipdtYznB>u%3;FKm4Omp3ajQ~5v{;{*@+_8(jib4oSM9`3MwQEzi? zdHZ{{%;oMj%sV-suh0K{ZOV%+Wr<I=Tfa1$sW{!*>A~mAEXjN0KLw;Kt4u1sQvA>K zyl17+t)DH8ZK+Svo6oUT|7YmUj=p0u?WEN<Zw(dmxcN`Q)IIahnqAj8EM1=1@3&Wb z&xg`?vvVI+Tb8!=9M~i>!H3h$Q)FR~#X0Ay4~20#?@bys0?L!;|J(5OW$d$+5ANpW z8m5Hxf4?|Qz2b3Cy297<4wmP%Qn{zIe79MYQCiFQE!OPi_Puk~=e@b1bCz2q$&X#7 zXV#19!70;hPfp-?etSLh-rO3$58oCqdUY-8>fJpP+}GVYUMW6<LGSQ)V>!uP9!s9@ zdyw5%)TWYTHm_aoPWsE}lgGRshc4TezWT@E(7nAi{CRyB7k+T-%~S}GeztMv{+7@8 zGmc;XuzukmiG+PuP0}Y!4Yu8($8blu>dyh;rn1ldhxVm@6uB6mQOCcdU;47&6~(wa z(OJRG*Ds$v@b>=FvRi)ZAFue&uzCN6kd8k$LS=L!n2Q>F?;FbP-F4kIqByI)qkGb` z^xBnCtowIt3wx+C)6w?ZX1?}ih4Jc#S8tiWKU8w^)H@8vJkNXmVm`L^(QAE?SAFWC zZPveAt-Xqx(j~bTFD^a!oPBG}nMu7zk}Fx7k6Wns)O+pGRe66Vm1|Se#kn2Vo^&$3 zWzO@z_p0z%h5gj5sO*AcA5W^WNZdJk;`f3l%@c3$TxS~V5z1c1ex~sCg=(ouzrC*5 zcrNu^ka5AYa79+eHL(o}r#(wc>dxnNpZNXhL>GTj<xz<q8=>;D_=$Jj#RE@j&wmm4 zpMm9*c|6O1h6mH;bAC;^thWD3t_^qc>TUBDsC=*LTPS~P(j9g!o7>$pui4LNoc5$~ zk~RO0@^88q?NejfBYw0#PHT?)arh%!`PG`jM+s5kJNNHO*4b7T<YjYW%k8ja(LK(2 zfzAdeAHTL|{^582Kpe+~J<OR>Yoyrbr!GIXfJgtvLytE09MQ*@cC+Qwvevg$-j_^T z6?WXMWz9xWRm-h=rW<GJpL)A(*X}a+7azMkE9I^0uK#D)5;ps{%D>b1EdDN9uk88k z!?Ecq*Tl{pWWBc3P$2W$!3~wOUU^(7sQP01uV6cK;OwaVANkgr-!|<HtJM2y>z~k< z{d?!krSmEy>(Vk+%W7mAcQZ2-{sm3`9;)AZZ|d6D`(*xh{1LC(%qvv#QM_x<cGl$G zpFS>)@M8S^YLe;e<@b8JiyZDP`Ojb?e#)z}UGluo*H_wqm3}GxsQR={_TR-LZdVKS zXUF~&oACSV^jR4{dA`ft_4D{*@`rWVAGwcgOD%t#e010QaM`spt!y(Fc(1+V$7z># z?04!Mv!`whnKKUyANc84x9P+B*8LAA`>oD?^uFsqgQTuR<Mizx;yQKWZV2AFV<C6s z**=EeC1EokOLEEd`^`B2@Y>GH8)q{=XSPt^zO8co>s>o*)Yg`NpBHL#DdbxF8`u5= z^M5FpT$sI@|JLM3YF&jBOzqn?dx+buO=sV4Vej=tTmHu5f1G>Q-+6whe*5v}lCKJN z&*MHUTbgWOTUYz5N8&%jKGr&^%?CEI<t<lu-2BRF-kj3aZ2vq$U4&0CzL8jG&y;;` zUU2aAss11S&Aj<{*SCy+9X0B|nf{%;5cQuSEo1+7_XBTzmrXz8Ty!bw#7&7?F1x0* zzpynjJeR%xN8^76mXr_2`)x!f{E&WZeqg`gs|`P+)#pd|UDFIqxpS~P`p#4q;RZ(L z<yHTRa@Ieoexbi!a-9(8B=;^ioi!^C&Jgh9b2xb7iF|R~<i88luRp!0yJ+jQ!+|?8 zTGw1q`Svg7{1&an`VwJ>-YQERt(;nP@_1bK<~xTAb@t9$_U-mRnZE)1{xdYO{JW$* z{o+>n#$7wY9z<3gIwEBJ(rmW)E7!{Z3`hPm{7}07cJcBb&Hl0459hc4ah6@yyfpGo z%u6}N4_gnJp53D>)9QNk>zWo(!MO(wDkLP<pP8HgP;K(kAH92YmsOPe@80LVv`^yb z)D4xPlb;62I?3L3E2vK2T3jz`Bfq%9I_%<`()BzMnb-Z7D&4tl+PWr3z3bfz<4rBU z&&`Waw`s7nSj^qLwpL0uCnuRz?Tg*jYxWQ3$!}>txHszl(f<r$c7k^@t>k9Z{N8<h zvg?jE)*dmwW0$@?>}pe(qxpP(a9~CLq5T}D`2z0wkM@fDW*5t>T3?!(_flp_n;xfg zvx4uEc?YVlAG;N|^}$}VpQiO3KfJvztG5YMy6&9d(eQ4niov0aVirF|1okou#$8<X z<H+sTVYkdWly~k(>GW>-%zW2swLx#dhuO0;PM&91+jKNB+w=GHG=AH|Zj*av?|%JL zuJB|2f&2V9dkQONskJV1Or7}DU3L!FQcnxz?{#y&uDQ>9^x<5qn<jg;INqez9&={# z<X|bD6r#U?`QF~ck42>XTi<SZ8y>c8<LuC#+v=?aEqy;S_O3`dW_077C(Gr3x)tdM z;y6Fn*hzo*yXn;1WY#OEjn=H;X+5ZrAh08VT|(xQzuy@fp{}qipR=D`@H_EwZ+x8C zxBm<Yn`XpVN=t0iS^Z<)@_BoWudUDg^=$3~d6vCTd)CWsU)RavCU*Pj!TCDY+lo){ zglIh3Zo?coYk8N+=~}yI-VzJ%t!xNXKEd)>Sz*@aA2spC)jS1<m4B{2cEM8Kx&K6+ z>GiMfDzl@MkFKASai!eg-P*-{?7I%{3}s<h+G%TPw`}FhvhwfZ)<QQw9WD!v`1W{$ z@#TrpzqWUro#LszXK7Q<qTP8qe%58O=e?em>=(?Md{+1SoYNBoRur)ZA73tiYHya{ z<i3udH@!p4s`Og3E}HD_JSOV*pyH(Ix)(w|3?a`~u=m~F@%YoS8k37Q-jAibSCo7d z^tfj_>CrQPJ<&8t#`%*cSsq}wT%Y0JY^Ro)-upFIHp=8oPM){Uy83oS_i0w|lKA*P z%-h=XTvRXYtF4uJ;f<f&v73IIckVfH{IpF%>A^Syqrwv^h2e`o_SmOJ%NBjDd9f|0 zk}uMwZpV2E3Crh=U3Th@tAC^iZ*P0CqT<g{)ksMdj}s~@Sw1*Ews<`!{PeDMyQ|k{ zZMWLJphu63xku~kL0f)V->MlkQmds;JYE@9^5iG~mHM__U&6}n@n2QsG}isM?0u7D z*=g0;+Uft;&c3NVT428||LE%LAD;iwmghZ_T>UKjuj}j|54&P7I5$rGyu)bT%um-h zntr~2pkL<b!;E!mAMYN#{AS_Ar7gQAo%zJktP{9G?@7mD9wzHw7a!ksyMHXs<jNi& zF-O*~r%hL#Vls+8-tj2Rp?bwh*-pE!zrM*^FKvG~BOy`0_LS%ARlRriOD}!4uCBQ4 z;jJI*H0Bv?$@LQSwd*VMthyQdYe`LY^56X`P1y-g%q5SXa;vS|H+7Hce6b@oOHXhg z=P^9~IPP+JD(@lF%{&an`<WH`4>TFy?s|OdU}U$4@*RImzvB02>#C&$t55v(+q`+p zB>VqYf9HRzyp~@YFU0xBV^OBANpF%nU+3>dw_G13TKsfmX3;Y~TW?W5|ATjY^ZYHL zZPPz4KJriTTFzG8eDBM%s=Z6MdR%<_=21hd@nP-$ua(v}eiyjbJ;;>Pxc*1|!+(b8 zk9GZ(s&l_Y$t`M2<+>el^UT`AZ7fsMWcphEW*^wYtyiPGXlqBu?WH|F%kx7&9dPX5 zV{xo_l2z69g}uG2jvl@3aKQRP;b(jGcl8gt;x~WY^X%rH;75Y3%yp;5f+z5Wbcj4} zJ}Cb<uJgnE2kTq*r|xI1iTYvwF#GrH+tK!$eDv}rnN0Ik-|lW1acJGeXIdW?_wAYW z*J8)s$i%xs9QP%|?9JYPtF1pD_2=%7$*Z^Q)A=#6bazR4RmYaZ%TL?9E2@5*_%M8b z9rIP|>`gN_O;z7JKdim}&ij+Q`p2^Doq4&sw*pmmN6x*$UZ(J8@f<dW&r#y{H@WxZ zcZpwHlVG9nh;zRBGESZy^8Z%-I(%?f)9G5Zr5dRr?U@IjPb#o@JumyJ^yw6Xsiznl z@65lpuB-6oeEoQX+2!{7fBb(7R<y@%@4EK>NZAILH*5Ph?DOn-GI3X4@tm^b^<FE} ze=|n=?a$ovQRU!;Noz%yxHSG}U`leg`})iFQFuwT$JA~Oy-K?ol3!o{)wVkIz^N<M z+U<UEn@!=J2eaOkzOuOWEIxA17CW&Y!N2W(Tz2}q%TD%>^+n(N9r@z^J9fK96kSwy z*U3mRWLhcp^QO*^&=V}5SnEUV`S+*w^HzAhv`PKQsQYzp(#=bc?isO6yEe&f2j9Yf zk*dyfHwm`BT5NOe{F}`mq`iLVKD4aKUlr-H&+wz|7WSZ>p>kQb4()$&t#PNKGEZ!S zh2D`_-)d8~UcEbQ+U&BsUOuxM|1*S3y~`1BWcgrZ@zwO_ztkCrLQ7sQ{B_KILQ!yU z)PBK}75k5-dv)r)>zwo~aOX*dRZMqJyz-E#zJAW?<&KX+HXD4EPBE6MFmIPUSA6im zu>$+3ul;hjBD2E%%|0nPyjs_26kf(~@+4#Nr!UV<AI_TAU%lke^=*gW3bZ>ZofKlQ zGKgI$S$w>}uWH_$c~{TI7r$KSKRqNdGhQHN^Ockj%e$1#t_L<<5-8qh#CFYbXLkXk z-A#t{uDy@n@;#2+GClgzGlO$|sp(uv_68QL{uV!rmOR{iBiwvdRK|P(lkb<`OCG(u zLXGp9!7|Pco+C1P(K5*sZ})Va`%(MY^<wF>AGME}b7u9<Qwi1+(q3_2QP$7gFlWxB ziu|QD*Akn2<4ev5b4T9yJ$L^>`>~}TSMK}}-r=$BBX8HPJ^n(HdW&z*StQ1gY;TZI zJZJLR>bj{9=Wn`mVCj`xw<oF;`!Jtb-@j8)B6hh-72hAOKi~c?{KLNLNA(e@`lI^H zCv~?zsQp*t6P<Q=%LJ#lhqf_V-rn+{r#L?JkI0Y5>U~?Hv*jfYf8&j^IFoZjK7H5C z?=v~hpS`o*_S@uZ`^x(CZ=9YwZ^?__9`|hhFX@(lGuiiX|G}d_=6)~_+nDQhP|P;( zmdB~v$K||j&*<^pjAMPe_?QHrgy8wlZ-49myZTS&$J*aTH32{DA70ye#m2l=bJN9j z>s0u4RxUfHtCu&+eM0Z#Q{3(%St1LA7!Iocs`=ZtPcQBVb6kY!>fddbIHC(hRw^Im z_Hg9dvx=!|UGc<Q`&IYnoxc(O(EZKz{|v0j-QW5?q~4qPuvYnaRpix0m#)|NR<4Zk zesb?LPd3+4p?3x|l|M`DnIy?~$?yG)M_v(LGqk>@E}8Xv-pfC4lfUOP73UN^lCk5m zT5Ufkch%>o_xDaushRkjHG9(WME#bxNqhP}d+wQa^vt@xiLtlNy)erwdSWTvn78xo zh5Fd|jq8ut=DfW0vd&0N`p1)?39-4IH~q?6>Sn}DV_wE*owk4G`v!Y98}riN-WBZ; zSN^!mO%%TGmf92=KK0>l#-0fpT9QdBf1k-rGVrbUzR&ef{P42OZL{iI_rx!&=(9HM zm59+gXxOptD$Ams#S=e$;$N>k-(O?Wq&_A7u*qAmCqJu+IqcS_woGW%E#I8qFV`K9 z{ayL*=s&){>;K3vkD8&_e$0+{r*HP*>s@>=r3{>Jop9DDnd%w1zrg+0gFJ@*$NvAg z+#kNJKD?jj%YDAAYm=jQzs{R3cxq{!rQ+5d2TE;L%C#>%T3_>h^W9|=MS^uE-ig*o z(JSzfkr5CPynk)Kp8bPW@f)tU?$7DJc|H82U(bb?|4ct@-7{<Io}En+rpz+wrF+lx z1+ynAs-#Qv8BaZ7zwoJKznYd&zRQ1x^}9d*`Oh$WGY|7h$Ky}-uRH&tzWuZHZ=sj( zQy;udx)sh-%o$Y0EaYYR<!zkkZ>!DO`}D8<aj)fIdmehZv)g)``Tf*C95xSR!Y}UM zc(1=W^TA)Q+pP1%1y4jPq@PZz`ttkg!~L7g`d6J!f5ht%ZMdyDQaVDQNYQ3{%!8Gt zUw@pMFxAI-fAS-PEl;^hF25{3bN|r(8~bE`9Dd9#c6QbM>=idzCQQ7!YNh%@hUfR? zw*I;B;y!PUXMX9Eb&DDk;&rq&3#Wtz6;(1cPP`HRRWVm?ap`aMKkgqz5528kc754| zsVPC_mF#&R&q+5__ho<3eq`Uif5X@IYhQNM%t$X%>y6fyZnM;~YWQ1tf_=Zz-h0x^ zURqslel`70pUi974~{?Q>%9Ia{n4)NvbRN7#4{DiM%4oM!W;AJ?6tnFznSe5?W_FA zze_*Rb=&NRTej8SO#RQ`yMH_L{eKaH$5*ZsepI&i$;-eSZl~gEHWz+(`aG$g|KHxK z^f!OkX6~wg^Pk~kUiS6Vr&AXnTTm2vt@<UK;kmmfcG|Y9H^#?y&RN>#cYDiz;ZuiP z-B!PuY-e>%-&A^a*v>1>`ZHD?c{0h<=D7`1@r63k?GL#_YTd3TB~IB|$)QtJzVBjV zAII@0#SwBUtq()Dw`cku?rA<L`HIi#U+CS84BfAhDXx~=`=nEkxpU0So40ho)h{1+ zt=30cMq4fIp1(f-X5}Mpd+rKxpAU8OS+1>rtS_7;xLYi2(zC-}AC@gpj&yi8y{e~A zL_k<si(ma?|KX?>tJr%JS9p0<7Dt?W-XrSP@%>xOKha;2AGo77Uf!orBY4?#^@_I- z8f!dPda5i>$uh0j%CNjxfbHpa*TmP`_S@K)*DkK8yLahR#lGv-QO;ZDP24_h`O`Q@ z+f9`Z9*aIo4XnErmACcxjdfq@uLr-h@3|*G+4INRN3ZW*e3x4tI_aKq^B(VNla8Bj zm^K`bz3=riD&pRwpzDqkCi(Fv->Is;o@ut*^vSF6smj*7lKTw%9V7LbPnC(?i0DbS z5&RLpw|)7^g=affOIj~Uj(*5LMdAVDZuX59PfCvG$nEL+`}uDR=yIp3w$2Zq?tiQK zaW3CfqU6Q5O!1A&XBJHBZ2VT~m~g4GR$2Yo?batf^AF34J6?akm37OdWKZQMll4zZ zu}W{>{YBzG!&k0fZNCG4#C~{uxK3#Q2kuzUM_;bwsa;v0GAmxmJ77j@^7i~`qB;df znw4|aRb;|XeO%9f>CA?8Q?A~7`7Qm`KEXntqBpm?kJ#Ten=*asSNj!_{~0pvn|{r2 zf4k+U>D;I@n^ud(3cU++Q+QBtO5*uKcFE(W@9uA%e`Id@v0eQKZR?&%?mL^FzcSjj zv{-WcP9eu^_DTI>&r*z(P8$pT<g*rxpLCz?pR(^#?`0L=oi|-B<-D@^n5lMg$po{? zibE$QBHaqsPj0-mKlndGhHTdBupgEW`^DlVd@f{%T~=9SJKOc@mXA9mRT}Q{oBp|Y zSU2&rl;-ic?7H?}mmj@nc*@;sXt9T<Y`NO(%)hf=rtH>RUi(<TZ9aqjgGKdhZ}upE z4EEW+d;f+?xm)qNDLXgqatM6VU9~||;Xgy9v}U-hyOX`<KZE*%V)hTcUk09i_@AL8 z$T3rR)e%!!IdiV{)8Z#x%T5S+!f=Ys^3=So*Um3`X{UE(-5yqz?S`H!k9}Sh5qEmo z-4lwbs%zdSrW&4=V+@=-|FDAL=EuKmn;*I#+JCD%_`~}Ced1fD-DADHX0qWK<AUka z4lMarZg4JkQb>VI!^gXxLE694ELH|z`epp5<miLPwo&#y@we2!sr>l<!Q1<?{<|;M zweilIHhQcpUC+-wd#goSVR3EJ(RXW85+2H*?(=Y3P*$qC`tzmSxa<=w-wvD=<~<So zJg9xbO_{_tgX$;Y-#CB!#Z(;rmh)qN@#C|~!G#ZbtIj=o?^Un=eY$wzscmPocl5CI zc`D!DEPc3m0$)9|{exBVOk4V!{xgWKwNv_Icj?yg!*cf9Kg*x$(On~Tb*KF;LCyGS z#s#f;LW&J%pBucm@nu8AzSNbUEB<VLd*IJysi}ukr>Qv^f8W*k{%z>Ok8F!Y*WR7& z-I0HUDOIa?{^pa<+(Ku1yEz-4bc=oEwJn^X*!<SgJ!NW-KGo}9<>UyM5V4Jc)t`Bv z$2ZZ_-D@Miyfk$>b?s(Iy57vwMQmpu`8hmjy=6V;`ex4U8=qV`bmc`(#q=QW^?a`c z8~9#FHy9WcB_&?IzqIbskJ+JC>yPjY#Xk_4_v+YFnS#{lxoXD}p5K|KxbdL&yd~Ek zmPBouo;tH&%^K$Fgx}BhC+?HVZa-pHeA<xZ;PQ;Zl&W=;^9pKzGW^y4_MTDo<dKQJ z`!sy({J+@q{&K!Jry^|0(@O>Qz59cgU6GcVx7E#(<H@&2>+dhSX85@4IPY=Mznd+7 ze@p++YI)D**xM=pd`{~ttky34cbfV5)A-5rWfw^0AKx#Yd1U47HTU;3e3|wtli~T_ zX)J%UzgnqlEm`@T{b%?y`L`J-(|-q4991~9<oZetm6V5XbMMrxpY^Zom+OW2phH*w zeU7i%|DxWvR`R3nqm5JYza{JM3j5D+yWb>xzOLij^Rh1|-qAkOvvfk<-NxgNbNW}x zuUuE+apN?fe~g?~#=80{$r-J(mM31upS*WA+WFVv+nYC6|7X}*b9PSIt+Fq#82>ZK zY5ggB|6$9e6J`@`%6z_(Y<h~xJl}aoo$aoV@5A=|WN*0@-9NLDUAoBb8$a_r>*~*u zeq7(&L)6vFl}%zijtdnnc_MeX@Az`BZPV2>nf;0-9$TvP72dymZRgXS>`X=l24xef zgs<EFXIQEnBa>jr+k9X7mrVWqsyE+i&xu#hjVWKPd$K2isV=Z5y|3!4{gd#tTSxbv zZ+QD<<s99kd*3V!*cP!`(fYva?KZX9$NyZN*zjbVr?TaPTL1i~QPZ}wKfmF<TTgr* z<Lkbi>X*N+c@^j@wlw+r@s2GsxBRtaY48<cvMf(YXr91VaXj(9=<}+nXNu!JRbp0~ znKR#(6kTScnqByCg^jn&C+%}@RC_kuGTSIqIOk(?Ow8mJNdo=TEgs*Ok3Te5!|j&P zlWWVa1aHh;SJ>B3cv5Cg;W@i~TURf<vniYBf^28+(P{(sEC05h<h;2-<mt&@4-yji z>x{C_nEz);oMzorp%c>o=-2c0ar2*>Ys8x5J1t$h@~zPn!?PmoDoi1L4BG#cR%cE> zmb>cC)N^Oj8LGbgXRuwhbnmUxQXU122P|a@uYCNgt?P5`*S=>wN&QclZ&t`wmmfG< z8QAVt&HL3>R8KrZdgHu5Wsm>N`ZC*k#qup7T^1cZg*zFKS^X-$Z~AECeOC6wQ%%PA z|NLk8`uf5i(>3p=Zn-Gz@hNqBQeIx+R0&J@2K%Kh3w|kknTmebshGzdeOE2K%~1NL zm)?#5b5{$&lXI%P1Ut{yJ-I&L<fPP7tH*YK`WXH*aD91wFzb3iWNb?Go#`8QDu`%{ z9=N$9UB1YvuW+9D-ipt&=bF8Fxoe;Dj@EgWUC;ApOKKe`eK5hp-fP9BT}n%R^Uiy1 z3%i<Qq8+T!nR7WHAX?{$f1%7m2ZrbKpT_Neus7)R;a%6J>{>pznkD>N_S5OV?Yw;& zT-LXxhS>=BH2B?-`uW>qSKl*<<lY^U(#1VuToHx$m1n(ddCRwU!GeUNTeB6ar#c!< zJ8`Zq^yD8+zt%51SFc_8Do*o9Z@zu^R?lZ!Z`g0q@BH+XXNAqrx_~naHprJ4KI!vU z+gEutKd00;D*COZoW(Q7oAS&P8$1}kJpXwu_uXQ_kFKwE_DHTz<tyGAa$3#e<q7*X zhjo_vv(z+q@04U;zOB0C*L4?7H*2|~m7<$$S=mH#CD~>997Vs{ziIv0|4{xwe%~+i z<NUpLvR7&n(;r$szOv=5y#KUof|V-|9DU1s=eiF|*|kfImV!$r*_;+*T4ndXW9`>B z`7KXm9&1&6ecq?}`L(&;eVg?=j~RY>ko+>na$B&!bo)H9tv}OdmE~I7evMi`@uIWz zNxhW**Zqg@e<=F9_3f3{kLsI>+*szT-`L|e>C~$#F>x^irJc5Je;5Bgw&(u0=Kl=M zefzXu$8qnvRG%*2Zg!9F%2MC?w|+hSlr`O~b;oCgjoUkQZyx_(vw5o9&mKRvYyTp? z^u|?|J~#J~ooCp0{OPNTS5@g<ueM6Bj5_x9z^N@UADg`9OuqB{(tftXf5msGwW*n| zd=Pqd?wn=U?>tR^aoKkJ5!1WoWmRFzAH^mg+4b~$*B{>%ce0|^t+&1(cRzOHv`4R= z74M2%HsRAH%U2Z)i6L68fgJnH1$FWqZOV>6JzM#8-B#|KPAM7RMHw1uH=cMKb<1|% z_D8F)ZTN78x8m_LMXpv?$)|I>R(-KJ$+|mje|3b#F|(V>N9QSSFY^`Zc&{hf^`BwY zgb9Ux?mqt+CccjOV|>R*lchw0(cy)?a!_RSz0+$d+C8qEY|0gPzoNgyv5n1J<I2w% zA-1=FHmFOS<I8T?dVQUO@_C74=DFupcuHQzP08H0#dxi?s;2Ck>Bf=<2Wt;7e_bVf zH^!}1RA6dekx_A^b68*a85e;EkJs_bJik-E>f)=Vmro_hXdag-u<k$p@!9-M6YcKl zr<HBv+cb&e=jSVOeEk0Fv%c)--g~UKKK;?|9rNE<g?`<CE7HN**_`1wPu}Al$AjZ- zUf%l8Fm**sX}-oh#^WlFB}BiLABrsTm&~+N{J^r*=hoF(r?Vuc-qn%b=gRW9Tyf(a z%`fYf#T^ev%2rgawB>jI@psv6(=~Q#jk0-yVU|-TUf49DW}9l;#reBD^56XmKQYf{ z_vg1?!~>j`h#Rh&cfc>6S^oX3-?I-`eTg&wQL(FTo6mch`o#U7oIjTYFn(uklU{$S z_<YsR_Q&6wzwGCKb<1?ylsN6mNsk=Xc;{#<F)^1OJn`V!hJ&XxKiQtU<NH*WU;Wa7 z-{LbWbr$3v^RQH@Q`@)TNBP6q=ecUa{+--0%Y5g?%RZN6m$`O6PYGD)=)BiKVNOrV z$GF@N`G=B^>=!gSZOFM}^R|ikdM6&b1T;M^eEHdPqr*R)4_1#a*Gav)@H$?oCjL>l zb<d{b0(pBXCoylgyV%qB<I$$0Aw@+V=jOz&J6HW^)BTFYkNMmG@E1G^Ec$kFqSVww z-in$0VgDJXWqDX0m%I9H<Np2IcyjZe%QEI1k!H3yDVXx0>SMfuN^{WPwOdj)rX({+ zA9%P?cFK{)IVn$fr}tg``lgr1y^LA-#POQ)bv99362))4ST22czD?bgeR|E_KZ4cf z7nkebGSxnvv8cCe|BQ({W+i?X(G&DM=f1$^`g7TPE7j&5sz|x5{Z2t{LGiR-*KhCN z=6fPn`LI>dvN-S6E2G&ZLp#HN?yX^88R7ZdaDLgNRgUWH66+VAT(Ec2&L?TXS!JDZ zpCeMX-8g(EN65jxvhiQqE?cY5dGoFd%dYaUNtV}Ow*2<|W&g3AESICwrtVp9_`QYs z!n{AlZ{rR>lxL3pu|4+E9$Bg4daI*`EQ!hTduB|ie>rQL?Z>!v#*++po_6#Ky6`*y zTlR-}yC3p1-Hm&FaqHY;8>_YlEVTK_&2?N-L8kYIZc`DP5nIKbAKO352Y=Y!_AX@u z-{qgFq9-lflKboC)^mNE8X*?jwL7`LHK<60k3rUoZ{F2|KmIcu3Y({X@txxQB&NQb ziSt5I1g}fj7T)gq5pn(5+P7NecJo3~rONtx<){8L-hJh3t=Q+t-S(N2vrYPr>n+^( zxoVzY^`kwS`Rdsf>(<B|SCKYvU^CY|wej`5<`v)8ud;D}cq8pnp3cIAWr2M&Wr`>N z__ufUvtE6tz5A}ND|wxNXBXqMlUD^Df6ly7xcx%C;DhiN5mp<gNV|7C&D&Nzul2#~ zNYkBZAI)~voUT~T=5NlEHd}g{?)~blzt82%Gni#&y?wrO*5kn9qVki6t&?SBzQ{7H zIgzw|!{yw!I_0(VZbqLr(v#Q!>~Y+dTkglp;|!q(_c{Mva)2#HJN-iX*FRNPPUX(q zYn7#SqB(A=$zHkV0lhBEOz)iX{Mlz<{N?r0idz+PBbjYavh>V3w0!>hs&BC+dJ7-E z?s$~b8emZQT)l_M>iN=|3+h(_au^;IUZ`&^OL+I_UDxxC|F6AFX%64|L;8_r%1qh3 zFS$;U!OF$*8@(7Glryi(K3$``qGONpvdj++>eFuB(SGnav(sR=hsEu4o(zKL3*(mZ ze7jtu_t9)RV`Wmm%avmuw>+XH&sl$Y8*lc5KX8&g?+d1<_o8Q4do*+GFO})K(0D?= z=5a%9rLx7kH#Khq<2P2u<a^%U`MT_al8W0qk4>99Iu0td9V_BEcKPzp>(8e5>@l_7 z-nO;+XWrW<zf<2-tv0Ei{k?qqWpCO2K9wDP=AS>kwaxzG{@YEn;mRG4c>$j<nN5t& z(u;m(?UDTH`^)&*;@`zV10@f>?K|YXIy>mD{~XzqA_3cM4Y+q&ygaAfR(#>GN$aHD zcc;B+F?dlFbGvuqmfZq<Mgo(2`oFI(Ke+wVy%z#^g<`!oJbBJs_^!IDI((+<qv-0@ zshhSI{R=tr)>R?#cT??g`@dDMN+K1uTz>Oy+f`@90}m3O=Wl%SPxPXfuWQUtu5+JE zN}o)~3R@B5asC*`fhP|pUbji^)4sBgwZiT8@%hp<#t+PTPJExfanHuSfZI-oJiGba zm>R50*U$c^S+Uhd_2Kr9mHyUmZuAOvJzO%&wNJsX?nT;3<~b$n6aO<bg~wDpK4QO} zN8rcos7b$gtq<Rtw&<ck#G-reMFd+q68<cl(^Dk!`AT?fmC&!LF+pX4{?Ai%_N__n zTiU+$=d3^HUn>3cSidgnkyFssx>xIp{xjTVmN;;<^54o;FTZ`)QSK~1E3Iw7tNix7 z+dmoR+j~pn)H1J{?YDTOceKdz_B-***Y?QAU7F^--|Tn&eIb*=kGr)_Ia;1%c$}fa z*wbJCd}rDvzl-+EGap=znt5yOwfQT4_7<%CHc@JllC_6=PrA&`xCX^zRf1<LRgc_y z*Dbsy&AQ`o<+=$?X@{A@pQ?t=U?>XzAh*lv>(sAnvNLw<IC<+uk%t!3q6u}0%@-c` zM?KBky4T(Fs!jKcc^YNgzD_K2c`of`*%+{4Li%&{#y)<PUpI7a{@s!o%$?gc`R2=c zCR5*SdG=fN$MIh=s%F!Y47O_=m@`Lc@tl&Q73cf5%nd$L)}5QL^zxtb#dYQfR8`p1 z@{)Br#B)~P=t*a9+Oa<EN{xByD*3nbxzF>?Tjb)m(cRGSq|Ab!S*tEQF*wM0s4eW+ zo5sMsyZ-oJUZ<Y>A?uqSXJ3lbIV1B$I~f|v-sZeJ=O}T)^o`#hm7Vdyy|G>|4t|)n zd0~y`hf`5m+kV$PxEB6#>ZcR6J4zFu<;le~taD^wJXd7=S*|}*9drx9-3syeUZv=w z<lYU@XIeXM6sbrA*nPX_sc!nZPV|a?jq*o1k38v<?Qx$IrmFWSbp7L96S|2}F2y15 zgyby_(@Xy@#0k`TJNb)5M&CJ5vi6d}L~cVKx2HneLu``+KQl2Xi+;46CmMUZ`2NB0 zZGZju+b6v5mU3^h$+&gD^U=SnZI_HTL>s2HiPf>(3*N{&g=xXI!g(C8<9FLj+X#MG z{*O!YLsC8Go!GTYul8Jw%h<kZ;z_gl6&;~%BF{5}!dz5@dgm<&|FrnGR>els-nwXY zt+?t+qkyJjLH0QhdYYT8uD>il_`WAj@rVD%Z2xPy>1_Axr+McaemJS{<U~W`mIpnb z<NU<-*!FDrI`yHhlx@VhwLGylb$ofE375Oy{AbWDtChO*qxoo^(8u^g?{9hj;eFI1 znDy;eO4;^BYIk>KdrI0IE%m*f>gMkA=E1Kg;V<$JtQUE;?YiL0sMu>uGYxc3>j+tI z?AMmNw1d^t);lGgS=sbh{Xv&~vXK#Wx9!+}Jb(DR;@JGh?>X&f+>1JLKWpP$mYFx( zST7~`d9tUo6wf>T;O)_W(;w9u9rwHQ`<-x68{ZCwzh455cJmz(aA%R5dT?s$tEOJr zx22zUZ-1El#n1ZD`?vMqen*}&%q<Dp6!f3r<hr_pe@uQXf0S8c!v1a1Yi}NFIm-zv z(%5-6O>XbK-Vnj2RlK7xB7W=hmObSkAAhs?xc{(!)2`g5|29AJHS+e(wvFjm-19)p zsjuASskkcV@iXkEPiEDgnPt}SPo?kHt!o*T6W=}y5AB^^X`OUftI5jPEnHdJLE=Mv z)BP>)c0SxM@+vB9<;t_BTRxrSx~o1@&uQD6W4qH5+{(5^Y<Ti)->IeHey5`4+b$p0 z+-{M#_1~I0ryt4>^?U1hGOO-4*c2{_%dA>tz4g%D<<pfd8kvp0^6X^iS+ag#alGEY zQ`bJ6&o1a>pQgTllJ&F`lHL{a3;r`yo;V+WYX7?Zx2zA}6a8`fw`umS?LEoAb-zts zdgt!VyD>-Zm2SCstjLk&Pw&MkLTmW^43B@}{%w*~6kWqT|46a+(yLdGEmX|o*88#X z_PWaxkJhqD3u>*(i;G|XQ=WI`gS}ndaq03aDrQ}>zj6H7ul+Y0o9wq97m4n?H$6OS zw_o+{w*L$b*B`R2n>Nqj+I-&~{%X2T{tAr$8Fa3>A1v%)3i)JvwC?C1*M0L{{<i(` zTo$L<+P8GE<AJYxdga;oanJdy{qggm>xQ>~tUL6~@#56qUq9FWef_0Ra(TwpTABSW zb+vPJ6JONWKjv@PFJ*F?U+Bm4kj=l-W<Ff~aoN4QZf-YjPCwK6?ep*Ly%SFc-DX}{ zyWpMlJ_i2fb!YGCUpaX?_I~6IkGV_>x0Ug~EBA5ZU;i+^<lp7(|7^M+ntom1Tq?i$ zw#vV}g;{S_O+NnAMCbJGW+i0-ho_HJ3knwP^UUY^G5=uv=3}cLtQWd@=jHXc>kn<d zb<fds>!B5!HcT?Q=(q92!f64gA{`1GW14ttb8SL1RsFWEJ+n6V&F(+v{)At7>LgmQ zJ?QE8_m{$7KDqemm2YCHN?Cbee&*AFbw)lFuWHX(l^l=DzG0*NaISOo_Sq2;VI0e+ zE)}vrCCSD#k3nUE@#WXe@#%FZ?{6qSUf&<J<rnDSzqVQb8T$LW^Hn|_UV8hq>}uZ) zKg-tEg}94M`tzT`Kqokpg)Q~m`6Kh&?hBRLw|0L#@AIR$_`!XiO{xo<vS+4hF?;kE z*j?Lj{&TL%u@jr#25Y%pV4JpACM})4BSdNbx@lkDN#rck*N>PUSZtmuTRH3f)=6J8 z_jUY;KN@HF?@rs{!{4s0m}ccSGk@ul9_Eua1@BbvOl;gaXF``@-;&A4Ig=myrXPvg zx~=u$i+z{N>ut<7xEV+;+c{OSS6oFe%8fxxA*E-6<+=?S{VQK}E_=CJW%_n`9kU5; zpU$eUpDvQPq^A7V@`Y-<WStNEXAs&a>nz?`dR9K-!owz)iTU{@uTQ(Sh2(y;I%~rz zwaco_XZ{}6@+(IV&9O|lRI6vB#}q0R)cw?KpK0CM{bKvm^gE3H82;G5jGNap#Kuk2 z<=W@<A7`jBhWYFEU1wnGJt(1d_L;&7(Y4?Ho}baT*Z9Qaz4d<e%>NlO`ftwu$7TND zg^lpX&3>CUf4qH*WmnVloN3d~%b(KMQ7K}dQTJOx$z%RX?XBnJ-_HNfz{2s-yz!s- z$&Zh}$y|H?PyI)--{#L>=SscOuGr(fWE1~A%dJ~nyS`oF+4e&GoP$N=cc%TkQ!ASN z=fB$V<5NiVx4P^TziYl9I(f)G`t;MYo^S6~+Mld^QEzQ0^5Im)>_fMfEoWJB_l05i z)`s4DrMoRWBN<NW^F6q0=~N}4J!R+AOE1<fDm2LnY<^z#R^s3<{)cbxgqMGKe{@of z#*f}5KQ8oMxOIBl6Xn#@&2w^Ql;7(Wp3XeMBgi`W+@A7f%Uk|ruC9oE_B;N@yQjUW z?1j^moR4a%?{+!m`R`lB`b!yJ#^vtM<{b)ovTn`AUoU@a{5a;De<18--j7Kl%<Dg@ zODcSM68?7nk^ADVYwC_&o2SD4v}5aR@jG^j(}Y$h?>Jrd{b;?xe}+x-dzM_b;eM1N zyd&GZ%|YZr%XCZ0S4Ib(bp6fwxctcOdWO2g=D+lo+uZ*8Uh2l}oA0eRU8_pmw=-3i z>0xM*k@?pr*FUS-YksToTIpE3<v)Y;Klk74EstKL$q8OLdadsJhV18SbU&x@|IvAB zr?6>9*Z0#IddgE{41N}VdKaIQVjx?6{Z^dhe}<+-(RHWibE<v3dUffsl{!)fn!eq- zSMlBR+mE0}qS^;MlR778?Yj`rB*8cTyj$-_t$2}&XZ$>wLB@Aq39ns})9NPrV`|3< z1+BcCz8ULtemq^6`A_?Y>Bm+78GMf{_WWqpxiYf2|BfSznemCG8(Rh6ovRLiH|enU zzmFO9lc#1|Z|T1ff1CRsm+yzk->!dr-}1-!L(MDR%!jslEStCQ>|HCC9W*~XEn-Gn z;I|1Y4*4$El3?1QzVq)2-9LdJFMpHx7}v4*cXr5yd$;2@Y}uSY?UJ?S)OSmIot}mL zwx7GRBD3vn17G&fi9e(t@k>VjxR~>YU-@9Q)yB++TPMAHW^$6nS&I3y%!AE|?qLb+ z_LsungfxEHJ)fuIb(oyc<*giQo9Dm%{%uosc-mW^y5#Ok6_10-N4&RgVq#cT7;CXd zrQrQEzHgQq*QZ=v(*G<y{OaTEm5IHFSKMMdB;95sns|)Ern)#Fb9=VQY^Q$14wqBw z9#5WN_@b&hOueVX?L&U&`aL=+pXYn+n0Ms#mSvwal@IPwwDi3f_eS_w;jP{A?QvWm z-Fr-T^S_y$DP^hduX!fN<=k>>#Q<Y%nGy$wS018Ywk#EQ4Y_Gj;2F8)^ffu@>sx>R zXV{plFj4NgR&=Je)OKD)g$FE>IYLGS>}vai|1rHXyDn9?_mPF*!i`tAx@D{6hzUgA zKAbZ1xNM@uxAkfl>;&#q=zZN|S*Vixh(+<e15?Q5N&Yi9XRAs*z4A=E^xOgGQx00v zFL~wt+FdT`mi%@J*|ycS&qU&9s2hX&O52mRp6WZ-zc|16JjbJ~<har>v*jXJq<{Oq zxb?|<efhF;_fOe-=9wP0*_%>wt5oIkr1(_bpt{_fx3{mdioQKH$tAflV$+>g3;C&z z<@U1*<(XElP=EI+``4?$-Mj63UIcB)IUBLusAl#3{$u;C?Q^R&-t4ox7n@w2WmPx5 z>gEaiy&Jdte0e@&_O1O+xrbF&RTanc*4-0J)9;qzTX@oZp2#Knb;X}!kN@P?7X6`q zNs9ZoTJwK~<=y`oJSYAY{*oWFb8B_Z%l`~-FWNb5&-6)jac6Iw$MEGp!`I*=!F!^g zD##x1o0Dw+x9VK<$$c*mo?l?UK;A2J;?3=Bw)Hjz+CSL>-qa_YGEa{bX|p)A%}nE1 zb$?;sR?|P14?o<}r`Yn@-}2-^S%2HtBHk)ttnu$<7+?2%`^ER?%C4SyHD+b&%4TwE zc}P3j>*vi}Blluyp!H%Q$-5i+KTWlKRZ#f$(zXX%c1}C_zNe^CaBBDrO~aMRtvm-3 zgsRdd-_DxH&+p8o{mS?Q$N6b{tqP~V{u%mZ<A#mfD<1Ehsr&p^oT37^LR`qE)`JJ1 z2w&bBe=WIK)1>IK&u+<-`nyexPk0_*-luhLy81-zJ$wO=d%m80eED_sv}^xldjDK_ zq$bOKdLCa9|I^E|FZ*^?|J-i&t-~{DUSXPg-*VP%&+kjFRSx>g?9F;^`-**YcKKYI zvaR>~ng|(lb%n+`DU&S!P3^gEbYiW_-i;?;IsRv`|66t0J7QnN)Wvxgs+$<z&pWhH z=-VZC)rK_osR{mm%Vm#md>N&2KS}hoT3Fht(wvg#{mVBjzb}?CE9}LdX)k-~wyx$| zxFp&wIlA6(hTx>Vf8BjTA3n0^nlZ`t;D*A+Egzd-AG5HzR`V(9#+GSsUVm9VeecGe zUB;q;liXRpzWq7t?zOe=#O~(BnR&NJtDQKnyzueTVmYagHHAqx7sV*tVz9M1p=>`* zds%brWTV?}wbm_JsjeV@pg-#KQpuHZ$Cs@-dg!`=&bp*sJiAYAm)`h&@2>Ly47RV% zoGwl0j=SltlFuQett@a@;=IDIkb=`$`u`a&g)r3x-FV*E|DPfJr|53gO$XLWBsuqd zJf4%ZZQn9Mjo2Ukfz^qsSC6!+$CcL{X8++Y`=7yU{t@%eRWAc7PBDItnZGHv^;}TJ z<R?X(7DmSyU*EoN+M1s;IrIH8Avq7pCF~aJ{U6ljwqB@6P0!|yc5)~zPPu$+NrK6? z`!>lE{}eoarEM*_5^f}&`{G<(tebZ}>)Gmbwc~xyOj%=^nDq*eTON2HHJ>}~cj(8d zy?;LKKAsi#Ea>TsM=E+o{5vGiJ4Swr(%H}V$8r0!4E-FHyDv7cdBHW$dYQ$ywf?Qe zvy)e!yBYrP<W9?&KYLbKzMs3~%lEYlms%R7ybm;<Gd*Cpzv;0@mwVR~IE3YhozMAI z9Cd46W9ssXtjm$p{xh83y<76PO4pjF#=Q@Y9p`dau3(p4rG5K$>80!6e<#g*vSy~l z`DuIj*prHEU(ddLF<*7c+BF^X>s9^P=geb|n`xW5v^KzxbG5*lAeX-I&SZs;#}^#< z^Pk~dw!@(h>rcFK42TfE*dF}lXoT3SgwADwlg@aatB_$l9@GCk>ST7#cAX0ivAcMR zdrH14gm|s;J1DWXFWb*(*<PMies2VuuQwi)ZO^m5zQSj7Y}Bbu6Zd(<6drrzF2nWU zySwNeajmk=2BBXLeQ^J>-mR(J&dY^Ovg1kr@}J+<=>&hD?4BlDz0Gp1QLx%%89|53 z{sM;+E7;fb9<YCSZEy8M{T}wFuio?DdN@VD;$;%+&kI;Bxbv`#fas>Gc^0BiXW2f^ z469F^U8bb7wBc0ayyv%V3$zzrPRXtNrmOCjI_XhSIG@uBEpC}f1qO@l|5lwAO`BEC z8?-yj>i3J1zwwXv?OgJ5Q>Wrb-hGRgx5csPz1egmLC$C52iu?PXKne<p!M!%zW)i; z(A2<#F+Gi6pMO4Eo4CG0;*ZUb&WE|-?w|D@OnP;9=1gw`rHo6#Q(1B~o=eK@w0(W# zy^Zv`Tk)|`Q7=FL42U_)lBZa(TgW|B>&$Ks1)hXC%?FR>wjOc1W!L>xOsQqfWD9or zJ*S#nBL5h_{JKJjU$gF?<E_2tpJ`ux^N+74^6K1h_Yd2am#J8UHQn-T{9><Gz+Zf! z{AiWy`ZxW*UGKQ4<@3!}O<<BfxzJVl>Nb-W=JP65g)c9DJym<IszR&xrSNkP-G~VX z7>p+v&q<#6dfuM!Wj~?=_g>a}c(r7j;hh^ElaJgr3f(0iQ1_bu-Q?@DzEu0)%zwo4 z;XH5e_qKO=g5}=X*{gp}H*7w@w>EF$dfT4G`=d55{3B|{r*P$u|1xKldYuU@v%-S= z>MK9F{oVIkfM0UGzHrZS;|mL$=g8i&RX#jx?zFid^N#)YJ`$DRn{(^o0+tnhCE>*< zS;T|-EFP?ucMSe_x!|_<!~Hz*JAN*{^6u@yn37pH)n0#XxtRR$H?L)l*|c4A*FM?B zd-u#)<viDlXLq-X2A|dLy<7Rt@Vu=3QEC15{|o{)wu>{Oo_GCc*topwoA(s&TE71b zfn2BaE;ghJ-CoHfyP;rr;kn{CpRA~w<0~chg%rj!rPNv<l+(GE`;qsMPIa{XK^dbH z^Y#Chu+Lik+xGV23h&T8IX|z9dyBn)bXz2=KIpjm-cmb>i#C=Id5wcMUE2C`t468B zq9%{~UIP3RHr`us-_oaDp-JNLrJd{fGQY{OTt3#j;C`IZnq|4~Wp|rB3+4SR@TX?4 zRp~EQ&G^~p4nKKS`MyE^cks8ZS4`Wvf~2#b^iEgL?9xa)`9=Mi{gv?BnJYXtwN9BS zK7oPR=J%t085eBKADriVefH5^-Tb60szN_EcP`{PRK}}jU*d35=Hv04(6!}9Iqf{B z2WZXtT=UBC{yWzH3|}uFIeqJ7Mu_O*<mSI?|9CI)d=$%kc<I!<wYup$e{SFuH`3C2 z@Sowjkb6zqKD#U2r`GGqxwAU$yQYx5K!=fm@%7PK%i2e$_uHHmUBat&cV5nUolhUC zcc0w-;hgrY>5t4i*DT>(W+HZu&w1?@A;HE!N+}ZxUpRhUAI=(hh|AD@a`$1kqN1En zYmL43wR9*ss~(xjkdmiv%b+5ECT(BC-+4Bok0tBWZe{=K>s{fVo-Fc7XXDND1u7FS zpK_J+vSX8+v3<k4ibMW=^JR2%RU&Gl>sb^SPUcPfz{B%^Sw!P*?Z2%vAL@(NU8ooP z6LC-S!_)hnHtuU;G-tmtn|`b1)0-G(oe4)ZA|A=)&2o(hSJ=Jc*=o_Cm`Tqw_5L$l z?K*UfE6Z@_ujK3n6&vg8^%_?mmt@?2GE>KU%Xhn?V{Z2LS&#R`E~?mlB+B>N%!jM> zjokZF@>RZVJHg#!_H4(FZV7gKznP{#_g6A!6>f?8@H_flqQcZ`kDtf9XWgu{jjxim zky&A4{PO)9*8dSweysj>ey;q{-mF{aAKpK7+9i9f^D(P0+(M>XJokB)>_`p#wn2Py z(V1zTbMK|x$ms73=9Vfes``~zZMfpun{RgJ+y2h1Q_qT86DQdn_~D7v+z0uaZ+ou0 zAsK&4`i{Hop3S>Oe5T)8p7G>C_>t|?Hr&mc6mi2{#LW7jE<d-iqWxYK`8oFYg7_}& zP+nX2<KJa@89VkGz906F-Z#(R;5Jvk^^dCRqL<s_H0N_aS}*3S%u#o_woX)a>!#eJ zYv1U$2(~<Py>-v&pYUCm39An0Eez0Sb!rf-d(ZHJ-KT8*g~Cccef=rQJ)U0Pv!}1} z&;I#xyMOGyeAROsW;U%1XM4|a^4Q;7S8tyVNy{$U6BYV8+E}cM>0qb*;e+RD_gmfE za9u~KQ#eS;{Fb?K(N5)MZU)BZy$)Y_`|iC-^j_N;^G%tW>K63XzFNC=Q|!wL(O$QE zvh30i7QW(R&vSoZeNF3}`kvcSi~jz-Q*g`E$WNs!z%eA@K;yBB_h)PVGnl@}oV&P4 zWaEKv=P&Jz`#S5=mE%c_%nHqOWbc}n$y#0Svt4t$pM8DZ{@&7uv6HW~O_{g+|Mks_ zUj@5=cztAB>w(BEy#a4;Hy>^J&tP76cXPbKkEq{ujf?BkPb@3W&Qx$up07Kh$j{=` zb6Jb^i{893wbti+ecDdRJW6f3fQ?Mv<{5tr4CgI=9k2UG`-*RWTgi=edk!dW-YR%! z2b){Zp&imr3~QFR9n7<mJG|QXT49~*Q|<3T-uquvv3GsVESb-dE&htjbZzUIu2Y3Q zE;pagNtn~z^<(nmue&qi`TuY(yYt3q&#tBxcNRVQf&}(ei+cK(*7AS!kGneip?T-h zKIa*4^vpIMyR)nH?r}fP2YpuIkK2#>_xkg9)o4CEYi4@o%Wp|3>y^rXzu!E2_DEWR zS9<oUwh7HAj~Q59m({S;R-SLUSkvOuzUP<r2~VwAv{{II?%R3YefQ%}?X^4Q@w7`K zWnxONpx@!ftqm-~_t(}{{Ym}t{4vXwt-S0H{cq_mYM55JHuulZ6l;b9e{a9-<!<tj z)IH|LVQ;zpE$7EuN7pXfb?s})B+JyP$vb+K5+&a73iL9!G313EXL-!F*DJzZV_jIy z>4WF)ocZhZ<Ltw;*+=Gy%=fzR@VC!~llj#=%nH`Gy*5i6V+%jS<sfV1TD|>`kn{0> z3fK1MyG{KPy;kaS=!bL5Q_WsH6*zJ2lCzHc_Z4f_pJ_?aJm$#GEI%vg-<^M|AARpc zr611cI$yXVG0Ms7Sl5B#ots=TchA|$%upO(S$FXMme^-=e|uCoy+6JyOV;aogvYa4 z_nz+Q5PP!4^V5v$b<A&dFRS--oi;e;nYy*$&aN&08AR7V>Dx11Z>~+P)~9#-AD(}u z9yCc}mW6?{-ZS+L$yX*-eS3aw&-)`{XGPa+W)1qda7vzX<^<Wp^QV_96wVQ<JX<xr z!{nyj{S6HJ;+`Jn+w)86@%x)`S2UT+>Vk?J4lg|M{L{hp&+JN;uKa7fw10-4>Eh+P zor@V;XO)+gMBF*CuHdi`kNxS>^1G!I-IaFn^W4b%r#JhbV7H+BWCN~^CS8g*<?lzT zPv#bLP-IDdANFnc;)BJ7C6}Wm_Fd))*pPbQrnGhC%uoe3mA~)idZ=yu!r%CxL9ixt zg{S`Ey>`#Oc{@uPDKGdm%cn?oL($>ot`-c*Hoq$}PhD?YCaN^A-}&9+-<&^+ADJKK zH9j_<d3|0<t#^39+sqX)#|xMHs-$=ch$QQ7e&}a&HRsFG8qvr5+vN;@xIXsI4L^3P z=9ldyAG^D<S2P3;YO1CSJ8?~Ac_0uW`tP0g%lXarlKa&D@O)&QRI%*b8)-@2(+89) zJZ657+!0U^+`RK&avL+d=`YWZ{*SgFh`*KpE#q1Z@8gwEw(s7ty*MZF)8ZX%FE=Ge zEV~sNv;BkD!ss8HuWkBwW&gY9OM0F*&PiFCz5GZ0%s)@+ZpQIk(zUT(_$Tng>uBdf zNw?kGKFxFqFF0Yd^Hy3q-(}5D$CxHqC_FcPAtzsLFI~aK8|`DfCzB`WU1Q)g!A%0* z`R5qqD{@csJf0J}SM2l=JN*xRTR-eSmh{?pe))~l{2CUWm-FYGda05s@jb}8u_t^& z-N|W2^BM2f*k4tN_55P}yI04fWkTIiMW18$l{K_`7<YU;E%)>Kk-Noqvu9sgymq&o z`iI{Udw*DeTz21YZ>hlT*q_yRMBJL{m<5~r7F$X_Xgs<8>fY>}LbVl_jAoY!>m6}8 zoM*Q4?q>nxrp0sQrv6;~JE+3#*Qr<XvMz5XReFDG5}7V*cFH|eaaRxHkLxeO53LuP z-x<$iQZL~yY`Lc~b<!PH#!tItCFdk7PoCH#_0f>){7ktsL6dy`D*Rn+vcgWQ?)ZNO z-hHaKmh_iC<gGq2&8@pq?E8d0K8pg}rwb;vwDE9j#PRV~@*mc9dUQCt+u!9>{H`?< z^GbS;F)OBZv@^&akXzWlwEF&=kALTXH2xOz@%Uj$smQdxBUxgr&V+`(kv`+9!&b@t znaSY($`AbQ+jiOP(`boz)}O`@U~?sQfreI;Z||q=3iCJ=Qa&I1^6Fke_NqTy{_<7a zGkFzMEB$-^-k;lQ|1&&_SpR09%*-zq4?Av8wR6aE*2!zxcAd+!G-pED6Eo-Jg?~2v zsC*>-d%du)?rN2wE$=>gP78G_c(@^ON`in_tMX+Qnef-{T_)A5@3)kH-*)X#_Knb< zHER{iIYeC=HWu7?Kb6N?aN_*V`qcOBvx<M55B<=$U0~OK@8wP(PdqrjA-#xAYkuX4 z^E~$L_g}4As;&Io;BsKklDztZ4u7)O|B(O2JR|DP3_Y7j*}YA>d~UaJZ-2`X+J3jd zLPK=2ZB_V#{|tw-*V^5FShsLV<N|@0+pMOnmHOD4dS6m`o1;Rl_HU0LQ$I*QG(Wb! zQU1e{eX0=$%acp<pDtds>SVr#MC5{;nn{{Z<XS!y@z(3^I{zkh`5&RHHH8oKWnLA( zHoSGmGfCN?J8af%juojI<*5^%bev#UpLh7)sg;`MUi#tbKQn*M=baz=Jv1_7>h<R< ze+GV(KWu0FWBPA{%sBBM`HSwpzJ6<QwC}fS6~0H_CB~DU&P?{drx27<5^(o(T=fU- zf1HvZ>m#q|eqG-ub$5OHn@MVE8!w%|y*^s`>0Rqpw~x4g)bQN-;!g2jh9B;S|4DsV zekj^k{IHlord95Oxsz^PGVRlC*r=lQ*iv0(&YZ8$_6SG*T~x#P@U40H-b?zAuj+ky z+N7MH^XiPxWfq1f4;UQp`1?rx71o};nA5d9{n?CHeOnei+GacdTiTEK5BcAcr}5?= zvJ<$dzQ08zH#lhfZ@1NI-|mF!-7oABGTvqq`k*kR{=vq0_Bxq=x9T^nTmLwo_h#gO zhC`(fmir66yqDm*f10hO$G(k|;v}zSJ1ZTNnIgn-Ct-#1v-eyThmYF}n$GyzFL>8+ z>5W6iB97%s&Bq**nD_s7m-w=N`PcgH`y6%>6~W#cezdO1x%_qY#bsy99(u3Xm9OT0 zck9G5P4zi_SNCsQ@oeT(cYdkj=h5@j|1+?istNKJsykC>`y*BKvUDx`k;$HdU1=;w zSKT^Tr_#?Nq86!k>+r;$=Nk_FXJ~qnd5isk{f%4pt;Mg!4PMp@?^De5t_ZVuYW6Y8 z@`~R3D2}VMo;^+2dhT(18iW2B*Bayh3@i~pCV%k%rv2mV<N57Y^ZOU>*l@+<Mo!>5 zr)cNr8Ro^e)|}Rya$NmZ(j3u*#Ttz}W%vvKGc<Ko?0;DPN3{Ceo)7GAj(?ba?A!hi zJwJpUuhzJ(e<jAx^Db|l>h^72_s-6l5%t6=<<8OABzM*0XBMnEwrFWkX?m&be+KS< z>3a|Vuza+cBY4sJ;-mkh>+Z;Z@LYeR{qThf{%=*${gU_N7U~u+jEITLn$_4-bLmd3 zr%;|PLuf(g+*PYqAHRN|sXqIC!+(aYb|tyehwIcY<fS(*pT}G6xo3Nm!4fw2os-ly zPiVTqvFXX@Edrbp@!U0u{~1^w{GF=a|6u!@=S<mhM!PEBzJIgFnB~^D-8S79ziO{& zxvY{A{r-+kp&S2)b=oi2bNuoA*xzMZskrY)?YfGzduE6H*W7)%_F4Uw2~l@rcASsD z$8x+z>W{bivEaPWWXZd)&uV7<i+@rd_oO0fm*Xi;U74gU@z(#^mbcjG{}%tj^+;Cw zm_6$r?nkSWEq6>gy(r3g1t+KEJn5@F9w`hA=5h|q+FgHF{GDU!e^Wks@1`sNn4%&p z>I1g>tX<G>^Df87wiubplQ$mhdVX)ekezx&Y;?SHvC*MJZ|h3ACNVyp!&G5mY1^Co zqF!Wu+J~p@tzTcH9Ge#UX8o3*`_7kh#yqw@eC&@5+o6rJo<}QZ)RbPz4}bnIegDkV z!qws&+vVMtpR=y>`QiPK`}cna7R&7)x?jt0d;ezol6N1DEjF2Mr+(qhV%@)!i><{b z{kvsx?EOYx#k*E3{vPQ`J<z!%<)6l%_=T^O9<E!gU3A-F;@UgDTl-IM-6r<D&)(0f zex>`N_#YZ^n;&ZMHLr7C@p{?=#^<r7i_R=wcHOWwl2QImbKlmF^Z$r$K5~D9{4x2P z&#oVtwfwL=Z&sb@_Nykp8_Uh6=e%c~v8(^>MqiyoX>)^jy^bm?6BQ%_++W$qKH~MU zdEA~o(`@SQ`0W#aiVJ-ZS?xZr@cZ=J{%+ImoUZ<!U3d2G{?DKP&iuMiyyL4Z+sAFU zUzu%WKkwsgU?1}~xu<UHx9M;He(bZgcKdMs5U*C?=0jE0v!{mZO23wR(pg)<!OU_i zT6a&Dzr&jaeXe!Q70dr|rhYI!Qgvs)$bW{E`NDJAKHZ(8*S`ML^|01$A3CcimkL<M zuGN_9c&;}4!{Ki&e<#&v`!{dne{{b0p3v2j+bp{#s_mVh^6k;1FzN0)t}3f`pZpo; z)OCPI?&>d9nRQchUOqE5xfp#t|HO6SM<p*m$XKLJ-m^4tXQgYLXU$Xf?{e86_8&2* zh`Js0aq_E|%d&#>Z|W?ocslp$ocx&=m08mBMDh;x9=CiVzxO{wTD(-$kMj@pkKAX? z;H_K{lO-p8wdVEdXD)Z{r`1k8p3P7oUT`8)C5?qg<Lyt0mnvDRQ$794CZ3vPVPVt! zBmC}vhK=WY*Y8n&sNWHOO-OflR7KXmpyw*nGJ3L>Jb%g)!z7aOYu4|aPzx`;@(cg! zrYx0?c(9MN!tVT0sRCd2Lv`vO=e|8*pS6ACoXlUvnvxpdIb|kU${sdqDsH^DKe#?+ zKj)A1hu@Fribq_m<9%7Bx8%Bq*tbek-NH99f}h2vi+%Lk@nBs+1-m-?<NllFUi&Vu zebE14&9AuCt1XV5&5r8hOj2kqZ})HywOe&wvwrs6t-nJ*taknJpCPwW^!yQh`PWi4 zF09kEwF~oecYNXcq|-QMo`J+)-^#D6R{Cz+YW4EaZR1bJAGyDI{P3^$<NB_e%#XXH zHeELDO%J<bYI^aFg4DKM|4QC`d~->+E9%CYjiRYLuH=aZ{+y(^qw&o=(F?ad+r0f5 zZ=QX)Lr?hBv`^7f_gsG`yzBG|t&SX}yk+-&U2ZvOTfB@<uBrNvJGK8PuXoh0o#x3w zV&COz8gwpCZB^zs3^3my`1Veb2lEEe&u^dpG2HCBEP>~%tUZ6!zbhY3AJAF*P~+Lm zss1@nrc5bo+U2XZ>-Kqn<sZ>U>z9OOZM^zv&bs-V0`l~tPu|>Gda*L^&zZaSE*ESp zlVzvP6bZYq?Cr)Q3;_|-ax~r@ndJFolBdd~Y`dUT)#Qg&kCt<Ed3zN3R|Q;bY`nF9 z*~(*cEmj1Fc_;r2D}Cj+WYyKlQ|7JR_xH?BW#w7z3s0=gtl4Dw_H61l=E6%$=bEfC zYd;j?A^G}o{OxOJ`#b(HuW2YOe^}DOclb?I>!0*j?lZLC6jVOGv@iPa?nj?>>?H5< zbuW2!vHrf)yu$ws6SF_^%PWgdJQnoQ;-BXFD}Ud=_#C?CQ$TE@{-HB}J~=eEs}{e$ zKmXFYMcNuCzOu+?b*VZymfkWl{87Go;>uJ-%LC`EKU5yyzu|5Cu}SXVio2`%^)_uO zdyul5$)3;t*mm`%Th>$erE^SZ*m3+`^1P~#Klr9jO=i8gPkK?3fY9R1ryKm`Zv4?! z$+X(GP+`VF1HR+gMs`O2dDiK3$`+aEUkO}tvHa+-=2ztfQMV=}drWoeX^K`?U&r}2 zrY86#?}bTW=dK+*9@uBGuFszDb)e72n5Yx2p9H)=ncFp<`m*-5eQTZee!0}GYi4iq zi_c`YH4vRG@&5JO*eQ!8Tpiv#efndI#meO0hQ7yDditvVGkkr$=|al(t=l5jKfb#~ z$n%vs&j)|mM!P-XD}Uran0{pWoWo0Aw*Gli@gp+w(}9%sh+heb#q%ETEoc4~@Z-j{ zeKAqVN5rS<U0Cloli%p$eTlynYco@KteO?PRQ;vce+HGxh&hLO`OB6@tdCUvx%oM- z(M6||-<GCYpB8;kv%lZ+*XM|7VXI}|eTn&V^X|O)?U(jl-TZfgoobv@+V0(#bv`X^ zI$N95e?b1=v&}Md{xkS(U7Pw_^wq`INw1Go#VAiW5Nqwh_{wYP>ZZD$>}v}TMQ-`W zWAdNjgJk{0Cs!Y>*);d(N0aM+_sf5_)7!IULbFQxlZ4{e&DW+x8y$a^@IWS6zWjFA zU+%4cd;iEwFMcJb)8{Iovog2r4&Tj)2Y)_kuiyN4hMmC6j~#h>OLscYIVrJ6sQ!S< z^xcNHXMKHHkv%_TQ=eG8wf@<~hmQQ1JRzv}RkHG@-G3(A8!pt&G}_JFZlV4Dip=#m zQ~oWt*PdZNm2%6`Ci!Rmys5uT=5LmNbAj#VgRAcf49shL3+mQQXP19&dOuU1eSf;I zZQc3Oho0|~o;R<ko$~qL)upS<<DKKC)JQ(!n*Zskex&=Kb5iq+KU}qTe$D&KE&fUW zY4@GJE?X{IJ>@ue`NZ+ye|A@|y_glZwK88iI_kUuOU-NPO??GMP7^1_uiB;Fw2w6- zcf0qG%4Mhayp?KOxauD3`QWx){pz3OuD+9EoqzbPv5$AH@_~Q++xrV@_urJu<g@QK zKCf~2-!<c?^(@9y|G2Y$&i~}|^glz#^@%%8-RH%Bdlf&Y|H$mS%tr()_Uzm`N$`7g zmBhc8=c`*K&fCaWZC;{!Ztf#r>wrYzRp(kA=G}8vNqP89VS3>qu?IX)s>0tc+x<~G z;=|ev(+`DJ*-ciOdN?v;S4c{74_mf-{&LfUuk2;(^s|ahkDl+)n|dQ*Pc{pW!wX{; z!-+q_w>JK=e<m6<)$4=zzkBshDrWXylGZ%DUE<>G=_l)F{;U>1nBNiA-?qnJu6xP7 zn9T3tQUzOPu3c*5TxindDJJnG<LcEW<y?(;?s-$2ALzH<7m^O0cK46zN>|ylOONh3 zmGnt1Sf?h%e{(kbEx(7CZOYeQTrc$F^s#yBpH#1JUF-Dq@s7q~+dG$J=cV8MIse`B zxqFR_dm3XxFC90oU!rt!p5IsA^MANa-vs=!3oV*z-W^q6`0YP~kj<(69=EgvR(>^K z`|s|y{|wvxXD$8P`Om5%?VRME@`oq3Y)RL<^eRr_qHa=<-{VibE*tDWNbS}?*uAvH zJM*LS!)G%kPID~#Sh}&~;LB}y^ETCMeYYr?t90erwNtl*?4QpORQ%6yJS4n!*^l4H zs!SJL{<8bC2y>(SROa=Uh1?#?T|L_Q%PRS8R>X~yKM$@y<@5H?U*%0VL$=1KOsQEi z|6%IS`DO<n$T#nr+q=YGV4qTjambD>JM@bS7tXB@-Zf8C!k{lWF<mIfforvrN<;ed z<j-MK>N)LGPUNR%)~UTp5-Mgfo5z3ciQ$tc{Z`)|-I;3JE#PLU<Cp#7=bxHihZk2I zKRi$LqkvEDzv~~KO)ft1Sas4Z^_R!*uj}@{QlGy1LdwVVgZ-R#(K`3!W=DS5(%ayE z=2z*Tjsr{{Y%<K}w4ZF2XQ*hKoY(TuUR68(KLeAe{+{1H`;VWKTDLarLtXZt^$S0R zE&Xu)n^Bv);hjGoSGG-T-@Nt1-z9pr)4u(C6nNf$O7ewkTcZ5m+|5mscK&d^YyFe+ zXH4IEd-cf3zk7L2hs`~B?~d>5*Xh>q|7NS0#&Bz1??>eWm(3moAO7`h@+0e1or)qG z$IR>!hkvh5e>orZO4mM#|K|6jU7u<U{w~?#EiA8@`S?CxR-JV5#0L4`w&>kVp08et zU9fKne;#?feUEd~?)7bRcdxIk{kZ?$`3s-cS)JI}J)O6+`P1I{kCTtvNoLq@j$1F~ zzB02;?!&vqo#JWR3)kCD-ZXJrX5N?I!6M4C$=X{cPx512zuHdn-^u&Zb-K}e-@p0F ze^6g~jsDzS;+^}qtV@1zh?)1s)`S_)bGmoTTibPJ_kV__fPeRI#r5)c{Ski1Yy2o| z-gC{`2eQ?E*B)v(*d<r4Pc}2W7^ZIDFZv<<7=P<NwI8{w_RN>rqrI{s?zK-Tckv@z zt>^w8Dk`i7cjFGqRNn28SYq>--D3U8%{q2QF{gUtJnO4$PS)&P@Sj2Wy}^a$sVbAd z*uD9<{>}FP46GI(WZ&%gA*XXlc=lR#mkaCL7+!UM>pto6_+MrEKJCZ#0)O)UZm|>h zR$KfyH~nawKnR!YSAM?R857^ID|(+^6176|anT0l{@F`Q<GJi}^KboUc+k2>Jf5RY z<MsWUHD1%UPfw28I3-s?x>T^_kP*9wYPYQ;%d`C+|HS??9IUp_kma)|>F<|gyI7N$ z-n;3}i_fQ*#uz+r-MsU6>YAR4-<MsM&l8vVBWG>=SVm>e!q&x|UH?2!O<DVFRk7Q@ zN#=jAt}UDS<9+#W_nO#`PiO9&e!S}6Vz$S7Zf0-a=)Qm9iOus&p6{1$Ei{i)yZTkr zr>f<<xk~Nh!a~!-RbMC0n1B6s{3Vw7ZTWu$^S>>dXZfEYBc9>qJc+CG%U<pYeE8zg zr?$H9-;T{t-R?6-z~@v|I(ye^o%#op;y?K8zh&(%r}TH`pV$?*58FA#{D?oY@pai_ z_6fT0|J_){X4oLo*DU&Z$9(yW)c2EZ4}>4C+)?cOpMk0S`c=jM4C$w$j(N^MedOD( z)Q2}qb7dMz_!ji-b*qxvpLfBn{I=c&TPw!5@q6Oz{xdW&{&C*0XX-wQn#fH%I^^%( z{?YC>O}hEK;yRt>g4ImA4YD4lpZvS_Kj@wRA)uc_=ktvWDe=xl4#x}^zn-w=(%Tm- z;TLYQs#Kjk`1N(X=ah=ahbmrcS^QAH<$L%)gLk08G_F-I>dJ4%uHJBO=RuXan)=Bh ze>{IbPGM(1Q}e6#@csLuU;CE+X8Lz`pJZum_JiwP54oq6bxC_4m7DE5^~#%y*PrHR zebN{GcdmZRzL}M|*|i@|A6vMv=$!cBs6DGs39!9bE9?LKNBEtGJLc=G|0Cn0`qE<m z$<5|%D|7qRnm#x)OUmb6yz<@t`K_HlOP4x#6yAPcZ}nZ*{#*Rt6@Pr{&MvOe|2Sp+ zG0{J^D-WK}pH-c4eg4|=IJy4}O}X_49sdL=Rok~n{hf8@xA!Zdm)krRe9yQ08l&<4 z_a=uo{-P4=v`?*2d;MtTvAfSje{T4-)%*6;`C8s<4k#FHPR@9H+_rsh@vOb~XLE06 z3JotSeEp;9`s?kD`yaIbXV^BsQ!j8&^@<<v2e17uI;*y@aMiix%FJ)RUHh=|{p4?r zP1aq%s}I<JaMEwK6WJ6m^zXuc!P43+38U+RFE2)CNF{5WV~+8=E}q4ptg0t4$>P9I z_vb(N_wUhcy7*|SXIWEm{>3Gaf6UU^wPl<8r?V@w#Ael`y$+scT~XXxIWyVG!-lO$ z-0tT3m3FNE84lY1XUJK9D=K5%Kk*9Y;8?XH#;c`MtlVZb?mR!cOe`{l!65hHY?a5? z<@Zgm-!lJ?;QVhw^UwdC|HpdikMl>TH5}2avCP|b_uHG^*LHhXSUXBeu(sdgF8s98 zLiFeP-vRXp6Zhwwzr}a&`QiP%YW)w-HCkjGky1Hpw$Ua+q0`h;R8IH6r)d+NPB~~B zvWuQ={3zYIxjkpP{x_5RfA*|<yS&u5`uxdz$BGYJUjA|Se#M&b-)wb9;y0}AiQ4{0 zg#A(O^=_N^Cpxbm@H5vv%k*SnEH3-8t4sDz?ZUHNW)}?Sto-x$$Kv0KH6A}+FF*d< z{@=Mejx9g3AJqCivsn1SzbSWVrKxqN@afPi>k=KS*T#4(mW%0rDzNiYbovZi=5PN0 z8Jg<quFT)=-<jI}z^>tYRnB+4Tl2e0)ibtKsMSoL^*EsRZKY*G`P%)r^tk_Q`dN9; ze&c)4ahn%^EB|LWs8c5$|0nIE-17YDN7mZ5yYBau&cDl{Y+uJ~c6XLzI!|w_;E}jz z4_bw6dRS|hg--CB>KZH`7qP~9>$<fZ``=yeo7a0UE^XiWySu+9ZMQeJe=z4i!v`mM z)*6iuf9mDxA1o@k5q~~8_uGv>ie(qKO<i_e;<Hq3QSMpZ(?|BqPPI>KXFp@SA!uLp ze+E{y{|rr2Ud`WX`}&XM4_%#U_B>ynyJU*`=&#+Q{$!HJhkda<Da`qK4)>2t(lb+7 z`MdT%!$D`8#NV;6ifSxAh?K|4|Hw?&$awSQr{31gfIri%ntED${m-(_D`@98ds#5y zUwTaD#YJ-$e7vr1TlL)Z@6w0qt^C{;&vqW#oBLS)>F4@;{~0dTmi>$Rn18hL`f{E1 znq^Iwf?}(eK7D@u!q5AU7o_~iRQ7nD9e4ZP^J&UwwEGt)Jh^_rd|m9eQ|uDA+$GL` z=zsk>zV_dx_oCYywk*+Mm>#IuzrZ_FT6yA~$Nw3w$1}asncP}?=kbcKzy4}JuL(a= z{Jbc3vFMNZuXeu=+%ez$@KoOKQ~4jazX-16He-um^0PI(wplGxmpO`^>+Hnyiu<M} zvb^Om+{j+`rtwN&-Ez~Q&(AjAR8BeGcJlR)&zCQMU4K4l?ZRJIru7}SEUp#{Ro3xP znImUlTX^SrQ~lbsX_gPx|NT^dXueS1j%01t*uB<yk6FH~`L=_x<L-sO_Fgw0W<CFZ zVVbAV`@>dGZ+WS)yIhG7;P`oT&SU1!$Gv{I`(3#bnOSzL<dTu@++7<3ijKG$m6`j0 z?)t6lwX<Rm_xgjy+9FbMi!5I4e^D&6{^_hA%#K$|CI9FyjWKEXIj!vJopp?7yyq|( zvH2IqN^V*6__MzHC84j{br<c-H(vb5TG94bUMR*jKP@>`!T4^B3ZtjwN$dSf>$v|^ z{<ym?y2jHub35OL6O&Gw<jNFr%5Fa{S*W!mhc$5Wx%-#Dp8vMsisI~teY2Nr+U#Ds z_SV~&2F3<Ydu7R2b88D&>+S7DOZB%^{CgI1<6ea82}zbIcZ&E6BKlW+U98uY_2$Jf z)x~x#AFdzEXZum_Wi`L+kLvQ6y;lU8Om^m%s0W<+vpLc$dCCJOW*3L&a=)zNJO43N zoGMoNE~j}RWk&n0U2CT;WbwYNmG^ktY%WWMNks+5@wydr!?g1^zEjaYE}`;V$>R7Y zwarS~<<mEN{Ft!X&_=Mar||1~-^44asW(1P4V!v?TTYIRlJ3)fj~~lEI}}Ljm)t$F z=y_%$?`5%9hC9-2KE_@B(0xp5TjNLjL%)_z@89zKb;TdY#WoxNc2%dP{JXIIoHyGm zBcs}LPi6W~SLiN2@?D7W)A6Y)DMH658Cie%wm$Rk43mtn@jY>(m!7#)yx-%#C_3?q zfb;#s6CB?-KEJl3n8$p_?esjk-Ni90<zL!Avbg3O6v=oZ$zRr>s^03;T8}*oIu72J zi<o@5>&t%eQ@UR-s#F{(>uq?yy}|IZOt^Ao_A{qT2h6oo9-IC-+1bAD{Oy<arE=LT zZY9NUyRoYBV{ccqrQv^uk~wmGl@EULNPS)3G+%bv5B**D--LxvRN27rIoc`pi0+x} zJu(}4dmpcNd)f6l`r^~P%x*SImC1MJOrGakX|_>1%g|SS>SP6hj_w?553a*2wD=x5 z*lSvz)v?Vy`g_gALq=hf>?{8;|4ysX{a7O&_Wk3{1szM4F=wfIgt*xSt0Yd@^r_)p z+<yjzwezKFIRDPB&x$qU^>>=^qwbedLiAqSJu_{NpKeqUTJ5gze)4C=2^_EE&mV7l zpZ|9K<2hOS(xMYjFW%Cmmd1T1d(tMC<6I1u=L2tlTl_8KqkiKW9p%lJ*WG=7Cf{U| z$C>*Xv;TTzO62r@;1k`KP@%l6)+_GPvdvYMb3`+p=52X5^XK*7zIA8p1?<y#t35u- zcPMpzJM?zR<%d^uFF%>e%@%RT<C#Z<fr`EsyHoM3AK4BU(?1+P{+~faqUN)BheCTm zr%JD2RM9-=O1(8v4o*x*T5nYK2*zJmKbFr{q5p0256v|-qF2@l-OGOQ=XUn8?zi?S zI~$u_tyU^b>e=(4?a6~D*B?#qsedp-eoI>G8hN>lpcl6uy_~jPFh)mckMVhqgcqk} zPVJC5ovULdxZ~p-!yT2`Z@&7<N|q&Z>fg7E)IYxYO^yHKd@jeeFWCJIr!_E3uRNJ9 zAwBy?`{e~T&)Ig~ziD*s_2GG(SN^a`MwZ0-MOWuf*(m7aa(ddi%iljvyuep^wpwjv zY0f;s`61<J0uM#Tn#)X=NoHsDzijXI)Bl^(wY+sUsgGw{cY1KHI3!TBfMJ8{q&=VK zJb1pg=F2O~;If<YE-NCpoWEy(!@I=J=4y@Z=I`a-!Z|Kli-v`@cCzR>ue2{`SO58E zeRg`j=#k(v!QZvkEDAVP=frNq+$#A*z~V)5*Kg@>x|c=kOb(Z4s7z7OdKW&Sd&4_> z{o1{jf3&tO|1Dp4QR<Ta+8_0YKb(}k@_zH%>jj4md#p`T7Z)6KWRYDyXP#@O*VN2o zMvK|r+&g{Y!OD(>UR$n4s+P*$ia%2p&s(Q*Gp3^WpWy4~+t2Ru6m~DzkTbzRu|ki- zNQU|M22N#$@2~eUS17w}y{i7vzAfj;B#U)RyEvY7c?iiKbZJ;Kabc(vpI`Kx+!Ge- z?Jw0Q=64mEF1@#Rb;h;ro3v)?Mp)Ze{)`k|(z9lM9D7c9>H6&654!`l{-}Sf>-5{9 z>zGo`p4E<;vz(Zg94eiln6vUhV!P<;zg26Lt6m+S|JBP>IwCW6|LbS9mmi+3`p*!# z@%{pns=kwwqCw8mg2G9T!e)UTuk7;Nm)0xX{}6ls*7nEG59s&&v(M+t+!%3O_T0q$ zY~7P(#?JOPFT~`svlgWUi8Ovn?wMr2YJXEydxP$S*4)y`y8q@x8m@4e5Tifyv$2ok z-^W6nthf8UeoX$yE&rSENAS0oe`mUPiCxX#+Rxp-t3OdL^=u#CXSvI526ne+?66FE zytdZOy{jcg+cM{CT&(}3;}3;bYKbZ@z8Jsv%kT3Kg&&=Nd-J#Ft9q8C?K`iw7~cKi zAGCks+X>53rY?-A<UgQ#TSC&}_3NLZ%l=)Lm;X|>!=L-rh8rf%Y8h)UE`Pr7XLnNt z%b&egNqc`kzPD7p*-n1{;kk*?Z$DPlT|42?C0cWAm$SmLavl~HzUH0l&z0&68Yvm2 ze4g0HctYOm@AtM9!E+`3yuMe-Pfb64<H|SBsJr}SAI0C+|MttiE|<6QBXeZ&_ROP) zjxCVe;c=0z_`ZB^*pG#e^QB(LbM6r@T>sj9`ytP-;mL)?CP#MN6Il9vcWT?2l{OE; z&t6Z^&|$ZAmVX(y@bOKPzxEILn{yxVT)OXEUGdXKe|l{(*96PoC*R+;xqk6nuf^46 zk7f05pPX09X?Z9veR}OW-IFpGj$B-DS~FC8LZ!v=sNc;G#QW?-E0`a>Z{Fkmal7;M zBXwMt^_6SmJ)57Ji&e`;DXa>vs%(|>*v_b>?c%IG)t>d<@o&{L*L)Wf{Gw2`!dCl= z;uWcQ_N50TwBD?}{q)!a%dhNf!%|z@lx)^}zkF8mwDh^tqLu91_QhYeU;Uo<Kf}Sy ze+(H_1wU+mEB=wb{xvPa>&DAlVe|9T+Dsk@rY2pE=?HI#K9M8CxAp7%gSGYlxO6{; zhh5&2{;}Qr!}~-2d>*GwW^o_aTfIK!kc45_;lrXcCmOd;+1*f-6l738r~ZcjKdznY z{~fXCG|g|TlmDPLakc-dSHAUs*Ih5Zac@J$R58hU5~`mU_UFI5UX;t8$A8Z*^S8%; zhJ&&8+2?QZyYBcf<<{Q)Z6-5M-e+qSzI9qDk40sA&s%FA9=r1@_LdUX*&p77w_D5% zpUPv)viQ%ZJpU)#?8^>Tw6^!jnXV4Yi$5uvvNt||{=NFdd-^|4e%Kr|qaxem+LxE5 z7B^cqsNUT%(Xi=+%cPY&M#cy2JJ+l%jkeBK-JQMLpm~Mo#S`C7Sg7=S{b#W5%#WSB zd}83;bC1qT8LE6$*`PA{RZ;!ibeo4a=IgTmUd8@t-Sh{ayZ+ff(Eri1Isb=z{~zYR zVkY&y@!TeJjo(zATb%uE`Q%L39WAVq2k!1|V7E!0_2<ifhNflN`(!@MKe(fGK7W>@ z+s5kLOdCmgqmxP}y#6y(hKhDGREYkGsqEg8C_Fzj_|I|q*6R6v|4eF<KQ5cN;C97- zh9ldf?k=0l`0rfTv&V0hSX5Rs8Sji|&NRxa-NCr+dRg?tln*yfg@%S)Dz7TL^5D## zplRBiQT-b?XP122H*5ZCd!GFn_eFk`hj#t;-#ek^V9lYM>V+?x56H4{SXvynx&B)G zQ2ni`b?P<7A9XgL{x@^!GCiIY<41PfQxcn-j6!-6J|C@@FRL^B$Tz)8KPPXltY5{8 z%5#P<;|_kP|2Fl<#1GBKrpM`Dc%P#7H^qC!$x|m(84R^Ad^~pfnBCN0Up}3FbN+<J zqgy}D-+kXPPwa2wKjR-cS@M!5x%P*xj;-9sxb7wA-#L$-IXF!7cx31DgTY#5)u}sQ z*0+>^uBz%vua~Nk`BD3LuWD&^={Bp@Z7Z|Omv^pRTyJI8^s??Mv#WvD!_R$P4=azK zjo)H_^x4PuLvxw#UQL|#I&jj<<k<ZxWgln!xV1yxxTna7-6#B7{l@)A`MGO6e3cG| zU0Jm8V_o~AyFc>0qo;H2y4G%@mwQd9i1%sF-hlpjY&uH}ZduC7m0Zq#7Lw(b-u@%{ zALr|j#}DtaecoZG`$PJuc~tH~#pCVwy>_{1x%u?vsY{-e_<Q3)^Stbr>)Y%3a`(x) zrat0t+%L7q^Fi76onrG-t|>>)HHc;6*fw*mp3?Sh<p;T@Pf+sm;Q0MxUHUhhzsqbK zKXO0(w(!I0*lY9sufJWhX#2KnoN_g(cG29&EzitPnJ?fwv3=WAmX=o2OIh-wd%PdH zUEHTvk?h*;`|(LyJ@1cxUmxz=q;Ds^y^{<49;EEp%2q8oGlk=$iR*36IoVexPo8pb z|8=J?VfOCz8SiDY<_p+K{_sB%r?6cx>)Iy&<Q1zObZ=QsWQ<+RTq2xsTJU7xi7?ZT zH+E0?v!wsfrhgoN5<YzWwsFP3^KEArT=)~a@bsD=We@ctb0$5yI`eU#wos4G^Pqm- zD}iSeh18z389mL~FuP8r=feR3yFFe1e*Ut1e(}f?!G+gmXYYIW`t$Y^{~7H5O}u09 z;pg{j*AItjuAkQb>5uPW%cBNf^;U~z7EYP${j4Ya-Ki@1^Ye~Ji`{a{Y;AabG|ZSM z*xOL1FmPwq)NZ-_b0Wp>eSdU6INw$;P%@u8@{jArJv*bheFGJ<%NrfU#S3<pd`_;N zw6I@#!>iC6x$Lu=EWTU(x*q#TLouJPqU<C8d$X)U`(-ZQ*6m+B>*qeLlLj~b*c9AY z@!9cYZ1$zUd(Llo@aDbXv`1P=1w~J1HE;gC{zuFQ<qzE7%ERuM=tezXCRLld*gk06 zwTtVr7jF2G{=wUmQ?|cZH<iomKg064SK<l%L2C=T=NGVF+O=TElhS4Lr%#Mi<>xE1 zs#>E{m-U}v=DU!O!5!+`w7f6gSpJ`ZWBy@Ap|$&)_SomVZdfnc7sEJld(9-vW7fg{ z86L`fn82LZy{xgPFrBaPP1%!@=kmQVL3j60^^v#vvOcPx^J&RH9ux7uyY`>>uyIfJ zobdA1U9<l)Y+w2><y+c)UzW^oAEKYnzw0XXpFwr~3j4JDhI%pktp5xhj~{M7{Ci7V z#@Z!&ckS9YD|FkoZM{>u_Z@h1=FG!nSIM;V3QX>&o?BY1-%+0+e=G0)x46FxboN9( zVq$MEwKz9@tqfE0=DAn*UE+L^yOdkI>WGSjdY(naE{i#4p>fMXeXApm?pR&=Z`)^E zKK3?w$=Mec&kmWsY09K&>wn!Z{u1o<pP@;;;@8u~`9d|`m){<I+PZFfvE}g^lk0)& zpY8azKIyXkgO2-bk2~EvZ7SE_wYL<TR#m!7{`XIjx7Yu!`n#-g;)ai#PAp+sw?s5m zSz)EDBa1+F*Y=+4KfiW=yxgU=x6tfMPxy=aMH2ojJCeHg6s-KU)Bf!IQ~YnY{%2sh z_c8y?!o~fab%Iy!ADPEHsp9RD9g|erJ{^keh?w?L`S0!H+H)tKl?dFk%8JQZ{>(O; zd3!5G|30m_f6z|!$K(fVqaVKS)pdQ=zb?u<wVLyvMVfT9T#wzSc?%nqm(~maXV{W{ z5Ii6$@%4Q3J)OIz$0inT(w>u;_clfP?YfW$OlloXHzb7E1HWhgT7Dp2banca^rkba zRUfYX(#!aM*?alouW{+0>M!vh%8Io0cxG9W>sDoYEB?uU2DgeG>@vlDSwatF(wl=S zqyL55q`&*m(7Aj~mc@bNFXJz|fBM|IU0aN$pnj<*<EJ|bA72JnCR-?fUb%S7ET1ig zoBI=d`C=sv@13}kS*Cxg_+RboOM7&VZdp2YXOds`*=YZr0!%MXc}Sf2t9{{*RbFn% z*49O}ujkz<s#vcr`^Q?|d2(^Jd+EZdk4t$HooXxoSYMy(c|35|yFbA?mro1(i%;+Q zYV+i}WKqMX{k^3RmY()itGu}<Kla3ty}26~$V}U@o!M?*)~wT0norHTa7FMy@3-kk zE(rHo2rI7A7k<t*S2JqQU-4HZ#qs>U_xHbWn$wr*xH8E2=fw@zy*HjeW4!2tQTB`T z3>D#rzW<Z=G?h3rSxjZl=bkUJ73=4Px*51fUG5ILl6(1dTe<5O9@oknuY^|eMOe%3 ztg{lyD)zHE@vH9nfqmSPv)>$1u;G1D{Pk@1tsluAO>En@gl!Lt5tck$_O3Wy|Alz? zrB@U8Og_0q{=H1Xhl-bHYhxE%%sMN*f5H06XI6$RT|D*t{u8S&9*HYx^06^qe78b7 zQ0jiu`*mNc9~?Y;ZLZBUbJliC<ESk`@-bpc`<?Bi|1%u)w9m<BicoL=`kz7A^>MGN z2Y>3L)gJ2)_7rYR_g71t_$SEZ_;u3{RTD38Rc$zCd}*Jy^~n!2zUHJ_oWH8}&%gAO zy~D}RHF4ZAx}MG#xBh2f{B!;yXPwG_hJ#x58QC|N|6N(1UhU7B9lrB-ct?#`lxFmV z1zUDiZn|RJz{e8Qz-CnFvHyeH`y1llCJCMWE%v8;*XG?G-;OWII&?i;?47$@j#0O5 z$o3VLGrqo$pC8~P+gC3f<h}I9-7Wc*TwWI}DrR2Sm1drrlDF!>7cIx{>rWQ1XEVCB z_B^L$Q2h^)x|iAi879lGda}<TEo7}sNOEB1@AdDa>YprMUE}eep^4$&?RzY{(?7ia zQGDF&qu$$Fv0rAzKAw0%w{M}`!Fm4~UbZja$9~{HgFt=ae}-H954Nq9@7SmEN8_V^ zyQ%1@wSTH&whOuUeA54NuwY`p+vn?|zb1b;{O!Wu)&F?kZvRl;_m#U_qW$#p*Y3aL zF3YvVPTLXqLa2m!!}<&TZT24``z2p~<gnAL5VJla?HpT?_u=-5<2!$=zWj8|mi261 z@azizxry&ye7f2{dGq#JQ>ULat6Mqw$L6VFo7T;>tX#c*a`>Mh`&skb<+r)Nwfyku z;~xDF#~<76PrK&lGEMkZVAlJIJ)KHdgTA>kFT1#%`NR4xdo2Gmu;%^UVPjh?Rng|p zQ_*%aglYRMooV0siccEfx_hMg-yiw-tbd((_PO~#)c!NPWl#7fFRoj%LiBRZ#frmD zuHEb_%>8*b$gh|#>U8-Z=f?jGEc1TsUuN>3fqxI<L;KBlp1l9i`#bZ&v<FkAO3zfN z%Qo0lhd+o3ewY^<xP8{sjr%KuJ@@~vI=Mf3{*u(6`@}`|-^_N4>$Sh~$A8m*hNcI9 z;x0esUQ?s?;qR45hSTZm<D<9le|PUt0{^y8wnxhZ{xck`T>EHhZfSh0_=8iD5x281 zZqf{pRzJJFcjGZOM$1>Mb+fYSKRD+9P``5SQ$%K*(dF$;cK*Uy#rk$lZ=cCKU)%Gp z{)dA88&{QcA7A}5>&a0`4&I)yWNMuEE#b@k$7lVyx4qFu)Y^Wf%AcjC{~5N=Tl%^r z<ImfV=6}TJNmr*y*&nLjxkSs0`)qAekeh{?w5P}SNBasty8jX1{CMdbo_&HpLLbgG zi+TH5Z)>j8pY{1WbaS1PFBh;cbFDj7f5d+N2AA{y8HB6%OU3aqvd0*t%gs-3GqPv0 zeSN{i|A(UeA7OL1NtWyOFt2+3u6@SWdVy^54g2c%GwzI-|KgNu>BAb~2fKXjSFEf$ zmH*+{#+JX^BjwMyABq2={r&Ch^*1C-^`&3Nacr$&o$PukH%FpO`*{|BO+j@++ZWT1 zOTO*jvj6SU)jAuZf1G}-dSz2;r1BNh)6VL5e|m&pUV9^<$$g5r`c#(d-%mfNzoGw4 z@CUO^o#F@mL;NfiQLpZrasM>gZ89^wskpF2@;6h_oktt@Y5r$8=(0cQeA6{?GdbNK z^A|bgg!XKc^4Xs^Q?w%I_6?oc4(}&0$b4CUwIaB=;L5UvlM<Ac{ymlTpP?r7yuQJ) ziwkycG!2T&yFc^Kf*Rrf3{67y2c7J6<D%|XT=%@RPa?B*ip@RMecs(i`(>tFE_pU* ze**KJ165CW68^obI~)JO;r)%@5B+a^t?w&}{S$XB_oH(3E01keLMMB+-POC>KVR-$ zNZi@NEe-C<reD7|+Gno6#r&;tLx0@g>Hqj&1^y^2p7AIABi~CK-Nn07Qs2IvnP+M} zk1ts4;;{$v_xOyz`M29A{%4S>yEvae{XawN!;f{6VgWwa<b)b-y)5kc)R$6k_4vZi z^;`Zk6olV>^dni^i>tEbr*gG*_1UTw_s*a4(|L6G`3y_n3x`iy-ukw8|AW6L=L`S4 zH2*`O{mtFq0xn7)s1u5)@n8S4@Tb^5*$Xy1)~q?foD~~$WZA8=A_6{Ha!GsEr0t*i zpW#;dw`D&b{*J2HWn2H4Z-LaYb8eG;F6kPJ&0hXa;*6p2Ox5GOg_@bsIwHq<lI1VD zADRC{*}k#v+JzdEADs(Md|Y>8jVZ6efj#_Fop0SSyEE^f=dbW*>yPW-<bJ&U&1sQY z%lm9tS$3s3f3I3L<<MvU33DFoSs1$Z-@AyjGTA2>J74})e7Kyy;2*E%gZZ{~pD)FK zdsX&F@AtO;XZb=E{bt8PDyl9AEdR5y-2YG5)jx0c^q=%KKltn2GM1{?DVygca9o&l z{6f{^FYDIvH_kKKl~kJQYo$B8bB99pW5#}q@1kFtD!xA|J>z!S`NFi5ov#!hu*o{+ z6yK4XcWk5DkNn5>!hYNB^!I;iuDQ*5ukuYuLi+1jfBn`ahs~KaJMd5B&$&9&S}r~H z^MB|5WdGZ(3!{D%{}YVoi@tZXR_5BT-XrUpwPaPcb%xBD;237}JN)^yrAj9yOZARy zv?(}#x%qGQx8L9H{0M*0t=~MWZ9mh=(iK1QPwi>To9%pJ!Z{f}vz**}XS&>#_H%Dl zpCu;fRz6j|@a6GK`{!7E5~|$lwW<8s=D2CwU(^TvNDPy|aplD!vnNH}U-$lJP-{D4 z{QC&A<vFXK-~SorWl1jyol*Ju=OodGTn!<$>?(DYrb1rAJUg|HtE;bHXI1ib#k=*l zu8A|RV-sPV_juZIub*;p$M2oW%&YuzJHeA@&#DdV8-I4%R6Ultrm;JKLCeV2{Xaw8 zmV9orlkrW(_m^3H{l4bGrTXgs46^?jUWXkM@H+ng;xnO3(fWMZ+sZ#~F*kg<tI1Pj zzOw!=l>=?T=dwSoet2(xvHan?V&A;oCa%-beUkC^$^8vKy^iqyIJEx9$M{SA$M_qg z{xcj|xaxk5>2|5MmDQPRyk+NjocW#-eafdm)b-Bq8E<3f8};$a{AVzX=gwE}e)w&A zww7nM>C!0yCpM+Z%2~7oaR#i~<h5>TYy{I9t_>`L-tw`2f!mWW9ZZzfIQ93-@0o|| zF3oCvwlekM>x^j<)2{t`l+dpcz<=`w|ICKCH6n%wq&LpH`eXCjKgK`$#d}-7tzCGp zvRvG{S;Z~&=5CoSc1h1==GA6@asT#w)-!(IA91yI;cX#%_jE4loEe`T{Z4ygb5pp* z*Y#(#<vZdmE+lUE)eoM<I;ZAA@#j9H^0p^EDScaSHuo&%K5|&tdSB4??lq;avv0Ru zS(}&pw&h&FY2ih^N0=N-Wy|`$`f0C@n9DJh!#im4^8jYy3q14Y&CT9@`9DKOf6pwJ zv%LFumjv$8_V~^4pCOf*HEwRh`&ZeE;%`lVbmW}U)jXwLF}b%@0w>gqyV+m9wd-o- z=d3<gj#3*x?kN$sBxQ^|c83@9HuRMK;m`Z}EBHSH%YnbMYtldd{<i%?+0=*Dnt3Ms zd9%08`nJ*fVbZoum+z|G)tPa?$ZL_sWyy(~8(Whs^Be3X?Tmidhi&+~R_#Ogogc}E z%CC!E-?c|f&~#NyOvKr&X`4@MWDQimE$H`d_Ca~OTmKf;Kj@gxlVc}acT9Yq<<&iw z;%%ktg|g<qbn{T#zH{2KTdI8rPNel2ecbhKnwoU;dp*BL+0QGcTYQViJay|$^-eh^ zQ*GCnzo{Q(-``Tt{IvR+|ACw*ZI%bVGwu0zIU+jNadDEDN0D>sv5KQ*2636cmcF}f z-SJF=X=>-xzIaQO(#H#4#zj8jHF|fftn>s2=TFbW3?Az1muLN}IvR3)#@}qdEt{=+ z>+aoqq`xitkt?&^Vp)E<tIwpCu9<LRHlJ#de1^r#9Z#A(lnZ3!tRAH8I?wm|qSySJ zvl@@Rd2_(x<^A=aS4$n6%8<V$nIZSU%g;Os&n?ya4{uH7TzmY(?@cykFShP6w9?kU z`6=o2RJ}FLS%$|XCSTd^z<44t_I%4f^@_e*@3b|yhM66i5t&+aT1K&<wxxG@nOoJy z0819(n0wnMt`QepQqAOaK&$yPgORx9-R9<b{&m{Dd)4k8iHSWiFYD<9Hkr+41v4cj zm}M9Wj2q`%&y(BjA26xRKDAEf-^E?|t$SE*Jw1E&_F2(2dgqvD+MKwvCR;La^XZ9Y z?I{x)|D;I$w*O}P<6TYqQrA_lT+Mwh?KxJi(C|h~M}CHt)<XxCWYa%8@4ni8X~v@6 zB{R-j&$!BwB*M^B@ZjN;cf~h%o-6RJUHpOl@xRp{KHPsPmNn7zPM{0#;kO~I4Syfq zKJ;|z0rfnm$8(yyzAAS-$qKylXmw+#qK4h_FSdohZR*a(88t=s3)k3R5)X`2Gv}C~ zwK6s7;J?^~-<fx$$nALB)oP#Ke=|J#V@uSXdt4X81GjH$yQ=nEB`ZQ9UpG=*aMP+u zY)@6f=hW!^m|OhFp7CDA^pMuIPxfstk6ov7SnP(7qhw~I+s_c8C4J2{y!?&(%<BbS zU%$?<V3K5zX>UAFvi9}w9qk#i%*FG5u6-P)yZUJD@tzM~m6rUxH!uIs`89h?7yrn1 z*p$!r!|L2+zv$vmw+}T*%n&H-ozwi~9J@&5ozn~Nbm*x}R4zRb{`1?s`{o}R&)XKp zW#_NGb@tKDx<lv8R-IaAv}WOydHeN3tme&p(!+B-x%AOnv&bmUm`x`R=v}DpD{%bj zzwZ6gyp5d4Uc2>)w`OkLRbP4K)#9@~u^g>uBJXd#vXT9&^@qy!ia%yP+{^taZnA!3 zO)S^meM@$~)f3mac&_2$Vw*P;`7PhsR<3u7&3bm*zr!xA_n6Dd?F@1ZHs978f0TWG zYfI-n%g0?Fs*#T-CnUdd3^-_i?{EUogR<iiR~}vdxp*-vr<3Q}YiIuSf7suuZ^!>* zdEoXRi`Q;lw{-cr4}T}05!CtEswyevQffUrGiEBg%7cRJ*Z&z9|6Q}Hv08P|_KlFT zPvF((cWpe5q|7L6Dxb7e%z;Dl_Sxe5TioAV|ET?#{Yb6#k$X&^SeG7~BlPZ<M@#Bc z_d^=2hpk0b@(wUJ_}f(6UH)eJ!+fqaQPYpC7kc$lVTY1qdeSmcSIMOF(tgQr=l*zo zz&88&Vy-Q*i`GoOzw=w@>xUmTy_T$3+xGUp^T+r9_)PvYG$mF<KU#lyhkaiE&Drk# zZzFF%=E(IvEI)};;FZ#S38(cl-bIEmE%8)N(z*Vj^pQNL-qfO8Q{8OO#z$$atQRM_ zJV~z7sVRI>_2q2+#`ld|_*pBa9~7!l|HwAq_CG`G*VU3=UbpP&_!;DG@aZ0B;1$oE z2d$eIr6fz9w||=aJG$=RKdT?vAKxFd<NI)Ky5^;l-1^|lYqm;v>b_Yk$DO@WdHbiU zH<wzpC{2F)Sh?|Ry+cK4uypU54<<@amtN}1zkadIUgq)B=ED#7ZS9=YuQxqcd)@TU z(Nz(DF3$J=u(-8&y-JHrZr7zWyS<))vu=L$@2nAgWGn4{X<NMTqRiKcyHs318=72} z<fscT_U&D)-nZPQ)-dz8QPy>FgF8Pq$27KNZ$H(UwoAK@O?DQ``HKaHagB>=L_Wmz z3U=z{r`e<iF5KqRJb5xpw&I_Z^{;gHAFTN;dg`hF<UhXJwP*Jq_*Zr8$KeSV{7hc$ z{Lj#8e|E`!X?dZe4|lHLT(8!zt-VSwZ(U1-1Q%xrL;tb4)k2xKLT=@xT@hjJ3A=1^ zl>P3{nLAnjGfa$MU^buMhH?3(vvU3UD&39G&hfnev1RGW^}2tTmQ*PGs7|fVlqq|i zU8T&?u}U)CEr^4m#KQj4-ZS41>ZHXt&P$Bi6R)&i%lDt&wcj(Jq{JB~Zrs^w!z!h# zxm)ett+Mbx7e8d3TV=*SL+*IrUH80fyYNFodmWze*=udKmi^smA!|3kH7(}k4pwHy z>g!MZe$U@@dHKqyAdiEl9>TkpPnagjert7KG;`Op6_Yo<2#ykuc<bQ5G|JrLl_D40 zJ^Nojzph&QU2Ep+F0Ct5>V!>wZO`p~v#a*%#Ci7uWlmZ4_Q%YrSv>i`lR5oahwu33 zJYON|r5Vd_(|F^PR-sMuG>O02Sr#3q!xtNW)6K|;du7%7#UT3bnNRLHOO@PIR%u!) z)*4lsUaqnI*thV*e}-eT;(NF3y;nB9RP@rSZFm0#w`tC+NZ^{>_g8yzSnoN9b5_4D zyX3L^ZN0Vl?28k7`xlwocSz|UzJE(S;N$kgn|8HL{q}Qt7iWk{x!Cr|O5GHB1FqA` zE`D}F%*k5XZ)}4PT{!(QJnTb$Td8K=9{rD#Jz}E|{p#NA_HsoeztzRmiIvf_GapxH zZtxbmxbgR$x=0h9s<JQZ3qL$Rrd#d%fpvb<6P@#mUI%2)^7*OzE%HKADu*AJmy>1a z?a%8TRj!lqi@N0{^(C!q-K_ap|IXezxAP<4=|lGvuN>aD`oVqSSkBa2fs;;$Zk!c) zFZh7&w;9pp3{NIis@pG;7q?IM@A=Qb6n^;RM`x#6%|D^bmaSdp{>;^8a@1}u?VQFX zDM{xV+zwajuo)jM-v7aOefNKc&D#&jOIA$(HuJ~sht~T=e^iH5&x}7jLAu<#`_ZDu z#k#MLOE!t$SB#l6Qy^iz=wHyFl*6&ckIdhG{GFor)jL7wkAw0~gPrUdeg95<Qn9YE zj#*$K@$G2c<A>%#k2h6n2`&A->)xfByMO0MZz+AZb=Mbr-jDIkpZ>i6zHarmDLWNY zFVD-2eR=cc=ljc_^LN-k=>5;I^?BPq9?y?SKQfD6iCx>DH~;X2^UALZ4+!k$J!HRm z&kM%8O#1^uQ_>{trx@PpbUH1`vxZqymTSWa<r_Ux|7QP_`tke7<@$paHrY$=-Szo) zeVXx0HKn&tXM5M``|oMwO3%CTtTMLZ;nE_z&*?v}{kXW~<v!UTM<4xV_vlUBa`}(r zn#cnk20|L9(jAK(*d;;(*f)s&UfvdyIx{)jt1VqsU905P(W6nPmj1oI_ie6x-0}zW zbPCiW8xOmSPCI(kt!TN*-FJ_3!&e?)x7Es+GH+`r+auN-*BnVl+3atrA^+-EN@uh< zh);}dTb}#8LfmsYi^1M2?Y4zaZ%Ccpw9)94&5i?d%l~{?f8jsFP3>>uKPLW;$h<av z+WEiz4`Yo(_H+kalQnNGYdYJzcZ)kyc9Y1Q`qll?OVm4VKdso^S+Fxt_;tm~6~}bV z{?+#{{CbD;u*9145+8PC6nh0uiZB1V^5^NrKZ;|omui^Qs$HsHeR`XAety32d7CAr zg3dx)CJElrnp3|1LVSDu2e0|J<sY$bscOC7{`QY~-Vd!?e;-AjIQ>eYH7||%=2iZ! z^<MRi`_uTF>NkgV|DFC}x|_H6$|<_{mK%QFD!s|5*z`2-?IKUXWj8Kcgfi{@;ChVl z(f)}$Hox@lp6l+fv1qaUvw3U(O!lm~{ZsyWjpmoA13^vmazoG6E?yLGUiR-vy&3m^ z2A04duXM}zcmFX`yZznlzUcX7ALU<f+gJCa_df&6s=piRWTQM+MrD}&)7aKyY@A`9 zU9J##&UeqreDeogZ{KA9x=?ZO!KGCXn)tnb?BTx@-KiN8wCb_x&13f`yWdLQ*C%5d zCNt%shTY5m40F#vSRHst|4XgkW6!I)Pq*&cQYiDmU;3zt{`H)V9%3$bjaTHea`$kk z@b~<BzWkB(KhwWU{#}ya6n>EZ)_m9B;z!=<@CHeoihLc`n0zI-_;St;rHIcb+Y&x* zFR;4)Y5(u=e<$Td>{Ie(mbdN6TV202etNEc#5OnY>??i|3`cv67d-Qj>|}lxR&rAQ z@;;d#R~sIQel6QOH~(pVy~VzLv)7xh{B!Y<e&dck?SEHwf16T2Q#X9o-!l6$`v;Tb zw+j4N`(cuQW1P;eOdH1s6%!)&^iJP(@y6Sh=S}A`j-RMoe)`kg{<HCG7ptV3{;{rM z`tkA6{hRk6J!}71e6Z`%-Ar-md$-H3?%F>2$<D2HN7K8tj1QgMc>a#)-;IClKb~*- zr%@s9{$t{U=>DxQetn%2ey!+1(}gn&rx@6*Ua$44AheMsZU6K?RUiI7wVZ!_h1-?Y zW`9+$)_jk*&Z!Tq5Prl`T(kMr)YPgiCAD{|?5CZ7a_@P>4td==zxsm_{~1ze?9;1J z?tk3gsw<T*@Iy`A+*9Dp^eAVumu>7i*ZO~dk(oO$YsJsiU+0-TUu)-)T%xJODcBem zCK(oF5YqRckK-M0UHBmz-+1*inQ0Q`Yvk@;5B==^N+$g97UP_K>zD<$%=$gwZLj1X zZX0gtTm^Y2zT)@u{xd|yb}&e+-&~)+{$}0tZ=pYaS3d036O$9WdUdNVliz|U>xXYW z8F;TvGN0Q2^GTAW%B&w-#MJg*nbU2(xc}hgV-J^B_^Rz+_d5ON{HNg}1%Gok%Z9Ud z^e$!3|6$i(lHn*4w1NFk_O{D+l>;t*aIbo_X8(0oTkGqEnPO~)vtArK`{rEDI?mUk zD=$TR?_j+1G3wi=oSs$l_@kaFvn23ct-AL><Mc*_lJ%Oa=eu&=E}s4|)9BtYrpH;I zYO`DCiWI(&O<P;Gz5J}zlLoW?!?$*>{5;A1)B0-eQjz}7vqEz{jpy%tWVH6;Jo%M> zKZS)^uFc*ov3-gMbFm=vj=x_@9Xmc7o-_Uxwq<|6$!`5Cok!Q`+DF#4L_D@#xs%~@ zd}7_H{hQ5Zf4t^ffBe4S*N+eGx65&C?|Oe^*3ag*`~q|T?2gvfu>9?|u;OQg(&6N` z)Z7#OFaI;h*KyY!n|1uK@JH!y9v{OyCI?>1U$F7YAIrxQ3Vq)m-Fskm*6mPq3dcv6 zfWOO({HH82<S1DGFlonOPJhX-`jxwv-0CjuuGTbNl<&Vc?t1vIHS!FPUnkV<eRtHf zWVTn3ce%)S?=NNc_9b`ia-Cl0zP+-0!vn@&A8+lo_xh2&_LZRQwC7w_6AEhU<Fvm< zKh!_)zVSc9rvAn+yz!6EH?7^LRO9%uwZ-bti>Re%w%rPAUK;cKO?+0D!1>}8_cV;& zByPHA$0j|qZtI8jhu1gnYJZ#iA>xO*^Kbsve=1Qg?x{)1UhY1!#k+Oqq(^6GZc=TK zcDuRTGVJzu2hk6e`@0O9XD{^Kp{llY>C#i{-md*+Z8oWF*RHMq8C*};C{6CM+Zw33 zZF1lCe&bF1roF8;yLLW$@rUUiKb%(_teD{c$>T?AOv4#A3x==H`|Rh|@;;PrjWfHx zPVLej&Ba+(TaRvutGSr@tz5icCi%ym=;MkG1%<n%Hx$m1`YZ5b{>T21AH|t#{+-y* zZW5~%S-QL9%iFR~(SfFKziq6xGK#u&Zb|LDTSuStoikW*WXjZY{OZn+<KHqqzJK%c zG5+7i|IW@+-SuH#?}MAI%a*RpbhCI@I=4jY@2+2ug4V?<%{Kes;6ANem@SOe>Ce+V zz2lGWBy(lY^4wbX_SD+<)@oO8hehpMcP+CvPrAA24)^3z>A*~D_qW-Lc871Bdv9Lf z%l&6nn(oFdIo-RYi9?}@k3-=Thcb)cgbE8&jhz?XT(3PfCw+Si=r)?1Yjq}9|H=QU zt5Dp$|Hs0I+_lM}O?R1GO1&*-o%@w4yXTtVMp+}ySAKO8yDlm044Pzie`!^vn{Cnx zw>?wW?|O4NbM@EFzA+EZ6rARdDoJ{uyXUg!@~0)2_4jwzh%yzNz5S!&SLuVR!XMQS zZqU1OTA<ec*v^wR(o0X6HPpI!9!)v@;kSRfUjOC`JlB`M(XhR3v-8nL?S~$3{g2#d zdS~o0yFKUQ@yi>3UH4s9<NTv^g+-TjtA7%k{fY1E#b!S|H{pJryTyagk+~mU9Za!{ zIimmbZLkiXl-Ko?;4_7tcaIvs=CH|pU~S5}E}3~*aewl8<`2(i)FgkHnK$iU`Ig^K z6T*Tz_Y~gzxTDs1)=$0o_GudzdRImkS;`3h;JbP_JD&Glz|U<dn+4~29IHRHq0PB% z<-47mD+~RMChf^w%YV66{M*!B7r5lPf1D4we5m$f`pSDsA1`nm*=_i?|Iqf*{vR6r z$936!&3^m;n7uAKs`H-amAjlZPs~1B+<msBy^~3BOJ7LUgnGHWKa!6;_Sal^r%_~Z zxcvH@&`KNIN7^snZ2762S~lY?&*4cMeEjRZ9v&+Yi@0v`Sh8x#uV1n|<b^l;<+)b8 z-(1^&?ezU0n){E7+eQAEx#sQHNM-K6pQ+m={?&aw{5pQS`cZj_JgfcvTYt}x_0Tfq zUcy{1qZ6c7f8OiQjr|{%Elhr@Qg*b%|DJ*6og;G!FC-KmGrp5P+5L@qK+g7vIj0pv zJg%hPo%1#{KIlk;*5U&{eQaNqEZYC}#`+7#;uM~X%Bx28-CO_X{O&hff9Lns>2CgD z*Pd3Bygn<KLpN8&xw=rNeGYTM84G!1v4j;1Hj4)M)~)<w`gd-9`u-cwD)uSXq%^yK zbnkzoEY5MAm9Kq);0c51sh^(ja5DV1GGs%}+C5pE?9cpfe)j+1|Hl2pv)Uv^(fdd2 z1&(#Dd?m<iGOfU)Xjbh)t_VYw%Ep3ACwm@-us;3cxU!=8xYg^5#Yg^yBpv_0bln|k zT@!t_$Y@2?U0elc{EqzYoIksK?%Rx@{YG`?my{KKu8y*c4g1@lR`M})(Ug>_{#*4< zZ+iFVSIN77_x`T?&yan-D~|cYy7tGOrmMB*1|Jn$Tbi0%aJG1rdrpW+k!rKTwk@68 z8B}&oy(7mW>+r|u$Jzf3tX_YYm+%_>et4*2*{@H}B2HzAhs*gMpLB`$5qHFr?o+)7 zv?34HG;{69nR?(y^T+%nQs+BV`lI*ydOnyq=~$}u!s^tCExD2myh{rT8+$&nd;KZ7 zwx`s#_36LetCwsK_BQ!sbX?f)yvii8+T9+vj>x3UVO{_D&FP-cHn*j%ERHSa@?CLE zd#Y~ix;>M&_P_bl-DotYnUTjWS}tp9P+m~Y`|RDG>(+kRdfw;b{G<7TSyDawbg!&W z_1@W`R<nQB(_MUg-|8w})w0$q{<f<>7*wA>|K_S++VflEEU${4<hy>^boRuRFTV#) zZ1Y^RE-XNq`A5<;v9~+IpXW|Jx4NeOq3V@K5$hzQthED<PGdN%I=BDc#QmN7TX^`4 z=g9L`G<`lQSG)M^Gp9>aJuQM>&JjMYkdjch=lbr}Gudu3d(QrgFMRTN)2WK~s*k=u zm(=_0llafj)Khmle#^6d+w1*X?ixQxKO&Kod1J|^lMl|OpLV#!GUfR5jPiBf5{qZ1 zY@YGRP=D6Xc$+KxGkE#pS?~RLTI#L5)S3JAx7}ev9ZdyKPb4?(<(gMsvp4(a#Ve+< zwh!jV^6C_b8@gTCtn9g+gXyiMV#k5wy4UxHUJOn2T=zBN(4BKTC#lA0$lobDms(J% zck|?niuJor)i@owu=HeXwcpuy`)b3dpZc~bo_p4h$maE?Had6hUS`c-w#)wTiLdpy z+`n~y%s-MZW%519Z<f%;>{=VImjXRK+GjS-@wAjkQxWywHTUMevdTqQb!tw`*Lqb@ zzsudi-p~3!!`Ib6*8NS{Z+y?|bdQL_-!l*L0@(PhpKo=W7H;;d`tFuaqpzPu7-S3% zZNGkPU$AKB+{)is>poR)e!n5YDx%7(l{I7S#F?xQZmr>{_uVPG_dmn2&Fi0ew}x~^ zS3YxBmpt#lzTo`N_srfZ^%~4FjPsw~+I)J^#u@8E3MW<mXRut7c019=L5%TWfq}5h zoR8ld57^CJJtKW)#QJG`{K40@KAY!RJn`TYna}+`{~6|lIdb?#Y^%Ox);D|p|4V-_ z|D9{cS25v5*nPo&dKpqrcFA;$+*1A47I7y!_i5^^drs;p2c!#@7d@HSr2X^de}<;h ze{?^vH~weHKK#-6Vd>Sa_u4;t9W4FwTWQ9{yhoauB~r3S4n1>?l#C2`pUKB>@$bn# zk=M7<)<4i?`|fk~*h-<O+Y9#A>+6*<l<Op{GJFy6V7=Er1N#U2Kfl=U?|!r6MV+Xd zi66es`DBv$^vHMN(?y@Q)NU8(NO|MOANAv%+>xut9*bJ6O<fef@cYl%%f0ynPe!`N ze%n-6TfbWV%=x$B58qZFt>-IQS+Y91*CjJ*NpF#Y+ca0_T&4CK3umlIVpNbxpJ!F) z@uS)M%9hh6zCo6`OZtL@G%qerSdwmU5#;{xc-_{&A{9x}onQ6eS~Lhmt?4*FC$0Q| z#mhN7Pv%E`T;I9t>)Cs|zj1p;r+DsQ@|1brczwmc(!bS{DzvRWge;Ao7F&CJ_1_o& zVjsy%D7NhNxcIF1%lEavj6e7l$gJrK;i<2v@3nt3UFStoZ(m^(<NIU9@w@*sq;AR; z(^%HT=|7E|Q_210>vQ3s)-nFke8B6#esz!al5<ZIXRcXjDf#slU-qT-Uuut7@2Y6I zKPT#M<m1FY6^G2TuBhyls((^B|Bdrw`{v?5iXZC_-oGUu*6wz}_v_LNovI%1-q+n) znX2WyKkH4)QJ(AkyA2QTb8K4J{?+$4TaEjN_ebmb{<!{UXvvS;bX{kDr1xt34e_o; zt8-bBjvhL|F-gU{Lq*WSS>z(eGxvOh$3GAKDE^TBAaCbme(fXkgf2hZ(0A|IqY{rO zn~ud62YatGSO&k0PpdmT>-pjRH^m>jHGh=$yp;Rp#nzvTFK!jiIk)Oo?FWC;nUP%^ zn?gOE&9xS8a8QvyTk-hC`&oNb<I{tTGGkTl-jCKbFSGmI@~7f-oYI_hPFM5nEnBYF ze!KFoW%-9mrWa=2cr(2~^*Hau%RKy#DqqK*y5qijO;p{cWbZAH)Flp2J$drvPmlN4 zukG&j_S<^to~NvU)||zBjxhy?WgTU%pOLe^_BQ{P>DK!*_nbT!%Jnox#ND|mT;jaU zgWuOb)GXA>yJWvEI5<jrp3=p<l9x9Z2KF=+d6~z2m1L=2aeTe$#^u=??;qJ!w_Iz@ zDhrESMr;O_DqkO~?c`^#@$Y-5YksI+@I<ZC1L=(S+a8(E45@pUs{S-xzH|ml9^=mq zy!}Ei%cWc%)@%*2RQ$Y^t;jL$1ebgK6qyg~QCss`&Ck9&artV=%etGN7Hw3$@lGb! z^}tD+ytHGCZ)ZKye{*q7T9ZlQeuY(&BxkF%>dtvEC#9<JeO&jl?6B)*kA0@@uMiBk zc|37Wy2Lr_vPT<C@7g+sbo_h4bf$3PG|MD^8=mAFp~u3~%E~uBJa%_Y%6*wakv@e< zCdsUa+If5C^qktsFsX1}QP!QHUaL<53@wT(1(KezXB>n4A`icPFuBioPUzm;h1nGe zpRQCcJpEky)2e75e`S_={3{-JJxSdgo!t=|U@}qt)|6b;Q1^4M4%?WCBqaR3c);|9 z<K4-+TkUKA$<{bt)cGg4Z~B5W3lka{4Ng8)c8e@{SaW0wTiUH3Kc_Sl9%O#;pP{vg z+n&8XKjzg0ukxAKJR*~=Z+wVxDOS{;n)`9`#0ieCe>DHLuSvU-wyXazFW07%S{+>- zQzKQ?0*^fY?xH7NkZ>ejx4G-D*`^-{7ySsj{KhKDeWQ{`vhd0LJ*Tb3LnD<WZX7U^ zVA{$2>`vwPm6xAg`KWb%+UuQPk2OA8UH!Xpb)3R9(PV*1l3~tr-y{{Loz_fR#dr5a zRo~XoeQKFyD?a!a@YH37Ry^0+xSxe>YFTt!PSJw4u#+r3*H7|)takeFZ1U2`t%q;l ze#QEv+T)m-L%`hT(@sld#MHA45+_y9YyDHYq~h8$wWgP<-GOBpY01WB&wUrhKV^_> zX#O<mK$FK~_tw2@l3wYaU-NdKN~YhYyB@0<BAoAN?>P6THL`-WaAI3ZaT{}A<)M%A zT_t;qJ!c=@wdGgiZ~y7v8uO)2eLS{)(%Y>z?`QO`I>OU@p)dQPeD8ii_rv@wCUGK{ z*O&78$?M&F_T<bnYk?y|>XWmN^!@yM$@pDf%VUdg{f+m<{_(vCh|R7Ozq0kqm36*5 z_gifY+cqtxxBaYK)BywkQ<A~V`-)>qm&)b2ezwxMShMe<zW?im+trW$&G)?i?rW`a zz_v-}YcBaR-PXObA^Pa{zolEMQ(8GB?y9U}=6N7I@k{Fcx4fClZ_dt_tQ0(My6D8W zO`D%p%;);gkUFza=>)UPkpmOljQG{h%Rl<haCp6}&My0-^ZDJ2>$#2Y8om6^T`W*^ z%;2o>O!isbyUh4bDm=FdPhR)$Y(4ir{U27g;)l0?zm}a5mTf+Dc8%WSvLA=%E{&|n z-4WdL_kriJxl*fM%~_Wjx0Z9u>tpxoKln%gh+kY`leMktKSPtA>MZN8Jxfo{3;(>x zFHj}zU=B}@*|QjiiuIp&f{w*wxwbz$zhhVHlgXCx!dZnYCeGcnKu`Kf(9<@H6US^V z53GOR{NVk;`<?O}f8v+lihre9zTBlza>}1G<uc5|GPwaokp-3Kx7Ksoe+cPKGyGlr zCvwa7&P!$=S#KFkX$WnMJH>F^y79pT_qgT1gI~nDhMZr0aCOw|`kyBCXZ}V13h|z< z*fV8)<<a=3%AX6ryiUn!^0S^CeCnfzpq@iPgHrQ3h8J2>wzFuss%}2!8d7wr$d7$# z{j%bz8ZV~a{8#BFTrX_ZEAt~M`$~7*%mv$=KXW8SrsZc`*|f}mwL##$J>lP8eO%s@ z{=<LakKhCQ#QOc(e+Mp|9=L1Aq~`%Uv~!hK88^xZ9G&)AN+Ri2WXN=j=a;wa)=-=4 zoVxpWtzo=n-7Tpu*N3(2hXokQPU<aqzK-E`PWO-ZY45*he|j&u@sx~p?Dp(W>-Two zv3LK_YJQ}m%H--lwSR%>&t(s!G8deC?^E)h;dS*@P6N+_=d8nyyzc0DFuD1B%|F@I za`{tQ|J462{iAs9PELK5<5ZdNE8L@|ZgMjW<lFD{WYwFJ!$~)p6C_uiKltG4yw$VT z70&m%x9rH_!c`S7gL0X>dP>jwIScM6TNh;z<g?ORFqvI_`_d}@!~OhsD_$R$l5hNT zU;lU1ziS8O^B%Q5EA23l{r3KxcGK;N6XP@M4*V0@_A&fz<cCk!YI~HgC(h1f-25%$ z$<846%`S%T&z4^5-`qX-jQZM%n;+=ku>Q92$NC5BWomqX1V89aKN=_dqjp71=C5N5 zmq&9>x))vi`F)SYj7LT)^;(u(il-SYm;9Y#pLqV3__w1!4ll2f`l0-A_Fn(+-4k8< zZG?{|rwg*op8fM%{o<%&j5=@3J=~{r?P<~Y+j_ai^W*bxWgo+j>EAql;McRosSo}$ zi2hjfqbb+UXyVcfS9BN6FIm^2s=@i`lq5@z^3RJq&xb!K{n5S1+w^OHXKAk4yO(8N zw{pMUUF_8`Nz7AWnp){e_3Tu~7e>YLTMFj4>^O5;t1mHFP{MNc(W33kZoOK&`Tgq) zf80B5k`6z;xn<Lfhj*sPE_t6?9q%jq@9T@|^KU=@w)&&=ckbF6!QZkqZ2Q~(>9_uq zx{~|#_NT+O|8}oEGrc@t!=X^CQnTX|i?`M>!yf+4{}~=Eix+zH_D|t&vl@>d!K+^0 zy0-Mee16?O7o+2y?!}(ndTer`=$@n8m1%`M9pwqFcN{E~_FLE(f5`I}IF-A0&GPxW zlN??h*YQ+W*{H7aRekcwb;l$B&Rg=~@5<`EW-f8dHG*YNTDuv)yZY;0{GlB>Dg_ah zq5H2sHqEYyyQJ&&>*em+YWZ0qkM5io)QQs)sl9d1>OX_N_O6%fbL$_-Z`}3#`1>E~ z?_2hnW&LOP5O|*D$E5EOAFnNc_@80p!3QrwDo@vZbd{VGv1jc^uai6hdp3DL(b6nE zSyw+JH}CfGU(YsHKav-SIIsHl>zVJ<jdXlgeZJ#$`OE{k#wBIS7X-9l$|gVjH%mgr z-$ctYVBO)&^EoBo*JV9ETt2HPf78CX`|lS$w+}vB{YUb!Ma}$KA+Nl0R~)r`eOluF zG_8{v>;C%pJzl4F?AeE2tt*cumOZ&rvS;4gyYDI(vOA(r?dyCn;oAgJ`?V$0{34zD zJpVJ;eZ3PG@0-1kx6XdcAvcZ#`Gr0I8T2$hY;WJfFBF?|A$^+X-3IS8u66I8Xt^z! zlX|0-WfG&!^%wscZgo1I%Kp=TqJHDgR~o@p`}&Jt^WT{N&Ff?Q+sKcJHrn|nv+CNH zt|^Z?w@^ZQ?c13h5f9ay3oU~tG9P-lB*BTb{tffteOw><57)O^**E;*Oca~GI5S+I zcj+2sZYd7ok7>!%(k#=GJS|N>zkf6Rx5bP7o8BLsYyWU-qi3nwe+KVsc~=tdW(lnj z+E(?ZgHgm`{xlQjYx|a8?K=7JcE*(_f7hOu|9XV~W&CsZ?tN;Z=RdwPx&Kb{u50<f z&tG5Oti1D|!L3H+!?ixghM0?gzkHqi_V0byAN!~7^!;g?!g&4KB5&(M`x08e{hF#! zm)`Z%^gn~#5AH*Tl6#^b@#=d!o;06+?Ze{_m5hJ2KUsxng_N~Kf3Xi+8D<zhdE+%X zzfAYNHQ!Tz$JU*^)wXPxY5$S)Jl-W|H@NMZBdKG}<ahttzV1!cv0mqF-TkNP=`NRE zG)pZ~x$xDxC9C-tuIovQ>^yukNpr{jUD=;4H_Ysl+xxfW%G#UDe{$@fu-@>;#SiHZ z|1-R0{BS<#N8m@J3wK`5npLQjd~Vy^`m3?g8`)DXnxAQ3_|z|CV%)B2E&bEC+Bh86 z?$0{S-n+VewbYfA#~QnrZTFRWwBgF@;HgrpK2F-~zbgI1(~sXD<oDF4+jsvueu!U2 z!F*P*ruP)54R>#!GLOD{i2u*#nMMViHy%Ddso`69u>PQQeU|XDSLOAa+I!NE?pyZx zRh(?OjqWv`>C=+c|3$AbH{^S_na^m^zEl4hnwI}NBb9#id~?}-Ns|{$ukG0GTo=;# zx%84+;<wiP>`JpcnwE+#4atS;59G5~#QzgmTXg!!KG{8!4u@RUOWL(%xAW(NHhglL z;<8s8PP{m*<;ZgVyP358p^x)<s%65an$_Q(Q#R>S^)Ivj$Et^J%oBK&pWjr!tLpY1 zxz|^7*N4pfyG+Gpox7=FV2{)%`<urfyLJC|{G)VfpL%AZ(vBU$`73TKp1-+%;emO2 z$MfncPRg6)EGb=IVtBl-X@C32A6YxHE*-wsyHxCQT*kk1haRoGzFg|c+{daVe`bC# zfBW;dj{aNU-*)$Y)H`mEv<ZCpEjQdbscfd6AlKQf_#WLWk^S?;eEXZi_D_tiXRBy> zqOCe-B9rmf>6!80B80p)ya@Tk=brWNr=nf-(+cJJ$M(<f|Do~yp!|>E{|ur@Kl&f8 zHudE`w#nQ4!~)fQOBSEm*)5ZNPI5<2^1rHIT>qy1va9F~=6O0Pw95LF`1^0u&zF9F zS8q}A{^2%xsl{{L-DOqtRxkdU`@O{dk=fi2=Z{YIS~u+pQxWIOp5J`??mwvtoqlM& zplE+#pF!0-b%k2(8w;<ca74@rI=OlW>y+lkbJ@QpRqj(-Y(F#O!#lCQ?dk07hdAen zX0M)l_uu*aoaeKeqke=heHj&Vy|Y?zV#oxJAS>awM|18~9McX<-!n(6xqlCb+@0{L z71tld^%iIRN;>&$^}1^u{~63}E&mo-)tO#wY13MAX<xfsa>s$7=3U`7vCBODp48ra z$NpuN@SGkw%XL-O9gmBWRr-#6D*XCrjqYpXgnv`NZ(N@IiSv==){I}#hwGR=Ok4P1 z$NR6`>C>KhpB7cGl;2&wBeacug~j^vEkCM1Z1$bvn7SbP)a@O{X@35)5)=EgeysQT zc)nxJmi=!|Tbdu+eEU>LUz>Huog!Pq6YD1F_r#g*yt4T7yC74&<xc~w`;XL>ez?)I zUDPJj+uvJnUy;4<>Cboe&ExBuYFd3VXZv^m8|%A^Uhe0wPu|}$pU=jU#muncny>fq zS+krP#d1!V{ME5Ienxp4&*}NQ4hUWdKQo{6kACJy<wx^d_etN|kx}EgHuF|WhsBxj z@W7)+J%Xp5Qkd^;{Lhg4dvAKk-?{c_`tq6O{(omyet3|vUZ+T)IpE^@DC-@OQy!m< zeKPg;jWCM?79a25yzFv)A4|pRhw^WiKEAnj%^q#_zBfr*KR>h2+_UBK6HilJCy5Wv zH*RTH7Tw9e{XCID`PurmQyauiX@&LtXQ<Q+-Sq0&QfvLt>?(cbFK>=Zo6iY8Ty1}M zsn^?_1y_RW`u;O?{+j(e<n@1sjeRqJJ5;=W)PG#QbLFGo-FMTTCVpsdoU!Mm=scZ8 zoA+K*)6P$SdYtLFPC=uQMXH+~U&Z~K?B6D}KR*6PME_8|;Cfx%oM6|j`*v)(oTHqw z>2k?gVfWo)+Y0gyep<-K_K4Zq*php9#*g{m`v11uXKByBEq?Sr1IHfu2YaJqc3j!x zyy9MFxY)L0Y3bdze($1hXSeRx{O0lS(=xg2Jq>Q5oA?;=<NnUv!~NiX!~HG$k9zEr zeEt0Bv^u6A?vHNfeJ$w~y7oB2+d4w;Y~PvboBJxGBvgu@*&SEe^fvA1ubFmCme#FW z@76{JWm!iVX1Z#-s;po3@AI~I=k7bo9GCmNFKf$GEy30GmZp_?ckgb!?OM8M=V{R4 zP5(3xf6V@N?}xA0K9=uR?>m#O>V4Nd9AhGGHS=VWyYVuI=Q4a(KZSSIXUK2;u{q-U z*6cFjJ6Tn&Z_l(me>Uk|=F%k2*ONTg@jsA15-;@c^nV7a8p)4~?p<6q{b1G6)|c%X zHdnX(RNo%6f${0~OhMzuX)J$suHU~W`-Aj9&X3Fg1YNbyxEudCul-Se+x4oRTVMA# zZn-gcPh`b(Bh%~ObdPS{;2rXL&S8^Ji&ouc3liL{@!RKIpET>tT~{@?b6)ncSrxQr zv8K7K@aCF}Ti<M{dQsCB^!iz4Rx4MRajU0gvB_Gt#p&zwVrx#_-?sm#^!oOH@;@X$ zOb*|kv9+GJ#^iEdsYbN)!d=&wPy2DGx~*3^=<o_2+w6y&`>anea_8~6tISFG&DXZ$ ze&2p+o8;dPH5nh}kITzc#^2hfyubQoqJtcVfY#CcTmdb{wtM$19{Q}fvvNnnne0g) z&L5uNG0*nm9@j_lY#HHIeRCgLGp@=u7n|@*np^i?{CvxEg4|3NCx1pf&e|Bi@WhU) zY5a_S7N<2!ue)kmZ`t}UGqU``k2;0(A0^(LTmLQhPMO#BTvyfloywP&{P<h2O3FIm zPr~!3lJYZG3D;EaexAa6zUBdc4A+OSpe1XXd6u)t2VPrH*!cC&>wEuB9M)Y_bNt&k zy>G>~NB^0{d%ba*z`u;ocH>clnxqN6m+p8qlq!mR{adf~VVZ_j@U$?QW&Bst`rpiw z?fQ4~$lfRCmwcJubxY<u&-Cf#63RBm8!Uf)fBQ17H+fCwubsb5yJGH`J8n-ie))aZ ze4jegj~=@|%`SGAY2INeze3^ai><q7qzT<zuw8+H#b4<^!<(Cbv%3W+JH8fQdB6Sq zs-xAXUVpT^ke%ysVnxoApF3FRnI3$7Uj5Rln9N;^UzHh2>^r|LvY?#p<R_Ka+i&d) zZ-12Ds}r5O^|C^onS~Df-*29Ov(_#B7=66FD2n|GPqk`#P}eFqr2@CY6AE9}OAAi9 z7Pu+vR$cnu_VXF{L*B1{a(>;?4c8XmmFnnUsQaJc74t{akNZ3ARA1e?-zWCjd8gSn zIq9i;RxUa<bKQkM=XbADwlA0c`<nU4e+IFCs&{YHCmde6bJCyLDTfv)S3K=zoFH1{ zXKP?}{qp^d*AHszi~eZb<G#9M(S;fvmNxH6EJm?fGt1BT|JmFa{#ID-KZDYL20_s& z1s@N)RrL66Y}@wkm-6L>nn^n|9)6kfpMhn2{i2`W?6&?WO)dQJ`9RR0^dB!vjbfH$ z98++Paec0Tl7;JtaBUI4rA3>~ll~d=kLceH{>P>JxW8-qrwZ<eS5LkCB|AH(%i8P= zXPf#H<?hY`5!1s@Qsgy5YK|}e&(PFRclFlu<Mnd(hx*%!{lz+$i*@Y0(`IpZqsrv+ z&+q(HX7ulrj9~w><^1zwGuaRSXW&_vYgk<_#(h@ffd#XY4HH9{Bx_MYf#>>X_lzHF zp4zhVQvIG+*ZtqEyY}k)i(U7B1vgcwwOR?T?+kCh+5P(O%kup$f8)KY{NJqqm>>Cp zZT;$_k6vu$?o|(MIsbf#&|Qvom!EmgVDeLSIPu2FPh?K(iP!qGLUv8$RA4&7zj~T| zf7VCo{axa#HZI+>&O;|gfveq;v7pGS;rNa}tG9f3f25ZCh<Sa|N0US6D#H_I9)EYY zKTY|mQ}Jm5k$DfUKi1ZsYBg!y;*av%FP)w1Rk+Z0@%A%swn~bct(oI-x}kbSLeb6R zRUi3TO-?>sz0}A^R47`!=i$Lh&f0zL`OY`yTwm?WGvSrqCf+q`+fE$(S^qb7b@zw6 zjobEL$+?ru_Vr2N@w;{IUhi66B}_sVmX(-qaC{c2!^KkII;H(bu)S8{zZ2{-Rr9t^ zTy1~jfslc{)mzodzwZ00yK28a(py_KFWJ~#%HID$=y92%^6LJNeeXQB>RO%hZZmW= z<edL*@@H-S<NKFoEjF8#BWn6l`D~42{__Ls0Y}^~$fWc<`S|5;_SEe+`GVB#od2Bg ztLj_jzO^)bdy#XgYU`(l6HlF){A*H59&OZnQ!}GyV{*2Km4S8PF*j?zsc#Sd-Zd}Q zd#AB^!1j4JDkm{E70=sgf4S>?=F}Mv8xMZ@_ByJn=e_BYxZ;%M%<CUz&&w>hm!Ke1 zBJZ~~R!?QOuty}{HA&9v5-iUb$Uly}m+&S3{C|eEVbSj-Rq~e4`_C|cX^1!vn_1ob zzg1G^EqV3-FaMijpFaQg;RoOQb!uE!RLu6v=dGCR-kW-5@h9(}M@}f8TC}D}{Ema* ziLQI|^|U`l|KpSX!T#{RT!r()?{5!(m{Yq+wf>E4(mV0o{b>_SwjEu3Fl2)N?`67M z8jku~tiRHKbM}#I`?rL5+GKw`eRP)U7Ae2=DpjG|fAPenUNL(S6}~IEy_|L1<^?yF z<g&a~x%79_e}>ez%*XC;tUoH>8qb-M9qpU#IdPqi-jhicTV~(5es0UI?Ois{%oMa+ zEo2NWd9<I~Sf9y!V0=sT)<w^_zw>(ktgoN=?N8=(ow)d@R<p}fqCVYr{l5P4#y?W7 zt8TxP6Kc5U{lw-(%7pEq=|5-ml)quE*{^$N*0II5U-m2RNbME3WmHK15TL!}qkq@h zQt#lUYjP%QzuUpLL?prR=_gA|)#wX7Ro9i5NgTa&Qp3W3w(|DnqW_jZ`5~V!Zob?8 z%sG`avYxAAm8#YpF@Erkq42n4*JFKQ@id8s^9+1XW?kQUWx?+D5=-f-)ur-(vyNOj zz4Xu>#e*{Gcdl=An(ce%=N#8sovQ7JIF-2{g-@7l{PJWz$Ja`A2Z#R*4J&_L%@@7n zWvcve_l;ZjZ=&-z?{RoKt5SrsxUWTc3*(97dkgABKdN4D&6}4Ie%8~=TI0d=miPVk zZ`uzg-rLvwcan|qe+F*jZ|xuY+f2(QW%ouOF^IY2v9Nqf!`9pL=X0NSpM1Tif%9mk z<lWGg#o@By4_jjPJzf8xdZyB^r&$(KRbD}XzwiGs{A>85I^bhi_Xp)eAO1K_a$a|E z(M{D)t)VlQ^{E&&pVm-xJa6-Dz3H~i`#;)kw7q(IW6y~j8msuHpK#bID_VHm@qEnn zeLrqp%NKYhE!f7LcQ_?|&O9sry$6+*Hmh!EcfU0MG|Psd$eZozvYVT)H(vj={-e6Z zTAetxWlATD&E9MaFSoy*vz`Bq!G|Sx-%R?wd!B#tgWIwGk+JcS%x|KyHXXd2vuRhG z-r;4+$GPsLJSkbP`H}stB!9!Q&GphZxBN<eUvH$iuOc)$YeSD&O8g7~J`QCDbBV9- z<zAcB$$v1KtfWx#JLBBr(?yX}m^?a?8~CakTx-}L+e+4yu3b6RdrxvQ(;ee_Zf%|i zGJo$hRQ?K|?Ppds_pQ40{Q8W4iXZ0pZTWV6k76y~()5De*COnaq8VyV6`XQ<tkBri z_UZSVu+NOr0-n;l%%%N|Z-|}z*WUHB|JXkf|Mq!IU60r+B33P&B%Yn-USwBqWEZkN z&hDG`=XJ-wo%*|U%l_WL8jbGo4cFFO|L*&DX_B0~f>3?6%tRyM2EVt@=X{)JUGSqm z<CeS4@?8Jx-K)LLrqvrxF?+e#_5?%m#Ov0bzgB)*CmeBsYwOXcePZsPIc6Tv6gE+m zF9^7O`Kg2(du3jMYwiy}jXjwUU)M`yF45T@xM7w|`$UzVKOY~jyz#v6iNW((2d?Dp z@n4p=bNdwUyp)I15_gtc2H5=wlWSP<_}PKup%T^C3|EFb3mrQ6<!0E=1>3cfdRXcW zL?(*Jg%_<8-N|M@rTLs|mFxba(o3$K&a?BFvg^I?Zwc80Z=FOx999sV=XvtEU9eL2 zuWnAY&Z{A5CLxNUl{P8z@y9l-FYQ%6yz%79ivFOkdlpk<dzHj&9^|@8pHy$KO5c`! zcd50u^65;^`DuSNeyrSm<h#}K?yjHLKjrDmiJ7F`lI#fFqj#})mD~M2d!Fn6c>BB9 z^&!8=i&^$fkM?(a&U&bm|8;dm%ZA%0n0|iycGfOo+5^|=+RAfRo@9B#e?Gr+dc4Hf z_*VC$|9CI!nbh;CKDvFr<mY{3z39^ur?Uz<7=;vtujXltd;V~KU;XCqN9|j7)wkGq zKDcXjIP!9rtImc)$4<SvTO=2~L-$Ff)Qh}3o0XcxR8Ob8vEB0Y%$l2%mrUPt_5Ahv zoAuvbeRw;+ZS6m?AG@8mwjE3TB=#+&dSczHKc~wkvgckpzP&tzMabg7ihZ_qC#%>y zbkcux{#ML>DD>!7_K7VsR5Bmzm}JIn5+JS=ojGNjOP-_|kKP52^#@<SXSiR%9sKY9 z57!mm<>|&o%Ws~3_-Fco!X3s2>XX(sS@51%zt%o|{;lIj{z+YVbg7j4X0HB`eF=6^ zcjV1^Kc|H%$|Ps9YdJiT({8J%^NfpHyw>-<xBK<Y8qqaLALG9*pZ@4S!`7oK+@CpZ z^7_On{5*Jv=iG;nHK#KC+4;EZ_w;YIf7kwTUK+b5s%>eJO8-gMIo5^+5*zL;dC>Fc z#sdMb@1}QNZQm#OcY%#`V)>(rg|&HiA9nrA4CCm1W%RUW^-@Fkyx<9Zmn7>xP2Rft ztO@_k=LZXST(7(EA?jSs?dlZQY56m6<fip&KGSNr^EP<*y9dot$N4#bUr4bD_WZ2; zz4>ANF<JFTMmJtn#oW*Cjgj=^>EcSa_K)e^qnV~6lg@qq=h?bD^VE0$X#E{f@%a&p zp~bc<rElFbzH9of%8Oy#+E>`XVas77leB*U|E<aYxE6o-{4M5(>-rk$ABL5=Yk&Ou zXSwBgMtvn;pGu(2`9duVy9(#uD=yAx|2dnBQ~tEx@<+Y-VOzGEe;10`WB8MG>BJ>T zi{DL(ndIlF@_gs|FUBt>KRlM$P`Y_eij1hsV(AyR?(QzTb@xAm{loi9zRNr)6j}LH zBC^=a=vmp#sF!NLU!6;l`E%t@QIX~gyO=9NC;M3I^KbmK@OyV+miF;YwIBIsZ>{0| z?NV{>amdG||N2+n-sq7Kt?^VZ`b_OfJ+BA32a<czE#$s_H$3^|`nmmE*0*ixUeDzD zs8PcEcV+Iv&um2>w=7^uoFlvBspm;q_NYJo$L6dT>^`yV#i>(rf2Nm8->upHGvaUf z!8^x!o6l>W+M@UTo!TzTNcESOpVze?2wFe;GvDDJo(IYMKdm{rZBy>+o@+-woaW4! zuh`~z&W-c<`j?SHDcd~RCr|vc{!wPsE&1CQ?wl)bocEQj^4YpwPm8qXw1}O{K7ZuS z>$am)?DeeWy;{~=t`zvTY{PTYi{ApZ3+I%qJ9OCTcY0f%=^Vq1l-tLBl4m_WzGD6I zI>DD0Ue$5$?n^NIwt!#O(ZSy9=bOhyzvh}oFTME7y)8zQ=e6N9w%A0oJ+q>WpWR9M z9KWpogXez+e(!a4*MIRoa(|{aJ-@bEJ%)FKM8L0fW5M^c{ye?1<>r^SZnb8`pQBG) z6uMJ;D182@{R{JdsQMqY?r)!Ev(NmxZj^3#jMh_$qzGLFmSa7f50@sTBwk@!Rp441 zTh%2|m-oB&`19byr%Yolb(6k+b$@HS{c!({+sCa!>_zP}WZkND{a!hz<vzNazS&dg zcFU2l1>VXUsu9h7&9AS#6tDl_xt2wDcSY3e2(5ycb!!dO|NeXym;F$>TGA%_LHOlI zJ3pmf+-m8(k+rd};0)WF^_K51-`*Rv^@Hph-pNJh_VROg{oC^4c86kk`-`C6e%jOB zei{Fme$-BIHJ{RvkSVu&W=-9)X;=KpzeaTjcJcoaRzJQ^Yr7oxhq>pb7FqPfo-R;Q zU*}Tf^H}orG55mw1^*eg?SE7JTdT(RN2!hQ>s{&1`Lbn)%e5CYOum?+I_1GUyC0^1 z3M!<-Kk^@b>t`E(XjaR$&&Rykg6cj>s53Oq313#@^>^_;<3G-q#9cnxt<}A|L&9+K zrw1hmlCJ*z&md5sW-U6$+2HV_n4ovJ>$UHHw2ywMFJK@c(-&D=;d$!(X1~8*%>OfF z=>Jd;e{23>opo=q<A&yAx45QNeC6joqc{Jwq-yWVzc1x3Y<W{_9scal?9YWJMkj?U z`I09}##t&CUR7~!bC<n(An{K4g@3$1o_?%<@NQYDeA}<L-<pl)&(xix;ycf=x;(t~ z^Q(*VljA+^|GOB^Sf6F;YyWN61-Jh7tr3YI*S9_Xv|jm@_}gi_<Ii<^o@77gP;@Vf zapLc1@m6y>L%;92wE6ee{U`6A_?LbBQGL~|DEs+ezst{2RW_bp%B`M!@cf03zdpz0 z?SFXTvfk#!`CE6lZtqmEj#hYHpuCv*Gm|At`ik}I?5yj~{ImX{o|*rcf6MKP`3IvG z#=rT`AoS9`w&&nEL3M_W+opVBoH?<d>-P!A&y(Z3m3Z&5#7a38Zurlz{q6C4e~wm( z6@FjvZvXmM$7Hs=Ivl^}ce(q2hNgr6u3vJ@UYu<;t)FG0(oxkXRbI7=!eaDiDpt;A z-e&YPIaK9&hD_M>zWUttx6U6c%GmZjUeI)Pw)eDsnTlI7bgp(e3p&rv2t0OYo5A06 z#mDRo_T(-+oT>C$DvD8L#%HcCI{v)#zpcKqX6t_jbB7PlmOc~S7JWr!Ui}q)x#LgI z)}+}tZpsqq%`uY_%w4}}_j=_wpW^J!rAL(*Ms%8<y7hhDo%LtFzjZ$P&*0j@c%kfB z`&LE2=l<*U>5cpko=>~}O+Ded>_u5#`j*RU7fsx$v*Fm9+D{_#*LIkFd^W#n&C`y@ zPvxct`Agsa=@v09jQMKe<)7ip{q+hi32w4{m3CoeUS{0!rRP`P*-{sg!#6`+`P2Hu zAN;@l|3v?tWBTN3ophG8&dr0nF6D8X%`KaGGE$LU&^qN&MZ-it&U<Xfek}X^sI67F zGWa~#e&)nk1~=`R%j&(}{jq%5-}TQt<v&A<`XM=mtFwG^%y#*Hc~SgQ$szco?$2<s z>?sdl1(XzSjOj1cj{ayHv)cT~u~jQuik?L++it(H{^sMy-y8O4>bIHg7uv%VWs+`o z{aUa<`i4EOysBGnSE#V@^w~u!r<R_``u1S4rRb05{|qdPe;EGus?qtlz5DC=t~%)} zHM$S~I(u*Jve>FSarWseb7#tFh`E)1Qo1L5H(1FvAeue@ZQ}gGlj|SoS)VM}S(Y8n z+q7c2Z{)IB)vIs4cF)~!>;HBg|C!g1i(Zv}3@Ds^*EDy_-g(#WT;6@zWN)$W{KLPl zWSY+X<DXq9-Eiun&oXlsxt(FAf1)c6Mf<ne8DHHemGwz}ONLbMvuWPj&)iR%`yedI zKRkqge$~J8liZjK)NNhsCF8eyUQYVEX`hx`hbr$Q>+@6hMO>VvvFQNww1guQ_{1$w z<lW!$S6cn8VZ|Ebn@7E$&D|gT@jt^7*%uF9Bqi^f+<$WQe}=cq@5X=dJ%5|q;fMRj zP4bLCy567u@Vqaz>sWf7a&zGM>FLFjKfNupPn+6S_own9Z@piTv71-!t&j<hZ`=dp zpZ{lgdUEx>jaQatPoE=N;CaU}c87GOOaaF+>+r8{|1+?>_`6c&@6!Ja>8leTWp6Bg zbe>b<%iP>^<}so@(%F|7nE$E?a6d@!*`%NK#cskLh80E6Em9Y6N&nBV?ev%WZ|{rS z59HZYtT?ZAWN+vlTdVcg-@mE-H@WwR{M1VMx9lIP-Tp4D<9lt-wY4llWq*%nYRO^y zw0$k_x6Qw!{lMa%iq7)pxVd}S&-zH@N<P~^)4<}@j;squ0;Vn%n^l(`{7YH7X=%q| zEzzluRW8T*{FAY%eso^4!uUw|Kc4G3_M5-PYCVe9zFleLV{Y~?c_QNh6*hV8dZ7u2 zo3u}S^%t+`4`GRk*`@H9>qz0t`99a*y8jVd{h+M<!F&0N>TeyFa;NflyUZ$ECd?%t zu(89F=LSRS)2%#{3{~c<+P?nq&0ffvC*@$KMA8n{zQXud>g_Y%^4!*1JmX^P&TFeT zN11+KYt#Q(_^8fo!KrCmi+*h`^Y=IT>i<sL-{h0!=Y45;OTOAqO_gZ;c2?!q)F&;Q z4SppgEfU^5XVzaSz7v0@t(snxu%O;*X7rz~HJ5T9NCj$ItnOKtdg|We^>;dwZyq!k z+snss_Du4Z)oayN!<YMe9ow4_##jIJ*>(FLg0dNJ%Pa%@FN9C^t>1EGf5v}?x5t-8 z>A#w?_Fnw&%<u7UzW=WI<NbI3KFPa(BzJ%K&(Ky=`cN`oK6vXToABj-_i^hw`NciD z(eAV_IdzE>N4jdWrta?N=Woe>oA6`fZ{Ld7|HSx@&VI3O-Qq@_x4LT;qP@ALEk19$ zcJ3m#ioi;hx2MI__0AObn|@f|RFnGnzVMA7#s{NZ->qMrRn%SWt*s$f-T5@Z!{f0- zWFKSl%@DC95h2^vkC(qG{q0wG)_a-#@qCu7I`RHUy=_HtwR0cOd>n9I>SVUb$4&v+ zV`d3ISXvc??5gI)PI_3(pD{%_Zt1<(GrwonY|YHR_WahG^Bo&^rf=T!w7qrmW!IbL zPiyrzO4r@`&#-k<jaq!e#~RO%Qa@}J%?^8sFLBcS?f8uKxBn#e(@!PORM+|Lwu}1N z$D1B<S<3x#UfMQex5Roi_a2)Ro?{2Onr1LRvDagG%n*J}j^%I9KaC&fkJQO-x|;u` zo<F1NeoIbGb@?M%ulJ`fed*`V67m$?du_2|h@r3Yk&~jU-c1TuP)_i;_-lIie})J1 ze)YH7>1N*Ixo3aTl)vrzJxPDb{YSL5D{p&tI~hqx)hkz@R6QM&+jQ@eWt8_!72g&{ z1;32+nPPlJi#?ASO?`4Dd3Rjbxwv@Y7c;+z?(pyY7|@#IG&vwk>wT`xx2{*;Vk1A< zUhmzf{-5EHWxCng)hCNnMc02zG4xgPI-Mq6(ZC*-+GFsudcA|gqrICS?SISqq5atY zP3?#Io9u)>1YD{KeyBY+>T%rl*(Y>YO5c<?vf_o$xpr;kH49yQrIt8OSE&kr>-yXD z55oufL-tHH)qkh&iCj~$`e2>G{wrHDZ^v)y_P?TAYOAqwmN8GD3rmq(<Q1cLu?ya% z=B(HKX#6ex!qY4D>HTf;T)AoSVl|;3>f5*adcISeR8ha>k7upw9=?s!j+lLLnf;{C zCRKE{bzgR$<i5zR5JO(mOy4(;Pd!+&^xT%JtgX>EzGQwlR@_oC$7D`)VN2dyy;QTE zm2tao7eA_avup>$5rz{g%vT!cOt5||bA3yV{@-PGnl&On%0Dtc)NgpdR(H$!&Ra22 zZrf!xtl4}zliRB>@9C98XEvXd-Vy%yb^>dT#c%hc^S6q>IsYN~Sk?VEcOT4eiWB)5 zf4G<L)py7JS4vOFRIHEMxv?@=?P_?0+u6xmFPTi+=*k)KFyvOU?lyaa58M$i=6~?s z-|=hSVkz$4;z#kVUy=*A^Ce%}a_m~_ts8eY>v%KN7QgfsooC}JvBppIlV8ct;KFi0 zuS=P6=d8T$&ARt3(x2T%&M2F^C+5pTyK41{n~`hFcbDx-KYpKgpHz+akDHGpYM4Jv zKm4n|^Xu;mpH<tY=Y1EJxcvUaLAD!@f*g!IPD-d~CU~%|KPun8&*q2nquuwJYT_>F z|1n?ta^uhKVo^Q1EFX`BY}yz+;nYFTaHkVDtRo&ges{lDPWxl~o7@lF2mdo{wm)or zdq2;Q#m8rv&hOo)kR?^K=~nz1Q>C{HUo?G^6w6q<CO0`VPpNbA*?F#I)^V<-e;1VQ zt^d~dpP?zYM)%|Ne*L`Cda)P#46gr^zWu6v)0XeyQn}COnR06^o4Z-%ep=DS#V4YC zcj_G3EPPf@`^fLC(4EO&t0oot$K{I5nx7Yb>dp4eJ?mF@eOdXVe7aTfA-^U2Hgl{z z{WIs*uGqZEJD<#x_}gBm_u5`yYd?F%tM{%S+-5%PwfDQa$MF$weL&xR_e*O{BZ8`p z3yZAI7xb}&ov=BUa9}EPX=VRg!{25<9)FAZvA6g`^U+PWUS0k>>wLiF_gmVtXXkny z4-C3iE;d8@{yD7^8y{?+v6L}qwfX({4-xTQQ5Jt!Z<TM@#~sq``62h|y2WdLCh%{q z==`!fI@x4T(KV@<uxk^{>H<|BGtBz-pP@ybr?g(C?za7AzvlYoX6x%eJbs|wUK4HF zU74l#-eh(3%Qb6fE=zH-&)K=9Aa<(zG$W^H`|^2@MYihb>Rgw&)bjFF%(QJ6gZ#c% z|2^qh>brl%{I;LISywmhF{=6UT;yr}v%FW=wsk)*ewNQ!cdUNXvhI)ko`0v>+0-~* zFS*}S_4Vw!S>JAn&CV`gSWzExWg_pi`Kx2j&Rn<rzDj2CH>K5#6GNsRpHWx$!}Y`F zhszJwvsdhX{Qj-!V*9Qy?>Q?b?h#!2BkkC)T07h1BO7!!-_yPNNAua?WjCT-QYRc+ z=G~Us%{*oDtv~9ED}=vk{pgr4|DPe_KZE3p`vP?)nc<VOzQqZBIC}ou+@<?F)bASZ z`^dMZYuiU1bK|Y2A`Zx9s&JHV(qx|acYdALzq9eeb!@NWH=DohU7u|y{P~Z+e$SWr z(h&~RvvXI*M(NJ|aW&^^U3PRUTiQf%!D+?2WILYxdS-cXWu#xJrk!8f)OqjcUiQ>1 zx^?Q+yX#N$JU4H$ObhoG_iK6SBs$%Eb9Z@^>gjXu({As6c{`SW=KhR+=^ExA6IZ{u zr}2aTf#*Njle%+WuYJkA(roE6-CKTk=k;dmJj@f)R5&?HGt|kuQ9^s?{b#Wb=C|G^ zGsu5kQ~YMee}<c@U&h}`|5pDo{>|}^(<6RZKYG2|*Dcoi#H`x^8<MVVzZO1G=iByz zywf_xZU^2bd2L9&bI^JFsas$6xgH5x@XSKp=F8*LPyUsDx3Jn#@gUJkxM+FG<=nl} zyRN?ezI%TEvw)+aXVtw0echI=T(MgF=C=#}JP~(ZTb-FTcTZYcB<tK&>myYsG&ud< zoZDOb`*VC=-HrVMi~mlmPtR3<z~6Gp^O0_qY4&l4Bc9JT=Ik>n^EAm<Zm55Jk0tnU z*TuiH>O>DOsfoChYwG6GeQ2Bfty@#hEp&=8i9S)&lVo&OX-+-+<M?UuTb>`?8~*71 z(fa~5zMXw9=SA1*34edsX|`G<&he+9qVmSx4vXaYX+LHkwGTbyHrKwp{&!XQ=Kl=a z!&X13+x~Dq&vDVNDX;WP&Gx@N@iPB+RrH_pQ@&PTy|Cr;!k0nDr*(R+UuT_tX2%Z3 zX+biRKbbkp$n8nDT(7@>>yAnm!-i8;41Vl>e;Z!LGDdFoeyEbL&+TgHbC!Aa!d>6} zIV<>XT{~Oao3W<s{MM=U9h+-bEnb<H+`#l?a!*zGrzab=dP=YE-@Ex&)|91TQ91jb zRLD(z@HgtO^AeZU33+dJ{621X->>%7)$a{kZz_~;a(Kz1Q?^0%fXq|JbG8g@`*z#O zebn9*o$0;&<tn>3QFFhTU7Bja@KZ~r!1#Ja@a3Lsb?YDc3;if#+xgM8|K<Y!S>D~5 zlQM!cS@KhEo#J?6tPp3J7#-f0=qGorWLE#;KfW4CABtBj<T|-Obp7(;=l$$IdQI+B z)E^VF2{8D3=1sYd%44p(^<|YWPtCh=&icZ(Z?pcS$%Tbvnln#TjV$nd*<^WssrRG# zoX%^a_k3V{e#~fhNX>Bzg}#~J&s(gw{_t+axB8Fj`-8vFaJp;Yskk`jTk_?Lo2;Zh zC7TA>T(rG$b*|=btKB8(rR$?-Y)!5_c3Aq*eGSD6a~dk&RK7efdc?74VrIJA?i#g} zp4@*z?Hc~F42j3AYPBzXm5zR$ZLb{Y-X^<r@y>wQaF)CmmJISUN}1<JeQxi1aQ<8L zl-nxjLL=m-SSaV8;WIN&WBK-=>(Z2Wy{}GByeVOIs{5{)<+D561$Z|Zs-(}K{(3@H z`25;6N7X)f@V34F^D(Y-{h4oE-^vR`(_`25_&vDGq40&_`+Aj$W+xlm_!a(U-#K*p z?rw`z?i1VVYi;ixoz9}qz}Qn;zckI{{UkS5Z-vCub3#4kZ*7}0>CQEciO+tzJwEWp zIIwnK;Gx|N_P0#qSvOgAO;GqEdQxj@^d8<Rf&Z`kTeCm?e)}!^!}Hsu)EoE6={{?A z+u~iU&8lDW+uY{JYB9$9%KZNsYOea<vU6Tsp~l}?<$ZM7k2cHcUW)U%OS8*%?A)fk zGjxMp!S8a-xI5RMK7X_SKLcye-&u8LKiX`C!?*6Zq?dB#U5UTZw^w%`bXgoUw48Tm zL4?}vy^#kJcWCFT=hp4|vC9AE`6G40{h>ehmoNLzkl>lCdv?in@xUXsQV|hmkyH4m zEPQ_9*?!G~!K>Yc#e;19uWqboU;n6ncKh4H5ATD1M1S-@vWxX@>xwP4K@T6!RGxO_ z)LX@g^Xq38@8CCRiWIQ?*)C!F*>=jhjpmb=$HW*XKWnQ{31GK4(#u@uw11ua56%65 zgsmU4_uEvj%a)V+XnMP1^${tt`Qok9EDqg})Vcd?)}x0?xzlw^Gqu=sPCPz!>Oo`w zvH7={|8bsPUSsufegFG^0<U+?+xX%B!FqoEKN+U4XCxL~-&K7+=T=Ow)S=nScW#-V zt(4biYRS&9{g>;*{|sG{dFt$bQ@zfa>aP8^uiNeNt2bN2GjIG8fBc_;d$VZoTrZQw z7AId`d|mrC|JCuQJEp!>*R>JfxRF^a=XnlO^%hU1e_LM9jdoEva=qYqpZlyR<^K#5 zL$%+ozg7NC`s06wH&Z_(AJ{Ku`kz54;??AewMXYIU3Tl(Nxklsz6qulxoP#LM|Qt8 zI{MAUnXx6M;Pl6!itT|098Y#t-0qqCgy&yP_?t+#w2fE7)LA3Fq*mX2H+O#M)%uA) zmen6V&lr6pS>u$^#h0p^-@e;_rrqU=jp^zv!P~rXClqtnoG#|iyI=F*_v5a=3jZ0J z>MQCb>$B%G$GMlvY*c-FWP*x=)mv}NPq&X1Px805Dn47oxx8Z5_rQoPZ#|AyW=q`I z_*1~+xUG1x+T+RRb$n}Y|7T$Nec_L}{M&^O+Ar@hUvjW)@*S`1o1=Avj=65xY4%=f zMP+2fs?{l?x_44)j(3V0dMh7OySjJIpM9t8x)1l5u|Bs5m&;x?;okYU)ED($<pyhX zE*nbPd^w&U_4&S7jOVxNT&ugqx=#*@mglnQpL2Zu=|OShBwOuEUo-k|e!Q<Bd*u83 zIQ2)ncf2j#YxgM0>Clg`z_w(KoE6E(6$@(F3eRc(DLr!8+ogWx73mwF?fb)v_bo17 z?&Q%IVdQsza!$Rv;_kUe*q9f*zkPI{ctx)1e4*Pm2N!pGPB?a;#Pz$5-44t1mMq~5 zYsxFv{fR8)In|oD-OXp)oy|gi9{=9i#e6?o7SHm>_V3(<_p;3mChz%K_@322&$#jW ztsRy6YI*x){Z;-h{km-Hh8>&l*<YNh!o5R7c>XN0bQ^}&O5O=K4}M*L>io^(hkN!J z{Mh@*UM|*Y^WWao(u9u>Y<9}5d@duu`@rK_zu$kG`%%aKhPc$1Ty2)So!vHxb3=|l zU6p&|VXaqN-0s;H>zu!peNdf#_&>wVYxzR98*;<LTJD^?SMB-C<;etN32V1&2f6qy zEzgz)EkEsh^HsWa)bS(#8N|~*Zf~=RuU%ci_wBn&8E@YEe5EF{8FwEmnkNe>&2vy; zD6*1cKN!Eo{H^`^KLPoC6_1Zewf=3rx@h(48A^&bZ-y*v6ICyZer6rrP~7#4J@k^& zl`E%Ki!?dU@l^X}@nV_FVSARM$MXz)i=yHW9p83I|LgDSvZhz%N=)IbLIOuq<TVd; zb{6(=9C&hlar=rXIo~a_gUc^Gw-Np@`w{Q<x4O$;U%z#3{pyUWxxG(>j#gKj9FlI{ zc(`?1Qs)jmwj(UfP1e_M{p0_k`EdHjy-TiNJfQpbz@#^OHY_%pmiT+`C54#>mA^ad z_EkNQ@3-Uocil{mYhHZ2y@<)`-+!HsOxb>AfyeB(t_C9KpP8hpT6f%GjN^Q)5WXRM z|CX}-E4a_b-9Px<F#6EE6zB8q(;Sw+YYkW!(Kj>s?W}isi?e4h?2U|#mA~M-{b+vc zJ=MQcxBh2nD;KCVdvtY;mvio}@Xw*|bXBu!PFds}-FwTDnV}-U;SbZ~gSV!2ukc*; zLSN>ox!4rh)e=e0LJ^M@QYI~D_&DeKoQmvkw|@Aqim>Znt+$@V|FEm-lu1Xod<dMR z+@4T$WI~8gaoqgHb=T#YO8+KBeA#j>|JeoyG4ai%T?)4yJg(RnKJ;KO7U!xsA-Y6W zwd|Z-Y;6CEI(hFEcMm^*CHB<y@aEV<H76ccEc@BhVcz0duC(t7!z53Y>$S`N$nD&{ z^LN(Dh_s0eg~A>Y+qsS|{LHCm_c{HkrAorb6Z*%_bJf^y`*8P)oaoN0s@E^B7qOqt zu)R-d<D`c*XD>Z%KV{s?&Teu3Qa%5l%8%xc^gG^e$=1mI(p;@|{ArZaS!JFE$0-{p zPwd~ds@6kU^k~O1vo&SG3s-hO;uout{X1*Re}?UU(ms~1n`x}};>(Vk@A6Z_Y&deK ze_y{_zH*9&<#T4ypQ^uo{xckO|EFFPmc5?kkA`uD|DoO)H=Gs!UDy-n_PV>(es_?S zJKrTM<LzF5LH)XW^#?6#3_pB6{7?4p#y#ALnKtFuF1+}s)5fVDK0WAG)2**d{6eM# z^R%|htA+R3&pQ6YwQz;|w|=g>y)M2vc?sQG>TZ&DE+_c7jo3cjGv0dBL(%_q{EPUD zn-856o5nV+()#M!>+|kxm~>a;ZRxI}ebche{8RY&{z#m1n^t8kckq(0e!8E%tn+`E z>?@C&=g=d#ZGp5Uqdym;<%6<6T0soVvL~45{hRky^=R+YrEhlSUdo-Orgi!{`zx!z zt|fIcol5iSZR;y$JKVi(dH(s)`l8?7ZXfNt4NWWaHS>ysc591F5K-R9B7fqlyJb>g z+}u?!@87!i%=q7y+H2|ye_fyDEpx%LFZI^xD^j~cE8APwEPdsCX;bN6X1|YS6U{nT zEvQgG_#}nRNizCFf_AjsRo1_!Ze?B<&p&je_2d^Wqk6}fpVOqKW(hBij5G2z`E9!X zLDdYatD4tZz4R{mn*6qYQ5XFuc+0fI$9HYr+@R9+bn3U-J0Bcas`#|eJULdC&>#Hc zy6ej9aH(&L>sOsAm!9c!#PFQ?q>5M7pCgSne)`W)QRMLQjs4R4*`>;U#*>zQxO@BZ z!hgLFLtXu}wjWKck6Y%Q(6#EY<=e0)Dop(TA6G5)E70!Rl2;`l)819geBD%PPO+aw zo`03__Z+jWQfnC5MZdZqtX=zXrUE<b^0JdJFYu&<pH>knunNC!&njek;cYXM&m>FB z{|wcVq91K)-ZpHXWxrrwugRPrQ%x@k{kinlf8##Rx-(Vw-F1qu>ZNSLRf03EVxJ`4 zI&Yb|UhJ0Se})>aiBA<04zuh1WMSBE{yP87USmnM9dkWyY}%dh=|&LaNtT|%dHh~K zPJhds<@}&uIy28ML;bS82=j@^<Y{+1<i8!MW7>E4@9fa;Sx@~!92z?g%I}%5u3m=k zKf|eAMKLk26Ee@`r%b<76W;YR>R_RsSxe|zv;Pbq^sB$hKlGP;xlbTp?0!YlOP!J% zI&tqFJw14n>$d%j_|`OeP32Z~nc~|ARsZhWpPFy~=KM#tvi#k9qT+Me7yN8tNWQ;J zd(-Y{+v;O+3O|yoW=cI>`gL~ui_?WX-F+4ZAIok1b26^N_~^8hCEtwMdRPk<81mSK zv1qDWZ;oGAFkSvp(Jg*%FU_@I{r_D2^Zn=^*5<Q@+`=7mCU4!6S(iEg^76L*S^FFB zncmENc)mlb^h}T0l5is(p5re~3OCv{%$xc~uws(O<LH@}&u>%yo4cDc_(p^AkB9x2 zFaPA65F2$S_Z{<+j)Ks}ApQ%VwD0W``ghS@aG&VCW4FYXn*=Z!H95_H)KYD=;q9^P zuRfEHMuqCi<XTrA&)@w|=FfK94|!V@-x~e8p1ow+e+K&>^2Wca_wU(!Em!1tr;^M( z14p~P2iIHdyVPZ9AoO_qif`wuer$ed|90`>ALk?<f7IPSxnQC5o#>i%OWW^F;@`bt z-V3jfjqzD8_bF_@rq~y#Q_MNNq}au=&%siqN<Q$<>Tfxlh5fdQM)T`s>^uHo=02{i zT<7|<WH!04`6Kvu(VzSe$^pAJUb@8VfB4tF<f~h>zkV+H{Uvehk&PP?CK>%%6e=l` z&&Lq;{q_1A*N#7aQ&{8vw<k_|F4vnW`!0Nq-m-nyg*=b*6IFWmpWRkaU-Y<8;uiNp zX*-Q8IbshcZx`ab+rQxLkMPP5`j6-L?@#ydn6}UUgUl(lj>>Se>nwlgeY)BIUN=vq zC~&9N0b%JsukXnF?Ty;BSk>`X*`?o=@xOL`x$wCl<mKffT2n<IU)9yWcl+kg+t;4o z_{Z~~p~>dog`%5hm;LCE`tYqkUt28H^IiTa?b6td2RS4xkDsgC`h~w`|AUTya`ili z^B=G8G|&I$>u^fk^RiNV`P^J3QQdOg<IF5i6wWWL+xSQ9$NmTB`|A0&-0$4SFm<-y zmB8tzCjTv6^Rdu$$phivH==i(DA9W5VY$Be@(r`e2JgSk@c-vDYk&8T<45H*4?jw8 zSs&<l^wpH)U7s`eANhCjp*`=8tbKCxjCsB1dS=|Nww20yS!v6EYCX??hJy<BDZQc$ zA6f1xU!Rk#mh1hd>&AbEv{M#^Kd<lmk^PVJ>2IMQekN_#AI_UtyM6Aj8PfwN%n!O= z<T?M?zFW7J&njf#34gZZy};)){vS6MXKy$5eis(s_=}IfaZ{H3!NZRAw^#1pJFoQN z{C0WXJ%V}L_VIkUH+k`~`K38)avw0i++<K6^+jaQZso+Or}_+cJpQz5(+c%@Q&qf- zC&#PDi-xU!wo>i>Y`a-gxk|1sSkt*9cn4o5<LZrv*6hv7S7tVCT%B6+E_Y49{remG z?%k10D|;Abaj-o3jfimkf$vA>cLe<j`mz2|edo>z{}~Rsu8GfD5hGBu`t(e-mgHMv zj(s<t?O%2OhgSPr^Cf?zesJ0!(v^Ci-dU&MtU7Cz{JrSRNbc&Q8&7MF+NZaC)qC2Y z)#Lu@JMZ<@2YN1n8t2U39*~<`uNZ&xKZDym`IW7Q!p^)p{-ampm)rNc-j|>3C)!QC z`PRlaD>Btmzc{jL@AQ+|pKUhkZ&mMIJIRx4+qKl-E9(k8UmvS2jNi8ZgY#Yg$W4D2 z{0Utsdq4GxjX~;M|FkW8`%nI7xcG^2eogpO8#%QP&s+l49$4HGb$>nUU*~^@2fh2* zqy0XZchzT9pYYLsq#5jbIpp)M+kO*oJxhGK@8y}ef1b+C@rx@S&$+bpa70H~@6NZP z&u+(0o&8gOPKETOtMdf|*1DBH-CZ{=`*UW^`I}|uXC8RzFWu_3m^WO=Y;x8y#v})Z zFDKW3KA5@iUxWY7AD~;8Ph9=-?1$}#{|twMPIXrnuDkn6tM~h!?rcuoo5#1$ES8$T zw%+u@jVSY9r%yb7eUP>P$<F7m<BRJLde&#A{9S6F<(nRSF^^}S%!g}l`P~oxl#|Zn zzoo~Xb0?-P!9C)Vk@myW*<lseB9lto*;D#Ixs^S(NIPJ0$GG{J<IDJ0?9G47!!;k? zF_YRiIeX^1J7-Vb*S`7l&VL5On!HCIX?t9w*0NR{yBJq?=|6+{i=Z9bx3_lm9$9?V z@%ZbmJ`>(kTo-n4+tTIcy35nUHT6@`t0VJ5Hs0=CJjp@XhCfim$w@SKt<U-%v$tm_ zc^>52U3koTo?G!b_E%YpHvag%So_o7W4%VN;*uo4G0*DF(Q6j{bbI~6byF98Tr+9< zw#^kc<}~s!Iw&t=ko;5p<GSZJ|L&ZH98()*zfJp<@=d-?d+wv4SNlFMlkha%{JURo z@0PjB+xtRO?w4mU9uLS9o`2eOw{(Q-C*6l(>Wdbt{7PrqZtBljaq5|c+n!C)&6Szk z++z<e5o%gxR&Md&amM=yaVyn#oknL1mEQU6h!OC+e4*^+d5bTv<5IK_MRZN8RsJ<^ z&WBLtwq;MHwNL+N$hG&VF@98A{w?@#_u4v*itLcdo*$1N>)z{h?0k6dp6<EYhpbFG z^Q&_6IL`=WO+T7sd@RT@hwWH+z$1H^S8--P0{=6xoW5G(-+f(tW%WnlV`g!RALh+o zb=vr@-rPku_kZhKEn}{8**UjRS$C7!RpE{I7{l+~cd5H9zvWfkDLaWDsvmwIh-3V) z_CG_{AM+2J51X6C>0E!SdUf5J@Swg&k<$*H%iT7?^VzYK>^8l3XP6Z^w*Gkgc)j=^ z|G!KADaL01XArh=EPqrl{A1#y4by%HOg}p-e#?&SodpZUET)_)a~E<KN_pdY^8C}E zY)t#Cv<;3pI?23SJoWOFDJegNwq5je`(9r4d-crCzl3eieAt;YE!L@M%1;qXp-nL- zi_PzDFWd8WUHdEhKcd1%ex)D2%l=UQ&Gd)LPv;6BoF}^X`Vt@Q^QK!TJ1&X#I8}7< zmh#;@YjQXu--)>%)-XNv@A`e=XCMAEykY-sQp0)qQ}5azUiP9{>p0mW#J)XvDPZwW z<C1rG_XOilrzUPQVwCgz&%hdUT^V%TK~qiSj?VqX3-8~);oely?|ms}@hw|}7k{{} z|7U2Ln8EolzFVHBPE=?2^h5F7HiC=o*vd}muFF$7zw`5ziC@;m$(+hO))vY&>*Vs# zpW9{cFP^o1(VLQwe8nC0w>EWe>h868y(s+Uv$yr1jrN(n+V)TSKSNXOAF0dX)34Y> zf8>s1tYkF#7Hj>V!72aT-s*3Uf3&WyJ9mG(f1{~Avr2sa56_4Fj8W0f`oGqjdu|e6 zCVoIQ%yp;65vEfz8(11+mcMm;FxUQwJyU&3e#@?GOR4ou%XgP>oj7yP;QAuPZ@)G; zU!NGe{%z$4?nnM_%l|X5TKu^CV1Co1>w(vD^7ZxBl)QWwbT9kKMV*r0Vw*O8W?Hg6 zCpoRpyd;e4$*x9k-IZ-~GtP^=^}Dgs>vvS>r11X?+w)4FzZT^&dDs-ccQ41%Yp?kH zv@gECd|~0o^$*?Ol>ZK?V1C5@*7tEla*Ho*^9d(RiIn0+AX*P4sEQ?~2eYJJvQ zH+#>GN7I6p9byk@YvnZT;`+3{!%B7S_CLbh57#%x9*O@j>rdcE+c&rUBo}VFeAy{2 zc+Q`;80NRJWs^TxKeB)0|H1r`eTRKUtm+@#NBcYH$xl9TPwGPc(%w=@9aHWZsn@<{ zcURnU&d+AuBj}iSY15YNe5W_)9nY8hyY!FygWTe8!9SQk96t2x?$)R0rZ1>i_dB}n zT*{<u?*9w|*_uTg&#m(8Drqx1D9yvj@@?ImeN&!?^-1$bg=(zY_h$aycdLTRp2Z6V zZ}NRzE1fHmq<!&l@XG!pmwR=5R#v~xeYSPGr)TVo68jIK+P}Ns|IpZfv{ofKZ|>^I z%xNEcY9`#yxK-rRe1my{?cdk8Y;+f$spI)~eE#Mo8`6V5K0m_#qq$hb)tlGqd*s&3 zCM#u_C+L+tnU`vR*X_&N^&Ozgt{%*h-x{|*|94Q`g<Jc3w)D%yMMStiy3dhem9%x+ z&J_{S?irV(Ui0nNS+uW7;!@D1B^y_q`dRen`1AEVb=U8yUir_ESI__Nrk&x3H{ov| zzV*8G?6Sk<rDosCwn^pg*>)>$X0Gz$p9N8?6?r#^7b?FAR=awd*IBsZbVj1GQ{Xf? zsn2?$n#X201?HVxc6++fWsldZw}u~2y}@&8U82^-`p7A{xw+gcJ$LKsXGdQzUHN(X z+ntZ@#viZWvi?}SMD%>4Xa5<F{L?VI%lBCJ?b)q69$#^3D1V{-E%;GebNNU1e_W!! z9qP{R6Yfp9y7Y(a$_i$;?aXS~w_~~8cYCJ<Ip`|wS)k`uHovA$E#~Dtg)232|Mafe z%y_rXlzsmsO=qhu{Uv#G3}Tn8HWoM_;5GS#dVlrD<wxy1>jmsH?z(@QyZ5Tv<vpn@ zvmVD}-xaddIlA}JBA5Og$)_1tgG?RPypt?izcaG&OYxkpr5Tr&`!0R+@|5<U@a3nM zr=Ixt`Ot}qQ*BaftJdl6yc!gCf7&Jg@V)CxcK?(s{*e8x;3NN0>Dv5bvwr(NSl@n6 zX!Er1k=NI+QID=Ra*U4V&Q4Oy?sa?jWQoAd<DHB;=fpWSRrR<0XLvAs{x<U?`OH6p zkJkx&c)Is|drjuz=vVO{CLXTMRqI{6^gzn4e^+)^D*m>aRVKM^(XBIOZ#zyrS@moC zvHkt`<^MBep2$h~yKs;Dsvom%drv;QdE34U#qC{T62`iFrvx~qX?guz)2k5Vw5ctj zX6<b64}HygGfPXq*&01dG})G4sC3&`<Cw~%JNu`qG-oK@<*r%Ke86<gXPIk(&w_hW z?p-VLth7G3?cT1{8B@3CpZ^xAqc&@yrs{f=rJ3f{ucn*iUcMZ!H2-bwdinnPEn!<9 z>9<|`?EBEx=)T{FZ_TA9b%C>eFXk-X)KtbYsqVtZ(^e0dl&3PYCb-t@U0P$gy}sK@ zy}2}d>Ae?vdfRwbIc?&M5We%adA*NJ`TF|n`;05pJ;R#rh3%iRQeykl@-o)*@-g8p zFJ|5N$lh&}`cW+R)io=dumU{?#dSBF=JY%6nV)}b=jw}Vc~o^+O;1Z7)80EdeE%xH z=cYQPT047VPA%EFG;{mSI9=^3vt9G<uB~|V`*8fG`TcdqXN~k$Kfde!Tk7l*2~~OP z2@@x<Pg%3K;cnL-<&R6Q7rruzl$=wap4TAzduN#Sx9vf)CoRAK*&kD%d-^}a4<|d( z8iOCM87(K%7oS`o>-KS)+q91}AL}jNAgJ+N#>{%oKU;tH+qd7Gp4;=P$ZCRt-^HKT zKQHf!T(x%QZ;d~Of6M+eoDA`Qv7YDCbZ4D!{qFXc|1)eWvRdCJ#bQ4BWMSPh3*E_Q zX3j`wm{72XDWZ?PKI`p2wTkOe7v4^&2s%|gU#Bu$Jj|>9f=lz$?Y)P#-Rx>gox;=n zdrN||)ZGuC{FnWxxD(mR*BZre${}<9lV+PwjJ%59;;Y_%(NMfta%Dri;4O#Ncd7;R zlEoxv{A^%uSD83x;=JXvzV5Mq;NG=R=TQE%pdYc5H%0HZ`(2fzXYg36!m68V@tMUR zwYQe<_q!ez8~w?q`(gaSA9V^U;lJYACcL#vxqoZ2>87dYj8(c^=6scAEPH!U$L`?f zAK9y4UObrlFj`wvZ();l{H9Fv%cfiZJd3|)wQi}JZdyd2kVVXK;}5TPiXN}158k}v z!|WeR4qZH4)wt)*N09`Uc;g>e!)zA_nQh*jF!^ZiAN`M0Ti1Ly7wX>Kt&yw3bZ1({ ztRTmU*UVVC=Fj-F)AFQE_^W`2H99Yjg__PUUH)Lp_1fzBvy&>0OT7y5vU^nR_33N) z-Y;9H?)6vtnBP9xW8W;tyxcIekR976skbhe@Mpo#JjQO_PkYkY%wL%8di?CX?2GQ) zs$V?`&%zHUGcX@N`#yf*e1U(873q(~TORD{v$Ws(CF$apP0TY(_U={<w>=``Eo_)6 z8nCRa<@lj_s@*j~(f9SFbT4kSHCI%a`0~X03)erdmnnFC+L+~~wp03h8|fqV@uz=g z*A!lk{g<wtyXxKz@5Iu~qHiyL@JsE^Nxc8vWr|9&<+0)`ALCt4KRC}CQ^VN(=;!v` zOxA7NcW>VoF-vrkce99_?vb4EV`ZDu?Mw9h>QYiBevwo@?D>SrStGE4@7-Ld$LlPA zUEllTc-)rlf2aQ8eXv_2Ot`diUDk9zPPxo2d#bBbQ|&dmpYM!G=2?8Xf70BD;8}j= z&vwPdrC)Ut&2rT^b<*VitT#1(A7#&H&zh`zZhoz$mfL$fCJ*JtCW+@it7d(wzU%JN zf41x1y<jzupXV;{`xhBh9xcCSRl0S>RwJEBrspEd`4&sw?f1E^T)J5G{I978SSB|W z&f8nDK5govHM7lTZ~opV`*d2^9fsh`J^vY^if--c?b~|w@M2BXe%|-D|NLi|pQ*Z) zu~Fe+Rms6Wzr)?F-l=!Q@}<A&ZYaJkb3L8CIm$!GZE|KROEdSAloFHk{4ZCpcx|?= zqe$Z2gkM^J?zelrdAC*7+(_c)w|5o~zMM@A7I^fgZ;h>8YT5b!SASPOSbnVjhl=|# z!Tij}t9i9OKB@$`>fSwbQFqBIg9z(AJRg2un(05|&6($!76BGN<l{f;H|OoieYE6< z!TG|69A94~UDnN8UcI_I+dAUI_4?ej^HWP+L@`gh#nrQ}z+U@5L#Dn^#q{I*<!j>C z{;~X!yS!~-Uq&I@<X*4S0d3L+8)IBGXWHF(VldTplh;Op1shXMe@*_+z_Q~<rTAO* zkMj>af3$CT;_A$>4@dOVc1$omwQUZk+2$QCF0)c68GkFByhSD@ZI4%oqEq*ZrL|VC z>N>SPKYO}uuK!EzN5>D`=Xx2>T*v?8bbMd7^n1=|n_Pk1RYCu*yw7f``#x>KoXH1Y zzNnw+-(7Y7$bSaL8o7_x55`u#e7nXpzWG0cME?4mu49MNFWY#QnB1J%p~n?{_w*KR z2ABB;Dm?Xx`?u>iZ_V$n-?041d)6OvKi_WU-p_k~+1zrjnR5418jlny+E=Vka2NeE zy(Z@G>N?39mk%oQEPmX6$n?$X`eEzy{C9bEj(@vdc0Dn%*67Sp`-{tV1gS`z@=#8m zRPp;hmuC2p%Xx;+y}bQa-rSlWcKd65{ei-HR(;abwx*xnzwE`&$N#w8Hkcpo?=$i< z$o*&bBPaS-%{`87{r&mc@@?9mZ+|nozScy)L-1wzhs9B^R($JMW=-0(kzdTbes|kf zma6dU^S3R3EB&GU@%w}O`F?0WENfir`e<%)Wb;uu!{4D>R`pgde=+ezS-<qgjJv7Z zT_%5zaNMrjDbf71KDTa`*<7ug>NnTrzEhed88GRjN)AWz<SRxE2Lue?$KRBbe`@-8 z(jM809iDsV%@x{zcJ=aW-|Z*WxSrGSwr<nvnX*`7ZTS8Co%22ZGaPiYF<zSSYktet zwPwo6-@1L>E}q@s@#o}rw+qt`NT#Z6k~8eP`m6po{|h;WkNijZ+5Y%_Sl64Fa6KwG z%j1KK;PLsHpL1^?S3T!jS6O#?p6b>ghkqNrs27asH<I2VR<xk*UF6iabNv&y1ug!% ze*69hlXuN}6({~->BLjp`j=)^*`Mt_lKHvP<M`dhx9&SxtbZP-c`W?kY2!mDcb}SF z{VitwXZx~;YgBncb=dR_ecj4#me$-~_}g$*jHQBJh#7<YwSC1OH^;o%r+R5iw(Y0d zg*V>`39LG#5zX=YK11&0c^o<EqF>mS)V$s(CH$#J_}BHOlMK_3-D)=C?sUC(_NU5W z@oCZ-Dh;9^PcSR)4*&2?@l}1;!!7Q!E6#DBEk5??X?Nu%mScVoHxvo0lqOX^zdbMe z_SYS2_9#C%dU4{PrJrs_cHUx|7xCvvuI+UDqm4lo!496KE4SLZYbh7^-n`vpVYlRO zRrstwC0Em`HNUK`IJBYj$>#`*P{xAZrw!h7wmbF|cs^QY;CgP^^5@@=ck5;!-9F8p z?~fs;XBtPR#7*v#A`88Z+0`5lmRt9%D6)$YJih&p)2{iRA3kMPu}?|tx~{XR)KTry z5}uXDc}`1bG){a!>(L(7B^BKvKhD-Zp1tFiuGXoGYmc03k<?S+SijveO+k|{a>E|R zm!Wow6_Wy2)b{%Zi|%61&x^geAy~PJv6aU>;jzkhi?wr29!;EXx6LL$qUk?FaLA5X ziQ5d~tz~*Nc)EWtpU5bA@WHePAB^KRu6xP3s6y$y*PP=r(_X3Rnpn?@H*|V)OQK-) z?!r`Ng_Lmh2lsh>s~<_n$|mcDi@W}5VqTL{ndSF1_RMoGN1MX!mZlf~Bu+7ylKDos zc6YR4#=fMBr`w#>{xj@pn7rfpiYHf{raqY%RQK{j-`WS>m0zD;OLCw5{ikQ7bB^oF zgNJ2`FS1KKH~sd!-9|T4xBsTzMe#x(Ye5A!SBu>JS`T+mI4tpG;?cr5$q$ZuKK;Ad z5YDjT^q)Hkd@Y7{vm3vfzN->zEv+vXYs}fW_sSW?kS?Rwa_{(zn6z1c@18CBb2iiN znCNNks+WD`8ETw=ux3A8FL@_h>5kj1rrHGs2lCaQ%dq||J})D4d7sc9o6S3ZbQeoI zZRSj93r#X>IIQJheRCJj#0IN`=cd2zew6+e^P_oXjZMC!*~GG-^OiMUoP5i5PM^s! zGKex$ZtmgB{`B2B?F0YOxxy#hqq8rn?y%l@!Y+yT$d{)Zn<^eln!b3X{I1x2<H`1* zBKx$h`Zw+$z19Ba{looz;Zad{Gs}wh?wEdBn6)iTnlo5oiniAd>kYPkh4G8yKlsnT z*{HwOyT7AOd7I#^D6`i^N}nE8Zr}(HQP>c-u>Xw3lk2PM4$V`)RA*Krd*vTX*7rl= z`!B0(YP4B#H-%kKnx*E<%olei{)q{H*?+KC*!jcp)(0Q_W~byV*zB+Vq<;1pr_dYg z98Vjl%Nxk_e2lX-mptjG?f!H2qb#pEsp22&`d9XTtbTZJ;>Y?2;oWv3e;l_qJ@>ly z<!8c<zE=+y1~|#CQ5QUsc*7y#ceJbn+x|1{kL25*e&Fw4ucP}sb>6vm8GBxrC-q%8 z6?~@4X+@m5=1z&modrkT3hb}W_x<g<ZK0HqM{!?;!sE-!?S9xD+kdwCA6MJ`tiL<| zX=NF;yG%cFy*lv9v4B-BeOzKSsZ-|hEAuwaUHrTGMedx?zQnErwuu@mD`QRe%jF;V zXZ<TALG!fc(w?p@i><ZmEA9We{P}%l>st5VYwNbojcu7O-gC+N0sqXtx|jm?oY1`r zKWFtlaFgV)Z&&`Av?0%I)2jJ<82_w#-fnR%nSEh6`v=K?Q~$N?*0?Euu(;p$*>~%m z0xR!Sod0Rszxt&>)`ZIaWe?p%cgvL7?fm*mdqI)(ikFvG+68>PwV`L$RY}WFb}5yy z@8(x0{MLJvVz=YLU*3xE$K?g|+y04W6}R2AeYAFog+=bAIfmzR)cmqvb4vIMtDM-x zlgz{Tuk`2F-<hw!Z9KWC!tOBVlcTD4UM*mrDSf(Iea9`8KiQA>_?(a9S6Uxv?d3hS z>a_pC*gyRj{^%VzZFJt?N7)wtncudQ{)wG_=7+zZQT|lnUC-rqy!_8_ZKdAb8Lh1z z?63c3Ezx~)W?iN1$MbAUrWY2?^<P`hc4_X#e@$Licb434XGne>Fy~k3O1AsQXRSY0 zvD73}NJQq!oaAPogCaXm94$N*US=+S*>?4t{|wD#@BhwD=qj5ipfW$^***iA9=^S+ zzlc9rH)D0yYNJnz0sHRu*`D89SNcd#eLC0lnSb5C1Rb#2`P6gW#Q5(0FY4Or&Tc=O zt>2?NH7?%TW#fb;37h5B-laa!^OsAj3cr4T^VTb2Rc;&YEoL~an(d&)E#z+TVB-CW zXKT`bt5mEG`p|!@*2&h)cXi>z*&lajy?1MSboFARE!X=Txtr^^)Nqz1ZM*WUrQz}x z|9O_yGd9Z?d7iY7%U<5}{67Qdl*^z0+_p=8Dcc_SSSC5PQvRQ(@X4hgP1n?Koi_jB z>t_*1?nNCwXw$qyQ=yN~<In1k{Ezm{&R<j$^U<&G;tsK2-&PBJnme6q`ep`po8-$f z*I$MAO?y{=OX>X40&9~E{@mKy0v_xPQ{woaPK=*xzcs!sZ^_>!f68{%xGGxRJ+ixk z{rgLq;|j@=>AJIi=V*7$+WF@{LvQcHjgQ0S)2``WJNL5n(7QWgFUylx9NP7u=i5n! z^7Yo&_VDVIOI~n3d)R!^;qT3v|72?aGb}T&mU>%q*6QQCIPOIcf3>Q!^nA0eD*U>- z?E0tZQzhSYH|$y$y21VIR4sQWj+dAAn(9UG*nFZjU3}q_dotJGeOdiud6P5CMbS@B zczb8qG|yY`oxMNmuhrkV^%*DMaNRufpCO~8@!M|0295`nAB5)^O|m>M`$OUS^XXlC zw7z@%IyY_UQy=jg%fC18ZagO;zsLIPcgr~LkG}WY^^>lyc^)!}op1L9;X8uoStAM# z@A&fI`ppmhlHsRUtvvX9ed*s)JO7>^=KQk*u1002-~7)o@vmt`e$3|UZzq=g49cJ0 z?juk<_2BERdqX~17oL@BT|R4#WYOV|C)Q8@$5a#cQEl&s&kox@Oj}r3zCeD`bN9%a z_ZzYb*@R*i>15qcFPX3_Pw!OU!+xfHhc;Z^%3JTd`>Kvh#;n@a_s(6iTGTONRm05R z@7}!HxTxuzzYLT6SH95sK}Rn}bQOhtwVzx(Pj-Fd5gXH#cl+1d_OG!|kiRvd?!3L| z^+Wsgb_x8jKN{?wzf%0%Y43@jqF!<L*_ZfFxA(oUQRR^V|Cj#^`NgW6w$45Drruc3 zc!H$p_2xS@cjO+k@2wX;yF4!ISM$rN*wwKcJyi@>y+0DTE;aqYfnN9fX@?pd)K${I z&;J(lci$fVhx2b{`|SVmxU}w9f1Cc|4|_gG-SV#0d2oC0vDqf~;vOx1`)JbLWfN9y z`5<!cTR^?S$JNdE>{<$UMBH1oDKqbKS-kbj{|r2JM;~mLSR<R6P-wK(ylnPOlXd^T zu0MU|Z;ST?f99?kr`p%n8U5J)k6ZFXyT^V0mOqk@ctfwhJ6WhZb&Br~$)!{3G-v$` zKR*9MbbfcB!|Mm<88fO1ZB(Xj-(LR4_`;S<*;RFn{~4tInCpM=@A&Aek@)tXrfc2y zKm50i^~HbGbIo2E_wCK>zq&u>U%ayEn7G3C)dHMq$EU6N`R|49pVoSLIphBfO}qcy ziBoAfy7WiiVTY6FN_y39i7{WWy|~-*`}#>W)xVSeU5gjouHR#)S~2gfgg~IF=Uaj1 z8%sO4Iaw#Ht$i2!CE=Ww^`mSj?Ne|6dDf{Pd0aP1QpNU`!IXWT`e**VEA_2+`|w6S z<NEsCEkAy5z4I};e_cxI`m_1Bvj1@%{cT#qd-1)=`?g<mw;$0L(Mah#?={CWk!7*6 z`Sz1Du4u{}<)3NzW<hHECw|s>3m;qF`yS37I9s`7d*#l_|9;P|{<rnTulmEiQJ)j1 zKVisa-KFt`p+w&6_nH0|cc&+2Yt8IayyE?4>8bgvcb9$H_%U+*C2{GlB@d@P{2Be* z_x^`X@s-7o-XFW)X)n7^@m0L=KJ~1%E3>1vEPPh@dy7k8$AUHmk1mcWZ@U!yE>7~c zw%*S8)L-+)(@vY>Yx`zi+9RwtJxQm2i|pFFDel|da(Bl|Z<pWYEVm$ix#`uH_k=FK zeJC#W?S;~Fo=P4!PKJ4&2hVB$66c?p_~FY{DT6Ixow`CEf0zwV6jq!%w@)qiRMhT& z>V1DCekeYk-!os(M816<U%;%s?X|qUi;bRWpPqDS;smaP5}9+-r#e|*{~rJ0`NREf z`-K14U$hgi(9&0T|M0d)s&>)j$xj^?Ivd(dE1sTI<ZY<7U;018gGu#_YnNOpt-qxn zww;@|VY1uBPZq`}828PsJb0r~A^3{nl&b6R5+*!uj6YiM5oa?kd8WI5^LLH+|J3*2 zS+i&E`8WCuKZNFmPxqEoeSh`#AMO0TcYm%Hy>w;TX{jHdzy0}fUj3l_&Fx{69e0_{ z`p?iAy2V$|_4h~5V(H57+W#5iKI9kpf1D!gTRWpy*&;+z<pF>3rTw$~e`w4<zW+ze z{4J`_+e@q`>a{+2@XK|f8>`CBFt%TbeLH8mDBCphFMR%JkLttnS<eN6!<YNto1SYH zZ~i0Z_j+NA-qfElKVz5Mm)YCiKUw-d`O~i358GOoZ^(Q*JH<;-ByoyXkH+J9?4mcK zZdOFNvE4X!!E(-%{@<^eKZ)LUIl!a2+KD68dP#4@JR=9S{rl&oTIyHMKY0JfmPfan z?mShz{G~MTi7TgUMc_I2xTy<yJo64Xb?tXx&Gdix*XZT7phgLvR8RKX%QO`(=qaik zF5Fqa>#_a1%-XD9cg{uDOy1PVP_(?Pz|}H^)nC><YQwj1gTC<cODj%%yltkYXvwU5 z%ya4avpZ)mx%SL$=V#v~w+(ooy(;^0-bd-Q;<p!DH$J)TaKKl{sBlh0#g`|w+0sFp zc1sui^pl(%6nx{$ww?JeV}+x=Dvmo|+mYe@{cHZypK^Ulvnr~xKxabyV1Kc8<=?6H znfWbtOw%8|Kf+z#UZ?+ouUowJy>P(g^eYRmez`4Hwqf4&H*b3Kk~?q88Tsot2ANs@ zWdGLm<N1f?!*!}Z(jTmEx#j!&kI@J5&YVB4<*G*v+*fCBzi{WkcdOoWWowK)^98qU z-l{Y4px}`PA(lEP#R^Y_dDYA@`#av3?2fin+P|Z<eB~hzH_n$ma$Ap1E4ZT>_I<gg zbF|~_X*SpQu9;lDJ9f8jzq{e1ta%5$<|uQnjteWV*|zoFt!t;gdA<30`P+;i6XtIb zKbGGiFLF;aSLx%r^{eAmf~I6HXbza>ERuJ^%lJ6A)}$rto<5k^94r3T@wd~D=5KR< zJX~E<_>r}B+vMVvuBk$ix2#X{?kN+S80FHbvM{#o#`Z}EYR(iGc70ggv@bh{fyvME zyy(mS3><&Vv)8`v)mzHtEs}j;qBB#iVf?c5tZj##=DNy1JbKK|^V8k>C#&DtYen8O z7CrAg+iUXk`bXE}kIqlZuovE^P_f+cL)q5#_ZTZ5+|~BESmLSJtCa0+E7^Ucl|dk- z%gv~A?X<Lmwydse@4l*2{wQ)!@7lYiJFn@jTe5$4K)QCx_n?jC^UwOO*|d3M(ksW4 z7Dt1<EpjV^8(;Xb)lFTUpIKP&P^ovmEz?TNKdV3A`n=fhQ&`teUF$0O1&J$?vTl0r zwAJ6e`~9mzspqY4YFume)~~Oeetq(T)5WDGlka$h<i>vXI;)&ez--7+V4yu?^27Gl zr(Bn!n71!DdCYiTGxN{u7tHSQU0e6lJCaehoOl0u(e2`g`2}NK)(9rvJ%6UCUUfaQ z@FTJ4mYA)EfxWwm^-mh#TmJA{VrR{3ezp7G<Db<$7H>AuPGikglK9V%B7fdS{@AW) z?d)i?{|t^DE)2JrJ}jtWyih0lg?0bI>f2jBy?ZBS_LX~{z5Vl}B~kSU)~fMv|DHC5 z-+#*YH^%+vKdhg4rY7%1=GyF?_A2+EP5R@%=s<<}TtBZXQ^aR`f4cs`F5g+FLhAtY zahqC(_dmEc^X{0rXA9Ta7X}``dg`ry{b%s};r$@jaL<jmKIf`T-d(D-P+@#~v@~p< z_=k6M<tL|RiYTl6>0;xr`mv_|lDux;jH;mNYp1{Z&!GHf(|-nL!*k~a!wkRd{ww(5 z(F?0H&;QDu3rn2mw9VrC(SZGbXXyM1k^9dOwt1r7(!-VA#%i3;mwDJ!HOE(aCr@Ar z5<R}&|I(&g_kIb4OCNaQUY{7R*z?OhdH*w^rvBCWfBIJ}d=SR?pJC6{qMxe&(w}dA z|0XnBWZ~uDSt=G1ijj@K9u&TfbN;aVLEPd;zUDEPj(&;OGhM$)nN?-`%?WP1D_=gd z{C@Xs{EG7LAC8GtFEwnn-t?f)@%8yjdxF0OTv|KX=RzrGv}Wn5yIDq)Pu`S0vz?`m zQ%w7L_K)93LRBR{A2s>%J$!leciSpCjugSADl7Mf&foJj-2e2(pP*@WrH{Io{#~t8 z+<NKmpSe=pyjEgitfEPOuTKeI$^B&de}=|+Q-7}c9{j3&QHX=&^+i1C_nCLT@A_r_ zt@mT)$LYuPC4VgY8RTA@eX6zb=V9)YO!G4Bec=jKljChO{>2m@TXE#ifs}_855E2} zp7l99`PHLkudmmA-umx#UHgrPA4EQU49Qqun)`FE`LX{DBCqQCx7hREej)76^1bcR z!!r{XKUC1p6=2;LJpbNC+u{pf*GKQ#eZ}NI1LKeMn2&kwsz-J`-MMGS<!hdAqap%~ z-bN~iPZBNSY1}q{O7g<9Rqcmm_56i@Om=o_xLe!qczKEPX-|VE=bm<?l>VIA@FcM} z|4*U!d*STUws*JByKsv=;%?cx8?%dLG-UZxCF~l~_Ae`nX_s_o*9cm_WaUzcx2Jvv z?fd)g-K46`KObA2|FB-1J*f4LmZfFsr1H#~b=zxAY_1=&`nEj(p~jZfO-<Ud{{Fps zH7~nt6pXbNIL){GbpM&ofs}NH54PODg^p?KZ#ow-cbRDl*AcelLmvt_j#WKo&yNYW ze)v~7=F(P;{|pb6l1<+9+eAmsvRL~>f^+UFbImyCyl*zw7iJ#H?s&edLa5+BgG%b- z`%gPM?wow_bk~L_JbcgXYY$cE_!xLuJe%{MVf}?ar+bZSY&NcoP(982H~!v<8bjH6 z(;s!dDV2D9_OtGsiR(TsJLYOA$EmC!rqVy7fS)1x;rp(t(&O!al2=p|2mM@^n|4!= zk@>9SQxE?I`qFY%lP`;YTi@~JzECCWmTaf*eXUdfY*c$Fyt>k{NMg%O?N0^;+_@(o z?MwK(Ld;^H(VbU8r{tc8ZteQ_HXt`*om!^3QqLrj2L{2@0}l(&`m_5Ok4)Wq&ZGKe z@w4nBK4cqDdF|`_r||Y4vp?@@-q{?#tgjq#^+XtB%mcIH{|vAHWN+AZ`KxUFfm>oT zi~hx~5fE*iA-qd`mgf_7b;Y?)p7*&~tgH6AoO)&LvQ14cZpGWrq&^VhNVnY==XuUy zeeQ>A%NJyu-A~^>#dEm}k8@F<OUi;!NxPYMU%1xWK2krmuKy*^zWGMwHY+lMqVFGF z<MDA%!e$}kBX!Xlk~V)IS$tV1_33Ww=fe`m?%37evTgtRWqs*K*51B}onLOI965FB zq{f}y96#CpXUqLO@jgyd>6O{_=WhiTue8*aE?_Pyu*(rVAE)gl8ne~v)lt=CyMHQ8 z7k(aR^*HcgQtkQRFYjYY{xjIWJE@Yc!c%T*xBqX}t&eIORvYx)Gg>+^GIHNH&$l-c z%1y<Zm#)40%GH`xp|XAQJdShxk7KV)?ukxU*P6WXV#Y1keZ5Qk*TnQrj@9hbkrOj} zf86Ov>3PQ=;R2=8*_jyJ*Ou%vzq&}tx;lyJ7{~Di%-jd$pZp4+G`FYRT4tU<`}zl& z7baf|dS%rY&m-6I|Ju*p57YmMEq)+=U?qF=AM1ziAGuz9yB?oC<920{<YhsL1=UM* zB4>A8Vii~+?f7$3{i5FFZy`S_fBRM_JO7ye@U2ojLq&VwCA)hbThrYtzdf>E!R5}J zqr3NMi`eT+`#aA6P&)r+>7)M)opmM`>U3XU$gG;*_N6x<HtL4IX5_Q|m+znH@ZBb! z@pkb9&T`&Uv4RECUH=&z^jq(lT>Pi>YS#NhZ-YEdcF&gPxGQx3OrLAp=VG6uA3u8? zEo*pS)OhN_=by()gXYO?THcm_=C8Z%vz4A9lRg{%XGs5PXZ!Ea_gVKF|LNVhS8@B{ zOyigvuf7?X-rTq~;@}kTte<m}bt0YG3K-5a?VsNNL-YKb@2Ts4T(fn5D7$Lg{QO6i z*WGGz0+(cOJ6$l(tMx?4?&j0lee7{o|9UGH|KsBR?O9{{k-y76iMKj(%g5BsXT|z? zzaHJCw^VlW@o!D<0;lramJClmI?2)W%{=oTsjF(-|2CQ2?~Yn?w(xK7s@TlyLT+7~ zrbLQ)oR}eWs?F)d=>yN#i~joFI`gd0a(N!_-?{p_RsZH2e||4ml<}-W^Fs8xy>IIE z?sNZVNVzXo<Fs@C)jhGbwtbDuDmzkp=9@jMIH4=!bzgtla>Xa-n0XgJ<8d!u@bB!b zyrmzqBlmCE9KZd<X3r%SKbKEFsoJ1>`BcGDe#zo#?2Os(^5y=RcOTpJr|j0<JKOe2 zUDkcPebdD^DH+NWn<ktuIoXyH;B=g8!VZ>go)TAE*KE<XlsY7@bnh;cqW}Z%Dzo(r zUk*IJJ@4z^d^^J<-qQ-EhrHPp{ds@z&nz41wiZ>+W4~<U=l_(S{GVa7-P*+!=RL05 zvHw_OGb_Af?b$OLe6niYth3Ax-c)*+;@rPy`StnN<A129ALf;RXy2Lqp>1+`aoxm& zD`IVrUZ18iDSCqB$%v_fp`oD;f$xfZ>)d`EfB1CzVgK&wR(HOa|0-Rx+4N}3G}XZS z=j@WTY`T(}jCV$|JyT#l@cP&4{|qeWKALyilz$99CiT6;RAkSli(6JGZSAs{WV^o7 zxIH~JRPSF*mXX78o8t55EACEDOrMri+!c0h?(ElVr|w^GeEmbUY-gKQUwGhd&3pHz zUw;=r@z<TRvpe-tes5&*UoQG+7vt6|rf-9a9Ov8-o0uZ0<yA97d6^^oi|lKrJLAs# z7))ZnCH*|#MTM#Gy841&*V}5WgtMfkt$h@^FUae*;W5UP@^j(J*5M51L5A_qrhK>G zqw!koypQ+9C6OI(Pv|UoAb!$*YR%S<a<8)Ys{Ng$k{KAGaeK$=-7GrgLJ{lP=iL#q zSYPqc<kOw#okA;O@(!vz>1#;7{kreQ>v)SFn+|00e&ZC<Y*%w=wF}jr_}R|#?o|hM zxjz%*XNo;qyYg6O_)GnE`^{_KFQ|SdSAE<6_cWvC&$*F&Asf##?lq24TfH>?@1#es z{xkSxXHLE4`LIE!Yq7mfyT+P54Cfn8UrE}wm0M$-Vxmb}deR!h&nsVkn!^3e;>7V2 z=K6P&j5yaX)tkF)b;R*Zksz%#x0g&y>16X@(=OciWQvWI#N(hU!*$zs%iL?d-zpWm z@zT2*SC#r*yKjs5@A7z3a!|+py+MGz#)6dG*G<~`NAL0P+dpyryC-}Tr^K$<eV4)7 zStIAqrsCb)#|kI*TwihTgkHkE3Fo&KtWfPZF8TKNg4-dDR~{Zz-k7I7UHPr?l!(A5 zIzKbqr>nGlI;?eM*UC8a$}S^EhLS)Zzwq9kwbE{-F3l&W9+XyA<W#r6%fl_$XH+)l z%Q?sOtL@YOGcdifllwT$Ce(CGu$KPK3ro)g9(reFb1bub{fs62hEozI>_1}s@E=dt z!4z|`Mf_V1bHASy^x5THWX+n}QBStazpM57!0%Ih+IQ`wU)@q`eRTY4(##_h&q{dY zL_TO-e8c8@W~{1Z{NAS<S&J-rcDJu}n)GD1MXK7|{ujR=n8-<Aw~^0&lKHJVZ{lfp zq0J7FA3t@Pv1uKUVdF8J^W}E@(e-~sZy)|PpV7|l?yJC;mom3Sm3KX?SU5FAV!<9+ zi?rC;PtH9kYp5#h`gd+0YfNW}wf7Fk&3f}vCYm0~4SChKFwEhI(cIs&pXwBNJlfw| z|3i1)X8xn=<$k>PYrIrkT$Rw~v81Pc+C3v?-o|hl9-|d&7yEq`Y-98F@|9m(|H12i zm)YbW_dVLKX)K@jGw2?tWJ4b(cbkd;+tXWIlQ?V*<1eYL%uRoIU&ejK{u$xH$%_41 zeu4)MKYa4@P+NdQ@Tcb%$Fl!?uYWKle(Tn|Ter8bH9dWN`~GdS7>>@Epw`i6d27kT z;w=UKGNtR^&wj9OFZ;3gEgLI#aktL$$Xj0e>44M3(~~aFI9bHUal-QX!u5)YOZ}Ft zu)VzV?yQiWE7|wm)|_8$(yX&)ZGk~c9+!o(+>R6f+HF_=dH$c_!N&cZ@BRtY-Kn$v z@Z^xQ?6D=cdW^h|xmB#c{+4mOT!min1y+WV^<NA=v@Ok*Dcg7~f+KiJqS_NnWoDJ{ zCoFCHzW&)+fAE|<!<xl*EPt1n%s6x>%hRlNg;-9$*o*IGM?;>Zy3gP|?_^;i@o(WT zgO4%=G46gsw^kMWe79dTf99W?kFPoFq&db3Mjg5oult{Y?dG5Amir1Z$rC4smmH1Q zTA?n>ZSd!yXiw^aBelP;ZC!dv^6feg%busl^EjUEztXnF{_ILk<qM6^m6z{zG@8Fh z>&e7D#U?>LqAD`K`v2_>-8IcZz~is>Oyhamju@)_6b*SYxpDrb{c`&=&kOMj)udi~ zr)a->`;Ol-6_(Pv0WJmA&m5lLHvM(Eu<qNx(zB<;4V}KLuyIXXv@&r|U&V2y{oJN^ zgL0FDCkM`Wm-(b}#uw{l$%^OWT37%4{E~B~MdF4ZuHR-){u!zNS9AWw{|s(>md_UN zJa)21%P{`i=iL7cFEx(G?Fnl=WHeQ!$nE{|Yb(;9-MwzH?s(9pd%DX0*Uo*9byClt zSzvzTw`9lzCWeC#o|M0hKW(BmeOG;)clDfVCW}|T&gWbsYTiAcRlCH~_DR_%`zd_~ zBR9@rD)6&7r+MnTrbwi$!8^O)3*VN!E4%(?en)+3eak=dzwP=p&L7VEMeGTFD3dk$ zj=-{4zZj362{LNa5j0lGGGL71)Bd=%(Pvq4-;8(KXQwGzZoMkY$E#X&bQWjcL&v*U z3cs$uc)qQO+oF7b=`q`V^X`N{pWn97bL(r5CkpzrmaE^M|1y4oo!rj8>pp+qi8`FC zkU0OJA#T6%N70=c&R70j`lTG)s+m-1Ty|A|r}?k>e*eyymy65Guh-R!)~K;u(I3EU zx{Z%L&f)Q|>o3$M>qOZ%uU|iN>X}J8nF_XEpIhY?%t`p`S{GAyvTE_&e;2H#th?P) z#ri<v3Gd}-4VhZry8a)h1N!|w)C6cJS=@Y*qtA0hk3puf`N#DO1+DBn`vf!ogdfkz zI`Yv?YfIU#KSDOE{kLwuT2q}{UJ`hGcGJApbAHy(3(u?Vx3kZ>ZT;8!+su#u8EzkJ z=neH2vtW(7baTpIj)Q-)-`2O^I<fQPB-7o0k6BObbGvl-@@3F;*n|HJ50*}^<Nx6Q z*48BITW9*y>|btkSE%0ld2REVgFZS^@5B_letI97aDqWW&M-cA`qNKGu7oVQRG0op z;!gOcWv?Rl`<_2{LQl+%Eyg&xsY>uiZSBr=CYhIxO76-yk^0~p%hxZ@um5LQA2+-H zVYTI&XV-0{D^=g_U1c))_NlJz8(a){)=hk7`GBSAvqPbr`;5+}!!!E|ZR|?cEL4$> zV4P6+`n-SDsx4ZHudGZ%XCCLe^7^RXycN&a>c!nE+dg5w=Et4>A0{yu{z@rZZ}2g# zqomgVt=VG1Gajk0M1M`NPHbeU4qtlz*hI6kynA;GkMZw(b>!<8QL*(L*S<W?IVF3u z;qG0IrxMRsuq*c+mt4Kn+DK;Y!uRnT^^fXv)mZ=7$ltb4<*d;U|Dzoyd!yexsGQi& zetMpbw(Lj4TQg)TTR(r|`n&DJ5<Ah^hl4Y$c;A0}c<Idk<lRY0a}y>;S-b9PQP%R{ zI9Zb8v0sDBll#w=3bRYTPOc7K9(|D;JW_+V<ehk~xa0Ah$FJirgui*4`uKd;FTLq@ z?HoI2WNyylyP&n^b9btT?}CUao;sb%#?F#qtoss99eMuc9K$2l)+1iRD^H7O-+g)O zKf~oe{b&9-olxysEHz=-Qq{Uy{~6++)K))^@08=ZWGDA(KmR|07oRc%E1EpSBX;gm zi*DPtCE`q3rrNi^cP_6!YwoJpk{~$Aa(<)W_TJLF=?{7uRr2LBgQ9Nn?r^!b<&bHt zRQQYf;^M4}4Hjw-zMfp?9{AzjdcN6u%S*FW3|ybB6xMcotD++m@i>fO_u>sat0(P^ zmepF`y2p9NAK8z->yH>`tu0*~d*hYIPt}ED!K!yQuK2ykb8-L4qC3ZSUrC%X@vrc- z2P>RfR$eHdvTJ+Uy-u@x-!}c8_~(27k)${^(JZ}?wVO71hcDgz`g0oZ&dXc5E534v z{5^X}XX7-PHxr%p+%H_8^2c}chG>sx4l5o^5SLK5Z@0g+-_xe{x7weQtNRQq)_ea* zesDKB;?m@(y^}6IlVAxucI{c(&h3J}1s7dTO!Vq7+sK?5x60MxKf^(d{|q_uviF=z z3o{p0)EWfN54>{qZs4v*+!=ao?+X=d8)Y-vWu97iu9`8&C;8erum22X{}~!D_dbZZ zEa?>T;YOv`-^$p1fA<T2tjqZO>srmk<T>GA)E~<KP%K-md&v9oe}>Mm3&+^c@=acP z;+@^(*gHA@8BT<L&2RkA@SuDDCj0jO*^kz`AK9lmS>fNWU)C(YST8?n-T1ZU_x1TR z|0?cC=9}FbZvWxvzisgyo8~XxE_ikO)}DktPxgDyKNo&zKkuDenfxo`T>{R8HYj{x zu$lA0`1Y;6*S#;iD?RBF#xIidLN?6(V5;S<<N)rI`!l&WMhF=mtq+o8``cuntk2Z( z<YJx7OLL(^44zw6CkIVezUF;=%Cmi&FVxsCsHjre@?qcH?BxwiO1B(kV)(kuG%UV| z{`gn?rT?(s;(1~%bN@5UT>3*V`P-W2172HJYE{fS8NK!X^W-1fKJu+jd{7;j^)beO z<zm)J+B0~#g&)Yyb7?-Kd#>DbO9GR?%IDz^_v|zLvHp>Ftgy${?77L|d-_gY<eGo) zPK<|ghwS2(JB~?gqKr0-@#*ykUH_^4uzs}vZTy;7bpoH(<!;IL&K0U&a+rJdZm}8X z6%r>LGMjvYr&3Mrjo7|L{~4NmYxw^&v@CzbxAf!Z=!U<|hgRj3ygmJC-_laClnE(C zxo_t)H1}SfP#I?*bhhG{gr9un){3I@Q?1Rv&AMc3b$i+I=Qry)uN-+k|K^ufaa_I` zyL9j0**$;Td=5MDjQOl~;xFR4Y|IXM$8ufFJ+p)1yy4H~b2naHHf8txwN(Xv#(h~L zk}nLy4p_WCTR(qBkIU=OsZr}bP0rnKzS@54hA)a<b25X&y29c*el~yG|Kr~M&F>G$ z<{!5T>6&%+Qm?gp*nfukuNQ>M%O2s7OOxx2Kh+|Y#3C&@b7RxFqjUSq(rh*xKABYH zsq!iNOZPvn^p9`rl>U_cXK0OGd_v{oAAw~zPvlSY^-7R>`z!go<|a|g6Ltwl>&hej zrUzAqEu6boM5un^`nUb;JF<W4YlLRKwA%Oi%Wv&>*RO8=DSb5OTjaEi7Z<OY{Jr}6 z+x+{>PYN7Qd2#b>hPyQX-b-6^O?s1lq}{s~eD3m8?c0_=w|#sc{p}yyN0C!LO)9@O z+Mfu&o4n(+&f$7_LDv5a`P%dOTOazI+W%pN=bxFU75Y~`TC#iErDObCV?8=0UY$9h z|IAN&;ng~^ACrSO2t>Sk?l<9UMUs&D1@U9->shXg)u&Y7jW()i4&Sve$Wz<+t@H8k z!K}6a8K%~p&6lvqntr@<|CD6)A2;=neBJ*@^7-dY%N?tBs_f_9f8a^!{H}cr7iTV* z^~GB&MYP>Wz&)q2=bz~_tMkX_%Ggg|`m*hT+}eVJjKB2N<)eNb_xw9y4{O@Rx$eR_ zuQ=0#&((K4Ue4aXv|7CVALk$A3nH_9wQdMh{q(4+`gqdxQPRGNHTLd5M6^Qc%DVpC zwp#f^a(<G@`nb8KPv*>jH1Vh3KhuwVTgx-eCg)5%vq@OUVa?MS&IWH!KKS-%H~*G@ z7p0C!>*l2Qij;=*+5G-<_V$g!_~laX+xOUucki)I&CHg`xRfO{HI#Yk)*Dv*zcRn9 zyYk{%*>W?j6`Us}WJ+XTKQ^rQ+_iC~Wuie~%(;J`^KPkLy4%0};9uDly9)Y@CCwhq z`X1E#HGjQ%@uxa{rn(Ek4^wwlOlk1W4_E&8Blyc}@66w3Kb{{EXL}sJb6(kVYuy_g z&*z*tz#ljD*A6pxwZC0U${Etu%x=x|l=$+(Uh8K~`X%>{S86ME1pjB?3IBJu_?1B% zL%|oF*P7?<pH=@A@#pHr{VCSZCrF=o7rE>0#A}9qd)@@OKaTtSkiX%2oWv2aYZs2O zv%j}yeP=FI<iE~B^lS0?{QTJ~W0M`P-f3mtAAHnL_52wF$9GnOulV=Y=w&`SFZftE z^kZ@Mrn2~=jo)t8w?&Haeop+b!GCx7pV)K!ejjpM=VU9knNF8b6)f!cbGPr!T{j^) zjv>KXj{is4uL*Bo&p)<A`)rMyvf=uun5)a4zPkPA{Hld5OFg5e1bqoJSje4s--cb* z&vLcXBL;Vuw`~$@eH4R_I(>3ktSl+JdQ#BNi$yB=j~owvIqE0#MT`B?=B4xQFd2Bh z-4bGWy5LpKgx8H%+vV<7E-f&PX70;$oVat%&V^U=k^@C=-I}*_s(Imk#+Bm!b2q8( zoc36GlELbqx(b%}JL1LmaDH%h+xGGKkzVo8k9@tdZ^W*LNvWRQy7W(Xf!Duh*&8ls z1~HrcNp)mwJh<NBN9BJ8R?tScxF0Q*R?iRAcZx|n{Aci-AG2xqX(4vO+ph|nL{jFl zIXp<Yeo}s$&Of$IKiF6MKDynqeTRGJmmSw?*W3P@f7g8rQ-slUJ;T<3h>6=xfBG(} z*qgZ3ZF7@lkh)@_W$@Hr%=bU6_vUpnYQ0(VJbmR~W8dGI{}~SQl}bL|_VMcc{y%1^ zCniq!xVkP-w8)&(<YnHKl=?jfN)N90|55l*|A$ieky@_f56{0@|FJ!O!_{S5rXBX# zw0ryRJu^&?<VzU2uef!v==gKXGY31L&R)6x$@?SwH0M=>zRNAxc{1O;-rjf7zN7yc zni76!e{20Q_qX$_IMu(?|7e?cZQalIvfOI!Aqm!_OY}w3B6OcvPyVa)vQ4qWW3BqV z->YX`DoGYC-Zo{*?TtT<Kkm*<x%S6TeZu*Ek*t6oC%3!PjTKZI6_{2q#8t}rR))<` z3peyBDsQv+eS;+>`S#NCHh;0K)oWkZ>295N=~wnk{q=AEGh8{IUtC<M9CPf#_H(^5 zXFj&%>=N9%GdQO8ba(XQTsiqOtlQJ`uHC8l&#<pb@c85ST&Ezf^TAJEyMEr*zt@ia z$L~Y(e0!XeSN*v6>$I=0`(d$($G)EzI(GSXjNc@+R0VN{9{Ieh@9HJLeD867q^r!W zIl+0yBAdGCBTt%kXoNZTS;-V+e-1x>k0HPFKLfu>{F~h?*5;Xbzn&eQ>1?!h?~mvi zo!XNOwLF@YSp?5j*q7FbZMc@Zk8}N@r@MZaEnOb@v%pvH?(*zu{Rug5BR&ZhUl6Fx z{<XPzbB&w&v^6j5-cK@{`u$>T^vV10KHE>*@tn17v0P~Q_jN&gayNx<-al*WUw`8Z zTX)`j8Xs{*F2Mcf(z}z6$`sfIUJzxMDZbM6EBxV{sMvWM?PjlTWLo@`At-Xr3f`VC zcP~7VJ0egVXZo<dA$-Hh)vtH0d35mY+e;OxyK1L>VsM|eY5okQ6?fZiA7=bxd2adP z`}}ume0S{lu&?#8YM-oatbSz7=Ev5HGv?VYIKs#F!0B=C@}9r%lns_GdU&QrRA*Yz ziq+1c&vwuEt|+^Hc)!3uZSMWNuNHoJE9krCTUPt&Nf|dAr-=W481cZW$V_lv_DAi< zcH5KJ)TDis+qqo9tUhn%Li;1iI$lE6PXsDo&MEHt>pJh=e})HJ=e|Fh-!0@bDK5%? z>CGGN#&hnt=bgE%wMxZ0Oz^W`h|H!YZwvO1&m`ntiB0?a-RFj0LE)ah3JV3khUBGn z!jICj{rn^<PW`Q4zvu7g!#48*O0_?2T{`{sPr36SHYMhLepMb;Rkm0-+CTNlE3sp* zOnwLb^e*IT?@v9Wx;^@o=coJ6G=3b7xx948hAZz)(l>NT=zjN<xz_vXZMuDx8Z)1f z#KeQo_h$ZxvR=<!k#sNjlZ2`E?vj~pW+J|q7pONkDzH}f@o!C5J$_3seUDI)!|$~x z4wu_}zJK|{`lB&BpWJu;UM29f$>aH-$Q5xhcRdzv=GxI?^l25x<AP%$@}CN{dY`wN zX8SYUtZ|<8>c)+%aG_hyPfvDwblCkYdo1nfWcST2WMZEi-~JUhBky{J-h3DHo=Ior z;esOf&oAS`*S-98|K_5;+=<7FHu<>mJ(yqFc~T+0=Pk4P<X6@jhu*5ZarIi6QS2Vj z9eP#mip_>ak=*(|t;}53-`2-$X7;}1@`>%t9pwp@Tzi_&v#)&rHZJsGu25~<D~(0g z4AwKg-@a}i*f(#-y2D52DOR6;w)Jwz9)n||8#oTy)Z9F2_v5&|*Oy7px;oEGYHYiC zJnqivRk4$1{`|#w-|qMYt{ZYf6B|-zI@o+V!~e)S^scs7vu|(u{(wsxq}_@b6X&^Q zOw08-byUigWe&qmhU((Ty=EMzSKI%;{v-Yy?~j9v|A=k5{MJtX$7|0^YjX4!Zr#3F zH{T>zxL+$%_j|6shVPNKvQT?#zT?04{+(%R?aiz8AydxvYTu%o*S67tygHlqPm+?I z{Vn>$@(BhZ>AgFi?LW8u;eUod!v7f_iE!60&DdwL_2Smo6+LBvf4g4VT~%58`$XMU zZo?iX#=Bc5@0T$BEx-6b!$C*;T>YEI5qp0yKk^s56`Q%MDpEx_`gZrpH7VP+x@`}i zDY^Za=i$nU`AH7^4I%%^;}ySMt=zCx|A+jt%V(A>JRN1T{C)Yc`9D;8_8EOV6Q|vM zY+_c_vi)V-uLta16ZZL}&PlbGsnhO8igBD1<$ib2fx$-bYyO+&kI@JAG5xSr|0BHn zvG3I5?KZ)dd$#obi=L6UV1H%ENtRXRCJi1O0Uoy^1Sfbf|2+7&WuMWX`XAqa$7kD% z{nMy8edO2nwk;7;^|xxiyCzl};3>KN(w!)G*)@jyXQXH`ly!!t+}+dsxAoP1Q9Ggf zLzePg|I}WzhhKW;@m6o0ZbDbuwgyH0f>vWa(QQu}diJ`xmL(Nl)i|5@%Ij^^wHFyH zRvx|;_5IKJr|*yKl3TdwN7whmR-2~m+Az;MbLw>#8{LfuWp~Oj-+meA`6&CwI{mn7 z_osB^vXtoF+xHW6fnSBQ<B!CTt3JiEXDyE0@KJY<)Y9Hpn@*&3m2z<^|7eJ-J?9_w z!`Snp-g;B-0`_;EX(wNJ@yxH|W8Yh!Q1H*n^uvZD{~3&Y{zX5E(OL0md3&tnNBOtD zk5A|SaFKp^$|<()zL4bRIW~ebRb-1KHnU3n6U~`CvHwc^57phbUj1iaGL;uTnk&0x zz3twXmm=9xTdqx<@QHWNwnxR2@88>}_jl!%^DT7@A5!KE@6(R<*Iha3-tCi{j?Xte zY<A+VxCT#GkF#Np#4%|LiN7NM8Jfzn=CNMipB`!2-xmLgWye1GG*&4y7mrXcEAuld z?mX+H=iYqsA-nyU&#BoDHG`Lntye9-Tv}YuvuV}pj;ocXsp7A<|FQh?zFY5^=QIz$ zs~vjL7A#L5B)>kN^*O$sS7ck%+pmWtKG(fgso>qP=&glTmHghz%C^6*FRJLhq?A@? zvuT}MVNX@x-p%t5?UZM5_;~B}ns-b67NqJ+=Sh?>ue17i;yHWIv;7UvzV5Q$khx?* z@~fwpuB<rN=kug^cmM3|Ifa+|qdxvk+5If-UQqb?xFwC3GbOC6=TwI;e>Hi@W^XaR zLlG=0lY2fl&b#aH^E-Uzt8Ewe{8aSFVM!0#)5OVjs%H;hWn%x4%bweOZa%%WB;erw zDwFk38;bYYyt827pU%8pxv}TV-I%*K_bYHuo2MYXx%t!EgLleKtXaC3yXMZb-LjeL z240iBLXJrkty?%_TgcocQ)T(8QuqVoLYL0YuHfNR<a)Y2aZ1zS=1&bA$})W|RpBL? z_g#u(qn)q5RjjqTer9^=>Mbc7b)Rm?`#rb0_)5XP8}B26GnWVLndEUGgXw|#naG)S z&)=78a`9E1uW1uqyY$TVi7FR1dJ2Efda=O5mD%vE!ld@515e6X1bE$xRsWc6*H_(H z7IFUk&O0fSn<YHjWDO^6vUtUyW9*x`;MQiFUC-We-}Q+-)#foj=|l_9#HJ<2p64zY zuq#U_tE=0G)Chcxo1FUeq#76R%ko`0xBV6#pFWk<NnpX>LsbvkEaf#bW~JWQaEBvs z!4r>94>oOkx8kLMTj!^p(vqFB)!~=#Z{FYZz9#umgl>q5xWL2P=Q~dDBsN5JL~JTI z;PA@l+hZ7H@g*Z9T4t)y-t#ZIAF3bu%Y1M@XQ{lv-7L<0v0m2K7OB-oZV1LQo&2mm zQ&5>tRiVjQ-@5&y?(c}K@;cRPiF>aYs?=xg*faA=(M>mnH$I=wbG7soSgd~){cX$j zwRMvJPUdGnc)iB;k*PQLPUV!+1B@x>XDaWByxkhRw$EtwJo{<$d#!?FC7zvWPuh~u zut3OB<w1$^uW#$4TIJG<o0{(3^*>pEqx|@`!fg4QCyiO!o=$A|S?4}s>y}k5e|8sd zpYuzmG5$sTe+HJxe;0n0KCSw}Z+)@g_DOfn7Cuu9+})Za!Q>El@{ZH*XZuetKDb}d z{$W5(_`eI2oWkzCi_n|u_n+bJ&n052Zk$2pJf+8Fvwv^@&(M_lr)b}YLofE3UU;Wm zI*nE9tomt{V1@8woUC5Y87ANO7*pfzRFds1n5|Y-QE_Rt<io`(U;fme`FD(Wc4pP; zn>S5zc~(Dj7O4o_QS_uVKtiA{^rWToJnhfS|F~;ET+;8E|G{^?Shm@R#dj*qvUBsy zxX#>*-QBt)^uW0&^~A}aeoeemx2nSI-{GTn%$N3fFFO)u%+xCMpJ9#fo}%iK=eF5T z{crDgtIhu=@nid<1DE-?R-^|$Z1xDKOzm3HuM^(f#K<65v3|*eGc_M7w@C|&Z+WOc z^|HO)`GSc@6J9-hvfa<VDs%qRuZ3K<?|So@{mcoMYml0DB5!Vh4Dadd3r=&rGTmJ( z9}wOB*Z!<$<eoETT)ByJ3Xe-3-yijSOG0z-_IqxZb*kHw%$wui+Dc7dw&dbJuSW?} z?gZbQH`92<l$m^$miB&I+f|ka?e$QSu4aBeZ@**k{d46u8s;YR^<|5ylh#K>I;X9< zRIL11_k}g%8*Pg>6`Q6zpRu#K_n+aA?uYCn)5BDbL>*ml&+hX{OF=!)cisi|T7TSj z7Uad}C%M+`s=FC=<8mG6-p+G>oddVF@ENc~FSGp5u+RR)`V(R~HILW%v+eJ<sXepQ z=9Wm68)wb!{IBlc_FufO8}cb@>aTP8?>zNCs~ij4?OiY6TKrJ-!`WNAPiB{-Z!7#B zsv6_fKJN*WfraJCw=qe7@02Y}$>@7x@m=&s)~YR&U(|hnQZ@f@eRI9YKI3fr5B+}( zFX)%<Uf6p&TQJq<xm?N|B|eKghi{wyI{%^iAIHLvr;ijkuKW{qWx<Ch!H-XF-|D|D z)~3hp$cq)+!UwpXZ!60FYW$DG{6mvJ&%aZ3YCo2*%?<zPx8q~f%IAOOeLEA%URY+H z?kO@@yf6DZ_u*N0*EN3RcfIm#=GsMVkCZMQ-(Hec7j$}u0LRy3g|q%hch`6vJ1%LX zC%WR8-t|}Y4j<y%c3AC*Nc!k`@?_lgO`mT6Ise4`+xx$B{xdvSIRArJue0}strlC? zbN+}v^35glyGq1K-pB3|;#!-WHp{HC+Sqx@YNZO(s-yKB-G&Js=NRN2*jVe=<^K`q z{+4*jK0E%0N_nsE+*z-xt~Y<V`Z29r!S_=4Ttl0alWg}qdUX42<DtJ#inRYsG>!IH zV`};4?ff&noHx}BB>A-tzcO&GYds`+W~0HBLaDRSaWDTf`20EERrDfw(pt}=qubVA zG`;=g;#`5dYKA|;7gvObbh};Ici)1aOE0CrAXx2QLyF+ZR|eS)o86{846L+#w42x7 zRs6b8l$Xa5p94L~1(LD__FR8gs~kAAOz>Qx9lv;I$=xe!>e}iLn!h==@bP`|ir)V7 zd^1@b>sx+)m(1I7{MSB9*{bjt(~su5Ma#10E#i@kd7%7OfvNcQ<@=ZRiGl7Ih?KV2 zQ(na8r8ZMgxkvUoPx0-`w*Th-JNRSj3X^X<soK{WdOmO*RKEP{`tjtIMd4H8i?1vV zpT!k>-u#DlIqUHrr5*h`jFFtd7xEs@`}utT+FIw|m4D<v#2?kxXL&8BzG?5SDKEEA z^ERC`QCp$$@sy{kESAp|bQ(ACUC4gq-?B+>_M;z{$_~4$9p3W1Ro&)EVUvB-U+=#Q zzHr-%*RX!r-?_wa|2Mrg>lXH1S9>Pj!gAn5&IBVqr^!8E?BgH4^(r{GV%5f=?%c?q z%k~F9sdyRE7aUcx<gv>7(tW-5KkAh~2uJ=<e=Og!Ywo_y4}IM{O_t1+vp&f`(Qe+8 zx1ZzJzdQE$*;^j7lnJLN#(eKA=@#8+r+D$`Cb!L7m;T+mIB$E?lP5<_cOI}$-V<=1 zt-_sGKqV*eSNb~NMYr$V?fzzV?ZCfR-e<eFOfY_yu6^=^?8m-8;m7X_{b65}AvGmx z+N56g_CM~sj+F#O+}1s;cWCLZpW<rP9Wo7J>Z#1y=ikJs{wQ@4kyGc`^Y-@FjX$=x z%PBw7zWQsQ^`n2O-}cP+{#Rf7FY=1A_l#+FjULbC=C2L8<dR=Bt*1w_G3fpg2gwI@ zF=eX_RnG|Ro4Znfa&g{!o>TsJW|?U!^#{mCRCk>W>pwG5uy8~5TZxyqKYU;RY+tt8 zZutv(muim17@AFd6n(_w<1-`KQ#YlnHZvb{dwBBYym?!HcmC%56TJI_-~7b2QQBL? z#J8Jm_GMWn-P-g><DL72{|tI3!?RiI9m4lL{IR%lpY(SHhRYm><_Mo>pL~3$(*EH3 z#Qh@b?eF#T)GsGpefu`|ZGK+v%)XCLd<xhMw{CmtSIKqr`BHviR+U$)m#w*eA~ez5 z_tV}r=WpmszGC+Nc>dekcQcM1KfKxLeZK0c={qV_s#~%<6Mwc`H)@-d7U1zju4!NH z$7|b5AL|QbNqyTdHT!H@r0NdA6@r?Rxt}hnoubc>@}%^+<*O}~`d|5ZU;aul>n&V% z<7A;qSgTLsJkQR_)eM^??LysDp5z=#R=24C(3`#8e5LBu6@5nk8BDy&63mLk3oVW( z6&1gZzw*a;R_cu`!<AMW{jTkvbh~bS+1L8gyZz7lluvKw@lEFlnjHQweBa&O8T)F_ zzf%4d@zM2o?|+80_skXZKJGa^d#=!tJAeMAse6cNy8Y|@e5}Zw<+<n=E1}g}WV(Lr z{>D7b(>^tqi8Dd$(XIC(Tly5dbGq*RN)%A}<l!ds{q-BWYdzZf%%*=zkCm?UHaX(e zvtC?1ZL5Fqul=nHO{WKh2K&0k{eF8T&+{Pjtj(Oo4T~1s-SN=fbam1Ug~sdsYirgU zrC)HB3OI67UVUwi<nM}qm#6<{V5?!)KYYJkoTcLW5dqPzh*R$_>pVTR^(MQ5*8`Dl zEb_CB1VRm}`ES*KJMv-vfz_ISG#|#RM}C~V?&_9vKXg1Lh3-vNX5kBCaNaMyO)Y9a zx9NO=*Y`9&%AW7BiM5%vZDGCPyjR(6xtBc(CmrQbU@%xU+i3;YZU=_4r!#&$+$gYK zL-W(_n{WQs?CG~RX<qFXlB_QMvUJxMyZR6B56g?jpOx*Mb>#Aij|X#exc7WMsm#(V z(zo=^s;9G8o?QPr{#(fp^QHgJ?`QoY-?ELxTW==Y>zh}S&+nV@b9&Inzb`$RFFMGs z{<QfY=hF|HJ|DX;viwKmiWO4sty5J(9Jg7Payp8=s^637ds+78VTtome-C)f-&@-* z{$u9M^eK<sMN?VcXROZ7&R%Vo-)bSuJk|5s;kzeS$L^co@Z#h-*UI?g{ax4Yv+NVf zwiiqbt)A`C5@u+4e0H_r&Aj;z_pRklExEqVUEuxv;`sjf4*~t17k{jO#5?~`t?l>7 ziqx9dYu6sm66ZX%&1y!1qWhjc>+pkzcYX_fp0TYi@jpZAjg#f7Z;yDIo;}mA^J!P_ zrL)@Nlia?hm+9SGGV5yF`9dbs;}$RbKmQ1i&gBVM7~=ZJE!$Dfi0Op!*SE1VdM*n_ z|Ja;=bz99>8&i#XKFuoSd7CdYolu(>;BcII&Og%&?wOhLcPziX^)a})Q7>6iSw=`p zwa+AI<<#Rl*U6>j7W<}zJoUT3)MwN4kKfk>YA?4ucRy;a*`{qW9t$_$ke~g5ZGx<o z=Q;m}VUK5qe7?MY|I?V9swd^_0?x|9uPpxjuGI=GUE%Sx@5aR{zAub(*WMTXvG(EX zi~}4ddz0#a2uwPpP_M4Ed!~M}%)1Bk_GTY4wRm3N6BU#7(=fxTS$OjCnbm2A{~7wi z%f9g&7{%Jmu61+xYH4E2@H%bp7M99M8sAQwP0p%%d^6%s%*%;u&mMACJ}maY<~UcG zT6JCy&$o4HmNuq2Z=O}$XgqO$l0D<eKdZifTe^M<>zblH3H3bb^0SjBryeeT6Myq` z;D_Uf&vSY{Qd}OHHS6ge7FnlX5_(Ug+Zd*KtP}EB`>=nizzY9J$@%MN*TjF6Z!SGA za=7?`HFvgxqSDv3OiP5$MO#l)W-`?>k~w}@$nu2c&qLlvrWI>!ayq`+(Bb*=Am*?h ztKQ!QQuhA4&J=z<)n^_4XpZ>9Fm0W4T4_J_99vuVb5hUjKrjDQyZ!F!Ox-QNxo~}# zgwJ`Mw&<4AFE4J_eX=$0^x{pMYD?48^i=&SSib#duvjVgD0cVBmoI-_7kTu~J@&d# zx=kzB{ArBJpO@PR7|3OB>9Y3JHvD!%<v)Yg-{rTIKdw(JF|TUY5~*(Kzw<!w*MA1D zlTw{-axqOWCVyv0s<%o0`d4d5wYEi>yspaai4&XZ1++HlUOlGXB6h2APD+vS4MFcY zOMPXzvOd32&5={$m&-oZ@T(*(uR7J$QEly-lb_tSeS72Q@bjrkvi%#L&zHZh;}8E> z*Z=T#dcE+gvRx@Ea(T<U6sI2iXU4){t9@ka`CIEB$h95V-?jF=s=c1ci>LdP*I9OY z{bzW5x87=3$*c1bu78gn6O5i8cu@7QzjT&W_i@I8H6PqM81fi?HXB+VuUcQvqFtac zDRX)7gnc#ZoEiJf+8E}!6<Mxt_~ZY(_K$Apr!BI|Ay=3+LT3fCu5r&ecp{Vg<CU6u zI~Bfuj1B+CRl6Yab=i5l{w4PgXWd@DX@1Dg*5`qrHW=S_iDGg*_u_Hc<DQgRZ`%C3 zXYJ}dZxhS$?);Mdxf*NOo3_N-NhG<}CRiqP&DYp6fBuvrM&<o#`&>TM&0WMAx^qig z?8+@{ogDZ7KK}GzPTjKI`@8Bt1jx76Z{2_Rul>X84f}*%+Oh8c@NB`Xsn@oru7CAw z@6j_x2TindlCI<~a&>y6lJ2g<lUUZ^TPP>r`(%4r%e#bwHy$@cq)YxWj%&%dveegU zS<ecKQ*rN(iTBnRK1|spocS&6+uLb(lzUQlyg$Fb{?L9e`v(){x5~fOerVrkrT*sj z!XM8=FYjS^^zP#x`|NMo+0HhTRQi=Yd3VL0cyna(vlxqm2c#XCKl>jk_WF27EB$Hz zh1^%!uh#!ieSiC{eGWhW{W}feC+0e}v38u&)UoQ@Q}u22_II-<uA5$FFIAJOH(&qg zd8wm?Dh_wDt8T6KitO6|ZSHBki+B6;b7p<atuoubr|X|9n|MIw*OQNz+xvvC`f=_3 zZ}Z3MUCA3ywSMH=5O^?%tJm#C?ybrfc5|-!i)T~?y^0PlF$-E0b8Lc#TE(QmxwG%& z>h;*wJ5;DVw)bpZd1CRii4Pu$zU!UO`l{?d!%cIkycIRGqn`+zR~E3D+asrW{BL1_ zOwZrDhuN1_)wk}``;q=IZ&kjXVw|kiYwsD3CRxXgRvb);(ViA5&=$O%mBaR!UC4)j z%S$s{+)~SUybP_kGk))y_sXwu-jX`eH(~P>E^OUvC#!#SUe(?ucD`%>F6_8-`{;yw z-fJElwc#ok@wBTrnJCRrcKy{I`D0&;{+N6)%DR1Y@6_+Hwqg5?Kg;Po$g=Fscr>dj zdZzBXU2A`3e5uyf`_Hg^AN!B1ANn8HAC5Fx?R~<v<)i7EuE@2^?nLt(ikzM-GjU@F zqXTn()Z_l{ee5+%SJSV(-`ef@ResY+!3~>BcJ1Ba6tdb%LGaMojgHgYJdRn(Tz`K0 zhu5>1WBUbECmn2e7TFe*W4mX^+nEgqEpOcUw$AZQjrPO!Mwbs=;(Qk{{kO{lj*GV^ zDjj?CUT5_meKXMtB_r3`vvsD2E-tyfV*ax2U&70NZhm4A!yL9Wzb)+LVo!auEBP-L z<<(uVm$WJTn14if^^cYN&ZTs?^Ua$1Y0GPyH4_hTYoyI8J93@xfcTNbsSct3A{W0r zzw%W&R_~%;{Iep7npGTkj@uMoT9q9v@x1!<Nt^3;PYZb_6i-uMS*AXzc+T}r|IW|n zu~V!G{&;QThvyI9F1k}O|Je2q8MkzbM10PdJQSQczaZkE^qmI}1!rd`Xa0${JZrZx zC}QTzUzPG(pGw%Lo^ETp@uGC<hV5G}Z>^4goqcuEwP(-YeE2#4#k$Sj`7%YuTAI@Z zH`l${5#Tg=x0X%Q(RWFgpU+aajNRSulfKW^z^YF4m*{^6R>9^2_oV->+NbbG>qpq+ z!w=`Ts~tXIWiZdtWPj3!H=5~cKd10slHOQ$?ncZL1~%=_uWbHK@@ahfVf6$@33b-Z zujf3!wa11x+#+`I%e#8<B~O#KY~5I?zwXc^k7HGR#?zFqBsaz-KjIC1XYzWj>vy&U z-N$z4Zd%yQcGKSb(WXyIR?GGG5l^*e*4rjHyggTV*`{7kIBx4^<Cnh}awpD|%Cxju z^<hEZk-oXds>0WMR_|NRTN!&(O3)@w_Ct~FO2N}rv%?qY?%+Lp<FB^0^W~t^-k!@J zg<J1@x&6=A6-z$v30${R|98hems4}Q*yS}ItJ`1s75X;spN5LBm5^Dh)(vKsl;W3P z*ZrN^qpCgCwAV8^UQ0;j-)9+v$C3xXoe#XX<FHPb*P=Om?3X{Uo&CGJG9^0nSVioE zFXzLKSu&J8>VK2ncV<adbK{>?KNs!dI{yE{KV|ig`}^v|fBbvy^I>_<x(P4Mi=0^> zoz`{<Q=X#eQCDQ(c8Iy;#IyZj_33y0A1!~&_|e>Z+a<jRAMLyCwEUO9_#X80z4a^c ziHFK<fA3zW+@w-IG4jUSAYt7WJK-gDC*wEw_wDgq^P}49qt7hSce91NTc%Yk_jtxV zY5lX*>(AKVy_-0@fNRJ4t@Y{l4F7J%Zxlc7-&QYJ$5pZDb=-#QUo77&ywcWfddAGm z@9~*d<ymgMHAi}*EWfLt;?iX8$Tymo>{gI9ZSwZe<W~!u*Geu8j`;ihi|WVp!|{Ck z({s%a*>C#K&}?d9vR$CLq(ALf3D0|FU)@`qr?<U)K1EQeAu{>&hqC8iUw_N_`1R?u zrdx80)IKt7xG*`aP<FzOJD>EYe+vkl(^lA|tXy_^((wiVc<nRve`x!6*k|P5T2L|j z+w_a;9$xrz*5;+yw`;Gyy=VFME>PVg%qhV9<C@&-b7aEb`~MM^|HpOzgBZW)!G~+T zPA;4G%egRrRi%8Yz<H@%D&^dTI$0+cnrW}|lG(gnX&=Ar<fLR%%cHwrFZ}wW=2Xwi zU4>;EztngCld5s~@&4i3=p$xQTp8E*u{Xah$}~8TSh3}G=ZTq@*yJ(=CQp)n#!##M z*f!`()a$hKeo2dN=WuTM<RM#R_1tFO*T04}B0qLM{Lk=1qrJs+^?wG&8{QB1OJ!_a zv+*_WQ<Eacg0jDps%NylTsSkdSutpFhPtY2y?wp-e};5>fj^QzcCW6`KWg+ds&8ts zf`PVX1E*(2SFX(ZX%F=M3@30Lt#_!XKK3Qi^<m-p$<wp{#a}P}c+UD^)Z~?4dyMwX z`_Hi0UeP{(*|j~DkM6hcXUWy$pIvf2YVYN|^OL3iJu=IglN+(`qQZH}z@EwR>*YUq z{S12iE$OP>maT@F^&ckQx&3lu&EnLpTLPUdm@U(I-tJZ}mb)SP^YL$&8i|k3yZ*S= zuKrPURCRvH7H`3N8Kp?wHH(hr_FaB9->`f8DYKplm9Kxz|IJb%_4?uRH?@m?L_ILr zU47Rpy6K|{?>_HkuQo9}VL8CE;>0lq(XaE2KZ-G}=Q!3UwIo$t<HfA}w`TY6O#Jju z>Z!zzLiR1|*(Nn#U2nSZE8EhdMTg2-Z-(%^WA(Tt%{y=J=HtO#Piu7Ur7eEMkvB6^ zd3Vby!OwaxL^qsrbMuSfo3YmVXVP!?$yV$EOLCPPkA*bU>-=YkiWR$=Yx4T7^XZ$a zhc(k|HgfG?R-eTF;mODN!=2mCznUv#Ge2O<tcd$HYnV5S#U4qYGq0#F@a660rYByl z_;_sN9Z$_kZY+iY3s$}`+m)w$oq?yY&#kuYOM+z0A&&DOMNimT1fKWX@%Y-F;uw#c z<;hxm8kSyu*Yl3GQr)JZcutYSx>W&JPVSy(z1H$f;fZ~Ly;B_%-u4@I%{|rV5I1{M zfymc$h0izb*|?*LVd0EjQ<IxExq0WZavKX-tv`3;XQS!eY|nhVYXTmHpDWu;!Vb^L zO*+3Lq2yFgb6?@C&!=CnjQeD%yIAn(7B?^bGvSjALK_t39TBj!&AzdeTbEC(_r9}V zY*xwkPZPb4ZnucH5b!)HonmWzKjT+WMcXIo*`>O9o4ifdta)QLlUYH5x68Tr#<Ak< zv(9!08vaZRjd-fPv1UWd#($r79btdq|DPdl-jZj}&RK7sxo7#^!%92(k4tYWoOu2e z<MEu3^E~Sddfhi(dSSSAVV9@$sY#)+n-+U{eKOl-&XUu-<?qwuajvzCf2(Fo)h<7> z*V=WL*n5@6MXmbwm7Qgi<#;x$Njem)nZ5W$1k+-BLD!6L8<%d~;XYj}cCKC08ir$a zH9e&VB$by3RrAUpiE3}nPoD2SE5aqm>@cI@x(C)AHzS0W^z?cB^v_B4-KsEaSH|De z{|rsDe=J?MPp%^0@rurZ_7J{Q-_1u0J{}XjtSh1yCtk2X=tNS&ewEe@{GaE3l)GZH zaGnv@<3jaf!xJoXzB7M(d2Qd1A2UCieSV}Owzf8(aoRaWX?Gc47Qxj5kzop_x87;G zWVKEuL7K5S{OCWEMz6n17H!Ndh?buIK_&gxzUAEM((_Vk?-$CSlt1Pzzu`~pN7o&` zt7fge$Hw(Qa%RJ=(87kQgzzsP|1+>e{a9k!-&|HDdiBPv$1Xc(-EvK0)=_xZ>hb>f zCc}9*ju*$DJ^t2uQGG()1v&l8vfmq5o>ov`JhD5LnSrnIL;bP+E}(Pz<;A8SikE-C zPd3gc%wF(TTZ=J6TXm49%#(K+w|f`cYd$Gmzw^<b-M61|W!7jKKefmfe`Bm|w|4R0 zi2aH2^8C^@(oLs6|IOWKIQ30IR}ue;bNuSFzVY||6W@5Pj;G?X<0MOo_>8I+*P^2G z==}_uam6p(ukF{ie=t*C<k{Bi{Vn;CE<(<lz2+0QOGoxyKA2R%_~nJg`djBkU!Gr6 zksWkd;rZKbliij-d-ZYCSDC)Ot3R)qS9hr;<$JTOp5n3>$*QNfY_&h}>*3RO|4G+; zj&HO0{#-(LW4XResru5?7Z>Z7{(NIF?SWbCFP`i5AKSh9ojxwT-m2^Oc=?^PEG_BN z``kKul2^SwR(SF}(++Rx^qspaLgs6F+&|Br@A&ij@8W4m%Hh0Ht5@y(=UONx{p!c5 zEBRYy{qgJf>F_N5_HvWcob|T;#Xm~c%`TrkZ>Q<}yd4tE%nN>ny_=o!`Q+YnS0$fc z`4xI)R@6LJ4X-G9_J8-PI=6o~-&W##*xcMaT-80sUFrz`b9K?5b-x`%e~JHRU}e6# z`SE@J7wy@#lf5%{#1s}9C(rxO@M`tvbH2OVEY?4mFIKqkzTFZ3MVYlH_0P(`FmL|B z+V=2`iPe_dKTqyIIgL4e!Jm~OlV0t3r^S2Y(V8fmq)%#-TY0$U9q0K!ji0+xRjh8Z zMD>Y(5BEQq@I7n(2fz6Cvii~|^P{IUU;UmnT_V4xan|qa;a9dCn{}&Fg5!B`+uNSU zpU;c_oc`PN$5s3E`!~5Cu-xi-%{y=5;z(z0Gd7j0H%yYH{X8;5YJF>2AKAJ+t&`g9 ztG)7qsilw;r}UIZq3ZkW5+~kC+dpCRzRbt3uEeJNXE6Sq-KKGDUc8g;TZw<}U(J7O z{>k{TzJGsOZ2X~nraStce#s7R4s4jSam!SnTm^||W<Adp3QxS!{?oocJHGuE`=R}} zypP-S*l63|+VY;aqB-o6?$Q&AZ@;|$-R)f#WYw>x@_fJT>%a2$59aL`w=q>eTF)PE z&336y@#XX=>D~uR%2f<QYElxcraoWhmi_1H{+#-j`NIF${#}YQ`H}vy-FN4uKkkdO z%`e2?zH{v2u9K=~HoL1yPnP*;b(Xv7q)MJ-WSei@;)lzOiq@-|uh-r8{GYFU&yUqp zFE5(&GFNTs_to}C?f3jV?-_r;!1zM?g~_p@f8J+GZL;8PvaXvywRo1%oaup+BnqtN zXH5^@72WGQ%^}X>+@0FX^B(W7KevBP(XG?`4ee$1)=8SxUjID)2L5Mg%6`RE%YFP? zP|vRVw7cmxo8HYbetE#+<?DFgAIDzY-+Z%jcTBoMQH9KW|IhtZKaBrzK7S;(;m7jT zKg#aRczkt>cf+YOmerZb6FFX<VBPz1PWX*^)>rC|uJA8g!tiH%VRK_o>FZy0r5|=q ziNBW8pVxDJv&T~#`()Go9l80b*0Og4JI-CY$tqDIq26SCV*NGlxt^u`H;bdAXFN)6 z&0TlOyJ`RKsou{mS#r<EUHuuHYW2$OpHGUl;N`yNg~zXp{>ptA8Gn5K=Hs1Tc6|DD zKcl=bmm$Tbu=IEmzv<lx*S}e|a`k(A+0U{$^PTtY2ho+~-SLe-uReM!^q(Q-;}JQD zkKAj@9(WcfT~O2zPG;bmbmmOYV&+ZnZZ{Z4+6(Rzt+Z!a|Aj;M#N4$hQ)iso^rl!i z?{<Uj$%E(W70ZwAy7Eo`;d)VH!OC<QyF&SUVUdh?=OjyCw|^_Q^{d`r{m`rRo1aY5 zd^}@|n$f||yAzo8V+68)$L;0MZ=b6*YuT(n{Ew<Eb_T5WTOzyW^6!~H${%+htbY{p zk?R3(*16MRT1y_rJ!6e@t97|}!e90^lPiN{XU;kXh6(#x9+W=XyfwRNpUj8V9ygPh zpJtvj=k4~rbA#vIF=Q6q&g5DulBrfCp3jhOx4*yYpTe2UQ^Hx*`>zN8_UBc3FzIII z_sm~1>pPZ5-nzu5>S?(1aqlUw{|w4!>(>4|6g742`d;2SPgAz<+pw$aS!n&PuBV%~ z6opHkx3t}>{i!%C-a4pByZlH`3zPo|j>OL?&-edlShqjaJ~`Gem;3lN-gJTF>|85@ z0?C+}g3)zWJ;L*vFH5eU`N(A7vT94Gy=DEkQZD7$SX_F!D|Zh^(%xN7*SJjz=EdZ> zg?PMs@K(VvN61ropYHwWTLy;CIZ`h^1o^B8lMyH=GW%6mYJPZSiN{xul9}bEv(J6I zUUW=w>YQA`o#_=<T9Z7(Q{&nfO^mHQHvi%3?yHw{T(=aw&$#ugyl9e^Ayd%dO2%DN zdp+`)KE|`Vt-bg@bji+jwKsq3{<~z){g36}`Kr?OM^3NqP~3C9v|{0ot=p?xScOiN z@vQJ}{5OFkHB7d+?>|G}t$%mtZ?d`e=t0G&L!!#oX<e_(|Aa1N+pk)u`Xko#{mtKp z%cNpfb+UJrb~^8xAnDsSZzuPho~aLH<fDH6JN&Rod8Xd_JCB!7;rd-KRwdUGUNtE* z=2%5vc=ET+$K*c*_20}sbS=MlaeP*s(o8ooZEi_rzS?EGKPewyoznPq{nYjLx#w@y ze_MD(&qn;WU54`ET^X^P?<~FIU9{pS!|8fMmlnY}-6cll{PE(B57u&@5%SL!nZ&@5 z#yVr-yCZ)qO+U<kEBx>^cYSYo_@j!)W>uk+oVm?sOsZV3WYOy;T)?~Y1iP|~OyN>V z$NkmG_PLfXH~wDx;rBnz-;eDjc1%7Jr+s;?_}Rq5zms`xo#|GqE4akIt-DhFS+cUs zr{Y<^(hvP-_~2>z^@PpUAFaF_W16l<`OIeX44f9d&yq!``s3Mp9VxxdYhGMi_+@T< z;N>O;r^vXN+YAl|6cr|l2;O+yclEOQ+rr<W6?TuT&$IsV{wOx@rAp2u(^GeiraUZ~ z-dWIlJoeRrzYfavt1nKzJ6B-w@;w*-UaJxQJ6ZJy>xX5>58RWy@@9`?!CKX;SGIMl z6y5PRE_%($Q`XAWvHK*~f^^dhS`s&w99YfVBq87^BjET>`{%;HE%pzV$ZubMyf@Fk z?Y@AWM%J%sv(vw2EIkvp!CRv&_nD{ef{s6@3~Dwk;7Lf^clyW8-&ubuKC~aPEq{2t zO~2%~go*b_oy9xEnzCn#85k;`EO^H~p~&yx+2YWaq&K~?ez7X&uhjR{i`!U#a6TYD z&-x>`X2rq2V>jl{d-taK>7nNR_9pF%7U&elpQ~HGGRx}P^5V6xg-y@CeRC-$#_Rs4 zOOX+KdVg#dVoyAtwf%8^XPwQDg{%7oDt?FTxc2U%*OJZK!c5<7T)-`peOXZ?<?Gp^ zZnMSTA9u)n?D<_MI(@4}_SNExQiq(ZJ_mTOaAo}am@!19Kd`9gllb2`59U<yc^>uU z>sOhXDP?l5_|rSfKNWv8E$7@jvsS<J4g0%?d~aW|iNBuwXI04FE9(~NGp&e!FMRnw z!`i^Zi(VSp&$d55?aBJn$JeoDESvc7>V&kLGV3f$@3~n$komTvbkc>aiBmS;P8Tod z`fIeXt@0botUW7p4wz2ez3W%Ui6_<jw64!hW<D`Nqx1!Xw8h&AjLdzDXHB~HQoW~P zjYRK)<qYz#J+DYDOPB6`aYyU6(X`__2kImO3WIlCxoB?lVIA8eCNYIt&wo=-{y6@q zzoCX#^6H+#N4CZ;T{>pJPwz-{aNoTBr|HN1BkO-?On<ZU!C$3!pS?eZ?%TfND9a~j zzWE~8?Q%}c?BzZ-FG$-=ym*7e`K7sTQ=|GWb{ai(zZxdEZ|~!?@sXZO3}1H4((+pW zw0&yyTk#0aV^=0F?pJuS%feQBi&c=vYGZz5ONpsH?R`(I&Erp8f08!&KLe}f-+BL} zD&p=RoW<I<|B>fgrTePyC+DYa7Y~}Od*qCss!-mvv`T5ttE*4$@%_)h+Wpb>kj01g zMx9)<2BGNRFPAAK|Cl7PC??(h_~pG-C7Wzg!`~g8vB%fsZSi+I?X>3a7qqnWV;3mM z{<U1OaQ76Cw<2jZ^D0#SGbqQO74P2vV8writzr8)ea*uzZHfE6<*l8e`VQWb>lWvo z3UBvE{oH&se(UqMoR769t9RLyuZz);*K)7a-BrZq=pD=?SMj7S^hNMP9`9>mE;cn* z+Vihn+xTd%wp-`>8u!xd<wv)d{hqnFIpY|I>dmUE>)o&ZGi)<|b9#}=#?y~=t-fW{ zg?Ia;?Vngs*cP2qll)=*lcx8_#kYsI2kz{%KHc-~^STM%nwIB$`XbL+@y~u8C0;LD zlUT}r^IAxk?hdX66O0cktM99RwpXe~{LdxBil3%S>OTL<{;2*(B>lm;*-E!wNTqFE zz543}N6|T%eQ&?b6!Trap2L4@1%J2wgQd5QF!XXeTq@b3aWwtP`dPvMzEA7s$g^gD zzAXFa(_J6gcCQf1*IPQ-Cb{syV;PMHVG0gx1@>CsG(JodGrRPt;^gLU)ko%k2)f^K z{iB7y=<VAZSz0cBS?a@lyY|Emg~s~@?~m4Oe{}wK_apw!?%w3sYhPW0YPQaL`=IBS zSf3<Q`VIGA;RhFN=@RX$+qu$gj*!*$TAQ|>=q-WWN6x36FWCR%=_AW`Pxo!yy1DC7 z@@JomKPPQa*>KuW@}TYSU*V=JY9fEMuRNr*<LbM>$huUw8@3y_&%3vOY2^%tlb02w zDj7Dtvl0I1TQ%Wua4cVB_Tsdw&(>Dg&)*i~UDSOdGImLjd;M(t=eJfLuhmIUVNW<H zam<K6@UON7UxAgpv)2uI^~;jS^WzWgN?tf;(Y&7D+rL@a)!h1fnn7t|ZsNK64$c{c zZ|CiO{UzRU@3!qp-hcM+eEu|VPWtUz`z`8|z0Vpxxb`J&a_Wr=y>Fj5JDC*|s%q98 zR<^WUe_=(Q$&5#dwr3o8YL*`O_I3Ta%}0O#RK9ue_%uyr@uS}Zna(qB>DIJh_&8Pa zPf@+puk-&n>uo;&yZWp2oH<KN)4kTG4)*J`AM1<UIan?+-Mcj7ep!IPQ9lOu+x_SE zE&b2XR9<oUP(0WEjEFtuAN798iaT!FGA;AHUeShQ6E~El)yOW;_*EE}>;8NBowxl* z&L6k$*yONZ+$K6%r7_O7Iy}Lvsp3i=zf*y8a=yj!sEgaK?Yq0wJ^7i={nVLDwzDkg z4f9KJ4g73u&9kkDja_b^=*Q$^x7a)Cw0}%KDkn8FPbYtCuhXkrxocV<&ihsQD0iI^ zv$EzbH@8ZLYiaF|jgu>6=PW3mcK6(!uL%|pKF_I}`sK?8y^uxMzS%@gjydx+w@y~V zZMv0aO2((-3Oor3J$y6lmy1qc{`yhTg;)*#JsP$}hI8ioRh9nH`fz2f>F$j6Uw$Tg zet2?Jp1bw@-E&1ueV+D)DoHy|uYA<@xcY(h6HyzPUv)KMS8i`z(j%k0@#Tfr#z#6P z+<D8vKW(<-f#3W7q$|%lwRitzrPd|W!qQ{~IaKC5UP!*ae`%4}uDM+fYExDCm1dm$ zSvavr=1F>gvR~I{|4pHLGeS=kpMIBMRlL2S>f@Ky->W%&w`IJXC$aCN=<E1bfj_NE z(wQeLJ;D4mhG$;YyaT_ke|7!O!1n#@Z=pXtKjyCZcj-TatesJX^Wiv+48O*Q_xWE{ zZ4nDEJ6UK{yXjx*j+>onpC0vH6uhxU@y=(xtN#+-l-h<L5p#+aVtVj##<8aX%Por* zb8mV4)I#!j)cp_pW*4e#ayR`I<DDh<>d`&PYq1ko>b%#|)M=hL?Ev#a)049v)@|f- z*Or^c_{npJ)4%jxbr<g`Z~oYRtiJP}>g9LIdwiph-ukzY_XzJk%WJh+-y)v6%NU*L zTeJ3r)`33WnseJXMBcJFQt4(tw~g_nOv(G#v9VvzToZImRlAhhJ7w9!X$o!9wFlVu zR`z%5OP;7;e|NVovG2j-W%g@xrysf);GU=Wx?1Muj^DYDW6!)v;S13`AI8!+r{sNH z;-jClc(cTVFA4U@J?*Rf^?mK_wbjAt+1@EC&l7bH7rZh2@$v23n7@~@4DQ{E&vHIn zqUzKmrv6^fLAJO0%gP<EDuX6v2e00B<xP$5qN9mID$^&q@9a1!Z@>OO!}_(wVp2Ze z%U!o>+U(@u;j27m-0y$j>hsGtuYS!fJ$zdEt)S*thR@r-EQ-vN@;5stk*g%Hp|aVk z`Lg9P-(2zB?I|9+P0FO=Zpvq${Jx#fUm;!ci@e|0o?DB>R1+o6OG?`JoBW;~z5Q0o zt`4o|jGnwrwbqkgcrL4)cDU_a^(Re%`u`XIdHrWd{?Bl;{h#par9bw6G)$Uz$a3b| zH~LdH#d%*pGiS4=K%2^^x-w?<JjZ{t?S$*D+v)%9uVeag`Eh$&DL?;dlQ3r2Jr~y{ zM9d4>?r@QTnf22hk3(i|<qR7W3KrJu>=V!S=W7?({V7jWcGlDFMyEM#n1UJ2-X3Re zoYOctF8br?=pXMN>$i7**#9u(+h^CBJh`&SNs2NaJ0_(~+%{E}k7+x@q{DN<p9>%L z7VYd=m0N${uh%>-i5h#A(Ekj<kJk6pe+ZZ_{3q$k9`AJ(&4;&@{c78)mmCqZb&i&3 zQs^gHyM&1fAwL_`pDAxmtUIx>;(f?Rz23ry-rQ@wJhn<#EX+>neUg3PUrE`;Wj}7Y z&uG}0C%&2Mv%TQIWA<CvTTSABc<61Zc$eFfuWh>ajId}(K&9`iBM+WvwW%*Nj$bPO z!Mp#K{kPD+Q}(GuSDZc)CUtM?BU!h5+Rlk0JeO|WYpYqiroeE=)Myn;&fS|@CD-ri zjS~6rX_{=Y-HD$%^4m%;tzW*b{g-6@LH&QSFYKBAGo<Y`d;Ht)$o-f@-{&cQiu5~q zE_PqSJ16Bl$B7pTPn!PR|DS<1{>R1N#y|2O#kbYzWk<c3b^OS#V6lDMBI9oIZfVb- z^J<O2D#LT%B;K*H7X4?C2i=$`pAo-#dvi&3KL7r<{|paJGIC3u3(FaIZr-fBNg};s zNzTk04NvB*zjIJs`K5l-H2F>8$LHTTXWu%lDtzkWz1rs{g<SUO`E(~r=(~|J(*vE2 zO({O2caK?xA518?l>OQ$_wMFbANTYYmD)>f(eMAyu-Uy^ch>I%c50X2N30AuX)$Ha z=T8l1j9+*C`u?qS1NU#cm$&j}m&^WVm{?u4uV|a&eap%FJQU0=|5&V_W2abm;y=R& zfBEiP)294W*mp5^t8QIp?w1o=yQ3@CEuW{<<nhRpb<10&>AnYwxcMyCFSAd5e{=U? z`Az>BT523WJU)0`vv^tTtNL498~5DbHFcrK+_F<=E;cC#i5SXE?kkEbcx<JoT|8U6 zd3o5I_X(GtRzB`CIvW1|N&3{6&G+YD+Md5|(WXmBqMN2A?aZ5Ttaji0OY5?Wm$q<h zd$YQ*=$?;izjTL6y88C#F>d=;xF>2wG+mNth<RXU@%zpO)y^;Sy)`v2j%obr&puOp z>)hgPMmH_&4{ld@-gsTsKd+walfIDOp^HnVupZ!O+}2}wSjbUXg|Bcz;bqf1uQV=2 z?~eC)IHR>su_^Yqpj7X@<(4n6JlgX-q(X0s!^+;5pHn?_cQ^5Iu&dvZk-HM)_gyW> zW_SF)zDP;gyJ=h@Q&}7876@+F-od};#(A0R+@;B8$&)f}p0~K=5PDp-E#kT5i33l{ zzkZ1qyc4sq+|x|&($bRw9>I;1oNMnrzN|j^dP~~Wce1JlXN>M_`h4*DGcL}ruMFeP zio7lE-RrYloMSg*X%IWto+*~cJXjcN8|)4g$DG?;T*>8HwBU)=<7)jghZ~s0SnImy z9!S5nD|^Mlond`f9d*jnGwKRI%kIdN_;T>^^;ysVxG(FzZ5o;4)?-i-)N^~sE6)Ij zUw`(^?Y!&uOSsmr+s9a%lcQy^Qu7AA$2(*`O#E}h*08VkW7JCC!#7WV`%rM>M4p9h z$lv=h%*U_qEt*w&bn<bTtV_x(IQ|tL%2V#~I3oN*hHtSfdob^jjmzh?{7lJXnRJJF za$D??Nk(jpf3i6)ZoY8zbnJ;e{>j<Wj^Es-mz+r!Y<#xFVS<~$TP_LxGbhg6JgBzk z`%$SBo)&|jr&pdldH3a<=l0L-re42)p7-dPB<@aiuKh-CYtFpfVlMb_+a!L+>z2=L zBCbqSX<d*On({zQGJ%i(?zyKHk9nKp?g`#vmkoa}f6D!ji16Y5hyNLFtv`|_xb5!R zwHI_ac%L~e*z|;_DWs?0ZztQH=5M7RzaBr7-#bt2M@wv?uX6DAX<^Fm4xLk;@lSBK z)NlTOTwC)J{w{m_F#h3%9J`zZvy>f{49Sg`Kde9N9T63#Ip<wifb9(d?e8|rS-;NN zWSI56cfa%JoYMT%?kU&Z>X)m(Nq&4gSNRcJ@2aC^3R`y1VyonOr(~|ZW4*F<cS7Us zm+@D>br#K<HfIytJqd%m2OfN9Dg4m|x)(Z;zbo@me`6f?$8GbLxlQ)noUePE=hBRe z+cv5+Zt1_=ANB9{KlX|y+v<a1yY>j5RCqW~bK<0mo(2!0&^+hFMjlSS9SI($f8I~M zI8RzQsArd1|HU0$OAIBlN*A2}%>H-n9_`A9@wcjv%ZX1t<e$C%Rl#P<u-n}`XR9<h zT1Uv&{JK6h@^C)a-$}Qn8P8RmJYW2E{cZan8rNI*SSS82tMQe}-DBjm>+9kCjDyxs zLMqv!Ee{*U{4RX^@rl7fITk|=%NL^VPaCv<KUe=160mss#l>GeEj5<>eX@1aez$s| zkL(wBEmJpI+flJp;*{^wQ}=pbY<E8{l{dArR%?maC98RLAxVZkUztVkIzHT+`<Nlp zPh67ybWXDD4$-e`H)=K6Br{9AuvZK_+{9ToW1UX?rNx5gzt>2`ZO;GCkn1)hezBj_ ztnVLvf4S;koqx9f?WfDfKYrbE`-tJm%w>`88+t_VtXEgQUso^nqw&O@%JrM<^LIb2 z{~ht;l<$!>=7A2)7n8QN<o@ByejHPE{i)@&Vw>8?WG!vW?P}A#chBFM^3%pZBCEnG zcPq=(d%w6mUSFCwiDiPJbbH~ACQHfJXWe!@37Wg_Pxx%Bt}|aI{#CA#{PAi3w&QP# zAFgky%G=6gFJi;+ZPC3$K2G1a-SSy!JLkfpNhx7{DqWBB&#dFlJt+E1|HJujeLs9Z z?)Lc@-c}>LO7+;LP3-$FscMV<UGi=B!W}{f{2s0N9dcs#ggJ>F>mR*#_$apfVQv_2 z@!{!{Z`{3gLbWTqQchCvxSM<L)T`~QCKOJbm%Z~x?#IQC{14@Ke2W*Y5np*af9*}b z>)ZwZ8TRU2O7T+RpKqAT<I>oFe$M3GEOoInKk#UMwhG$zw$gn6iNEP;ADz~691=~e zjx@ikyRUxc--LgM=1cuk{iFNgea|25MG|jooIlJy`tlLCMBd|MsoPoe_bIkHO!Rqa z_B1R`qNi`md+tA)oBlI2ovAx_>s{|}?<_Mb^CRauUQ5lJ``|x=>}hFNmO|S*m(^O= zt(rdZOR@6QtvgswF54I;z4)`}e%1PP{~wx9`_?{w8+Q6z|79JWlJf#LPs(0fz2GI6 zsc@mR@@>vJXWpys`1|0~m72bXQ)(Z_?~C7@fB1b{mH3;J)$&cIJN`H?s#q7jHu<;P z4GEWJzv3t9Fg=lI&PmM?a!%2A{8X`KyI{lm^QLKUE=R|&{5oTu`oU)sejZ!CZk_jS z@A=2|kFFoA@37yz|HyiQ8pR(=mzzyq|0C^Nwye|HCtb<BXC&^*&t<j=TE{hYl9|S< zgHs+ns5G0(bx%?%e&*->ww15r?tXlHq{_eZpL)gaBUL<t(J!Zqf7ebF(cWgVrO#jK zZU7&Hz_A&}MIZbM_Q<<_nsxSu<5B;1pPn<7OK|0WrTwezXKg&Cw>I7LWqJO@FYRy6 zKhpo<xX<cGeAJYUUC{^AekASmK9XTjc*A(*w*#iX)IS<NpZ2Ue;`pEHjgg!xsgAbR z^PeBB^Jm|8@m=ColkG>3PF{Oxn&ja_hg>a=+Z%QL_5IPj!tqh}laFTYR^7RN5_uOx z5{zQp<a_s4s>nZ&3#)D~TrIh7S!A55pLovaT(hrl(z@OzCvB|#yCCJs=Pi>@tiP6j zGe0zA?X$~zD!0=sHM@BX3=8G><LeAx$4|Ety0~tuyV$mm{krEO_SMDIKCqIJ`n~x< z*tQbyhYxH0jPjQDcxJs?&KA*`>Qwbyrt5?D)$E9ORd=>`+gqDT$IIRGuYRz?`(8|B zY^AXFu6LX)Yq>Va@NDpDY@EMx{la}BnY-RiTz7g^R(ZMMPeYZ<b#I@@WqBNPRMhg4 z*fzn<;h);6u1kLx|FK+MVg1-_d+EZv?jo~#k4SBa>^HP=t+{c{$wP<btpTII%oi1@ z$9ud#mP$WR@A>1MwKjLvX{L;o8SAHc?>_jHU8ZrmkcTs$m%=#?h5EP;?}e|eo_bue zr(L^n|KzP-V`smqSNmwsf9c=lY3xjwV@}$=Jazin^wQ7vMmFBxva5e{>)Q5QE4$#W z!gqLjSM}-Xz5f{=1is0szBYBj-6V+z8Z2$kC-6)BD?R;V)yLo?mm_ZPFuc*RM!6;> zXS1WYOz~&7b?-eUajsdrHuuW3TWk!kBEG%7-uUbKr*-A#Z&lUT?X~HDS;Jy`WadQM zxmORlX7x@KmJDU%VD0MZVLqKJQ}SrP%l?!O`G6md`PtfUGuGt!yz?{s&gLm`^5^m8 z8`rm&+?T9~fB0_E<%;$G=EX6`SiCOkbPH<>#jKwxd6I=yVcz`tH{v&*KO)caWAfwH z?cXGrICAvTclJfxvuT}lJ45H_l$Dl0i;4=ruAg}Bsb%8aYaQQ<j%J;@>wmYOgJt8T zBfZ5c7nH>{rT?ttckbj!(PIm-x0YY<nEmRP+1b|WlPYrKG;UjbR?#asGQnJU@^Q%n zc6+Y=XK0LaZ#6y7@A`PZXx8;vHHAkK+)9sZiqp2~a#^)*;glR}vpnlI2j=-<AMD%y zm{u?Lee_=Rp7dOIUB$KsM$W>2A9-nh&Re3=Kc%vO=jr{vdh<R_?fJeo*7u%UKGHX{ zZ?luUoL140{Wj~xgf%Pp|9CHu*H?KflRjt8gQOiCx~^N)syoFDFXSC+e%<r=_@!O; zo#o%!11@bjYrBj)Q}(gdDYxQM9i7%DEu~4iKSEB#J()b~`Gc-&28T+lw>>p$usk0; z&*Sy`AK@X|FAA<ME?+3K-N50WkM1PHX#sw=^(WS!+kcxo>_c1sqqmB0Qo^qH?lhk$ zs=ev5O0;pp1c~i4MAEIxQ}~R3$(L*P*?258Y&<TLKBsTlezW~qV!i*2wHsTlVrN?_ zq%fp0&-eLqwCusFdtsAAG;hw=nJ@V&V0Cxq!cL>;IfBi{Yd*%@Tl{GE>dqrZcbv^@ z^c7^jJm`-Pj%!{S;jC!RHIb*dX~E=QGHE;h`rW!Ja+oKuc}ri2T-6sDdB5x%i%;Ea zJ@@?0{69jw|8d^_9bb2Gp31f#3zr{X`N#T4*%6yxe^#o_xz*`>q^hQfHNB(p_vy_o z+>M+Qc4qvW^keD+e}O-?KPIoM5I=fd?0eO`nPnei&gYunN}lH2{#mR{Wk+ekO`E2I z;|kZGmH!dmfBe_C<sY}2%ooevwfB#(<EDGpeh2Q^y|w=|OUL7;XO+qwjNijlLKzqv z7><L^W0Cp0CvP9)zia#Sek3le@GRx-c3gg^cG;^xw{LHXjX10{)nm~#KMB#p39?I? zV~S5}hpl+bUjALlP;{}x@8h?>^K5##TjuRVKYr#3c5`3P=zGngH20Lp%ah9c<+lF$ zRk8UWSNw0kY{C8CEH9c&E$3Kt-f!BokgsR98;jb<Ys+2zJiq%tLzez6>7x@QY+^qO zhku&W@bPG=+`N{*I+yM|zA;DMIrhtsXrV8YZ7S2I1aGom!J8ei>2h-Q*|>@|2{C`Z z7aiwdC{a0ait+p3?C0_#bvNTTJ#T$`k2m}HFOy47M<jHfn_r$DXV$ScEKGOa;aUF@ zO8Z4B)FRKVT>VP$wYV$8ggdu=%Z&v*kIyf-_k4oaV+oru+y4y5Bp!z~du^|uBD>~{ zfKcU0#|wN7bz5IO+~M_~L8NE-4DUBb{&m^7|7T#;{lUJ>vj5Pm`VJdMjgx<mHr;e% zvwFX8lJND5p5NB9d@TPXnt!w`asNZ!54uw#{qLS$l_l(P_~xQ*jmhV%E04d9ZwszT z_$b}xv8YA6{=7qqtt}@*t%K;<`#=6O9KAImW!IjB9*!Fw9R_avu3!FS-&lNTN5;GL zpN%V4z0c*p_+GyLpm%+CZq<#W%U+vV@mNZ?O<jIe*t{lxclNSB9k!OtO8ZPdE`KZk zarg0{v-aIJnQP)JkI#6zZ*KDOEdiTc>{-^&donFEx@1lK-A?tdOIV&~KDfT#Tl?@~ zkAo81&DSi+l0K3AOlj%C6REw<>DLRT_Z!b@%Jq9!dh1ODe|**wkJrBMcYL+EzM5Bb zjZEkJmB#+oGR<!%`lip^_gna@P2eO4_N_K<PYVAtTwm>{l&i$hG*8$x!OiPe@~1y9 z!)`sC(HhtOGPGi$RZBD<gNW5UHmlOruT!n`Vv_f76kRPg<<pTKk*4E)Red*p{SNWl z<>t5QMe%L(o<7@+{(=+d)QMhpUwo>*<UfP9xkJSRzQ?mJw;w7OH|#75e|pFGMdkC$ zA6NW(V%2@i?zrl=B!k!eIrU#(x^A}Pv*+6%^(EtvvFgg30-w1x*p(%|K9}3?94+`m zudKM^ip<2%#n(5y$)5YnFnXhg=bK9L$=kKB^!q)za@c=YQegNp&hyN-XMNYsZ{Hrg zPPt|7ab-*O`HBDPw%&~TqrZP=DCd;aLlZ*#9@Mf~sQ2A?{`t_lT%U`HPp|x3#mo2O zn98S49pm#X&tL!i9HiG+sns-5&U*fZ+U(cW{>{^8-@MT@+wLXHw#V-$US{u`x~NXB zqS*6_(xvzB*Dl;=nbNw<bz+<Ge9d!@4?Jf6876dg*W#!Ou1(jDhyGUkp?B3rarNty z65jtAwo8Z2Sbz4(62lXM)d{<W3h&EJ{c8Gc@(SnFXQz~t3b@|be!RMqS=Kl8kI9GJ z^G$m!Rk!|Kdbj`9I=Ry56>1G0TuSZz=Unc~OWd0oRAjtE>PxKC$z|Kad+VO7F!%I) zJ^u62K6m-fZ&T;2s}?bMt8Lfbe=p<K79TSc=dw!1ja`3B|1&hXI{%i6_~Uft%lrO1 z;g9nDe}dOU#J-GA{jBrm3wNyDkJ*)>DW7kB^PZV(IVqSU;`)=0HY4M@xVv{*wpZLO zc-&L<SNqNSA8Kzt-uQQsOXc_d^i0P83`MRM>bB>XR{mK2ds|<RQQf6$_5%Mj|1fUZ z{$uf@dfp#K=Q2vp8pmBN`5mH{a+`JT*Q0x!D+6L%3Ri8Gi)cEMGUw-={Y=Vj?|6+q z{gc*SJ$JR}p6h~ZHW|yV-pVK2J&z&u$p`JfN_#B-Gq5!LXK1QEyfW_fto4Vb^9Ao_ zeK*c3=UsRAURK8ESo`_P?&-zK2WDo<HZ94%^6}QbXFsBUtJg^VNL}E%_>b6+!sQit z((0k@zwO<&Y<qpOw4~RIvBC3Q-IT@0_yhu%&CYoD@4)gkOTOEm@qZZqN4Wmm<{yj8 zHvTdGFuilDy236A6YGz{xytYE+;L@H`Fw)S9l4zcOn+&9xc`rX|33q(!pEhPPCxSJ zz5T*h@%1BKXa7xU=jxJjRj<S|eDa?@=YimP`4`7?KdgSF^6_~7w~(f*<;=2IFWfTz zUbZTwRb~=j@e6Iye}deSlOBhC<eQ(_CVjnN;?x4i5PNN&=GRTu;j(r5N6y|=$@f=1 zy!NYor+$0=hwT3hN4Xd0{%7D;eiYW6v^;;NXzSL0OVvVpPi$Vf(V_4_dUu|m*Mo$A zeKqF)8JctcGbGMuePx$_q+a;P`lFMaR$aVZxy>phuaak@XKv1QFXP@ddB)rCum5s- z*$?lBI|6y`DeT`<T5h?ib(g_`JApA1Y>j_iU-YB;U>)z)&7ZcMHGB8t;f|e=;+8Kz z&FwO(p68zRS?eR4UVZjE>$-(bRvQ1<AE_Ve|DlrpN4WW6%*s`n`#Hbt%}bq_*5ohn z$~@}zQ7gtR$7c1c+c@_??bRoJY}wE5|Ij^tl%JvQ{QeLAwZRY68`tK1$xVK=_KH;O z-g)!Wc~|Y5n`vV%wR>utVrz!eZ6-cvFGl4R{}yiH=W|Y!|E1TMxO^U)N6>NRd9yn$ zpR3RMk^YaX^*6_l?f<xxe;Y;Do&P8EQLpzQ_if#@+u`kjdoHW)=g@sTK|<hoVZMr7 zwb7cs*2exKBZK6aA3ix#Q?2@*ZCdDeQZ@O{4jX?3@o?^MrMo7%-F_ixJh@G#`TebZ z^&jQtR|=XJ9y|SXU#y?U&B<+HG4rfS{_Xtx=<l-q4_fbk2>#D-^ReHaYkxvNtb2U4 z$|rEo`ISG+p4pa3T=dk5vzW&Hrf)~I+hdt;@*Poc67_thefsIMakWO!8b<A7*IE87 z^;cK_y#DH^IWby#8OBdPUQyZlqSE@6@>`zG=PtUj+3aY^`MvqLx`f@5zU52P?G~@} zTyeB;`TR}CIkY5arX)nK7Q9^er?5{u>(jOB&Zu&^q?E)q<JR|0_C}s-R`1RYv);e? zw&LU`>KqN}HeY2v{|LXVvFy!xu7E<<9Z8pNio6n^<aOtXIET61<Gkv!)#g&i+H?P{ zoqEUoF2lrwUlY%-Eu7@MV)jz4H4FFORA7AX`7QFvPLKOq66+$`j>iYFs*7$t={tAs z-fQ!Va}C@D^NMb0`MJlH^I2Wqb0hreXNKcBCCh!w7r&ep`CG=z^A=-(pLwau*B91Z zPx`i3wWkzr3_M`X?|*8M!IZ5&t8LH!zx2;|kKk{&AD16Io0-43qT97Oc*@SHDLdy^ zrplMd?ryw2kJIKm`>e%}_TLtM6yNcsx>ww1%jGX2b5H*ET~buL`n2xcUXw`%$JqD; z(&w>D{7m=Vc+JLnrTg-i7rm>C6*wj?(0jtzz#wVC{DEoj`U7&dAO15O+)=;%%WD7a zKlYhVQu&?ZsXBF%;P$E`9+`O|%}w`r`+QL;KKggQlkPbK-+4=nx!&3I<+}Xs{ySky zf1et!+2=>!)|k$Jt8J1U%{hsab&BOrwcS&W@LiWN(w@$>K<G$|T)W-&-&X(5$r)Vv z`k#Tvu5oF_I%}itMbWp{&(9Y=QGQY)Q}+AmgP%o|H56pRAN^-Ie82CX-ADT#zt+e1 zrC&wKO<a42Q~zDgDP>Mkvt#%54s>uZyg9Vu=eFmwew{mgNPa_oYmO<e_t84tJs*S5 zIBn9s@~padjdy-@(d_9qPy2J8l>hwW7I`{!SMTdf8ozS%k|mF7W#?^5e=E28KLe`( z=zNBZ_cy<Ne=v3Fxdr<L-v-^feR#TffGbO$!aUmpCoZwvd*R_`eP_;-lt=rQ*#A&F z|K|Jeh(CHiT9^EZx?;ku|7P|VXO&`az87D9?>LZgsLy4=({p}R%Q$T6jOq_+KKeVy z##8IZHGlS~SK?BgkqK$rCvJ7iwViP&{j*@riU5|9lUjQ=ztfH1Ghg<f;lHc<8ESkV z?(eFT-WT~td4)TVxtQ=0qoesn&y8GU6*^C3Y)GEiXWo-M>*LbC@CqBPt?&0e->oHc zGGykb^tT^Bv`74%S)VcghsPh=hqq(P4~LhF|2lhT@~H`@m*0#v-LtGZVxIZu)UDY` zHd{5EiX;S9Rn)i6ikrLOPt=b_*@+YHAMstD9lT|dakKHQzy05<`$V}S*If<ldGb|l zU;E#6|CF-lZ)ZPvI$!ea^79Wo{)l`pyS2XKqwLk$H}30CE##SGz%8^#cZcVW%3@ZP zM6dbEm-cV|dN%3%vHd*jxBLyem1}kC-kr$1t_5=5n$K%{E>1g;@${C&JpRDr#v1-N zcbv^CIQ!|WiRWXDyu5X5*XCTQ{NORk?Wt!%<qQ4*KepP}-5Yjq{CM@$D>H2^lS?M` z=`*=3CK-NSwazYquP*n9OkvFWV{`eB@7mtBJ!5-$l}Y)gqXIT27q@)U(ny$>C>L#@ zbMa|t(UAu!^@8)aPCxG78)y1=(N^2!z-y%}J3qWzT$q`x5*{wNML$_*LS;vggYtx_ zNm2&OS@@&wxBbxDmucxFv~~C7Ssz7hbcEBtJzSq@Zl<@ZWHFmf)4Bx@YTXQv@3(x? z_b+#aOK!TLo}lE6{2Z+b;>v|KjPv;1!kdrQE7kMtf3PNgd-!3IjT^d;hg)53ovFCy z>kZwn8czdH@O@fzM@FvrdGnm&qqWHo*Z<IWe{0XY>c{TGaS~SrQ&?~6zRQ)p&^*EG zv>9L7gu@#S2G8mDTi-f!iR`7IxaGEXhKEj8Uw421rSXYt*Ev<zopMe~CLSv=3jJMV zk*c(FuiMqP-#jaKylI)#+q6ljh*|i&O!E$g;_H&fpZ;fP{m<}V$9|Tt(Hil`@AG}N zwfi6zS-)w0uAb5@&RgMc?bC{G9Iy<$@{6hV{Neo{LjN<|us%91w|eEB*S}=;H1j^2 zc3sEF&0*5Xr#*c)&udv6tt{P<Y_M?2OIyBKmG8vzJ>>&Wm$D>zvgkb7Kb7N5b<^Xg zIr38-lrx#P*KKJ!SKS$QV&=qjm4z*f4Pw%HVz0B?Ycgx!F3<Y0J@h|A)8e|rhM8-N zm&d%m?8$ri_L{<%eJLpp9y{D79;uFgH?=HM+-5yX->TpLxD<aYR3sfc9DY6D^sVYv z3EsO~j5CFwd2H@Im83HxsWRw6Pw$NrE2sH(H$9tbrkS>*?C;I_E;lp6XK5xKIVAG_ z_r#6L_9dIl?xZi8S8c#P>)O^y+19ncXHIx4ZxY1DzVc_w&8L2qK8)x1Eq+Fw23f}( zf9E)loc?6LiJQ#sWr~MgoW!Ve%(bCOrm)TOoaLJ8_dhh%-x#JQTo?PNw(p8O!;A$N z^I6(u8fPZ=vTr}zc&-1<8RuKGe|JtxcdkpRo$xIn?#@h=O2>{|*NGcq<XTQ|UHrU& zbw<sB$Lor(9)H-eUNQ5?stpg=bXFzZaq~~!EqP3&f&XcIr@eUngDp}zRcs5F{$c*G z_3g67Mf-gBEnIz`TZhZzuKLa7&)kNA4ZRA1bLKo2{h9t~{q6Q|3qIx_VfoQp{%H4U z?-y6YOg87M-DT=w+V;FAdSm~bl}QXIAMKm3{g5X#^u4y6pSJyC@ny@e-2V_>Yo#53 zEAQ01YpJs&w`fNki2s@P!Pm;8g|A&jrtEB8Qs%)+?<6C5*yH@Klzv++b#MRLAKRmM zf7I{PTe^4e-g(}g&!%p-nRM#t-IHI_EG?Knto7%OJZgJ$)@wVT^qLl?vPDf16ZU*y z%l^fzc<SHUmR8B^l)CEK$s$j+=AM6*{*UwOZ>P8#%fIus=xY03etbnwcg<5*<9E_g zSLcb|?s+2Ed%CY$>TlDB`ah!a-{yVbKfE{m;k7B#Hpbp@<z2gPS>(M(w=_0zwH7$@ z>&&<yv{q8O+1&A`>Vy27$zeZOf7|`h+4#|T>$aWiGp<V=TP%3kL^vjPrr4bc6`vND z1ivVbeRiE$@0q*J=E*13SDOCF7fwCZmK-&^cfRqT()eb(Zk4m?!JM3$vGtQxKk6-C zSFt`~$4CCo_32kkxwjkn78WaeoAlkUoO|QxjPJ=;uGyGPJa)9*v{q#PvFX{GkJs<5 zEX>U4n`ym!W2o7K;<NtQOJ3c2x0r9@;wL6umpl%cO>N2SJ*pHuy?6&}{A!t2g`LT& z<sq4?{xc+<nze9;m{Ihm6Pu=Kg--bp(mdy{cC+Q-M_LcHf)1UZwAj}zZ0~&c<n5YA z9=>?=^6F9Nd7R50SI3swPhEfOQlR=<&BsgnD)Yo-%YHGc>@K&z`P5*VwVTzk!oC~p z=Wf2WztGOM?qEHyopQzGz>muh|7Q@2eYvY`p~>~)!z+&Dt({kS<HS?7pvek)-m;H; zQobEnf4*O|?r{AU^LD+Nx+X1G7liVtUw)T3lixx)drMGCsr~MkKd#?>D)GXd+pjnB z_eD?hyGwUIde$3q<jP9VDBW$-Q|{eYexl^?<ojx~&P>x=u9b>yY8K_8_d=@Po;ZJ5 zX|MXD^9TMjbkAq{`sKs%WBj~X^Q87qvNzTJ>TUVvNyc~4drc{hO6iM_Me?UvuGc!j zt~~48&P9(G+uSz%^H+n}CWzfu)A0$HkB^g)#rl<Y{B<|&x7Z&5-FkDM*G{gY$=g;u z>a=gpiA`EQZuhN(?i^L)SM`&4uxXNUyj}|5SJhSTcQ{n#iI!}b@=>@~s_T2kuF|Le z_nJ4}j6cUVAyE41t%;3q_WxUT=(3*JwNIAwE!ZbnJ=$XWc-uXR<E%3_KEB*gFLf;N zQ`6R8_tegdy*yf@DW@hit7Pu4`+xeQuO*4yT7FA+hUu20v5}QA6U-Us$Z@RS{g3Np z`lIzsFRstpQt8d1eko-~_^pjw7r);YDe|!B!pR9odLDd?=Y5%*xjN&6qoVbc#14i8 zxf#sNuiWFlOuUg5w&qt((T=7s>a$iWuPN&Iy#0(r*|u|KPh`@&)|}V=bw*iYw@J-6 zeuG|3FX5NJ<O5#)XV}6w{b6px?P!n9XEP1BwylcS{F69aAy56%zAb;}*aUv8{x<DL zXZFMV=37FJ<;#@gPOpsFEwZi2;^x(7|3vSd3T0HiGlxaNTK!piV+||Y-bcUr`HzJ$ z))vaB<#`>EJv3dRlzU#o*JIhguK(?{VSezRp|zf`B%kkx(=F|Yyg-%Rh5bg49)6aY zbmsB2;sY!nRxzz(I9feN_2FNh(2~_T{qkKF&nmL?Z{%J4vD@ap;6Ak)M}Ns0msw%6 zqMeh!1q-cO5;#xSr8;s^?YWdwbze76xN%_plzkQzhYw7PGunCKkJ-et`47D_RMYfs zOb_yuOzud2FVQnY$E|1`AA{wu_uo$aU9eTY<)6{jf80Ox&R#xx;mohvI~UoQZnkl) z$#W3)ySQmX;U||h94FVG>@9kB+<#;Lp>13}rxj*>dg*CbGvf)9o0nd}%qI`_TmSqe zFYu#pu8vO8A1$wIw^Q@lPkzwndz6(Fm)@VdZOi_7pXzl*|N51kRM|1l;_hkVxoeJF zs>n>Udot&5_O%-Gyvdc*h57F;V5~~EIMi2f_33qXiNog=w|9t2o@XeY^Ka_wIO$H4 zzZTr@r=JckG<d<1eZla%WKwnb=X++03)A05WSf^%svqMGxcg(0tcju0p<5c33SSr+ z=O^|rtquRr!1AQ$&Y%2!+k!vK%2kH+@160i`KjC)&hzX`YlK(5Dwo=}*lcO>_vb}N zs?rzyVHf3XTUfvJp6klYNqdA3mAk9toOtD4nyS$Jj<-^x!)i*Z*YA1z<m%3O#rD73 z|A6<{YW-&2(zjt3a~JJ**%|SCn_#7(N)C%xN=(PhhMeZ<>N+<Ltm{9zU%ZavkKxAb z^_}xfE^c{mG1L5Re6-V&0*+pZw&dOH7GD_3*FRhw|6}Jz<D*qBRqUOmZ@vDVQeZk* zTwQGAz&E4MGm`ysZo#r|Ne{1RiM|LF<+ppqTC-PA;MuicThC|vPxZh0{>c50$l`B4 zm;QvWIB(vSb~Q?1BlFUm{>9R*F@Gk%^@yHS$=@@HQ*B?u$M`>D_7C}Hrm;8t5nXlv z<kVaF@7}&SDEYj6LSAge^M%j*tNxYUy_K%7sXBY5x>^eZpKtY)ifq2MXICDy3Ay=O z{L%d%I`PMRodV^XO?c&9+MlW3%`@fXmdRB(sk*Dl@*ne@FS5Vm+wP0)sr>l-P}zN< ze+qYXpRFv^x%TjJr-Dn{-BZW9CiXCx3!hY<eBSGi-GlJg^WU@=1V321YLlDe?%jdU z)_t5-w;+Z0uuO`ezv<}}7nbdvl9S!KQqw!E)`Y3)jk7s(q58J$Go{_nci0v22t@Cf zt}1>VYjb_GKSNJKVna?j^D_U>>&&Bg)F!k9ZYh<U`+3&K4BNaa;c&Zkf16Ez_ga5z z-slo=%tynLg>m<4O=U}#KFjrU_CMHteb>77-!-ppO`BTqf!EpbLb`SJvwI=$&r54x z|Id(A{eE-ZMXQt@_qetlU}MPX;XglT;)U?3{}~R}t+{KTGuQ6rxyQv1dD()Buk+T- zKbw8^<g5MbRPQ`Gvrx|4_#@lvBUW!8Rfd;OKCxuZ%Ch5j2O1-uuqEAizTf`Z5)OZ# zD@|gzd*rM>#xGE*$nwnSU|^W|+W+Uax3*a++sj!VFL<=B*Y4pI<Hd}9);w1yYjvCn zyy>bLz<$dAX{_$H)?)3Rm6Bg&`0EP))lFT^-=3B~F__(kuioa1>6~Yi4NI>Fw?)ip zoY;52SEKPpEA!f_IdOt}rrEqv@H~H^F7#sbAM07(Ww%5(g*Ki%uH4tWd|hFLw>az4 zQ=#!8740`u*q_PIuiDNx@AIDpMTR|m{#$GLm;EuE^-MLH`S_lv9*lmqj(Pjr_m=%~ zKjgi-^P0p$q3w=aCSP8W!;?Pe+qX68Gn}ksMPB$-%~xO6ZQQdfhsQ$Qrnqn3zN;JA z+h#fLlKFh%9RJg=>({CO@LclJ>~!^NPtlG$Y<bHf9Fzap?@{1imVIjv|8K*J=f|3E z<#SY2hh1-3Q}8QncJ+#tFX!xCVzff`u;ndl!C6mM&vi0<W~KSGRQ<#1`SYjU6P<ch zK(FHVc9w~gZ~tdlKRNo^J)SFRQzI8K+5BgakhNQI{q6CF{|pZ%-`{q>+f-0&=7-JE zTbf+M#icqnZEWFrF#Wg7YpuqUs*7bgo_vf?{lWi_!|-?bYeUcf44kFMTW#!xHh#MC zO8EZSo(6B{?2PWI{}j}Y`$&CS{n1ZK>(VUihljtWuGjo?_27qJzq8(K=X{pXre*nj znZM)9OS`1?+rkfqMJ&F*<?$2k`78d-ef^vDNA!ONwjV!|133RPaIQacQh%A?=3N!V zUR^gkSqf+Wo_%=&ALFObyV+$P)OG!_`OnbARClT>(i_y*ub6){cmc=z6<Ow<jE6Pv zByKY+Fg&2n>h-yCf^S7cpTVLnUHKQ~TJ2<>#(kM&-*EItcJ3mFysw|OO=uE1TXaa} zN$c<TTjVN!U9VmEM>*E%p7n00O-GH^PdZWVsx+@Pg`w@sgZWGAm)al7|Do!Cu)ekY zc<_(>59x>EWOfNvHoeqclRRUCdPb$B-qO^A2jeW%=Ul%%&3?1oo@p*wRp+KIzx{?o z%;L#JMTg?8#!nRv{B%@i-e&zV<k8O450`)6y!f|J)4lrZkLstlH`FKZ@0J%_|M>DA z;RkE$ql&+$Y`U1A*1-2FFNlBh$_IbeDp)?2+n@Kx?mt75;lDd}CR>HqHwYir`Oolb z|3k$qTVCrPm)^MTR`f~t)3;BuHy^EED0=;1f7>h`@vy4@41GQm?ay31a8W_x_Yt*} zCo2vr7GHU8y71wD2BsRpZQDI;j1z0?pZ2X3z5HCJh@;n^eVO6g82-*e-QO#f7fthS z@7m=%|LA&9nz^6fZEkLM@}u!1^|n2>YF8@PuE}{<8g4zg&?9}4ubu5Fe$_?FSF6Ks z&13w}(8OMMDk}F=OvT~jcA6h`YS^}KiM97@Z49!gSTHTXT$Hco?O}Bm0fv7|-mNS7 z&%k@4dvS$Y84uUrg~{8sTD=|^bf2AA#8(vFz*imieR}HJ1Cw4!)wM0X%$IVe&(`ri z*W{Nc<-H!RoRhTl+kb}jyT4i|wl8K~QosJlACn)I{~1{P|F)U*>IxlxsJp*Q&aV8& ztY`1TVxP!NH80+z$h^a`=Rx?3^M~Kx_<TT~yX3@|{|s$)!XNgxyiNKUq#f<;(WKSb z;<~*vg3s`Z8N>VdK;I9_hi1*06c_K#(dT-w@0O0%lTvrxsn6%l`4}~AKXVNykCW!3 zc~6UX=v+5qRr#)HQ1SM>?CQRv)xnY5{-sTtQYC-t`XBN1Zy|pdn$GW%<N2}q!F~RF zKb9ZfRwp;vZ};wtxhcDT^SrFM^kyDM&*X-e3aL}vpHAqJSb3~|_RKuixxXXNz06ff z(d-I-dU}G9vvR9;e_gG^`mf3#?l<nyUG%E({L%==T*cC0CH6FXbEk+WpR)hl_|NcQ zxnSn5<8Oa{oc8RIYEez{s(F4K+J;W`st5mQzbJY&X-=+Q`_%45vv=7=Uf0cCuiNZk zw(05Bwt~9$wYByC8CYIkG`*Yut+VU!;WBfpska@joz6{XnQknZQj!uDF?CxWyTZN; z?v}?*KRlcIaJRLZ(Cw2dT#t1GPaKf>&oD3huh{+veY@NiKlsn^Lv8zEYws-?>z23u z%9P;oIBEK3z1%nE;+hs7x#m8G#Rf;VW+*1CP_62XJAOy(mj988H%dMCUhaxMHqq&* z?wJ`Wp}{9_pL65mV|*Fly|iM}Gq;V`^>4jAp|j}H6NmTPn_DN@?w|PU*Y%Z#6Pkr@ zTj&%x%6xw1@TcnXlC9HRLqGjEp<=X>Wq#h@o$FbHdbeBeUG1NIM)>ePv2ELwqc&cN z>7QM5a9yYNi;KpSkLU2`gsxEjU^n^GEz`BTg}i=tDNmL-Z<i7F=k=xJjGNQWd6!Oj zAmG5*`2G3%he!QQj3hSZr)}Qu8lDs`H@o1f-n3ofT)kf{EArMaYw*tA`}p>!DfW8y ze1<;1eJ{01^IJS`K7XNjV)%L+`-i`mRcu{rc1fgPf8sXrz`qYpZ)~ed|GG{+bpMaU z#k;mh{XM%<i=#_2>Wx8>)6||NZw}iUPCUL<s9m$L=C<;xzU(Wxmwpu<v;5VU^>X*s zl;CG>D{dYOpJ!YDxAfWfIFpNe4440B$U0lBdxUpVzwIvPXF^LGgH(GAkE`V9pEI15 zV=uUMYM<oS-PW~Q_nZp9b;jnY1|86ByQA#&Q@v-^I;(jVC)X{zvnlGvL;D>4p6~NF ze}7Z>G5hh-KWFBD=&G=eypo*C{x`?0|0zR-rCx}>ZT6o!oA{;CFD~|Ks-)$b-I9(} zxfNnQrIDY#uX}#|sr?tj|M6M;U9-paf&2}(`w#MZcU|)D-qn<ON#~-g%%qoM)_U)| z-FLZr+-(UvbGy%HK}}0@{B!A#`Z1NIo@=kRd5cY0Y4hHu-}#vB&$sc*Kk)Hx)#^{H z$rnDkR9g4EO7-m-snar+*gRqQH}gSN`mL4qhg^&Lj;s%CGAgLss(NNconzx>g<rqZ zHr&rV=Ww=erIyCeRi)B*UcIdemk~c*S}1MAxSf5$`32{rZcjc|m9try;p3{$CsdlM zK3E+8yxt_`RY=LQRZrg7E!wH|V4-HQ^vV}i9UqS{Nt$_`idNteK34thN!gm?A6-vx zthe*?tE&IHdg{ilpH)L|&b?E7`Sbd`jX$E--MQ&pFfGHSV-2U<$rI;oLjF1l-Z{3+ z_UMiOm;cGsiU0AuT*I%EZ@OmH!Gn`B3?e80UGuo1^0;&C{bT<bgzL`7Szfw)M2@lP zwa;}&wnt|D-^E$?eLV3nMt;UNyS$e4SwF8;+a@0_I#?+^#avLQ<3xql<K;f`g_rhS z{yYEc$$yG>OwV^N-nf6qWv5Pon{M0r`9C~MYzSa*yD(EmzWDj$kWBNA>&|x%dPQ_6 zF8R;E|3l+v{^9=&9RJjREYr-}WBTx~(<coP<CC&mT15m8>bSAX{rmbw{E&R(eW^e4 zAB|nEZe7n2b2q9j@*a1yNa1O5`=ct|g1>hjo>O?@W&F}Oix0<-_-4Dz5Bw3j_HIP> zH?B`drI=n9G36SV1U==HWoa$fPhvb;!~d}V_Wj4#o4>kWv{P)omism>_L_NsE93Tx zZnn^nUccf7m)RS89;=%^OWa)bV~6*Rr7zc>_lpeWQH?mYW&V2SUtT}B>mT|WhhJX* zb+4PYwYmGwo&_`eZ{?XCTWQ?FxjSF0E3&Yu!0JCk;Qh^OkGJj9{3E>UhxVh|$ggLG zKAluH+T*dk&|&$L9iJl?_qa=csrdQt#q0Qk(+}MLp()<GC%Zm5@qvEp^;!Rx=a%NH zTym~D&AKA(=03M3rdK_T4BPH5R!EukxAX5b8`u8~to}ciek_V-{*m`ho;fq@nz&S9 zrs~EkCchoamF`5IGEmubQ;JzKSW<TqheO4WTR%-JLV_m;X79G!H_d8lMijsE*WyD_ z^+(U&bU#|B`FEOWrmp>_J+aae_gqytzHOhjUGKu$JC=41I}|@X@@a73DeU><`sn-* zGy6y3t<Rd?KbU`<<IQ{JkiN9*YeJt$IPsnC)wy|!udH!ePS2cQ{|^2;vHyc#_iBHU z_=?}()_)YaFSsu6?YW~{x9r}uouAJm#Pj(i_kM*py)K0-kF!jSpL_p9g#HhW?Z^3V zJ`cOJ-ah5N^yvrkY!<Ob+0ILEul>4j!AzZH*}JQkhNK+3a3J*u&l#udmmY51A2DB7 zJAQpy#f>>OQ}4dn&-~c7{2!<Ge+Jf*KQvS(KQ!B!`gpdr$9Lt-IF-+OsmHB_F2`(7 zaZ_*g-}3gj>T!j7?f(qhzBl|+tC9b^;7{<w_?}<9=Ncc~&JDaDeL3&X)Oq(_RV><> znzpS{!TQK*14CmqnS`&*U#uT3|06p2TlbIlW&Y_O`5*mf=-FB<)o|!?&=s9d^>uXz zziIq@<q%+an_cwh)ZdPOTrTfZ+Bf@=#k1Yha^3C=`_^jT@mJ~kZSL{OrtipGna#p| z`=<Vy-@c>r(4L*sUi^9AqpMXoW$xF1yX6(KrX}V-$?yxjU14|j{C|dZtCr}B*MG{+ zdUh$|RPTWaJAR6+czmVsZ2C!Q#pla^zKvh&%`<Jq&sn8Er>;x$Xmu+-8aBCHCVke0 z`En6*b6-tl+_3e@qs&*AtTTPS>)%}M_~CiSKEuqY^zLL&lTWId6VF{Om^f+GjaS^s z$_pjgo8wo-OYKp9u)k|Qzg~%K47=Ey-rPb4*0n13N;@Q;88@t%lNayYWUuy5;MJ}C zrmyRN_?C9^gnfH;QBPoJ`h;Xgcl&Zng^zQtzi>a)-&H5|@k`Xa*$=%pn;yEoa+-KY z`=`hcPuOKX_e}l0Q>IV*vz%_IVn^>b@6Wb98xNJoD}P#k^q=5I{=@$n1n*SjA2FDr zmwQ_>=54Bd>4lF|5>L%P@Ogsej}D8kvf5w$zb*KnHuG^jOI-E|*{!|`+>ItjrdNp6 zeH52FUdAu4zqT&i#xA6lf4#)IIsNkrLd6btFFk1&bmyYhiqxM|8qX`UUshrK87yjX zKJnI8o!rN}woWtCn9cV0jgf<Fy8_Sr_^fjr$&*hfPv8%{e@E(fjw$O~;cd@nJio9r zfAXgi_Mg|^PX8mg{aeM4;E%zN&i-fU|EJ-ZUoGEmvwYL#wASZ+(TmDEmr3&^Cf(W> z_UvTsk#!8FKgB=nyZrF%^R9=@kEVWoH-GWlw91?W?@nhuv))MpyZtRK?7jX?{Lhg5 zvp!YUJ?Qe<I>A5H7frHPS03SAnk`lT%{W#$QL)cb^~SopGwYI~rM;e{e~FpT$$7GP zt>DK!p<OGb{N|c`eKq;=^W5_{_;1^LR=-t0B&W6AvZr>}`EAE6y8^;xi<>ImScM-v zvu3}Z<*)Ep;>YwkGrrAdRQmAt>wkuC6E|OZyR_xF;*p$>yLN=hb_rF@(|+i^pGD-Z z-gJfO`F0_D%r6)`czlO{Z5`vIyBrtKYngtV68|v&!moJ#LcYon<v(lJAN$X+@+l|J z^JgI{Qca(IuCJ5Po2_EVWNEb6@LX*NL(=ZwbLIY>*VPd^#=dHjz3HRPGn7+!%-9t@ z{(Ov|wQ6twmdx)Kk~Qj&W-qx}ypH2<7)RG*yN8W`Gq=_AnUw4lms)yfSIeA)GiTU~ zFRR;kuKU4pnl(Ib$1CH1wV9iv7W`CAD12xA*Oza<TgoXjJCP4h`_GE@aI5=1GQDH@ zdQRxfFTFyKT(|6LjWbicV$`&x-=`;Z#Z!ac-P@Tjv)fON>I<7`v%6!q<OvPV;|pa< z*D9-D*sXj1sQeGDxwBu}3+%DlSG;5E1+(?D-Yeezwk)74vhS+2+f^C92ChHL_Fs%Y z+jZ~JRTqCAUugr$RPDnljMvvk{Z07K&@@A`|7bn`EwA}1yNsqO6dyhPSn`i+U2S|t z7I$Wn;8~ToDuRYxZcZ!C%skGl+}H3q{?Z-gmgPE|+O77@Uu|!2zSuJ8=#}383~TvC zCm)(n$*{-TJTKv~vVu%P*#Wz&=RF^;VRFowH{;-oTJ8I9*IcsBSg<o@<=w`f^uD_v zSc|{!D$&$CQ5Vx^d|P?F?CKjwo>WAx&0K%t^M*gJq1I*<i(c>@7xX;tR5t(P>Thv! zyP6(ZFM9R*q(ZuKpApBpXWXp0XA9WgImq_!|N1scAk$xKmBN#Uj<&`>uiHttZOF<h z=$&=Ftg5v5<&w+k(_Smou5nov8p>uh=lS07jS*)KX^LyzNxrwQ|D$-DiEgp;w!NF= zqFO#p-SwvQl|=Q#^9x_Te^T~OaCf+oH7f@*QxP+Na^K&6=jhZKvn*DgS`xSNO;zww zt&l5OnF}xf$oJc^`Qq8nOv(2GCb_fv`^P-^m9+bGuASvWW1*NiZ<S@Zc0Zgebn5e= z&(Yoj!uGSb1^EYVmf<V=@>ryzPIJrUzw_%FQ~5kjN~FAPei`>wb+z}x4>MctEP1tj z<>CjP)7?Lo&8^qY)l@St4|3!x{HnBn?fzzEDZ9xgo?A|e_%}E(E@AAK`1jF5^iS{Y z!<)XI`ocO#Zmy;Lh48PUzh(dUUb3lvSj$y5g|+AQp|_d`6sHyx|GksKJa6yocNR{& zdb3OIj5`)Q_n&o3`Sb68+_evSwGZ3reQ577xvO+d);YTE*R}VduBp2xZn@5+!OhO0 zJW2D;{*!z6Y?a>DBY&W}P`POd!vdkB{T4D`zpj7j{g3-(?K1z&504#$kLC3~TU)6R zcE=^jV!;Vpv$lzDmFu5-9rn+@-S}kDjDUwHe=p#3wCUSZ_;vjW8=s|8me-VK-Fo@w zPH=tauX+~0Qlni$RlDsEZt2|eSNUytVv6LJ9`;J{cbodk`im;Qy$-7JxVrSBiTb5j zo7H<mIwew8t0+8|kUw;XM{du@Sk7IS-{z*ydX*@<cS~A=S7}kv?P{KlKiSp$Z1)v^ z)Z1VF$T#$>_C7|&WS>cb;_p_RUmpC*)AsdetIboECcoDV>PcSM+V^F~$rH<S4?LU4 zP~3Q}Tg=6HURF%{`l`8#d5d3$37xBqU<vZHe{Oo!N!-P%V`-c0uM5SKXI+og`?|qN z_<UlNK}FTy+pK)-ar~c-+qafft4v#SE;R7;+qaYBSN><%RJS^NWsP#b*XEhL*Jf86 z?&!8C@x0+FoonmNa6s^m;Fa*_y~~@|>218i{Jn$av26Ai>2C!ewr=bGa4vhd%BOel z^Oi@qTPB_4&h4!0;<R`<se0BY<DZU~?gwvXG<%*>%davmcduMZP|@;d44?~UBc$4= zya^Kz+HsCkw(!=JANe8E48K*M2zkyJW%gYDEmPrnTkVNgw!{l&e%I->QMEQ;5o0Ot zkIR0tGJmn{vh&q{=hVb5{bTfFW8!0bVP)Okby3bTb%}uo9=Zpgcr5Fl_Ybt(xA(`| zMK#5L*9yh+y}Z@h{zutP{?ZreEmsx@cwH}$?mn($d*;+?(L2e{4vU?aI9B)cKSNW= zkLwTQoA&9xoGvf;hjaCh+eg<IC~uhbJ7CMU3px7=H+igm-1{zV$Gem{20c%lx2w*6 zW&cAv{>|2p#ot!^UGYcvaeT{v2Hw2&>)-FO$la>{!+p!mcR`*y@0xCJy?UWP`IKT= zz^7Av!3<2Rr(S37?X?LiHSu11yz`*dlu1oj{&}t4BUu$vdBH;AJF~j-*JIjsmk;ck zdPY~nsnMKA!1HI-$A4~CY5N!OGyi8e$X}m-UgU`WvmcfGtt~mso{xNkj{Cdzws~u8 zpY-$gWj2FaTkZGyZT27Xt{>OU@{aD8`EmPjmG!BKKd<d7o%(KFUD~VZ)^C!JS+X2I zr+st%(H|N1UH{s7?POQ$cSigR*z&&3Tu9rM>w(zsB{H9z=jZ$?UH97Whx_Uit6A4> zIXHi_<}EkldF`KGzm30Be%SwqIse15*~R96RIT>+*!Z*T*Pkj=Ru$v&T<77#?U}o3 z77L{_2pruUUs_}TpP@;x?!-LtjeU3j2`*bRzxF@FL#-=%rj9#G_`mJEWqjiNX-SF4 z3|${L+9Z4ZdzABT`C;u!U*$h9`wwf|T0PQ^^~$dH?&N>>c$$l+ih7UIW~SpR3=Hq% z9e(hCv;495BYR-G_lNN2(zjWjZ7<@Ed+eK~F8TcXY4!;muTRhEnUg&0KZDQw_WukU z<{w<&bnVj7hrZ&6<oH_V9@8~C#Bn!z+V4}18=Gp+R=qvm@K55V*7?;x)~Q7}v262r z@?^y;=97}T=PF;=?pSZMT;l5Xo&0;}ZaAr-vEuIj>3^92ytk9BKPb6B?>~dM`h5Mv z(!Fx5410cEeKtR3c5y?2Uh0fGL;jlZ>-PlyGc+;RRL(nU|IqSde@l&O$=Xd3$8Vc9 z6<!TkbVJkL&ARgO&VN@Ieb|4v!?d|_(cSxTODe3DFDoaAvnz<D=S(VRIxZi4wrX1E z>iA0g^oupJSs#w=k)9p#$U=FNw}oX+%Aduu+NahY*|E}ADz1GY&%CDa9{wk<AMXDn zee|L99e$A?uOqL>+H5PiXtFyxRD06h{N9rRZsx2iZ<TpC)?ZlPy8nZt{LS>k=Vk96 zZ`8L5)>-J%exz#7<pZZYe}7ACVOD;h>p1W3>+k#cMgREzp5@oL;O5Ut&Yj&GA8!b3 zJ%0VuYPJ6ikL@;hJh{I1%NKT)=;#$H%%_^pR9Dr79*s6V;_n$!Kk=ep>$WcUWA>c( z52oGcsuOXUSRsC3pTLJD%+GEoF1@WO`AW=LK+(;rYV!H@moEN07bkaN?KFPDigou+ z>24DDXmXKNIp*A+(8ItiuW)=nOX>AEhUzW6k81P2{d8wIU277(y~v`&%{ol}kLG#q zgXL-qmmaN^>6?A$cu{I^U;XpmQ)k5tuX7pyxUMrrZr#&Q=Wd;T7ym4AdCUGZdw!pY ztjk%#mCf4uI+N$#%*hpar@oT?nfjGETrW-j#y<?}JDvZapXuH!U4}y^zC9F3n0(mh zxTMOw8P8|k-E>)R%gra=+1=$aHQnWD&GPR~<|V1<*Q~Vp7$$sl^X+rFd25tsPH5hB zEv0Z0yT>w)!*d!x7rzeK88=OM@w2ni`7$-387%w6KJ1&jboJkhrRG}vMbjR9ejR+T z{?M)KI-S?nzg@GW@X{ep89uADqQ%PdJpO1)oqsfU!+!?99noj)EEv<w#oh`rzJ8`` zCHnO+f7RuUKbEII3KPnVYMpzK`B{XD&<@E1sv(<G{#uCU)uja<UUBN9i?jRgof8-C z-m$0jj)eLQ<-ku5R&ZFd&*Q7x!*z1+2l2-B@4WA28W@{#-ji~ic;RiD_WU@@b&KBJ zf2-ws(SrHi<MsRaIFB!nS}NOp>kh};K;}7?s$TDsuPe-}+qt^iHz((2xYxF3zvArt z<p;BQa#&oI9F_=PNpuXJ<RE|Hy1VS|W89U?;tZUZy>l;Ml$lkx=+@TOZnM)FPU~t; zUN|oK_3x8*=8tOoqCW0_+xXkCg6-p4JLQ^?58I{|%rRYYHDQ)(;>0tB?`s}!e;8}n z8kxzl{gdTV4gJpfA!|1nHtV!!$X@wiYg_o^>g?*@Op@l&C!fj~O=DSC*x+bCwa%yF z@IP+j-<*G}CPlodabNYLE0u-g%U!M1NWKCm-!k1t2j7$@bp42bWdBFT`Jr`orTxS3 z8of!+8_Zu_zvpnSaH8yzU?!`==X`&z*U4)g4cWe{=)AO>m0ACbRiB+d>^iBvbpFkh zv^!^+O*bZ0-jOoe$-eWr-B&4#iRBr;_Pz<4`02R%^dh?%lgx5TUmV)s?=SbC;b6so zh8%tI*qJu+`3rxfm!xUzJDsU=Zk0!#+`C69>5mzEB;}n!PBQ-^y8PRlk6QO{WZf4t zm5$&^O^b*+cFxt)E`H|QwF@TM^zXWTb@O+Rb@#v43+|caR(SmKw24>#g07^T^Pk~h zk)8R!1Mypu|DCU6`rzMI<ElEXe_7V1EUUG5&rWIbb+}Xa=C-rU?l60Wnx}1_o-pjL z{Ach_<B!Y7<;VUrblp?`vHy|hrRQNE<JMQNzB^-E$Di9L@1=FAp1;#y(93u_CveB+ zlzDyM57b%yxcW#_@7nRGk7_Hc9zNOG#oc{#?wqO4DsP|5o~a8pGK-dAd9-iB2k}2b z%-=5kXk6u-z2t}1`@;ph)~qaF9~=F0!i-PMM#ptlD{Aq*?OC~lXQkTSsFIZzyY}@w zUwPJ6$maI9@V|3Z|1SNf6kB0_Bwk>T@rP6AE?w12y;>7$?99B{OIaZL_&$BB2MxzF zCOT={xsxFOKKfh6--Y$5_nZDRaMoCVu*>hBCvau9)3%%YE{ATLlsRQ*TE^P7PiBQH zmodD58-HeA|9=LyC;u)QRrFmyeEmOzRE@<opPA-HFQOJ{6q#!|?|bBt>gn$3d&JQ{ zG;iv6@i*K5GqAXPsBb7;{McTu#(VzJa4Bzh-F;IR-Qbq!YU5Uz6>Z(?6j^5RFu-Yd z{WZ4rv(984TeI_VdGh6hhYY)e%Ip^xeyrnuy)b!MX4IMso^74WvMaco%$X*hxAMAE z{AoSIKhc?mAMKB{aYlP@+0><x5^-==^ztXqGwwch70Ba!=DR0h$BFfdzh$aITPJKa zY-suUmghBFio@!y*EAp3o@;J1w6r*QaQTh9FF9A3?wxc}ckPQ$dybz!HA!Z5erGPn zts`uqQ)kGThxdBT4KH36y7IpBwKX=ek0o^#uIs07p2KwD=yDxlo8BhBhtGDaS)A;P zlo0;zTiLeuac8OZwo8A!SKW8j$$DY(Lw~8~$$~vzsxApTEqSKhl%0{Z?r7rj*cajR z<oEZc&ASw=KdHW6X^MhJdr9~)rMeHH(<^NctSF6KaOLfrXB)fTJ^Sv%E$yaSHp$|~ zGo!$DsS#5ew``7{u9Du9v`h2Cob74#k=`j0yQF%zWPUsOWZM=aoou-o>rLLVG_08R z%k9v%3a#r}_AlpWofk8!DqRv)bYNHbnRVNyIoyliwQHyPS;HBRpL_^XY^uM;w^eNA znv8#v*MejIo!fFbX@8K9k+<lQb@ESU=y>TYllE6~*SUM8NL%cDXgp`;_B!e4o9UO= z6>X5tSe`K1xbDr8S-pEM?wD+mDV4B_;X%r*l?f`}((cEHZFbK(ot?g7ZrCg3rLk<x zZyC0}TXR6-I={u_oC<ku<r5X>Pj>C(F^;Tg)6F{h^pal6#A4~R{|o`UjEpCR-Dgt? zw@{qKqR{jH;Ch?Od-BsunOzfW_?8PMwB6W!*CN3D_|wR<MVmbMJkB_leU0JzF#opv zw@V-9zj6F+^kezA>DMkryffKdw)t|&%;c`CTX~ZzZoe^mU=px1J^$WWC707YUZ3o) zI=Ngv{c5MiLT_o2dYSnj;{P+;y6p3Jk$vv({|xQ-1g1U9Wquf=|8RxsuDR<}cU<Y| zG+VDeBle%mEQ{PwbMxt{dsZ3F;eXbCeEOuAimuux#?#U)e($bt|FS;!+Mn{3+2!GO zs#o93eGa>lHtE@?ulv4SHy4sj+o{mE+2g!&;lboM*2he$24~(#elvR`c+Rih>tEBu zH~U{*QTDrQYOjCZaNcd<yzb<V%DVWwbFMJ2^RWB7vbEFl@%pTZ9&-EJtA6<<&viT8 zc;LXn^IM~~ZOP=YKje3z_*^Z&*E+#(V#=>C|9P}G-0{PV`9W>gYuCz1RNe}^DYVYq zEP}}+l(k>tfTcpPpJtqYves6!u2;31zh(ZNk{7JcTHjkI@k9K>5#`tORQ7p?PCaBJ zRycQm=AIoa4I6H{+^d=05yqu_?x%qKms>vy|1+>0|Ig4A`h)x7v*rhxHq5JD`!0HU zZ5w;QymMcl?l!xyCa$JuL0e_n`y>mMSwE8haTxz+V0m-FKE?j#WS_qa_c%ZNUAa%A z#`W@|J=0zXNV9b=KD({jTS7O$W?xPBw(LzJGgY+ZK22P-{+;Ua?l1jY>}Ni{-n(69 z(e2hy%NL>@3G4|D$~)E{u2|gp`pS{5t~Zt67tL8US1az@oBvn-Y5r4pR_`vUE&6rq zrr8UrH5YVFZ#Cxnv%BoCgRKF(pPTl%e;hRq{~20yAK$Lcd)jsD4DX&F>K!-wXFOgJ z#CW_Wy!yighyC0(@%06w)2=3`N&ftok{YAGtm16VJ>9!&ZWY*HH3+kmc)omp+*eZ# z%|jtiH`_{HpQ6fj@y@@leKJ2Ddwwi!UAHiQ<?Zt<n-(9}(I_|RDSLZw{~>nO>RCTN zfBXG+#-q!+vmb{ymYhsZ*36BvnEGwigfn_xJMI`c+;Ly`__*mu{)6@0HKrfm?x_;* zu<^JjbWLIUnYLGvWzinZ&(hP1R!!145o7iI&h^{o@|*OJuNQZ?C-LF?k%OyW3Ol_z zmc4sflWUG4uSmWo!#cZv#V^<lKZ+O_9!Q$<ckS-G)~2s&OFkAIPy8vP|KeKzvl`Y9 z<&V<4{|Wq<Ta)}?Z(S~b!1j1EO9f}W=RQ;1dJp#Qd?LxnRmrTjKe#?+{tpfQw=+Mg zKR#n8I{VSl@2x2xo&L^x`R4Jat)EZCuIPRib#~Xo8@-Jo!sjk=t~+%7o50^m|2Y0= zeYpGlt>Yup%~$sX^50sp_jk_4TgMVLpG8mI*0^nRp0&;UIV*Jx#C!ZDD`x-WjQy~R z|A+5C-pIJuby}B~_-~9jTDwv@+3Z2h%{&!(oq`@i!*-oJ`U;O<Y_x2X7n{Fn+3hOz z?0I?e-0{45l}o0rjSv2v_ILJwhOGN-^Ec@qsP1(>GEZ&amB*L%%*d7d_qO%j${O+9 zLyKbf#D%mKe`XJm5O6#w`s45Kq#CE@Z`c1$+NWO8{V4V9yw1wf{KD0e@7&+%>gRq` zNi+LY=jy{CA(o>4)biPWW*hmB>mT{Q6<l*W`p5pL?boI`mtBnB6d!eX+XEhrEkPfR zHZ2xZ{CT5)cID~toj<l8m@hW{o6E=Tt#(q;=QnAqUMbahtDHIcx45S4)x*<`RLt&$ z*_8^uee&)cYx0yQfd^f$%>F*}dhhY`qN*IqAH+k1rMG!F_GimXQP5w&(06!imFl<F za=GS*C+7T|cs^%S6GMT`%ZLenRn1pQ*<Z(2*KmCdo|e7yaXatcrnd5L>=H4J*V#p{ z-+5tFQS5q2$JEp2gi`luA%k0|l`Jio3%LyYisP3T$VL?%-LZV_{1<hV$3$K^b*<X{ zujiw^M3l7kwe1P3Lc2Z~PB36R{`Gx~?14iaZI!QIzKyk8U3Pu4yUfEs2lwvFncOLD z$$t6L&e@ZjM0eU<{WWJxm|Zj@+oHuvlUJ|5^P=*}ud7VG&)>*gn~`+JxuE*_Hm##e zC*6y67jgCJJGE+t%4XpMviqZ+PGwcA+PM1E++#o5vX@>id8_6B)vMRwd!|Is?*}|w zzvREUewg}g@#F6GlFo%H0xu@?emul&vbJPhR}166^;~D}$T{_t%W*#5ox1g7?7ewC zk~;TKu#_BPoM&Bg^YPZ&`M*WgZ+`I?ie(ZxS(q{NUD=uz{`f~~`=uUn-TC^;(^fx! z$2X&h>J7P-e}B#U`N-R|wdbR6y^(9dT4DC0kkvghO%)9CpO4lBW$jAY6}PZ>;l26y zZh5?%V4><~#Q!~_$e!zO*GHz?e)Cf%=oMZlJ!kR!!+!>;Kkxr8u`yPg`RGJVXr|Z= zQ;q{=uYdpe7k0<;*wbUS1=+is3$<^ZYQE)Om+$$~dcJ+;QiZ*p%ZjDg7;n0H1Qi@- z?_=}LdHsv?Qr_*8p04{mdQP!DW8Q!I(}PcL)^(=sGRrISW<0*POM3TS?}*EbneK>e zcGzUaBgTEeNbXPVy@ulW6^Ht@eRFEAdY+yc@ve^h$K;3ltu|q$^4<3&cYSo5{`Bo{ z-DS&u#dO_nKd0uAs(bu{z=Hn_72)su-(-Kx|HklfdROir=@0P-to)m5oa<b?SNz!Z z{C8B+Ij+{e%A03WHZb~ByLmjG6aKkm!utXv+ui>}zsDb%e?$G-wjYxpO8a-(bJghF zQ@ohB%~SN*{K{k{<}0gJCNEj>%1tuLz)|#lf|grvs3~9CpLOTiZ5K*SdGo4hf3*IY ze{1U>ER8exvHHXIZ}M06_<uNe__uN7hokRiR(y6^_DVQQMeMrpN}n{7NM=J7hM6io zGWEKJ^#>#O=VWVoOb^?b7UU?Dc~K_0i9`3#>t9`eyZ=c3_V{7{@bCFU`M1ozoe#hG zb$8_2#LMsOYd*S`^sJYjb|OV_L-+*ivh@#7Khke0^=GWO9{j;?>z2DO#e;A71SERj zJaz3&;k#tDed<ShRtX&mI=17F*R8d4>K~r5u{*BnRT1*;(fj4|{}|gl-~Y$;@pnSc zjIX@9#s`m0=lA#Dmp%82{ev~}+iKtL*xnw$aXXg*PnB<<oBjRX*PojuUf-M0^{4;U zl=UCh@AxZx%kKI8wf`Ad9sh27;;^~m%KYyocQvc3lFoN6HUA@W_}i&DN&ZrI`|j)R zn>YU#?~L`$zdpF?F^6^ah~E^w`K|Z;9}(woNA^qP%e^`||D6d(y-8#C)ct>V)Mxj4 zdij48jti*xsUKy3IwAgLy!HeuE_<J=ZgavNV}7%{eB9pqPbuTtuJ=cD(|*V7ofh3O z?Qy`)Y0pCYY}*qmBfD1Ucmy~+`FJ+w>e~E=d$;eHb^gSCkzDC%Dqf2WPq56h`tqVW z@WZl$`8Ldpws<gecYjSk@U^GsKf`>l*ES9>E+75ZZM$bRPxX>%4i`_kWSJkCY3(du zczJ2PL&5KDTwVWO*~^~|H`7{Od;eLH@uE2AjXRX}>=}ye&)0-&uTWrkckJ%Y19n$$ zcpFT3vf@8Og>duNHGji67O}A2xXHp-WxoCLtZ)5tQ{J58<2ZU!UNg?Pd1BA?;)lLs z_uf4|x3_kJ-b>le+gp``JkM1;m-+VnWz5qx`sIaBU9T`t{8xPa>w5pIC9`|A4-`A5 zGVa{F*JV>D1H(zx!;D*tFK4h!@?W{8Ft~7`rQVq@qH$Rl+RJ+W2Hmw$nQYs`7A-9F zz*>w~ug=e}?z_88vgG^Yf=jaGls|^Pz1p{6fA)^f!=4vBn4iD<o*MQzJ;BW?Ja=8@ z*(JAc{m8jfyZN_y*-OjNNkMhV+b`O^ntW2``+CET8+UB|=p2_iHJ&HVpt$$G*(Jl~ zAJ->OeDa#z{r-=6&o}p-Q|x}$@3O_#{P48txALYvy)wnz$n9pFqXlC*f8o7dYFoDM z?TL<M+)-j9yJVh!{L{EIE0@0f$JOn#&#?O^)850ZhbPZH!!5x0TvF23I4-@gdg*PS z9ovmk(s!J<H7`B>=~wvX_Sut)Hh$hQy==C{vMmvj4KIxQU!JXN{&#S{(2@_K&pQ*Y zJ(-nlku&X)wyUzfmLccUcefaGCKNe6NO_QQ{X~>ozkJ8t+_kztia#f$H0+sF_2ui= zwfg<#x5N*=XH-8Nof)Suko{Kl=o<&wZMTYroV*UCpV^h?Q-7Fi?%`(vUO%s2dGK2I zVnxoXi0N;3|7Qp{t<O7ui`o0{qJ4UfD_@jnn{_UV;<dUJX32NEXS>m|!YM{AE_uCA z-%0Xt{^arvx^eVdhQsz&bD<@y4`eo5sxLe)zqay>`StSecCp*?^dvrP)SvP53zu>1 zytyA%KdSHU`p<A=+av8X$-4^2YR@~*k9oj<XutZI&74WAy#*uh1(m12+*!vNxLnHQ z>Y}OrmLK)@{d#)-=367(3r~LSX6!wFTSmjyUe5AF&ho^mlE+2A#<$w1y^W5!GT(js zl(>7xc1}8XHtN;Gh%ZbM%%?nM*)GpJwBKc)Q2jxb`t191w{B(4<N1;JNc*(+hS_@S z7PR}dI-ZPu960Nmli}okonK!?pFAq&G1W~stq*>YnOf1gzRc{az4+QamX!soH<srg zcp%tRE%m14KSTSht&ek~%eW8Rapaz#R5<@|*S|S+(*GF_GS+A3=85h7sADJb;qJ`h z&a^8__wI;euzzu_?2U9^{q>UbO8cJwsQu5t_U6{oh4R97N_URko}B(ouT6If^My`R z&Ajl**T2`SeB+^f@MvL~6xYY{`pWx!l54*`{adI0acAO(MPIfQc{MsnXrJ@Uf5gJv ze`qhi-w*w=6YEuHvrhTXux5hLg8ID&m>K4Io;Uq_wZixxhwX2{iXz*2rh7iJcfL~! zJ$)zZZKCuv2H~d}k8V8J@IXdx@v`D?{-EWev+F<j>$hL;USE;_aC`gNzZ=ir$}0&h zw@Z?++_`7se3hc*%$C2d_eb{z*S(3nv!h7t`_dos&#NEixA;Gb-kkW*cGi&(JzMup zk@{9@d0ZfR&AQ6RjGpI3zy4=9y#9yU^tZ_$MZ;bnoX_(ovR0a}e`!pFqV~M<__dop zRi{+Vvt0ir_`)9LhwFJVCmw&8D|G6>x@-O_Yqvxcx8Bk{v|5J2LjB{q_ih)rzAe~$ z#OUC+@}kX0MY7I3wwbeO?!A^LU+nf&np*7IyZ6TW*Y9k(Dot6w+PCtv)gNTtpYJac zt+rIW)#R>$q3YvnrZW;Oj@$3v)b(Q$$CDKPwUza6Ie*Jk{Qjo)(XRhP@gv`V^D9@x zyga#9cv<Dzyv}ly6-vAYVH2kuDLTMvDZ|9E{)<k0`>!c06{}w_cROe1tz_unwC+NC zp2In}OTP8W_8;Qrb2vYEe_P*qTdSmUKKsihngJY%#Z^}PyN}rg_6Sa%l$mHe$F=fP zXcgbSXg9&4rmOPp<>rjSQ*K_KJU_o~-k+`~e;iA>O%f6sPv$(IXYptC(yPz5+?JR8 zxpCf;vIoCrJ>4p67rnD*qucFJM{9Q(nbLn#UoX$~*PM6%w}ChNAHBP5-jQ4y6K6bE ze%B+)!uQv$R{Qszzs-w3$amK9$MZ{N$){FF-`BHn-jQ~nYtz)w1nD_Fxyg+$;}68Y zxhpdN!_JaYl|?f<Z5r4Z)fGx?!oRowXJC2z(f)>=;Op~JOy?_ePAf1MHH#U~^N=ZH zpY_prf90~O2+`s<cm0E|{*hdHkiX%N<?`3l)Rdq3%N{Y?9`G))Eu)mXEK=Nh_S2~x z$INEEvPt|X{8;*UwtDl!4O_h{4xJV$d#$~>ad+C)bk{Hm38%`Z{>yD^AI-L0H|yU! z%TNc!f}83Esu6sK*Cm*3-J_nb|Kqv-@U!^%7}NPPCQhAPX_-*a==|>X^$8(!${vKD zJ-K({t51hFzMUs|^`H7{vjacckA+QhdfI(BKWEu3*YJP5+YNuVvs*kZyxqt4=030M zmxPM`qf$Mm4iu;|M)W^ARyL`6-q%n67FMROUKRD~o==n8oiiNw=hWPs>0$ByF!R5+ zNtq}1$u;KIXjc}dx$NM~E%HjYse8FE^bW@Zvq$b#nd_Eq$kcX?eo{Mm`5((4u}KR& zO+Fhbve)d4ZND0xH1T|#YpGOy`#-st3MZGl3YJRVQ|7ttUc^_ww5B@yQGVxl4!u40 zy8D*OeeF5EVvFI4**g-}b*=Mwx%Eof^Sz}TYaFhg`nhY`jQ57OiW8O0t|o;)_mq^3 zNS^wnPUdQ4{9RX*-}8g*wl8#+jOgBWge6DTt@u#?E5mnM9A9f$FQ3`&vzeh_)u|(o zm**8<pQnB3e22+Ijw@e1Q#ZHH)=BG}oOW><%d)4k#=BJu&lN^Tg>B7VAHnN?xN7d+ zw=G?gYTKu(h4Y_K=vi;uVe`$j=DN84%$L`r?(jK&QoeIT-aLSvecr!0r6TqnYCF;e z7Dnug>DMWm>%fw{eECni=+zbN9+#3!u5Y#W&eze@F4r;qYWsb1Lv`Wx#+YmSKh{4y z*R*h*zEtfBZqM9&<5llu<PDQGw{Oh7!Orm5<T1PMMB%J&woUJYx+0ILv=xN*Bu_h5 zw0s$#?SBTZGt&e1_Rb3P{PyJGVHqadjmNJqkNWxOKf|}S%agsEqb``(x(98aDpirb zEhHn(=D`ND`x#}i2l^*UJYQB&*j@PBp<-2RVU29&vWTNLmsYtyy{~fJQ@VIpc4XY$ zZxc^OeBU9-AocRsmK#$;rY*lToypcs-{>LF5yQy2DS>S^49WSkKfS&Z)*W#m_i^@8 z35SSXM^1RD2Y5VZURU@sUh=iP$UnuHSJUkzKe8=NUo0J6`QGMXuHJl254P~rv3~ZO ztQrq{=owi2ER3_vU-9GmajDRM3m@r5{XQ~H$vSl_r}Ekp6K`zk%ll)kdSIFjgZQZ~ zF~9P6!QnE(ue^^s{FS~Ed^q6L_U)ge9ZpHCHaWF;{;u2m!eaQ!o`lcJt{3|!bgTXH zv4zXCcC`rp+<5z}>6YRc%dlG$e;zH|vF=VETkYycj}tRjRs`L8eMI2a-MhMPE=B9U zDciNA^AM|{?;6i!rB=&3Op=Y~B0HmA)i^)smyN7oIwozsU|QKXLC&sMJRdi68t;F@ zpIk0>$WQ$IuFnM)b<ANO4<5``OSJLMIw>#m@4|nE?Z^L!us_t<Zf?bYVETu7^OA(5 zzg6GOQgd;7y61JU?1q$>N#bSf>^5CL*pKhu{{D~X`Qy7(s@f*))82SFPmxpd!}>N= z!7~zUES{N}rFP$f=TCCAuw)4TqMiI<`|<QgJasx3O%~gD8hc&3aa=|E&y5pdX}ho7 z)r<5z`P+5Ts(B$PT)y%Lew~pzwt8{Jv3H7<E2DDVXMH^TPO0{l?3ZX?JI|{UPZwu8 zt<3+r*wXHqyy0SRSKs>h%BP`=E#;5-?XCaq_b2D7+syU1D$XB?ntNuFo6gtl+_+cC zDk_ozj%D+b_9Qeb<?u8#9bhufcK+M{pCS8iec-<%m;TAT&Tv-Rbmym3PS%mf68q=f zDDeOA{IaBi{F}Pd2dwsWF7cP|dU9p??&wK}-xfxl%t@YT_&Fwf*|*gG1}Ei7{Bmg( zGJacE+<iHZf2(=7?6mp0SxINgs}>*mc)(Bk<R(v@NjCCRcI3=|^u~7m*NI0>ITlZT z#r@W--qeo!KSPsu-OXE1FFUS%`76HVR@nr1zO|Jm!d^+SM|!7Cj+%PQDCRCteYp+) za?qT!$l{N3J-3$k|5LTSKUqazb$k1kr}MuXrA8+0+&Vkd*rUfN{>`cda=|j!-}y-W zXJ~o5Co@(1)c&m9dmB2Hw`^!!`g!7>tv{bkd*9%8*~)&?lP2@rq^|Q3*VL~o2}_^0 zRH)RS_d4TKgr{Kn)SQWnW9GO&&xu>iwsT%>$E=IDp9r3Qxz_*8T<(9ImcONbD7!Qt z;a-?sr?J<4$Cjz4xt=Ml&$}f~xfU-z)!Y1Cp>a<7b0>HE!V2w&;cwo4*i<Wgc$av? z7g=-fZ5gWD8xH0wM{hmA*dQ)dQY~FQ=h*bO*6GsTGU3Z!PJU^pe!-OEP1Cuc3d3)r z-p4bR1gty7lyy5P$Us=p__*ZRq}Pv~w|!VQ_es2CI*YgNoPzkXHasl+tuC$lIf8-_ z$)}^kEFMc2$CW9qdA45d=B1S@b}L`nzoorpt$vMdk+kcU2(^}D$E>|0dQ_|)#>M(w z)1Us7Cosk0(8A|3e3MHHSO185?)0N}Wpu2s==*s>qO(3!2J?Bws%48Nq{zQc>q+?H z#2S3%i>|ZBzRNb53vV6g-7+cq?%C4pd=^FXhRJCeZ_2gWPCoj2gK=t*pVncYZ*q!q z+#i=MoBpe8>GP;}`|3?*GJIa7|Lyi#$B>ldl8x@o2i($_cBTsZ_URw3Q~5Y==3>Wn z70upFxjqgT@7%l{`?Bo&<kJ~P)=!jMn#+6TTnO)(%f}~wH!|?wa@%A2th3uY*RESX z>(qz5srqa5*C|E3n=BVG=~t$1?9^`!oid*DJQNrz{5c{H=U1<-2tToPb9$fkj>nx# zwr5^5N}i*C^FPBT?wp_H(;^neo<6;;VB0+T56?Sl6!LhNwrt;3eKPe)tI)K@{+XPS zakn02mNl^{OiT_wJ|{xh*RkF3-i_E7*R0n3lfK-d_V|=xNAjd=*PKmvo=DHtK3jTc zIg=rS>aOP!BJcD~cE_qcyXR{;DO;0ycg&KWldKo>YEECj^k<11OS<&Q=g(dhl=h2e ziN{H8_%U%=r?JrbxjBcPPE6gNyIp{Hx|*p4PtEEK70aLA%x6o=rLH&I7(dFce7n5$ z%j}kbJi*8PC&azDj5!qhla+IM%um~~UA5H74)wV_e`Ca}s-s7u(snL;vv-=!99Ids zXeU1hfk?lNtCurH>RoyKZX-+B+<z+{{%7Eii@M{lyJwf)l2xyT-6pMQd+=w{vF+y5 zgDl<bU(4Na>z>@hXSn98*!0LfAC5l!9du{SWaqsRth<}1XYzdV6R~lYet!Ci)}kuM zWm*1@WX*oNx7~`~sT+KzkHcnmzuCRy&nrDHKAW7<^5nFX*2;j@N4=Ib`k%OaQTKiF z)pc7=n{^o$EPcRpT~RKDU0dp?*i@O{mlyB_7Vem2xne=H!~RQp>*iUP@7bKVb!o&b z&jpj8-a4N%{j$kKGlxD&H*x8XvkCD(wnzE%ukYG=Q`~b;@3nJJVtr*-dz(mPmrY&w zE+;DY6r-j{HHWI%#98}SyuS51CbHtW*XGY9KNsa&%uLx@*5$x@Xv1%gE{=mg8-8br zaTydk_xAkEE17OCzN<y^k*Aow(WPRZi<5OGbUHO|Z9RL%qbWq8<8gZ#pY&}|m#Mj> zK07<U>;BdUf9Kc;&#veEqq5yhpRr3iWP0S4gsx}59vo(f_{h8aU?#VS&`NWy$f=F? zH@A1y#3p|5cKN8@_osxXimiP~T$cZer3*{MzD;{uHtEQxyRQn4nCo4i7Lm*#x5M;b z%s#sx&5!nX$EofA_`Y|YRBZl{@XfEo*Bnrme804M=j5aYrq!oHLl~GE3>X+{-MJo4 zjd3@b*73PG>f9XNJ0D~d-R7@8on3HylJf2{<6{=b<L-PsS|lDE?X_;&Vb10)!apDX z(cbg%;?~MN&r-unxcqZ?9{;S1T(4T0RQCID#)IncHzN0qe16o0J$V;6)l2AgPsyK5 z<-j>#&ijO{e|lnn_44I)b6=Tue$NTwd{ND{d95w?#iQJYo}1?}SROOJasA!)KZ2A0 zasFKS@812bW|I>idk32z{?EXzaCMJwTc62}wu{Y&mnxsRc<9sp9Y-cg3Us^9+|G0& z`(yjV^uzHT_Tqnvm;SN+k-s?Z^{->AEw*poczMC3N6#Lmv9<&p>pD8OY2J-c)*G#1 ziT~!ufAHRaW4q(u_Wukiy37y0x2100|M5yteQw3hEfX&L7S`IC?e@AptLAiK#)7D0 zla8DT<mcTzfAXU_uWtl>GrZ?s7ugu9rL{Rq|IA;hD>l(9P8W-JZi!awi#8XGkq!x% zsh|;En9h4GaPrgS=X3YWJuJGIzi*G#g~i^+w>C1&i2C&LOuEd%{Ox*PU(Q{eQzEN9 zu|H(zp56UNZ;7s$6SHyazJ@8AieBBAb&cU$foPN4!QQhs<c~;vUH7tN$Du~{Zj;*{ z{~6ji^S-iGw5O!S#<NaesNCc(`ct^^Ync82tN%p*iD%d;eXQGXPxz9G;LW=t)4uFf zGL&K2@tHqy9{WoB>9%5xD=Vf)Tw!l}VB{#%s~D<~>w7$(rTOv#hFO1YfB3GekUla? zZ{fl}=9l-(mQ_sL)_axt=erj%8*_vwU)*k5)BAX?-tUL&yK~o+tXI2sKH|!r8~;wN zI@8gptg)bp;q)B7$9vPg1<#s`t*I_PJta}nGFDz=Prl4CvscU6<*xp&{>@vX^P_V4 z52?$K`6lLl3m1ymBVKO)vom=||KF5}C;l_+{xqj(iM&JQqy6&x)NYzC?^}Pl?C+WN z^NflX+mt<#)1DVE^rQW^L`C)6>+*><f9ITfCLi;&^5zx(hp&GXrTr|~7&6u3^z=Wi z)03z1?OAg5{GIsQ)4#p=!TQnuTj}L}EERgE;)PzDeR8$g_2l{K&6}n$?cC;Sm$P}| z)U=6V3Ul=QMSt}3evZo7y~SdthxXO3$2-rn&pW=gO8u~Wd!5~n)@7%&AL<%C4(z%Y zS{WwNE717&<&#v0!#4WrH%iwReVG3y^<#X@mH2?`*YtTJ9G*OTI4$y<==qZ(t_NTD z>|Vd#^i}GPED0&Ob5j4(BHpCN_=cMAzVNt4__ss$KCW{!m)vr%uC!g*b*W;>MAy}4 zcNe?!@#MYW{Pev^U~<>Ld;b|8wEk*8_`dl+19SRCo8YA<%PSw>cHMTh_t?uMGoRT( z=gbPvBp4fSPOjc)ae$#->Qjx}<vPjTH#0X>u07SgO<_;V7fTt9Z;$rZ**}<6{~^Gi zr^dQE|K{$;x^w50nHPy}*jKY^^W-B&9zQueez$xm?AvkvP@!MGjjNqkmD}@|f0QR$ z@t)eYDf^vW`G1C{p1MPVbw}*CEWLl|JokCi{|wDvxl^zH(Jy*x?z!yDQP<tpGMjJO zzw@-2Vz^l>EjfOIymVg5<s-8S*gTRmu9>R3rKalqX}poNf6e<J`gL>b|1)syf3W=M zZtIL^oBD&U{IT2Y(K<^*FF}0u=ao;k-}H#9RFM%fj6e3D;fQZ?)b&4}rKL)h(;kIq z{Cq5ZYK2Vc?VjhNzxrFQ*lwy=zANnKoj-?<imVKa$jG^S^J($!*%=<E+GAGa&uFMn zkbC@j)jYo!+voW&joq=`qaoqO1h$|V%B=oACBgS53GUGno_Id%@5<F{`OjLuS=U$C z5_sygg8KfrtuO1jb9D1-!gF{O_iVqrXB)#UBmW0h*O`m64t?g~yOZ9(TxoCp0Wp5j zx#yM_xagbinQ&Y4L2Cl@2@6|x=IiQPiyo!FS?RU-#mwtLSv4E>eT%PrwohT_1--A? zYu(>g->Q5%o2%zwxnY9w0o(dx`+ofGsc|-I{qX*%v+wpTGve+Z7wIp|*<{gwf}P{+ z+!o<^Y{l`a`&*TNJDq;An6Kc)fd}cf)$&P(x95c4*uPn1R)5nT=~Z`MZe*=oAE8q0 zvPoHevVgrd6NkkyciRHD><>P%;TGF|&0iF7_|ull)@Rc`)!xtBW<4vQ-GW)-!2|xf z8!zMJKN@>%yk=u=VzrWA=A%vP^k(UWI`YkbY!AMUTe$YsyqXDTKK{(w!MB08yLpnq z&WFXfmv61uwtdCleNS_?iZb1JFXVLhY9r5*UlU(c{K+_ND0ga2R#|G&hdUo8xgS0z zuX@JeN#B2lhp~K(mAQGJqVGFDKWfw<k}&tNg>r$ih58)1g6iNJ&qdqXSI6AgE&OC> zsP2_@b-{B!PrSGJ%{w!{$x81tB4c>cEfgNhe(ni>|I%$q&Ne$X-<d%(bJs-~PSH3n zTk+);<N6i#Y3pz0KZ<|z@sY~a8um3YHyum0O#iO&3$t$NnZL&>o%bMXv;vdIqdoP< zXQj>9e(`SRMb#Zs9w_C6-eP*t5|+fq@np`%lSeDROqiYdXPUxP`$H9L3rb^hEjDQf zFYj3P=-2#P(+}<yKWL}DXVc$hHvAvuUcI^<)aVmcw@{@>$B22yn;dQ9)u|rmeXf6c z_@9AQ^@HEc2lBU*ADJ~S&HI#kO=Z7>U%{@P!uy5)PFCKR|C{yu`ajOb-wuCduCFsW zf3y4XziF4%zb%gcQ6ARVWxDmros+pmjSZ6|Zx-!j=PT@avtI2#L(|?LY=OVCvo60Z zT6?G5%5Sp4rwh{p5+^CFV^lHtRQY(JOz=m=;I&gOt=p0n^)uG`pZlqTX;Kw6mnt%2 z?^$JDG|fNrr%~on58s{Z_3DkL0{0@qPCiIUR=>>7lKk=OYQYMoe`$g%v~H+;wY4gF zKJUJBe6xmj-1Ar2ymrTDr(d5Hlal^neMa-c)+e9V6za_Gv(WCl(^MVqnEj#Z?@j0R z{(F1O_!Aql9!lk}%xk%H<>!;bY6W6boZdJbSKqLHrEVSDD}RMdWkrAA8-dq9|N74` zrzGq?qbZwQ(4i;u96~LbW!snUv|JUm{NjX_zF$oK@zm_+Su5qLaJ;ry-saOm>E(9K zYfJB`UR?iHal&1{&yHHki{|v}di76`YprEpTVf~mqjcpD^MgT0E_eujWhph%yZUpX z;<kB(r}(z)`V#d<s$kb{p)E!WGMcyKEYEo2-WQVc#pXM^=<j;It3d}Z)rI};KV^K! zdU@wc>C*l8S3Y^kwZ@vwF7EjIl<zOke_C@k<g^KE@{vBjqKac|hWBr6y?3`@Im5ii zJJv*Bv=KC3XC&J3y!rb4z<5`=<7d?_yGMUGe|Y2F+T~&U<h2a?^jgFvb?!ajVSMLX zEqZ5{-uz^lr7qLM&Yb5ioN;<(><ycAmcPbF(<;ht9e4ZibnDd9KZ7?(#xK0pSA2V! z`{S6ab0Xa<IgEVXYP#CIwcxTX+*0-?JLK5iCpVw{S`zNysrWE<Q>DzD=l$zHuUmg; z*M#k}<b|_7{%2Tx?8d!4%v&B9a!+uY$8g|IZDGKVez%=Fn*WO3KhtLy>5%7O!_)Wn z_A+);wY54`y?X=>XXP%GU=@GLI(@lJ&FYI4zkVmi)tsL?J7Dpt^~%yA*DnWORiAff z`;-*bU>*nAK7W>9zpr~fcq<(C(e(TDbZJrRf+G)v{Os)=L;sjR6uX+|Kl4c8oP8D2 z?s0zX*Y>aP|DiJfk8t?G{|vl;%(H*H)Lq!Nl5cydz~sZfLhod6J7Z_Fd*|bV`}?QJ z99y&C$d2Up<o;=o=4maSmiY7D`bF<*{dqqe`S`W;l6F~L`M>k?KX}i-6&>)wc7IQe z@uJLc)2~0MESGwE*kQsE2gOSq3+H8W@JMGye4kUa`s8<e*8dC#cYUg8kDGi{Uh+?V zdU@gMck?`xH_dwY@V>oC>$_*43XU@{@=M6%GVs6Leq{PDu~zF_G48ULPRNRMst28U z!g^OARO{_`w}+ouPdr+(>3ZV6Gg2|!Jk`lJF0^J&slC9slU3Lz#g4n@p>Mrax=nWf zu~VO>PEV=3JFVcEFsEEp;m^J2kIZNI&u~z1e~LX{wC?hbQrY5|8ukp<BUUMnB0P+0 zGg*X0b?TpQ=i2eSwD#_U^*_{(zcGI}Q>U%}!*cIESJoa(*>NSI`s~{+Tk7}j&)joh z&Ya@r%PZG!yOis=Hst<2j*^>Y<}O7un6s7?{!Hx55%92P&k22-end{(SBv}iTbKCT z?lKck^y}rj{9$)#x}#-r;FzT{%aaM(PhUM=efrVtdgD9Gy|`0~>?A+LH}8>L=Dzet zwCmPOYjtmKJD4oHb&sbU`+GZwM!z?Gj<1^>*4?;qv@+TB#ueQMv)qhK%sy<n<Pq|; zJo)K4OM6YZIdWBVxnv92wqN>UZJ9JfTW6g>s>nRqcjnebj>nkg>f)NVn{rFA$lv(& z`B=)Hf|a=$$I1&9<mTUP@V7iA%D}*IjIZWp=w{RH&Rv(j{LOt6^*#8C@7|pgj$G38 zcyxPOdL&oEyWj&10!9q7tG8YFqx^8UG{4!$_oXY<IwMot!fr8tZm?OjB-QVcapN&7 zuA7%^bnRAFf6M2oNDkUJd&c*BZc07t7*sepxwkidcRc3sc>S7w#viBdT@(+Pbi-<5 zw|AtnP5M;U*-sCgSG4+eHrucK$~mvwb9m|)vbPt0Q`_pIptYrIl?YD?$7BiRg*nL^ z)Ky+a|A_XRATjaY!*A0J4*tFx(>Q->&9PTiP3+E%;W{;}k2+>O`|f)!(a7)M0;v_^ zhgg0#I&4_u#h@UwX<sD|$I;Mv`F+>I&YM1)nr(Fc^O|YqUR~!FF#cY&L4<FIy<*|S zzO1Ju@3`ZZ*Dn3R9lEWF-K^lYW=!SeH$?^(3{3C%S!yrT9$eSBW#^iX@>$h8&V{&a zSmRv(z5B$u0`}a7UnS3vUq629>AqR1A6?hJYb-c&TIKq;eL2pj51jI7S!@^(&C^v| z=yPG8)(`C?QcI>6zUHh}>^UmJk$W{#oWW>iNNSNMquYaehODXEg}dFionHM)EbF@1 zw3q4mO4GQ-7$hX@tsn3dpE!87uB`6%{11Nl4ffk^T;3D@(aAU3<D=f(>~9)hYo#)L zPe+|N`j}VtNV(W&mfSNvFL#!kNwYM6y|?`l%Or~@8-${`C*1Z~wbV0k`<gu($Be&w zD0e+rn{ZV$WfuEH<+5a@7y)MunKe4=c5j>9bVK)?QDKyu-@kWHPMWU#S37@u|H0ky zH@UxU|G50k&Ba;M<CHdjSo=mG>XmsXOSrh;og24fr%g=oc*H7I*8jv+BA|fN^wW%w zD#p1&hn43CoRa=<LTSJAe})I^tNt~v`Ok3B>7UB^#c_@+j>=x`(Kp?_rc15gcbjLx zrjL6ia%+T}4E!Fr)@8q3om#HYC*(PCW6vc2I`;iF;Wra6KZ&_LPfd4Swd#$(&Hovi z-0M!w=iHxtzVFuc_I)b%v;N6%`S7i;G-Ju-bxEzyX86n4MW4E8cSY-Oz-qArCyv|S zoPOv(LvuafK9LHu+XwAfw@>$JQ@g9Y_i)TzuQCRy>`uwk_KsUV*tc-~EC0{%py?mO zr4ni1>SLFqe825YyX8_jvFK!eu7P032TrXeTY7uuOmb%k{}TCk<I0zp&&sWMnYnz% z&8L%GCkq_i-l;l8kBMo?wnueyuAh2VG3C|P;`>WIKP?rif2+28n}_d&{Q?^fYJT4M zT+8mG|1J;ab%uS9UdQ&@eScG^e4ABz+tho~bLJk9y%BrhX~cxX5;o1#Zk^dRcX7-Q z$2DJ9C%szurDfZd)DSI>V%a70vfn=En~^xLePWE><~0@{OYG#XtT*|gGEcQQzh3uP zXWj1p6UlwA?&TX=sBGG`A%E}NXQx(KDYwo&pLb!8W7f6HamRC$%ly8nJ=2tN@#NYW zan&xJakg!>3}5!Sui1MIvI<|WxYn<8W|fH3n@E4f#R2CoPDx-cy?eao(blW;yLC)z zqeJ)BhRNzh%vlu^sk3p%e}-_m+k3U1ztwAhuU)C+VD-u3iAv?yw_K-PHte1sI5FjO zPr+T+x_vQO4*GoiWw-R~?s#UV$H&PcrPtSyXgzoD^R5RQuPbc6`u4Wxo}EF-)hj05 z5Up8v)mV(D{O_F<2F}MSVYbVruJc}eKWk-iadKuN&!m}p=B9lg{LgHkcJtJ<cc*Sw zzP)z8{j1}{dJ$RYkS#kd=4`of@k#o&t0g-Qbo%t9%;Mym_HmMD8Z+~R!(GQNo4Q{8 zqgwb#*Cy)T-(Alnp6|GPblFOc(<bZAnsxjtd2GY*GhM!7<;j)L(_J!Lr7|DNmT`0Y zCVN~-pO(qFy<)*6>o1d310rXiob5l=!GiJ7$?Gi1OV`>ToR!x6QPRfh*2FHAzPszz zJe!%o<7Bda8~1Hbju^8GLSMrb+LYI3R&@Dt{bx8f%e?g~_l|Yz9&PjV5#KK8srI_l zs>3wf`=+Qz;OFBdOZYe*NZrm&4!&ISpF#LX_qm;$+8hl!CRVaIE-w^uF^b75bM<&$ zbTj9;PV>}dOK;qssMkI_szN*LQjPHH*HZD{)-Jm1FBG+=@8f}$I;}kuH=kbTu%q8H zwxiEMUeC>F%^u#hM|Ae+K76*Ndi%t6dCVuK{mZ#LhvB%#p3O5QRy9Sw@%z_UHS6s> zp<i;d)!Qd&uN2Bmo4aL3;@qpEE?MVph1`;PST4lyDJA$$x%ir`Yn8))9G0E>_SN~K z)gofw%8i}BO*^_nao_osH)@v(%zL@QO2CNElRc`U^LSdKj*aR^<&M35-^?Q3oA}y! z*V>7;MbGpxd!%O6s;{zZ>(;%;PaT>2(m+M_)b5?OZ>~@N(S2O(`n|yHl%13Ot<taL z=c+`6Kg&?fv^#V!&WNYZxo+pvw<iA?ge&YHKE1d2k;l^uie1qq$Cj#|YZcIW>Jb^0 zn{~F`l9|c)vi6+b)oYD|KAJ9TxRtx<&LPFwrFZAeDqYd{(?L4lWcF$`pB2x~Y}2Y` zW2;&`<7{4HxXzO6yUzS)V0C_28<v|Le9>*%hUnW?C+#NlF81=-q@mlZ`*d=JEVrB5 zbFC-OHkID4XTS6E*V4&;yVh)ojXt)odducxuNqcuscMckobY*bwRJ*GpH<k~ZEKU) zR-8U^Ev#yeRL_RB=W-OU=#)x|9GMZCYxeBcy}w@D?L2oLurF=2l(bXXc6E>OhflYz zAB#FNO+8?5o7%tYeX&9;fx?y^O4seT>Yj@&-dvSFcOA#`s>(_ALYC^&OxB8JzP@Jl zpP~6nui5W_9XmEyr-d1F=7z>J9k2ARbxaQ0%Y8!l_uA&J=ce@n*}KZtCO@+0-(%Hc zeDk*1kF>78|IW>M>bv(#xQc+^p=qDgs*|6t*?qokpTeHYCHwg+;!b_aczEB&d{*t* zuWhsLXWjW3y;rUB?Zv5m(Py@4+;!r)KJCXWi+@Uc+onFuPWvc(ZFXip>z8k4Qfix@ z`ZBLbHg4N`wP(eHKOb78H$1ZQx}K_&%K2WoYa7=V(~PgY&PP7Ks<YkvVcW*q+~VBY zYMp>i)mhRT&I)_%Pyd{oTXS9F+zq|kS<Q1A3b#L$m-!R1b=ThRfNNjnH#w*4tTJ8J znkeMvlxse#X4azC6dMO6VZ+0W2Sq17(wC2X882P(mi>3uqhp_g_6ppIdL=$<L8WA} zV$JSYFX7}8X&Luy6+R=6Bu94s191``Q|=3`FO}6l%)flkue!x~-w)k7bSN$Mz=KzI z(zBdpQko7~>h@kv5t$h2VS6z!>p9Pz$!|*S#C}X)S#jL``r2oGw*#h~dUiFv-C<8= zoLPy^(p%4BC2r?QCT(sw`+drWN1MOS^*`KxaGKck!pg|%+d;P`?VmOAo$7X#ZC0z_ zsxRp+Qmk9`yCD0_7wyyeA`w5j4;9&eJ2Nfp+H}pV>+-k7HCDXqInCewaNDH25g(t$ z?AdtA{X|G#>>}r-KeP{Cuc|(<i*?PcRVSu(+?v<4>XOpLefIn(3v=yjKOOzoyZcE> z5MN1;(srfqw$(@FG_%htyM1(TTbuv2LhjPF7iUEe*%)!0IN6(cRa8BU*>d~kyBvQC zt6m@3$9KU_^X283n=@{G4m3Ndx<ysM^pQxwc7x1WHEwQ23s%K>{Istqa-WoCmHNH= zkL2>K<^J)4kuk?h^S)mztMc10No2yRXU|^TxO?LC<<te9BI_jHGtB#b?4Rj}A0Otf zo37%iwz;-&`Pr1~yY4Mqvc{}q)pXxt-Y>zo_!tFm+MiW6yFSVI_t9gexvNAcn{Aov zeeip|KxseMYa!=y)4OvfoO~X0yi}#!Y*MPyBul-m2c<V8Z?VeDDHP`ow-H_u>z(?@ zpYd?+is&<woL3%eRofEQIAzIVzF+*OIAnGmTOvQzLvmey$cNmw?MI}|_O^XGb?VZ` zS$8kHZ`#^%TuVehzkIpR^#X;vTc7QAkKL25!&`8Vd*g>`D<4~K+3o#TJYd?x<wDUX z*ZMzV=MiaT_rErib29t8MO(7MpEGc6kC<_MmDOIqi0KC&-9EZ)nptpUtY;?6_p`a; zGeu@r%(HA=w@^7(w;?E{zo)Y0$<-UB>qUQbADk7pcbR|XO4c^ZS=o-Il_@HlljQ7; zw0A1l7qkgPSwDDt?#*N6!%}?PAFLHVs&q;7OUaeD*M44mnDQaYW}{*Mxmn*`BNIw) zIZfT}s4j1{X+jpaulzsZ_3g%Y@4gVbr!v`ppOCZZ)-7_{H`ID0>rR^FFTdj?&N5Rq zbZ)=$8Bx7Axwbb~KjN1(oBdJi=<U!AebwDFQu_UkUv50BV%)I2bp7Oft3~N5o4pkd z{w!~d-uBCGrF`eRlIou-TWe$XPMM#wb@!&|>HRemdw=z)NjKHySjVt9cnVG`vWOSB z7aLcjae2W<y+t{?iz-WA&-RTD?Dp-*RbBX>!TEY_>ZEt6K|3S$82-Ik!<O}JbtX$@ z^5bah$Ok*8ap<dX^6eCs%)MbK)wX!KZ|!n-?uK&LCpOjoJnp8ut|!iwYvjH4qN-!d zrtaV^jbaZ|tJj;E7EYZi6)XFG&$Zu6lOqIp<fP}sTzbCg${s_}tt~?53zwQttKVF1 zdg|8s-KTYxV=~TXbsU{2e)8VY;?FX(HvebfIJ&vUx%+5TwU_Vd)y}G0_jO(R&yaps zX}X8Bf3>e0$2qsuLOX}wJCEJjt;>8^D!t>~9>YhPx$6?=F53|CUT^(Y|NCZAoQs=d zJExV0{}ga7x;XbZ_hrdbQ8znod{o=NICH~GIlWzbx=y{)WT{WzSFLTkecFsW-#)}f zEqV9G{^{zt1-Vb!a+<27&$@eCEvlGz|E<;X_N}V-bvDgS4%jHR`Dv=r)?4wBr!Lxg z^qIHW^m+4y$xY6F<j-|8E~6l$d{&T%x#9HuHxfrCXz*R~Umg<|t>UEQ(W}(6xin1S z?U4<3(jV`)-P|KJ?VjS5lFXiK@AEePnB>u1zqXGt?N`mmEjdQ#UQgFOZ7E|KbcWyK za>@B0?t2m|AIkIJs!zLh*Zqlg<kq!QUMv0iuzT&)v!|kuh)g)TX2P5mDqq&jXS)}> zWqKW_o&T-!txsni)6<u(^W52X$-;i)^76u&JnJPT)t}`xpRaM(@5<X_oNxQ}iIk0$ zViV`(*h$yjc%HDexz~D~dsLaqKJn=}``yolv{zjF6a2_F-1Tye_bTbn)g|jyE*@pu zyw*jfho|y<s_EI@EyaxUr&%((J)U#v*(>#B%awn}dp_*v`FA8<w5If<zDLt{mk-BV zO)suG&azFssXBDigc<MTzM1bb*Eu7&C~^}gbM@q|{|s7xt0KS5-d(NzGIV+0J%vk8 zCVf)U+R5_ybW`P%U*W%W|1%s+6N=^k$C>#t`pAC<zQ=9X?uT7?6BMbCYjsc3WOuLA zE$gpM96jOrn`~dLRmpRFB|bU+x%jGA%hEhdg{KsysPx|7b5bRJdt7tZ?|012dBxT8 zmPbtGb;4&GZrvK|I%WTfR~$P266#wk|8$(VukfO9PW`;CSK?!$9p$GnPO+=_^6mNk zi7^inp775s{Cml&eEp>dThh;6NG*DxC&A!WR2UUD-E5J^qr>7!;u_567u~;a{&7_( zWZjLv2kwRUFaKv)AD>ot^gqMqzTLk=|6TmY`*&WAZKd37{T@?~Efw#5mrUAXS7Kx{ z`AvuMzgH?{JUb5_Ha{h`^J7GRI=l6ol0)-trdZFvT>eKo`nS+o_KvOgKQ!8ptmfV; z?egJF{LOp(yZ3)m@chcX;biHG1KU@0+8DUF?g@4@Vx1Owy-@V;%(E+8Hs7w8?XYFX z72Wq!mrml04w$CodANI;|J&?@b@deuN*WKI_gR7tq%FGsa9ZcX{k%1*+kCy9KKz@{ zH(g@mmXJOP-A5kFTa(-VnO1jvdm@;0z{6kW(%r0E<?UNVFYNIvxtLk;y5RQu#eEON z&rdEc5VAEr?9%YQ=d^ONLhZ%*M~iJrK8nVA8o&9l!{bs@i!Zmvm-oCLIe+Z`GbpSL zHA=gD?VNV^jKi|K?KkJ?>M3(7i{AZ~mXpWQw>9ax<B!?d#i}bNo!qlcdvftwLko+O z_K7ur%gt*2qb_W3iu_Xl!`)Q5LhPAqcCA~s=Ca18IhCH=uLR<cZScL@dgA$<-ka;v zyl3dBWJ|8!vLj9?IpcIDSHOB!52+@`z8PHm9WU*9Zk?C6sQ&-8f1&lsKlYvdFmdf$ z(VOp0IrCIbO5B!OlNf$=hQ9Ohs*m!wx@xr^KbqJ0@UPwj+p|0Si;f-Om=)>B@X-Ct z0k+r23r`%+Us{v6;Ya$1{=@fq_6c=twU@{$U{>7P<8f`WhjXq@Iop&;j)4ab-fisp z^YLT;A^s1=$D>sDcPzJBwvofvIk4zlm{aPV&YkDpybW6NPifB^6IHEAEA_4A9XpR6 zO?>QU^|tUogV-PQ1@~X_KR#iqF7$JMYTLC0?p;TYM(#QDw6CbD$ZqN@dCq<EKkN=4 zyk+10RaYi9ChMZt!u1Rl%{oh&l{|L)-+kDS_h=9IBir{~d#V%av|c^3DEXN;>)54x z#uFt1V%AwFlqMA&zrpoe{9$bC<v)5Cl{oe1%C377e$H(7X679qRuxY@9*}+Ykn62W z<rape%0cUm!gjv#{uq2bAfngk(68&hO;=VeF`G8gZMGHf;%vru{`IFemfVd#c5B~a z*8UE4sh-PThfn=>>DevY8Fct*z+vS@f-i4v>YJ~9X4A2Sg%h7O?=Jk$P%qmre`#;| zgY>qNzrl}=wjNtFdzQc_-U9+YS?=5J^c5A)Uz<7ek+NUUE7MKsWua}Q8x5B1+LBnY z{6L(})tq-GJ4|NJp1F4Jgp^}vB%`gpjTdUUYk6AA`d0XN*l0e^H4H74m5cU_Sf@Po z!fvyQ15Q6rm;7wc`s>?%R7$<wPVsMl{E@KfFBCuX-|2JkaJu=zsBrg+^EM&>83b%N z^mSFHiS#|rWKm@1W3vl;(6oGqjbMEHe}=rcvPpOTbuXTvDynfhr0!0I`M2sH+ka>L zXE-QR`k$fkpGK4BpWLOH8(&-LPc2a6T=DXiT9?`+VHM3iddFQR`AIY%t>?OwZT)Dv z&z_E>QbLmcr(P_cu)as&<e$hV29{64e`(YoRI<<Q)))N|clm&w-Zb?qUtUbRmvZQ+ z6pKXg(}^9IWv6KTXQ<jg=|95{ef>A<7ydgj|3g5(i0{Mf@~t1<_XXC3E;`BM;wZ5< zNnhcKfs*yobOpvns~*1P-_CRFXfk<jBQt-uZut5?@)!QNAMI%>RoEEzeev>D{~6l< zoIjeIo9MmF;QaF@hC3Cih4TupRDWM(7F;{4G$;Q~rEG`D?YU96zKKlpWIiodys@lD z_<(54D<%uhKK(hZ?3OACpZo65_xjfq6w7~Tv0KfawbI&R^YV@!JvA+GlDNg)#slZ~ zSAE&vIzRiP*zWrE-dvMeceIJ>ZgH2I5H0z*_4xBRi(6eQ`E4qXfB5w~eNOeq_$Bol z`y0~sZ@Id4t+RimlE>Ob(ub1IPT8_%M;$lI4UbpG=d(U-{<-3z+Wq`9Z%@7SzJ2V~ ze}=2)b=p0ylx}?Ta+-fx!GRe`nZc5ei&xy@UtV7vcm9Ddci@NPZG3ZUvvp^mELQG# z!Wx}-m7!;ngN22C)bAvDmSanfCnrB?w^R(ztLAe&_-FO;e}+-FE2{2Ea~zp}i!rQt zPkN4zSI;EIpMBNyci-;$r`p~1bmuQq{Z8fQ*$*?W-A_x`y3NVsXu)n_`Tom#nJW)= zZ{M1><)MnQwVRQ<pI`P3)5?@duivV%XzL`1-f@>u?$bVLI{T}D#T=zM6Z{?>w(0pI z)Af0!`GvQW-8moevhE3dc&%l^_b`o`tqLgzZmPV0Y!}Jp_GX@kO!%n+4?Y%m-YXN2 zU)pzg`|itM{_0hV9-Mw+s?tI3nQ}%ecK6F{JP@~h!P%PGY*RJ1OpEY8XEulNf^d`N zJMC}t1dg7nsJ7o!qgL!E^4h%iO~mCbtJl`u%619*9If{>=g2B?o4iWN0(J}TNfi>0 zc3zKsn{K$_=adJ1R==cP|4}b1`CDXRWPho?<mT=BQ-8lY#rME)s;PMAme<v>Q67mZ z?++);3)yb*V*d(xukTa2eOJ%X+Pn1BH@l|4J#`9y^nc|3cB@D~c3<pGUcO1Sbeqxf ztTQTiRs5x_DpNeXjPq{IEbgDKlJKvoCiL%&ExFc@M4v5xsOykjCx3ma>0I&P>gIy) zVdBk(lBpBkS1KzUIyz&g;A-J%7C)1}abEpX{BV9}vGW7}w!%MN=7y%rRwnDX?!S=d zc2hYs;%9+Q7a#Xjox^Phl=g2se<S%H=l$R8KQ4c(`|!Q1PUZ9?ey*6v&XWHOKU_^^ zz0Pr(Je28qE#%Eoblzy&pH7}N5tC1@pZAe3W@k#)mGGz2US_RZn|?X|@UyaltE<wC zdSchh&W^ery>!?8XY(iinVea_xoma0)Qn4#0X?5YXESfRWL;esx<2=})g99Vn<^d~ zZ9L>C^?vH6`d0Bm%P-8f?Oy->{E_@ER)5fZkHwA;#}8Nh@z+WDT*>=w&CTGppYQHC z&-r%ZSJJ+@AD;hFn9sNHlb!e<i%lP%WH?B>w#^7hwpqK&SHrI1!Sk*^T#;Xtmn76p z|2u2<{DbU=?*C9d|JL`TZrI}k^Lc7~S1KDY&i6G7oKXGq`y!4L-+AiS)-_dV|KolB zccbZJhL3EMAHL_my@BOFL&ocgKf5em%dQb;E~{#|_u%^1&&40@!}jdzx|Ds}JET<S z=)S8fco=s)oaJ3{;Jd9`t@b(7e6flq-7?;=^GCj4+h~$2elywIy4o^w_7j~b%M*D9 zTql+^_f?1<xB0gFqDps!l=bb;_MCOH{}~Q$oz*Z=ucr8;xZ9@A%8Zh|dXK(2-fTK; za&d9`J>wtWekUKi{~`bVo92fs(dVTr79Y8_>G9O^%UgDMyu4<?Gylhb2GQ>;uGi$Q zGwdq8nl7a5wsZgdX-^WJd{$JlJm2*3O7YR`IGGP`r+&Y!zh`##Lc=?kJSOiGvyu3| z&!^_o8BdiS`MRi?y_L0#9y@8L)S3ThI2ik%;lUjHjn5ChzhNBq@&23p%WmGPXg)M+ z-|X6An_X+Rf1fT@Kl{mDmt~$QL1C6Q2O2}>?g{^R^wH*G)uqd3==yj~OtU<wE7RC! zA-heEKkMJW`Ui{l316|v|IJbp_F-S&Cs(Z>#Q}SwL)`>U=^i@IZ4zVPs(o5Redp_0 z|M+X_b<fV7B6OI;tm&$pWO?)cX?K>C2JK%jbN$^vk>vDXR;}XltoUY+Kg*BA7=<ba z>PG#U|3~=Q-KcBcwXSa;+9fsiwW~9)|IZM$SwBZ&rCaQY!z_>Ilz&y)vUPT4+EvL* z$xkQG5k4+|_o&se>XZhZ_vhX)RsXa9TlKfo_)})^ZmW~QZ|BMGyuRKp(?Np$>5;<5 z9S@Ri<mOF1^HQpB;ToGsj&jc${mhsf*k$HTeff|5vaadI+J}D~YfhwZn|Q1;p=Q&5 z{p-pvyN-QGTfcC7>%<&I1H)qm`!y0Q@6PkH(tmzmH16KX8@o(QpH1Xl-krSn!>8NP z?oUrWU9{s|-G^5WHf@Q=Wf&(;@^wsI9`{;YGdW%E?~?-K2KF5<YFEemU07!t8FuQH zy|D$ed`11&*S{kEGc-B;XE-Qp<NopM+B)k$!IxCz*tSm3-9NYG-_;!*52y0;ev3FS zw5xwkZ&%&7y5x@HUy`+)VXOYd-uya~&ox*!)KS-J^BMaGQ|^E8`>XWr(dEbIk1?k` zy5=(7_2T-}KC_*Z-!FZ0Qtv{7)9!^%^;NGp6<F1ON$>yIwnkTNd*7#9pWb;CY<qQD z=hLZ8ifX*gt&%L7aZmCJjN=#Hy8fnfS@y2dZPOp|+8^3(6}!6KJA1AA`G}eJS9h`B z|Lo?FYQZ9SZTEWq8u1VAE$@VKy^rYqu!tym9q}fFZ%25K_5;D!^JBXHMV{aM$1OSb z+N!<cDRp0`KD|*RtLioTqWp|o=Qci4+fy5K-gU=r_tvP&H4ig#7Pls=9?p+BYP^pj z=^*2|XHMB0KkQw$zIyq_E??`zYfCo8Ox+W@XGiC^Rd4GzZ@I81vFK31!%j<^>o1oW z{n5SrZfSPm%J@?YjvadU&U0JJCxiI?HD$-DgLB^5NaouA3H~Q_c~O9$_W{pacQ%|( zXZRJ~`$pTd%=+(E>lZUWesBFJ`=b2f;nmsV;=g`J-ma`mo0+_kpM_m-y-L?P>A7## z9MOC(xjyt_opeQ?rfzQ1Wt06pH;xJlo-8++UVf%=dqG{9yrIfFb(Qa?mtV<q{86v1 z`n9cl>Dh;?w{icQxcK~&bs~xNWsB1;&g<a~*!v^)W869Azx|Ig-gQkY72n|2Aa`^o zvzTpB$g<)aSJv1}{(fBR;)~wK53dhJrM}rN^=;|OEO*TvZZ3ibzjr%5)>*8woweb3 z@bzH-eILwP4K9_~Dhj3?bS|9Ex1y?bVwfF=`~l<Jdn;|M_8&RV=UZVD{II!Rbb?*T zH(|At$}I8|{pWn#oNkd8z~^Z3Y_qBUE#`+`7Z_!I7s}Yc>anc)N8iz++fFkl_=-JC zZsIOI$k3OmrI~ec_U!ci^Cj=SDw?gbv&(|ZrjyGl*+xKQQEO;{k!Rw;xAUgXS6iK1 zn73Z{;m_EvbrGTpQx&Fi9m)GAQ*iferH|B^s%`PUJK7#;if-@rWId=XGvUS0;O(0k zd#<crb?e?i(bb-XJXxnAcJEGayvkO)$%wy>-E>v=i<IXV-o7{8Yjw?R%jKKvB<Id9 zNqC<mt|MAD$t%6@_|~ASHUSgvtZ5SESP^M%t@gm6sQ6FHynqLC3;LRSc5L5$<w<WY z>y@0=O&8CcmOIMQ+^SglT+&iv{j566e;4Z+>)3Dm${#&18=2AjeNX=uchd(aECP8q z8W$CAdHd^u)U~;iCqErEbFy1qFX+E=nttIH@2Ole9_!9tDPrSzVb1ei^mw*aee?P? zlBT?Rs?&@%=`6deo^)qY$jXzlMN6;mX9$1H-fRD0qdnsuOZnUXL@VNt$Z77}alkmv zJ%7pVxho1)PkVeiaU-X(qx;Jpc8eeR$L@a!zklod(Zb0OxOwFdiKTWkXEMLqtY;xH zt4QfV$=?&q^Y-r5NC|zqYx@dsQPHL6UyAOrGr7%qbnm0+BbO>WzOBeLQ;@u=_A=Dt z@zbKhK1-YHpEmwyV4eMUd5!$z^|zQEFWGQE&aiP^l(9=;%dGQWS9q^(?frgB#hkln z+q;X>og&AIp59P;{Dh_L$Nfk9-}3)<_*0x&qx#YKk=W|>{*_y!T_y);i*ze$ZQM3H zgQY0XGSpd`=LyfO7dFbjMe8ow3vIPkKJ5N**<P;u$5Prp$8We|5-r+Od*)8eQ4Yr) z$;p%aC4y&tdGU1Op?y`8uh=emrMB|u{P~}<<Cy22O%#k~X@BDJXR&}oaRbBc#<vH4 zJ=%NyTg}J%H_tzOKfe0W`|f+pn|?GW3Qf#idVb~Ih+A9UIDF2tnS1PEpqrTR?@edC z+ivan+xSECKLZQXkJFEHQ`|r9dUx7sgL_Y9oy<JlI?r>?^7l-S&fI=u|GjNf`-&Kj z+vonU{>S0}TjWRm;qt2Xp1iGR(<)?7-8sMZ)jrX@RBaw@-Y1^P`zN$a&;8F(kudAD z;Ji!W-PfPE%1q1r?78^RKe76Q`8DhhGS}AdKIm_WVsGocAh^Ic_U+?{&<2(D6Q3LL zwP<U7;;RmSWq;`YZRz9oTSB|Cey!ai$9?(Hl%t7KvwH<rfB5XNenri9B^L&r$qH?* z3deVwzO3h{Px{Yr^YR1s!>|2$|HytY-8PqPeT|;Y`8SK#OR8;?s9d`Ll24wVv;yan z*%m>TZ@<XRUY_~wo^|(OJLzk(|ITlTTT}Jhy3?#}rr*q!s%Iuljora*l=s5l>*pLl z>$w(}o5DZY-m(ytHZQwATjO<9+15udO^(bvm+L3-xbnc>ON*{130ZROi#@w#+P>%< zNsHJe=925`58G*9`P%IpP~jakQ%G5Ta^~V!CvI>4y+z&gs$yvC56RYL3=@yXsb5RK zY*Jz4{88xHsY}=6B9{D?nYC@ESr6}#<tMj^OHEy}-D^RC&5;g6h6Lt|zw-a+-WREn z-*9p3X|`+c-iJnIuf0&w?w7XRcS)uAXLl`^OLG=K*?IeO!u7c)bI*Nc+%9JSq3=dy zl>73VFOBYbZSruNTfD$0N`6<}<%PEQ-!so?DU;q;c<1qI#Xa7ST`z2n-rfD%I<!wS zcj?|srQNwFxKDqIXTRz)!@_XtNrvQn(?c)+GklnHtHyuRhrG4RZ@;`|6}!k)r%LzR z!ev_~C7id*nYw1J*@S}SM!5%BZ|&meJFz+XNBbkT?aQ*Fvi;;l`U5v_xRw;Q(>nRN zXXpDR&DnXUeU9)v`QUNO^IcHa)*fB?h>Iop9Ixi-8agjFJ=n*xQy^=fXsUTp;x@B& z>RUTMFdRA}vR#tl+VqYuv)_wXL_11No%HJCaoeLO<_BI(_?W`vz~XV}vG*s|-K{$8 zCqx@9^Z2TxWtn`{4^OjlZ{dpaFE*d6l_}1h^qR$Ck@l^MmVGZy3o)%)XK{=@HaGiF znN<G~X<7TY&D)JLw|!W8_T0jyuLLY^)x0cTabrtVWq@r+YvJTM4+M4#dp+09U0Z)B z`w{;S$2aSh=9;v2St?yLZBDk@W3aN~>7|;(Ha<I#Pg&Y1aq=KTrRnu%T^qxP(sSeP zefUxIDKnvyOZ9o<I=RY}bI*3}s!S+%<^9C5XS*d!!pARCCs$?v;_v+9aNWGBcg@CA z-CTC_A9<(#4isGe&Sb@<zYA}bC!CVu`Ftngj$`UWeg2nH`R!l1Yt^cEccxV=xZ>Ao zGVxH85%2O&u{USB&KL<O#&P5w_gL$yepRlt_F=!+riv`>YnQ*?=2$o_;_<Ez-@pB~ znRLq7{@c@yJ0j+DmFIURE3<FY%IEx3{?YV&_nw4b$68lPSF`Spj<B&^ZQiLkGbvC) z*}If8&t2iL(y_+I<M&Q}+xYP2<j1C4&uv}qYJ5C9OYGC<!`IK9*tl}y!E0+`b!0_5 zl?_(9ojiD6X6>>iHl+{sg<eJV-ig|Odu<$x@V%&tV;937<u2gn7TvyknvML|oZs7? zR!iBsR^0jYR{U5T--qpod+of1#aq*M?hWe`-@5xl?E#O)>T1>^dt*Ksi>zAl=K*75 z+{elXUq6-~Su0d8nCToWHm&Sn{`)PjZKD%s_VjN0nYT7y`GH=|=^}of1rr<|evMqS zhyQ^s_u;Zly{h@ocI^mWzV&|dv|_0>(RC-QrfVu#?|aj;mzkkJd;9E%Y3ucmY0C>{ zREci?WfRu%YjsB0tlkTT$EV+1eLFt-{GaH$>eyH1A}R)lE^fRsY1=M=j9<(Ds9lpY zxV-Put|J16%l6;g_N()1`Oi%fSEUYzZQ1M~ZSiT=>jZnPZTDyGoa_BN{^9iolgeDx z?!zswj8?mBy7MC=C!(NeTIU)^&2tu0798`M;K1H?u}1&#e)%8PN6M<EAF)0!vDq!q z<YQ^>3MIpxKbbS9heZV$_7?1mJ@fgA{@G{dXR7#x+#m6`{bTv?t-E$<<~7&%Y16`Y z?b-Wb@t=)v)i}Pmeu|iT_<OKt+Z#@%W#ZZQT>ZTCef?U$+|>{K@o-tzb}7$mDf3SI zmtSd}JN4=Tp~?oW_@kBC)f+v3MtLhwJe2ZoO}FFYdVwF}NB&7)Z<%~Jn`f<z)YT`u zI_fw3m91=#-FR6c_Mn@T_q3QVMGND0f4iFZ)xNtbrT9hEmJJ6p6DG!+&0qYgjJ5Au zz23KHj;q>S8TNhb5jFgC`{UFH`^7Wn>2La2yR31w>WPT_q>9|Fx^CqX6IT3ZaQw)V z?BDV31lPI5JOiKfu0W5I+i#rNaq&<1;vdZJJFYFW5;pzwv14uGo-GY)CO-A%WqTaD z%|~X=`6=qlF85r!WXJS_-}}e)<v&gzyeH#wMef*LJyTvSUNP0wIf4dL=iJIVe1`dZ zd*=N=Dh8$(?!0{cu)cj)?vZV47a3eR`18?h$EOPu4!*O|%3JvT@243zJ|4W4y>8Ft zwO{KytwjIq%GfV(BT96S*)6xVQoV0DyidQ(-I{8*<jCO(;m^+Ituk3JJgqRl_}Cun z52wB6@eALK{W)v<jY;oMZ@ltO|9#^mO;6`<^};S2epW~@+>_uutju~iEb>Qf@rU;h z_ntj-?XhF@TQ^}5t7zYa!V2BI&pa2MULCEpsmVg%nE(A(oZsgv2h93@G*0Kkxw+Lv z+}vM0#DlM@7yX&I>2OTL%M->20yUdAJv8nM)7JQ-`Qf9f;__apjQmGw`obB#zi-?S zy7VJ(-F~r&Jnk$130W!ku9&;7_&g_P?2dWH_J?Qe34Ew6x!z<qZ+^(uJ+tC}%*fm} z>+Acer6-i%T)t(Z!G22ZQ_C55#r`uzHqP}cU+$B=@TI%t%9f`)w`6-x+<M~67olSX zLb}#r?!P0|8S5^*I#T#P-uKl7-uffA_;xRgT(;-pO&67lw_o<gpD3BQ>-=iZ%vG8R z#k-UB*xaPo%o2V2^!O3o;zOTLwLY0v6B%>=Rkqp7<hxsSwrZ$e_Oq6Fnqhq4z=?J9 z-^!L*s!l!nYUZc&y?;!XXYSM4{?YiQRNUNh+o@}>Oc&0KTH1Smrr7n{<?ABP>Tddb zd4^<^;dj4)>$$x5yVmW~?B29%+0JE03%M)BCuLe)$>w?RDS^$_>5}c*-6cL1&$Bg; zmX+<}xSsGM=hmCfl|K@<ENMCPT`p|SN|{MDKmRkd<Yn(JlQ&nnHRHHCqr1dCiyx7t zAHyztT>CQDtJd#P#*_9lm*1MqO*-Sx$(l0zZRgS~pThqPcApv>?&!JZ%N&|*nLgb& zr+6Oc)_neolYeX%p3h$FZgO2L(0%do`iD<GtMGhWBk+nX+Ir>50CU$34c_bALS7$E zd^}&!api5_<#+BnT|0XA+>)HH8s86iCq>T{S@KDMJJ&t5;K<vAs+Se}4_V!B-=}_a ziB`&v9b(&sv|s;f?Y(+fc(TCd`~^EME$O}KwW05krKq2|c4Dt?wdeGQ`A4nu1rIKc zch1f<JDIli!^O=WLN#l;`4%oZsrG2Wgs697vNx|hxbCBU@Xa~T3-d!N-#3}Yi~ZQ` zz3;<+hL%4Llf9Rp6uq(i!{?=EUpSrV<-b|u;2q^s*2J0o%*^3dIQ!lmAMXBJ{BS3K zzuM0FH*Xz01+MA6-(zq==k=#GzDbX6MH+D$v48SZE^w1ME_?Ov@gwtpxICCxI$QGT zyi@N^eLf<U-qE^Yr`uHZ{cR5%S035P7$lK0)3b0d$IrI<LqAnMl=r55uo1SMdThJs z)g`)%U;dik_AV+rC?$0BrmHRAc+B#QVvcLv5n<|C{`8*SZOPqh&(^v>ocK|{IY-aN zvi9%#Olj|Y!z){~{Y5?JymPi&xXfoeW7!-{r}JCb5~MB5yYjxe?YxwH@#|T)SFgTZ zGf&xcEy?WmTiKwD+%I#(ZkY;B;@V;Cs?|K_-QkdX!k0?tOTN5yw!hEhbf?lJ`R%TH z+j5rmY0oaZtvKuTq3MjvXRN#1apAa9>w|3ux)olZ?4^HH2YrZ}Ycp%@)p@6HXGe#$ zhwPbj_k?G_?H`jQ)+IDbFu1I_snRk<eu~u0Uo+*@KAiYb_>t-IaXaA+7xtLyT-U5x z#A_aQsiXIwcXRa$r|V+oMq1XJ+zTb$3hYWB9$y$!VSMCTys+Z_tJfnwhW7q4;jLWp zpCKh~_079X7uU~Rt|K*f4P)1CHX*f(pX)0eZGKH}uMxR+aN)(JAO1Y$+%rGm!_+Nh z;WDe7Wf$MO9cwhF?M9SAl}<XtgL~&6`V0LCI`!|EcWu~*%~3Jl>C10rPv@1X)GoBW zyXRZ+D&bZp*-7i%l4UL&o^s>E{vK(skL-W6EA&fZRXrx1OuAHe;gYL{^n!?zyJ^Ba z?-iw8CR&$15j=7Fa*biF=(3d${e?5XM;YJI+`rBH$2uDm)t&9!I@`-{iEN5Cw#q#a zDAMZqGez>&e+KD4PW$$K_%^$=);eOQLxX$y+T&^6y4&t9leG`n{^@)A)VoHfdju7g zl}ave>6Jb*@yC9r4=LMTS|2RAZnhySaKYUEGuz9{Hr>5-YUa}^hfcVEOn%0?i_h!$ z!}LGm^51@ckUzNp#-aF|^@mn2ujoHAU+mHTw(4tpwtN&RixOJU^vOeCrS0A)>we2i z+KE<@qBozaUNd6<`SbprGuyulymDZ=WO;~Taar+HnFq|5Z(rM=QvYDfe}=7BK}U2~ z*Es%|xFpVQ;ewZ!`*~hWGU$GG`AgU&**6zdvi_xBnI5z_Ax*8{Qd#}u?4Vs4f4<CC zKVxzC`aZ{3wX46`@tqEpvA3DF$<Eq*{rTX@8@r2+*B#A0VI`CN@wlnShJOkSGAZSY zobH#Nf28R&>A*Gz+rpRk*Vd*yo7O&WVwQ&Fd`T`&?j0Z4DxQ44w0~3o57Yi{aX&m) z{#bo%|JLw6leO_jq|P@_<JESXcS%^cw`bNCKGoUZtMe6iMKpCh?`iR_oFlt0vG`Br z3%w6n6MgsS1j?KF-ZgXoY<S@Jab|^b8=mK){}$GN@au27Tz97agFk;;J?o$9r7xuP zySK>d#J%z{xnX*G=6X}jS<k9d|DD^}_xx?x??b1~mFFG1Uc01!;$xYtrEO34t@*Y| zORu<S>zmq_>nip?{Q7Qf;luTUKNkC(*|bDwSJV0OCnvYO`6L_}*0E)sOND3OI|EPA z+b{P?f6QIF`bXWl`yrQg1Lt{HESe^(CU4njBzf!R`U#4GpH}v=6`6g~o@HmbbKi#- zS4tn(OTT<G(OG1Zw6~_BjLJN>)gm8fGWBe*Joxxb^4W@i+gH?B@4WK1RAb9pGv1ii z=<eGdJ>{40EIX;JTbkk|e6YO3!$O&bZ~vs~@LIvIfBHARl`1{fz5b-7_gbyz;SH?9 zjykiJKG|q!xvl?AQ0C{=E^H5?WF9n6a;?&_GyZsXiFbDH0-KFTn3T^i%bJ(1^?_&h znmg~6r=8w-KFl`z`P<-Q`_w<yZhE~dZ0EX@<$OQiuGLd(Ox!h(CHG~{b=G_0%=%BZ zbnYzvoMU0H>-{0^a=_H}{}~?Ym3%%qIcIydiuBIIOD402Nj@>);b)(9Xldkqk3N&? z&Hu0ei}_N2^O}6qKbCmO8r$vh0zW2snmHC$T{z04Fp2rN+}o4eSMyA|)6-D#BiiYM z*zU*cJ9e%8&v2xB@3m{<ZMuGMJlKBTJ;m`*rReCtSFHz_C1jX?bF*&#(GmTkD#yRD zxY(rZ+fpWe%egyw=OjGtNnftxAo`*I*k56v%|9+bJm0uaASEp}{B70x$x2q<1)uYE zQk;sCT??-__Dnvwe%`5%pXZx?{cLyM`1H%eQ@_Mo&uM=v|KYOtg*}{!l@DLf-+1HY zx^0jB4Y$RGC#}^!;c=3S;rG5BM{5s%xcuPT*2m}D<U~IDT(7F_@?CU8A!A{_X-nW+ zeuW_Ws{2RPitfICe*V@yUTfDMnZ+`x%y;e{T7B;Er+shoUL9wce70^%4fn2#U(Pqg zakK|^J!6UGI>7w&q>AG_!)Zo~-W+^C$?S{i`zKd-K0I??+ic0=jxFNOXWs5lljS^8 zbU*8Q&qD``h>6C3T#eQoko$SIioMN_ze4{&`Q!LYXFkQdtrLq}mr~p&p?q4RfByHn z8S57%ZMmc;8Ki#qz_E*0<h{z4FMm-GVPm!Ab-qYf=)BA$iH>pnXB=MN+Fke~KijRK zHdrn+DrBR;s$V8G+#gSe1lr6#8G5t9&)v2``QxALWq;?_*?O*8Rb%<_PV?KcgJIll z3hX>(%Rc!Pxl6t&d>tqIG5@HX$>qfA=x*!SDBi_967LJ=u$_4De8um>Kd*1A*!++4 z_HXwe>ffS1e1Cg=MMZJ=_7BTDg?;+&J<E8za8svgTBw^)<$0TfPc$}KIjx>1c|fKA z;LE2%YdKAG`CoedT%&PLu=?c9s&94||4y$dTwkN~cf}U%xrR1Bwo12do~EYis8`e% zQNUq$<X3V0qW=sZ3icn&6@L7m;SJ}*`?vhPCaHcDKlJ;{)+>dAdbi@%D&0Ogaqmp! zwtBUsXv>=?Vm|(u{^37E^v8SK7s_`?O?jq0*Q%`Vo_2_%p}_;4ev=l~=Mt$5kMHgG zsL$EoabLj3|33pu_($<0@*;lQ!|fDvtqwi&;MPfgD}Le7(J7PGDa-zv{`~0++j;Cq zuP*IhF7e&2ynn-nl?_v#Z=L^h{;?~wN*A4YSzgLyBqOkV;a8UAPm4HjopVy0C*9z8 zx4+4+;=$KHS)O%grrSAo$iCyA!!xf+Fm_sRV!qvm{X04H<<C4*Wt=HKjpgeLKHG}7 z@i&Ewz25w@TOAoc@pZlPYx|q+-vYM$xVrvy`Qyqb7r#_nxSqLuWaB$a#W2%JL4uN> zJXEC{3K*a5ueTGbVcr>Qboe0XAb!aeuWrRI=j5B3US1Sm_+;x5Loe^0KW8}|nLH`` z7wB4Q??2o>B!6rFJ2Ibd?UwWHyYhBEwypPWkGWoY^FdqXlfC;p{9C6*baz*m90}CS zJuQ=vus!}#{f~_Nu3dMg%gJAeJMR{B;qR>M3JLd(4LUYALmzpXO$amZR!N>X&tCNW zjz^`db`?gcFaJ4z(bGGYTmhT!?>+x)^TYjrgqgps`7t}`+Ase@-FJo3&fWf7AKdM? zon@Y(u-oU2@?THS56J$c|BuV_w=Mro{ckOMe@K4px)T3m(siecUo+D#>7Urzb??WW zW77_w-5NG2;M$ur{~5I2CNP}ytuL>N@2%6kdqQWA^CMlSk5lYtBz{_aFJ$5l(<z26 zj8j&A<~&!xx&D#xKkjm|&dmP|tQ;R(_xKh~Ji0JLEFn+mtxH>^xXu~LIg;_Vec|)A zJ`6nf>iWvlD*K+4o>ps7c&q;X)PIKB{|w5XIrwjGjx3LLy8K9V&kyPP%}YPLxgf{x zSTgZUxaI2;417CHAK6)aSbiYFWUhPQhkL6ZrOp&MnV!Eo;>Pq@4`;M{F5NJ9aht+^ zgW5HoKMP-8_2r$rMLw(T>70D!Os5`3*$*D)SBO5Fr^lGHG2PJc`HbHTfBmm7e|WU2 z;8^tCr|#@mCY67i^!q=<xo7<c-^*sp^M0*f`XP2*zs|2a^*4jguY4I0cgK<UUebif zlXi8dRXU!=g*ZLQJt$rIGx||}Yk!k>=JiT@{popo#I)wHtCUI{SAL&v`gRvXWR2_6 z#?x!B=y0f)g<fr6zs%xA_PW1YYxoP7)p%{bZpy^ld#*Rp#)s|F+nGX+Zw@w`zrywV z9Q(1j&5Q5H@A!F6W1)Q6_O!a1rQ2^jjDFdda_os*i%ie;^tCT%rOjM@JFCudo+Oul zF~gJzMYm7A5Akih++eAFUVXcLfz3&t%T1zwPR$2o_ts0@x>~w=t^eU^W^Q+HCa~I^ z{TaJ)9)s`VOi7t{mS5Ii&c3{5u}VLmX{xUO)&9o#Z9$oFYL{xXKbRjX%<$M2EUB}$ zNn>89wlag`nb}iP#2FjU)@R#q)bA?M7x*K(bGF0OdDXLTEH6z9HVE%DS}C2fLE<E% z#0Q6y7VAHs{X2d6N3q_=y7u87%s2EF=jriTOs;cUIC)i1k#)N0-{=1s4(ix=W<J)H z5B#uqmuua1vp_GglrZT91?7*mPdyRd()=>=<6g<6AK8Me-*i<!Wq+~BX$m;>e9Mwu zcjNwE{1v(+yK0Hl*(0}H&z?G2Cz?`PFzw=U=WVH>22+(4{T>ycYA}qN_N#35Biq=w zxye?09v)t@@F|P4LQ3wrAX5p8wBzy9^S7^y{Golcs-{qHetG(`pUpxiS(kmE@Wsuk zTtsUJ_u;}hlaJX-yZ&%}bhlvk?7Pk(``onLc{(b%oOus&*j6x0u7BKdVe*T5ms3l` z-u%ozA}4S)KS%9iX|%|ebWMp_pImzt89gVgpTT9ACd2!~zIvVGg-iS7J(v5d{M!3= zvOx4q$tRvOE6<!32s}~ygC!?5CZ#Yw%JYNuA+c5U4>fmhbts-X@8#SLj4V^TRp!V& zzqKpY-s6Yq!yU;@M_C_)9-p3_yV1a^SaIz%uIQOIKDrA(&biNH60Iw8`)G;XWzEmL zXV>nI$(_OEcYNZ62aTWEYPQQvd-DGN5B~$(W+_~;iA^r~s3hro{^sH>fpf%ElbkFM z=p32$Smpcrjl#!f$@WXBb!})ok@@6=`roU^e3S3g1bnnTQSs&GG}innx|{g!%z1bI zMdljecWE2r+)v*Zv}25`asOex-tmDf)8(M%$ctM=CcRyEEnfSr*t(r=_ZyBF{&YC- zW&LO4Ye5=ca)q8h;n$na_Dxvm=v7C%l$4rgl~&~yCzO@;Up0&8j`(r**8A|SldL-z zRh&IKXVa}a0<Vf^>fV&yYnNxcG5+c0kLmt9ntpwDonx?l)0MB*7ALrzOt;=X#+WCO z8vO2)#p8wN-_(h0_X}P4;y;7&=X<tUB@3SJz5n&6yvmP>dXIM*iz?kcX;ZLZ+KXDx zw|!I38yo!G;CKGv@wl(|@30&02^V62zC7kh-@Li?e@p$ewM$P6cybxPs61QuQu0Ne ze%$Px_iMymCm-FmeY$!!tKrmxHYY!=|GM_KKG(6-f5$hpC$w-J>iJ-mQgVK$>|cIS z{X@4i&Ufjg1Q@7y<i73c&$~10-$whS`X8$6-#C6;eQ1|^&sXd9f|+*OO<`8kCaWG@ z^D%4HgznDuU4N&j%{$|FU+<FdQjg-_*R1P`J1p8HBtD-ttF`BS5_HUb?V6g&{~1`O z{AXwi{?BmO^+%I^m%X@@ul~b#(|*oN4Vs))q<(M9mXqxH64P=Xx}Vx_`Llj|u668( z`)wxP`aBg;SKpMZHDcMib@O&d83AXZR*%OK$Cy_2zm7M5DHS*Q!Fj%j3j0G=1(&~^ z)w`RUo3O<?Oe2|rg?+)}$#*{aug#0jDi52u*_~x!^@IEqZ;EW)cbNWpdPMT6&!OF` zgY&vK{;rFhe)(`v$b<b4<{j7X%h8)}*!ftxAhd8^Z6*8dKCN9pW*uZcw8-Z{-KV(T zc@`(_AICY>BtG0-8Jf55?b|152~Cm7VLx|<-ij_%e>vZ)JL1R02eE9|c!Q&MeOkLt zcCn{T=R8i?aMduUMkD+CuaB$ktIAZq{;fRjm95j`;O&#eUNiJIeK^RkZqs|apmtMM z>J`(_j+6O%d<MpSj9*?~fB7SPM*X3ad%U}?W3?Tw<O_YWy>KUbiO@Pfvv$E#mySi$ z94<+I`kZNx^5gX5@qJb1?O!GTGo;6JyqGUg+H1mZbRg?}uF;evwYxkUoMM(sJMD{k z!oaS!Q02{R-Nfa!{cG0cmxfHJ+@!_w^qx^mLt)R#xAU)Wb<i`ty|CNU`#bCPGs?D} zHyn>|-|?K8{pb20?Y|5DGaQUt_b2F@K!ut=$L&)yx<o!qy~eC@QvR0t=hMvQ%bAxu zAFXMBe7<x3htPPb*n2lC*1dn!dU?}gPu?E!Ln8cbuAEC9^JXMo6g+u6Ap3e-z|z$# z<@Y>Wd2arpe~*9tyJq^={!qZa)sJf34tqBV9ohT$NZ4*i$#ZF?$8$btKjiPI{}96e zL%p=8eA=%0{a@-O?q;63xV5d7IlDYAY3^EyjENKZ9Ho0Y7JOg-tljB9LsMzpjd+Qg z^HMM8ad&-=&V6%s?Y-z5ucIft&As?4?{eGm%9#=CeR{$#fM!N>|E^5?5EG~Uae9|Y zJpZB@lVZ&yw(QxNSoEjTvo__@(Vgz4trH%<?|RwB&FCAqHTqZmft>+M<KlU8YKuQU z|HpOqx1r+_mHUh~jB8!j8uThnkJ_{SlFsAa_-EFkrjj=gSOy50s`ozH=k~GwkLdAl zC$5!rXVe(3i1?9z+Uaua%Wq8|m+=^QPWyYujgK!hAbI0~qqVjV?SCkRx4zw@nfz$J z>>tOEu4|9%^Y|^_u6S8Lp)ASSrfieb^lm|ghS<~dPM&kWHH-a^aQZj>4|1y)y$q~K z_q}S9qSE*L&8}^0SG)|rusZ!zrS9CV9P1?SdVYGs7*g0*7_eDqUsv2YoBP*iE;_y1 z`%#(woZRYfGyg8J&*B$2zC6p${`#Nlnw$O`Grxb{)2IBP_41b;j~b?&yZn0}`#rVY z{O$WU^1s#n$Q-)!;un1;--UOCcqYC6mcP(Zal*G9(}XU0Sj}zhSGG7?pWytkuXE9l zrMba}H)h^SYtNoN`*g3g-<}>Nek1p;calO+j!)j`K7r$yQ_r<|jgKYPt=(!b`*O`^ ziH@#or=73m$r(K1xcd0=SH<kSg~HEL7}mWHsywt@#Pg*Wr~c~;FZzOIpS-I#m*=T} z(6L{(CbPIw|Hxf;{|`I2xtC1$GyKuowBTg=r+me!P7~ax%jCVC*dx>UH5_yr^u+kh z?QJ&ff0uvskH2E$zWQ94bo#8!J!Y3qcoa>%mG!YDcVhF-D5nRt*PNT|<7|8%^Ygse zRlB||Uu8qQVAj!;Y1&6(<$gYL+Fi4IuAU2D&Ar%~YwQv)vbXNZmpQ)b=z_iTRxXXm z46IzI-e#M0EXcl6=d^XF+Jn@X%7;4+t#_)anz>DB*}D3&_J!{3UR<x#Pv7!C@K^ic z^L87{2lqLDn0wbNaJPBy=ljo);j%H|C}-cVdzNpn-rzmbX`U?I`N}rl@#D1K;>Xe_ z6h4)_HFoQqdanNwXYlz?jK+Bz8h&c)&*JL+VR3w+=#|W><cdkZLqC3-TFQT`E`O8n z!|eN;?)od&Y-ni@?&1h@b=-06(j10x9jmjC@;PJnx9Yt4lbP~s?Y$MRZd^C{y=`K0 zLt9vMukc&J!^$3xl7$nNGjKhaGrN4|mYm9*ddYo~jw@qher)=6?R?y|=h503TVH!? zSGP@iVk}~AWtn|6wL{eXRS}<m)Ys_Q@<O*?MuoSOSVkSpoBcLV`Ksdn^q3hB`n-K> ze!f~Vr)jRo+hd9Te9;xh<F@=LO;($^D&hvadDz9fw_XLUJ&^EeN88t1U*#0crqnb! z9J@U0X!n6Qi4QHm<{$CYRs67b?~+W`_HWZ>moD5s<7R~5^T@o%Jklz=q8N%Vd=Aub zF9|o=JMo6+gIN8*kNYP-UcE!oM7vPtdT-*&jGWFqo131ydRr&!J@WG4yLhg=tlRU$ z8LR&cty|BFERJ~{xM}a2xXdjdQv&y%=2<^AWuxD#j*9zc50;yDr>pn=v3)S(U5)X| z_&DFyr`|-J4&1swBKPX|Nr%I;U2m$)p8jN8O=Iivz{{_v#c5nI)wMtHt4D0J*}T;@ zpI=#}E#y<(;ixQFoGH6@Mo9d`zV89<>ZZD7rq8wqtG|izZ`yKJ``|p;otrPNf4@X{ z@7%3t{)z9<SaOu(x5>+@ROio$p79^P@J1h8yZXm9?(;&Ku5V2^7^2U{yKLWkYeTb6 zzuc0^YZglG_|Fi$LvWtf`j$PFD}T&C7M%4@;>z;97fW7D3u*Scx@N0Hl*WZMsX322 zms_9uwCq98_qQ=}&5!K4es~}L)wXpFueI-0)8}R%JxzP>x4cWAc>B!U)&tqgh4}YQ zSQxqc^F(o{DO+|~t>=Ahwe@?;*15&ryJvlS^rT~=NpI>`Rp*kQ$+GKqZ2PuqVUbUy zg=DBK<HFT1Z@D!;oGX6#(^1xzT`iMipLs{mHHx3oF-7N}44X{Pw!rz%Wd1X79(%TZ zNyXwL^F%KF(YhsjY$fZRMV~y^wf1-BmRsEDI`%6&@^PuWg{Gv$%acddCZ;dRva^vB z+<r|b)FdUlZ2RTBuf9?R8<@_?o#fbbCq<oqcits7kJVw@mRQ~nD*v!{f7d^?%v;Ld zx=*J~NNVy3tCbFH{IjFmfa!zhDwp50pR;x*uo+Ie`uvyazqt>+&kI!S`W|SNdiDNn z(K+QGv*qNsMR!lvmg+Q(%*$zRJt3X&=}F>*1vOhQ?wj(>PT+b?`bVW>Z}X%~J5E2c z=CymwmUi%d;eyKP(GC_y?;bE5Y2aMjk+{>J@#U@Zrur>jS?0bvmomyX+%@Pjxn*<X zkB_%ajz62q9Rm&vOQQ>#@y>ImdtcYzBQovQ+TM4YW&d6}FM4$D@>|Kh3nZA|&XfJE zvN11b?pa~Q=aVml&iWml-zk-Uc&&ZpmTj9aKHT2-*tb1!^X^@qs((LkzWGWlJp9$| z$g+Qb#8@V=v+b4_e0fXteE*iS{4v#;>%RPsNKRgP<CWQUg)>KQi(BQLwR5OA!OT(j z@gURol6rxdJK4MLcPs3^u6Frt*rSx~onLyRF0A5hT+nth<;vZNo}cdebJnvnNGtvh zFRNtjTezU2Jo=;ik$QocxQrFbyC>cLC&X=iR!HGVrPrZ{`l<~KO9YJ~o5Y`K??`y_ z@><~Q`<z0uJdTg5qfg&Ro|t<^&UC9?fKHUl#GJGP35E(f4<2^dZdmgscaQ9cC#QL4 zh0QfvSj@ty+8tZrm!6^){;6%tWyQqpb{;_-cZ{!Xu_=78q9$|ckD$Xx3{S6iSonVG zyDyP7?m~vS6Sq{g&D32Iu<g*{XKq1DzR7e~clrG~F+XVchxZM8au;WoiGSNCxBrUC zkE2J|R9(H_+P!?1OSMVmv`-g5l{YI{dGNCrSjtv>xHsp%xM{!G{`PBU?b0R(&pv!{ zri#G9Eoc93PA}aTs#sChT=h85fVDU(Z@<od>G;EPavy!SuA945VvYUA92?hMK|3$D zgkQF2dnP&SMXU@g-8!9RLWRuMbsG~uJo_E?WA@`%W%mzHqK<4jniKEsEA@Bzt`oiK zSJr;Do*{VSLFF^mlZSKFyK3&9eDbP$pUn06NAic}`g>enuk<m;h&$9f^h)B#COZ`t z{!LkhH^dLH?#r|}!?RL{E$_#&mv-_$+z;)lTX5~3sIY(0D!#?l54L661#Z>N4f}Sl z_P`UBO>7dZMMoY_y>3%pyS_#{nqTy#)V$T1m6a?j%@*g&_kQ{OE$yD8RQ}B;@&-Ru z?nqeh_HnG6^&oTCx|NG+OfQ$tmG<1e-9vBIZRe|tFXqX4x8GyAWwwy@p3@sPO_qIW zZ*Sak^R-kv_WO(V#0N+B{J5F^sM?n)d+Ic4<-f~HV$J@TDKjgFMt7|D-#JO<$)A~$ z>rE~%`H<gPvR?9s)_;c3%^yvVEtq~`Utj6V(%(&Mo^V%u*;^!$a3|70ab{0#fTgSG zCOg^8S<{c?W*@Z|)a`xxckP~!2UotTVm&v#Y}$v#KO?U%m~rGG<C$WPPdo20n5wm} zzwzVsgR_5fRqS;5ziEn>eE9KG&f<x*N7GeZJ(W-kC7<cRpC2nUo9$~V-nKfqX}<4= z<<0x#A}ZqjyFMQ(?_BwJ(KYLq`3F9pQ0Q56vGdDB6`}q)@_GTG?b>r2`XjFY;r(cT z<e%b)yKldBGUnP{(%5&ud}(yWB+by1rITbspLBgPlga<Atnl}#%H)vJ^J4cZ^bgfZ zZoTMxuIsu{%!=)o*De0A_(TXBmrm(K^;>Ml2PTNhe19AtIPG-!kHg82q~B^8m#gmW z)6?5yyvo1i36Hkf=0wd+1ub7P4t7to3==I#DL%V-$_Mohwd*#Ok80VxSLCIi{e3$3 z;d?><Ri0DX4CGz*bwnS!%j{Il_x_vbdHd?Z50?+xbLr*Rgy)JkuhZ4bRqZV;k>g3x zd1!E5ie=KaXD7lKef;i--i%xQ@N9bI71R5InN@qf-`YFHdxiEPQ(g18Z4c}Mb>2Si z4^FVE<SSo)NAkgS^@rNAPKO^{z44)id%1_&)=sy{yw_Wo{l0N)+CSyU2mcw;PbT(1 zI9HG*QYEaJeWs-RmW`b4<vqradgXn$e`ILXQx*@~aHC?18?&~a-d6w3aeSW7jKY<l z$!hQ2dv)oD^GAP}{0)z6I&uGauEwUF*G;*@a$jy(mD$g7&HnHu&4%+jj8Fbt{h0jF zuYFa<J<%(5DjDBqwH`6P=gG6{+hn`d#XRe`<n{e_Qo47Yd#d828;`l?^wlce_xpHm z_D8OJ{`^_9Zr_^i?WCJq8m)49lHu-bS*!A<kJ6hbPMwe-dWVD8e6!3;?YmO*<UhDB zZ{BiWRCQZlNyn{w&rk2{_UU#G{}i!l=ans%&t^LF?|R8~g3Vj)&C1i&Gxw?eF=~5u zN!nhdcG5pK?S1@`EMabUTd#!s&E(^F%J;!q$YV`EZ<e{8=#RyZxc5fgK76`T_w0%E z4Hws&aDV^I?zVqN$@aNBpOsAKJA5UfGQF$L<mD~%gS%(j-_k#HPvf%k)V0a}Z@V>Z z%5z2b6$qYx8mVlvaphr?ZcU9HWm;@*6MAlMa<|zT9De1O^s#$7dq3o!Z=D}=RpG<e zIn#O>+G_K@A6BXK;|#qlWW8InF39TCI`&gWR`C~WlyljSt__a6^rhd(HezS2*LjES zUE$FkZSlX8{dY#5<NVJMt)i`0RQcd~*AL@IvG<ScZxxHv{yW`NR{Thm*xX9nIoJ0| zU$cKG*JnNB*v$o#E<Ju5D4A5J(iSP?apM!?ns||0ua|DA@0L?;)925=q;=c-+kS4( z)%VyM=eX-$eK+mpQ?;VgTBk0~d6L)}^}0_i_f_$EasQ0D>22#x>Lq^U{bz7v_WQ`T zdhvuqDpwwV41FSW+cHSGJ-F>$peC2I_{8{qj|wvHCtP0pZu*fr(YE*>o+-N`^>y;} z-<xFWh49R|ajH~8)iQudpu5Q<fwj2m?fq_>@+F!3%(rj9`X|uz?w*Nes~?^hKAxKY z{K(OW+YxupZ8+V=V|L<_)%>Z)stV%;_jrEzedv~G-@->}7rs2(-I=oU^4I%(Tdvn< zbc$!+du4Xc?yT9vX*pKSr=BGAt+FVWy?HWPV%~|@Cbwt4{ipOY>fPkUCm-(3e3lWX zeV$Ku-g}cbsoSsXL`i3E|IffUQ(pH9bL`dL-t)c7_Fn!Iz2^1ltViCJOa5KDZ2DvE zmB~9(Y9D=)*>LN`?&~b884vSihr|p0*r-#dQlahoQRmvN)}C<hRWGHkZav$3AcZgN z+M!=5eHHWbm|b?JTC$j?SG+rS*yGCLkM~w*KC}+sJ?&DqclKMO{|x?Dl6Tl!^sZOn z)%!T--$xlf=bqx&Q(lJO`z?>pa+}_2Bl=LDFT34y!<Asy?K^uPY@h78W#`4^(@F}& zPi@(0bW2i2VX{ujem{;pJ@tmSPiMWleQbHaH0>>s3+z<e?l?`l&2;qn-ixQE1zAKq z)wtcL<yT-?FHqz1;ckELvde#r^>(k!-PdtWE_LsAF2NX9&+RM>6V`FBnJC7`C~Ns+ zYuV*J$vU?dRfHcd-=8gBb~0P`?6QR>MGsc_r>7Q4J?yJXHVIlSKRdVhZ<gkF-NYr| zFMO?U-}UO=i}G9gZCfj9Hl3{$xhJ!`KQc2)hi!Y8Y+_KxVutigotf%9TR+zS5z&79 zC4Q6m8`h8NkDeHv%zYFqbs@4Mjr+9sU9JpM-_o;7awWHwZrxeBv)H6bER;iHN8o4q z%K68m{%tHSTzvk~^egX{WX2snv9;w~@;OzHBP%}V#O`*Q5!%T+>HgtAi~lnmJTAXw z@%`8FeE%6zZCOs_nCM#kSRNF~tkPRprLy(%;|V!^2125{C$u=Xr>Zu}{Hk=-OfnQ) zo_n)R@5+KFH~(zOHdy61jZ@iUp_uHErlS?ovzJ9qDe^C>Sg&>M-Qsz_Li=07EKVGJ z-2XB*Zt+Ubr;;Imo~y{m`}~vXdXRq1o58{I+xq(}ma-;)?zmd2^6b=d%Wv<rDtsEZ zt+e^rQ$O#kWLWU$9>IU2>z78E-o5lw;Yk^T%;fJ5k}~t|eR=Y0bLMX4FOUCm`u|pV zEx%3w?ZgNF8Co`4-FjK*bL-sZvWe{3vHD)xg*Ho4E6WX|kH1uT@gvoZ{jWs$Bbhq& zYkGfdm)yVWU7vC)Wy8e<4fjlpCO+AEIofBb#Ck#N1$RVtvmLwjN9I36bMb$Mr1d<1 z)c($0zdu*MQ)-Uc_IXBA!&v8d=WW}?HnZU4(!+ND8MNZxa$i(d5puSeCGn{A)6c5E zJ3q1?pWkftZsLl}?cM4ff4)xAP`ws(I$~ds$Ek%%Tc?ID-JHPu=5yqKhE|3gM$opj z=lp_Q0e&C*pMAIcu5w_PNpSV%rjI$h@|(VX`*8K$^i>(xU#C7l`JaK4<zmF`JJBbe zCKnccQr+{W|0Lths~wqF!~&z@l<Y<JC@*<=>)7sx(vi8QTPotiyTd!*hIxkyEt#(D z-?_9a{OQDPyF7mC-0tGqxb{!(#brOz?VI*+K3ZL?mZ7rcvXk!Kqu2Ubmb{HN-M-nX z_Ue+)Ul~p+1R2ixP_;M9z9U|!#QJ<km3+&4wd-3v;;y}V?7Mwp@2bTd_bgOAbxl>+ z*&LtWzPrlok<p&(?V4rj3pLgEwa@?K@G<@^WA?+_=Ou6d$Ua>D&A@b$*SC9`d(Fk! zGN<T#a4@-DY^>(I*;Vs}_sZ0O4F8Y(kK7ho-@jW?{qWDEbI07Xd))(s#gZqb@ITyE z@Z|5?Bio86`KJF^cKhf(h7a67)?K@FKH~EFL$U9+R{Mqtq))6lnXj9hJn80kpW7{) z*677gDB=)SKL|SBtC4N5eYcAHKKYE)uFtXC9a4UFL^wZEm3+v~W$`v(@im_;|CDw0 z|1bQh{X2i3T@B9<(ejlw4%hP1XCDijCAL_sH)DgRirXiT+22?1&vBhSrOl~exoY2? zu0LLXr<9!aJ`yjKzbC)2CimFPyvzR9iFfA}H$`lGbtCEQIZwN--_`c7t+Dta{9)aH zh6B^0_FT8x6DL2-a;x?Z^NEVODrSWzcJ}y09^jmIYq?Gp^UsYRrazqCS5vkrQ!L1A z?&7<fOwS(VSrp>au)2Sr)dTq{a-QqOxm%X|_56%oe|5fp_i?|a8JX23w$C3wKT^%# zS7&f(AO8;~=E4k9jzj)AOZWVqy=ViY6yxNra~LO2OKz~f{!9Ol=6{AJ<+|f>TtD&` zWX{^&vB$SOJu@>uDe1Gq<!fwQf)lS<#3d?im-c>lKHvZI$-n*oq-*Sc^!~1`G5Qhz z;P=X7Q)*n7+&Wt}!Mo`59&x5enPS#CyI0R>N;MEIR_9uB{Z~?4g}3wGk9-S@D-r^2 z9-O%se@k_mi}qnj5s$M|wRdbbP_{8RTm0BiXyIwU?rrU^^7qUw-`BsCl2ZR8JpCVM z>WAIFecWrA?gx3Cklxyx_B&YT{RuT?YbO5%K75Bo-`(fiWBi-zk6x)fm!0g3X`h|m ztkE&?P@Y^Rvq9+Ys!tvVtT*^O#|dUHSl_Nc%~vln?0{Zs-=}~}3Ywodmerh=;Ga;u zqrO~p^P*S#O1f9S)D^vDmz%dXDs}QntwKd14YuI@lcagrl`rk7eDvy6_>`HKwX$x> zA7=j}lKwFFdP9Ade#boVw$mpv{sh(*Gx;1aioWlcpCldfxY6zo|CD6z1ERln{`UD3 z_wm<%hJ!omSxRifl65D~=e-pjbyUV<vb6Ty6Dkwl6>m&ZNzTyidCn3(`#;0MsQR?} zp8ewWdE0(ee+WN(eb%-8kE(fXcHh2z$8_o58{wT#ckR%6$y2aM`P3!P3C+sI0$X3t z{}2_=mieDybNU<U56<75f7C_2yLIZ{5tmDAysjH$ZWEqwWv{OnaF>Dm^Nu+}<&1H% z9HwtAxB1RrnY8-Ynhm`*zAI}_hkyUK{E_&ZpR0Z(KX&hWyHB=a-o0oEg|uBeHctvj zo_gZgagY9UjQ_-bR>@uc{{HxX2BH03`yaH)3+3wG{>$z3aoW_}oZV&`jiwpGPu{)U z^SI3HNrG_K&*MIO{crYvtDAka{Mw`Q$Kv!mOa7YaTW~7(Ihb3wo^&vZ?5lgR{`~ol z_^sy~_Nf1s|FQU6;E&wpcdUM_KN?nb_S({tQ}2s&munfF-63>i-ZT5Viig%X7yRrk zE3gX=7wm6&;hxs<k=?XaXIIH9+xV})=FggN?0nN3Z{cIrldpWdzqi)=w_c6R)%_X% zJ^SQ-m@iti_I{VCcdVT4f)rk-(8eb$^M9uGT&fl6(|(#Qo>KCuAxzfx*T?x)|EASH zxXs^CC;nsp?~3R@t{;zN>P`Ic+jaM~edVP`pDfJPIiUHOr*b<>Ly-sb0@J_2M=Z{- zPFx;Y;{IuxXY;okCyu_|`S<9{I)M-0oA#*e6TO_zI&bd68^@PNo@DTzz&j<$^j61$ z9jXoq-c0`)^d(eYy_jaTck8bI3~8CSraqf@YLd4?=e5ea*E0_=hL$lbSZ7pty)kYw zfA^xx>=Pf{Ra0$ca+Bgn;onka({bQIfzjdDQQVLCMPD<C8!quW{EW}rgJ1Fl_dkgj z+COJc^Szr@ckEWzl_yIt)`S)_&boK$S9Ghw(QhY(?k=1#!C7FPgs5y0-@6^J=RYj} z$E~@{Gy8X4jmxEX&xHOnq{(U>T_P?1H*P-50;N@}-pb_}_w77+w!Z4J_mi{F?keAH zS7_BcwaWeU#GY-1$JsxwKQ4d!^FNNQ5A|=)KK6aTw4KC{);+wBdA%eqeO<Ta-hT$~ zy%mAUeU*zN73NviEQvVnt{KFj${F?kP~a4;;uB}D^-S*lZr^5hdF|56XEvO$C}j}5 zzV4lG<@V0Ci={V3mK!|osadS@&BFAn``gqH!AIpc_P>>W^#11LN32)Z?Ot7>^iJD) z^<NE}u*)ZHm+pO#v3SnU299?E0%r;i?o?*^vwr1ktGL}Ng~yhO^Oy@Zg-r1GdHnIO z_MO%(HY+cOZ#Js26u<E&bg948<J7y`&mSvD4Y>EXsW={ViihJK!NST9*$3(@b|~h) zU9#h{Y5-&IB{!9h4+V~bGR60|Wk0!V?SJ{&`?nL%oAl=N+TB=u=aWQZ!75H>J%>2| zsDDfM=k)(jS+?_G{STGnJ^L&wnjeKu@5}q6ot*us+QP<unS1W?B?cU~Qf5`=<)ux$ zr1W5lA#;!DvEsKWmR$?`mc76J`NHSTIV-Oo_Bwz0s{G-rZw!TQ7c}r5bzkwq_|~rV z+y}E){-_SPED>}1GkZv%!^A(Q|7{95!^pW=dF9Cmp|bhj27WJk=WEW4_%*Mn_|K|( zuDdV8zF!xcwX^-rcY&s3^~R_9h1r}A+0W?n_dk-fe}VQ^tt$DMiO=gxE`Ct&UiYOp z;$=f4>*=G<@*ceFZB}IIUC<nVhyRbD{-fMwQy-sY4%pMAnY5!VI;qV`aL<(+oT-xR z7Uzu5)^i5ljr3jRaZ&c>lnD;E_#fWdzgqr>^7JFMey8HOV`5LJO!nU2Fg1p8d(j4+ z{qJPtw!TeB*eFqT!?SkB*6*w3<WlzbDNR$<w%Bt1-8Xx=9}S-0Y^AQ<_nWxmHjmb& zzQa5}E!UiU{&C&T0=v7WcYaTwR<6Lew@*a)cGs(SHNh;wZ#H+IW7cVL5oN0?+H3sv zkJjQJr(?S8zZM+5Gf~1q_S5l+FXNB-&DZPs*Bay-D=Bu5?<32Je%{3b<pR;qUSIfU zd#rA1O@-1Y6ZP<!x-k>j9vS!-iLZYiY5q@d;?1P1`A7FXllZ*U#mPN2OtF)B4$nW) zQ$PBT?i2cOa_jWS8HeQ-NS~Nwp+3Rm^!E)Xme$R*`F4(1ZSBs2o~N5^bzbZf+mv%B z{%4zVdqlGCmj4Wj^N-E{yZFKHfV$)9s)yGzoI1i&HNjH!>8<M>dS8}p*>?F$^jqKc zq8$}H{7>dEv8+f74?6I%;rP0@d(vn0ADK11!^UBs+y|atcAE<&O7=Cxo|znVR`Ot2 z|H*=~&--;|DEHnx>%3y(5`)cEH-0glKPG&%RAyq7ilCdb5PQy_<91*FW$xd0{jlUe zp_<|!n?KwSnD}tVhwnXGlOFI-S+}t4SBvC#v+EP5CLZIIt*T%6=bpmZJJ+R_EiZjI z*Y13YxzOt{&rFd?(>dC-J5?FjY}~KxbA0eI{`mPn;`I-%tzK4lwf@7_l+AsYy?#u7 zxI?{h;U4pgp4AI|a@Rfk?RGTile_8icfT5zvpm}O{_vfuHq%S{CdGICXJ{;bR&iW! zrH=5V=&X9<=>av%YW|$N$uRH6qh(uN=a|&SG}!($b^DjSLe3+P?WVGY?cdjW$3A_3 zYZoJ-<M`y8#FKxbe+4;S)N!iS>VNQe-F3AlJvTX1ex`y>kl|@hwM(L*)sy@mRIdM` z^`D_Br$+0;`L;UQySKBKeY<^h;)_GvYr`(7?7X}-XYHQ(M*K6Up1JNP$`Rn*`m=yJ z{l~-q3{B}3*6tU+#LN6izrKjKc6ny^@|TuRAI=X*%u{2|{QEjTr02oJX$PL|U-tfn z@jouz59yw}cY+pB{t3ML<>nvl6}PjmRf$;nTw3$(#Tlh7(KAB!bbnj0*~GBn?2*bF zk^Dz~Or5U3!fDO+ee-7hXPEeXo?O!Mud}8ktY5Zom%Z^9ze~T52}E-H)(396`Zaq= z#Mz~5RxiAJD8A_D+WbnDO>Airy?oXackqPDMjt9?P5cnIx4KNdW#(4RufMftCbe>< z3%m;3pR&!>@ysT%RQCQUebw*fDpuWh`6%tZ;<Z)T)<?BY+Uc|IM{dtnWSL(0bJJm# zZPPY+KRfnL{B+t~0edrPmV@H$>-T8n{!xCoy0+N;g!`4R8gaJKei`4kefeyvnYKgF zeL~C<uQL_WyTU)qJk_{obmw2gQi&ZamlP~MJnh%I{^Hc7hgHwFm0a(OUOl^X<45~j zPg$eP1>Q`0siOW);Y4p;@@~ncTRzUXkbl0T^abyf#G1AGUYoAune1Gr)cMboZ*r~f z7RHcmvIp$4nJgtl_borX&vb8Q$?Ixcf9DIyeC^)5_FgXK-Zqi#$tRJ>TQ-}l9<WVW z)c@|Y-xV9*RX1<MR2)AdbobBYN~^f}k9f`0w*_u5pSIm9$J|)UZB>ZP+<573xt+#k zbI;X158rTU{j%=ZE!*V`uXc5+T-$PZY3!09HmB3|OP&5R>{I?REq-G4deIwqqRy_q zQGaNE#rt<#sx#`YuDHKuTAcdE>8E24pKg0q`To=~HxV7{ndcmA!nN}s{$~)lQK4wc z&zCvf@b2rPNsryHEZ$k6IAOZ=f@?PuQ>M0E>J}*A=VCW))^D`YF4o<DxK`-jdH*YW z9{ifLb?>vzGBvHW65e|i*FLOx98@m2%gFzpw8xq`Yj^yNb}wA|qwAD+@*@@9#HEp% zO^5xr?A!O@&-9kW3$^Wmzg1UGmNz*ras2e0gwWl$U(b~~xF_(@e+Hw+N1~qOZ2KIa zxn`2;4r`l(D>DMlY&^Mf+u`2_99VivW%^b=^mR4m%*{)?nrmbF@X4&~wjEMsyIBt$ zbNTpAd{;;Lv8(agW%oFejKltzKblx+dcJR~u9SG+!82vwZn1uSyJULcv7hawORr2T zNDbWXbygy7u}x#J^roMFpT2Q!wdSZ3zZrk;OxmX<`-*M1?aj0-aEcbWBA30C!{9%| zE4N3*le-RGda!Tjk52h!8#R;NzS6Gx!pr8aekEmlTZz@kQ+G<)#hbggEM8Hx+k^W~ zsQ(Y|8uO)D=2GvrmSz_|`s*T`&bD*eLDnOMVu5?tmsF@v<Z!z!nLLm2`?^!L#*y1E z=>C&Fn7b-V{+6c1u36#zN1`fwCh;y=z3R;5mB%Dcc3()DQ0QsWYW61Goo#`Qcl}5E zM<HgvqN1PY9`7*O9q>WuXo6#P`j&_McdTzTIGdlH)qQ9edw;GCXW{yrv9I(@Reqbq z-!Nal{@B`cFQcqKitO{+#(r8M`M}p@Kk91rqduz0@%+fG&(2=<((&I_v;NxBMd!}& z>G9mEy44}kv@l66e}>%6XS&gW+js1m|0w;aui4$)EjRwG)vXC$=9=?y%Myv)C0BKy z?a5v9z}S9D<&&=MBChBB&OdzLX2Y1d{73Ym;+M1JJJv1fdsH3mdHL}4Ztmx&oU<<8 zJ6@oYP`=vYZS%ygw|{&;d^_-C*QxtQ!ooI2yeKf4oK>~1TibUUllS!gu&q1V4EY%1 zXDJx%X)=teGVj_`%-{0lquX?|jW)OD^ljUpI_1Y=|LrI5ytyc{W%_BGV>@y*Y~-{j zU%q_Ej!E!`_JQ=nzuY_W%Ffo!a{ct9?3?V3NhaBv)7}@Ehw*L^>|Zf$?aIt;CHn+_ zw61!ky`ti|V}Hn`Lq}A~u2sn`%wHF^*vO#EWqZbgM5z`0N;4bp9#?s`QRwsGf3kh| zJug4HnDEiOqgeIO8uK{mD=oZgQ6BdWma^UZ^jX13&-k;<yz-jt)h~B_nf5EbGim3Z zOMk2$RX)G^MSHF%&)SB|x9{EZ6)0@eSelf?=4Uu3Fmv73D|Y&qx9p5Mn<942s&4km zTYgJ}8?~HQ+`et4AsrRs`N{LZ9fy_6m8PyQ-nz41Aj?jn`Jm?CmF4M4yWgcu+_Jaq zl4tm{i5KpkRDHE2S))+sH_zt?sqn5Z5nFZLAL(4W8Ff2BcZ!kO+K1oE6E|H`kN)0u zQbqQo<oTtQy4MeL^K-l~{E@3KedyP<y~^GNire>Zja*Q!(lYPp`kuV^y$Ad_V;(a+ z+iUdvz&~@Vr}G<XbXR5tzTCK@`sCtChr_ncy~}lKcK-9~D-j#`4aM(Xc>6OuN!EIM za_+hs$I1sYd#`Mt^`+|aPo1=FTR)0!pEBR1+x}bBEdlv=ZASLC*@C9g+`dVtAFglA zFF9@fL;B3_O<S+7tFf%u?8kOATWLC5=%){knT+SXp6l3e-nw2=HnxP<?6J?qhkg9p z_sr^>UgMJA?y39C+qz8Wc}a31%SML6^YP1ToUeX)9h-eLPGiSM(LH?XV%_VaBI93P z^i<U9TDx@ltvHE;>@&S{UKO91c8S&J_MR=Z{zuB?3_fn1dv1R2LS>PiAK5z7OJxil z45wVF%e<w@@tN`1$9ZM*wDk`g-p%?axc}q&wg*<*7F)AK)~K&OTld=LjnCwx`KvnC zI)tij6L64W@L<~XNAI5W_8+D8f3$bJUAvY0=Ox*HLOXr6o=H5gUNTiUYI3sLg9QtM z4DMRZdbOuIUv9a2yN%$Z8RwQ4ZJfQS#(iOI)&ra8DQUXy-k)-nCyE#(o<H^A3IE>n zww|7SA5)+8%#*)VWB+)`7W1f<^F_IPJhQF^PvkfxvGkJQ;&8s=tuv-c9xV}{Wwx{Q zk+1pTIH~PdbGF>JSls4*DX(PZm&ew!pHlU^?`yBHurAyo$5y#2O7!j3`$srS)(ZW~ zuI4p2(2)|`n_rx-Qnujze}>NdX`fYge_GSH`GT0OcK4?K!%?B@JOAnb*rv^)Cnu>Q z9(Ao<zg5-PzauHK)cxM8QwH;L3g5{Ho?}%N`z8~%T`y9-xzu0o)qa7m`foyJ``t_4 zx%+Z{$?gLigeJPHKK*HSlfR*Fl{ouT>B`kFSO3^{|KZa++ts5cSzn6|nC?=s@2<<v z%xTfN_GK@+QW@*m9?s$8&9y&LHRV3nl77cY|9-!nZr~Jl=tspZMW%&GsotCA-`(k5 z(h%{%^SodD(OLf)T1`E^<TKvzTwI?MAwKQVwd&vdIq$DN!*on}+vNjop&2Jn?OEu~ zGUvJ2<D@CkcSZlWKeFen;C8)eBfR+h!}I)SS8R@(ot+!!&l=C$;x4B1xXn|w=V|kj zX7;BKzR0ydvgP~FaKz4L<A-aTm*4Z{o6F;*Svr?bHtFuo>1Q$%uBsWHoV;UkQ_G*l z41Alr^QB~Sx7z0M3src#U(#(X+tco`e?#du-rrYdaL>N{>`BVBa~CYa)a@!C?&nkQ z$t~UA@hf&&_al1&yDR4Nc&6pr2WCD!RQdAnV*8s@FB#75iC%WEf=wuS)4sOrhu3%6 ziGI}YFO7cBmHn-%d-bW4`AdFG`;_Dv<}tD4^wMbSa%;oQ6+H$v&((JB&C2*A{Gj^j z_1wC%rRz3Dt@(AgMM`Q<WAmA~--mZU^)yRq=V3PB+B2)X|BrEU^#kj8&YGyXd3@`u zpY5IBw?_Gjkn6SpH?@m@RxFqrvsy7Ne?|&ZfqS%m>mTojf4L9u6Z(-cYi{e@7P*4? zhkq?yyLI!=C;HP1^XnCNCahu%OL${^@LZ-^bW^@lcV@gm%7<zF58s+ezs^Wk`xbpx z?9utCt<&q@U9$Yo@KA}jWC7zI8!!H(`j#bO^JK37Gd=n6ZP|O5eY-F3*&Xs}>Hf>6 z4jYcCaD6zkI^~>fXQW8W!N;?rSN_p|^q-+G<@Gfw)4#{sR_1J%THl_3InZ_M&n3rJ zYrAHvRClJNsye4j_Z4nUUSDxJX!l3nKhxz@F28Br`sUhq&e~<K%QPg+r|Ot(SbfLf z#YySB<9DBYExQnNccPm_>HZ&1HO|!^wQ56kgD$0=@6k2+x%RP;?83UsOT>3%9Q(Wb zusHXX$&*8CbQc|)&poqFl6&=n?;EuKGaS-hp|}3&&qy5?JLN$BDeOGLdLoZ(<g(}d zC`^2~R`}tzwdD^iOm67iT)S2*o;S+A<$Yv#v!e5=`RbJk5yu>2p1P~|p6{%a-TqO% z<qONl{$IXN%rE=$?9;jweI(_`#<zd3+|qWLwywNp-P0X+7JBA1X&qE~pOoKa^fD}{ zBJB3Da51r{nQdi`j~L6B+{-Nw{Jpb8L3j4MhmURRV&r)9U*G3>XXE`b?%Ml+jn~sJ zDSNwmCbm0YDcN*t`I*#NPyJR)C$vs3e8RYS=Sux|U*q|*s&uC}f0cE)eSG-=^=_9d zTYhUR`1F4N^42x#neE{p6F<41{@xncS)yzGt>KF4+pN>hm!D7i=&@t=;ak0}pM`~z z&s^n}wr+c#b#8`(p`6i@tG9kBTb#PJx#NTFzTWyrcZ-8RxUJ1GwU(});vFmZI&kAN zONkZLydl!8Q#Ws2a)PIzoP}BX*S^({R@=9mPpa|TzI)5&o%62xM19@6clFArvvZ%f zt51BKdx~S?zL?($Vfk(U%rf?w#6~~Z|3@V(f2~RJ?MkV=f0ylfsnh$t?tEr-zD-BN z+vC$O_k3L!?09YcKFL?p_VefcQLKKL(fh~kcKC%{Y2VBFvZ7O#9@sWN!0@2rt2`IQ zB1_qofs@NTp0Dg`yOh54u<7&88tp~5D(VAfal}3=mff?h>PfLBbDM7=>w#Nr&c{wq zzOF2K;kDVsjQfHMuFGXdM<}-)@z>7UwQi!?!$~_gZ{uC=Jz=@D$4O~_iS;v0=6A@M z{+Ru!!bZB-{_uYWxtp20rd*75{<dV-)h$~J{AX;8jXpK$gapSu6@#aqS`{~HF1>nv zY?gd)$$tjEid**b8QY@ft-28P(&}mN+-Ln|OdcnKJ{_}ko5>k^CfD>#q+;@o$c?cf z8+>1?6?+@>-tO^Vxwg*m2ebQ+nQQlc{j=Thr0o&Ivucx<drJy4i3SH>R{ebF6T|0i zXYV$ep00?0WdCj2wEqk|rLk6@eI|#5^j$6Oo*Ny#ZR$enjWShVmlW>W)OKgJwLuVP zLV^1kd%i#N4|%H}vCi)(S<T-b^<|gtpAEg<hdMUie|bzbm0PEp|CTC$>lDf9lcLj% zw%&bl@=?W~{6+QY^@j?VMN6-qI^XxB-R-qnKWnxh$et2r)_Ls5w;0w33Ne$~m%lRH zwp{zz?iaPPk9?(%{5m&3d(n@uZ?_MNU5l$$+xg(G!>uTlHv6BITeeN|nS1zY>*FcL zJ$XT{#d0E2_D3p@x9&+^ooQ!t<?&^i$UD-?ODiTmZGV>A92lA6a#*Y~aPsLSJD(yO z`vY}qvC+rB)tP<Z{89Z#TRZ!AclGP}EWS@)nK23+J88S?=c2a<tqYBhgzig?JrG`= z{OI-0KgkdOGqC>X_W$^>J$%o+YsXF>4dmXfd3fQCll2S}ZfP4@*Il*H?QJR2UL>%5 zW2@(t+`IGId8+zW=dOGyFI4jS#@n>ZHy8CEdv-bI(u3cIr>#Ago>~@`df-!fLWD+& zB#*Cti@Wc&J=W_Y|7c!&vt`HooJkeWf7BLjw4B5gQdw2ERO)z!M^4_YS3enlv8}iN zQOVy@(l7IO_QR?lT!$X}&-2bc`r+=)dDRs+3wOOcdS&&gzS-fYr&w)Ne>aW&VvW7o z&eeasHprRn`RKPPwNiJgjq?K4o^ZygGnKdO-{vS2IALd^^1}niPhBm`PoDSst<0Qw z?myO#&kDz1-e>Zo+~=y~+XwsS?o)iZ?b}7S2Q$vRUy*rYL#(mVGMf#Xj`sOoGMxRu zzcuQQo!H(F>ks{B=(yF^yYzHPDYxVv-F32M>XmIbbszk@>Z!WDxgktacCnK~$Ev2S zuj2W(TI)0ZSaJKswOMJCm+y{oRm!wenI3a_?F>!p<(HSApQ@n6)FCpp_;X^ByY$0& zffrKyk8&zr-{Wq3_U_-U=cat-=l6Yh*DciE>L}|Q=ads(ZOR!5ZeJC;Qf`)LX3yub zvtQoywf~3z+drz0YlBYxiH-1mES-MQMJ%UdcU*Sq&aJ=09vpq%o?&^|ZAtOk1wTH= zeK>z;+n%d$Y9b%*D2bjH8qc+Ldq?6d&0^&}K_*3~O(z*@DQA3FcL^}-dS_$!P~(r? z{hRj`KfJxVZl;Vl!@i~U`H#3&OAkvf@th|;<IdEdemuF8q$e$j{J;~(w*RWW;-%90 ze8*R2UCZa$9w)y|if`>E{kcNk8E1Cf^3+u<NjX>8bG4ZB?z@^Vv$h|6-!)IzH^%+p zevzzOzHg>&H+ucH_F?Cn)|-)vEw>paMc)xoXx`{N&mpEUZh3O$${*>6%c2;re(jaJ zcSPFrO-^F}kxg;Yii~;cJLXDNcYL_bJpX>KMXE}Z)s`RX4|Rhc)fzu?o47hFvp7@5 zNncdQ>guE%hEBP6N>M%uk2F;zpC`!7dS)m0L;hjw+`g?3*SBroW>$Fjh-%`4vz~8N zgbsgNb#&RCpWRuJo~N~^<Ub1X`(U<4uI*pv<Jpy8PRBYQz7;mt<l1HFTrZEOJ3f5b zmvE3%cJVuxnMqm^9)2DyGRYEF&$ceQ9sTmx``+784v`N9?j4vlSzU)QbB%II#8ZjW zOt;(ln<qvW{;<<cy7I&L*tPOmSAuW9+uD9yDt7w>xjU1UZLe-}<ypO@iQzQgs)%&% z2ib3>y)JCE6+RR$wu{B+&CK<GL|2(D5L_hj+a|2s<DR#L#HYn_!7>lty?V?tGcUjR zxcx&}scp^jJtfUcv-ZhcN}rdxPUx#n&3^sjxFhB!Wsf`_-HA9Uc_L|PNa=qDll`}? zzje?5Ht+B9n$+J8Gj3_ei@ee;Tz=%##J&4wbZmHe(du~1y=fDVq}~v%xi+Cya{YVm zf83$JQ!26_$o~<pKPD%8rPO)NkL{0ARzIxgU$=Vc-}bN##%})^ZcSf0G1+|*w`tO( zV*+c|t?(8LjDN2AC^u29Qmr${j^Wl0#*oRaGNsQyt>5=xk8n|G)F-=ayCbH2&b`;) z-IDCxkYJbdL~f_dx4+plpKdsiAoF0>#_B@RGrtc_SlnQIdus^SDdv^uzpTGJt>b5w z!ImJE$6Ac<dmi_sU)#6f@5KKM>HEe1U70Umqx^yWz|8K5kMmaNF1~r<zLvZ0mDxT| zChZWr$f+lhl78wI-y`GCp;O%4LhmfCD!x%a@4nZ+o%IiH-@nm)RO)`m*ZH@%$9`CQ zyrU$ZYtKKqi;uT+oGZ2NSe$)&?fNZS%D(mKUR`Xx=jQU5nkC`AM<o6;tWHd|pZGHM zMrqil?i>FOKl?k&#{W0>tFY_x%zI=rAN#k5S*cEKyx6+^w*HpRlHIA>+N!gIKcCGu z(l*v%T-N8N8hWwsoWj4`MSqemZLR12A^%VC^<Dk^o9P!>_imfNO7|GEj(2{^CzW;5 zQ-dz-GV1A>*f;<1evv(;AAX;0cls#(Vp8<UXS(yYKD+7gQRq(efoK2BZx#0IpFZ&W ziPZkbx&9CPkHz|^AJ1oe5of%sN#ohpt0fzBOJg?~H7HCv<(YS(_okLt0#jAVAEik( zXHUMXYkIV$sQ1>t{cHVuP1cq__HVPvU+!dD`RK|SAx@VMZ9Dt8TTeDUI~<hpWRhmh zCi{zevF1IR#|p1kls)=%{D`@o?8b|4X2<Mg|0{LrUgf=8Eb^~;=k7VVDvC2nLdnob zd;KZ1IrBYde=GZ;yvCES`9Z!&#pA=;29ftYuPAT%XgX!$nwCXd%(=cFEZ2K_Tgl*< zV{k0%_Cxn&Gqwk1)XDv5eP|o!J>5uc?%L?ADx>sE7SGIsk1+Ez@*Yx}$8<e;)wIV` zJ?wv^)qLh}D{bA^e_T%Jci2+V-J7D$E<bZUSL^{#@#*3e-LD#gZBHj@zjlvloTea@ zHQS#d{rQiEchy@azW8MMJw3ZME%|O&lfMez)ED#Ae^h>)9=I<%U*N@uiuQmu*Ga{T zvcK&*7@?Bf+GXjxY;j&Q%kfQ_OoFE-9*x<0`9DKur0(KL*B`QXsdY{fnQ(H6SER?o zo=JzF*|}TKe`Xs!=Sppw>M`+G_5Uya%dgMMXQ<Kpk(rtOAkxM%b7AH`=G`Gz>rM)K zuXW2#cr5&2OR@IpjbXm0Pace6a+Pn3YQ5g^hcoe!_3x66|1R~PO^w%K6c)>voFSp5 zd_1r6R8#hu{|pb-?0WmD?)HBMfqlXidB*vP$&aFEToSp*ed5i!6{r3@mGbL}o;>$> z*H_8h;D_rE7Uq}zD|#taKK<E&x|k&{8(nQ$*>^s-l<C`V9P54Kkg0k4ol8?qqiS~R z{`FsA|Da(%-}-;L^#`L%>cwA_U7K{P!spej%kC=YGsG+&Wm~wYnOaWioZ&9X=zk`n zN!<QLG*i~~;Mm9?mC;@m%aThDny)?(BB=0b{<DdW3>(xJs>n_KWBZ@s;Idz(Z99Lb zRb0sWob$Ox<5Io>=ckuN+<A96V%|Odp{&dz9DncK!UyMDZoN7x`)qCX%D<BwO$war z%Z1vyr`&zA%b3+hYnsC36Y8^$n@;}rR&Scof<=pFN5879ZQK0lwk{L%`k349g&dzk z&2%zV))b{1c}+UiusSi+cJsWg7qa&A?eSj~e|lAP<he_lpWJ6YImRTynqp+pDbH?Q z_OQXG?TLKw)~lsc3-(E0eA1!7vFZF_5m{qxw&E*abNYU)Sp4Drk$S;sk6Hhge>3>R zqr0XjR`_yJL-G7?9luJ}+XffC$XGUQ#pjiFlCLhs-M;&J))qtC#%+_12HjN6m{~5p zOuyrb$-}08{j3Fn4USs%)6W0U3-9~F_IH_$>WA5fc4gPjez>mbR?ojY<v#Dffio9H zO!PakXU9U-2FYZtIe)hPZMyx(?stH<Z`iA6Z`nkiISVK+JQ*a>Q~G@W(|>jHAHp;1 zGx^)>#qBg}B7aPLSnGA#XYa=)yJXjGEaYiA=jpobcXqX;ih^JAh7QAwW_LOHYEH)B z^IfO4!wU{y?7cI~{mO?veO|9EA1!7sStzT2_uKoW=a1~~lb0~{7y9vYkLO3L(A~}c zDgAFW%+yYtOw4JRd}J}Vy3fj-uj{+^WIxUqsB!wJxA3vNphti0N}u!@#})>99td%~ z7%0FJ`ev2&vt=Kr?W|lkC3;)hZJk!epipO-Is5F=o==|hSGy(sSYiCdJ*tPMe7Y5X zKRftSoZh3IX;XJDULt(4Zn^8C6VE<+o?4aK8Mos<1J}Qw`yX7*Z~kV*|K{UI@5gHE zm$mJ_X6kG0vZaXqe13Y4-jc&b74x1Re8FZ_Zhug}<;~-LSA4W0PW%oO(W}%EN%{6V z{^jof3~c}Y$bVFC-v3~Roy^sD0=M>el%CBG=-9|$x+!+++Re``5<VPSXSem_@gM7a zlzP8s|2c2nrg?A6?HBzwzh=+yyOjIo@1ExU#Z30Q7F!;#vsiVj_wU|kDp$5juYML+ z=cBa!QNfL)-tw(_;&L@Nlk5ssMa(I+IBq}J!z4O7a-(dwm&d7@6}<1yGvAQQ{umzk zuJ%eoPsbjgYrebPH}r@}g#Vnm_ne1)zt8WhU;i_-Z2QlUGWmp}OwAc5ng0w2J~*Cd z+BP|Gnx>FSVUA?e+|D`0e;+r_KN9|N=YIxP_Wuk`r|NE&*USBJf9T(6XH?Hv5q{{` z)@%JNQXyi&S>i^KXD)c^e)%2{Yb;)IV@;t>w$KBi=PIFE>w>oUCbtLOT~ZhQpW$HI z<9YQzG|wN8Hx@c)<DJ)6QNMFh=HAb@d;W?3Oi1eEWN2p*JbCQ$tndE4aw;FEAA8@i z>-^F4(m!VT#vhrdu-iOp>f7JPWv&PP%;cY`(5cjKt<+nvanVBurmgj9_BZx_oAP(n zKh^Dr=QsZH-L|q|V&!-9;Mk?x=BM)csqNmCS}3)VH96FMlH0?8hBx!hC@tpox7%H` zGGp_V{Ym;aKh#}{7tghkF6BEb#((eCcgGDUbJ#BPWM4U5IJe9FZtVFvE7<=E*IE5L zSI=*!^GD*Nd1KUV_9Id}+x#|8i@33OMz82J^&X1{yzBP}UiGchs5@}~gO|1c&1{d# zeJVfBo%;2y%rj4UYr#b}?(fN=KR0kH<V~3Mch<-G{r}`^EH6zC-S<&--{icH3p&MK z`X2f1R_C#}=;3^c7dzBNAB7!_TQtdisZ_X^mite`AG;6zTHk8=x}W>?li9C1Q@8G7 zxBMNtdUoaXIr3j8ZaDe+WnA&M)XAaU?|%9!unKI_<oz^p>hpz9zOKJs|3jzz&Fd94 zY=3v!q~=R-F8i@zd6&uaK4l@3s)_nKSxYwP%RJok#_;DILxq!#Ke-;xdLW|MtdV%W zp!nYYRYo;Ag%ugs`)|2F+S$wQEFQ$YSbAlK@e8Y$Z4qY*P8>XbQmcXU?Xy+88DBY^ zkDL0t{XYZC+8<ks7gV(A>PM>HT%Y`@<7B`hgB=GH^8U?u+4U#oW8F5>m221MBuuh! zl0EmYc-?cG6_a8nUvA(CyujG?YyCH^AG6CJ@^_bMbV*6hel9p^%^@Sh^EP^(2hUZN zudi2Le^TS@m-NYVgGv+M%fI~oaKHGgsQ(Oy=2{>5d?#z3)Rt}Aw`cddowL?;l5`AU z%RM;jWw{WuMvu{B%iFUq?!Ef{k7w3}tZSUBGj^3MipX1||L$$6cbnkneHU4G92RnV zddA0~s_TROP4h?m4SW1QR3DyoXV$;P3tzEaUC_pGY2RFvk437JG#2Seyo)!eoH&!= z&?GkZE5{F;Z?D?h-}R^X;a>ftx1QdybN{w&es*@E>5hOX+qKokz75_Yg1djlJPH3) zF8(mJ{mknNTPIEay?*(Fy5EPdJ`88}T6OJXeC<|)bz7}<9Yg;(mZv54M)_(VzNfNv z`&O+N3q5{2cXzhi7{4(p?h%aT{r&o%#LnL-8?%0;tzEe?J7lx?u6t8+POVz7Mf=H7 zsXnfwpEM<v+4j6Tek4k5&i#ZB&%55OjXL<mHz;59*4<bwrSx~P{@)@VGxVvQY4T}U z(mZS90`EuKVpmMpv)nwDt5Z2U^wRptfs>wk+&e8cS8-yHrzJN>LV@wDpPA;x_nux( zUURubTl2l1;s>9oxb^E_)g|B0j+2{r*>6`<fWrin>UA<ZpLo1E<9=7!=IXPVHQDLv zE&FbNJFAlX_VAHkwNJ!#ZHkzhq}zU*<S@n@TQxJuoXPRA-Q%DOrT-atPA>Z~Nn*>1 zclDRVymzL2xVO6O!nV&FoD|YRRYMO>P}KeWL~7c*$b}bm9({b#?e*czBjfyKuf+mi z>+Af`S(mq9#|{?39z#FFPcpN%9MWHS;r@wPs!dtDre6Ke&{kv0)REliJNN6-BTG-P zY&u?8wB|@+x6!J`8=va=?H}y3=QORC|9AYJ?B69q+OG2tS-su5e(tir3yyuWTC{im zd&SuukHr1CH?Mkks`pGt+WtJ9HKyJEn}4+BZ+GGFczoGLx5{<VI?hPBb8iz;<nKj% zIOCziAN8mCKSR^Kir<Ih`RWt>B~O<8ire|vUM&7ao%BBQu+`Zsq9R_IcTC!+RDPyO z_K+G2hj)IQ+pTXq>b5NGTdI+NX1^@IwdtazZ7VtL`ajt>+sj6*TUu$hIBPe{Z%>Zm z=7u8M%E$Jt5g*nyF1_hw>Kn3Zv71_rOlwcg;bNKO<+iOsSM?sZ{cPb->T)aI8tK(D zsbHy}f&bFl?Z1U;ivCWllX|sw`M=Ba`KBKc`nxoB!}ZQdkGz?$I^Eo8sM*_)I#Y1Y z<hENP!hf451@>l5Y<V)N_WV<uv%6x>y6!H!^QFJh&h#T&f8v4~rE4~})!EByJU*KB zUE6+XWuw%6x9M+Po%UT%ombjwRJK^zm`#D_-|~NF<39wR-hZR|9~bi@UGYcyo%2o~ z_$Rl2(}vlu8=5YzE45s@xi7SL`R>nwha{&n>FfFMygwGTyT8Yt!-n^F;1B5o^^*HI zDrVh2GXFzQ#ca1L)1t-Mp1-*m=lpz4SG3l}1-x31->psv*Zm#z@0gs}kEtKi1AZKQ zII(cik9po7)z+p?<gscxb})3QXUI?UObNM=J33vWsi)qQ{5&tQ(neLQWZAo=n?HHp z|CoNW!Z*xf*5s9<*=kGXz1+6nrQYK|!{+O6?SE(0-QO?x{!i(Lez%Jy^)22k-|BpC z$#03i|1QmY$9m<Y?UTO<N40dBhFQ+9klxk#Px|<S+e<%`w||kf-Q!qpz4Y$&c75dw z>(<6b#<)KDd3mQ!(Yf*meOwQo?J@qx`Sm{otNM@n58Y0e>eKT(Ugj@)aVsV1-hrRm znYO#8os6DcKgG^d{d{-P#^;4H*I%d~dp*BxR(oGgol1@JmJi=HS3Y`iGky1@`puq3 z(aWc$wms9X>@E!{yVH=%V5r>xjOVrf7SWV<b?>J?S}L`!XK}`D{~zk-%L9MpA949( zvwt^lVrIdoczN;6;8?{Sz1x1SuB=$e7&FIt%eF^FbF))(+9sR)GupN3>K0#imm>xT z7sm6t`xmY6xDpZJlJc{geG01t%e0rXPF;WaarWKQ3tw(>Uz}0+ZgP0`UPV)F$;Yno zbJM52J?Zj<`H8mWlVuL;)UF@d&$lPA{@Kag^z21H>d*Gw{A0cTJj?YA(b$uhbM4N` zOy@cLPJdQlVVmUbc(Vn+Hop)Jz49Vg>fEjLA5$NB*Yju3Q{0<kV7S$vH_OTNlyr;v zr<2+pZK7;XZ&k?|#!CNZ$p29%`lD8C^{QnXSGbGcO1S<;@9S&Tt&@xX&VTFqBwDP% zal%ZA)`!RVvX&n2PM94s`N*tu%TrhE$w<9eQZM|{*)^?aj$3!FP0^WT=d0J0A~)`k zdA24ZvSR(As<rQ@FMIvVZtpss$p_0bi)$bGn%#U}Kl{my?h=cq$w#s}>S7pJqnp^{ zbk=7+aGUn;@PU7<m)_=@oOarLCu^VZ)d!baj^sspN8HjD>r*_WnSSz#f!eCtZjT>} z*Ep_v{prRlDZU1?8#jNfc9?eRi=}kU`nR$^{rAot5PHp4ctwWU_rtmV<VUjE0Y6F~ zX0PYX7CNtBUOrEHPb_ml(<4r9Uy+RwI-4f+7(F@Lrm%XM)r+icVqMd3<#&9oejU$| znRV$rf3L~f58^#<?y4;=*FU3@#3U%4!>)X3PU1?ft=}|!Yf8Ai*LU30XpgzLd{=UQ zGTZ#p(nqmY*B&gpdpb8^XV*R3#ZS)^PJ7&R=RroD$d1h)zT9eWQNCPSTOL36?2}to z^LeuhB?aD3P(2*y``qJ(wYS>=nRjo>|1d7O?fY$i=dH4akI~L5fk!hR)E2!D+Z?&A zB`jL3?b7X2z2U{J{xf&2RC#`M(f%LnAJ%s|JwEnbj%(+xYin->nr&il|N5=NqW5au zX`ac-C$FZme$x_>(2?+Uxx7jAvaNQ+NAr$9uFL8VF>LoPmEAMRZg=jZ-;(d9f9Kxm zb@y(iSgXJaty2#p=B#9OHFo@1W46m>bGDS*#)rK8j>3kM4}b5wc&}aY;=beAJQsd$ z&Q(yHuf=xZ`2LOl56??iL_0ShxD~p*Lpj&Y;$HUF2^D<@+&JY^%dRdH;yv&_O>n)$ zlR4Lww*3?Nc)nxJKJf~n_b&UJ-ODFE^ED2<Qlfq1-C~{XOy0F-77H?_`kC$7p*wl| z!c|Ypjq;tR?7mhbzcOn7k@Fq5=5?-ql`}v2Vta>9d;7YSyp)K4*Dm?Jxu_Q1;ePhq z)sv=IPcNzH_WYo_Cp&kwPw5f^ccs6}kA)@OmbWS9JmbAB@Iac~PFw9DS!KUHSM&Zj zKkhY;`0%fJ;R<Qf-ML!-R3m1e4)b1}sh5B1oZp|_d5k-6pIBFa_*U7})!vmKx5?UF zkK5O~c>6Xfzr{tHJd$!(UA+BTKbL6@$H5N%&k3wL6<UF18y>%k5{r|)RH|$JFuz&t zqQaFuM|SMle#zAN;a(@rREOl=HMxstoM6fE3@>0*ZvNgL_~@*?_thGYZFQD?872CB zizW5`crRG{L~u!R&35k9F<x%RU+&OPe0ePBNB@z1To)hbOT99`E;VhtNO#7puU&T+ zIrXr#KEJpy<M0ma0F$4}i{{AqE`I5JFivdSrVnaUZOqM6Rd(ca-*fX3P&af{iJEfA z)&03*fB~~ih{lbp)^GBDFdv!zPj&azeJT~HORwnU6kUw^5gtE1ym6+T2UF%JcNVTP zhVxQ8B-!7~Wlz3lTF+mh>{u^av2c(5ve)|*XRf*ATXwNVb44uE&YhF2XUA{#Nx$W0 z_wu}D5aU{VvCR1&W<_MyNp9bBxyDyTsPej5)%97^KgNjMm=_#5!)!y4b6aooG!{`A z>9DA)SFd-i{bR^-PxC`+UysnywdvbBUIynR`JVFD5f*-y-V>89BN}#ct;|>9w(aUy zx7dbVKNuD#x_Q&}^}?ar#f2K5{)8_(D{!JqeRAkjS%(voixxcLnS4(&&xUtxjmKp> zu^)A{O0JheZk_x)du@Ei^}usCvX{*F-PoHu^8n+N%};pxr^sdeD7)|cae9a8`mS61 z+imPupUvl-YwFLPC6p!AdZwUhTaNBDj)T)>1$Hykh3ZE6KeF|^en7mcziaEU>uNg< zUvB%h&$9iW;MN_Lj-MUpSr`1vpCT=-@Z^Kp--n{Ar3(x1&p7&VYI~cFcm0Z2^Tj4T zI_!K&^11wn2`{d3=VtQmWHA5Mw0lR-Tb7fj|J=0cQ~Hpdy<y{zr4Mi9m7Z7|rxA7i z;IF^Omgc;3a4k+>VY+wKlI+g{Jra*C(jI)3D((DH`{Caud$yaeXW716ZZL7#1=r(U z3L(u5j>@s`6(u&>Yb`wRuvNWp?ShX!x55v9n8n|fr~6dsuG-=irx#^S+rDYhPbX_@ zi%#psNq*1c{1_CTZM^jK^u|N4Zq4tg(SP_PUp#A<<L-|}G10bd`+4N#cg+(0eV+H& zoXH!ftMJ7uq%^JVDGB%y9{l0%v+3y%Bmaaizjc-+C`Q))^!1Y6^NlCSJrBx!$Jo8% zK!4j4^Spbx)=~a)?ho(t-v2TGuvFPhsi?iHUQYC1DzCBmq)qvz#V5?g5`Iqa-J`V4 z^RbCO=gk_&AB$I3eE-dV*lOw2`S0JZFOkj4p6m3D<AQ{gw?n7U35i_Br3w6Z^D2VE zZ>%^O^`t83kM57z9~azyak;`cX2)g!o3p&FZ$7+wC`u?&Phopt{$AC4ZqE*=voOzk zTXJ6X$83+<>ZAV|1WNOTUs%QNI;-XSsG?-0$?me^tpfYztu06jatyjOxo=I>&S-f7 z)#)v!XVZ`WT6?nhvA~h}0y+;bB?-rD)^fQn_Tl(mbAuki>5{LWTsMC>pFJy%@kgQE z@(;VN{r34C`-XAp2hrcz4N6QmrkX~4`ze1YOjU<b;+QAj-=itldhUGCZ{KpmPCl#Z zKf~c(sY9QtcPeiew`17z+x8H9!e@WZEB7oM9B!ZLz4?UU?a_=Hhpvk@%1birh4dHi z-nnmg^-_P?DBYJS4LR{zxf-rKMtKP*yp07XZdX_4e>A-#=h-D2)1?)EUd(E}qFr1r z5~uIJ@oMO4mPp;C?vu<<Rb#_hn8a;+=S%$wo`2w<-laFX!AI+4FFe@3wOh<M)7fj1 zS?sgawx_B4d>bB4Va-Wqn3wHw?3vJ0|9j~Rk1nk7+U{%b{o(G^yRBQyUO&B4QT2=C z%lFUH1wuFPTJ0z>ys*vjfTc}Q*sS`tt@C@oi`Oad{_t;YZEn$q&ip;rw%eA=6sWl* z{p{?VDy^z2$!zhYDZA}roqi4fkJgWM&yUQL+jQxV_qr`@5zjVWUZ=Y?f0L8=Y2%;w zV&?CDp4~Ci;n>~1+Wu}o7Jtll`8cOe>e`pT;oh5eM#iRJ{i^L7bjrXn%{`=#dqIJR zOTnKB3pY;EeW(?k%-+*<bKca2(Lav+_D6m!TgkUKHAh!3Pf0kwU*LA?LCdCNyq8Y3 z$ex;8_(|i1_Bj*jdM?)w-$OOi7kL&ICHC0OWZB0)$wi3iXc|xY3Ffj3?#g+U79ZBC zJ-dEb&a&D6NACKU9}m~sv_1B@{Kv*b`sdmU`S!_^#9MasOgM9%r;DwqxH)`_KF_Oy zAKNZHK2pc^pP?no^8J%3S(@v*JMJ!aOZ|6gyJu3l5QEvXi&rd}3z*ecSr)|$Tc*!i z*YVZY{}KP;7bY5Y@@EUnm%pyh<@+{k342^ulE@+#y;89b>kZZo+o#U%<78>xx$4zF zgTB}PTQ_f>?sfTsPGI~k|8E?DX_m$@nU6wCT#s?O&d#t@W|?@RqWGBDt^S@jfAkkt z+<W%!-ZLkaOY6Q&-#p1-_Kdkk4jXtc&XL)>=WtqG;uUM358t*wJl`=PF8+sFF5@~= z_KL4_jUzhW&R6_-C3n%z)+dqfr$X1N{5+x3z|Gh3P+^x$@bN2CZy9dgn;vmxPvP=g zS^M-hO#8cB;BdZu`&E58gWr2rTfd&_R(4~_!XpR!q?eXRO>a)`KGqzz?V>5Kkfr|P zOjGZ<$=`FEBKF>$yr*DB+PRx$PH$gSU+0-GUTPgL7yZNP`Xke;&u5n<O!wJ!$#>^O zrPCZGuV>t1Na>e!x^TXMPa?h4-gnQ(w$?`-igui_3UOJF%Jw!#cDU|nI&HQ%_j&Z@ zBL^N{iS}*F`*Al`u<5tD&MVJ%=Vr%VS+~da@$6Xj@Q=&e_Bc$N{^4})lJiUc&U-3i z7Lqw#%_V%2P0j2i%XbH^82>T9W@G)4iMQI}L+{^(SMqz#npnM`pRXl2>H4kGBfIzP zk+Gl5sl_0@t?T)kI>qc+-}}NHH+;PNY=PR9qkCrQ-kY|oWI9)ok5%d6Zf9+cXO=dd zjRB4}@1!qO#2=kzFR*6o+3bhQrYDP@y*}mE<gEV;IfVlDCetsNT(DXxac{Nkp}yT7 zlB`RdveVpGzM3a>-A*;*R^86EKkCExZ@Y5g#!df4f7=6^5_WT3&ga(hHqz8uH(~DS z-MSG*71~GT_<yWSEnk><&-lZ;nSYm@Et)p#NY%B8D>(%xpSq%}r&_72sPiv>X1+*@ z5vx(Is`S47KQ2GW-1_mMZ2qzDzSi+e3SJhy?9R^HBxx|=hRMbQsg)dZ(W|^XUe0;8 z(>E^KpEKJzcHfV>lCM@hIltzv+x4>G_s+`oCjS|%t}bn4yseWh^R~I6T~b`++S8rd z)yrqS+^6*;cio?qEtmHAKC<VkXpX#G>i<PM<>GwLYdSL@SJXd>FF5CW<sfIzjK={d zcdI;U-oB{D^uizQ$JM+M74^qviQh7{ee~#YjMTm9MQJ={cU3lTJ-R3I@Slxt8#i!8 zOS1XaKYH-dynD@>E$?N#S8$d_2;KMEeaS~Gr**1NRq2zpd2iM3v`kE%@$P`a=eWko z5BK7^U&r6RC->p@i%WZd?8v?yTjZ$x%y;*?H#NU2mh|Tvt4~!tR`%{_NKX1H3vPeG zO!0pv8=D><xhHx}_42zDT^c46mt={pK4Y{-XwN23oyBDbTeu#~b5ORH;%_Y7Eiby{ znv{OG31fPp=7g+SJyE@Vi})TWP1C${THqufi>ELX15bd_yvIlCg-oRF#bSQMAF(ss zxU*0D$=oe}-90B+Tyjl(+8ur2+sECFXHuO0Gng?ZM@4Nt@^+1VhmG|^-vW+zi+AnZ z(;Vd5=OCla-D~Elq#9APDW`Xa=I_TFt}RS%Y(D(Y;3Ip_m)+;ZU(2yyUwYvyztO1+ zFQ1(cy<D@&vm)ip!l#{%%5o8POB>eOhP(CsKCZpOyZ+H$u1Gy5om*=@y^`{M7h^xI z%(XZ_Tco*RrHPMu2@7LbP3q&>(f-1EbM>}9v{?H#-FwBB*Q>Rgb$BK3t!G=ntuWO< zk|Abt<BoLG%Rg3Ry-Y6#oo^>+xTnq4_;h`KRVTMrLuCEtC!g=L@b4C>d=<_%b>72j zx!MFfwU_q{FMo{}`eA%%p2GG`djqb=NmtDJ&*0P9sjVI5Eji(5^0d(D#l<Z@cf9)= zFIQ3TvZu*kN?tPhMO~G%$gN4!FFpCpCnDBz(sZMG$C+~r3O{{tjr-{Pb;lKDt63Fx z+P5PnW!oBkirqD(`ooEnCCPI-&5QPHy;IJXDboFM$oyLV^J{OFKF+=H>B`B<Y^n3f zlHB{BZJy)zZk1c1Oak+%Uo(8~EM0l*r9p+h`$y}zjH<d`-n(lL%==h!`{$zFxBfHe zy`Js3kFz1{&P&aMHmlwpE!%axL!muhD0`pQb$#8)t1acf++I8LEI*yr_UV#A!hsWE zWxD4iJxraCe7CAwoHom#`%rn=_H8ds=T2L#=<69cUFFbG^^9|#3Y(6dI?m%7x^34- zzsA-5;*nWW*H*8nosqL?(xFG69V7i1jddsgU1FrQ>0NK2#I|SQq8V*@FXypd_@lmV z_I#d9`<uL}rO$TVcx^Oorib!hZQmW!G$hM5s+tMkEh>z;-(wT5-f9!d`)u=L?&{UC zb_r+nzoc*O(^!%_nL9VgcH?S}+Y%WYD)}5<Ui}lZ^KzZa(Pgh@={Nk56ut8;@zIVw zJF9j592lA3_-)kI)>o`KBqP5^`Ix_K^~X3*#SI&;|8ZUWqFm_a&+;h0*~`>6rnMP~ zmp<Ium!5P}-e}Wm#>vgIc53Ii-o7ifYhG*Z1KlWp;fnY}zs^Wy#VBu#jec8rNBz!` zU%BUQ)@(cX{!4+MT~gtk(*^16k5YttlMnW<T6*bZrpUD3WpT$v9vpdg??=<*$&v}; z2|N{Paf|ix`F{vMs_R`^arv-ST<c>^uG!IZ{mzH%z4ZLIi%#;C$VI#xtqc^Wd0xHP z#;K6D=l-`_e;4n`{>@i+EKcw5l9IV`v0VA=FWD{~cH7^^>+mXS?m68rKbG%qT%x#i zM+vX7_sMes^VVs-Rq^!|{m-!e%0IFF5BAk>6J7sS`FHh??nC?duDmzpXR9%v_4sg= z`K@*H-dG>jkXm~s=W%0Uwfq#3)KJ|C3$<>nKTw<Y@X3yeOVW<C>~KE*^!C!K^S$d! zdE+DJM_+w+>)o?=o_TtDbCS<bbIVMf+Ey2=(sRk+<<1RkhH<j1?rga{VR42`a^K9y zv;Lk|J+Q`><Dl|`jaTPJeJa1O;?>Td{XX^c|1-pD^j9eQFS8CgX8g3Xc#hoO9V-)p zF7>R)k=gKk;+?{{BkwOf53=3-p#Gq}cun%hXZ;_(A2jn{`8w+D8>zh6xlEg9zSr}J znApVh%v8PRs9Tt7+S~Y77k}&hJ9&@i@5DNm3hM`;D|WfmFK+RcsJVUY%F`{maUYY} zp8czkUA%SIv`4vbp0-;`9AK6|zW$H2@^7WnAI-mYT>H<EbvEyIM8C%m+hy)*vwqod zt6t9jwSP7Xo1(#|l<a8vE#4|Q@=A}yG$+jb_w38;xzfj?)D|y}jy}5Xb=Zv^_8(?v zu3x?<>`WzZ$781=&d&-yGEdum{>2}?**rHt`J#O2q{KU!pHHuhK3Z-kd1=kr^_`~H zY1{TVYGqEJ6?sK>G5>!CoqH8>B4M(YX_m)z4_bcy;eTkJ!KI-0hvEdR_Dy;fC+qCL zyXjW#fj6bcau*~{+}d>F_LRh(Csxmsy}BoGNyhhG`QMhr$y|P`)>oZ=F;6`D^Ua+Z z3E3^5%`}g{o6C4m+Ac6Sv#PzdPL;F9_EGfdeDU~$GTX(r%{n^!#rKI18|HaRF5+#~ z*-;V7B`0m`e$?7i?(3|Z^RgeuDj&4t+j!Z%(<ZU<;qUC$v}XTZXaBC<bGzA7_T*iG zmTiw3c~A51<UVlnq3$2fk6!P6_S6dH8XvipY*4H^dF$ROh3i=6{QGn*EOymGsro6; zn~q$+u#2txQLME8{Db@Cx7mrwCC;-AT=$=0+eI_hur9HkpVPv$PxMaFS6R&*8Tc|z z{$tx*z2--~(cT}U?g-oV?%k5^xPQ{;x##$2oKq=0Ka=m+36&<z6I;z{-miM`i|f|D zxrGm>Z|bOD%Gu<UyKsWOri_@s_RfN$RVSZ*h@4$`H1+nY`K-$t)pl;(+~pn+$u_y< zU__rolB0!9O5?0wlMmVRzyA_G+dEq~|4{h!`L=W4ZTL1%Vfz-t<2#mw8=W;hwEFWW z&)&1&%bv40?D;WUcki7IF*T7N@@Mp&x|iPi{`(Ud+1sV8G0)dANWNfA)Y#XyZhi9q zOaHv<^X=QK{15E^p>e#sMsi(NXEk5{dbjV_&xAcbJImwIuANhR9NN`9{S4SFSeTaW z$$wmbL|^((+J~dpJKrph_UFnp&t$Pn<kmgXJB7btu|<%%zUzrsRkhK-WB;B0Wj6nJ z&L4*l;hpP+uF3PiDvo#+ZfNAr{mRI5!bLTsi6{4@M)Sq%PTp<$dH-AIhkvVGJ{+66 z^p;7$i>Tz|InzF_bh<RfevgGkLfOY-4~jh3m8|^jv3#|6@e4zfRr;B=qBnov|IffS z`{l|NbvLYjd6s`GHfyaj7jX|tGCQ+4xyO*_PRVhb>)+2-F8x#V;kU{^>B)z89Z2U@ z^3&V$JXPgsOXs&E_j_0+LSJ71&v>)-{5w(gzO%GntnNB{!G;fuy%!x>+IGA9uG2lv z8;n<U%${<pGi;vNKVALzvVKRM-+AhNOopG{vF<&_?o(&_`Nx*Il^*Y&Z&BLQ&r{#I zPw&I){|rZcAH+s^hw{{2U$({kW6i!5lQ=)z?dbSC!Qpj?^tY{l=Y2W(Xv;_Y&P5;2 zd@?&Iww>o!+T}S6DLXrrSo`mu{&RP8+|T0thri1?%@)<XJ<KI*@OYWooF`?b*>3`m zGgn#_xh!}Zl@hdM{=1*c^Xs2S-11KIH;H?3y!+HOU8(QxleAyV^bBwEH%Y!C`rvQ& z&+z{Y&D+*~?fB1-tlx6+M2bPb*sDnm5p9u57xE(uto}1pe0ltF{hj@{*uPEu+g78! z@@VPD#gEMTALb@|-OZcmxKiuhx@*=GbJxtA^X>_cMuNTn6X}0^(to$wG5ou<_@R1p z9aF{r$d4g%lDSczo_^KV?#@n$Oz=+q6j##c-KoM;F2r}0U3VJ8UwzJpT33!c`wH*< z%WrNrC$W9X%s(}+xBq9zHk@#N_i6TLcla$7HxwAvx)wKVuGz!bSMl<FtbETj)%~8j z7e#HBa0Gr|8Ru|Zl7a8|tj8CZ9{kx`_it<O`NqSSzVj#ji2E*;x8c^>h3<P>B_a+T zE|~Rn!-fSfuQ@HAd~g4?;)nc4>Teo<<NZ7BpG@7^eO5oZAD$Jh5q-GV+>^6#<-u>A zDouBJdY>HK=XB<G=b_K>PZoaot2Ft@G+njS_${{<^t#`#RC7IM`Gm>O`uf{zJ3mf7 zaF6rKY@e%nYqxl}pESE{yLZh2x%s;%K4iD;O#X5GxlMIrujl1GyK-vHc|C8H#rnV9 z{iy$s*y?X;AIfL*x0~8l9}PEqI>mKK=CZq<j~V={u3em9d?h9Px&M*%KlG1Iit?`g z@cm)8r;Jy*=eq1;HVl=S%A2>(tdM!&{iExT*pI^BdUZGEZ|RDynEW8W!F0dK4Tq=8 z`tCit#JgJR$>f;}GuimOj(rk4#x(7~`sH=v^#`T*=jcm27C+|i`BgXbgWWmKB+iu; z+a#8@_Uu>M>9IZ~mFLVVoA<h#9Jr6x<=e=K&HDcI$NY5G;OdO3^~dXf==Z;Me7skt zBKyIQOEv7qE6={`=9$&|E&AQhp!>(Q)b1_+E8BUlTtntRgVlT?^&eLsy%&xDaXsXk z`gPOVv}e(~cP@90-kG+e=#sAnBir|+$gUN)=P}5Hf1UcF`XBFyYkQn?&3o<aetf%p z)J*K9nr;nq$t7PkMkS4B2D-bg`5%5d%%=Rkq4d}JhyH&Ah5vDW{jmFp|Jond1Frmu zRK0c9wy*J{+<pHoTRE0`^teAc@?9=aYpwE3t0zppMefp0lk?a%AKsa9^N)UowbPIL zkIsfYKKxJo!dH30S7ICA&AaZgW!Kfz9`n1IkGJ$Ci#<LxEtI#(@m%4XI_@9Bzbky# zIxhUdeqf)?rT5S7t(vyY>fDq$EAOPvD@@NbTk&w|#KMbyj~M?mxbidAaQ$Ha5bwUR z-SbC%>Vpnb`@4tcab@q`Z6K1)Gfk`@r@2r`=N-cbv#$G-W43>YTVi9pH2c~-)oVTz zI!kKZGPayv@nDK<U(%<P`Nb(5S1*=-@=jlG8}sqiVxj*Go3CE({F7Uw@t>h7rv6~s zA7|Ue75x!c|ClEmExB}f)sJ~$vri>%vHIKp_T-M`XT;wYPW}_^skXn!KJ`DtjcnH+ z)(O-8*?(L%{n2|l1-^}5dMt5?sRzu8?@2yoe|B3bM$bz2u<5VUkNDfA=C^NkYd;(( zam8eAe&9sCr+YRzufBOy?a!|LbCq2BZu~qxNksER&X?<ZF4zP=uC?Olu1F8Q@FzUC zlBGFlYFf3pYwqIj@(G?(jyK&tS(;F|r7_O8#x-j9i>g4sYxYy;|FF=1=rUixhV!9) z=VH&_Y8xNMI@RiZ`*`_Hr;SuoUZ2F<C(}H;{w`DDR@W%}WG2!4r_iTc_S(xSY(1Y0 zw>01R&oKYm{>$6Hz5YAnOZ+YVZ>ArQA6U;RFHn&l(Ck0&k!7jKjLh%h*O<?2J2R{6 z<cwP>VI8+mOxiAQZXy3{=VNY*b&tA_2`ry1w_vr(ii%Iq3a2|CI0#x6wK;xYMfA*5 z73%Giuj%`{uYX?rsm|*3-?<gn`ftTgoNc#y*}Wf8mkvF==C3NHu`n}Q_v!vWpSZWH zR_*gHd9?4=59x=0?R|EB$Unl*|0C|%qg!rMQ}=DzKFu}a&{XY$WT&pf8}pWwo>+hW zt$F;e?HAu~kx)(bJru9=GchLF=AB|^m?Wd0|HAdPKNx>U)I|K9Un)`mko`)^WZ%ip za_z$Ia<i-KKV@Ka^U0jYmu2Ly8GW1bGv&+94>PA~o)T|=zVq+L`h!Mwmal&;KX9YQ z{^8leE!?knXQy4h^y-}V?#lURK0OKF9^MwL5qir|NmNCM&oF-Zt?)x<g%6uux0CI6 z++OSSVbAoaZ4ECMpXzxN=deaCyEUP*GW5niuQ{LRA9(*mnf+~g{m1#flaJI%T-N>a zd-nF(o;$Yg*^$!n^QhN+Q^sSDEES8-S(yGlxuC-S;M*1Ijdf!FYkvrRI~2^ev^aaY zx9FThs)~z+vnHNccE#RskKXPXd>#+}Nk8_BdztoHP`+(R@b9VfpVX~>*rpkBI+lIO zLbdtN_C?K|-)7^T`FPEb`Ul^;zWhyg_-!rgkhSgeE91@DtUT$Nk6mMA7ilUcMeDwf zuv)kMp|*C1>G{rUR{Ia1RXaHAnz7u%?EKt9?d>cFm!CE$*1OX_QDo5*AuGA=V^#9q zdptH})(d{ImMuOcC!e~fKOp+_?!95bJe8Ser>^m+yErY?BdP4fF-r^KAEEkxoQw6= ze)!K2bJgUpkVs(mlDN#*N#?nCk|WnG5_j;pbK+?1ggIX%)}J_kQG8-;+V!vTJg$#x z-Tg1w6lcmT$t>G8&ETfj1>*#dv@7f4Y+PpOod`K|U@G&1XL>cx5ASol3ck6&OZCI` zK2!cLt8>-E_T)xsB+vb@B=V?E_SO%lMGDWjR7gBv3^hGzGFR?D!#}a<$M*B{@(1tx zl+YHdRqGt)Y?8RGvOBLywUa@?Q$;c2f#J!6d-ETy@7$%{HvQNvzjZams&DoM-Mr_? z)~DPvNiMnf_tM8toi<K8SMg}dl1r*NdG{;)kN%Up?jl$bX}UK%C|Kv$vl%&S;_hxx zzP0Gt!*?zR?GlyVaUYOS+L!WoWu171^|xz3IM>ykl1lHs9MbhHB2R7B%l%u{>AWvF zdF_$7l4q`Xj`8u|hh%25g_N!P?ebB*wZ=5L@F73TS^cIxxz;Y1qD<CT9Mha#bX?*} zUem5qjM9sk^Bo-5JAJg9{&D(|I{6(xYCp1jHivWt3s#=CnY3lq!8WC~XSWQWPLMV{ z^CO{nPN37~ma87trYn0RmaWz8{~Y~yTYc($sk)Q<WlQ%r-WQfSbv}Iar>z`Gu}&7c z_fCC$Ua_>biOscQ@n<fv^q!|NbJ%mvntwC;yTB&;;ftE!2j|;=^?vQ#9`-x?4tGZ6 zzSyHt@1ET+xaE0@X-Q*q+{gb6towfSKGc5yL-RjF=a&Brtgoj1+S=Zxba9LS_Ndib zo~m1SW=~qJGHK3%?`mqSx1TxBd+^KufPIIZ$;a*eN!ONsytezJ^0DdjWX(Uni1OVf z%k3G`va>y)tg`OJ1c^IFhlTE#?6}h^!S#2)&Z9fQOF2Vc?KyvDV~wqo=~IdC_L=)1 zbk5(f{pfzS*t>s%J|<_*6Y6@UtD$`FZtc#ehhsfuv~;CjibbX{nS@S1o0=XwN3VXt z{BC>JKf)j5f*-H%oaOq&YTa&*?A+`_lkU9=d!;PD+b($Zu?+@4L!(3wvKIAdf3p9_ zQU8cvtS0L3{5tg?{*U#WYg|+HJ5@K&x|bX7zr9UY>Yc);NdJ7^jeVutw^lNDH??Iv zz4J~qgz>lHhxbRzuFdB*<rn^O?cJ~IF`GZ?Ok=a=&R)G>`}Qy=_gUE%6Pb0+iq8qX zpgw!|)VuMT$7Y_b$x&M6{b29D{NPtcGK;3k1<f^m?{)q67CVmX_KEf#x0bD#Ck<K~ z#+&uIX~FH7*pr#X+#Bu)MF)%gn4rnp^y~Ty^|lgg(9S`#!w+hYcbJO$n%!Jm8d*A* zbKRE8N1FQ_HlKVNy>=6mL&BSN7KsxZcf4P}ckS9c+sx#2uY7e2N$2EmfB!aF<McDp z%(%2kJ`WU26lzXYaV=e$?R@xR)E}b{^A@gnS#`O)V%@{5Uta&MJG%D9)ZbQjPAWO> zmN2q9b+qnHv&{8p_wM<78ox>A)#;5@KWLToN|>Mbg~6?tyDEP>znUj?_35_i1<9=U zqP1n$yg4E$V>u;VnnPW5VgCB4ALqk&%=*s|xM|lV-B7vXejoKZb*COEbKa&{T=!ae z_XgGZC+;j>=X5oDK6lLDZKn_Ya_j!rpS|tj)_U$Nv0F~QW|1mJx1A2o)414n)h=t} z^R|O4)~H;l)BZ7`qU><QrLS+fj%P~ccbG&^yP}+3rWBUleNxnXxA2Cak_Q>YqfXyi z*Ibwq=2v2!{-gEr>D+K%^CFe9m+2<I?#<ZT@lF31@A|n?4!euouJp`d-rAQv@4_C@ z^%cP`_2NIWf1CY|y<+E@t8XVW?V4qI{?2Ic+ub|%T+d_470D`!kh6THaHZt0!uiMV z<uZRgZz$=t3=(V7^^(jHaC@2*vTd`l)=ciyQ$G{>;w2snyYAfjan1L5Nons7*N>dO zZGZQcUFY)Kx9?ANs#$6-eqC4o-PFzfCQOdpJrDR+ti98JB&xsji>;M@dz{+TueIrs zjVf0ZuAA(BsbJu7W~GePwEnyaoy;2PLEicd4IEkbCQ08_kGuRw@L|N)e!iQx*k?WZ z?6&9f`<(TB2h_^CzTAy_+rYF+G_;f5^2Bld+{Yy!TqZ|m#c5u#QGOKbTk~7mUnWlX z?aHwFnN3lrX766LV$ReP7RTed?jP7Sy=~31cE1lP;=(_g)F<T&RH){fq;)PyI9hXZ zS=Zw;Mc!Mw_XvKPGx@}`ZwZg$wqLWc{Fr`3dv)}GhU8bb<oYEd;$HDO`(EL)2>57h z?aV$~d%gAstvRV~+Ts6%SNHR=eZ1e3e*KHCiIsc)GLLOhYnK>_a7u74KWKXDfZ5YK zr&}#gGi0CMI-mPxoY}Rv`vfxonQq!Y>r&3Wm;02XSKoEauM1M$zN_uo?bCv*jh<+; zStcA_xK{mOe#b8P{wG^M*uL+uv0Qp<P2)Pf^o>`(>~!cczQZx^^>5emgl6%35<d&) zTz>u{s?0i8%2)mHE}MVGZL&hO$<e~@xn`{z7xlk;9zA=7IdVruH`9Ts%uPk*<?(`d zejGpikG=Vj)zWiISDJS^uYLYURm$a_@|J05`1RkMxn;COU?z9lU4?=N0_>79{LM9m zAGsg7-Vw8!^&|V}t+Z(!0Z~iBg&V|q9Io85blJ?48qpqn@NVzbdztlO`($tZ*p)B% z<L}q`?U$nU&!(?<r6z0JyMt>r>&)`7pdC6J*4s>zeRbs*_teEnmk(HdZ`tB&e&{~W z7Y&mgizY7HHT%%5soN&+N(&Iw%gIxmFqPwuX6~!PgJ-Re-EwPuyk6#IJ-@!*n)P~H zRDY{%{4xJ<(Y=_;OS$E<ZU^4a<#3Y-Gi>jfcwIT;`iI(O6Ccg|s^7Cd@nO7FRseJN ze*TEV*(+kL{xht0G=1{4d{OeWIeZq%t;^(P|1%ug_TluadAc7%?@hK_aW-{XRK=%P z>`i6L#VgG+cRVy&Y_z#r@anx6(>=E**L^?qJ*eXP`5l)__p*CkUhv88^0L<+vud_o zyS+qMnqzK9+MT<~_j@!|7-QbIre4^m`(xkxM>>T+!jC=o@0@r4%`A`R5W(Z~m2R%n zmu;GGC$%S8WsYiSvv2=_IL2*u+#j|cn^Ssu%DxXgWtUuYSyYVj`o1!xOzCY<;W4~h zVY>OTyx6U5snq3%wf}}YeN<a&+4ef%vW<8B-?=LtWZJfAiniDol&aLM{+ygGBX#!t z!kD$MCU(r4`n~Ck^nKYMw_?*BD#cH3`OnaDC|Y{8b@l8;VHR`W8vTo!Kef>CXMxDP zt@(#;v8~L1uyX5KE$g|y`6-_iXCM9^^s3Npr}ga<SGsx^G%)mTXDF~r+a((ubY+k1 zBVPLh|D>lM*~RQCAubqk!)*C7Z<RY6vv;p}Izi%NUz`o!stVJYtG3t+)|5;Sm&%*C z?q;-blHQlIVWE38TEx|)i@KtVHfm42%%1Oc^7sa`@9FA~BL6Tar|jeUShse0<lR?x zv8P{7510SY`^tCYe}-}`&%EDHe*R}@jrsh2r^Wh^t2U}@qN8tAm>-^g>Bg<-WiQ|A zm#lv~W62~Z`J&huFKMkkGEd46tdTW7TGjf#Gyb32b+cVnr<^ixUF%8|_^Bm+TD&NC zLR$de8}m46iQ^OXkFIb3C;IX2jgNb#Td}RxIph<OZT{V=<g;OD_eo<3ox__M)(Z7J z*K!tPxs&1L?c%dhAYRzE@sF<V`y-Wpa~J-dck8H-_^yjK&L-L>fysrly&D%f>J=Y5 zcHqGdnUGy>`~U8JJlFe3aQ3w8+a~Bt(p|Q6(bC={)@)Zh*FQ5n;r1uDcFE^E;S+u| z2mUzx@aC*v&)xfvOe+`I<y*{SR;9K<{pA$7D$dz?d^I<|m)y!$di~gRdt>g}5`W1b zi|%P_zi^JZRna6pd#Uw-PuDz`&AIIs@Vvz9jHkW90k-WCnz!8&Z4S+{KF{dA>WA~e zU;i08_BbxdjuS8KNh-O*-ua-(dy#qV%v`zXrpA*+=ef-IEn*&9$9>%1zQ^#xqt8(v zUGGg_l{r0}>DH_2$kY!<&u}a1r1BOTOfI&NS-p(UBe5rB*SbabG%kKQ%Xa->dDyn? z+54qbE=NYcKj3h2)7Cv}chp{L;CZaH>PF_QbDgZqrYAoVy;#a=envjV^~zSZ&ih$M z)qW;SWvRF!A@rZ&-knP8`t-F=&XvzHyVYfqTc;Se{_uM12dA>EX8S76eEV)$b6nrc zvNwWjuY7M5mgMpKu;4@Soa-}w+&^acWAY)-wH5!g*SF7VZx5Ujch)*eNqY07mu$1k zRp(v^*m3L3Z~verpI?2>*c2BL6Y)Aq`$y|KwelTSKFhAGnaI#tkP_BZ^pxT5=M*`+ zoRm)+@4GJek;ZFx`$%9#b<qAvVcVu330(U0&WZ(`x=!Azdu{|6?qHk1S8nE-&10kV zZRdF#m;2E&$D6+17yWVDW!}Bd#}*%}iV1kLrQO$M`+tTok4f4qMeg;s*%*|5x+7Gi zZGL!{*u;n2-Lsc}xbb1lv~54@x7^*gIAiyWH#?g&?tPO?)t$dvK%st3|HR%ETW-Jp zEB5o*WwnobOIMtK5_7wv<fmKG#5a8pZ-q5ED#+BV-&<htwlOBY?aN>8gH^ugmM_Q_ z{E_$S--p|7_q6ZpTsWIE!|Y@9oh`vu(}G@|RXll;CwzHUZ=a<t-{M2puGLw5wAk5v zboo)k8&UpQ%TArsu6+A+#<~|OQ^isRPAu24={V<bXNT$51r>7o{8>dSKg|D@yLId8 zv)^W}ue+ObadOkWkTloN0u2YlL`zxbButFlK8wHmtF7Jd(2t+(yW|5Sl9in%MDM-2 z>CcHvl3Zuyj_Zhug+HEf;{@-8E!O!gH)68II{ry@R0=xn)7UZVrOwj?Ps8p_`_gCd z$+m1#bKtmnE<1K+*NvSI`$b;;Q`@)I?PKYGhAy4li#Kj&ntgOin7}0Hex|D{ylC!) znj6oRyXO10AB^(vj1RbG!<_l>Xvoy1`_p;U1B{y9Svzbryi+tUbzgP!wOzJawa)SL zo`-#uTeMFpyCY0HeUtn4>=QF4tLT1P;IwLrwArcTyxab<LJ1${F8#N2g`|yTa&}I) z#r0JET*k?)sp0cWeC{N;sim-dSXGeesbFMd`RM*z+p5!^n?Jt2`*sV@C0V;$8W)vM zP3X;4VKV*n=|=6hqa6xt>}#goW4`kEWA3`;;w>d-t%6OCMIXH~FLh>|k;k6x&P-39 zKXuz&W5?%cy=v{Th3m3^DgBsz*lOR*N2z^m0_&!xKNXMMIOE8pq*W4$o%grzyJzt+ zo<H*L%UwtRt!8hPK9HX%GdatsV%o!ZI<qv--FT;5F)unj_mt#Bl{+GTew+|lV{$(8 z!@lJyr7LP|S5(}~^;1dPG1)g;Y|FH}Nk3~&$LrkA<35mHZOLZeVaT>2-t)t?>5sVM z1>7G@On(-$?{&AVgWKj+%%5X#t#<m<#$L>+^Ms*~^TCuK`5(29m_IxEwKnhgv0a&M z58pih@ODeD<Xp!<rrR-|wwpQyHf`zn`!AJw;?*DS9v|jz@A!AV@ZsF>LjuQ_#dvMV z3f}r``tQB-_k@`9=W@Gv9LYLSmZvSqtaVx3u<_yDiu0?FF3hyEuNUwx2z&6-$XQrI z<P(?bf~_-UMQU&6rrhqIk-pw;KkvGd_zrU`x9tzpK6LJz{8l||>mK2k>t0B9d&|x} z!lN?b<F-df+x#vc)4q{-^^3jKvbie{ue<SMAIHUel52vvQ$3#eF0%F%O79H|{<Q6B zP}QXDQ(LU%`6{xHnz7wKbWiQW>N}DT1@7Lp{Wj&T)OK^Dt!J)HY?ah(Xr0lxwV&0x z&nVVQPU^?jhn_W=sSk3sk6)}<XOWUR-KFos&3n676h+-|EX;qNt3CH@!u{RBZRbtT z-ufYR-uvUzX`AMABz@TPU8*7d%A2i$wwq^)?yp^WW6!kr8U;7c-*|G%&sq4y{?w0I zzmMG0x@_{+_>p`2pUB)~>pdS|hUrb8Horz=>%=Gzml?NZ8n1f(oH2>RYxB|?n-BL| zA7#f2n>W@(KRoOCesS3Ty;qj)zVuG^{@SZO!8S^2yq`Bm9}`KKCb8^(iFmZqw&@=y z9}KARYCjY{UvSIKcWV11;+^+guIXgtF<aVtem2WmwKutmET@jk2%nAlsNY=Un7`^w z@B!hBk8$xXkAt^eef&EuDCXzo+ukNZ9J8045{o^3ASjDp;K%YuBLDRNGqmJ~{+Ru6 zZoE_96KA_--dV2I8I27>$Ccxb3TCJTto+x%^F|XVck`Jan-BhqUEeK#G*0M8@uQA+ zkB;;|;+9Q)5Xm*c{7yvFo!gzi{$ATQyUcFN;)L4%(2wfJrES>*uiBVCs+Wq+5Kaw# z^PeFp*4(Rz@4~*?2Yu@I|9Hyuel9uq^74=EuD?T{ep{LT;9%B!4&$uyU(3IxzH>^E zIJ((crl(3HvpjiK-@o9G&c}b9o!+T@@vDC4KmJRJ9t%n@<mc4fj#P;eJu)%omY7@N z?umNWUKz*A?S6P-Ph`<NoeOr-@f8c7cLqI<y!2J$&63YfZ>_oR+!X8OV@dIPf1dle z=^5`X_l4R2^see0x^<&sx6dWrv@IQ;%cC+jXPHUd{?DNMwBxAKj{gkP8kgpj1s_~J zPxZsr^SyaFU-ue2eN^xKb6ex$*IwnYe`lxJE}kg5=hAJJjZEBX-zQr>SCM-9e(T<9 zpNn5Cb8Jfa55M($#S*e{Pm}cQ(+y^eE6@0d>sx(%Hg#tiyF$<8*-~eZO;vBrN&c8N zedV8kt5f!vANSW6*!En_yV`xGK8v40q0FUy)q>5gTXw98xn2`qzpSF%r|CaK<i$Oz zqF;EWUDrgcTUuUl<M^*g-c6Dff1khi+G(%xLR;PWqt8Cgjh9Ph_0Gq9oO=J}wR^!2 zPe$E4CMf@FOZzkCMER0joyAX;CC=)z{AdooSi|wDLOFE9rCZV4+K$x=-}1V2=+x7B zmonA~>Zz2R2&vbN(U8=$wAZaa=vHT2<M%`TH&ey?W4Fu}vvoguk=`b&R?8OFC;Gdj zQ})<`rOMlVUrT#-EN$GZA*qsEwX2}0EV}p9@!Pldws+R}E{nM7%HH-s#bdL2_r$#X z@9ox$r`^z+G1u^_LZSj=<JZO65BG-MJ}4D)>)6)H<<U1!UAuNoPGn+>(+#0=9rM8D zC;Mlg{%vf<qcw>y`^T~$=D%a_x<AaWReJO;;@+)5wPh-0cWuuc>_}D<eIgOl6uI5Z zKOp<d@(26>h&B8FP|Z|t&6mq{I}{muQ)!0o6(5F}TjzDkxh!PdP9&@UUas<M>n5*> z{?m&Ow$=OJDms~Y=il7YT)qDcN9T!8_PeU9{P9TPshGHmX%}<9xt!jo(f&@kH`1D4 z|Jf_A@6U45x(~$hOuMP#&lGX%E|c#{f8ClhmMOoreI_}b@i=XgYS=%u>W};f^M72X zzqRTvihbWUPw^w)=Bl$9la42^&+Jc@5_&SRyqf#ojcpH`Bv~vNCh=ALn*Kok==p~I zV(C|x{m@;N8E`a-cgp4Z>|Sr*w$fWaoK;VAEa5m6ETFaHgsk@QIa<!1%C~wWywfr( znh(!s*=O+L^4Z7Sv;8}`S?=ean_l?MS?CzI$z{o>6&D{{p5C%ti(grV|7rg}KA(^4 zW`Br2@SlP2KST0-hL~)#U4DBj%O7X|wGQ7=J#&HBs%c^Z&c?oaFSzgc76};krnbhq zy>oxH{*OrgKd#J2{x{Sg+4X<8{g|(rzr%+0BeVaNl9_+}mqh2x<>+$d+V<+fo^7fV zpKqP082PZ!boTC_6PABe{m;Pa_IGE={M+r{TDJYz{%|kb=fh!P`(!VEG1<I#zg5f4 z%Zq26x|im)=(OpPo{8E!Tta_tI@9@8Mt^F^>Nr!~ck{w>`=2a%bZ;;J`M)9ED?F6> zcWXGF3lW~=?^E@cbG_b7|5?Z9Jb5hpq44~*T}!XpoIN;&NAFJa1io7PrA41C^c&~x zJGMX7>(uchfm7DK(_vsuo-@xb?&`PlH_^Y9Ycl_Cu(Pd*evp62nv-w&BkLatk@M6I zZb#1)h`HyxrD@x?i`!=#KMj9(Ou|!%`Qy=9lJAvWnBOxM8SOZ6F667+qWu?^|Kol6 zcjlWq;ksj*ztexnAGx;6ysu9CY;F3t-e52Bs@iQ67sua;c1_wWcEl}n;yXRNgo8a9 z2RItmvv(Nxuez9<_szCuJ=dzM*BAb_{>@x>B%WvggSqoLb?ejTx6Z#|ryU)sDyR5S zb;+iiufwO8>!?htUXdJ`^!L^(6@#BMyHs3b7`uL@J$vuH?W)Sgy}LiEew�_IY%+ z*vZnY6Yd{k4l|YnAGBVgEMp+~SpAsQ^CPnUKE6r!AAWDMN#1qOUhBQz4&LITH!~+3 zxO7`3`PtpAE~g5tx|XJX+*dF9^4rFWw&xKa=AKEbj(n@9;1c1Za!krKbe;f*q`OhW zVaeC=J=LCGenEGBhq8-IGJE(V@jnAc*`9sMm;NX&cqtxWbXw+?@1dxe9TTP|>TcN` z<RsF+=g7xT#a)XZMZVeMTbpY-Un=|hT9sqZPwd(tZWdu9D09(mncAn5$DSqajpVc3 zy6{Jky->!t>l0qy%I|xZpug)`N<@UlfgbhA&owlx+NT-#EB8&;>F=@8Uot!MYvv!7 zStV-%a{InT_RN(H6WdYlI7duqv7TKLE1%BZjxX<7GPZ3`j{4BwG>O|Gd1u>ezy026 zJGnn6RisqtrUzBAsR&+SvPkdQ6Yz^~Ip4-L6}zH6B4#FT-*fp=wspYc89f(Gyd?wY zK0cq^c)hPUFZIHo%v>dpoISN`jyI;t&T03Xa(v<rF{9X6ms5YEix!@@_E&eiSZ8>{ zRd4bV)%y*mLYMBSK3i;3b)+(s;h1Wr-qNWNMJs=AV-VU~=y~~Ki?8&FE%${CKbkk~ zvC-f1`u>bpvr6wsRti6@pH`{7wS-;KW9E#K<D$F8yS`i&nrXlFK@wYXVTL6Ccfae2 z6E8fRQ6+qBUy-*w*N>m;O6GUYQ`_{TdFtofH6<%%drW`pFj;>t>yb|z?(bwe&9%5q zWy5hl%RP#Z=N^A^pYcyb^7&Kl-TH>xx7lAlo}c(-DR=GaKfR&9Hvhl;{6E8kxBAWh zq(6wRKcwHaPk8&5t&{#UMC@#P5#^;g$u;m>^K+*qKW8rwa5*j=*~Aw;|LOg2^DdgK z4S#U=+|EqlE!Vae#4s!|au@!yq{;aB8O!tQMgPXuAIwSzU1?SQKyT*9q~C`xznI52 zRj;I<Cnm4!RoRX$#VXg0->B#m8S&08{KQnw;9IYDUu;iu`osA*pO(Z68TqbyWx#9q z=$`T^pRTeK_d3kp#l6|__Grb-P{~y$ySDE99y#UKl=nCO&8mOUYX2d4enb4m_CLbM z^qDi`I6kuNev})1<ks4Ai$2Cj-@dUskLhmvT<cxA+XavPi(!}+RF{16FXPAlKjOC^ z$9(YSZ`ddGqu4#cSoZ9<#nmge)XiQPksEma?-u!of9BR7l-MU#lm2&|>3o5@Q}JvH zm)F}kiWpUN`!$E|GZTBuqGqvv`dc}lA1U{RS8<$sd!~Y6;$O*(`VX%Cx2jH6Tl06% z7qFA7(93>s&uOmL^WaHNGwvz(=Dszba^mjRV@6hKdn*$Q3d>i0{rZ<*s^`@e@2PUB zkNbaUzyBk`eB9jW)$?QD?#XjREdM6go0=D1?x3=x>s<^_;pgY~_Q`x~KPum`U+~%N zppWajww@P=^H!YLx4gEzY}FZWv4~|;r`qKetXeF?z*@KKRs08!_pSHY{uD3&QT}b_ zkH$x{ea*66cKv5)neDalVo5x&x6ab(Z`RhXj=k$KnPK;aP;(|GW3!ODwm(e&8JdFr zGaNMg`d8}ok^c<r>)+U^pRTgGzU!mNrB}a7uD#+5ldk4`t2_0eve48bcZq`%=OX9v z%|Ec8d2Q;~ThAt6_-CJ=_r=#bs^8mtNq5K<$ungWW&DdynOl0No|z<IX&o}bcJ*Wa z+ugqVF0c8ctG6<JMdtLIyEMfXCl@EHZ2K&7X2o{HV`n8Z{zZz2B=KFdx&Eu*kJS&= z58V&b=GQ)mZ@bU+wuU)d*#1`OdH#dROP^VM_|K5h7ah5Dw`-34)PF^cd<K>O8LZd; zu*{FydUgMUrN5pnUr@26Vzsjsdwbh#``f;EHb&3T<DaZ8z-4tRrC6G$b)uhL*7qI$ zw!J=CURIIw>;+P%9rjeK<E!}k(6_)*?owiJ=#InblGeMLDqmTA5k0E3@wA-v)!RFJ zK6iebvq8Rop2bVAb*l}NEMy-4shj%iul43fFXIFP?QZ^OXsWBxyI7}Pck@1{oz#zZ zpB>jq?#3V86`WOOcI{KF&9;C$x<`*BNo-V})}$Fa)vs)lyVCwE@dxC&>(kG3W*TMA zXDqoL&rp$d#9-TpH&L>4GEL6K&Po>9HtF8`$rckkZ7n3v)pzXwVY>WV?g##3_P00v zXL!`!SL4bzxAK8MzyHe2veX6U=Hc7>azY<=l}s?$+J4T+Aoi4cPZOi%zfXTWAKuli z(avA`C;da;T>bX9>ln8;yKUcjW#;pr)3n>WtSx34_r=BU+NmIy{b8Q{nN*va1@k6e z_-oy2&}9){UG}a*_2iyi9~Q?~JU?`6S?AK1uIp4MAD(pQcBHFGblGNC>sx-|^Cldg zJZBqgRzyw2kM#>8PCt5KVtrophlhB0vril6)9qT#nMSeR-)3Hz5EZYgryBE+xj_5& zm$TYOt@x%EKhkf%HDyAC%OP)lzSt#Z0&Jn7hMapEOSw+f6@Aj)=3m&8_+xwEhq$GW zrG3L6m$jPBf5e>K&9V00uTREOI~8N!9=iSExsv&vw^w@i*4t0L`PFc#bkuR)hx0q+ zIrb?Z7e8{=b*rr0vv(?6%x>{*Uv*Z>TWI>HcO^fPw|j>%o|MmQvXpNq?z0uk=lL;9 zSLyuGIMptBd7Vl1i!!Hw+ZL5`@!0XF6K_?X+U#c7AS(GoMflqE&Of}5D^)Ii?H9=V z_-vK4D`#It3HNFi!?~MOwq2_1JN)jaw~|)Rq$NG!@(+834~y;7+;zc5b**&1jOl6a znd#eRy?Vvn;B5HYW!<#Tc@n(F$1gnb@HiV(7Uq^WDQa0sK>eZhmuy0d(=&@q^rh}v zo%$7j>z#h`)=H+IK04Q)zu9lV@U}y%Z*Os2=h~wmnLQ?c(HG1#uGp6AC+?}g<=NKD zmo9o}oZ#H`+iN%TL?s!035BcKy}`$~eY*R{`eWGS6|X18MNivxRc*(%O)inlIuo^) zo+wyQq|$p@<^!Adv=6T5TeePZ_y0SiCVBZ9&iUK_F4CSGdTPO;71N@(RG67ny}LVc z;?a<x4Oe$fsIlGl;qSw(TmR0s30&@XRQ|WaE92N~p*KB@9qV`x-h8^P{9Ty-aiw(? zZMs^vX1>NpX6628Xj-eI$GGPs>z-*=p<ABFHU;ar`Cd2^!P4cpTP5#s*zvAXTfO%_ zJ2(B9o4MjemEKgX^Tm%uuOw~URw(~xyMA`X<~2FdOq${H_t@9QUtDyxG+TPwkLooq zrOvl1wtC%O<6m8={8(?<tLSEyvzqc6r2%tN9?zPd@O=0FuixjCNTn@anX#+4xBZ)a zkBwlu`i$J(#aUG?Pc+JVelECuy5P8)?QW-(#OnE<ZT>SfHUClD@<Z`=@}J-z@@BJ( zm%Q{{cPBpc+VlxOgB`Q$>aMfD`(V~_&r>;o;b#Ef)qm5z&r|-9S^X$m^y8gd*AL&G z`F6(b%yMzFZvl6X^_k~xZ#gY8Ni)ZI<(-OGhVjSJ|H!=jz<ul<$KRDTvLAmRNjenm zFPov8Eb=QQ_^?2(np=g-X=St2>gqOimJ~NnS;O!5<dWyw)NkH5$^XNZpK@jko;OXI zbj@o1>Gw@_vi2SS6kq=1+`rpfV*R_t8z;STyDc<xc9yjP%bPn67Jq&{{=)rj(SL@f zv_Iv4dri&?KQ?cBr}(kGH8kka<B&_qiGSys<nCOwr~AwfLp96D?^|5b%cuW|pEK+1 zk?ny$dCFQ?geMh${U$%P_WOtUZ~qzoF8j}rZp)-$CzmyC<IDcelnuMKZ!<e{Aa}yC zi7it$H-0u*^Yh(u)4$xUM-JaoH@m*PZhCC^*{b>7tFC4RZ_)XEfBpI3?~DI&W`5M- zjsI4Db&s>o#9q(ku^y-M4y<E-=upa#%Js?JdN<d<H8rN|DxN<IZ(m!(z3kS@IO7lR zmM^<~=N0d&lizMPtL%R*6dm#ANSsfK+MNy7oi<<BKj!|&`TjoxtK!vt)<2qqKhz)7 zl|Fn+#4%~|?_mG!(H2iKRZ>1Zbt)4($8qrBNej^{b=UthY|($qy5^7bbvv1gS-+3m zlmGB;enHc{Q-=ekY8M@p>eoxlj!e!B3jEw~`?!S`$K$gf)AbhioHqEp+`h^v>)VTK z`)1wvy2pBbFn9l2ufk1Pzwd8ddw=EM`qy?kAJlpmoP1=wGX9Uuhw1GKlXAVj{kz92 z>>99cMatZFZ_Tze^lqFo)oA(0^|Nk&yZg7ZPUq$He@Z_leq?^QzGsj9hd<uhzKgRa zW=EaqJsB}eJ8YYf&gWH+{8i__+rYXp{%GC8_1>#)pI;jBT0O9pYlrvg?$y^ni!U~x zsjO`9Jh>ozqs;Z`6>Sws+oSu19Zjd0J+7Ek`DjZB^Q7BTI~n*qWghRXx2s>h;dhXI z(zK#q%D=5X{Ac(h`urc~<J3pBVZ8j0*!E^-=k%M+UsloYuy@17ClyUvQAf*kdY;+* zIXyM^uysUZ<I}43f5i5G6aR2!*ZTf7d(79z{pfp~eb~HJ_en|S#WK!~E4<V5_Zpa0 zPI#-r`(yn9elAe!<3GcLMf)^A9Gn06wts6>Po3oc&OBZHJgGy4HY$&+*5CFy!SU4R zqT+G89e>$BeE%aD{&4EC#S8CLY=87bO7z(pxks-ZuI1_6dgmg|{!aD6Q;$o63Kg>y z6?Z(bI@elI@zEki)_%)vtIX?bRo`pJe7i4PfAH8o-HU%Lb(bI7&v-X$SGU>C)Q@lf zuA8+;cggN0R@yO5XXknENht1-`eF8;;UD+?-)`q0OkVg$>cSqw51(GSf4UxbA@BXy zN2hj9T(CVh<a8!y?tU|tvs(nWl*(_9Q~%G<RQ{jgpvnH!{oFSzx*u<E+GD)-XQ8Ct z*3@fklX*LOotI1xd^Kz5&RK5kh8v7bs>=&J&d>T&{hy)feEmVof5LyvXCJ8N{F7b( z$a}5VCGW}y{Vsd2oBVh<&Aj6%??<x<+C|)+!lxTJ6rSz0T>0K>c9~VU-t_wGkAKQP zKlyR~qw?N=CV!l+|I?`PxU%%>ALq6A@4O1%ex0@Eb@%F-+$Xi)ga$-B=2{raz|plr z)cxguhBpfzS?hOH>2*Gk%@6q~vaL+&NYJf{-~)Qwtgh{v)zhtV`OZC0wX2OO6Bnj4 zim3+0Hh%i}Jbp|1o79CByN>C1-rux!%Js6#2fuai6}uK(b&@0g$FIvVsq1nr7#BNT za-U$Pe`h`G-|pqtp8q(S_~DhuyLUnUTO3Q5N5&mq9((_$K<ci`N;_uCI2IcANNifE z_cSHEWwKITBaf@rj*^$VqZfV@&Ga&zJ@N0tAI9Ho{w}K%`El&`w^cv#m*1>#_TJI? z<jVU$*^lq)ep$=z&bYY$e4EC)$C+U&7S36#cWl&)*&Y67{+r@OCqJ71<2;-B=)5G$ zN4MoGvy^^h*{M#^dZoR{q->k{#a)IIb<Z8SZL~PGC^R%yq|UbPkiA@;^bhrKW&3{Q zf3SX#e|Ud)oXv%=x1}p=)F1llschIh=>f;XX`h33^!<AEIiOX{GtYl|uI$dc+$ThR z&i`)xaQR#2e}<+7f5Lb6KVm=nUaZ3U;TLmmZTl7-lk8f*W2qCGgahtQPv<_&vZv(k zi8zM!@<w|jOhu|cte0@~+_L7^&ysEHFTSaay?>~BKkJRt9~l?U_Pe%z>AmUOKAQI= zHy)BX<??OY^@)cX7$v(3w{Clo%M$vYv&P}a)rA#x_q{)aEwafhS*D%&E`LdB#GM71 ztk>r1m~D1R4>H?yzTotPNDs^PX&>1SM%r=KIBor~Zs()Vyw4U2?zz0>b;nz=YmYoG zR8G9*_3f>Z!}@8Hl-_G;N_)m|Jz4x=(t%Gk(La_y(3N^0Y^|7mpU+WmcU8<BNoL!g zppFD}dyU+NlDF}5uLSkXN!?{PZO&thm9BS<#Six`%{W%yb}PMA{eygGYQ@cWdz8~f zcTGv&eL8GM<HW_m|90}^82_AiEPJj0aUuT?o9@Sd_|I^pmg{NgJEd#-0(aRvPZoTL zy5%XXk{UW;zV6hv0uIpw>P>G|KWx6~|7hpey<QKavUSyuhkd&yxW&iG=FH0FDsL7> zv?R1Y=bm6SOX@$vq4R=2;tx%`Wn%E^TJY<h^8z341ZUl<@oM#mRGoB>dxcN$XZ<N3 z*Ig(+W-R9HySCr+V#!<e!%<)UGkj>jThaXRTYu6f?t{85%05S2o;`mX-l=xsb%TW0 zDq%@i(@WmV?^N7Aa;akRkz01H>oR9~{q(M1l4YJ>_wBj9NZLJ)huvo;{!}=1dh&!D zFQ3YZU#*E;mihSM_x3;W3mnT?{<*E>Tktu{+{o{gl!e^2XHR`sFMBiN&(Dx2>1?~s zdWUY__fc-{hfm)fuB=hrxI@T!b>{aC83uPxoeImp!@c5O#>7oFn>J}O7%?BzI$X5v zx#N-_AGcKR{CfMnXx6QiB9GI_OMgteb?w-hJ4XNB-SE1=-R{DD<-{8i88Hh{z4qnD zS%hl5KC-tguv)h0XzTZub$X^|za6DhcHYzpP`ug0#_?nuV~~;Nuk>D%`yF-4{fGWD zaQ%s1aQ~%%+lRU8!5gbrpEnaPHt8++&fR+?fxUBMPn+e@61QvD13vN|@32XJ__zMh zh0G5ppWlnf7C5@>?=+q5v#wp+o^!_I<mu?eJ#TFoox+myotfP}cE7Z8iDFy%=;YU* zrqXUDTR$3X+>n{uf8wTxQj=>^U0AXt^MvquI(iNF`L<ZtSU)%`9QI+!_m7=V_J64H zUJ<P#XppkKxR#}(@c{1@CnLj+M`JJ6lrR19JZ{I;;~jsrAI(*|*>Y`KeFAsIgtv@} z=F`Rfg)NWY7d$@kWZ=nl&WHXph}p0&du27f^XqJWk&NpFY`bP%@_v#3pmM7FY0<57 zt_x0O;Bn{VD*UwWQSnx*+%JZ!Lv^FA_Dj8rYVX++9naEf5-)eln15ST_H^&umE0Fj zTwHbAF?VxKR&n!FqwPM;v!-cl*QR;PGo4=WD#~{5x}aF)fQw6aU3xlWg53qZCO?4{ z5<D_IrEy=M+w=dkt&l(VYtN+38M}^myw$yMkHe(=vZ=(ZghQ5d^`xR(+z#G4u58PB zOlx_YP3XtuL$@YpUfXWYzeL_p?3HhnZ(w48<>!U_BGP*1btPqfuUcWcrl4r@w&S)w zC1NXH=h^X9q(6%9)b($DcIiLErbkNIl_k1G4sSa4?^Qb!<;`?*p1He9^)cphQMdbX zKl*bLFDrlKeKt8arAeaXZLnvy`W$UT!8My}7e?MlW|dhU<izJbKXdXQs~<Zby$nA% zPwR5d*6sbpFE-tdI<B=!#_LjqH}Bp%)g6|Jnn6XCY+Gx>ANnf&XNYR{_~_r1Tl&`M zR!ZBwSGTgOPbNhc_)I#ee^Ygf;dAS^HfI<o_k=qgTr%}c>ddpYg17G1IDV*G{g^vn z^vCzZ<z>519TwcM_e$yxgC4<Wk&*R_Crh$eznj2!?!cpU8TOL-dotJfKRVAIv%TX% z<PwjBeV26?bXhV!)67fCOzA%LFv5t_xM#iTlic+`;@-#gAB^YwlPlM`>Lus5z@;-T zJ<BvR=T|zHw5O<o_3@l0OP0yAc0NAO8yA0KL&f%k-~Z`EaO}=pG*KvI&is3xqDwyA zzQbg}_0eBtw)=|bRTWm*!Sj|`6<v65;xAJ%-)Yws(_)DWcW1sUTl)9fZobsJdlxvR zmXsv<o!`8uRXO1nZ}F|P{pF8ieX^p|*6VGX_F>1)J`LU6<y{X%GraxtHttb)&?XdZ zJn_`;$I)g}7oFJ0@!>y1m&tzy{y1mt)3VDJ$p>9Y(_>Z;yyKyIYkrByl-#Gq6I{!t zZ!@2#c=5!?X;Uj7S?Z~9R&3+@T`2kYHlxXD?I$vC!_xh_s;^z_>N|DZW|dd;9Ja|1 zYxV9QyY%YT_qMfv3@iD5?|eV)?egur9CoXOXQ+fuoKf>u<l4f1m2{cRAJXxAuf5OB z*~9+$;UimC?xkmY%r@v;e9N9w_){Xte5$mb?j~`|q~l6|r?-81&zGUC)>yv$MS94L z*%mcEajzapT-JCo?Yl4UrDgw$ybaW!sz_bkyYZvx)uq>VugP@!9eih7P)tR{rWpT} zf@7YNdsa_nc%GB_Oy)^b*6dfVH>a+uF!tN<qh)&3{<czo{#VBHjd(Nj^_0A)xqg;R z&#rXQ>JwSn_l(b-<H*|;Z}vDo@)z{B{BXU)#`ck{R%XrWxmwm~6BoAZfA26$^16z? z$FuflD!i{akL_>WBe~FV>HYf^!QodFJs<s+F`K8iW0#?0S^Jrv%Dc?A`<>yqFIXN^ zdne`Evf2E-xm&x><{$r%F+JQYY^{oT6bsk)&1?496uR34oN7t8_&mSd^_*tW%aWin z3x45<wf`A9Mc4f?e&nkXdscMoysep~Dgj=Vf|V<|w*)Tg-~FxQrd#2zUDmy6g1S%J z+e+{Ap8aOA?d;OqD|gK9pZfjO?55|Fyw{zXyYr>{;pHFh9`Dl2t+8EI(fe#`WAC}i zYmb_F?X(N&(OdjGe40$UpwC6a6AVeqKe8=f;q)QvKZC#@`-QLKZ-%qII``f`Y}O~v z<R|7go^FrsI4`etywGU-g4e-Z<xW%HWXGK``7!UY&xVg?8?%{a{JXgP_%ny4QytVe zrrr#d+&DQebmQCuVNZ6Ye@j~|-dYnW-o9qpq??fou1aa|-g%*CrPz^O$M>XYR&=m0 zTrcure}|3b$NAB-@;QH8j@z?uQ=#s;DQ6~a@l@x1cKeRf`MiZ~7eB9vV_@m4)r+<J z^y=Py_m8H_+Do~ax9X`|&D`{<*&<o=OrS{(!-Au`Cs{n071Um0`Ydo)_rY2IZMka% zUI)CKRpYv3%LTj3dDCW}7L)VcF-cRjA}^uhp!$N9U!r#`-PG>>Vd>JPe{PGp=L={| zKksIJ`HXi8H|Na@(oXzAY}xIX|0(?lKN6?Y?)ss=Z|m+_r^u#lt)g25I-Rz?^j#zT z)BG@(M1J@bJ;&QUU7H`zZ<CsOyo>jbJhzEkSGvc-Ys>b8Udx@bY5knvx2{zjYLY!8 z>{IbjS~@$_b?XW*U+Z~&CA)=_`C3K$7N^Rb%UkNt5gk)IiF3PQzTun4{$HDUer`)V zabn%H-|ipfT2r%EWZs(FI{jPQ_xK+kx>IdlMCUPh>}d-!a7^1)d)#`8V4Uw`{@(4o z^t;@fq8~*{JyMofqnq=%?dIL!cgH^O-F>dUV}^X;3*!T_`bRkP|M)HuUh%{2dEkba zDU+io%<h>QHpP+m-USY3?M)6hpRg%h4tdiVSlea3sUjmYC?f0Py?dUug_`rOAJST> z_Tyk&)Wuvq*~r2z+)1{@*XA!dT)nu$=ykvc*;n3$HfwUDkF4EgxP>)4T_M_M)8gmP zDxPS#@xAFOGXJ%`ZSjUJm**dw|DoL^Ah%D~>YnxFHt9fBU8(7o=e3L0zrGOsWq0)6 z;KQ3=Y`^7GFX-4`eZ1<Kb-uZTururZncQvhJ7uPKy>c^uYZ);`@13b~^*_PgciDaS zU;k6M#5Zw8e9RVO_Xi6L<i3db_^54<wzN64U-Pc8=N9H2O{~ckT!+JUUfz0oef#!u zsm+oLy`%FbZ=aNYDfC9gU3*5(^9f!C_4Uu}+<A(--fqzicK<NFQTg)M%7s62Wxj9L zJ1HvmNOF;K6-S!6fsUWyR@Y+}3^z^@jGooI^mykV``V=yo3!;ircJh}u2z`m6ze7; zB6QefdcaAg9XYx4Ol$;1J_nz>Fl%4WhqL;J<{9=!e$?CfQQrA-39svxCr!ET2ZL0f z{{6daqozR0_6>X7eBK58OAI=myggX_Q1x2A&&R~Y{xM(sTALJ|t*mpazH8xcoozXr zM7>XjMOSNIXPC4!%5!RCj0Yd%mwxt_bz(nCAI2t!ZrZZ<M|QeE*S(6Z)^iv8PnU4p z^xOHq1IwJ%9np!WnjD$MzSx%jab6JTyS`%D`D4Fgk8X@MX}fY*d7oQQ_C(VwLhcGb zBi00dvJ9N3X|9x;-1}jA%Rb$>AHS}Le-xeG{3ZKj(k{ofFWfZOi>gQ(*w4&o`Mo^! zq;|op9>(Nj+5P!!8Ftbi?@e43ku5d*)%8h!NtbIpHvf!TDLDN$>z%^W)>A@Nx5avK z72WnwsoLIXC;g-PaJXmjLw?574|i{G%MjA$?nu3SGO1YmmTRGjzS6|0Y8NGBm=Buj zPFr58^R4GUgFwEiHAfo9kIPg1CC&#aXDo2yKNb4+%EWn|kG4ed?k%zT_uKKu&dhZY z_p)x8w{7X>Q2)GO=LWM&@i)xMY8Na%Y<u`^Snj=;hqG0310#OjeScV=_tojOS+}Nl z<*sKvWiqR8;XZH9gOjH+9{uGsiBF_*g59;BWfKZt&ayxBp1Gntbo)pC!|xg6lHR?s ziQ46>6SiIWo&CqJvOTA{JNbFG2P&D_CGlx*y;f8H_-Ed_l34k`4{x@ec%<E{c45j6 zHx{N%wp+?IyqKbs7a1Jq;Wrg3y34wC<DrUnuaEs5>(*`gYj^pO_^!eoy!q*?j(q#R zvGvw%u}Goc)y<z5etP`I&FUKe(c1Edb&ZcscfaqDy0?4r{qxe@y<ukabfrSLKW&`! zN_w}(nS?(NFVq~Ed@TF)KgAlsAI#~6D=W^)vLE?nw&uyHeYzjk-`ca2BX(cP+qBC+ zyXLS(uV|7<sIS`lK4|mbmCvr!Z`tx*rXua$p^89VlkC&>n>rs>{1Wea`;5u?Gt<XJ z&);i%Lb9$Nj5JO@QYZ7{@WZv?zVSR2#*QD^+RL-LYx#1IZSh{l?Qngq?vz)rn>QZa zAv4Lab)Em?^v-<@73PQS<gV;f$eyS1AzF21-^Kc3+qKg!F|@s7@t!MZ+x$d&+q#P# zCz+Ke{pd_y_)6@SRgM1#^N!M9-$b{0-(7ahJT}|-af!gb**4+lB~+$PvbY;rS;GEQ z*1hE`zj#JGuSupI&yPNR{+DM}rrj&=Tsw1}-W3mTouy~@e*0?KKjmIU(sD`V?y5Um zuJ+t`{PBA4KjF+-{~6j$-t+(Q-&&~}y>k8Xwo|7nl9E=d7#hV!tdwDMDBSCL;t5|| zy=dk>`5%gZw>~=gRliv(t#w6=gU;fnbEVsTZ%;ikk^8p(rZW*IrJFx}DHJnX@BZjC zuioRsN|ztA&0Uox)l<G?>++Voyrj?jd-IfLbZ1`J^yj=x=6+l5=cc!63_s3M_qx6% zp0(GD^UadTg_DnUE8ofd=(R9VQvczmX%RD4o9n8yJo(vDv*=bvcy0LCzm;<34?Xql z^lFrMUfrWzy{x9V=~q!s^1Y3bTX+`MU#i)uw|375=fq~GbxZVaeDM4r-*ca<#J_9) zX7Ro{p;!NyuhmK3subIPtFL=ycXl^-+qTK4|1)&v9-VvkkD$QLd@apI|HLL4c&^`2 za#rl^R)67_^#Y0)P43!9wW{p6YNPR<_1lsUe-`-47~VQ7(y`=c{=PUPktf$>KTJL* z$Fb>SQpP;#=|{znJ(5h={^5J~hv=%*c^ONmai}M(oN#l;EZaE~C(hbiqCb08`0Ky* zhvlEo{y6#J{%$+Yir+{6GjP@fozZ{eQ<-Y*`gE7!q)RUgZyw0I5y`Uh1j~HGAGPa_ znBJDuKW$Tas&9et4H^D_Tk9kKGkge+|DpD7|D(rZv)A0Z^|DTLOH-}$;ae@K`_9{L z7T$F((ymfU)LJO<^g_Wq8kP$G8I<o?|H%I+{!qU&`r-Sdwqm)=5!-sqZ{{(*D>)#S zBczz|ynSM4Qd(TuBpFfp^l51yj|A`8GClZVan7WYWzS`kzS$l5G5L3N#cIC~YzsfM zKe&B3IhBj!)}Qy`JEneqwxokCN$|s(JJTg^gg;IEpntT#D^Ba<-OIP`>wK@1{haJw zviInn&&PQ(R<mep<SXf(h|uxs+Ii~1lQ}!{-fda!zH39zX(hK<Wp?QkF|9A}e4JnP zt2^q$^}{UJE+100@mIYQ5albjcKN~Fm4|}fUE*#oS8a-3d;MmTvFHS6%gISX5*xW{ zR~0tJoQ?VU!)wv>U2keme{_G$`n`Xjd`#wl2H8K(kM@>_UrK2CQJGiTJ^QWQp<+#Q zZJVgpBj>kyuuqq|-D=&a<DtOc{Z;-;?{)*tTQ7HfRgf!e{<40@*SB2n5ByV_?6JGc zI(v8Oq||xG@{PDx<gdLc^p3NzbM3o?iSsPkjQCwkQ{$z79DEq<`oXXFqqwhk#JoqI zTjqL1y2@^GdUiF)BgNqOrzMkbZ~MvBAUU~!%k%u&sgE9duFB4=V|SkF`6qhuGpA?f zPl~V4Yu|4wZ9eCK+w$v|`#&sCf2yEaSJnSKU{A-5@H-q5=eIwMch$OP(q;N)%gy}v zikmy8WVd--`6Z@MB60rt+4>dje+0A-+u8hZ{LjEL{e!~ClH-TguD$bWo@!h5j6<7W zR^9!wInrZ^&LWpt44ZnFa^*8_$o>)jpP@<j-{G+O?c3jOepuhOtM%%P3tPhNR6eqZ zPdurx`{I`B*=~C_wW%ndnf5U~!r)wo(j>REpHBOKmHqHOVpTVHJ;#^5(nq6GJC81% zyKK2|+zq|A-4dRO;SrMrw<!HxqQKDhfXUwMvCYwtNekuLFFx5(HhH#rVmxofdcPf) z#eV!a<{jN=+x2p@ZMU-Mts8|pZRW4aH3QsZq%Ll1eq`FZWuM%|{|wvy*j;Wm34Z-z z)|#-1huEHYPpd4~{`%?e_a{&JSy(QtvkA|96fF9?B0FN&7NZ08o1dGRUvyTpdHVN~ z-@-PdfOE_r=SX!uyYBU2+PY7f1r_`KyKa?K+`D>iIkQ5-(V7X@gWUFrs<z}9l})_1 zPwM%FPwSR*FN$$|wDY}5Z1_<-xsS0syW+R}XGorz^WNnm<0kX%l~2MYc+7>Tsy8@V zT>J2Bdi}yv)2r%w*S@@$7~%Bl-1lu+9ET=-JmsbJO_^)w&wqhod+Jxe{55Z3^7`z{ zKb#)1m+aio9M*EMQd&8`&vg!Wcf*Ttt$RMz(LM8)AK0h&?}|LDjm+Y(`Jo?KqIxg= z{GPoui>caWLZXNLEvCZlJIuayaJ;e(+j6-|X{yK3tXj=v{XX5V{~6wR&lh^J{W}*A zyI;v~>os|d+VT?u<k;#yYZp$ww*_>0qU%++nGbr|o|$Qj&otfo`Dkv#!x_@9X<Wuf zn#(-SX@6vX9REk`{-JxKAMVa?t&y)>b|yzTx^mXP>u*1c>-cfp=5lX5FR-ck07F9f z<L}4qf9NhhHeV$AZ?|)2uI`%)D!RN!u3dXAc%I4d$udj%DmyDa?d|;2uB~`4nmn)K zRCZZ?lAXnmh2=|L8NRYp`RLcZD7x*w=-#KRytt44XRtZ7|5j)tGta9v)@gf!9)DZ^ zcTQfO-1CrY2X{{F_6f4yyD!l)cmEzg<2f~}zsPF;`MXd5Kf^)iI^93cVH>X3q*oTL zb2KXx{JG}lV}2E`-Hr?iyZh$))~wV&_FiDgn(p+~6F4P}80rP`8rfgRb}LSgl-YkP zFk1QlmEV*9afyE1XWx^2*q&{l<c-*h?1TUKyCO<9O`LH#Y}W0+G7>Et|GhHlw~Mej z!Fi5B^3UNPPyaKpwESJSKW~4F9P7vFtu`8JTR-?*|8BVUP;};|S7O)C>7{gW%KZDg z=f$IvOwSmmu2*Xu|4sPMkj>v?|G_W6PhP-A`eA=Zy{L_4#ytM3tk)K8xTD>9E#*H$ zzvYpP(~^~f#=F@w6y%Oy{4)QC=JYo&AD-|3TqCt(&*lp?qKV7<-<%E7SXy1(Jx%b$ z#N#d2BFD}saqxLq9vA)iWwX_WrJ_z!YyB^4Kh!)O>HhxTcKfr<-_$SKXZSbRe+blg z|4;7tii-M(AGw7qUTrtK?Yi~u)~%EO{gX_XSoG4cpjTKkQg9QWXhi+e^=~HrPILbq zS0nbHq4oQN>bL4gtXK-P?^mi``gW=`C{Ll*Od?PAM)G$z%ZO9_r&bltKl%QL?y>E^ zWor_Cgyw&o{!sL6>;2x~vzJVDgAN^iv`Z|UbLx&s;eD#Jyd#~qcs<>b&H<{V^!IQ0 z&+xYQx5K}K^TpTf)BdBscgOxq>rT`bdri^0ktKHK#*M_@nxm!m#c7AuxtXV|{Q6Pk z-)_%vuQLx0U2L_iw)lGc*Ps3`{vWnC*GN8^tE>A*@R4oFi%m;bmnW}xwtc(zOi|<S zWz7-&XF`MLPb{iDTq1h#wLJen;TpRS3?Ghn?~%`axSk^_<|vom^a9llQ&jf9IA`)Y zl$(!_Q)A<r^wk2a>WA;k|8V}+cF{y$zNX+u=;|N!(euu#UtVkKt5>;fd)MRaO|=V^ zwE4VNOWd8(!*sao+iZK@ivJ7;Ki)KN{W`NIUeBwxKXli&O&)7+M)dZlrrpa{ytObw z<MyP8iOrvleC>iazF+-suV1;_B~x!(F@K>N&8vU*^SRA_cxl0wh@MM}o-`Jhyw;lO z!4=uOs?0+4kJx{PgNMrYbK7au-LSLy(O>-V$hN&(y8X897V?oxxuUR{+u-xtIcrvg zxLGEdYsv_o{~rA~HvhqYhPL3N@`C#mBfS^@nC!G^(zEZuZRb8kEc|UFJ@N6pM}pY} z0lA?`TzNnJ3S8^wZGS8Kz`oml>+!epAD#Gx4%Z#Z-}K7q*+aQ|*J6Xd&Rt%)uIz0} zpPFQ!(VY*Ad&1XFe8$Zm=I3|v=&QoV8}?n(j9&F`&-r8ToBuQLY?<HlP3%_P^ri9l z?;aOs7F~16<D!zs!Sanv8rNmHr+zzI>%6@Fpq=i!C4KqAS-Q)QHt+~~=`9asx40*o z7<{A6DE!s+mVIoIHM&2F`J4Z6icid68tu}pvRW$ou17SV@qEKH-RV5HcYTVskchwe z{rfWM(3`m`mn*%$Ef-`f4SKVp!21D{-<=PZ$FyGmXzjTsQJ%Vf_MNAT5B;cEs@3)W zgZ2F%s`uY0ez+a}ccYygKl_iW_knWaS0+bY$x~pezMPuU6Eo=zpHwoJpn!~_#Eq!^ zJO3K_i`|$V8-8Hd`#-AY#iy0_wyiH|e)Ia=gZ1fIKc^X)O*pV3pf0EDpT>WN2Xp3c zZEvV!th;iH|5&`htKQ6qxmLPv+-nops?IyRsA866q!80*t7AWsPA$k~ZF6}1TkfKb z|A+KP?(K;m(+|7uyl9dear^G=AKTsAPF*|qPu#loOjW1QVbd*3kDoZDl6;u=4!^cw z|LV@n>yvZk-f{)B<Z|4UzRvx?H~Pq~*5=IVQu;khZp+*{J8z1YtJ+mf6Z7j~ZJbSd z>@(G#vLx_yz0IwEnDrw($eW*ki=9^2BlGON&H=llJs0Lo5LIZpeYzy|WV)Wb4eQag z?0xdr|F|wa`;b>DSN&+5#3ZKa&%^t?JC_!DDz@%PVs~1Q+p}uUljoP`eAw6dptjs) z%ZKNOFRrVxZeojEQnKaW8FM2o`MXwkZ=aaN=gA>5vFF`^HGR{*d@`_+PX4f|c9#4B zS%(Viz!vM+lYDcZE}7WBpE3F>lgYiJg<P8res#V1>ipPV;Ktn_(#NeBui990Kg#~k zuubRCGn3mI6W2bvspPTLGh*>OHcqwerDxTTeE+5TzI{*Ol9%(eKJ@tRF+DgtVE^t2 zhcf<@Y4buhuWkxdF0v9}6!ktlPwK<B-DT-N@@rRCc)M&3=v}h5C8|cqW67j{p?4?j z5He7(3_H|dz+Nc4IBHIQn~f!Vr;p(u+3Q>Vc{74sHu)zPFE`0FD=MG1m#I)Qh%qdA z3r{Y)$$RNr@vnaAgxwc?t7o#F|Hb!JCs$@hZ9R2T;pgJM^k_$!rMJt^i!>aYd9E%X zd*ij|-N6^vY}N1oC$w2?!x^zFH-7$lKHa7(#AwEv#gkMLI5J}xI1j##-c{HBs5;xS z#`8gMQTpWzCbRNd%SHE2-Soli@Ut~)k1Qe^Rc}iER98uwdhCluJrloVMY+TL$Pa7( z>@&RdXh;6$%-=!R!us5vs_fb^Wu{B^xkrpO3G*rrUA1xju+YZ0a7D#xJBg2W3v;ET z4yexx<(ANvS<53_JMpH+L#}rT26qHw+dGv%@a$9D_EG-0teC8E%#Q7!*7}H>n<rjU z`@QZ1$0Nnae=aqfQ$F@wPtf_N{v+Od!<F21Pd^^{T$%Z;vhMT}kBuAb_vr8DReI>q z|3t#_K~JEhlI67LX1}H%>t}uWAuh}NKLh8{ySLXRZ~tVntj~6K%Td)GDHA&nz2Vz& z(&Dk`kI?@NtcU+j+9Uqkv+l^PZxcV9I~}<9$MOf+4<AYU^4-dQ>-40_{9d%9u(w6p ztb6VUw(~H{@cg~?cjlH4{Vjhii_4c(*nN9{@SmP>_Zq?KHAltgem=2L=hEL9Gef54 ztF~S8kT(tg(fKj|a2?m)_6OIG+!w4U53Cn-xVHB1%5^s~g-<_QD0E<2zGV%|Y2n>v zMb_bI%)(lxi^FDJHRcJ)ys}g)_|^XP%73Pq$g}-;el$*L(tX#9dh4d$y=N&q;Yins z+a75XG=i451%K98Sm(xmdq3-chUB~UQ6HwQe>A_VJp9+$uY2DZ^7H=4x*1iOv_q>? zXV#okA6*4%I+eTBXEPUVco|>%?_v~tlZkw<o$iPFLuZ|ChkiIWbCs{$%<3%mi7H$- z|K670GjU_Zo<kl5vkxjX$6NiVe(ZmgpYxCN_7CshT;KC!(lhbx+1nV7tSH-<X5{uN zu&jA!c;9i``hvAb@&bC6FDZXh=h=2rS!z<NXxSF~#p{2lU4Jw4KLg9w=HJqX=gZj% zS0wohy%IZJSh_SjxA+nF>Gb@Gg3GQfNeNBjWXydWw?wZfd*6SCrYHXy4qDpif4J;? zaewytn@6Hv%oE<az2E1$$&a<OPjBpy|B`)T+lh^91e-4IdK0j)Iq%S;{o4N-QtMmm zx3aDM7<|NDq)xly_~G#DQB%q`+kW}g^ztRkwI%)9ypno9Y#!+EyVLcz^GEUT<ho1$ z7%x2dA^*YpaQHsu_DAuzOS9Rhxqnodc>CpBk@9@jHT!B3Y}QGiP_m!8o&7QMM?bBP z%7Q%A6`65;^WIL|_W9qMy19q{D0&9<EZbl4zIyNU_}%pr|18h?o^5BpHK|g0OR~&% z!#nN*ckgQpzhh^&(4H8OA*ZnS!@Y%a%OB_q>b5Oh?xnY2*4?nk2UG1*3O;W>CL?%o zBF9&@{fp1vdjBo?%KisS=L_WSN&oQbc+8L5kLwP5h)usI`cbX<@BHNT(KmLR&t7)d zMM-Qs^V$5nceU5d<dUghv;N@uw))ND$K<=^#g_aKT$Y)+^hevVw{N~meDzG*WLD&M zN;P`vrlw~l8Hd~KcPXsnd%MK)*PQ+?gB`Ert{Hi*y`J1`cv3rYRgvk!*Y+%+RY!4l zKT1EIw9k0o`73Yp$Mj><43EprUiqW>$gQb!dwW)_={4MP`D14BCj-ITk2sw3lG~HA zdwwkZ&%o;apP{L>Ci>&l^BsD1nlUfGPZFEh)|<QRWs|}2;@oQQvK@gpB-f?X?v0q| z|3&(@RsF%;{~1`f{FREAtjYa2_x+KD8@FZD$(l>CZrPk%wCa^m%<Mxy7;BDYEX*@k zIH&z8zis~qPyHWi>kq7rJN`)g2!H!Mg{GfR<&*p+v*T}xr9G@Gy`PzHo%#H<vho?f zh{E%x&mJ4csH8oWxbtec)4p@=A95dCca-*v{%1Ip{4wa$y;`rIXHRF%T7B&M^`HcX zPxs@`>YjPRBk=Q_fqAmXZChiv>oxC1+@42m-s%?J-IBRJp+$kEeU9Pwjuna<JRUrk zef`(?pTNJf@!WQTKk|b<x;N~TsgRD$^^4R?_2>Ul?SJu|-qSMaXS2L#w|CA+S1@#V zQsA(zi#wn32XD&O&Ub&9S7)Vp&(1Xto^ki(#M6o=C)~INI$C*+!cT6kl$0L6?3slk zxp~g@E0*ehu|FsL;CO$H_lM}C-|Q?t{5|tcENr{B&4rj;vr7x5Qzjg0k$I!8(_+nF zQKL2g-g+MI-|BT&cCl{n-{b!9KLd9~+wZ4LUk+#1D@{49?OrOhWU-F%XO;qYEspiK z{k!Bpc=+FFek9v*Wl#EtbjK^DzDZB+#JrxznrUOcV#&IHDU-cY_NtXm+?3*Q=E#Jy zjZf-=Ycl>bG*|9V=NGEzddA-zFR_(ZI6}o+Zu+Cy!gUE@`4g3PUz&9+Gx_$!y|?^l z<R<xLtIoPK?c7m!p0#OJ^@rak+AtTcP(N%N9&j=B>bI@0Z=S6b_TT8F_mfk{A%H=8 zS5?<9{)hYDR)3U#uy4t%t<QF^dTkcHS$EH^y?+8H@H=<<?_;~?pY`X<h5Zk1*Y{PG zZT#E%(fBcY*S^z6$94DKZ+brYjZcs9wu-O5p6hI`e(h6gkP)63n}3-9hk5_E`fWdU z7nVO-e@j2&qu=CZ=Qm_*cY5x-*DgZa=>8qodbz8f##<LebOvzhaH?KCv-EVu`49Ea zd<-s5nKdPR{g?h%_7D5tDt`F>?feggx0MSrr+<&iJ-U1Ex}{t(iyn4O3oPE{Z?G;@ zMMGTueX{AZ>D%jMFTQ>Haem)=)Awz=N_QRQ*t&bR-(`~-GiT=rFbdA}-o5X#(x&OQ zzqo!jKg@sgpWy@dx9knw56TbCXULkx-k!L(J4EVQ`y)-ISf{sZFR}04H|15@H+REE z$;h6rP|;mqUYXk8VvDx#$o_Espw-rYb7eZjj{AHRZ-1Z1x8T6WNzt)>(eu@uLOD}& zZ*b3J%RVwk+b`zR>!-=fgcf^R9Diqf>u~tTw#`e-d%ymuG5u)#+q(SbgNtt-iW~R- zVA6cQJUb;}M$&2}HsveV`O7OG+Vkt4+qoud*ZRZz1+#<w?Iw$Nl{!}@={4NBq&s6* zhD+hJ7^le!#|0mYKHD#$Yp3?(dDzB}?yV)gdX^=peLT72Uzzb2w*BlWiu6?7weVP> z>1G3kKX+F%AHQdGNvFnMzNOAM?sY(BcxK*zhU_ibKi(wIDVkWHbxca*NRENvp~Z&3 zm&^%Wqq24<zqIs={)O-U_&)m2z+X|MFH|w<xZB4q-(MZdKF{x-oAL2>OU=2|-Micp zdz!?29|*Y>#-%@;-*r#?qkYrT{AQ^)+sZFJx|zId^6xr}=|vMI+uyERBf+$UP1@bb zPut2@{SkYkje36S!<)HV=lWURt4RH5vXU(!fu~UQY!5@epNCO&&FO<GP1(~v<{yu5 zk>lRF{aSs7tjZ7jkSlMVZJ8goDf52rzK0WT9i3vW)L*owVOqaTO8<=T_^ZmYUoGX# zg33B?-~I9XQRuO$wI9Ae5^sP1RaZN#BIoS0F1yo$ksK$gLw5_i?Cy)~P~a=)%RaBz zeC%HB*Y$6{KK^o9&t%zeyQRxG>$j|(mvM80-ZEj`J4QTjPx%EDPfcUE9{iBod-h#D zf2ltv*Vp|?Of60q*=6<G+~8zF>x@5-gElp)%u<g@R&ui6Q@Q5GpZLYc6Ycx|nZ5WX z#rvP3ZHcGYCw}eV9+TaT*`8}3nJ0!%Emk_-;P>>n=^9N(>l=q(3s1T@bx+~nnN{0< z=^y21xmPjonD2CP@k>gt#FQSaS}nR&$o5k5q7x0<ERWl~&Xg1Vu&i_0`X)PxAN~Fp z)+Nk{v2hI#o|-&=qR650%xg-Py+JOwZ!;t<|B-CpRujL9U#LdsW9jwIEhi;rCP(VN zU&}Jv(^2+P+B4bZENzn<#1%9iZRDG5-~Gq)n|=2@_RDYWPVago>vgQU`i8<JB^i}m zDd%dDHEfS~cRE!+w|o&e^^3vYbE}USXK%0L@Ami@+j_iPb<gMAt<t$#Cf@ZbmWC_5 zJEbxmeT>(nKefC)hdIPXHhIa5Uoo@P4_kMB>F&)^w40y1D#o`^i{+=!w5Z%KO;7p! zWQ1E4%hsFxRSx{m(6ax?rtEmWIwjLfl_&DPtiBzge?+<boRIE@*aHy-^U|KO)E?q3 ziCUfY&*<ZX5B^8)v#Tv#VwfoUdhhHb65nU|KRwU9{$9Ld%FC&iOmh}}cU`HvSnuSD zibvd>?`=|ZN?*Q}xaG{(%RT#eUkbO%?EEu9x6Q5NB%Vyz&RXPmYvG4gmk+ib`W*J* z*wR%mt{q&m&CKf0_O~+S$1`0GvbaT7-7au)RiEOhB9v{%TkP?XWtx@#q5E>TBVS3$ zsNMYXVwSGg)mz4&ww@99<-ILbwd)MOtbf!ioAj0Uvv-xve|Wb3;D(CBe%TdgkDt#< z5=v}YD>uLFV?)c6rs@1@76)IY9{no3Vw-7v*hkd~X8##P-;~rw*(!9d)iZf<EArnB zj@wUe#xyBS(AQQeS9Q0Kdj3aRz1j4=h{%V%{~0>g=n0rUTf8jGw`jvj*#im8wfodR zElRVoU9-@Ufv54zwDSK9yfw^u`}uNe0{=5`Y<*b2ecfc~wO0=<IglH#^v5gAR946` zMDwB7b^gceJFovrZ+{-E?zHpcj47TX*CtKQ>X}os=vL*j#u@WgsWSJm`DU#wu2DJV z@m_h$b<>rPK72oNSNX72TWeuUA<IgYX%87QZe>TGcq-g<H?=MH_P<XWFK1U)KCG90 zo%G!GYK`-v*G6?O70NPlm-h)bEV}lMy>T-4j;))u1wR*F+sBoEi#zJWe}<{cUhb2= zWF!9V$fvc}B4hIeAKPpR6Yo~tSX8hsRM=7?C*jIB`z`Em?H9fLUQ{v7`#*z-qhQ#U ztry-d>U)%MD)8dkw6azQiIYL0?J_c9{~1E2uHQIm?WN-{*R9Te%=|3#R(*R(_gkr? zF0srdJN8I#+G!A{eBfZ8@y5w7eACt~{P65pb$zp#)!+9m>)yt`efuW&bB6lVh#g`t zS2*Q9b7g6oXnvt@>d(s`UVq!L<6=toeC8UvT25WbweORzN<BN9G_x_|iJ4Hx+q=`} zDYAOL3Sar8Ci-{izZ+3~%XVqKl5#yZ+wA4kH@dwmJFmQRoph~aVqH$ko?^iX7GDAn z`MFwk>7Dr-ef5w2>UC2^+dIEp|7hg6HMK8w>#Y;TGwse?ZtSUj8g!(Tp}A|O$yxq~ z*JkD?E_zkv-mJJwEn{&?b$6xXfz*g4Q{zn8<yC}M1lhe;kv}Y}eb`>Y&ah%>UTMEb z);;-;Je$_^W<Ncjr{;1nNq3#|VWs4@NjE+iw?%z9>;CZlQU12RPe0lNw(Y<Cv{3HE zdz+nI+j*Zy`$`{I(mX9BBV?slb!F4n>}{qUo2um3-qXMSNBvPgoAZPFLNBk^nN%)G z-MQsbYKef3yQWTE%Exnydv7Nc-CtI?CReBAKSR53`9pij{|tu|?Ut6+Z=QX0>H74Z zV`Z}|7Va~=FZ$qX(Q(W0C&?c+ADh4Bd1Hya$ms`5uWwygE%npjX2eXPGu!NZJMB(q zN=%+0@_fO1M?1^Ei|RKnxKv~L;Sq0<=7ZEdaw>DYWE-SsY4fh?lSp~<nf<zg)b&>} ztG*kDMrS*J?GO9U(6Z~d&$aX)^ArCwaN0hdt-Ezkl!W}tZM#FBIj#_yWa@tIg-ff4 zB<~5veGL15WIud%UH#(vygzCik8Jy1Hcz4Jm8{*dFvV*bi}xisJZ5n=>}+Qi{qdjS zk!<m|HJ57C6CY^oNnG+nB#Uv$mTg;mGAH$$Za2yK9xi<B1gHIO7QxAVRyDIf27j~v zyKn1i^J}KIPVbL=do7tMCVi1<i%X)R?3wv#6Qkz{Hy(30-6pRaRQKgg@zo=damT-K zFZ*}1PU^#dhEDd@e_AyjAM{p=uBu&jJ8;7^mzgoCHcL0pO%<H(W>N7@zT9bn)W`ko z|1Ry{^ls}%t*d)vQy<Na4Rf!ane+bH-tCu5B^KY2Y1wHMIq|cm8fU=#=?Z^u{Sp4) z|EBZdd+s0U|AhK`UY9;7+3VwJGCzgYK}ES=<uu3L^S=&p9<*SV{I&j}+RESNfAlV| zGszc?^M2f`5zYVR{-&3gqlDGo&xna}H<^~#XZZQ3kYLZYcMSKIMSEtl-4@kJdA`fO zaR0+%dEvXaDw1m558c||zI3kguFDH`Wo}g+yFJZ8R8M!EN>9&!hBb|!_&2P!)4y&f z>bou`%Y55BgQjl}i{+MG&I<cBS;VnPFmdPR$xlx@8nG!a5AHwS-!3m(!~0;q)a{D> z57!^cRX-?r<H)DlB{9CLYfilqJTvjOS5PEh@y<nemZS){*3N#wf6M*YJ&TW`)4TR4 zKi;-)Yv#t<-0Ym~YBni9%RV1|vT1{abXuFA#mUz(q6TZNl{Xo?zj(G<y-#Ps@AAXd z@!ZkTt{g&{-}PRWsvKx4k9XOwwJ-1Ckqzr(QocQ?)2jH-@bG+_>$d*2F%|QEzEkYe zRJ*AAY!bI=>WvR4byxYUSmno-bh~kqTVcHY>;DWKbp|z|AAQX03_eV~I{#bCN|~rP z!rBR&6S+_9Po2f!R{nFslqWUMcAOXgcXGbq*Ryr+{XVQeZu`B^OEH)2R=%2b<&;mo z#ml#Dy^^9IZ{Yp8?767Of^9j=Rr;4Fe@tE8x<`3=b{zL)@7uP!J+@2TJ?UI4C>^@E zkM+~RREdOZyFDdu_sses{mA`o;3IvuiZWm0L%aVN=T}#xOuFpwSvPiRk@xQUv{uJw zWyz9Z$Iob=w==CfQZ@JN*)vva?3Ayq$-O%B>)FfMLI=c~B-hS<JMqEiNlWC{i+;Y> z{hxv5>yMksYhT`KZ>@<<&1RX<xzPK@@?Cr885J#Pnfz8GqF(Io=|A4{=7zku9ChdE zoaYyQEq_?vWvBJy*tOR&7v4YrsQY_^UEIoA6+xE{Zi#nM_ausboV)va@*kJ4_H`A? zk9Ci?Zt)Fz|Csk(@59BJJcjq&mu?ZC92d>tV0L!NhFudEsjN#2EjX?sdOG~XFaLw{ zTX(Uy=!QRDV%4_dvfrUc*L`;ExN?b6Uh76#+v_>0p~^;@Dv29+{FZOxKXB#4z2&JN zgngr5E}n2(_u4kOchzD6k`Ej!l&2YQc_+AK_9i#!jOUV{w!O(^U$pc2tnF`Ce(-j` z_HL_x%dca*A6qQyi?}7pyQkQ-;KyO#!t8Btl^?U0)FtFUR!Q2Ie98X7l6d(&p&z@h z2i3RTlAEZ)6tVD{H}~zieLD=#TTa!RU-hY5#do``<I!5zNAEeZ>#U{+b|0_fzWBcT zhQ#7sm!{5p_n!S}Pv_kzGyf@*)&=zMZqk18p0)0r)%M<h3P&IOXJGcNTz0QxS@NR$ zXNzZ+ExR_uxniQ{CdDS7a#aJr2ia96D=mKC{@Lnjy2|d+kL2Ip8S;XEd^0xxaoV}# zO7dK}_r5zKR1(<=6&g<IzE4(ZV9uH8{yqC%P4$YG-=lo)DSc!=^h5t`qM_-sl`JPp zQ-X?RCb_HM%x8G4v%%zq!_USi^8H`*Z@NEzet7m<W#=F3AH^!!s-1hNr!?Pl9>=>i zjwe2!-E+a?c!s*2@3T*iGR)zozVYAceiT2FUh5rl{ZD*y-DH;BxMz>w+=@9mv*^O? z7kX>1rW|1D4B7tS!RNTzi1nM^WwYFT9WQR5q2EzlvEYTB<d5dRy{pcuosPBobnot# z8phU)TZPG%nMTnm!5hyREGhZ2_@R8K)V0>^`n7*7H~;A1a=RX$Z^E!<uk@RjWf!#7 zj5mv0Pf5_U<=<X$?D6BCDsJ<``Yb;Rb<|o^kIj9=-lyG}tgyP{>GZdOCzg8Ln(QuN z`E*L@<C^%DKa9OU^tUVj*u3&bzst713*6SZV%Op~zs%}lzqx$g^>Z6;%e!VOW*q9D z@|fkpUdEENwuO&s?GMQbUdSo+7mcg2+<sHX;N_-+GMi3pH2iz?wGY=*cg<ZtjW}LU z?A+=reYnox!^z8kf)_b|6#MkZZOUQhB>{U}Y9>_{dzSgM)T{}6o@c?cXxl&GyZRk9 zBKmcFw)4BBEa!0l4bS=LDQV-r>15bFrPZG{&*0QPz0OTL-{-^C`)wt@d9gv){XQ(6 z9CNg?TCCrOKVRqUlyuiie`Xr3?tSy|=*99vziW5Gx3yb7oNM&>u$;`bFaH^MUS6tE z-5%QY=wGaZ$7;3<p>gLj@4ZuM4dE2hJ;5ijYNO@yg*TUN`gHJdzxeUTv0Bd<KObf3 zICbD%M0(n+44dVFpL09;-Uu<MZK}~<USoePecu%u)m2&h^q9=t`|c**l|A^g$vV>b z&LY+m3Ab<XJXYIvR@v{zW$|8}wQ3*MPH$eQU6AwDTdXM}dE#Z=Z<95>pOj19;@z%$ z%*{3Y>)$-n>>Ecvtli#HqqsKu^*zZCGV}Pem(IEw_%3zVWp$w>M+L#tYIB9x-IJYW z9^}=N@_cW9*pJTjnH$#FSvN;-6LNhPc|0x6KtaKJ<@Wy!?x&a=*3Hb}pS^ND%eD)4 za@qUTCx>tPvAO)w$+znAx2%F~w;ptH<2KPypJn|*+NOP?N>4(~-q$zuwyYO^xvhLd zMf}4x_is!v^2}e6>Gys5yP14Z5zDeGFH4;4W1Sn_ctR!2FYCI@qRRgaU3FZ4G(O7S zndP?hq4rF@g%j?mEzQ*Vc*pIihp=?5iISN8muu!h9Q>{8Po2ND{hQ5&(z#~*E&my| z{AXy_dH-M+uifn8o#A|rOwpAKi|yu@iEaupn&)S}&bRJuR=v>H)zQD}xqqxb7AE$q z_3FlX=e>$$KIdw;6z6Wcd8P3nQ}C7#j5a*KFE6P0>@Fwvaej;LpSTz;-~1J8^o37} zH}kG;W#tdmE$HERdCbRaa@?2LnI#)_^&(d<{=xot;eUn)6ZcEnNUuD<s)qf_;*Y7F zs*f+5iuWB4>q!upc&ae9dh&!Nrn?y%oP~UA5+6j=#6Mgwc&mc{$i=LGLLWu9b=Byu zxn*>Ac~;o2BCoScUzMHwbXsHc3?+Y^)G12FPZz7K|HW71{de*n%eA)8Hhwr(VJGdF zbvn0j@sAlRF3SbX?qlgyz2mQ-&@AoCXZPy4%D>9G3-KG>JO7j})o=T!TVv9G^jGdm z;pjUriw>`JWzNl=E|$Mf`gNs9dbab%3(w{L9p(A7NBMMMY^7Y9vdZDBHCN_qzd8T- z#bNQ|fA#7ae$0t_F<;;dbHRpp`C8na6K}42C=nXJ`Lsc%h2*xmJr~=y&I|2-dR8yv zjd;|L;EzG)o?SZhr#sh8%}MXe@6$n1+%5g;`od;%ivPBm|BP%q`=4R=e0lo^lf>+W z{)ARPp5L&~boYhQM;A|;O@7p|j%B5d;IU~x_PBKYy1C8GzOs<_@Rx++bMMc&zeWGR z{NDRqYn8jdo&VsrcGD?i*7ZGqEH2zRbYbPOo9_apZh0KA<gS#_m(+jKDk=K%p|O>z zNzeW>A3jFfR_V_QwAZM~{Gk8Hyjk!1n`=c`vvMAoZd<%u`OYoBmI+)oS+^qun`LIl z`m>bV+O__+u5sRVLHg)EYl9!r-ucrszb2{}-7#Q!bnk}dEdR1wtJp0~zsUY)=(dyn z;q3W4{ZMW6(T}gh!vm(wdQ`3LZJC@<zEezZ@@c~WF+H>A>k72bm#)=+l(u(y?2q$D zrrqj26}A4oeyLl<_0#8^nk!za9PMXRx?_AJ{A%FwN0vd)Y^tsXRVn}S{m;;xXruqY zpZ!n#$7Ac0^K&2N3v6qcbZ1rTHeY?et`Dp``d%fhNuQK<??R85$2W#EE#Y5Zehh#7 z{E$EAEA#NE^SxhZS9cbj)jcERxnzU(gyy#etC$;`gffm5@1Ar0!{Yx8EIWT3d?0`G z@I(EsefqA+tL*l#yXU+>XIJi#4Zi<6rQ?kAIs_*C`zyMsN1|cvIqf(8V)X|d?QDK@ zozvK(y4rE+vO|}4pZh*tSmr^^D<zJ@6AqtDe0yzQwd}OeBVomV{1+d1T&by-{448Y z{@bk|KKozN*&3b8e|XozjQYw#o!yD|>^{4wgtx4g|CMvlpS4f>v-V^0KVrKq7VfxM zqp$jH(lzZT($&RJ53Ol$@+mY4YP=X>An|15>-dI$`XBv|@OPB^)C8(6uhmiW>@o0G z;NJ00#WhcG=j*oq*VnfE6Zj+Y@%Zuif}RiNx0-ve%1$$S>_5%5>t%QY|Af%=Psc6G z0vOm;!oCz)1?*X6cv@U@x1+p!P1=8krWF;FkADx&ytQm?&U>9ok2}YUEu9;Vs3_i< zdwl&qTizPaNB<f6=2?H-<xyjuUtIKNiNVBKXG(4#(DGE5x95I8Ieu9@=YNI=Q|Akn z=66_?x73;3>@|H~b3A&kP{vo5UL~ia>mGV6oGW|crUcI`PwB38h2PJ&?td`5e&hBQ z)6@K{75_e;+BGY@OY~#v*?n`qi*uO&ESnZ|EU+PnYm1SwTrF?(vBZ^27Hu_Y6I=7o z_-FR^OLn?{oc5WCiJSetxs9XbQGQ-${NC+VlP6woWw&*$o__fJ54HJkLqFa>5_aiF z`os2~b#LbdOnP;zbyjVY(Vm?K_wGgK23T#<l(Z3!zcszJ{=uAiq91BocCBxpmCJSd zbcoR%?t0aS>~_I>zl2-5<s>G~6FR(1`&wJ?qxY?|Y-YXdOiayA&zcuy)?2UEpCv5A zshgTxbo^}D6CvFj{}}{CpFb-8`b~M|O?UmS@|}Oa{4x5^&|I;{aoy{x+^73Hx6IsH z9UZ^Ldy&7*n^!+Aj9e3IR&3mHsOhyPOY=O#xakkq|4{FLGqL*NS-a1V#1F2Q%DDCC z+C{tN%a7(38%4z#F&8qO>NxdUWcCEBjXZ3Q3eWa0^Jn{^ez?wj=f00Q^#Y5wTrc6S zSpUA%pEDvV`c<4u=d+G=>!NNI*0n0#xOkjPu&?VV!;kj(zYFYB*E+}T-M{niygj0& zD&K`XKF4K#_bya67K%%?lPFS2KHYS-?Y#Qhimk>u&QmY{?(4C&3fNT;^!q=<1Nr|~ z|9to{@nigh@2&3_{g}M!$A1Rz4OdJxrrq<1i%2yuoD$+z5ijJ?J8_!N)F%&`d~0(* zJgYT7BG0paZNAA`pNJ?)smtNH?17UGG3Fgu)4k&Fgu@I;KRTDBy#Dl#A^gkd5B1+9 z|1&g|)tFy>XVTw%pXZP4gZUECe$&2--7;MgpV1ZJwW(7rKuvE+8;`^ao9CA6*C~C} z@AxNsPra?i_ff3%k+3tzIKKR@T(oT`*H8O>pYtOn_(WKH#B5tDrW#wnnAUzTXwj6M zd&@ta{c!%9)!(K688X&$-2D;%(7%~EDr;Jk{@cH?YZER%nwoNl=Uz7FEG7OEN^PDD z=g*!H{a*jZ^*;m4jK6d2)A(iFKgvJSUEi7T@lfm@v0rlzN$Yamd*E^QS(KyB_N0eT zWES6HyS4w-<BoTtzqUSJ-#35L_J*y|xBoMA)C-y9xBpY{u)I{NTV@^cIMwN*>D490 zxuKSK3PNvI&71lnO8%&>dF-aG8$SMLxKZOR^5IxmJ>SjP`!|w2u0_Nyout;I({X!p z-UBN!wjCcOUTun5?UKv#=-ssEuC>J<lYRE=vq~wmQ~vNIFn`*o%%{_XCpO8O8M27& zbJ@MQH8gQvZ*$DI_79s6{&TSkKlq<vTa86Fr~J9L)81RQh;wgeGwXYH&EX=GGc#x4 zZh1qQaNf0lLVt)p%ol$pC-<TMXsl?BzfPy@{O0#x=h~gRtJk%_J6})RQ!n>$=?&&> z{(jk4{y4L@mgb9PUbC025$3sd#=vA&&9q;o*VgiQDmQ#w`zey+k<Ka3?gABtBgt%g zUOL_n{2ZB8Gyiw_kLE|=ZS_g>JAT=BzuEF_!xiOzpDp|PelD3+SY9e)XngzcG*wTw zq7!RE1P{w?{j;Frc<6Q0=#on%Csk_KZa&R(oaJL{d{C|Z)OyGLAHwZ>=1KkV{=n@1 zBfR!;>qnMf{~0<Hg<f{ds=AXoZQDxIN0lejgj{-Mm0P_Rs4JL7oBrTmWV*idy}pg( zVvo&f?_6B_C681D9O!?PJo$W*_LI+Dr*E%NU$y<`yklJA3*YK4&i~Wr9q_?tLR8ev zA2U=>8>qOPl4U;TtdyJ6^Q7RfbCGrUp?%sv;y>yi36E;;*yFb7S@qXF8$adFFgcm< zpP@FnrnQZsfoWy?B;U2l1*~-wVl#iuy|+^4*DTNc{Je*^JU=bHQG2D=Uw86pGXsVP zlPaE;if$4QiitXAv)m%#@zXM!qP-mFE#6gK3(?-O<)&%!vi4{4hxfP4vTsV+^ijTf z+Ve9P^B(Qk(hzgjY`*9bK9!J)#53irv4tw!JEf=8ajt)1{mtp`#`M1vZS>clPkyj_ zzRVxNAG253UYq^kFVj8WsLzMxjAl;r-p_Yh^wRDnQ5|=y(@jo_?&NV()-ta%`SIC( zQ}fZ!>)Nx;R;z4WBKB={&N1$^@O+b1b2qs3Pn^8PIN37wfZYAx`ah08`u=9+W6PS# z2claq=e~ckb$;-rh4WARuD_8k9(McIO)ggzqjf))FwQcHU<kcqe(AKJ*knshz3652 zc^7`9yI(8i&^PgQ4*tM&Fjq2{h1*)=#zx(l3BOHdCe)XGa{FBuqiC^aZq@go{|qhV ze*NDjd{{TLa{0_l)+rZr^Zqyl)$4BadHHwNGKp`^GiSO7EO@&5)A7gW|A;ex)BBNe zt8C+AdycI6LZx^8&g%Qr$zPhJ@n-6cNB6Slrrg$?8f`sEETMUF@9FvSAD;h_vHYzS z`NQGIN|Sn7vz<F{+SsmkU+$sOTh8jSmD}d_u^$Y}Z>5CDmv&gJ+hrl+^JpoD*`A61 z!Xj^O{$8E@;BG)fY{mJ5RZAb;Zq;A*qw1T5j>(sa!Wj;(jk~sYIiKEm@6X)D?4s?D z!awAEmr8wp{67O*gx->Q<=+x6zgbt>((*Ja_PXFr&Fy?;4<lAi=y~w=@z3@9|1&hV z+p)#}=#Tqo`~1yM+qSK>Qrxz2+OMnUI=^M)$u_-E?VJ~-8gWXra&wPhgYjqeuKf@8 z{b%?PSet$%dqo9%_=j_oljgt5Rl9UJR%Y4xFWZfcP91;GEK=|`r{F-scW1RD+tZ~b zLyleQ-ktu<J$Y%3^M`d)_9=b%w!HLFiqO057uQRj_UY4@yGiNZwvW5kXw;WWHymfM z{;GatpZ*`mzccN)<6p^({AbAQb$0rZ`-uC+<Ef>#ZlRxz`_<Gxcm6iHtjXZcf94KP zj{yIN#E<FUw*0vH@$-@LeTqL;KjICz7klo!iIjKjtq5c5)Fsss-=enkRA$QA9{DbM zAnTvj$HQ^Tul6Zl+1i$RQ{q~w_v)sd|3uu47!0iRjK8egRbzGg`_ms1^_jt2FWGO5 z@38+6{r=|q2j#7cukMqtm>=@v=DPcS*Y5d*tz4kG!!=1Sb=pHEPa(H}Rf&-j?|4>j zSE=*J-v1#szI&RL-Ddtn=bQh@{iuATeY<U<>FVsa?$HsUPxv*my=O;zC#%f)^RFOO zz3kYFdfvD1woL6!{H=T|w*8s6wZFc~$A23yv-)43b!FbAcf1#ly)4_T$+P|PB#u|^ zQ#L;6|2*qUX37=COV63lsP6i=-}&v`{C`~K{~1^{u5Qgfxo)53kEV>Rs)}zW#oC=y z>D~N$$D^$qg|z-05bFz>%>4fA`2)YwTWVCRSL;YE>*y?89jA2vPVG$gTi!eFT;6(U z+LVn+5gT=mJo)77q5I`pms!TFOCh;EIk`O=<@J?Moae7Fy_m7#Ugoa7TjGl19Q2YW z=iHp<!yY4G!SMMQn{jOMVh*R6?uAnfg^GPQ*>~UP{*(WpzuVn6W2<fO;a{s(N2s>$ znRHa7v*E+3M7PkB&%d{5zP+?>?+@J%Zu|_H=U2ZjRC@KR&F0~p8H;!)N*r^0*ZT2T z-PA8(8&~{Te(>64ch>c{b7bD1QCZVqZqs`5z&j56cz+}R4y)2Ltx9bVJ^u+MTNl5d zQ1A6;y7ZBVt}j#7FPGo>wW@-{DdwX4sx4yEvt@R*6fT`()H_Gw`WgEp$82|Z+Q{BK zU-eh+Z-0IE>-9HxACB7Jw&mMzwFT$aFY|g48{zYNd6#!H&;0amd-Kyx?#vUkKWz{F zxNh!>%ndKYHrfOnY>IL+dM@!qpCNsoU)|IfcH;YX?)Y$Y_t}%v%kIpX)bOFUFkaol z($+sxW$Kdt*L;`1-TuM((fM$c!H@3r%HqPB&6RSlQ!X$5nWF8rVPBq*(*3fa0O6+P zOTAb9J5$BpvCsTwP4?u2x6Ed)&X}P8&A$8X)|1E9m*$*2Bi<0%^zEn3n(x8_Zf+bB z|MKj(D!xZu*r%FV75}Yw?b2Bby4<hm&U+`)@+myU=%C_>6D%Ga=kJOB-uvMF4~_kA z)_<@+DE3Qk`I_Ur%jQe8NtC>`Ikv8fwe6badcFC7U#f7htIRqjvO0LasrLPyEy*0K zUF*v17G3|N^=s*sI)fjlA4=<%y}DVmJ93Nqt}E;I%#@Hl(aEFYB>k**&A*$bY1jUJ zcA59=-|-{gC*F<eRNH*v>y_=7lQs6ZwYF~9Ep~B^o<kY)y2sZaz5LJcV4MBsbBl|v zMXB~JdZHnCy7pf?_jVgr*I5CJuTIt8_(S<W11sBy=WnGSUHR~5+P7Vk+#b4Q^As(b zd^7HWnf<*q`PN#K;;b(7Iew~bv%e=*>n&VTQSY?N&gMtsgZ>}0UiI<J>TCaYHn)3K zp~||AP7g(RCvH3B#`Hl;?c>$|3@tSh_tY=jxE8M#aQYdwcJr-m6|C!6=T4cNcXN`& zu^-1`7^CVX>$oed1FkK)y2XEc=6S6L_38HvqSKE%N_8p}6dyX#%J{PDQ`iU4^#@<2 z+b^5yYQ?Mk47?pXZS$U1u0LnLwfuJSRD1KSyKmor2LI`9)0C!f>9(1Z8hL5H%6F@L zrXSBAZtp6YY2&!?<+f|rFV9rTe#`bGR>#Q9+b42ivyidOyNX@&XN1|e)hX9xZ`^Aq z_c38tuKDxel|Q$IE1CMd{ruQNcV?7ddy;3Hg~adUr}m^jj&J{UZ0COluEX(HzH*p~ z?b6P=_UOI$tn60bgKyqlvsk<*sG({8-r&Yhk4={sKfEvhBluucYI}2(zHrtyp_3}d zk6hB5S**iz^V7BH?C|YjJ`IwOV{e>HRhj(iIJckPOSziWzVF@?PrmuXIQYtvt95Lz z!{Vf_e0g4PWNT*OW3>CvnawvRKUY+@(7HHp`J8LhJGa^kWQVc4e%#)sXA}N#b;s1a zd#c-amQCqh*PmQbY@*WF<eu{-&Nw>ieb*k#hZSqLp6?M;_Q?%m-|YP}d6N6K#yMse zSKO}5WVATdwxeeqGxNzKx6Im?M&6FkwqyF}w{%7HUDj&lwTX*67N@Mg^)R^L#p$W6 zJ?$1+2jogae(Q2Pdv}iC???558r$moOf^DRb@$jUi#>Gmo^^AsM8_iO>gel+$7Ub6 zE4ojhsA|@iv*IxyWy}JiD!R*7SLGT1XAt_C95KswN#%KwGdB-fn;q-%t2oCSRDELU zmeP;c8a78Ae0ol;{mj)zK}+T=jBvRixP|RZhSLN`n^{*b?ccb^bH(}&8{YbrZzpWN zyTmnbt=Y#pQRjDM#PErRUg+Zp+G3g;IIHUSF}MB?^AF$B+cHn(N3~6rpus8SHlvgL zvwrBrot>p>ten#L^l6cQP0-=YN0n!<&3rUB>w0j9>u$}QZ$fw8YTcGpoe{mw|MchF z7aS){x39c^|MX&6`(swRXOD=pKJa+Z{&qrcPOFhi__;`{=cmK0H*hDbt+ww-+qiMd z<r?<&?n{01-YH&QpZjoHWrHNwhf@>px{37f*`#pHfxS7>&G%(-*wmjhpF}-B^uGQ3 zJ=^~bEq6;+?-h?$vhF^;;=SIRJzp{npWdnT+qU@_hn9!__C-_Kc6Zb`KVHjyB<#|i z>?+%P(<_U&RZNpCd7Q~{M?x}mdEfJif8xT|RbOBD(ro)K)%$-`{;6DkKPTq)iR*bY zW-&0H%y@G{@>$OutsEiIyG_fdt+&6D@WXR?=6l_DD^rtgZ+I@rR($Fw*e!9QFLfI4 z^Rnx=Wg?HCDd*``y0c}Y@g)D?vwz|r+PBzgfApQ+z9%^Kk+0Hgp>>nXGb;--^QZD1 zIjq`qp5=Cf`spbT-b(s3&YrdZh}Z|S$;<CoSjS#qxi)c$x7g+q*1NYAPg`f19V_j< zS)t?|yUNe=1^bMO>j$Ouc9!#=Z~v2Bx#nqyN6*JduZeQ8ee!SKx!n_-XVd(B^@I7H z@(lk(GuMARFMR($!y%*3yAR8JFAw|X^JdB43riPGc|0d~qQ{f;wPlwMsV`2qd42oL zU+0f?J3sgbf4F+4+}zxJSK8uD|DxA2&bxP0uWW);^=Y=gq?4!KS6uWspY<^D$Kr?c z+i&Guo5kNzbCc!ZTfMFS8Sb4)EMTAf%<-vb1N*7BJZs8p9(Jrhe)@jPetv~LB^!S% zU47^DlSdLcc`BFvUYuaG`N8G%s_>v9yU+Ipb!X>E?!S_Dee0F0VPBg}CdJ$_y5rIE z=aTe{_|t_wDKj~rq?F5EIQ>{wFH!5$w$;vGp9lS2m#a8+>)(_JZyk?opYPptyS|!7 z|FE`S(7lSqImLT4g4j2%yL@23<R8v;5yw}(OnPLkEVY5@mG^J=yC)}f&heH|e%CVd zfGy)O?N8GW*YiC45c=wVMcl8${${Tv<w~c-tSOSw{2i3)SA482&qnNh%<-Nr{p|5E z(YOEjUVFb@v0ppebpOmJ4Rs%*yUR-N9Qm-R==cvm?TClU7y8%4ulyZp|5o|KyvJwi z#qVZ(?&UbHy7x$sbGelPtMfq-kMA50i`FbCXPLL8Vp{KS*FVhhLPv`q#CM3_db`N) zS+3U0ODT7rScL32eoHCij*#fp4MsZ-Nc@?5MfX2L`g_(JxBYoOa_TY`mHtzn*m!En zRIVAbWrT8Pl&gd*uBxfqer>Jq_CtTIu9$4nzol|{>7=)dV{iByMVodW`p#ZpTh)-Y zf78S4sWR~{b^n$h7ksqieCr?QhiBz3yIeWxzva}$lSwTM0lV(0&sfrUSb@2~lDRpq z@T2~*{|tP4!gbHSYkYiT&DI$+lP8^Ho#bsS^ruJa-Xo7~!cELaw{Nt3v|rOs@`wGg zs6#Oo-R>VnFaJD}%eTI0;u{qMBdt!JoZ_oba=uzhtgpXdCmnU~waz`GeSOb-b*1Xf z&b^a-!sHMzJ7>*xEf0AMf%P^;uIVx&N#EIHzv$H@ecaZ#Joe75{mqIW)tWe+-afs< z=fH9@Q}6KBbAB&w#e6-nZt{Wsk~OLiZwo(otA0evzp1xtzScP-z4A8csVUnOmxRPT zEIY-)euL|y^Ka`vW*?Vc_RoC8`SrHzYu10S+vUyd(u=s}d~kL#n|F8h37g8_`ak0R zKm6Fa@AC4CN_wGbyYsCs9y}pYaq0~_v-H*M#WxN`&$+ZVZ~4o<jUT05Ki0S8ZqXO< z<?mRhesB83mrGR|6kh)8w^<a)tid=%OyPM?c=yX+{)hLs?=ro&|H0ZYUn%Ry+l*JL ztmR!ZQAjd*+ukW6w&hx)GKGEGpF8b1EAAb8W^4ZN-x`HhgQF%7J}sCa)6-Fx#`5*= zd*!X=)9g2HKkn-my7x!>y4$WPXLltRmJ3UC8>s)4dY7ph;Ld(Je!b7NeqP=?``1r2 zIC6Hi%df`$nY>IV1%50)Y9@8{+l+qMDYsIJ^8%jaN4$L!9?_|go^rgrh+)0mhv~=c zn`ec0%7=frB6Ta~PX4q<*P^!>c==0uXS%EuV0oe>`p41q!mWR&?{D^RGp*QSFZ|;g zx37DZyU?Ae81Gcenp}@Oj;^aG?GKCe9C?zgv~Tf8|2GepRAe9c@baF}htj@<WtS{x zZq>e7@;a!?fQPG7dH3XVCuK$bEN!#R7EGIe{Z7u_<@ajdCx1M3A<OK;ABW3-?7mI% z-sV=xy4h7;Jv;h@YFHjy%}&d64if8gFVtuDGsai+?tjQNKe{_?uG3M~4NPbE#T4hS zSbbdS+ZnIr`yTn$+<h$1^uzk#KfcYoKB_L6Cp0-CnW1qVV@gS$$IdfdjSVLX3O_UM zR%i0&Z;lsuXOi6;?f2Wi<Iyaho1IJCg0<%F&`Z)Xo2pe5-Xqs?@r|Z$>_n~2eJ6g+ zKX!k6c}vi{e9o8Gs`M779CDd=`|ZZqcxSV_o6_zst`IHfYu$XC;rhw_Qu{Od1u~`7 zCNKY?f5=X`-T!j#G;Pa2cCRy2Gg>~a&3<}roq$Yhbz0ybi#79kYGkf%<t>S;czo#f z!{2`erM|@6ahKV)X5*h0_d;f-a2{_q1=f>lJALh4KZ;&kGV6GIP1&!hYbHI5&d&H@ zXv}+vInVKD_|y{?-<SLK2=90rxR!rqjrybcoflqw`{lNwMAkd9PkmO!*KKLlGa~=F z-OZKgvt9k^XVcxQGtx8G&H5hvw>SC2>!Xi#&2;5M_v|!^bzU;_&$X#Vi;@d-CNy3U zI8wwX>G+_g@o_Exp<P$+Y^qp&Fsg6Gr`+wn1;>?RH+@)mWW$af4f>A9xo_}X`+h{9 z>BldQw_9}CLpEMow`Ogq&^hPlrxoP2j87c#unRn`H9yYJ*WByfb>nZHx@&5UAKJPf z*tK@;+4~Kq`9Hkm(wI)gdg?|#`X?+i>Bf=PDTSYHq7Rp<&-%6b0e{=t<6Zft@lp{{ zKZ1VyY}P52@LhA#Bv^iC(vIy%4>vgIOmdgw<9Jf|qno|?PvnDV+xC3y+q~kg(37*d zOLvy=7>Ue%D#Nsgcc=QxqqQ?Xgh%bYl050N!=Cy#zayJWk1cqcrJN$6bLQ0K!rhk2 zeU+x?I}h&bd3pGe^2T59AH=F3`t)N;mKFPv%9`lKTlzNLc*ULbT~KIwl5>@8T5og0 z)VZlA&THRJ54*I^^lWL#d6^pX`7;;(JAd`=+V^6*Ya}Dr2`=2d&2W-=&Yc<T&r;dt z#ctHNZ@IKpJFWfrE}{EJb3U%Uy09yAapSK;*BL5rcRp=4Gd#}_zP2Lypw!myoo~Oc zjeaD0_6zUto4H>l9?fZG)>7O(^W@2MZ;W;xE9=WXzSb=&=H2oj{aD`f{kQHP<NllW z-s^+^5sNpbFJ?w$mX|fXI;|_ms4G6PQk-42+l$fimYeo7|BiZwe;PHud$#Srwq^I< zS|Mhe?^V^^r*A8S^PS}J<-MXHGbO`YuE;I>UA@4M>xZST%~YHE=syGR?N?!It(NY6 z#ayFY^QXn6F64rBse;<Y6DLI*Kk^@$FIW@3-hXLD{;~N<847Y~9UV<378cgIDSeOi zCvg8<E|X;U^zxjwsXM%EXa3w-{99SQZ4d9_is^12&mQYe(mm~3`Y2N`FJ&ULOyz2u zm365S%0>cz5}r%0pKlZTvET8-vWYr!HoT8Aa^CHkuk2}b|F{NYq*~~X&J>3w6E}!y z9cKKoetn&J4d0c2N;fjT)eG*CRqt8ydEbR&k6h;_PQ5O@D3bqHkv~@mr?p^2oWS2% zcD5DC2g5xdWb3LQ+Le9B?DW~pxlem~gt^x(5=xYsBe3GYe}<Bzy`o`eTh8eGzH{X7 zto<4D+oPV}TJ%A8+QM%;9tLdN^(yAP?3A^WHgRVkmYLYeE^YI6P9n#%eJ?)5zh!^a z>z5tR`{O@D%*7tV%14%4Uhm!HFfa0!-GLA*Pc^Tm?LwLox@Rl@GqlyGu9v<4B7B>@ z<a%AbKPN6;$n?8(u%xfyZNxeu4si>KV8x!v-`lHZsUP-lF1xjMed8bNhimJu{ZuN< zU6OS#cTMmjrZe9jxtgt+IM3VBSb^p1x~x8-OZTszS#jv~j8}WK7uKCFs#tV9;)Ceh zbFC}(ys|s@^bO0K!X36t7H6w05apY1uG@A}ZEyea{NEurUtE4Yk7L7!b=x2A*k4xS zdE{2edTHT*>(4|k*m>}PWT$@^%NKiwn)naqZ?`|(T5JE1cW=wClI>i^i7L}BMK=@~ zcP!sF<@lV$H0L=5yfw|)AC(_{Z~T*5xuWjkuGV|AS2)gzU9<T{ySjAjI-cN&lRX70 zPVQSxo2Tx4bb6}G)LA=!XFlG2zDex+v|01JbZdOo)+mHZEt{vmHt3=(TjGv+S9>&+ z5<gAzVc>g{()DdE)A`4Gt3O<K{@8y|*V*Z#?3xLZZ`W<zJu|U-OPWs4uHH$N313++ z-JLLj&tm<FEB_gqCjD6daN5Ge^oRF3)Nft7X=r<N%k^SkW&K}IcQ;0;Jt$}VmbB-I zflPS$`ns$8Woq&tuGK$s&+hX2FA>~3TMjEPXxujc-j-=eYApf<?+-lZZN6^aGH;#7 z^|>bfm+q#0UAs>{=Joz9OQPC(nd4519^E$C^xR_QeRh!#cU*QU;^;VeS4DLSQ%Yc* z=ZD*m+7ImJb&s0-Fuf!E=qIOzYr{jQNl)1{*`ng9nW4KOpMP{m?3KO;AAjCoY5&&z zW4y<-#}B`E1c&w&_2+$`es<N;9T6W^N!<-uVSo79#@ah#Z{z3H3;gl_ol+zDG3dwg zW9HL;y_x>e=w$Z7TdqZqEKdGs=<lA|b2j(nPtS>SJ*`7ZtuG(6%&e_@%y~6d@UP<! z^?)DEkK*OiAE~$He$nopYxRtIZKk<c@FB&YDZlk+XX(D5u>I6YnGIiK-t#cpl`p+r z!@uw29I5#Bnp(9jB`>G0|5EGvaEG>#kbSx7VZDXSo9l(W4XhnF&t?B?{o(qbfz|Vx zoy3m?C)d6(uR6G8MrX<Izp3ktg%<{`Ew>SjKd6u-p*7ttuqoV9?()arf83=Xiyyho z&0h4w{b78QZtA6HeUEPadd2zmu9sTtk%=dIi*o<06j-%s+fRc70(_eP8B(t8-_<Vl zA$l+W3+G4A7Ov}V-Sx5j;0YV|MYm#)7H6)0x#4z}RqOVfw@bo>oGY$vzkPUx^;({{ z^L%q^0<P-j?}_KUQl}})AHRE>xM60Yjrg=rybIXP%<p+Wo<GN3>(Bio{{Bz2AJ_j8 zS^Vw8kHe4MKHBa5$Q<<HjJVlr!OJF7wr|{0d?K^VV#getnLj_<Sx7s5@^6U!cWwSw zgWbOF@jtp(zY0`VG<c;i`gP96<2_5J?drO7=;N-2H47cN4^60CyYfk>)c09Co6cxz z=GEs-ynoOAVXU_IrG0V-Kg#`7Vh#-0s8qRR?&s(mvDQu-EmgmnoC*JZwjq1@rS~>& zcH(!`=C9yyz9rUO@Um!DkLD83oKKIOLgL&Db4`5WpJdEfR<!U+)7C$A+y978|8{5N z4{!N{_3i%*<{z^1pK;lx#(K%EXd7?knX*bdcJyT|Ztb*i`8h>KS%ZOJ=fZ!6{Pnlz zdtSbye`Ic4$rO+EVhc88DK>vQddXYN<L&J^VL~Tg-Fy>$)OD@o->I2$h8O<GfBTz! z<epLg@q+HsX@{PBZU1*}(#r`?j@w>6@;Tb>=`CeLk>GQoZrW${|1)I1uIH&ZbS|F% zht+?EL*Z2&zh#1aGkUYF=bZ4|<vQz}<rU^mzGIJBHY&(J?LHL$AxOS6jwRMU@Wb~u zleOkYwuKelj>|HecInpI53?Dc&pUL=b<^i_7i>NX?RcUYs>9z{@%-EVzsu^hvV`Uf z{5Tx2V{^{C&W((BjB2);9gWX8&w6D}vdYBBpwn9SJ{hm>=nA{@_vhb@_SyZ+cU)$j z@7@!<?A1PnErlER9NBjzsk_`jWg|zJ$L00YO%zg|Sbbg3@x$=9<B#;mp-Va+aIbi? zRcOaN&6t%pcRw?V+K^h<SF|SNclhV-b??M4z1nqeo>JzW-LbcrX5V@K{*<gr+4Ff; zpJU{fugm%-btO*igV@IE{M9!!4Q&ectlhng=hK#4vHI@hsmiM+U(dR!YkBOq#~QOt z4ZE<tmw##e*#Dn_<=Efpb-J-<A1goHX`}v#yZ61??g!lym)!CB^t@)$t;DxW(sex5 zl#2Xq=KKrz<Nu$bN%Li3MdMdp>qpC0om$vswsUd!?uO+*l;>H`aGGR)<M{UV#vj)I z<BI(4R>Ak~o_yB?*=nC&v)OY^FTXwI$XIhiMO&oNtz6*MaU0E}<#y)(8JhM~xYb%E zo6TM`x#+BnQ(<P(f{9HB-=(|!N|<EbxAmmcKCAAh&DN_E3rcH$Du1s&DF4BizcFh5 zAHh|(ADn-4e(lNs44kghdrIzBhkuOQot7)~>{r4x@kh59wN8t6-B#G%&lk~h@2tw~ zIX~17pZ}r!ZtlYyOaC*pwQSsY?MrdiCdbtomt%AG%#7IR()CZ{o<c)jq)?>exjTBy z^DoE$P<3xfySP6kp1a2L?~<jBCG{O<%E7xn%<o7^-*xG2vBKt*KGs>1i+4)vaoy>7 z)~UjEN<u`|{7C$*$NxD0elQQ19=Y}6R(n3r#W8QQtE;C^_Sz9MHQ03O(xXQgx}8WB ziav7lptZ-*suJU<Z{PBZn+2UFPn&h)&*dMP{~34$f1CYiGnzi@TF)!qB~tdC*B-q( z`F_2un54qwV9&{CgFhYF;1lv*F*%RxU(b(f|BtEvX68Tcm#nBiyiaA5+nkrDb64={ z2e)y=pT5t#XMgVY!nyZS(%#)KyQ4LsFn-E^2HE-t%l<L_=zWyy@zPGV|7e-N#-vl1 z12-B*A61f{c=(`6$3geIx><XRB*G8WY5ZNgPdiIaB{%xeF1e`>tzVXHKD(@T5%=^I zNrz9jZIpulXsPtM9%GD2+dfThYiL>V?}(#6=U++hF^#_&{6KGWasILzkB`e6w{owj zyHl$A+vOJ1O6w~pO0}!s+FGwxm@1?BV!7zuKdygQ{Ly@5&)jLloBQGYv3WvQ6{loz zu83W_ch1HKYZfls(f91)r=m4$-kwx=%d~%5K700mh7UpadnR|(NuPaWy;AT@ug#fl z98JOB_g(nUkbZzAnR7zrp;_;@-2b7L|3`%T(eGEykFL$HXI-LvZr*d>S>7+!$+=li z7j(~g`mG_lBq+~@_xYq%PkZ(2;;%2f>Mp!_+y3ik{?7by`#%G#`rirqTQc^9f6PBN zYkyPeTn^7<x!H@d1bquG9^QVsB5~uiN5>v%iqt)^-7={)#z_6{`g8HJ{}~P*2>U1d zVcPD8{Y_E4-+R}qTbKMzKbpBLvtM@iqBddIq#kd@(`(kIN^i8540T98Tm!l%LGC}p zq54YxwypU+*X)F@yn7tT*I%2ia3w`0J<GXjTCkb)dx^z$JI+<EzhvL|pW%bU`$l`N zl7of69cnD?MfAIl?Z3qwRk65IWUAgQzqL<}3LLlSDo^Ztdo-KJOo;1i?4h8^RrT?e zf8NzN|7U1gT7S@`K7021H<G2+Zxa`6&o*s7RAo7J?Y@`nZ?6^F-Vx$SG&?I`^ORFk zUVT^Hy}YMScl|geF=xW3A14fKKOcO4ZU2ShL-!f&)AMhh6hA1>T@$+Ehn1jEYg^iH zw<&Kd967Em*wL}+t0wOe9X3C!@T=GMng8&bwsFA~<vFa(XJVaV*B`$pzeh%H(WYsI zZOeWpdPdkz^~|gPf9=o1kKu1^e@E8@U&{O9-(@efCws-=>KV(7UWb<n>}tMP(><eG zyWD}pmgBhSqp14k#h15c=9^gR+<M`@E8foY*^WFbgWi3KFL!@knKu8;whxg%Hr+b@ zX7+aZZ86-->UO3EiU-f*Ozii%bSc<(N8j5$vPIV}=CZiw^B5lA(Z^6MuDo7hPWZAZ zO6x^x&97w_-8?ztS6cI;Jxlj*&eL6&HgV~!2pt#0ney+=XPVXJJv}UDdh5*eDvijs zrrN!ZZ!b0-ws~?~=o|M_{s~o2{VHF^?7g;gwsy3=P-ekwjjB8GUXxgl-_!my|Ji;= z&-B%|JWIaSab6L-r`9_^cj^{Zh6l-KINbN~6~AumIuv?+h1FE)y{G3%edL+PbtShZ z{6WG#sp|<lD&M}}k}dqq*`(op$;`KZ_8Yv*J>PKO(30iJU&a-6*FcM4Zl(OPTl}&3 zSk=-gC%7H%Del-BZu8-wDxcvC4)z^3;iu+le&p}E?&NFrae3Q4N%N#f6-R`O3nCxg zb3bFfO7r`A^DVPIcg~A{Gjs9QIqT1Sn`nBB(Pr+OqM6F`XIwXp+EDfBRcY{Q>#TFr zoj#T~mvH~ytL`^XWdD`)?Cu#CW~xs7Zfw1I+hvs{8`D*$sXUqFmwnAf`(tw02i+&r zXZiFNW>0(`)x33v;lTuc>yLj{KbxEEzx&@=G4pSqVvkAd+q@M?XL(+r%&vW#+4l3i zEPnoM-vwC$FK^lYxcYWMXnNBpf1`{8)^0bCMcWiU%RBkXJ?hWxjvZM`qs|MvzP|Ch zX0?6$hF|*>Gw=MhySz{N=8xt6vCe+GGR>2VH=Ne1Jn;6of7bTpuP)q;vpM%K*~w;u z_^KxRmg=u6wb~E7{e>o0n*L{KcsI>anYl1kBc=2>`_sqlwh}3Fd#*2x{8Mnn<i%of zDerdYNn#GtH@^JbRerQ)@=7cJX-oWO&5SqS>v~r{<1XvY^tKAG)dG>yWfEm9DScMg z_0>B|?uy1luPIcTB%PG2EHi&L%g48IjQnr8v%Y1QKRwm(d5&P?{pLBv_tj@TDP7-p zPf91fPx7gX@CM!kb5iE-V)HFa{P-c~!OAIN+Yi<HKdA1%`T6nmzAxw7;$=(E1|N>% zTVFJ7{o07A?vpvHGkzA_$xWH)w4}#;vZQNJl>Y=nd5*ek`#0<N)+gV;<$Y9s)Ayq% z7XG{U;mt>Hv6V|BC+Dun{GOGvabL@>lN;501Wuft@zhiK&O_(@*X%c?O<hrU(O&+K z?Sq?N=I+Y5?(se0T;MI1gm-Lr8;cA$S$@lDzpVeEH~oNq-+a;i50(VHs^{IqyY|Pn z>qqR^KHMqXHaoerIFset<oE-Mlb$MNXUt%h7F1cq_V$chaeU;Vm|*$!Htc47=3h2G zORq8SXp>Bex_kTluRDLNcXWpf+Z3D3nxk6rd1;>v^OanW>+5V^%lrR3+4uVFg|w}k zcQUm13Y_`3gC}Ip<jcyrb;~Nk|8dOz&%mm(|Kk0ladIE>rY}D<TRB6|v|6!PQvIo# z#GX$ptah?&TCcUHV*Pp>*8dD_-~L^@r*&cWKXL!wJ+=>iE+|&oyC^O@bxM!kNd>E< zR`wMM4(l&!r%BX553>uK$F=;Hy+GoQE4jIMVs7i+`l?@Sl$&_vk%@!*1LH4i&zkA; zZTX<yc2zg;spN!+Lp?_9*4>I0a!am%DgSW#AMcG1{Vng^)_y$xSnBn+ZI{>#UX;lv zS91PitDfC`lY!yko()S%+4lYXk^P^6Wz&C#rqn;Wd+iiIrXRlfCzI>xp1nntrP&OO zKfR;(DaJHTe5NMSGx^@0T{E|;et1>t%=MpP#y<<a)cMYrm*++%&Eq(EU-#-ErVyS_ z-4Zf#hhN7YKlq=4sbc!K&TEMu&cC_4Fe^^;%3Y67HipY*Up(++Pe+?YyW_q{LAOdv z)4#WWlz%J#+rLM9Rd4=-{zL0oZ=4kISox%)?68_~o8aFyj%pVVFh9M;Zu#K)l3TBL zv3Kgu_xdsO;adB{xk)xBl4jiuyUQ|DI$`&gjKveo?igyV+3|C#<MT<&3chUNYxkPF zYyazwe_H?8{%2^itv~2#lb^3}ZJ$g(UuL$}&&@v;{bDJYd!}q#)3?gV;<>A(dQzVE z)%)9lZb;g{pKA+m)a@hx8Mde&byO*n-y>z;s`L1A;;xiCr#9V*=Txl`{JzMeTcG&3 z=<nU@U(9;9{b6>su9WNcE|xR-T%8Y6A7`6ng`bUMKedU;UF+uS{#6wdDs<I%`I-kB zoRw_N*ZH7e<h9%Bq=@HpEir}n38C!w60iKcy76o3yEj2AMXqc8+gENsrC;{Wk7|#P z+cq!CnAN-cR%CpPbKbE>n$oA-wdEoN&)rFRkn(I_&By$%5?lGBa%r1#pY}fD>Q(Gn zVCz?S;7|6m_@3`(;q@YWoK272{m*b~`_q#zBJP}=zmDHIPPcSbrkSwBwG@kE4;D<a zcs-}&ZG6vZLA~^px=oujK7F>7Pe1*U`Qc$NJ(g>Qf`7D(Y^xIbw6Bz$@BC%9u4Z@j z>XJ%>i91tW1N$HHHqQ62`g3&Gb=@UXbd(i$)pM%LZjKdi`f@k^SmEv;S(ly%_1i`N zovN}sW^&`iJeAWz25jbXhdQpVyfHJS<oh$b?;rPkeigrS=Wpxd@_)8eCfg+cUh?r@ z#k!)`$LEP$S{rqY?YH+Ec^w6obCxG9SbjIg96$X2ruw%zAD=!cvlIVO_~`b@`PRu& zVvBQBxUc72FNi+c=WhM+W&8qr?)nFl_HX0wNbU~!nBQJ<p5;Ab$49x<xuWNeS=^P~ zyK-0hFJtw>IUi#~?kUy1QTX@l%+qNPGwbD+?wRfVkN-hkzU|+C3x2N=eDv9{fiunG zopIx@@IC*|$mxA#Z?e<4ee<l@%2hV|_xc+9epcTxv5i4V;^2h!I~d(-uD|1N_|NcQ z%6z6e+1m%#|Ed3&w)T;#$M@5Jdo!+CS;_RC)P0t=^VHvKii>2P_dKXu^hfiD{fFrf zj<=^@tP^^{{ouFvgB6>7nzB7r<0g5SN1s*R@nF6|^Kq8zOWPh+U48U#qqg4u565}y zbPgqMIdpvH`bmFE?J|E9{&tS9nC-OVN8rcJ2hF8;=iZ;5Gi}%6<Em%REY4>6wDwl+ zOli-1rw%Lk?fA~C{;+p?YmIg3vLBYYf3#Ql8g=N^II7IrBj~K~Q!zp=;#rq*Pt&;{ z-`AawYWrGaUQtucHn(=kt*LXkr6uzp??^Cy&K=@fGSOe&>|0F1v3(Vn>m+LwKd$e2 z`%k?_ZgR+$D@i3*En?fv?Qc%s^Tf4!`El*s0={zX;|hn`SnGnnMY@H$v-{sjyf$z7 zk!LfP`lN<Ot$(`k#jSZ;ALldu$hsZ<ao$$5B^&OT_~$>A)+~(>XYO3O-J|(HOG?T? zMZcmaMHaElJ|D`v^>zQ0f4Fq*>l$^>N3*oKZ%<x+!dcWVck983D{C6WB5q1s2KTw9 z{PFzppF#c2;}!LX!asJ$T=*mVP&1AD?@B2SrR{eo31u#tI5%SM?wT8y=Rf{>dBey0 zgXeGQ2REO(nEuiBi4bSWPxb7ECnvaPcT4Xz-LTQ_{ywz=$HR{;*2j99FMB>~!KK~q zsmn6{Gsu`MpL8~_#QL|fNZ)rc!LvL^rxbHuPW#Nflf8F4-*OfKi#4Zn!w<=s>~6Z7 zV|rqb>vGqp&+grOb?Ai>@5c9=Cg}KeRT(?Ia5E^3JGPJSqtNk;S-wyA&C5+bx#e2) zTe;+(P5oPr9g8@T#P(8Yc7svz<iLu@M{m`)ZTb4)`_Z$0fypb}I#pUc_2zj#KPj%l z(I!2QCx_4aL074KFuybN(cVY1qYwNtJvKY(>;|>@^%~o*EdE(kwz2YIj?A2ioXmZD zE35B!{1d!f<C*_(ea9x-tKa87Up}wyxU`+kR<Z4Yp5n72c=WCnEnbzv^)}^4<+9_8 z@47zF)e$Qcc9z@lIW|IT<;jBBBZsx>0#s62nB3RKs>gneYhD=lI$lui(w1m#ch<>1 zw^tl`<rfy(Ct~zevQpT6tEWoIS+(DNdcWD0<xKXR{7-PM(pCMQvpU|ZY|l*0vH6)6 zl5}TVU9q&rE63Ln*Z(t!*pxmz&li;yr+4Me7LFOG`SO(e-d(eiZLGU4)Y9WQ|L)Vr zY3$4s3No(6bJf(Y)$gg{U;irSyU~*A%6=0((~DMkzsXMf?4tA2-o%&l_3mZbWk+hf zH(tN(vh%~#t?Op4@lxvhbnmOmJdFas{0BQjYUJ+4&tfYQ-{HG{%f65Ioeys9Z<Euw zB2v+Q(CY5hTQSE@%c!OA+aAeyCNCxTvs=6Rzo`A&y?(wwZqHh$_<Gv(usVDGrK+2_ zZ?1p)yzA8sEwj4||5ZARsmyrNT4X%&SoXWK-hLm<I~MjIjAQ?3dam2NeVS{=md?b+ z+<Rfxe_neAI2y^!-_NNqDe%fw>-{`GF1uXNd6#-I>7(_bhM0S|@3<!$B;0i7U8tmf zr+tDtPxS5OAzHV?k{*`t{Biiv`<w5>t}jep^y5`-*sUU)6K@ah3YuZPts_#|_w<AX zD-Qk=j4OOF|Hi+or3=$c-sXpH+c$IVnU}wR>uj|6yfBExg^ycAYw?dwm46pq&D|$; zRQ}tt<+)<h*S<FU(Gzo2blE~FZP^<Fy}uh7>Q6hrt6a}?ttN3rjopqNXaBxioGrup zpvk*r`%a_O4f``$)VQAHrG!hKRBy1Z+ia;9G1E&kFZcuho9YkK9b0QGAG|(cve(^b z>X~WVF1prE+HbsO!p8egpL}vY7QS3o`{JI^hq=~H7fW7jiD$c$eSLc2$#2^(t~qr~ zM9$n<`@~U?#~Hfk>hh+3{I~jd%8!R1v+nb~ecUH0lrlNs>}g|%qD?x@r+bW^H}&=; zJoy~8OaE>5$L@e>&m*pEUA`sz<>Q-~GFdNqybtTJU9&i$AXKPrppvqE$*ESi^@Y{0 zo2~4H|DB0i-leN@&4xQ&zJ34JMX7z#8$Q%*+{r9fED(5c^XJMej+Ya!KbkL6f6%PX z;Hc@>%ico1MwM;3M)$HKms_6TmHXRwx8PvIacTFczZxIK-}--8ck7ld`=fa?3)kIh zs9C+&!%g|#ot>@Dl_&e(%kDhRE?WAZA-A8sBHeNOhwq1fF4;KkipR&Tr@X7CC+<t_ zIa{n`ck!Z=*AoVI$FA%ARv&)^&h<~byQD6<#_~TyQ;2=f*Nyz$s`F~2IQCt(5x(i4 zTaui{Fl}1U?kP+nQ&fuQSN#?KQT?BR<yHH`$gO)Xn*0^gt~1}VB+75;#<s})RVoU? zSA&-^KJQ<$<^FB4dYO#)o9h0XuD(kNntW^TK@Wqfb#K?rRBqbjwRld-H5q%^1wV3` zUkiC>KlrWvWSZ)hT@#($g5Uq0!uc#@qPyaR2}TvN+Er6mpLSQaSfN_6xb5TfH=iHO z@c*M^r_RrEFaMq1vfr*ta+RmvO5822X!&c~qXNhGAMYR8-!M=3!}QLubDxh!`AE&( zm^Mked&72xITQGAF8(aIq3-vJy9ZvMty<q_Q~Ic0Bt}x_Pxi{!)2?$wX;<%fyla9X z!!fapriR6H=kL1P=c&HFy(0a=_apN=;#8&Ldre;7K3E_XVjj@BP};3r_d-xW<GE|v zcNqM=TPjN@E9KrgvAc9l{P|>-ThXs}J$-U;;m)SxC!;$aJ6H<K>!qDfS{L2tS{b(R zL%;j=1$Ihe+x6Qj0>AFmQ=KQd<Ahw*nwBQ^Q_*rgu60c>;u+K~vqU{_-{ZI}`p64W zlb4gvY@U0l&-aYQH1qS4XBJfPZG9&%^kyGN<}K5GQy=%U$NgAz;CAi8_d)lf&)VHe zi=P?c`fpO-j{gkN8#DsHw>qzxEVbb2qC0=YKI%>W=zn<oS{bXxK7pILy{4-SB#!@@ zD!sWUS9i;|*CBhPAMx5BzNgcao9sPH^PRc-rb-FNlCzT>ZcLiD!?xVuvFLAp{ljyG z>{+J%$YjdAHeG1Rwe8z4pDoRsaDu_`&~_D{joTQdJ#L<4__}`f`+rg~D&N0b&A#ES zyCCwhRLrE<^LFKWPr5?++Ix7H?k(<m8Cuzs>g9P)UH8H7_r25EE+5|2wmf;sOYxl0 zX{=o;9gI7@Z=c`0asJ~lRZmG~b=m1%{7rk3A6ZYbiC+7k;ZW$_q|ds~qBEXoeqxvw z&i&-n-1cb;3@x9l?OA<D>=#Sam--LuOMYLrU0r#7o6{$Yl#G)KKet_WIqEIfztgX3 zetf{*YxNnOrMsi^`CiVlid=gn=s0uq@xnq$-l=7iD%sC9JlATLP+^Yn6TkDa`}g^z zD_`TgrF;U9Kgef2T)b>a#$@-B3*0l!nbrwOdiGwI-7fZgg2j^Az8AjO^JVVi{iwH@ z|M0h~Pja2Ob?rEE)bHH5W42MF@|oj-wDWOOPRBAwU9E{%oBb$X%53(!-FctX3uTv_ zTOgp^RkYEJJuvT1=>gl?-?1OUyL1;?rOkhEI$t>R`h{j=W7l$J19pYmcO<UoS(y~I z*-j~cmc26b*2#JC3v0CZZU69Wd2Y3doyA^@-z>QtTlsk!*do<bA4%Fg|FJ{jRrdT3 z%MbappMGS0Um&ZFXZ}H}XPwMTFK3C>Cx`SUwkvt;FE&bL)Z0^Hy}_;4Jn*8aMveZm z3iX3kf7dsyd7L)y-mP;Cs`XpyJ{<aX-RJC9bD?A(1C@8{jQ%qmjhf&7$Fef_qZH?# z$dw2FdEL%DX%IcTMr+|T>E&D=2UYz-7|d2KTk>7s+xV289sld=;ip$*?$g?E-Q?#I z)-xA7xZPeI{%&;WtaQTT2IHQObHXQ8G(R+NUH`{J_n%&5e3b6d6HT_xZ}bag{;X2V z6P@S6@>sf^d2-`X=ZE)2qq6Ur?Yr_%w4&_%;Y$v3x2i2?Mb|EK@JMRd<Es|3;Ydn@ z*%Q9KRT=V9?@Dj9ZGF_CUo!K~)+=R2-pfyNO(^J=yAo;m>9Oj;la`M~muN@374OP> z|4-ul$NO)JANaScmZp5Po0zENR(3mE`7N);ImgdRipPDl6%W|odmV3D<NcqZ#qK|Y zL$}YyE63K?7rfa%&1}1GIiumm*k||tE*8?(yRe+~<J>(w^Fx1ZeCW?=x8m$0Q>nRM zdY0Vtwzhf4)wJNA=N6-NcNmNoPnB5TsQ4q|dXe4or5T$&D~c}OiD}>0qAk;}vmrEi zPQsMLzUOO8gR)}%tTq;2l-MPEZR*2%k+b>v4<BZi=g(N&C-JoV#NA77+bz5NjEp1& zzN>J3jjr$5FZI?`TH3=VxA2J}L)2}D<mv){>D&i8>--AaY8cO!?GmYKZ-1EU|0s8r zg+=SUulGW38GcqNd*hV6QOoe&-pLLh>l#-@ZJ8&yb$-wW=`f93(iM+Bv*#NZOiy@G zuI3)I-Sm1;_D_%Hnx*N{5B7KM)BpJ9<inMwGvi)enQZ*3{>9%SwiAog6WQ%+-DR5Z z?R)Ye|FFI^x5v{xoBrLu{ID;qTyXF2gHOME1cn7fugMkO%{b|xALE}3&By=ge+XO3 zxAM_>&NT(M&rP~%wd$UVkLQb{Q!j{~I3|99Ikw>MZX5ZB(YsGxKf3wlbq|Y;zr}Aa zR1n<BBk<GM^|+6h)5nR&vd^q+oBSj2Wx$$g?eE1Vf0%vD%D#2W*<}BZ4?k?kF4QqT za`BGM&fndIxmJ>W#Z5vfg%{>r`4*>f*@U0}?D86i&G8-PCoQJFc@)~G+4dlDdfGzm zMx`Q&%AG0=4JGSO+DiZ9n*C7v(RMlU4`1Ky6!ALPVV{y<aff$hMpP(!1M^0kgre-1 z_O1UJwyxXzD4*AHS%ubL6K+|*u=#n5g=RJxznf+vY`BYk+u=Ry*w_r?Qa)@I&Wn=W zI4kRX@az8!tTiqh*pE#9qxa#=Ki(@(E0T6^*?m{Us-|^@%7$C9VokPZC#z3jI^h<> zXS^W)pH^hHLFAvnkNc*tdGTKO{mv~-)zve)crQvO>8kFTJ>#vhvYTj?;xYc&FXME7 z<lItQTK>5EMCsS<4*eow_p<Lk^n1!#y|Ge4I)$;wYSwcb!S#O_rXLH_{c!lOxs~n5 z&ZlDHx}_{e>n`2yn``h}c#8x3eU8TxDo?HnHs{CMuQxoY>!%+3W8rVJisZ1a!!8#} z-!cbQ|1R@<d*)l2_$KWYu67~$DJP50ZaDtwtkygamE`Rouik&_x;{(1sG`{E!rL$1 zTQy3ofAY4xeL9K%mv6@|9`hc4GZsq;_2&6r(+}56mF)e#>)67FzkhSj6uo!p$-Y@1 zowZX_IGO!<mf01wpGq<?o*YwuWcGiCoArn5^mkm@<6pk+_PvhyyuC}ezMGje+aSdB zOk4@i0`t3ba+&X&u2ET=qM28D^m~JyXa%>+#*gcd_A-ZG`ntT!{{G9tn2wx78ak8j z-|SS1F)KK;P=;qt&*N)0vgwc33;wb4-rp#`?VmwJ-tzdj)z8|V*=~|Obmvagnt;^{ zt(_~QzX_!9d6-^*8NbE6r{p}xORMV#Z}-}VbiPdvzqYmX^s6=d6{hMhiq|tsJ{H8* zGx<>8)KAxs=HK%6yJ{o9CZfh8@Zs;!eep)Ta<9)#d*mr1zvZaetczZ!jz3BI*rr+( zp22b_WVWiG%(m+P4DrVP$D`KGOwM0xe*9##>+Clhw_bU<GHOQNQ}(O_y$Kud8Xu{D zzQn7bptaNV=i^8Ax2JzA`mnu2*!4%`s*1@+7HQn^&a|H}K~teMBV~qr$<pZe+SZd8 zSad6vAJ@Odf1rF)T;?tJ-hDSkwk@+*ykGFN>6Qfy5~h0$V+0lyZF+amQf1!$Ss${0 zsdcZKTkf;@-~Ii4g$8@wGLw7ee13Xb>cPentW{+;*LOD^h`(3=q~MWZ;MV@Dy52|a zOnw}T+<Kom<GYmV@hSJS`c9pC_hy}^p5J1bAQ|RsN;jUb7kw@-WXJaJ_<TO)Y3GmZ zQ@gxiuk*9hNz)d+yE(B#cboj370Qb3lN=?V2wwj@KlbDGBj?3q=UTphcHvr4k-|=E zS;L;%nfF2iUnz6&7gSx>xySZ#-;U1Y#k1E21(f|~SQ++ncVcSsoc|1)+-kLVS!k+$ zlrcKux;o;!{w=oe-&C)g?6y^Z$kx3+`tCvFlZDku7oy#*S`?K__ZS~jOw0Yxup?xG zD8oK;=8wM5CO?$^eQokVtJpjByYD#uXYkZ{+@^DhrOj}j!P4-ap6i$IiT>@fQ?0mn zDSL&EOMuH;VbeeFvnD)rHvgq|AcFB^jX>q$vh}Q!o%VmYv)wALAxG-=8AC}0H4D|0 zQ}1pG>;F6PU|w~&uU6saz;eS?YjgSHe9eP)Zi~==w8cgFZ!~+^p-+sVc5&7p9&N0D zH0yG%@7Xt>G{Sj)Z+G9kA$G$YQQHE~wa>R)5;&T<X3v>>No}`hJG>Hq*A)Fs<=bNg zxyn`7woUsU9&Mv?X5*=&+ZIh&YIyH)_KG}<lfSM_T9hiDR$N#yjj>q&o83*_k4H8+ zU1&`{am>%(^5=%Ssb{jxuYbR;m6y^gZK1?C?dAFR#+T>x@LaDfUgmCk#5h}<g<JE^ zr_ItUxBcGY#q{=_<u9)1dt4u`=Xja5YwNnjJpU@~qP)zlC)EXP=v^+~xS}Md<WPC_ zyvo`_=KD6{+l+0G)biY3nj_be&%^Zia`U^2bzQpR$Ly3R^7WRBoI9Y=p^zSy-0JFZ zdeU8yCwxCdi(XwnrX&=7+S{FB?wJ)kP8{HFdj9ubz0_L0xeH_N%v2X@2~~1$;CO8L z#<}P78^gY>-3zv-ZTAkV)qkje^Yu65OEx;D_iyPxI<{VHZ@%KW{skFrVu7EYNiV;W zd|$hbU7xWv)RSRy+xi7I>c7)p$g`GopXd2^qMqMIeqqen?dPx0b~2l_WThmNvGu*P zHJi<hyme2q%-?0i@FV`<Exx6XvbSE|Bfm5z>yz--g$<HRB%X-$ZlA}-%^G~4dE>7x z`<u-U+phF=uF2ZI%k=L7k4NVItn;2vUf{BiF-74M+ZVeV>%!eMe;?a8d%Nb7S<8>S z7p<5dIz9B`_m1Ghg7<t?KHZOq@?3Jb*w7+T_v-wK>02vRPD{R=bfhW!J?LoA4<7e# zbw6frH@V*{&u^;Fbw9IejnZr1{a5ps%+fw_M}D64Zq=Q|(lY#J7LwtA7Zup`?)mZX zx7)wd@qAx;^&g}k{>#Me*8S$!(sv6>HcEFoga%7CnfHZFe=n$eXyQ$;XM2K=+HaSC z8~>60pt+pPbrbb%Ter;dl$|?k-CP;HqM93eC7BAP0YBeWp5$)wd{R95pVY>^R~E0f z^{W4&y8MVP_rpg&mOl>Ndw1IowF<r5lH}r52W7lG`YNKXajai1#AEEHdtt$e(=zEZ ze+2&KtI@c=CtIxf!}Z6qYv1?i>Za_k<@$7T;oj}rx*4BM_q$RvdrO<{!Pq4S!Yovz z-t14;W&ZY`;m7Sn%@60hOU?$}dn%|?vifXI*5m`BCz;HDTgPa7_+5*fmSn*7dCuR= zhy6Df|KkcR`FQV7^@ncnWe)E)#J!mHbju-z@NA)3YsAbQ&EByls4LW7D$usLwwmqd zEG>~m@3wvU&(QoY{enH`mb2my{!Qnb``f+7<w9F~<<woXp1m@4a6I(vT*l|E+Zt?U zO0#F1ODeyyXa9H8exrQ*`lPKN)*p%f?y)p2TD$w9++3s9!%DiBPTY>@S=i;0eB*KR zPu7p_|2PkRnC$qG_v!kEJ-+MJyV4qBPJIi1_3hFV-roNV!soXdFO>BOSfKD+;jx_Z z!}~YdAN_saqx0;_mTt?nxfgpjyu9pY%Gr6#SaFtVXLIuJi;WW&JlZ)|<7E7dt0&ba z{&jnCe~WqRKMftRC>N``)k~d?_81yzwQ{z1%#>B{FPh4;DX&{4MWE`<k9GeU9@cI? z`uMMZ$o@;EYV%Le(zUDH%I+38X}hMdZ_cV}kB_Y{Cr|GB^WjJQZ<!j!3x6c$DSfnC zzplpM->I2l-mhO@%+}q~C%9)xSK6!-x2GTQZE=baW%+ZU`uO4h3|(?|AJ(_7FWt{~ z|3~?8>5F}n<@T;{To`}sqP1pq=a(O)(v~i-m=)dJ9D7f2Dpsib?oIm75L~YD<v)Y+ zi@VZCJRjAw$r?ZSwl@7yZd_*3`Bf%PVWE;CM|<jmta_S`iSbz6KCp^+aZP%fuKMBK zM#m>_i?z<Heq1(BT5cx8ug`IL^S7Gxn@qoF@_}#T!;VrBZ}qENu57xZbK|7i(agLz z_I2AnPTsj>V)$u!!yB$Ka?(Gf4TRPE*Gt%+k+gANHC5qz@Z^avin3>I(R=^vKf?jj z*8OYiga2RuQ`9Cea3eBGy?tHOx1;WVs&C&`F>1U%*=FzW9{$(<J9b|D+A{0?QA53{ zPkC2eisL=dcy)1GOk(}L=a)9-o5cEE5A1vFG<R9Wu}|B}gBmQ4mASP>l)VfMKWgS7 z`NvtN=$>_M_@*uCrB4`)UQYgM@o4vxH|uISx2Kq{mAZ7!SLhMvn+WmvjS+ihH$I<x zX&<M`C)TvAU2St8Y341vGVR^b$3Z;(MF~NLCvS>0G*~~Ed@geOu5sA3Z_;nYGT*1B z+N(_NaC%ZN5~%e~L9TcHvdT4)HJ%Tn&$?7Z2bfKIy=mj8wQF?uymh>h@<=;i(|O~9 z0zuBaLpzpy-EE~PzRQ){<(kQ9>&TqE#gh&s&P?1s>FE>a^Q?0o7yQ$o{nD>G*ZfFl zrRf{-T}3$$m&`ulRCto3cc;Vq@6O>HU;by<y#1~7sw}hh5A)mZ3v5->_?<la(66;q zavLXkOgg4}Sk`>Qx3jgkKV1LEvHEw(pV|*^>`X3{tZy%SUn($*BkxZj&#tETv8OiQ zj=mY|Dzo!vq|cF+59V1MTC!-@Ts@(%U0Z*@sPnj6Q66$}jqbh^A5Nz&R&nH+?(=ct z<R-s+6;Iy%3a!wM4-ywL*uAZloqua?_w)6q4xf==o+t7v{Eb@ge+CxN@|Et)dny|@ zf3$Bu)-5=38l&CPC9Wdt7CaTw$h+k!E^o$WUGjGQBl{nU>3>Anr0+V%e3Wms(a%q2 zP}N)i^|y!W4)zIQoQq22W>h-7^H|xFthdBc_4-G90aIPRTi)8)nJUg1d}4tnpJF!1 zmU&BrhkZ$S{xUqMUihxZ`$eyURSa3q-_GTE*q+-XCC<Jv{q7gj-%}s_XZWG~y{ATZ z*^P?r-*)}j{cwMql<Jpbx6T~oiJH4+{f@UT*AjPot4zFF|M<@F{bf$mnN8nc{?BmG ztp35odiJ%CuG?q)XSh}N=#%!t-?Jl2=SusfsXXCG+SK_jX1lAy(TxXBs_ihW@G*7$ zePl^V;PG>_YbIr1dj2_kZC1U=gKZIC=30C1>J^bUdK9_#`{(AV9#3D?{#>uQZ|C0y zd8Mjt8DDtK?ysMrJ}t24^EP{3*^ZYt_@DpP`s4g#_kRW!;U9^MJr`CuKa{<HboT4a z9{;~Hm(Ml+o{-=9^onVB2kXgue7yT-Zuz{mIDW3ZsGWV?fp~#EzKMko^=~fv>~Qhz zXW1ua|E#W>{9Nj$T=X*_;*Nt#04LuhzKXj|zNzl*AB?V<?EBB~qd4m3J;VPDr;qJ> zy!3Bt$^4reUM;9e`?2sN)Ajh~<ZgY2A2!~qR}^|btSqjtapqY$%Vax;j6f0N`ZwMW z;*Y-<`f=ZT^Tj=^3-4uCsZMcJxNQ2`F?mIF^gbWE)ICKf!pkmC*1UIyGe_!Q*gl#6 z3<pC>`ENcu@gw^i&yT=|_n9(XLo7ZTnXO%Y$Fs-ybaieq|137q2^;UZ-)DFd$}d=d zu(<xg!tz^-`a3pP@P}PYnP4+3^m+U9i0FI<-BYieQc77Syei-iH9c-89(Vax;Iip= zi(aP}&oz}iyMOL~2L2!FU++HF+>=~eF5mgbws3jo^|Fs1P4^<zwuq}Qc9lJ2EOCKv z$24)S!V~A*@;mp$<}S{fl{&q9{nAZ)cV}EOQGL37N11e!d#U+5wR7)xEuZJ{+~S{3 z{{9Cm?6<4;)I{01F8C90)kNAY$9YL)bYy+Xp&7@gHD##HZL2H$oL-hxyrYlp+FsCV z>HiE(OJ11;W>&c$?S9L2qA20=n-bS;6B|#RIBD8@^0NhdLE<?MhU+;-TC20=a(z;A zOWxI|%nCpJ*XrE6_fZ#a{W{^XZe{MO7?WL5UO&#vo-=ciiY9~Go8^|;4ZK+q73%{p z)L5>pSbVfU`Qcr0&qD5)oA(c{j96J?F>zUk@uJ4VCNKG}JzlQ<=Xag@AFq$okL^Ca zHu>@Vj<33P-vf(vuk2d-_Si!1-L=oet_STg;QyxR+EW%&7#H|Zau4f*wTJ!~U3shA z9dLH<qm1nrBVCIYt0wR1x)(9+p`*IsxlIh7T8yUqzv=9sbwtPaSIob=b=v<K4tm-@ zm@}V$d3XH&ANRA(HZErizr4p<`*qK4d7ksjB6S)B?i8%PBYbb4Klr|q&wnTV5j0u; zAiizud-=Z$Z~Qzfd#q!^!;svWrXEUjXLhRS82SnvlWeUwxHfH`;`Ig7e*0ZmUux~5 z%JR#%_3cZ&J)&pV2q|jz7_dyd@_k)mjp6F-&Z1vTad&hVCfa1?ow~pxZ$8V(*uDRe zQLfw$)2sd(%jPaQRQmOjmHdw2`hy4SrAq!rdB^kCNL(n9HGO70L*e>!o@fcyN3rIo z6h6cTtn+tcpY@aZ(fvPSi~n(De#}$bdbv(9@`uuu-8zL8@gCc@PrP{WOmR$H?LPNI z6U-UK3g<8s#<Tu#KX6}gPkC<Pe+G{J_OJ4Shm&T`xOMw%l_Ep^X}9f>Twh*fJDq>H zzh~?0AGs#)c`D{uYld~*Km2R%p)CzPDsI|2#`5oawpkuC?p1GCEWSu2RlR!g^Y;QZ z4u4ms?wB2ze(|fb$y(*Rugs3BO!Ji4vhJCrC})~#XT*Ug5BR1&k$T@-pB267t?0dp z%T_8s-_lsY@?b)$Q1Yj<wGSW7Z@n+HPb#ig|JXmtYg;(yUQ&&X_uad}$mYh4iEEGU zNlLT4wa{GlzJ7qigFlfAV*c3dja5G$CAaut_w22ey5ZrM-hJ6VC-;tz(m#osr-5y0 z9UGWg9timJe=`%)pBWVX#aeylqa|yetA9?n{cZH`y8YJsZ|>yhzWZbQ&|mK5ua<qK zN91%rJe{|t$Ek&5I@g6*M~Pc&w`q#7u{PZCtFQiJ_@9AYsp9>iI+1RV5AP3h$4Y&> zek!EzaIE{5X)4Dad^fsTyGhb`?(W3-+agjX{;*GfxYs>s>-H-qr+=h`Gra9=-to$~ z@6VI^{)}~d^aacQU2Jom$$sXy6GP$kr0?hBqg1B_?VIRvHtF_{+xBZ;$N#YC{-%57 zkNq-vncFoEk@*W<ujvN+n{V4T*^1xD;L;hXXSzpLWM}k$Kf!SQMf#ickB7en{9U$3 zePzY@Z(dh#Jra6$G52evp4x1mc`B?EGJegzeaA^w#^8pJi@+)N`Ujjg+BTcsPSNnJ zbaPR2w|Kp!|GL`ldj3BaSM&d*FOT`5?R#b2o{&D))?<@d4u|&nb>*gPV|!%Ay6f0s zNtHQiJGGwfSzT>h5%TPN*zsTXH&1?K_P&(2c8^2y?#qk0R@*MgVZ6onSa*k!Rq`^U zn_rYR<!)KeTQTcxjVn*#i8q|lr&DI<d{SpIN&M!~eX;Q{-+{8v_iui>{%yjQI_V#N z^4+)6=IeLnZK<x*fA{6*(cQYY+!lE}-MVYSt`p0DZ$7=F`NVqf>o$UHi&sS7_|f(1 z-RTf#?L&_qygbm{HnHn=dtd6CBddiccs@6M=IUu|7n@r&cgj4aOEtdVtYbw}TOTEh zew{MGrjT)x%S&a|Bk3C$Josh0o;<tyNB;52NA)}vbKgAOHuskM<<xDGQy$mP=2^9R zuP1}JgPY;C-Q4{=_c9-GYsYVRHCZoo-lx#6m^m}<R5~pC!{-pnyx%9RWV@7D?;~m6 z=%f70Ze#^9@@_qP#+zl5(4J${y-pi5*#)e6(C6{R^sIDjv;V?s@2fS{qI&`|#kNbW ziJq&M#%5i6^W3%HHm^4N%&<53?C0;Iy!>3$`!_2;X!+Jhemwei?(?S7yT#nL@7n9t zChDx;ocP(~cf^xTJ5M!8rZ-N%(#KodUB33#*2yljM7M}9+&=T|I<;Az63zQeCxw=~ zD14sRY$Nq}kNKm$Zoj@gcDiPxUA@fv>6W)VuVs(+eAFvAX_3reJ6%<N-2=lYFRNEE z>Zui*pXBq^sQg{Fk2mZ4_xmgf8-Gk+QmOqdo7X=!*Eq1p@PK`CiovNB?5D(DDg5AC zv3322_21ThxZkmr`#%H2ABXAwAMCqKPA8lGn_MaKtMp&&EZdDYVqNr}_iKOh=9r}Z zq?1qk4Zq%}XCGoRuYbI8P$qS8(>;mh!gl4YnQR6Ncw~04_Y}tDAF;mAT(SRP?gRP0 zdlH*Irni5!I2Gquxy*INOADQ{&MB3Xjy-2={8>1`@r%mcH5wYbm+gE1>ih=_-@5yU z;%xW$3%rQB`m}A!<Yj4_bj5rei>8~EtA#w^GZdOrI7iMZU-;zXTDGrSW0emTW_?@n zN@?nIfqV6v%3{_8$OvCkdwEh)^uUkcZ-JL<1oHNTf8c*4w*FzSdC)eGN#|av?zpVH zEoRfwy*F;IToB|x?QF5#!9&Z=PusDcyJGjF_lJM$RtNn!x#0Ca)y)@Fn0TG8S*+91 zpT631id)`f?%vyPLp~V!3Qm5PcBRbkKSSet^Ih%jlcLu%RjiH_n|?iKdU)9^pSD|H zpWSZD{m?OS<AuCCYb=yDY^fEimG+x=-_LW8cUj(lhKp@WKHfT|`|(VEIny4$hX-#- zpE~idLuO8{|6})q=cO{;ejkfUoi=^xOoa-)_p<qG(p6`l{;hgw+p(I}%rc28Jx%Aj zKRw@asZJ|1+)lAJ`Qd+tE<F#uRl0g_73UqEBX;X~%0=@9r}<_on=bZUz4W`Vrt0!% zcJ(4R?^fDr{^(w?thIc}ok{`U)!ap=HG?-<#H#3&GdBdevGmPYuXSzxAIGH?ZTBNC z{&6q5a8CNI*(N7_9?SD)pC3lD=j`%qJnr>%XPx06*N^u*-_`Iw)^ESAcI@Fh)_H65 zuFaY^@4~7lKhH`npY%!1T=`f*k&(mM3caNd^V{!PUw*dnN8)4cUgncCPVl$qt$psO z&*k#L?#B~`-bDtdR-a_Hx%Oq{*Z9UMk1lWjBT}>WqyA&}zO_-g!qJzctThim@{R1h zx>8cbd|LPu36{sq>|cJ?dw*QtQByAy<=?P1<CcfxnX(C$g&M(g%;%g{W`1SBU^DBl z=105kM`yJU-}0#n?fGZ5w~76C>DBcUm&bI9?h9+Wm6~z4&v=WMxbnhv^AGLg`H{@J zw7<_ZR>_v>ajbir@*1aYQ7d`pemuqz6wCE4ChswC-_)C28@DdrIcH&NS^wF;{s;HV zJl-(j<*uOY0HaUSwkzgw#zk;EVdRowU@M-#HsSSsCUL*3Y9IXj_jt?AUKM|P&83&` z3#Lsn+R18v^}+Vv3sQGI=-a<!mwkJU@q_zf9H##A_p_yxoRv-6)-Lb2vpjGnT7Th< zwE~v^86pLeKTVs!c)q>j@-eIY&RhI!6}Jz5(wfs<y0cU7ZK_Xk_m1t&4R#+>?GL|< zJ}hkZrua0!T>HVO^KXtn&}UOQWE&^z^)6wOO1Z<y?{1P(<wC-*_A4-ao*22|hq3p? zvuCRMW~<H47Kn_B)C<Zk3+{jD{M6!o?}BgVvR~$l{s{d#NzbGs-gE1g*4&Fa3gTt2 zpMDWikSi8qGg>>9S=zmRdQJ4ASF=p#On&)c-}03wV$)oDZi&_{@qE7SO%W%<9J$9! zOON^P-d1>yf8m+?HNHQp^6z`+CcRQ<n8~A+)>-(O=a!dKtMdA3r)qnv?b~h2KOEKZ z`NzDW|H!T?{(BxhEG>r5&ut78X5wcMy2H2ib9vhz>5t0CKOHWud~mxmF=m7Lx@V8f zk{nqdXEG*U(Yv&mS@h+${|p<~_tp5Wh`N2UvNk<aJ8|L8v`^C~9^zdgJ#XQR+VHid zXB}16|C;gXO1>|D(ueEE{<2vIKdk5ekr&U?wj*=eqhlP4=d80!`)zyb)RFWbPRl$_ zWPLx+TNC_IDl>R)aL~MWVH3q}NlP227F$^y7E+twKGpJ$VB5O`&qW{Xllo!5?uYl0 zpc>te6=J*I2>mRK%39i-!h3VuPWOVk_?c0b{>%y!<DKr_|1taUB3bjp*94DTJE5%h zO>CdJ9>dSYv&_?+=ggm_Ja0+g9nnSeHd?*hsh%nRhgZL~#(&-Hx8`13FMf?RE4Z%U zXku>M9>hLBYhz`Q%)7$|30!}*cU;N0v$<C>i(6JdX0uiD8Ah@EzY|Tj<Q%MXusJ$) z+jFgh6_P5#T_>*8lxB;!3fXtI>DnC+4(sx;%U+@&)3b$3$fog+&*C}hYcpQhbFPiD ze;dyc_lnt9VEfItYWpH{Lq9C_+V|)|a!=|3c7+t?n3c+_7U#y!vG4t3{@`r((SnNd z$N4>Z7uU>l*}ms$>ybc>2~77>_ubfN@Yp&m$jGWN?kxYCyDKv0$(Y~gHx;>}x7bqL z>aarR#Xcv=<deM}2l+St;_0h+Tx0o=zo%--e})g;S=ZPuNiIr{{BrZ{R$aSb3HIc} z1?HU|zZ;Humzkb^{hxvF-9NqiC&G_@U%mSF+m74EHMh@GoV&n#=_!VoiQlK0e0?st zR%ywX9do|z|HFK>RG#Vhf(o(6NA63!dsosLX?NVfdv^ARN3QZFMmL(34itad+^WTH zUHv1xwPbzcJgIBS*K8zLXKfG5otj-SPkMEE(GDT)4Z^&Ow|!!;H?ZN_{FuL4UaE#O zGk<MG)hXX3iNzt)jsN!j@-$+$F|-uiweg?qsU!9LjuB$trF`4EIe#=)%;VqrQ9zn! zk*;-cd54fgg2<MxJ?26w$rD3Qi<X>8nfKy_X}#<puN@ct+qUX+XI{6`TjeD>=V*D} zpSjC2^8V}$`N9<@+}H3}^gz~s2GM_@ZW+tAU+Eon=S!C^x^<SVzf`hKU~%iTlgB4T z)C*ciOFRi*@IyQF!XMt%S&NVUQ@&CYnljC!q&xG=vh7!F{=SKndnfMkR7f+_y-;f1 zrHDBnKZ_r!@4dzPpP~1S$$tikKN_+8vF*8cr`|m@e~U(MOS5^wj4RFCC%ik*+&t&O zRjcr_ZA(qAz4>A<Tygr*z3GcOOaC+Q$NX4!K`;GN?xU#&J6Lb&SnoV1oh8%wCsr$# z`RG60>wB!zSKPRD>*kBeOxr%3($ihsJ*mu{W%e9V#fIPuC8r)-KU}{>{;l)ltMguY z`%Cfa-r)#47~*$Prl{sAw?*Nka^dq5%o6tVqmCcl-}!4_duIOX*X!56EbzEoJNHTT z>x$S;zJuzipS&5{K243jw_Edp%%dk?ET4Bgz3{JL&DXz)V%BG!{kLr1(dN!yaUh0y z>$c-h^%&(fe}4Zwk5Sb5sJ+l0`3KpIt4`Y9zwy@X+4iQ2uv<=!KSQNFm-X}rx2E24 zW7Gbu{ZPKK&gf6bhc~~jAC5@a+Vs;f+xF>~>17vZ91OoH&3k}}LxYd;Vdv3|h=1qg zx2Rs*S!jN2_Uhf0COdd0zS>p#c6Zbst)dev4p}#Z*5$UD$xcXb_Gb6BJ+ri9_NC*O z@2URX{6|%M&OY%EYv(QGIXm}c&Wj(<^JmK~Qf56bU$Uvxa=pmM_ivXz+#B~dJbv5$ z3+W*dlXR_~%FfXEXI-zkw#fhYav3&-@Ch&OZ{B`re#i7<vi!$3#oRq0nxCt;R4A*k z)6!9Q%Z1x94zK4iD?dr-`}*DfQ2mYmhkxI<s{M{{d$P}vjsM#eW6fK2K^yb=I3G9c zl(cD#s+JPCB9(j3{ZR0~oB2zQoL-bEoVER3h4{H?i}NK|b)7X+znp5S{8bg-Xp{Tf z`;XhkD|zos?rI+l6J`~@Z@Q=KQbF_SMC<9jCt2Pm?YkrOoBjCw4c9vM$+v#-KJwwn zMBa`Ix7elI%2prkRDCS#toVKX)TNj9RDTdTT3!1n|E(!slsC6zkl9pDX{M$B?*5Qu z^|lOt?Yqmj?rrw7RPK9czRczS$NBPO^3hvOKbAkT@1A^QSLzYf2fxE-%DiEe<}u=| zS;ObfwWjzApY{bC``@yE)U3|#>;Gtc@YlJC#k#i+^IR{REbX}@O)h@=ifGS5{&R(` zlU%+B#>5}m|3lOM(Ej#&ieh!LA5yPPUvpRQFi%|4JH4OPZM_$wRaRB<Z4`3Up0Ky> z`o_OI*GsPbT3dYdmQC2Mj=;j~N1n>tcX!I$TdA(BNYg6(G?71Ma?I9wiqYP(8v<_5 zO|jop-uB0Kjprj-wcl>rTIHW@zN$Mppik}b)5rx%9ugBL-JHNs5$CYp<73^#5C2|! zZ|DyG(0N^7rE}KDlGXX!52rjxXKpNc&=<P6!|=G))=&G7#ov<umeTamG+!`dyFgZv zMe+K~eQ9&Hvu8+O`*wD!YV309_zK(OOnVN;{AXxt`H?4`?fN5h_1?K>TX!kn>9t+| z=j`J28JBNQ)Y?~>e&f`U$)B3Lo<3P^y2vWj<7@hjdqO|7ANb2vgk{=EX1&eXc;?x| zr)9g^E@d2=oOdDC$XAf7SVi^9N=pXesBhEWfB5(N%|GLhZgY|^Uq82X-mzB+XSF8q zxSfmNA;A=~<dfp>B`MGLtJ!4!j;ksCIAO=dvv=E;%N#b+z4GXbhvBD*d1j|~`r9P7 zWj~GeKC<c6<X-cm;n%;dV!X@j^YNHl-J8JJpObi!74mK|d|UhSf!f!+W5P#Pzo<L& z<NddzKO7%OywlG$`RjH#U}yRS(`zNi>J6T&ikWr(usnCq+N|o&?RE7BUAF$MkDBJ+ zF18^vXXTUW6=^$+*d%kme^}YdX1Fz_r}@O)dD@Tcc`E9@2lT~SA3S9JEMw0>=G~l< zMVxjq_jlxcJyTuRw(Igk+o-3xi+?m{i>~otT70@t#YpL^bkg?7z>W8-n*3QBV+{^C zS(&fw*%-91O})=P)4n&(WJ9+0!R7mAXZ&Z-G4R&5iF{n+bagR@=uYb?>lfTTTk&*# zi%sN5tM_lC+`rvh<iK@^v*)9>+>-sLF6y}}%(Kw#`py3ENImzK>gAlt<?G^BYUk;# z`Lnxj=4lg8vpWwy1r)IRZT+J3??Tl37KL4xb?ao0bHyy$ve^6f#-%;7n|`j{qR23D zXVXJ}pKI&y{!soUb1w7Lr}XDeH9SAoOXpqt(!KlHXY(~H_U9<~O|oe}8&EB9)IB(6 z?)QWL8ARQc_ikN!cFkQb<-dy@V&?8%q_QHW`A@R^+PWE0byqLM+){q^$va(Ul4f;j z#e22eJ&(_B=juLr;@;7{=c7LLciL}pnWwUOvd5)8HnZ05>EQOSRhau}Pw%!<E?re} zD)9?V_uBYIXA5ht_+oGP$1(ZuOpWe{;F^c~D;Zr{83TLwMNjg#xFh(zIy9nAEqj); z-u#ErGfi%{{FAOu)ag3BEiZJc$8nh^i)VYgk8ax@r?RvBx83#MYYS7kI`}yLGt6H& zq3Z8Vi{~rW+5KmD_-`#o#<OX+Ua>07zbAQfZ`lDhH_H?EviIL|UGk*IFaAiqc%4nf z_Cw)y+#mI}+Mb(OD`8&XtM}RNlEGv*mpS^et4{5C@GHDy^-HslI>x7Ur|i_Z7ihNe z#ExV9Gk3DfUTJ>W_4WLwAD(54WAEHP)pabT%`uBZr7wB1-r{YcQ{+!=EXn3xx_#bt z=WXWSP8@R7I+0R#;*DPH)Q02MDUUDDx@72?(KTiEozHWP9ysgYtT9WR8I!9sd#O$F z_ow%zi|-h`urA44n!eJvYP+1`<TvY#UaePp%#!d>K;o0*33kc#4wdgzukx;Wv8(pp z1OM3t^YS>(pXORKQK;gC-qx&7=fgc7{jT{OH?7oVo5wVU-#4^YJW5Yba^R9J7jBh# zH228FC*iYFq(T>5&3~_!;*i3WDRfF{@tmI>5pzmUD$81|T|J+#;!<h$?z;>xC!7~L zz31S!NcHZt&`BSr-do34B%QA?r~EJb-#Pn}*LTQS|LE3Rx%P*dFQ>`vj>q$2^TaRq z=x*^?*Ik;cInluJ?;U+<!L5Bo+P@@z82(m$HMwFI>yOhbZ&l28nUX8yyv#ehZgPT= zLRs(HB|Sa=J|_0dB>Gi+`dB$d;U~XSpIF(If6;aP70d_A%_mk&J}NeA-TLMC4kcCF z+MSD@EPBqd=kKcXCAnhE+DtEsZt6BRe@j0+zagI8rf>z@kDVXhhg|&fJ5<FpdHLx| zDQz=zpKAtNFKIjwo7~E7-EmU>(*2hDH2<6Chwqtez2@GWzejjQWDNJzX;0s+)y*@j zS^I4=v)ybXqsgCqjL$o`%SZiK{6M}p=;~L0p4h0nFLe$@Y}q~0ZeD|ofbx#*nIU}- zwr;oW5PfvzjQ%QXQC0Cw`4&0GAIcxhAIcxD_@`LI^P_oX1($Bnz3A>(xzB#FuFbV) zuZxvmyd8JUT$9aW9m`(306*>L^SkRm1WC`_qq3iOpXiS=`ObS9O`_YbuJdiVb}MIc z<I~eBVd7~)8?BpyY`hNoaSNaP8}@hQKIVU?&CRaa>HOIH;To@BqRhMRVc+yuO6RUy z{rT?ABcG3X#=ca$ddvO8)*9L6KQ2Fb-&C^J+5PWa{kKaS(jEzYQrlUa^Kqq`rt0o= zf!h<>i@caM?ruq$^}IFv)mK@s>_zqxN*|sd+usqz`fcW;j)y;LGZW2kOZ#oOlxH$y zarI1THiI__$@BLGXQ#Z=TJZU+{hQyv+5TO6`$(fEuzXc)+>5n>Q|F19UEaXhlj5JR zz3ftjLW9SXgzGQ!51;>`kyFoq@4m;6=4BaH^V^?poA`9k1>Ju)D|s*6O74obPMc!1 zPhM~4rxQOXtM`k2Wd9@D|DdN%zwh_M_`}lm+^@Pz*6r$Bud>V8FCc~U(dAE@7P7yK zb-z7vg7(@ZE$_QcY9^+;-EaM8;ItEXUB&xu>Z9|W_I&To{%2@k(pN2;WX)0fQmM|N zVym{>q<1{!X{~;oZ+Go`klz-yy~Wg+`Hy4Ur7vugv}NloN|*PhsJ2~L%X&-EzGTfi zh6j9x@%?ogKUV)|V0Hd+y)b)i1^-d8DAi?)7FAa}=IUHD5nA`-o@B1mot#vK)hCu1 z*c4>%_|X35Kf~|v*HWR|wtl>1y<UWK#?qtfCyL$)J7oUwQNV_KiN}mvcxFB*-1Fg7 zv)}WOp!$s8(cd~g>Zl(Qcv=2WZrjJ$Kc^<1mljD8Qj5IBt$kVS#oa!)h<*1sO@GvX zO!xY`WRJJ;58(%C3m@q->2}6m`xJe8$s(0EWpk%bu(sWq({Sz0i3J4?2iD*7Z@I_n zvSI&+{6lkNZfD)<mY&`m^gHzG)fqi{U!#2^|6QAQ*PP*B)JAoMd6oOSqRNl|XK3$E zf7mZ~_F?v4p-8ism`I;*;Tv5ZtKRmXn%-0@%aio7sJbfO@zY)bi`NVP{Q6P<P4GWM zQ{!uM`CHd--M;^F-BH(%SJbzc=j4S3UG{#~_T<yV73aOa`g7GC{`G9)N`ApVS=aV> zFFu>|@$aHseJ}F~4u@52&%T>>J!?Ww&9P@9+}D@+rvAII&*DnL$KG>OA6Dwws7%-~ zv9z`CyI=3OKJ%EHDpiGUDjy4^ZL4~&-<rR<y?OtGMf3DN{GGS=fp78QPZd!?s?o(Z zAEJHd^c$91sFsEvQ21GB&3ur3LiO^fnmK2=OzwV7pIx#2o7LaVlU~V2KYV{I^L@$h zgU=$Pe8Qd{-Eu;uchSF7Vn>d-tDHLf>gLgk#dXK!KZLE6*m3dCgF8Q){_)SYKl(X( zbMf^_{wqy?Pk!j%Adq!S^?TR;toK~b#xHvoU9**#TbJD(In~)WwNxZ9=D6IS)ypSL z%46+RX5037``^AlThG2fqMh9Md-}CK$-?gc4)*`x`l5Y%Y2|5A-dXN0srs+(KkNU0 z;ZraFKMu|R46LqO_LpD&Be~$k#>&KX`bqoS{vN5VFIlOy_wf2a&J5?0&y1Gqx0Le# zP}G0(^uvFKhZjCBe;fEa@Rc2(hiKHN>c9Ga7uIkdixt(s7d`ctWW>iS-~aIbIQcuX z?#BHsI-fy@hIYp(?dy7b%W?VbSK?w)brK)Bq9RQ9#Ci2Gd2Qldkf-vgE_wTh{|q<Z z+i!W7kf|rlx>RHBJj2!^BasGn9_uQu+pl(X-umSI>$Bb5<dsKb?RVDC{m-EMEAoTe z#QzLz5C5Is-gNlLt#i#E@7(d-rW+l6@#}fPQ(d8spKe`}EIILr#VkssNB)uOl*wPd zcl>8~u+IL2NB+&r9`%g>&fMooueCen@owRje=@rJCU=UfD9-ZKN$1&Vmy=#n^H}$s z{ltzh(Y`LyYm<bZ?__CDdR6$wQ@f|QYtyZ=<!LT&lD2H0@=+nou;q)<1oq2Hn<H(a z_dGfCbcUtw?4SP`rcV6pUw_13>e^J>y~`Wz1hdPdd}g<v&W`$$z0!q4QA(_j`*vDg zyO8hp{afpb{<!{UXnOsh;h=X-@LFH<<~_~}Dzd#N&P;Y(=xF+V`i{58clMkW*(_?2 z=3Oyi;)EHG_N)D2eb_Ho6Z(n$FfV)TM<1gT%HH$&GsSQ9r1J!{%{!-=B$2pfT7t-j z%Jmyd<bSAsfBSUpT}6BDbv5?O-bXySZWCT8Hhsx~HwVkkTAO@6aOcU!ZMO=W4qWxt zKYY1-`lIx>YS$*Z+3o+&z-s=Vp{eur_wrlyJ#}WU&98<3Zn;%6Eh?}}rQl99#~YSw zYZwnq;tcXhes20PZtJo;H4f9V`#YWoebh5F+TQVA@2l%ccJ{J`x`*``U+p!j^{x9- zWB;F_xz0YrUgU88%8J*I#hbqzHi_($=YP5VpHk0>15>%n)GseCc~PXq(oo<Y__h6z z{tt!pL-s7M!nW<-vZqex$MWRTtxtD;*tSxyS#-(lrjxt<BX51m=qvxT-G5_|XpvFz z%I-s#e%Ld#XqoQ(voiBrSe?{m`^{f0a!s-gH7BResf+Q8NiOU)<a@wo{^rhMhB=H8 zRsNlI66aUU6?Uk2enq$Z=f_M|o=awxLXLbf8}j#ldTvu4{yj1AKLbnOe}*QPio<Sp zav#zUpH7XnOY!c$`PF;I*HFW4H8b;hAMWFltjjo^`0>R0eRb0RPTdpy!JViwpJlCR z$!+e4q{}7RH*=FcwmmWE`g82Nk)p(b8IyO^uQ~2lnYJZ-uSoWrxmzcHu|Ic<zx_Xh zknY!NTfOUtZarOkZSBU~g;z{&pXTno+2_!uy(6(wgvl<|LS~YK<ob*9ZS@~K?0;xH zKl)bfcHo6S@=IQRyRP!&^{=aIcm(FjiXAN#-oRI>b^7m}C;V?OyMLS`US)Kz;@GKt z-mHn|a_-5-w3H?7-WI)kOLw8P=BX)Z!ROo_ION_xJfHvdO0l_1Jgb+ub8#$`3SPM} z_K2bJ%M)T^>gu{%WEVHjk$S#*j`y2ID=&AIXaD-c|77{Y<9`IWzx7|S@%uJke(PTS z!~f*nr`la#63bhBHsaXRVv&^@7gyIDW;0JH`?EyI{Z>5aYOdz_8}qg%T|WFV`{+Lv zmKlF`<bKJu)Q!$pIIP>T!})U2$&-(}{`LKFez=~m!vDAJmW*|3+vfgR-M&4{qxk_t zP45cjn6HOrG*2^Gu9v?0Pv(!&wXfOtJL;tN#o9+-(K$C?Z~a2eX)hM!wLS{(oXMfE zx#qESIoI>P<T!sf%c8iK5q~-^*gt5j-?*&vLG@auTlT^g-=n5%-g|HJTHi$y3nnCR zTbjJC$Z2`u<~UPel3U6FiLdtU^&i~wf2gZBeUbPQFZjo9U-aEL@znmKQty_Q*9*q1 z%=lQ6<Tx+%p`!o2AlKTb5BT{jejo0wTu>8pZQY-UO`f9b=G$(a6?NBZ@v}*pij}HG zq8q2hp1;z-F8ZSWLw7cRO37b!$L4@bPju9)J5R<gd3Z8iF*&DjLUSIQ@rgC6y=%+Q zD$P~7Z)|7&L-{`g%lyC1`&jSZj;k^L(A#?C;?Cc}KiX73DhnKWn!NK0&-Ah*2~$JL zdP)uFT)%Ywfq(0?OLMu8&*v#Qt9R*<B*QdYqhpVKW^sJ-sGjQTVqM_nvvD*3E@|F= z_p5dC6>aY$F1t7Fam~(_DO_TIv%GLg*UH}A(>^hn3oKShnWjAXyy%zp9R)wk!=@kH zpS$0xb8^kZJ4*~)wTzm4;*#duGUORf;%C3Mp)_4@*`1ZId>2#{AN(hA;r8MAJh_WL zR88~jeqrFq;+}DPa>nA*8V7o&aGkwg_-v2;aeKy+^&Ru%Yt<k1n8ypfomX63rTcu6 z#NtjFs{`N67Ku;0QJ~WEb6$dK%&y7vi#B{X-!An!^h%B8Lf41ct50m_Ua71mdaPz! zADdm!Mw^pcD__oQ+qAB9zTA&uuie+}w6=&HI@*%-+;^6<>=nh3*^5>zUHHmeIkk;F zFwn24JJ*`?<;J-S|0w=QTzD||kv!KA_rtqH?^Nrh&%1ZD<o47^%O1g$x=RbEq=p6T zv<;XyS9a@`YqQ>-Tk=o)>Q`@x#KdphcUFFG{Le5g{E1pPyZpWYHv{R(J^O`U{%7F) zr+F)~Vs_Z}+^CO7d~;W2ewJ9@q}&#;`8Myl*#}i+CZ1$TxNQ1+e&;vyX>T9S*3jE> zb2-<?+vgOn<SN}^n6YHdz8vpKaR$yM2@*1aR+rxStE9AN+G*_CAGyW<hx__1ulLSN zy&|X7l)Zz;vFmBtgsq#~k`MOYU~p6x?SJIY8I>KSy1do2H|V_k_6v*EZk>xz+;dr? z$I4{drbCfllL`{2R-9v(DU<rQa>0*#(f=8kE4EG#XvuBLHG9T;;jWg3T{8D1(Vr*T z>{?1C)>R+A&t>wS<>tM}A57J)(JL=5zPwd($rYWo6ZGE;2}GHN7WTAHJtQ~R(Chsp zZSSm_yC2IR@V{w&JjMHb?|%la5_z$xySJ9?>f4#U_*PtGW!Dmqw29vLv=;R+U2G63 zD2^BY@%$gh+24FW?!9{+dnwoSKL5=apXmYa%U>z#h^dDj5pXT(J1NaS<86VPABU`c zSjpS!m=9C*SN(BntkLJ)b5_8>TR8g8yWc&N-1tveoT%4no=|*k&+FrM!XKu0E%?vS zGVSAYsn!4fyqe|m@t{qsNAND8ILj$|7ld3b;~1GIUiB6Xw3R)$RWx<shj0D=8CW*_ zXJ{(@V`t8DpYv^LNA3d8$FrUXT{YEIOG|v_qWdmSBBl0`a<b$T28Q*k{_)pH{q6rJ z=x?)s^Y+7ctq+@Da+`Qstutd*?U~%(Q%fKCo0%$h-g=&C^Z9I2#o<ThJto{UOLN)% zn}av1D)l`Olj=$Jke(-=+Ih9?<5MB_n3V9dQTN}*f2{Vq@-Fvne&sENX*S~1vz~MA z($}AQr)=JW=kvA(mu9WrURZqFd;W^))2f=IY8S~XT@5qUDOK#8+gDdQQFeP#C7a2~ zCvsQIBkK7wepQHP=uV61ntk$-UcA=M+MBnQ9z684F|K{$`G@O3#mIX9YiIkGnX0$< zww{<;bNtwwEm@Zu9FAEP&bgktsP5W*!5YH?ljvw^w{2I%vz?!t{Hw69GHVLgIV1l5 zPXj}x#iO0C6V$%z%~RucsXH0{^1G0~-qMG2L-U0=4!dXCv`)RF&|6>Csl7nrXTRmS z2%fYZtNR6Sy*7;hk^We}RekeT0h7zRU(B}eigvTw?6>6j_Jyb4B;L(_oX`L7qMh#b zFHifPy{ctY?x=h0+pE6)kVcG+zf2K>o5-f~{fV)!|72g<;;V4*k#+X^%`t9D;=-+B zMussDrQ{6++`>;yY_2T~+wkpjvgNgM+oa!dmvVJ<Z$Hf2D%PFP!=znZ%oQ7P^8D!; zw{wm&w;G-)V88n^On*;-^5t2vah9eQW^Uhommf&m7GC7Y&n3U5<Ji6OV{RVj93MZI zEqA<}n=tG5LBZQE#ETyMU3WpV#X|nmCC&2H^B?MTN$?rZ`uXeA=i_EC3+=m1BbWCn ziO%+$`mVgE=#gl!N`$Q&N8kz5B?jkWJ-#h}F|VVJxx(uHKOtSMf5%<3Pe=<oTI)FM z=A9%hTD#`(oCM9c6GL<UGi2y9{wR_@YaViK|CYI-8*-RluGgL?n0xI}qD)KA<elvo zu0Nf&kp1v^iQTVfm7a<@)n2i?&)s|Dmc*b;PaSs#*3`%H^EubQu+z9wbK;MwO!4g< zJV`Y(i$YS`?j)x@-gmiAyMBf1*Z&O4=CP-pU-x&#Z(Dx&=Q=4_^~1BK&0ZVP`f16$ zr_-Jq*!kaeIV~BMS5V%=(|l{svDe?u{#~%A(q`Izp66G#u%_HpcG<8bnDP7Vw*rgq zY8I6noQ(6ov@dSc2f3{)vra$E^-ZdLqG5NsRHL_}aDphKP5rJ4({JpD|1;eD{;0iW zjqAJl)~*u1C-Xl2dte^3+<L>2(vxyc+kWk}sL?ojB|lQ|NA|%>cd`O+|B1h%CuY5= z@m>BS&7@Dh-?!a)laikE_?f2SvEulW+jS?Up3QzR<IDWkUuUEkwomd@+R<mav&&gs z#ZOhWYyFaH&l9#A<9r|dzTX{{y7uk%o`?S#TFP!o9GQIQjKZW#PJUOkmGi=MZ&<Le zH@%*<=CXuM@P7twwp_V?F-kGF&j0H*$ysK*mf3!S*^`t7K}E(fQ<ZLA{$O?G($;g^ z{xdjT|0n*(zB}f}L783WmWy7#Re4Wp+dSV1HAhot3WmA*?tD;C5n~>Fu0r}?{O0;D z(^&gQ=bN|G+Wq@?bxCL5mkHn2ya~?co)YG9_ln%4bx&2~_;_>T{}j!4-oACiW#Qjx z+97hKM~qhAGh<Mlb^nQVk)O@B361?z1Y`93>WpecukSJbJNwbibtYf-%uJu4dvZh3 z?}D`*GgXu4Kb$C8WK=1tWwifmq1Lppt$X=iAGVYE(U|_|c6RpMWXF$kjVsRi9*SH1 z^82;GNf8o%_M6=*Si|(ZNG4rn9v^?dP2>mWWB1haTj$wbUN}Ff^PaS{Z<eI)w9JUl z-z?Q{>&)J@+N~~$k>UEp4138h`J5TETH?g7zpF{DxZJk6J!q14(Z*b^kF$Fx<ttAz zU$t5OG1Fe-L-t#G->qts7tAPp`62V%<QZEzgfbE*$gEy+x$eCTUvR#<eW2d_8D3e} z|MbpY-!f0((jM`|hx%=rxr=S5eA;ZbU1!!JPl=?{(snPNb&AZ<l>WfR#_(*3lv73h z!QhJhkHTi=FXVVHb?NbMCF$Nk?sfOSG+bC%$SG-;tiau4EEBBvPrJtKa!sImua2F< z-Hh_>;cU^fS#Pg>8Qgp@e)ApkcTDSDn-Ui8<h=34&hYQ9Kl~5-g?(34*n9TJTz-3q z|E;v;qDd7K9&4-iB=`%QcmB+L<?*%)z3v|-JeR)xPv+?#(ccDtWIujeocXxF^@F?Z z65+g^yDz?9*u~k*Gj$egvb0P!o2}usrMv!4`;)u)$2?iL$37Rgo|Ss^P$~3t-N6-6 zIz3F*&Nj;|uQL9esT!8RcjKgly=leue_YNFw>5`f{A0hUSC2RLTK4L@wu>(6_jEXf z3+tcrm#!<xJ$+DpX~nj=ze5ifmRFm|sa`RSF6Kzxy0^*Vz3i_Uf4)~N*kO|xn=H3u z-BQ1G-~Rf{ZhloaB|DzWK2<mT$l4FfkCjg_+nW-zbdslOQ%YqpntI@2PP`Z!It z^Vx0*8_w#7@$Eqs#SeYYM19*Vds6#9183;DrxCFg9Vhd}93_5AUg#@2x-ovn>EA^^ zl8@TS^*=n`Sz|8xM)KaYS$E=Z*+uJ_ZSh(mCRbn=CTm-{dcNTP%=)f-x_ff756S5^ zADZSV6HuS}ic@xP&m@h5@|nH7C-m-?_wX@IY@X38)m+s3^^gBW$wzxWtZ!BSn15`y zhK+poVk^m|SM+rE9cui~aCLU()h5w2i(^-dj!PHEYh+o4ANpM{;QGkF{nodo>7qvt zJ$s~~F8<BDGUxQa{xX+lh36$kd>)VX`Fw0Y-p~KXY**X&qfu*bY~RzVvS;7rgy{j7 zFZN68sh*#3(^B5bfLZdO>9LpcTh1Spwg2t8PcYN)cFgO5Rl4`)ME+SRZol7KGy2W$ zO=pi?m0K`D+avMGSEC}&n7=GruI~xXF0?-SuzPQ|N2d6x-4|y@c|1xxU~a}Y?emJ~ z^Yza;_HA7%-)tvy`my$W-i&=p?T3Cn3Hmu*Dn&SI@sdf5zprm(*yZuMdE(REOq}P6 z<7cx!Hh-&F7bfc+u<5Evif2mn^0sK{r<y(5Hx^FPWR!fS{8_F$-t@=zZ`(eU_iTAt z65q+0`iT2>>}l3*JF`uD|E_%eeL~E(+c%`=Pn~)^u$5`Ia?9+FsTp_vwVBLb{hlLp zdsz8|h#$uTE2rGpdiDN|L_<D?2^>r6O$+=jgD-Zxs>)~k@jLX#?8hs0x9(>;{_t+_ zAw%6KylZYKyJpF3Nz3+iES6rZ_Q546FC-~O&#iuLJk!4`_FL?aaC6&AKbW^P`{Bbh zQ7P%w#TDuys-b<09(gKTJA~;9s$1&M%YLg_pW*+**-p}Z&A)5qt5cU{J<B!wBt3I> zbYmyGw*Aek52MTb)r~r?^N8+TS9xLXoBs@FvKHMe{kP5DxhC-8eA&qCPZiG}o<G{H zy|J=H?z#8XHTGNH97%0R-Mn*~z-jKcCjt&$5S&ys`BD8=`M1I!%pZQ-`QiN$d*&=V zl@D8{o!%e4|MJ;q-8*-!-l8~9wjuq@RAq+0*DTcbd4Etp5`Uxn!Tg>#`>bn>=RG=g zDBtk;<t=yftyHfR9SQN+m27hD!iM5KCRxpuFHf$YZ&Uc6fwknvPrKDCj(>Rd-0@lo zqcL}d$qGH4cghWu#4Lrrc&HsXklxv}@g!qaXwadMT&3k5tzWNyNWW3V-e%+RpMib8 z*WbAbm;V?q%@$Hynz+i-=GPQ$kyq<%b}XH;qxA~Y!ia|DPXl;s*76_z&u~lq{B?ah zv$$x-<R!QBx9`5NWK#O>z};sAZ_L?sa*JkYpIEtWU*Y5r$B&%9oqgP1Vr#F_^+%KZ zm;Yx-S#~>OjcIhZ_3D}j&&(UvuwIv8?>%Q1bUQoU_wSCpf1(u?d-mslOj|1R;HG)U zv+dhE6)YsuyU%1w8WadR=DjhF>(x;W-DIgAC1ka}W&g(G2mUkM+JE%Y%^K5>Yg^Z? z&2hOt%SmVB>sM>rbxYGrHhRl3o@N$!J?HbRU)MhW<NW>G{SWJ`&qw|<@Y`@_KK`p` zaq_qAv~}BNon$DD&^uDLX%aj4a|KzB_wgdp{}~QO{4;%3XK=BmWS4on+s>tHrd<;c z%Frx2#Chy`r(RtA7LL0P{4<?C*hRfwZ=d5^_dam?vGDnlUpe&Ot$Q@<yZi1<^N)n- zwYeI*=c_JKx#r{c)TvmcrlwuO>RfNx&iV&a^;65P-}%pQHsWv6kIoO?-zq-LZ?Dn) z@cVK95#<N7`-P2OS-H*9e|TZt^PQ=um(S$s+H7Pz^~UeTY3v!MUYEbgeca#lM}0M~ z_)+IaZp*^YTzG5R-Lclo;Lb70_qoYaxi%{9xw<WB$AP%7pTdvi|IlPV+{>D`M|trN z!+#1H)5A_}KE2v)fAZ|ArxV}gg)S?Nd7JdndGegXlRqw9{>K&j=swdQ^VtvHzxnvk z+P^I-{MM44ef~V|pCe7yKJ(-;j9+_p(c+Cin{ra02ImJJ{wnpU?$ux3<c?*F_CNg3 zAbauG`48V8ge`siUhZX7`my<~x8Aq?abM)|eV5zv6}NA^`c;<LqkCkU)!hDB2`XME zlxG~&UiQY#A*W{bZ<ov}{<g2H|HdDfFR#>>Z~C9%QGETk+Nfi^z3sipTQkyndPII7 z&pfE*H0Pi5kK>Q$zvchPAG+<z*Z7XACD&E*KQGz8XUj~luVH;RryAWokg%lSCcEfi z|Lk?IrU##Y>|)h>^q676NB6Af77AN7Xg#0D_GX@?>5HJ#s<P3RS&tt56RCavD8IW- zfAe0$8q1HiUw^I1IG2;!FO;sZ{N|0$CC6=krhK`T{cOE}pJ{c+*Ygr5dG1@k<=b@Z zKST9`t~3<`h38LCd|4CA|1fWP&1&7X7hJ*v<-UbWe?FF?W!6yrj-lN4^^5gfHM|#e z61$Ju3$06T({2)f%UQ^?i8G+6nEh6YhLxnmisvlXLu3@o3a@NgQyIFx`^~(w3oquV zOcQ10+LzeDJi*~7V_t=Y#PO&;UGszD*Ct0FeRzKJxgI{9D;+hP52~v2o+~^xaq@Z5 zZ{h8G41Zfx)SuUXbZpYEXGSZ9)6+iP^xbUY!}ljQN#ub{Lt)pK{|s%{<9Xh^nI5wH zLrc_?)e61ubWPKD8j4v2ee_!KV(&RdnUXc?9iA^N0(0f%EBGIr?^$QI|FDJ4(uwsI zYE7|kuQaUP;X40xf7CDM!}gn|AIW@^o3p31G&_@T!H+iXj+SsEL(3H3Ns6bQTS#yI zb^V3^;ko&T1>-%JypR%^E@ag19kB7dh;N^>N}{Sp_2m6>Q@_sZd~B=l{NW8Rd&5@U zw9h<g8#Zm}U3AjkX#c#BoCgg7CBF}t7K9u-A1!<3!)fQw-w*8n;5(mf>BgIhg{8vs zCc3Y44jwN*EqdVC-HXp(WxtaL9S~}>`0CqS-L3K5HZT6TT-TT`Heb*0#XIpQ0Sy0a zTP8N_Jh1M%(~rL&S9!ck{!#y7Ysu@}HBRmZ;$m->Kh+jl;KpWoOVT;H$z#31kN%IF zzx~=AaBJ$<rAtyz-qbnEGI5z_{1l<SiYK4@s~&yZny&lrTZyTJZvV<s`5XEV>sz)Q zF1K5|_@>p${EhdR%jMiE?#fTqdcH&Pz?VmRo<9<A2VKv`7-j!QX&3(=l?4h$TX%LG z7YvaMWZqM3C|k5qz<NUV=ln<VZ&^PsQlIfBc9!<cJOQ`7oHzH*-VpLXTenO#$?)8l z<X71TqmN(Pb!;<lU)TBcRehW9Gq0F*Q$k_=nI+$pjO?{8nPjV$eKA}aCG;a~`DLm1 z$Ir9gi#xyYNAcm@6sKu!EoUY-d9vEfOv>Rio_=fJyse+h`}9nA&))5JagTfYvhzm! zgoAffN4}l%$yju^$D};vrbw$VZ@ug8Z>e2-<|6lw_iw*VwvIV1vaO}QWJ#f9!*N!Z zgg(pnF}9a$jCOJ_J$KzKyzFS$&n+H@Zwu7rXx)7}g`xiGthsv{&->j92*3Z;BHQzJ zu<(&-8(f!2@0VJ$Ywel7mEYFuL{vIo%~MF5c({bgd49atXOsU7EkVzoF8WcFw0UQN z_&KxpwPxQebiUu;Q_5raGQq$)d}BqxjgzZme$+o)dOJ?}`MH)D+as@q3#V<_c~jCB zR8SS|TGHa2nY;dFxtLDGsyjA|jx74mz^x*AK%p$-nE%$YgEJ3mXH~r0ys%=^w|fz$ zD;DnEzEy{N&;DEbN-0I#UU0gecQTuN<+11)Z}H~0_fPeG3g6NzU_aGxbMx6(2QN8m z9}(%vHDW#<^({92V7mX#Pr0S1I};pOQUh~mFfD8}=YFQ=R^+wfc@J}_DR-`S(AKv5 zM{fB<&2rqCuy59l*xiQ5IZMh@9&bDx*5})@F!@O8W~&*!HrBGsR_62USLmGf@shiW zR<owM`a%tl_Y;i!$^$+;+r09XQE$MV%*)yWuM4$eG_5@tqTkgnsNZz*$Mr4QVZWx{ z?OD4-n05d3&nmAb|7<gRFjdk}<N2KR7p`Bc-~9fK>!bOdv%D(yKQ>!k{@^_85oYI= z%Vw!<-Qgp|6~i{eq05ikYnAkNpAc_BsjN2z3pK5kKPMml&%nK>{G;-bZTC1YESMiO z>#c~1RPG`JuJ-l`K9^2zoh{w<!Pd3jv3|q%H`2c~{^**?+3w%B<C;xnqKaMWvBl{U zn=UOsnBK)L>t#Qg;qlod6^1{34c9NsXRm)SbCzHKhkYFXWGa6DuJ^p^d{1p<wd#uM zC1r<NCY=;h?=!I3@t>g}V#Q&@oQ+RP?SH8Hws(Aaz5j>D*1xriZRw})-H~oRG<lPE z=B%*Pj>(@E{j7GEi&$?g-1~f&--$0PF7%Y!NAHndQxP3@C2x=UW5I`O(@w69-Sb!T z{`skmOdiiR%<z=3u&FE;dS}BTc{ct>srs9Xiz+6T>~G`!+g!7$y;dXU{L;?wiCedv zUfRo{zV1Zh`(67bY%KpXu<ZD8dFiXL?fV#hOfKb{;FR0+DPrA)Z+E2^xHHS%ozJ|s zw)esL#{Ue`f3zP4FRqEYyj5QC_RDoV#xHr<){5wI=k+~s)CmO5aW)H`IPhtW)qJsn z@{4!g&5A!$*Hbb3SiM+{*5xdz)OoXO(-mtcIF|mMTP3(NguCQ@zVZC`l^dB~Xdl_9 zT@(Cw+8)h(_P%|V6>a|9_s_E=F5A9q9`}lK3=zxc-3!iJv*hj1O)Y(#GS^#v+<)LZ zIcr+g+UG}fvkz_G?y>prEX~C;Q+O66u37h)NoIolsl#j!CKP3#+NW?*|M2{__p4u7 zsl=II>pikiy+hWFbM1{uyVtH$n;Ls)j%C@WCpHTL4@~#XEw)P)E#7hcKSQ>ElT>=U z%7uTDS?eFwriJNdSFY-KH*;~}goSUCOB3e2O>HlHccka~k$S;}KkPsDA35&zcYzI` z+VrsAx9?0>tZ%)$g;(mGW6_43{oTvoU3~i?qJeAU$v<^JK0m(SmwvQrU+;tSOfUDb z`j#o^9lyEnoO+kQxt`6pZOZJ`^%$L-JZ~LosJEzpsP%E{ycMrYSMNPjxI##}?Y9e~ zcRfqsn*!TYb&~6&+G3ur{m&3QE24Fi``hQ;b-Mo!)ialR?$P|v{D^N&{@WCz(+h7o z@~xLEmpu{n!Lyigf@bL1GhY0Po@_hUOV!=pCvr7!{X3KR)+axTZWrwKbqr&dzQMc6 z^w4QJXN}nVnLKCzXkXgraiu<c|IK5yeENK^|1<Efv58{fdmgmOd%M$ug#Im71`2;p zT|8p=`e?D#`M2I5)Wh0+FPrSuiq*UC7ShFS#$DmWrn7PB+&jjaJwk<B7XD|*Z(w`P zZk;t#Z%u6fmHMXr^7~WXcT}aW@7@~u)t)UnGc}>_t^T{5FxCl7HJu4lCkpy&1%<?X zv)vzSCtP=-s=wjO?ziCwe!c$VxTWIEt(sq3CMzHKsnr&}q%UH*sz2+~6SC53`<3cb z<!`$`Sl;?J_t}r>dQ<JXOSAX5=Po**STQ-VW=BfvwO3ak9n3v1$-A3Dk5hT=)&C3+ zR@iUwZ`hNXTlvtxC48UIm7I5C^=~!as%`IjINdtReRDF)igLr77A*2J7CqYY>WXT$ z%DGiBYa{<N%=~q9{lA;_5)UuFDc#?-k7;kVL`p>8!X@WyX0$wU<L10%s@eRxGT8I@ zhk07l)-L>a<d)y6YqO>wDO{BGy?W1TU;Uu4pcKgi-Var0PoDF@ZMnpG_W3<~cz?&c z{&vdteU#t!Pp#?JJtvWMYg6>sCIp{!nRH?8ovb^&XHs6zN!mAmi$7z<{sXi3)Iazg z8yvD@;-!c!>C@h9dVj=-A-Ty}?vAmWlYx5PGiK9si#2{myz<P<<zMkdR_fNZ(|+52 zc;_#Vy`OW_WLFboaj^meC(pHy-ZGIgb2sL&GbDs<sz{FdXu9Q=c~6bTKjA*v?Z;l+ zQxWUk{<r$juauSg^NL~?bDR(UT%>*ApHPj!huYqC3m@jUiHG0g%q=R-o~^OSES%G# zM`PM8=_^wuyPgQyTsdL$eSPZ2ACA8rY7F;u{f^w<eO#(0P09TBe}*IXL{+E!tn=LN zCSBloqu}teI}>Nm-aF&Tq)SiVbI1I#xvI8((}(u{^?O1^XaD=p;AKAToW$Hyd-mOa z(N`O}J@@6Es2v|$rwH#6yqU3T#Zjk?JIWYj61H3SuY7-P@+18t{w?$5uc&<3e{_BO z_m`>4t8TrHx;J0-=;UqY^=n)+A5Ao#dqCsC)EcJjr#tsQSigUReY<KtKmRTMhkti$ zP`iIh_()l0yxRR)PIWQKlYEn<_a-?tS1bR&_~STeHG_WLeX*jL`+wp-xc||P<+~&r zJ-0Y)lJtwkWr}Wzm-O_Om$3AnxfjGE6vH^{ui+2R{|sy|Us^41SKR-j|Kp)&?;aIx zc2sXG@lf1a6x>pFW!WC1qkaC<xAq5i{hMkd`8YcJgsv&Skj|~N?JJ@x-!8x7v*B)= z+u`ZWdSweAY<d^(rqFYI-48C`q;J=c$O&E7-($M!_93M<Ycunzl8sL$sb0R3<0sK? zq%?`IF7eWymCs9O*)4x{<=vz(d(nN8^#^zTXV?@rbxHUB-g^ok-TO>A&(D5xGoF{p z;zM16;%37$7Z{4qocZxe`wc(qe};n^{}~?4_@!bPUs3*0ytP#0t)95}^?>uM?rfP@ z65ZWio}Q}wR9EeSgRN`r`SSG@v+f_ueV8v&QS^yhx`B7yqDiV(x15@pAX&cnz;l+j zleH>-em+_?t$*=raqcJQ#b!TwW2k@g;m?UrPO_L}iTTKRSV}%$xK3;4(#qAvQbk3( z@0~yKd9Sp`mJd@`zldYJq93c=XR_tOdsS}_hqx$<b&s9O-u~WrqP+0?#wf9<ryH)^ zkDTs1-|Nb{xo_ubU+FVXXpmjS)3dq9oL92+_BrFDsTIc`<+Xo^_r0{{pZVS+Ne^q5 zUDMThr*!$AD;KxlIXP~pCl7->xxPyON?(1YbglRiDa*_EE?th=Sn8?JR<v2<fyk%1 zY|4pOL>}MXTXb~$s&ci!Z7)9mtv-A`%64zx+=pk2^toeRp15>8JwIpC%gM*yojdgG z!WtK|XDXh|%hlf*{LI{E@bSclBTbKgYyA%1zROj+o_)IP#sZ^P%L_6p9}9~}9zPpn zwt2yifA0gj4j;JH+I?fk@f&&EuJt)03Hxt}&hcVb=do)kS<iD-{^9qwt;=(r<M#e8 z&hze0o0cfOlF_pwFM=(|ugEd%t=}B|B}}=x=Zmh?sr`|WQ|><cPieY;-?w{e4KYhP zN-eHVXJwiAKC<ljlAZ^G$1T<y=lAULiK>0Ka$(l=c@|v;Vj6FCA8)=gmGjv3&vF(^ zLM2c3vpf)JxqdES{XtpdkUh-@!_0o^Ew%~bj%YT1$zM44;1dtF*OfB8OIE$LJgMU# zdOq`>#kLPucSYZSF|AG}qVV^7Td@mgiXs=6MVxx_pJC(VA0PK*-d;NYf%D|O*H-+R z?)7)YnwsK8^=ZBj<F{n`Pn~o>uqk^9n^9n6SH5PDgX8la!K1}e*N^cF>dj1FTx0T) zb$a{bEv)kHSDx7?&yD=&Dqc8k*S5*o2`2MODj0H@S!zB%_TJC_<C1mo<I^|2Z*Q1% zt=clZcX7J3XJ?4khQ||6JXYJ2|46L$0k8gH?X`FAd9S~5^Vt2IY=6zXDKayq-<;iE zc<|@O&vIqWm$vuGn(dPKop1cMUgF=4dX9erS^5vxOJz^GT`=+Xmd}-Cn?9IJ<UP$) zNu0N!_qe>)#2DG>Zx?@<_U+U6kPm(H%d=PAbJpFlcU$K3&3Aqr`7Tu~UGZFD#leIg zMtgI0`{|k=>%WEk$gky=4K!8plnTH6r1Rz@`^qpAkCW^y2C8lxl4=`F`)}`maJ2W$ zwRrxm+Ow^-?;fkJ4HEeF(tt(N)9tfd@!WMzRV+5)B?Up#I?bP@>$oIu{B`!>`&;iH z_4dtH{^OEsrJ;DrvwE?~>iiPUTRdff$4x#O{ywwJ{f6=9Iccl1<hS)Vtoia|Yj1t% z{J`JbV%w&_Rl0oA^5=xgzI#dXkGet%{6DlElyCfJ`ggnX#r*KV?VZ!y?P7{=%(wNs z`ex#$W#{II9ABxnFMs~Gb~(kp6Ygb95B4m$ow|4G<36WX7R7?O%axa(o?xL<*!6bl zWUuJ8eE#cI-qm{s{%1HCV8?gk<@~hGTej@ZD7bvS(puS5Gs&2DA4@7*@kGM|&zX0x z{m<}Vtyr9oaqV)~wnOF`6VEtmz6yL8KFN&PLd(Hc`{&}z=a2G>`kT&g*Gt^d8?Lu< z!#NIlgH){r2@@|Q%gnPd{bT(wyZiR<X|-XW?tP5WJ(wN2l*eCM#idt-@w|?Q?2eb4 zPb|DT<+Hx>FV=nk8Jaf!JO6&|+P`hvSKXSlG-a#VrN8qsrz>!*%WJmDJ|{83xm4oW zp8A;o3{5-#IA6AL(cLHiBgo_7E@`EGzn$+LReIj^v?ZgVoYlj2^{0F156%<3__lZN z`I~RIO4j9WJ}Lb!vGHls({JyN-<3G{XnVd5|Kobzn}1ga%+yIZ)vtT=ol??&hEmU; zNi1KiJ^#E|KIKBw=G$k2j(fhUo0Cz$J#Ox!)781kkN9@xKUm$iv${2wHz|BtIZtZk zo3)|S68!HS=Bwp5{o)Q93VnUh`Ovj}Dwj>I`(@YooUHw3adfl83Xkwvm(tC5M-=Vf zT~IjZvE-kSOZ()1#K&CIb-mkrZ|aHz51VhVnI1O#&Zd8VT&HihynFrWu_AZ2UBMr! zkJ@owue-k_CUVJyV^P+txo5IZyOB6|!RD1({$Y~LYh6Cwvj6n<#?%?!Z?ozh?4<tg zDXEuUy5!fq{%qUcDV?S1whwMU^_j1st+HmeN`Sw$r%V&S^Umzw(LeM~2lu@W_|c!E z^X^IhoopucX=W!+-HyAhWA-U!s%vD3+|0b4|El%=DZKoZbKL(&>&nBACD%H6w0Yb* z_v(H_;dA$0ZZZEEstlrcz7P3#d{Oo;rL29@(~kWPRXu&<uDj0WW1EB=dVJL`G2G(j zIQNOI>~qZKlaJ>9XHfdL@8(~Q*Yex%%}$Z_-*zECcb!Cn?isI*=Vm<Zy7_aXm*MgI z7Vodmx4!((?&j-h*Q3IwX4L59#hi;fs(Vds?vKw>7dt1GGgyT6Pw<cWqjB+1?c=*# z%(*LX%~;esJ$2bKo7G`?MZUZCWM3$3mHA}*x6Hqz%5GtDe(B%!YOU5Q%(>IneLEuH zckP^t&%B-!r~951hX(6Btv$|@*Z%U_>W@bMKKo31AG34Em9>g|KHpX(HAWf~tIxXR zx8%v=Ct8*Vzy2(LB!5hnKV<WK_se>@*FsJmx7oJVWW!3veUYhCgboz3o!$AQr!Zcr zV)D^A^-H3r8TR$et)KGVF3ViXRT<l6wD|RvgvYY4Ic*Xj)k~iK78~ulbDm_M%C1kB zt|hE0n-uDB|D1tG%zp;XwJQ@%c8h!rzwvJQ^+(rAb}Za-^}W76lLvQJk7CaTdySNy z<9v_jPe0|uz@eqR_;Q^_^pCP&ww;-*M=z~ZKGi6sv*PCzkK@WV51Ke_E!P{{vzOZ1 zy^HmdOx@jLKl@3mra=tvncJUYzQ|gI{;rp}^HO70#)kQUX*yC@*3aL}o^fY)z_J2^ zkoB@3!@p*n_SnqnyEd=ZapAu!6QW$7zKrs{yIY)9Wyg_Mt2awnZ`;gdaWbjWwlMbY z@wdJoV;A?lxNtI```>2+9k1Q}%2k{8JwEQlFTea~**)D2S1!F`<bEOCsw-oz)zA0w zQ-h0SD)XIm_G^o-eCZdBynXc1?6+ajQ#<V<*DSiVV)2i_4W2UP&t+XhHW=R6zjnUI zkLi!*Ev&cBo~K#)_T9VA&ri0Le|mEF`d`^6Hx@6n3p>B?Y<fh+#jkspyG?(~#?z{G z#KY`UQ8S<AJ5Kqx;pZk*ta~2Nq;8e|ZP}yHB{8ctRD}Gzjvd)v+*HN&GUx5GJv)Mz zta4R;cc<r&(#{7;?m`=N=lSu=p7YD}<`!8qVej7Wb{9YVz2B~{U@oUO|MaX>=V#kb z8mLch*IF|180X!W&G+x@5&fwDu)pomjtx7n%?`=e@yyLOVd8EtoYSnSE&28&hyQ-Z z4|ekx{<t5!W7^>(j9zvE)0{<G3!920b{>~xDe{kckyFR?>U-INo6%>B*0gT-IpVon zu0^NTTI})bn7m29eeU1(x~0p%p{DeAXho2B;IdcqM7PiIU`yP+{qxk=DpsyLa~`us z%YHD7QGNb)>iVorOJ@1JUFa@V$#gNmGwszX#-J9RR~2vG|0r2MH~){Yc~eAm)^yE$ zg?2laPq|J@z6h@SJU=Gk`#J5NU6=nDT|0j6O3n13nA#~~f%6O2RDD$ue(QATa^4ef zVbu%2*}i{k`Z!}(tefO5mjaucYmXi6XXe^@cn)9Hid+19i-rGqUU|PX`z_xgi(C17 zK0GM$zn{XO_ObD#<NT<f*8Uf_N=t8E^-{dIY`&IT(%czsIq!5t1S*c7-dfn?$6D(4 zJz&Sg98>L;X>-)iKlMnKc3|y4!8M2Z%KB}NYvbgkCu)6qQ}y-bNA)hf3GuIz0uI#l zDm!_`NpzeKzAj-i@6b-`*>Bk%%=Y%~c&Dd3`?Qj$v4Sj@khjH?au&XMS0DdVxxQtu z)bY2|t_OSU-qw*a<5=kQIXU{5|1L1Hx;`uVPvXbgxo0L$>C8Po?eKRdSB4&;a}PE! zuMhAqjul*V>%#e4uZv$++W7vRX?1d8)bXrWvu~W)muENWsTt#SX%D+Yd+rB)Tz=F$ zx-+Rg&^hHsB#)k+kkes>U5^uOPcSni6y84n_~Y4q3#<RGuC}s0a`<$crP8E_95xN} z0?KZAsLUz+5&GBr(ciwwQqfzCPH&!iLsUu6ufTYk=E+-p#xI=?zh0$zH9xKRdYs<X zueS?!P2IGH>pz3(5p5N%8$UfudmCz=7X)!J6*u3WWAJj>)rBAS=%wgzhH1(?E$&MT z5^P`b)8e>H(#jvxAF*v+;gM)%VsFX&EZSM+l5+Zl7oJXqcLe*~wA-((ukrpnXOrZ@ ziuU)x=XGTo8W?|y8F?zCH!-|ETIS3*>B7vb`<|W7x~C~V@m6-2*tBog{<L;H%js*d zU^4r9;{3He=cD$2C|kcmR_<}gu06YEIsa=fwJ@A?<ljp{hA{49=9c+c2ljrn-TNg? zx9-iIThq==d$TaPOy&Wr%J00#^1X$VD<<9co|I`)tzG#jaMFg=t+98v9WpSSx4ZMa z>6Q$OnU>qW*iN$Vt{3^k%6WN@k^Y*uKDoJ@(gkmCNomWtI{&$b0iQ6d$AJWQ8Rj3e z&u-DK*SRHn_zd&OwD&5hRZnfsE|!0v$MEFI_s?hD>P2*4Y`F53yVlM$VX1QKyKha# z6IGTv$QFsD-?^6G@uo&;T4#2-`RtMt9I5v{%FHX|5|d24vh7W{OQzaa<y$9Z%Nid? zujhP~e&kop<~Z)MLgm}%QtsIA);d;Zkn{IiO!0yB_1k`|Eqt_B>$<B{>bFkWZq8}G zRxe9_Pp!23yd`io=Q)1Q2@KYKTR*o=UG-zP|EBD}*3R3T?j}aEOx#njCTo7_lituJ zug@`Uv_0@LHmx&xVa37!4BPbInY`4G)_$I8mtrh-Lizgwro#ENOKP6aTHe~TT{krB z#xMQA9~(b1dt97#+5OsA+q$P|A=?@sv>nUW-1+xQo4b2Ll|g|20?{)+l5F!Iu`M`! zEbx?m$@j>V%Uh+*<{q>1l-Z>D_j=4!>w4$7`XxWKUeyaZ*ci&rTWw?{sk>GCn34V2 zX}8s+RL}bu@ys)4JX`B;wr&=C%cAy2bKIRSZ&m%RGR<o0lR9Vl$DLy4b7S2T8rCmg zny4~)6USb@T)onK9@}fH7gel#?Uu<uE9d<s+hE`6b9eShG@WIXFUi$uUdOrSy>#6r ztNU%TOFmqAyV6s|E9%+FNfwUIb9>fA<xhEBv?pUpnX;+b<i&O8?+IL4F#qtcX{$w> z7teg7`@HGV#h%4^LfTtCiyS=|*0JilM)vdQyK<MFA2pX#n(Wl|aiPw|*qgC?Z@bDB z%uCVRV3ICh+fwa$ep^wm_PeH1vF8)A{xgW_mfrRH#Cq9ecJ^71*=@0M2N&&3cVa$u zdiQBQZ{GJ?Me<~ggI;d4`f@5SX@9Fw&LsWM&(vjGTpRO~3bN~ueY~;yaQ2#?x>E0N zO*$cXXyZZa5TTpLIF)6>ZPw>*KYi)_vxXI18{hUi%hbL%Se+yJc;jQ+k8v$Z+q(>k z^21VeZ>P>bvQD*!X^C`6pYc3K8$<if<2Kh)e$}_EdzX9NdwT>=h4dMxPd8_L-g#s} ztL#2E2CmE7W=C9JR9!vMz%$Z|Svs~oXVU8a*~~i+z0EUzf9Y1H{u=*h70WokTsqEF za$}X_%Z}n_h5t@9Y)yD{hS&dh)+^0554+BJByyQKJuP4FfA`?r9kL&)O4xRkT`oCY zxp{T_rjmmNkqh`{zHl?Bossfwef8yiqOq@T=jkk)9wB&qU!ss_j-YMy(@Higp@r^y zYxzIie>nfhe+Jp(Ec>J`<*wIFIup30K~l`)<4(c-m1cirgq#y*9jZ80SoO+2(K@Fl z@F73r%kQ&h?)osx{MPL1+C_!RW`-xDw;xU^d41wRvgkF(2j^vPM;}jI=hn%+GGFgm z`s}A^me$EhjCo7mv9<>vty>!T@5DZ%OK%rkTl@5iiRG*m{p=OdCkq8wCY5dQeP+YA zG<;6@g3}M@@;}_SJG=PNU!~u{m*#qHeH^hm^QOwmu#6*{8Tfrq?D+M`a$dq3Q`c=Z z;t%X^${&dr+OxyPRQC5tC9SPX`(6s(Y;*QH$k}Ur;OF)AD&aTgGwy#d`@Trt9`F1Q zzmJDWU2mBk7(T)J=GwQjJ1*>#d+K{>^)@3Bxw@AMv;H>yP=6?9&&xOWgXtR+%TmtP zC+5?>y)VsCp75^p)AOmFX^Bk-g!bQ+&3={NdMo{SwY@;hi+a&_I*MDGuC81AHP$-d z<})MtnZ8TbO5dIuykk=Dfdi7y_N@9j)zey+-$_Jaaqaoj67~-!7XH|F%GccCTJn|r z+`Er==!<v@iT=LmGtqa4;Bi(q_Q2S_&i@Q7moMyN%P6aww)~;z)|K}}f7iZmQ|S7X z!KEj8&r;RXugJsWaRR$ff%dI^3O_D?%bOm$=gK|_rKs!+)7b+rzE8inUS(>hn!k$E z2EUf4eJ}py2W6k!Qx4kj^W$iG$~@s8h4qUol7m0nOfFw_+w@7^e}+OIBV}i%eeR4` zeqZz38mTQ>mAUw(KF5ECgO>jp((F5}WRKo&e!9Ck(4%$BrubWDS?})Iv|yUiui7IX zqT38gPfa-GcyitChvIMgAKN$Fy1KmO>q{HeNB;b=ULQSIwEjDD_3iXb&3)o(+C4i$ z)1<wc=g1`Om$vc#o%o;Opo`x7t@C+*%s+CgZTYhMmD$BY$5S&iUZ2pqd^`H~sg7`F zZoN-?1l-x@fB4VvR()MX+PQnzovy#Pv94BG%X&oYwB7n;y*E$(yeeDQefdh)`qkH8 z{CiN*@jBQ4_WaH&`!~9Uk0kfVf7Cl>s~ohgtWke)-+NzOquwJ2>z^KHIZ`68$u1+L zeX35i{-D!7wm+(uw$wBIvHTdiZEg87{hNCC1I^8gd=%vsD|3QOBc)gGZa-ZjadQ31 z)BhQ|{xis%_FIQs+~aHCm9xaHt-3PLeagotr5jQ>8Uz?DKeIdBnf3F#%g24qx=WAE zFI?i(tan~*lGM#JJ#~qnC-vOkd@$wq?O6c_tgFvG+2gl*s{CsC4|nHFJ@bAYQL;K^ z^G>;v;7lW7nT^{j=BmDU{`&^YH_7#FbqfEk=s#Y`Rq-@+<E`g4W~@ug!zBMcI=?-e zxw-ZAb%{rN);oSE>)WS2@Au(*>RSZ-b0&Lj@;F($=kJY~21mOZua}>mSM_XN^dHY{ zANF3{{xQDo_L1-jcUDK8T<Iw#v90z{o65u`cdz6X6druX_NqmB)BXo1N@w5smd|6? zmm<~Pnz#14-|m(ZpW@?Ae_P(^e=d3B1Xr0Jeu>yK{-@8Ty%IOu)l(St(n@dn@=URt zy<4THZ@cj4Ql;JmufGg0cRI`GT%TIed`xQk(YOA;gT1e$UVb;rwDZ9{i>2*PRo-^J zGMr+m&M;M$&9>$mXpCHU>yGKpGZU`r=H6Lgwdd7E-jydh_Whhbx%cJC<EJ<*#ifF> zgKZ^Wmdz9Y(EGjT+4U{+WsXd`wMZxJhJ<>h@%Orm+DkXyVY5_`DY6cCU-#<Qmy1!+ z755Jbz1nyzcHtG%r0u~cCI3Cy=G8d0-NKTkEKmEuvRcKp_y5X0;`R*SRBr9LAhhS{ zOs5#5<tjCM`Z&M7_@n#yzEqU{jXj)YyXKvA`a9c4@UDiUyO6uS2E)G(557yR6?)gR zT6LGL(=Cb8)uor;=?A-S>M>Sbz3Onz8pBVl-KQozk$Kuy``Nci`Y)S6(w^*YC!cwt zi<X}8Sx~bxvwQNylLuJjt3I!lKV~&`%Y~?{>Gn4--8GpsQTp$qQmq@jDrxpQ@0k^J z+Mi0;%;B4qxs}&XJ5%-gyl=VB&$#%%`EtPKf$(&@mhH^Tv#Q@EXN%<7#6Bo#{_VQu zx3u+S1<vO)^*C=H6T5jsYw|0RFE&+QtBfnwyga$~N6|I!iyBj>>OS>m@_w+=;OutI zgU7BM&%Js&+fMt!m+Wh0mrlp-JAdCXOX}&Bvd@ck$~L|z+W9`xAk+NU*RA)~3jRC2 zztX64#k!YfV$ajg{;oL5-1hZ&y1mll(8Vv_H`sI6iT?5an2>)<{^%|9rY}3xd>@$n zXUN}?@bgnbuQF58;iqZL48lE+_AgxjBQu`IzJ+)CoBI#`MhAWP&(QvsMKfP)=8Bhk zujNlAH!k1m?HSCxWO7q2Z@uoWvh|PVbKN?>Dr@`YYyp;(NoL;Vn`5@~bU!^^EHjhg zosized2_SZb$>hZWAdV#&JTI*kJ>3-a$0|;<n;7?WjaNTk9R~y3d^vDNxXjH&Zo?; z)p<MlLa)d1;&1Lp?d9tXYTQ4pxfkA~vxoWNU%e+D!4X&UORP_tJw3eo=HH1zN|k9w zR`1Rw=WV@R!Ts(2hx-j{r-yyaKT>NP)Vt=p*;KXVyniNmaol|J%3$fvS-Lw9Oj9^A z!CUZXz2!gUkM(_fJmtR~z5DSa??csDuY=|#>Nv<~R;24IZMSwfep&SBt%@c0<7y|p z%J4m)v-|Cg=xxs>R3yzcA1g1gT(fxkYL(vSo!wy@e=~oq|HsY!vF&)M{)2d~Oe_0a z@n*C7mMspP_~`DZJq3rKxUIUO>h}Hlijzkxc;EjKef@39$GRmY=LKWWuTebyu4Hw@ zmldHMl7F9kI<`cEW#Z1wbBg1qR;}+a(dUTo-*7g&us||Ad*`GNt&gP-lu6kBV7|8M z$NS?^Vk?t{U+>bH7^ltpyY%hx37szj7wJ6>scKc-e9mIstIArHt?t@KtY6f7#Piu_ zoo^0)G2QC;k?h~v>ix|;Qg^Io6mFTUeB@N8(C6NTo%bhR2%lJ!|KsO}*@w-{ceywG zNq@MX@oaToU;UP^0c|3^GM$P|j{-KXX5##G(|Ll`1nm#b5g*R?mCk3`djH#(OVO;q zH$3xra^RfZ#m!Ycf>T*N-}h~O@Zy)%&sp{DCATx)O>^5Z>)x5w2I=ScB(}^EZZbZ< zbLrnXbJiE07pT3w;*Zpi{>OiH|0J*flYD7U;9|9#4egP>##t-vEyLnxXB<>~%HFfC zNc&lR=RUE&^Y=(rmM1RC-t^<pqY^E>oTfd2lN?XXQ*Q3tZ*#8l2~)*~==1#9k1D?M zi@&@!El~5G>Yj?DCjyLjsm2>@XG!$x_qpb~ba}h!?wLuE%O^dIn8Nq$l3LJViQ7Bo zJ1oy+UY31zd3$#GcbQQ2@&$MGJ|8s5n!j($6eqqPkLM-4J|3zfaW10pT!DYpFaE>z zqBW+gGB3U4{P65lbX~;a)6aghrKZI0t`>;Cw#TSqPjPOc=&qO7zI`&5xShMNVDY>8 z7G}?MtYmu1UkAO2T9xrn$9s14OV<ne${JFSlr9yptl7b}^PkdB`GDfkyst{S>MP&K zNnL-VR~jNGxW}J&(*||FwpX4-huP&q&!1S~@N>`B*XQ0`&wSL+TXE*@^6o#Ww%gV& zTX{d9_3rD)-n$-+(S}|>9){=@9;;lj^z!<z(#<PtoG$0hcMF%8?z6qG;xS{>^huuf zHJ0k{`l_2O*6z*nZ;X@aG=1L|r?vmGX@&6jg6L?yB@y;^u}6##+za!N{CTzEg~Ph) zwS6bN{F4`N{PCE*<;#iu`pt5ZqAmq%4}5yuUtyv2>Q-usZIRnGiRTmJ3u~-FM-9|n zz9+I}%k@2)nM<<7$_jo4IaU|iZO%(&t=YNn;_sEyGg!;EY~r8&o;iO0xA_A5EPqUP z&3OAqJ?WFuq|d%04O5;=Y>$kMmUR?j;O9NKUh~8Kwm-Tn<Gk&Aze;YI{qn=Qw(D;U zSH9w$!!SFdz%l0+-`AcOE2TBPH2(U2EdL|+`P+x~*ncN>U-|N$=QKC(wq3GwmmU!i z@MF?>lo|4|iLLn8^)vNC`yVW>-)4V2*Zbu5kJr{dd{%JYbYFMLFWoISEk4IxlZ-sm zW0Ay@Rn-za=g)kVee6G?D?a|v4!%^nQeukOMVIU5h9?*gd`?tZUSs^>_{*5<U8QS_ zkFtvYmO7-yy*G8IUCr*32XBhqxXo;7Sx~FdC&azb_{h2MomYRHx_*3~VWNHC*16tC zxVhgYRu|ixT5dgc=JLuJyXHBb`gmFN=-&D5fv0LGvhi7||7Q@7y2tw?ckQ3xX}R17 z-j+Yg{vGgEcWtxzq!#|!HTnu#t8Am^&8=AP;eTWQw^bZ0_1w=(kMrcNy)yAt=(=W} zUjiKOv_oBO8<XU3mD&Hl^lzJu?~)4kV~aTcDMT(k(iL*BknKg<mQo8(#nO61``ZVl zH#Sc^T5M3U{n$S7O;_^&1QuuiZB7;1V)b_Ql<vF_>n0y^G&nskwCLjo)^7gY@jMmr z-}ZixZ!@(GdwsypI$!j~NuKY_F1uUvOgqx=ad>CXSrl`GQGxxiCbN!PcI$`Ze?-*} z%v0O)@8-ql_e&xtWxEO0E;XF`>DhL!veddyMiZ)qEZ5KcW^_;E*RwC1tK?VgN?ZG| zUh>7on^_M{=W4xlKCX~p-gZvKbMtQY<tGg47A=^SFYv?Jx9#$wl`AUNUAq=m-r}+G z{u%}z6Q9SqH-ZcpOKbP7vHWxRVts~pZu#Nwiy!FCUtVDyv~NfBCcUH`xpvRlb0#jS zo|r4=I4!-$sQGh_%I8=AB!BFGv^3jR`;nN5Y<+0>CzBiN7U^q8KQEbZZk?2i_GjJ& zX7?i9I3#xEZoi=a+5J}kM|r=G>Fvw6UdheVD_Q*{W!kxC4BcAxr%rwQ&OLccQ=bI$ z%j5AA>I`da|1MhaQLXo}|IO7$GV_<an(p0uzU7ajgq7#U7M&tlz3LRt-1H8C7n3EE zlg#EWXp4{Darw)C2AO-y|EOMPlfG?nAu_9M(xxnd9o9WXC+F*B{0(z(lzdewEBkEw z%8aNs(;IsETQv8qP}+Y<O!EAU8@}5o=+xyX%-{8Jmhs87sIq^FPGvtzzuL)Mu`~D) zeQdw@`+Ypw=G*7Ve00%$c02M_fwXq#H8aaeH<)K`a!yzl>2R8XL+yC~KUwvT$6fOB zufvUEqS*v1vv@iuHo2d8Zei=m8(&><`p|s#KLNV^J!|9x%q~mjE}s;zUF^AZ^r_j3 zQ~N(EvU;4bTz`IT`9t>(JI248E+06(^7Sp&yL-Rh2{>MM`KP&E`mC-;mGATx_GhNb zr+Fr`OZ2H8Sa(!4zv6k(whb44o)76desDsPq@L;RYK_k_pHE!8lg`Zjbmy^0?)Rh_ z9``NVC;nsN?~0f|wpXRywq05uofhP+>Furb{8|3QtJ|I{<jHH-ZT%MBZKwLfJZ#&n z&w&^768AUjD$YFe?cE*TZ=YB1vN(A#jpOvirVUE_c&^uYFQ~YG<ohfcE7xw9hJU~A zJu!Wu-h1SbbRqk)hsT-MR^5ooTpN1vc+l#-zve6bSpTi-N9!YRPsI;c`xZaAd+DU+ zq`UJh=El$6F+pB^&K%cIPv!_-+Gq07uJNPVx36E%R)<|#r+oi8d*wTQL#26=jA|CQ z_pkW6{^H#D1E0*M>TOJ3b@y%*Czr&d(54*2Ti$IvZ|*us8x(lFj^Ug6;d0=m<m$bw zYT0gK`PN2LQ`z55?47+k&#%@$>-&b!%URzkpIUkD?#+*9r)^*Vy6nS`;;^03UlraM zdvsc;q*zY);Ad?p^Tl+D9sjz$lCuwH8pjGuuATO^=*;eIGr3Q<9>|aR7#|(|Vpd|C zrj2My&brtJv5uyQsG!0LF9e&-C3T$oo`jocKCtiLUZ*zy@t%zCf|PvSvaLt@_B^aB zcUW$DB9A?9>rJW7Y+0VKuPWKwx18LgTvhVc?bEeuzYJ<#Ygef3=$N<UF;~Oq3C_9S zO<y=4jOQ<X>n=4}we@!Hjg2Rt9@pM(Z_+S#-kjul=7n8vzUs?X_<PN?(R{RHQbeNT z=gmJS&to{P^tkBjsfOrVTi@3tKU(dpXMLVW#oQ{p_&<Z(>Aa2|2UN?B{@O14TJxOe zT?OMW=i9BGH*FQ0cG{!woGatPJ$(0)7OHfLJ-pfHU))z~7`Mzcm#?08Q;o;G^WnOm zm2Y;s-q1akQZV7@{GfuW()IS2_Y|+p+I~3umTJ$-=}n$$vy8-lG;7>hy77;Z=y8Vd z<r!i1oL_JM?zMNB7d?Atg!RkKkM0=sFw~v54AbFM5Y<`UH&b$5rTLzQXW|d9H80H& z+o$khjqt0JGONCeU5Z&4ubqEaNz`{~@#JYb_EHx<%s={{LCBT;#vl7dv(L&fO?vs! z>ATq3`$i@QH+Zs_Nt7IvExsC+{r<sQKbK22#%eP)^|}@AJ+No(mW)uD$-wg@d7Xc? z_SzdiZgJ|>Bqy0%V>XP-+$4T4LX`2%?2-f~x0gy&`3qkJm50q+xZHW^j=lST?AZA7 zVtha6nODo-m|y44O}pI@pp>0Z_dZ~g(i7pXho=4f70Vy$?fG!na?_0ie%D-s%y`WD z4Ng8&X?XnfOtSj>+*MWU8}r}1zaJ&A^^PX9YoTsWoJW}QvwQ1OXGUx7H{Qg<e5$$Y zosDk!>X*Ah!alrk`|Ufs`0wN}#)Ui)Y$=&uyl33PPo+yfUu#<W;Z?%{PaEmSueVsU zoPB1jdv=enQhpA5rczk!k++8v3hZ92yZle|dPj+M+Lh(~{=a4NcUhnCKCvo(pK`yU z-0?Do7nSQKeT!udo5t;}J)_37+-7&m_8mtyte3Fg7wS<^zz}q>@%NqLnDSnec*zRC zN4F!czTfJ|;=SqKBhE#AS5lfcwpgEF`SMw&?d6HrhEu;VUHucs<+S0)x_{cwdjwTF z)u%Ddk7Ul%vQBS~s48#SC-rKcQgl4)nps<3h_vrayCcGr6ILc@c&uy%OTXXO#p(6Q ztKMIE|An*rglKfY*3I5!y_To#X9UVis%y6?o3h+v+j;eEY>oEnm%o;_F1YjgHs?CM zkk<SO2V?`oEv#qmd^wLVcKWRg{C?*D#6PeI+<Gnc>1Ft3A=U6o$!)u97DXuC6$oH_ zea_P2nD&lKHsv3@uKkmK{qtSUUB~{~8J`nul9LywEKpw&rowmiGuzZh(fS-tyTaC% zsx4CGO5Sia`5xQjp5rpE&m8z2CgrO4l&|+{cmGhg+`^7;LoI)b&eN^dZe8cx<SQyC z2^;)zGrYrf^3YM&8()3Hk3IVC+V`K~@HeqrQ}icnFEiR0w95a?$8#$_vL4s+ka;pE ze46{Z8prEfJs*7(`8NHR;{>;jE&?a!>z}!owNIWwz(BIF=kZ$KNBp8$QDO5ECq27% zW(sR>OMFh^c9t#1yIiFn@EC-rF*nb8w&i|Tlz%s0o=NxY<DvJyi@la9Ix*M2@~OPG z`h^GcTDr~#Rxin0x^Q{%hsTE|N7~GjX{zu&)Vu9FA4^S<S<QXTyxHX%c3-Q#KA3m@ zQC;O-xctVQo9?As<SpD~9JbjxNbavb@Jf8%%yp}Mwth@opI=mCbm0!mt+%{~eij{D zWfxXIyW-ZK4{zF6uI*Ki-IFoxkoNCfzZ-eRtDQF8Zac<q^kmZB4(99oG`$u_89en4 z?*3@}GJM+U@<%)NH0|Hh`}PTo_VEL^W!fA2-)%Urz_s+@Un_30+~mUs>y~a1ww&fH z>^dppKf~e`tVTr+cl`HPy)<3V{v-WJ(b`?z-rjfrGicp;Z}wcKp~qP?p-No3nkQWK z(Qki=ig5qx)i=~HD{alGoNjzHpPgYskaNdU_VuSE9xqs{@UG?YxBkeB^%?rI83D8Z zGl)3nOzRWVc(hMjW;f@9BQK%~4?fN^PH*BhdjHsM`lGjHvGyKU(l=yWjZ-VKuX<w{ zb9(C({ST8w<`pgI`cWSCWA{VZpz_Og3f`$E6E^s7&%AglHSorXnk@~j2M!*vNw>K^ z<;U^k@%&qQXZ5$}zN-n|!}NLP&DqNDD<{e}Xgp?QmSbdFWg)6tmU39&{O%gpkMYN? zY(Cw1J-ysBd#Br7hqY(Q86NXY;Bh}@p*ZFH*#hx-`dhD=B<-3K{IX%Q`K^UV3bx1O zyIW64|Gl)m>SwUe--R{awRvk7WUfxm6}xdn$V@?@M|NK(gZXdIAH|bHRX?8Fxw`Vy zKiAgN`qR!leWzTocFt;#@XXhJ9+K}YYy}Qxt`uH-=KLzXlxtsR&JMg>%CfbosB6<L zum22txGc)#wU*0P8#4D5$E;iXvF=)Q%IuimwwKyiJU;)O_F9EcRyi~@k5lnnRq^EG zlQYeCotg0S`^J0jdHah}3%`|HDzq3pm^_bbPT$oV`fb<4cROZg<i3l}nV;QvN4dGl z+;C#qhV#qqey$Et{C4!*sq>FtbHARsRhCI(-I9z*u2TzkZ^&86Z<ut>GQd3d+ZtQz zBbQ!FJ&rn`zA1W<!KM?blP@Su+-mV;&YY_7?Jwk+{`iabp4+|hR&SC=+0V@7w|4I2 z`di4(Z1?b2%A<V~e}sPse#qXRbLz(u550%S=ch|?<gLByXW+H#tmHXPmHwRTrd}KR zI_@Suxq4paLwrNrb+7r+Td(?*OE~F1PiCp^bL3UYR_U^Q(E8ZsW8CG37Bz~?y-k;Q z?@=sW9&>P;`^4o|y)7FTvPishu1ud$QR;l<Ez{opfj=Z_Ox~~jp%rWOR;lCt)@w=? zSAVjw><d%1keL>Iz4_Xn<j3+y=5tmQ-S*pXO-I+pym0N!W{q8QVqQK<C=(Iqo|;s= zgNMo8QdYbBw%NH>w-e86imN|_anCIM&%l!%zRUDVV*qz_$2;XIrAMZ1s@%x){g&f# z8>ye>kNSHqrEO1|6mwu=!*{7Fcfm-G=YM5y-k<-?QMPhj{1JQhI{7%0>G2;X-njYm z%$ab%))vLx$I4Iq{JDFb;Twzf)*se4ZrLmL&vN-?-9Ij(|1#IUyZN-&@t|Eu3*(lr zTK<>z%GgS4?>(nAEyeuS{Z{?lGi4jrEtvSp`M`S%`*+*59G~#;RUS>vyydreMQ7Nx zN8TZ`d#7*gj4dkuw8iT;*Vohf+p;%)6x;Y9`t`zPcVD)Nw{AF<?~^N^;6BBBQvEJB z_s<ubk4>A!)~wpz@@`$4(9YD)ks=S8ce31zHk1$iaeblNY-5|NYjkt+UHf+1o;q}- z=AT2Kk;j1}>mnUrUeB%$+xxv~?E{ZF9<gpBS_|%;|9*{?VdCFU#&;US9{$*$zwD&R zW#@v)E0`RMSQe}I@kN<G-VpQa(azWJWh+)k?)@D)VfSU-B^s%jDuPE9)bm(3s<z7- zZV|pd>&4c4EBGECx^`_>+N8X-OZS*(yj#n-<+p(YpOH$sw!(46$z{bS;-*etogF78 zURV3AIbHkBY0r(5Vi+&Z5*El?GN(;$=X%pUzIi8G5AL6GSUGRv+T2T)!Rj`PjUP;X z{FGgJ{eHt$KdKK#^=&R(yXSKJX|v;oCX;Nm!r7~C^C;~+Zj-$7fXcJfr#n5>_qBV< zEv~s}A}7B;StMb~_FG1lPc$2At(e%VXFV4`VyAE+W!fdrWm|gNQu=Hp&MRB?)|VZ5 zJjqdcPPn6e%bw6e*<Cko`t$al%JZHU7ICri4%56HwhRYOzCJFY>~(36{UdqhBUOEi zt&U&u-Ee!#$^Q(~k_(SnzH)du>!jY1I}3}~yo~a>pSyWa)3xw}&Jr^AVTscDC;u?W zO*IkQXL3E+`>d&Sn7isEPc;D%+1o;*2jm(UUlfMv1s{r<d+$EW?JeOwXFtFEmgK0s zzr27`eVw_P)r0WL<$vsc9JD&LZQHd^$5!or*127)aSnUO+{Y3>H}LW21O_g7yWx@r zFVnrtM}9rJRk7{eaU;>*2|sUdXYAQ}IoHYXm9)j9efuufC*1BWyYIK}!<uPTpJJz# zZ@r=~#nF`aGfY`(O=`PJr_tHhjm;-2>K{H`+R|VDm^<Yo%VRaoh}y}S!MhdKsahU) zOJlyY@8yL*nX9~4-OiZDab36M*$pMv%d&Z1r#Gv_#A=;b`ZvU?@xX&;d+x+$>bJb? z*Shg5`9b&_>krRPA1MFyC+0)Weg3z9ERCb@`r6${oXWNO?;`GPDcj9134ao^-r#X- zdE@(8;(vtMzh&o^9Y1!D>!a+uxoMl7Z6^MlkaexxbFXLkomD4#FF%>M`})y+JRket zx-ULnoVzyGyL|DJwTI3=y??ZX@tE(ro1xcbT9u!kXWtw8!Thc2hv|pq1=glqwh>(w zbzh}T`szhhZ|O*$291;rbDyLn9aqWst9$h1(Vnh}Yc*r7f5}dH%Cc_z@AKEz#vf3B zaKGc-bl(py|CBz|&U)kPe%Rd5aC=zbWWCv3ho2t5{*>p3%;uB_)pmP7eE(MeWA2AT zH`gtg>~^VCwC(G%EkZBF6&rrq{0uoJ^6`|%`8hnzU4LG+KU)8m@o~kvt?OHEUH_Kl z(DU(NYR2hWIpeKMCe@sre7Wd>eBQmuOMi$T+o!at+4t|#J>jKmj!oQpL@a!_>!D7D zu#CkCpZJPDvnEuRpXc8^b={MF)w54|-Zb8O$tLo{_J{lS{c>CXF^sp~WtN)3!BvNR zkMIjK?cCM!Q)n@t*=DWhlE?V!a(`_6?f&CH<o#?rnGgRNrUk~xZ;^O%XNLNjLV*yK zIWjtZ3#z)l@8y25{=j{{&g=fWt&aYgxN=KVbO?`(=1-nW^YzSB<Y!K-lwiJo)TZ{a z`H#wFr`5Z@XwSB7Had|Uy`oc{dwbDT>&{yR3muQI&G%KiRNvWiZMM9r{#*Z#(#PYZ zxBMviCHt&5XOht8imJ#QF;m+(kBd_bo;+lp`pWC-$uIIfN&n10tnX6Z-F@=@x9*M4 z;@X`IpSUc}He{b9AvdRdopa2Orw{K7+;vs&Uz57gd&V`9DW|4ASk$9;+pKu*-eNw^ zH~dWds+$kY6Zp7qXSsaKpLEsF&W739tmSPlCKw%%ZgrDTc$^k3dYj8TQZ@BOv6tUB z+wXBdnjb|=d#>42Ewby*Ox<sDi%gp`rdrzhO#3m>y-4=9tiyWM`N!?~_7tx>yzu4m z-%9^n?{2!pwxe0%;gTKld-~NUc{jf9o7%bdkH<Tw@OaTXV!?ArLupw#%=WW~G< zoq~IgNjykk`(}C}(<;BECZA_*HS6;xIg!u8ZwqYqPHAnlzFZJ?fXkUJj^XvSZ7r3d z_wOZK&YiRK!}p`LT>rA?+IhTP6ucvT?}MGK$I2#MIF^!k<4Biull$qWa?^bNAJs>0 zg>JFa5w2aO&Tso~QkcB)?*ogc{q%V9tCS&pc4m}+Z~a51{nHO$7u!{SBlfX*S;uuw zEj>%!XD+SPkCT6;+k`JTocQp5$K@NbKPJ87&^I}7aqWR^1=EErZ=HK&DW==q^Y)2Q z6@y{a?t9-&daAa#F0OEQ+Ir=k+7I_a&VAec?@P?sw@}Kgtkc}kB1cAsapHkT8`kVo zte76$6Z!g<QTDdhjWSV<(P;s8AGtR!nb@ABc+Oq@^2YxREn)tAhe7FK`nAAQ$;KH^ z&U0@To>IE~FjIYpx!l*AH!6z#KC0d+`=@hh&6XD`De+sQ&-1QZU{n{N^EN6_(Y~Co zv+wP!qgP%XmyPWgzfxmq-m!4!&L5`P)h5{z`I|kzmF(309-+Cjd`F7xHirT?=VYc8 zw<@Mp{JG10boSHB!ZUTBtG}Inh4IMs=!<p<-uxQ;KH=;787lO{(*K>ju9yFA<_y=I zmvYlyOU<(@H`=|A;hDMr@?~M0ALmO{xK&%nmb-UpUf2@$=+)Krs`ZcTLJym45<BkZ zcH+y?OtvS-?oOOu_|TraV)@~F?(NUb%r?HY^Zhlu<ng4M8`s}_DkxYWqT^?HZ~NN$ zN9s5>v>lGw(Zuc2;m*5e+JA-|>Bz#C8I|6gS_Pr$$E>9mi~h=*pPespo0sX`Go_3B zHguQu?_NHoao=_6?>tH`JXrd)=C-%}iG6r`_gZ(SEALD*@4C+vn>YLIR6lNZaekfF z9k-0Ra^?N9qN+Fj+m~Wh_2OJ@-ag4YlKK0Nm#3Y1;xgT+d$%da^0F_^JWJ9iPA^#8 zR~4qW_kp}v#mdK5w&*Gy4%!+PvVG?zm$FB)4}_K;pK2f<X4mrT?e-oUX}RUa_T4u2 ziMbW$7OHGd?|Wv(F5$7%GdcN~N5qB6&6BL$*JV`A@BDIkZDx3Jyz>r~<S6~+XQiKW zB~Lu*7J81;$=2}J?E1^9m$z-#JihE!=Jd_c*|U0kw?3OIS+StW+3>TGoztb1_Sc`* z?B4wL`Xo7-4{NUo-HVIn3{{!hGHK8B?9WV&9)4$ACY9$#S|#7xZM`=<^26Uh+K;~c zyMOu7XVJ&Idv6)sc*%QZ@tN;Dl3ouIl0|#h{J4K`miAE&c9;D+D)(0={Z5widXyyV zoUV1MrLnm$D<tKMzvHr{tGW3Fv%>^j7yiiDw^V%EeciREbObeG9+gg5KV?A)kNsV_ zt+}QrYn)k+w=dt)?Xz1l_FMG3)MFMCFS$7O6t~=+cut%7$c8@-&7rYbKT~(kvvBD9 z6j`&a&4!KjT8Vq;F-Zm|t~o1gKmBoh^q+y}$F5tIrjKUrJ=~i7%|gyHfI+;wv&Y?r zN7Qka?d%ufo5Od`uUYwUt<$})TO-%2I<0Db*SaCea0|!uEDQO&Pc}SwwE1g)r*`hQ z-I;Go)r)6J+=|u_s9fiEH8XOtD@!_yn6j<q*~)usAL=r@?aj@0>DAeH&MtMo>$GyC zp1jPvpXb##Tc|Hhj;%O;tZ3$z`)@W@Oi-FB_3oq4RgvFz&*e^Sob#*eZg8yUtY=oe z&cVBOU9Ne{_R!?z=Fi<T{#_AyGV$rp9MRbpuL>;Hmlg#5=z4VYOq|K&z$=L*0>`cg zs!!fn^=I2D!=4AmOqC~-udU3SrL$|=jPtU8X4U@rlplK8<I~~}{+-(%SEoF;Zt5vv z+S$FH*K<L|Jn7q~y?g!2EV?{P*{2omsM(!3ahlBse=cp8Nz$J0viEoVvD*~G&vIU6 z)5haBx4bqk<a>C5lYy&!j?nq*mTQ+^-IG@Ge%`4&b#M8eyUla*v~<onDj;~@$l!~} z-!fmJM;v*2I`8&fR9eSjpI$L%{w}{iJaT?)ywMlG=*vXE{BYafTKDX+r@`h^Et%)8 zog%$cre_j+@jMOVO&*hdHhh@2a;bmzx>#S`Gri9}Sx?PoO%i`M<MF5D`X7SDeM=sM z&wlwi;(W%plf_SNH#zBqJ#b-{Jbip~;c=Pg%#%FV$6b2!l~>I<^Reij4B4qRCqsOt z87DaeEbK3CaZ{+eKH<l%dxvaO?o>qGd-aJuHFToLEv3eTY?e-witi|#)&8P)cJ*eX z^IkifGN*BF%+&iZaTRC48_R>9&AI3O#O?mRZo6Lko?mU*cd53?nYk+3TQvEW%wv1n z&1ht;%)2LS-pXZn?!`^tvp-`Y^Yb>2LmvK?Y+)xHFFejrzY=b_^3|rp3l2=%(5bL# z!tT>$y*2mZec0-!db}x5HoeJlKYYbffA0zR@4S{%-kN=6R?;bt=C>NUj{_E$T}eGs zz44FbIjdQduF3jE$gX?FD{%YwG)@cWD-*S*+~WAE+qZZ1?GpW_@Oic$OzJE?rY%o= zcvtw0F8BR?+_Ja*UTpvOeu1TqaUU~JxcurGqaT$IxAeU~v`=r#)pZf}^Z(9^43In7 z8D`+jBlG9UR|(Nc>v@xsCCoRzyU$xE@BMM|;j(49k)`b0_49H{#djKfC~Qb(Q*2<A z?A%=(zpPI5KSNXb?H}(CpSq{rW@~kIk*DG`?edC`JuIJZg}mZ8a8vSJb@<c&3~z2e z+N*c^=;?*$pT1mMa&f_qdx|@Bcb`sY?d<GgI}x;8i$6~LYq;Bw=^wWroLryw!~UpL zc-NW-9lN5kj(KbLmj%}5O>!`>WVp>=9H*wY<nk8(Ai*$$Kfb?Neq260VatA&J=H60 zIJs3ezVghj%;m`W&#<C|?P<AQ-Jb>PEKZ1il<(f3{<i*L)$j8kjh;t*RB{nH_HBA) z61R{;!?6yLGOpUH$?+@gMeH;4`6{fcqvJcwwi}pUacsRm)jE2m`n%a30ZJ2ZPw;%j zaI|LQqx~ILv1cw<>^@kh^5N+n1E)#Cg*L6z3l$W0@NSIQW|?4AHSf`iu-O;8z2}>$ zxBL@0Y-3zu?DmmIYTDdw;awU}HVg8-JNB?gkFB6COlJPl+T;(PA3bm1ClPs6zgv0t z?hO;m|IXBzbSrboF@f2uO|?FL)$N$rAK<Wl4*%Qsg+CTamU#E-yxOdI<F|cf*1z4V z$EStcI@<izKJj(F%<EsLJ+qCYe$*<RY}3_ycz1#jCr=OW%9GEZcH6%VPuH2(?~tXL zRV)2C|MvEn>M7el)HmyzJiGMn)~j=$K3%g^?JD3?<;}BsaClvugPXssYt7Qq-@X;+ zem(QPeYW1u*yre-*+E5TiYk*lpYK%pHS745t&Ph(c1=CwRz9J!SM}~;CyD<Im0_kg z7?tPD5x&wGCj2<}phL|J;r`uE9BzC&KmVL<R;m-{tB&6A3;!?wIlTG9{3G6njStM4 zers(CkJ3~X?N5DD_Nopi-h}rV&ieK{`aeUTfyBC{AC9e-`J}Y-T3GRNPfmu!S(>RC z&m`nar-(6M+xPOv;@@t6EUzz|et6T5B3rj(;gw1!rrGPWvn<&yy7-oxv!=SO_EUa| zn)s`a+H}ni@tb@*<9XL+@mme!387|>QiCV%V5lw1-evc1a_4m&=XlQ3>)&SncCE3~ zUzQdA>=7%wzKZM21BnM^)UQwO+xq5L{U4G3N4IXAURW{f*yW>Asi!!eZoRTm#d(5b zXUNLV#)CYI3zU`bKe=gopR;!F`}O(j*3X@BF0t!g=JyAs`7@K>H(4lrUB$aj_uF=s zT|D{AJmu|T4;_A5<gS{mvhujfG^M#dqL!;o_$BSyU-`G~&-WLKx%u*19OF&ZrHf|F zce`5iq;LcOk8k^C&Q#;6;5ya&j^X)jll?z5`MMt#t>#;sxhVFAfq9}TZ%Nu?Lt&wP zM*{oze%ih~`N!VEWhUPZj<3tg)_Rw8Bi=HC{rrj84M(aNjNe90$f{$wwC+sNE9PJ! z@&1%)Pi2+QhgC4kn3u48KEAhb&9b>)qC~&Gj1K;KD*pE4hvycqb6;6ecRlFx`?Sh= zWtWrL&OPi<Ia$nj!oAFT&+7!~-v?G6t-O2x?ZuDmQQD^GW?fwEb1%4d?M(NC!<>S* z-0ct5x>x;qy{+5ln#s@QAEwTVy}MrUZKiHZ){=MnGCK}^J$}l6X?|38(48fLx7W_y zdqrVpqj8MRs<VyT%s)L2K4zg~{BqWc1kK|f3(rg4dwxlLzGRL3x*tuC9v?9@zomLO z=GMWyv$@3zHqt9p0$F;z`sXVJusN5n*~|9&f!OAizK{HQUVeBfr`TV7c<E`?BVuoF zpXr^gb+GZAvVPBl#)EQ}>$kV(zg4*S^oqFOZb@GDTSvFgxbd^iY4b5F0g;|s&741m z4;5Fq%)c=&_oMua@50A*4=FM$Y`wBCsj2YOyy#_YY}pGF7hiTu*~oWm-p%}v{~5wQ zsLW6P@SmYYH|6T-)jm0oW@yAMFz$0yDGmMg@!GrPAOACWeau~zdC&avbf*k8UD=~^ z4@o@!Y?t;~;pd%sMTPC^TPyn7*Z*kySFe3^!tCt8IZ>z8@*I6?PE8aIjgjjM-SMP2 z=s&|D?g#NA-j%Cf?D}RZ{j&0Mp3DK3-5wGF+#Y_?e9M`)`&?aPs`B^gXQj~o*vU~% z(#GXWC$4gwdp~<ylX;ih-R~ar3t6k?EO=77-f;hqPLtJU(|Pn)-#Bl6R_24J{gehd zWsU{P={p`P@2z|`Kl8CXYy8>dg)cuv-E~y(OzSTBV8B>m<Ub|P;`LPfspW$4S$68# zvvWgul>;KYOg^6QadlK#t!FT=oxSJUsVRX|W>@uWxxA!v=9kxj%kLa1P~Lq+wRz&4 zRZZ1j6F6VSX|BuswXJtu{``<#o&oPY7I*n}F$*8QYsj-Fx%C*olg0Y-oj<fQ%elNC z?G4I~xYL|-Ezm7-2TQtUNo?bRf5M*&FUWAc+@jA|qd&{KmOpyh=h*Fcr``EvKh3K4 zOSpaP4TcX6Oxs&scHNoRe!42ZZ=YCvTz&eFSI*1*CvU1aZ6zMWVB{=z$njNS<J-84 z`QPSq-%|ZDt*T~L-g%RIi(T`xRea~JpHsPUpZguHJM)&Wt=;@#_k;6?ZKb38^x3kl z%oa<yO}TMrPe7KyrU$(*xvb9Z*E3tCoxZ}<x~A+$YI=R~(%UDW#zq|~ch{XhK}P=+ zbLD;em_O$l7|;7@cP&$mzuS3XWw}lI!C!jIS7(ZC_^~>_!{qdnI~(lOBOa+YOnxGw z{YPO%o{_`3>`m>yALcbod|A(<6#29={;gEm*2<^eO3z!jR2VFs{=?;l%43zJt$fQr z{5~=<R=+vn(wE!6H_A*p&o%Rb<imN@5i=F}91hNO{OQJF@kr8+^=B35b<^_8xm#XW z9QLixHuz*d$!v3Li<RE_hlk~!Jm7j>8urQbZp7Km*W?fS+pRR4b<6ik-!bp*lSy5X zOdrJT4Kyc9NN<y5=Gk5o#<%vP@Zo)CZriSZS@F(P(n#vlfsU971xqKM$#}xY=p?<& zK>NztKY}0b$x2DAU%&RNwY+-Kp);4=USF{Z*H;UfSLqVq&QN%sv-H9I)?I%m-TJ{+ z9bw8TIW>3vx_RL<IT*t<T{=WJA24#eQ&p7lZQ`q*Q1grP0!tqp-Fbh-52F`9x{f;6 zF8+S6Sa}}9tb1&29y?D>c-r{x*y@+}tUo^MT@vM=nzc_Z!)M~{H7i9I={?@wI$6!% zm~q4IUHr#aUonw?^LzS*tr~n&i}M>6pO3ifH22Jop7)7&ChkdRk-B+tt3TshC*SyE z-!I+qc(Jj2uc=RwOL4zZqLRjBW=Tbfz6B|>-uU~5p7~k2Su0EGddr@A_CLOPk1m<A zP58Oa`E=GMxfxS0@;zgis_L}zvE2@--X(SN+V$DRdTUMhPZ5jG6mnXwpgChnS7;T_ z3Wfg+72)-(4nFYCwYl@+^8QYp+ii1Wm(SQF$MR8qO31gT9(IfNqz8O-?Y;VO_ThVC z*{|J#CA+-c`qZ^NQ~8dDZ2G-3@TDK;TiKS!x#wf{|2Y3B`dYm$bL7k@!%`NfTjik) zn^qs4H@hu##$W%a<5x^{{bH3K#p-4Ezgg>LV}5Jx!bv&J|2E3bKI_2e_V%FhN%o$C zUuQm7wEJwGb=rH!#gv$LJx+RyQ&pO`zj?}>Zm*!TcFxyz><|Alv~SIquV}R~e8^iJ zcxfw3<;MI~I={TPPcwRUPgBt5zyaajx2>lQ9?eOZbnoz!>ctmyQZ8??oWfbAvQ9Mg zX?6RAjX%p3PdxwIdTY_%+g?9niyv)^esffEvb5CS7EN{E)4~%Lx>Ydlu+3JE`a7jg z`^PGdqz})#<NdEB1*z=VvXNJ%QE;aCnNFV8A`8y%GkPXY_PJ!o_$T#8{=@3?0)L$J zS9XMkS?`X{zI}UHN7K1aQTj8D4D1iBabuTI7wrw(?sLiH%g)zQVN*Xmei+_a@}Ggb z;@>w}@sOQzrHfB|Hb_gJki0uh?Dywm=PhSvNCYq(zg%45{qWrSYV{7&9oMSQF1__o zwM5vuPb$=5rDBp1=RuVegV*t#8RGY(w_jY+?)q_R+wR3NGO?MP4^4_}Q<yvH)|t0T z2Fm|tZmW8>GuQw4bmNH3c``rpA8FL+ip}MAmhFlV+c29Y!Sq0IAv5y?v(p>+j>~*3 zGJ99LTy*LA+P345wso$T_6<7hf2}0@WQ_aD4A&ghZO%JdcW#+`+TwO=dRMq=-y;Um zPxp`Li~nFhy6w81@Rq9zS9IULlRvXD`sy5QAwJdLPmF%G-LcKwr~2deBYxhBEY5!l zvA17NzkVk4nfd;V-cuhto^`RGcwCS_b>l&X=Kk4#3fKIx|2X${_B`EcU$^g1ro`M9 z+qygABx7;G8t44SihnDQmR(rzJ<T*_?%RbA?pc3OZ(q~%@kesN;dK#CpMP$cBa{1C zT8N21AaY}0*80XjijQ6-O%B{~@!y#XPxe02($SOdQN1kCwW>n#j?A}bdxc%+JNOHE zuKZ(nspLO{(5Z%Jw;r)c&EdWxx?@si@_crS+fRS7T0Vbm&-3qsy=eMgd4AnDYZ50U znD(rdpSj7wa?%x@B`f9iH7EC^Twk_aW3_Vcyx@oLZ@hnW|EM+F^{u6sxBQ6E==v1h zta>oWkEuK1#Z87eHZAp9w|4*Ssi}V0>&E?`;jQRL-#I#KO_wfxarvDi`;x*K&CU}q zw=Ru6tXj?Wy`oOu`C;|*Yc|%)Z~usTJGJN9H}Rn3%dPjT-aGT&rJz#Hw%tbbyz;39 zTRxu3es=%3+2<^?>&3bKL6<o8HhO>P`nd1)jOtG(!vAiJ`LtI3!;83Xm+JS2PwtaH zytw1f?AP|XOPe0?2HG9dT^b~~_|ucy(r+!*9Go^B)>NML^@L67Z_5g~XWD1wqbB?8 zGPhp(TXpySmv1V<g^p`-tZ|oqI6-FO6|SG$As?<E=FQ>e7manU+we(g-##Nx>2&r4 zw@EGvd|ndgB_4~OwQsLcT@rDA*&n+r&-SO*Uc0va(uS>02iih*dMusjZaw8h%e=SE zF~JL#YM-2?d9!-?{Wz<?yX>TXcs+gap>)dhZzq`6eDIWduVwjJF?O>apWEXJg|mKM z5B|^4)K#(hh_SDDbB$G;=VOD;r9JM7J`XC(J=Q8su{S^Sw<>90!KE+1HA>qqnx18g zH4mC}_xAaTw_aItO;~a9)Y7RJ@)$G@zC2oXeIECZ+>)+)hI_M(GX>-`()(mLi5)i- zvy?5I%5LkX^{{Q(KGniiZ*$UK?&?4OUg*xrReF01bNT)=+|xbNl)31zki?md+dh9z zes;^hKzr}S5^vkQ$NvQTJO7#O-LPv??y_U=ZfM17-kvP%cb4aj<MY$!E}pw{{mieo z*XGO4xwebHBkYf>CS&eIoA14C4?ayhaq{;<C;7mhM>~Gh>11tqap^{M*7xaRpSGRM zEoJxgwko+Ty)a@1U$0c#c_;1FH#6V;bG4d&asJ|2@8A4q_`qguxbz2i<hDzu5*^l0 zI%1cxm5YUGxBh1+oxYyE>q+{D?+sget-kI_O<b5I7{QuYzU+?ar77natCQL?{3;bz zClv89ntmwVH~aB@@!QHjimb0}&EqNhxjK8d^!{rGTowl{*{}S%_ICf_`yFB76Yaac za_q59E4X;~XHe{+#s7BoZe+9haOANquZzard*6)my=C*eO!}LDUA>(peD6lb1+m^Q z?@gag=v!d+U_s*niN~MU&o6yzen@wPR_4UB)r_(Ce4i|pkgJTi+LGINCHLg{;CP4E z^SS;BWGwRiHD%V;t4EUDcH6~d96fl)kRvqlJj48T)jvxTAMePuKO7Vle|yD|`^o-F z8OO@jR9m<mkWewJ&AzbY(xqqV_G$Z+FKy(Tzc|KKSjfI=<87BCeU6zCDP=!H_iC^C z;C`^a<DaVMbg%7gH&t_-CZ5V$?8ZLlsc`1O6WkN5KStjZ_$W4i<?F&9(GgoWxlV0y z)Qh=ug3m%<XpX+5jK{vMzZU;Ct<nFGQzd)Gj%8MasiniG;E+j?Ic=B9Yc@_U6*_q{ z^bT{AaTC9py7=j}-AlPo9e>*W@BDtDJ&L7l3qLZuUtP30hJV{z<J(O|4)$rG8rDx1 zO2}4U-xdGwoV<wo#cB5sE7caJ^lYk6jrQRTKE*acOW$wzZT1VZ{{Hw8oL|5E$8z5f z{~3DhBz%+W&1aonb>pty^2H}MHhGG#{{3SH>r?ecX?5=1EZ6fN@4xx^L404S>qoyG zn{WPTX%)z-lh{4!(o-Sba~<ieAB~npJWJ8Kdpzs&(^;OYBfi)z7kP93>G#;bv;H$= z-skuc^*QvTOHk%DBahaHvmP2fHJ3PiRC<k(RdMf~zQQ=mWxQ63vi+Srn|crA?TS|^ zIe5GE=5d>M%2%$xKmOM6VQ;3Lz`1SfOCR}WT{4e+m$GT=wkyy3)srL>{WW&@Brr;C zJS@BOY#nRAP(}ISUAJFGZTW7t*|YHXi}!)I0?L!wj8fRyo1gXw&-${#^zV{*!=pj- zwJ-c?KJ-ue!}IQzvU0&Yr&(O*nfGhUD`;|je3Po)Q~Py&;Km=qD}Oq@J|uN!pV#(j z+n#?9cUW;UQgsT)l}UbP&z0GgcGtJen%my-<;J{R<Dktgi*tA1n#j1lamKPl&Eqm! zE8b~eeN$sxT`s(@yC{F&?PnQp?aLk-e-<-ZEp+3UgWujC>&>>hEnU{gaX+j=^!pzb zIXUlI?qmDpwp>{|Ep%#dSh30^4g1=qJuMaoZ%<9NTef$%&!!K{Hb2bno;k~(KPGw+ zceSpY!n8>`XFpf^t54@z)XH9VRb5%SW8Hhdk2crjLQmbcx)<Yd@n~vU*ryLO4)A?2 zT9I*>`H$hM<^w0$W<KU`tCPK!lk$;u+x-6w9B;m7DHX3gwNmEBK_2Iy(;3!(n7hN) zLpGZ;r2En}vt={Oc-g}~=*`Ss=M!bgQkVCa%}~dknK3H(_cWUaPb`l+dM^3#`Qi5d z(%-hh$E0|-Ocz+Dw7V<tdEdi(VqATp)1UsFo_XT9>0$3B6}KPiERWsfz1HiT{XPG} zWSz`qDMh|VGB$gJ^gS~<@w`B3%OCxZ$=>^}tozEbB`~?Z=J5G_7ao3AcRkK5w5COo zA@Amv?>5giPm!H7ZSn3Pd#8WWf0#dBy|+5WM0)+(yK>($E}YuT9r^Z{x!&u-r(%c8 zV<!3Y_suPT%l~opH`5=w+!^&-gtF|^u0=|5JiM&CblOvu?aYRAoeU-%H%OD$xvnlZ zN9xatkNIsj(QD#fZa=w7Uienb&gjAwrU&PVKRmSQL%{lbryeg?-diFrXZ_K<G3H10 zBesp-UYEr7XV$YUV@mnyV0`M}4W5Ti+tpWH*FOBVym(<)EPoN`5}XNtOs5}Q`=FmW z^Vavayt_{YU)5<$x*Rag;^t{3uWS4}-m+)06-xCzpY_xJ5#R3LUYWo4L_M4T==Sd4 z(%<wmN|tswti6)IHQ?ihytg|))P1v9X=D80KLgtq^J(`K%(k5^w6^k_IJHS6C&8dn zB}sJm<i@{um}AR3zQ}h;1zytoBRKoTfsD7MvKFh49A5od?uz4q(;IJJk$2t{*z#`r z{gqQ*ea<To|EIO@s>$KpkLS)^i&&JzdUm6Hz7T_XP3Nb)gi7fN-<3s=R^&f?-(Hiv zY;t~KV)ZIxPpKO*XLQpi-Ix^Kan0WFz!QbpEPWp5vM+9x)cGoF6lrH39Tj8tcVFIg zqmy-MHcTH6@4BsQamP#Wg51?-Vf*?1Xc|OY%f`R`^rU|Aef67>&cdy7aUT^A9At`l zJa@6hx*g|ESKA*r<sChH`aP{HHnQt(ypU7axPRKalPS>=rWT@!i5FH$F#D@??Rb7( zv4UaV*1fBKq#xR+VN|jCXxQRIn@>vH&n?%>eWtVHsY-IW)aSdBg?FwS+xOV1{wOM3 z8W-iaK40ucf{?pTY7w`Nw6O(C0^5V;IbV*NyKTK>%6+=m|47z6sY$U5d=7YhI(^QY zRW6S`_RNxbZW$rB!d>($UuE5{v67SA+<(-HZLNNXcw*2mt%ItY%<i6+pKENrdfrUK z^n8V~HS2%)Ep_+4xn;I?<eXxWrOT&Qm(E~3S9zx5ykpe$IQ}bNmT$fO$G%i=Nn}{z zH*>KQp^Z-r&-B%PSn%a-RAEiZwWJ-pHtyTfa>vGdX7X0Uc!9+o7q6JKH$^M(%$f6j z(fQibzWOC|<_l+Eds&@YTAI%}S<v?N)+s)V7i;r&Z>d@(Q?lsa`Pkik5qm<*lUHa@ zcbl1*sK%WBWLH>=-~mgmpN~z?)Tg?xjPhNZDdeAOdQQya>p`Vy;m@o5Ei27F6)_x; z-MLz7-OM!=iIXf@wlB{R(%tF0Eou3J%I)S_m0B~tD6QOUBJKCw&~$p^m)q+%-o2%_ z?A6<6c1sHmT{87+aO;)vWB)$KlKs{${vV!O*Q(}j<>$Du_hjuohs|4h*P12sgg!2o zNq8*X$7eW6TT5Q}hts)omrIv@=Y?g8J(X3NW+v-ZyEN8W?zTYK*{|O_^|tKR|KX~W zGU=k=zN<CgS*6N@j#%rQ+81z;agxHTBY6xZi=v_)2l+hFoqafb`{w%<vps#4Dif59 zS(={f6d9{{a5Y{Q;w<N1uFiG(aMjBl+pd3E8)>TE{x|Bj=im97I(A7bCBqNRv%fay zt7+EnBVp60wcS1v_P)3(VAb9wY4;+oZ<v&6#>Vhf&YMk^W4-qE1s_^A+>UWi<ayV! z*leTyjI)jNr|UjZU{~jq_-=ZUWtLL$w)TzuUH8l{uUnEYvf0;UcJ4jZtrhQP$vLFV z)4#VumfNJI<Xly_a`mbg({Je>=6rtf-7~Fa(vP;Ua4S;PWi)!~R<OS3D@*v?*KxL2 z7GM5%c6IHBp9`6y)~MVzakjVEnHF8j{FIUNPLan6wjJ5MMW22NbtpGkOlVM=s#nBr zc_M(#I$^_6i^OZsgs0wo_4!BJZO;nbEjRV@-abC|Qph4{OZs!Z3;nhyZ2f1PzI|!O z-T32j;@tt0yd@uR-^cseJI&_gQ<VpXKV{FKZe=hyz`)$VTFL!N@1k^V;nv6ntvlzL z+!x9C&u~v*%0J~l>5`8dkEY#!J*)OXw8gS1XE;-%HOfvOXYmkpQ0O~X@p{(HpsqVH zJzse1k4jyAGHLH_?wgXQ)=b}*Bb4LZa75nlgTnz9%{LBAJ6@VzzcNqa>+dOZAMkEt zSfsSD&1lo4%ejw#-)}WKcRFf*N?m5Vt=&}#i<lyBH;2c4`{%lgEw7hh-MX5sInV9) z?9$Sl$)^lYt@!uyxbi$-pII+BtzQ_Q-m-C~-j->7cfU=jIr!X=onh`fpYC}_>b6#@ z&-1oiwri8{nuLeWYc3hSY*<=(-u{U8#E<43e^j%xXIJ-czN?iOcIn2so(H8VahwO9 zybF9Awe9$^U48vLyL`evw6ku%vwCLJ+jC(o|31F_%u_D1CSPLjP0_XY+e)*iH@jEp zK5uxd73gx9dE&+cDcWxw<>p*m($D?kvfb1L_go8C?BrE3c)EPT<VmrMB?8YEvFALS zz4U0d{ap4gQ%U`}kM)%@A6$8|YJ;=bWPhfoJ^!>V{P3+1x9f+tpXOc>;+^f$dfexM zL9aB+^OcErX1U5vpQ)2+Hou%FN%i=Q&6c5-lE*Iay_>hgZfm;xr7xB57&q}|y)g<q z7v8YqxDC^hzMltduEp+s-j{S~>F%v<2Wz(6RXP3K>wuvJ+g%ZvkN+8LInHO5^_ums z&oP&3nDnePRZCG!SEjjXwK&WAnokn*wg{ij?LBF-*Zk1;%oSOMH%{vOa1|HU2^UKF zGv8$P+=CBf>eyD)c(waqQQNjt?BXqn={fr{Lt=6d+}^UYX5Jj0#!1Doq3>E(yzp4R zWRFt$!(3JO&+8m5m_*vlCTuU_E`PLd!iW2BUVgNGB;G#v*@fpHzP{qO(v-DxmtZfu zqtpHAKLew5r@dZPSn+C!cV`!S?#`&I$c~fyki#aCw`AY09JWc(G0xIF^6!leg7`T2 zC%^7mUM#|yx&Ptkn>QOcTv~GGo?zINJHN2(n8nHUD{B%z@SQvCH|?_1?wwck1wU&a zR9d`e$#Xj|1un)n!F5($KhuNS<T*Wl<u)H(a@Q~+F5<MOBs<H@+XZ1KUKD;2HCVND z!>Xf;o3G^9#6Eg7IeS;dJc+U+s#lt$H$85je6~!hwN}*fZP#l1raH0cxZ`Z=*W9^t zB)nov@Gi9}P0P(K3^fiMVC4R;F0r;Y*yrP)mrw8AiSf@1J`<^0T$uN82alY)0^jeD zo-&D}G21WK*e*GB-F!RG^=6Lee(@99e;+T|?P&ilb@QcND^I>DJ~sDD#`*=XzsHGP zeXx7;g@v>Ix*R^K7|p(>$RNS@`je2QV#t@rreC)A*|<Mk&y&6X)_;c0{~3B~JXgL7 z-qkxlt@6zx8}?7@)-{B2IRtE2e)^9~c%!Rb`{J0{_xXN?hvyx<x_siL2YMU_g%Z81 znJ>@!{#HNYgMN>V`SNXR)7RXsSa-=#e)=+(N3L8<t2>`g%$=~~+`GEOW7<-iuZNTb zFV8*q_*k6f-z_!156iv3dz2g&ocjFomqp)$wVP&tELL8m&E#0>Biytk+4S)}!4LKa zVxzrw?ECm^r|Gt(+`P>pTl*}%Hz;m9^Egra-CoX@@qvFVe$@Uhe*H^0wjw7>N{3B$ zg6XTM^QAHhOk$iW+HDfj+m%;H9Jg36vgJeF+=u)!F`mEuqJAvZ(@*)iF2&>h+jV}A zpNVH|+jlj7rb}|2mA=<=Ki!P83%TW-Y;toyd=4@CWAu^Zqe<armyfpHyA*2pr=@;6 zp)SFY(lduA)L%ARUhv(Th4UjW>h7^mKmGILL6b?MC(i6Fk>K7v=gBw8b-$0z`hIw> zb@2AxKXf0(24qh&+H`DMK_h2pxb{BD30Ct8n<q9m&(oT=`0@PyU+0>0vscDBr=43D z7rnb^d(D%cx#xQ4%#q<Uu;RLBlpihO?dvmF?D50+Z%(hQ+B?_QxE8EBC9v;?z&6iB zmW58cdDwm$*zQ~>yHEFzRcB9q?hfDO(t(M$3~v?`Hr^Hu(r5colzF3KRsGgDJHeJ~ z2ZLqiXeW9w?_i%-*mXnu;SB#Nvs62|4=9|yP#bN!YPtAs<y)rPmjA!<=faQH#Xq(m z_%)?Uz4t52u1y|GG&7ejj^OYssxMdhY#4Zexj@TW=DJ||BYQTLHh=CPMY&OrgqUME zo)#?W3qLb=YLS2GgMX#(>r8(<f8Z@$sr<pc@y~XJ4QI+W{yBehmj8_BKQ<YESwC}r z(6zj+k?WUi^fmKzJGAXPzeSSe&qkNHIfavKvtMK$-tp9W`@(xK?<wrwy|a3DweUjY zrl%*}drv(`a&g>X_{Q_Rgs6zr-oHm)XRgZ<);jad;Ny~jg}mp=C%o;up~G9bhT~W3 zr<*@I-?`83sqERdVfwKL<qGQC>e5cWj6J%pF*RBF=F6(stB<_8?i{wc-7eEM{ps`V z7GGYvELikK?Roj~iunhu%KG)1&utgCUVBw#|I?icTe3op?`-A?_g->#)vK_evk#X{ zlhoa2bvvdxe`EZ@Tg|M6$12q&*3|0Ri<-8aTyo&r?Ev+g?<RU{<or4Pbh;4ZmOqQ1 zN!VI0`%!&ZPUWNMmCo!ns-2s)b=ps4EbY%f#o*~Psd&!%lTW{YTbHh4lKbKp{}J81 zuS+hLaz{trJ@m6I;Ad;BpJ$<hTzuXh!Pl2|SLW83P1riW?~n5`*LnuMb1D^!D}#Te zwTU_XtqgF;TUvP3b=}P$Nxm{as*gln3E$PVFp@?3>6~}J7o}_saqi<daqD<by6Egh zui^!2Bp0u_E+x8W+O;Pe_D1;473Oo=(ws2SZ1NvV9yi`Z%~=*|>-yeARyZHBV$L@B zQ6~LtqO)gd#<vgAdwg#4<)t6HB7fJq^X<IbVshFa)n|XJSNFL5wm?>{`uQ}U?fyDz z3N@09?_AejT;csVy>sp2k9>>Qy$riHz32459^PALIL`FEI;OxNfA{1aev8)=AN^-w z_)&Ip?b_*aTj$PcZ@X~nTj8m?cj756Pdg6;9cN!*`DoJRdt!I}mPhRUaBj2xP5rI6 zJ5-O)n3i#Iajd|7gXm>p_th){k5x~+w(zpvmR!!KTQ8SHubzFTfg$a)0`J^4mrl0a zS-e5H@NJ))c)N|_!?!}OH1+rBU5q^;=`r&m>y4s)A?r2I*R5gvb$!>%U3!bxZz;R= zv_;t`JlxQ~Ozffi8ecBY&zkn-73X~(Z3**s@~!8J`*HY~mHW5yBi`&{(+(`%dgrNF zQiUZihsJ|GPFuqhHc~Iw*73Qs2*0+^-Enn|de5E>H@4Jgy4oKKfA*Q-ebe&gr(a%; ztI@iW#;H5?>baG9uf)8w)w?8_m_M!P{k~=2Te-^zA1m#7Fx#Ii%70}=u={V-2a`f( z6&rV6&g9-!K4X>Ae+GeI1s0wSqG#@Z;`qFlDPP1f-S&Eu(ry9o)?Az0CLg_a@2fra z!>9Npi|pa`$s6@nC)QS5epKE!z54s3_Tc(2VZVOnoac~9NoOcomml}z^n<shb!Q*f zI!T-eIC$-C`W_)=RyTnKC9Vojv=ghFv`_vC{OEn)p7ckFCR@K}U)=k@yslV#?=r)j z^{38HJI2kXeSXEd6-W0qN3EW>ef1A5S*41Uj|+DwMWkj&>Z*9?Jek`UdZa6T!W5aB zR=YUP_t91HJ<G+W-6~tWJo?8b30aTN#>E9o9`I|qxThudu$C&wR24q1lmEN+5A(xK zzf|t!ZB4H^cu#5lCc$%J7K;PS`8>6o_`{T!FL3?s>6lq-GM_Jf+B2i)rSo<iy5|=2 zL2;VEeXaU3kJAY}a$BBz`9^toxks*edFxNPKz5aITxEH&;lJ}&LiZfyJislJy>W`& z<yIfzV|<<~xA^zk3z|ssEq?f3=<lQ_{Ij&9E7mF}wRDP3=%45FAhFH!mBso=d%{0% zepI$k>Q?p5FCur&=d+XvABtz5EPD0SsuPAMwD`9#t=zW!W3i9Nt;5H|SC^d-wY&1s zRrIt#mDj@XGq>lgC}rMnx%OdGZkF8j*z*^7^B>QfY8A7+qiyEHyK%1fwhP=o@bTP{ zCzTi5xFk1ER$9;A!}rgA-5;NiPAa#iceG4jB9L5dnJjkOeaY;{PWC*{H?E)jcK&gx zZL{=DxZSSi`t)?F1pJ-M+t;^7=>YSzV{ab!%+sE=arW`5y;ElSZrHx5&5g-*dwK2M z8Ri__O_jfo&$+hoz#*$6s!`9c`+t0Ybka-v8&$jhZubwj4)dO=wxi|oe685sQyy=7 zw0~`7duL5>rpbj@VlQo98?Ux8Iyb?OA^t%~YWVkChb4dSG<`Px7u&?ew@+sMOI>@I zVb%F!EvF~)vrA4q3T0j=x`Fda(uObE-rl^vYxPQA@XTZj&PblKCilvk-P_))ub*+^ zNW#RfYbHwjgeuQ3{UiOj`k~oxU(GGs8n=0xa9vw>a8roQJ7;6IgUXYtnfS7=)IZev zpnLUC)w|6rUzyF?^~kl<f7{KU?OTsdX+EjtudCuWY2v+o-cn|3SDk&DRaG(R)}0hd z)j$(1Pc3J@aOMs9mv&j}x6j(QoM-=s-aGz9w@*nYYq@;lsafiAcSqv|rj}oyXPsKg z^4;Wl`itVat5y0frW~cZY-zi;^ggQ0+w#?O>RrdrO26&TsxZsst8A2HSZ5qJd&z%> zgT5tqO|Lz6{V=EMP1zeSosG;=$xrX8P7rLqUXXb3z_b0<b+UEm^&jm%b}dCX^Sj}+ zu9A|Szk>`E68Bt9SKOi5+$N#r@cO%YdwpU&f5kbLUHhzNRy1#pThQ}XbArpZH)T)K z8(uAu({9?UWwyE8bm`f`S?X`kKB|q5pZ5BY@T&_qUj@tlD!n;9ID*aF^PBd@nF4wF z(<CLYhU79ZXixcQfBb!Co#C~%>C5BdUu;+AX4#%G&2j$v6Q}n!TClJx%xkUc`u+L9 ze}>Iwtq<(Eqg+=mJ-0PGZ&CE>UZH!IJQgo^9gT{dA~^qR;dbT8$Fg6n)^Cd6{JndR zz3P^2{~2zZnKd-!CG~|SE!otN93Xml{*3uE{n;fLD*xS^6Tho(*T(7_e}q0hoBHVF zlU*PAJJv6p^>yu)m@N79o;#_0@x?Z&(U~tIE#Jml->)cttUIM#{5;FA)}EzH`ksAF z@0E41H&QPAlHwzLx$EzXAM+os_HQ>ly}m;2pLQnaq|gmlpESQ|*0L{`UJ<!S>kiw` zjgzM)xY_CanEUb2C27$e*WUe^-KmgpIy>ijmOI~xv>u)K3jP_BFHd4z_r|pP_eFQz zsPZy<O{J?}f0kU^)*LqF*5lLF(h=UPwdXmnZrt(p#qQ(5F}u_cKaJmf{~+tuS5ME+ zmX2|f?01&1WcjVh@RcEaf5okAdBO8yYyZwuaqHnXN^j!~m7Y`gI3quJ(ve@+r<u2G z`7~YVN9LnFy%DFM9u{cn;XA{@KX3LXi{qkiE*ECUo->=3Uc0O&`r04ijPB(xuI+Pb z?0kDiCugxlSkMmk>x;vq)!(u{%omD`KKi(xKPu~9aFWJi9kqsJyOeOApoo(ehc#6M zI7B}?v>y?>-geGn?V2OX#cSSAdr~B4%C%tPAJ@LB>g$33890tj6<u_4)r_}y?EW*@ zDJAxHzSzyv^6`4}{6ot^Cf||SHShh3x(i0PBcmcK!tPnuPV6qYHKkYQ(p2Ut6T24g zPkyH6`7V3%jvxCU?a*H`?YZ~v$UFh{*)nf)jx-)*v`G8Lu+FM6&U&%$vW(B?|Mn(| zUU_j}_vntyrq6w5Pn#3|GYHESpIFzq?CRHSL(zM)bJ?c^NT%%wzVoCqFz;aDag~Jc zB2y(4i#O)2E%g_Pk2$~ohGX_~!;&4_6D4^#RZcmr@&EMq+3h)xCkIM<pH*Bi@5pJB z6vMLYPVb!xxrtI!<E&DdQ%Xfsw}iC4|1DRUUw2zTTDi3`jQ567{uGUuO~qeCJ#*fh zNMFwTR;}lq8!|Wkyid<l^VOD?%B`<M#YHz3`d|5?{Fq<RbMejSOruxgOs1N;s~mO2 zzWuINIlD=cyJ!B?#u$MEa@rGiZ@VnHI3;ECGy~4w<j-M72j=9d7QDWrEl_-YZ*_e8 z{`B+x@?tt`->umr|A;;OKSOZ6Mz%_Db8pkbsdGIQ1Vnm1WnWJJ+xwp(^DVdMzY8Bl z=igS)5-Yv@xOLq&2BU?`Zwha)Eo(jTGSc#L-*(fGrx$*Fd+yV^F3>c4_V%p`0>A%k zO|w7TA-+QL;eDpP{fGZ4eaO929DUqy&kpv}N>@|(7-aNkOPreEAgN<%*R<E%;Ya8L zUax15eJ_6HzIye|)ZVjO4^*sM8(J50mi5pAm$VZ)jKPf?CS^B&R6lGl`1;nIGC84b zSM%4^?A>r!bfdvk-qQ-!j=vTpR6e&9HCnO6%kNvprENbt*G1ep{w+2tIis9mlS#gk z2xHm57ylW`nI|mW>#_P;yu{U{>0Vd$o^RheqhqeBOW)mt51twBnRi6yL3Q}VADbVR zAMxirD3#Tzx`fG4>9h>LQj7AWOBx(I-%hGL@vF2>`UBg1y_Q{ze{{r|++IA%Qc$JC z&9981F?_rAu?JQ`g?%qOUf6i9_@N%O@!#POe^xJ#JvzyE)3I0Fr4w8~Z|eEndhprC zdFSIcUXFY9GU(NX6{VBR*_GG77i^qZc%^2^V|%Zq%a%1<Pdk2a^O6l7kx{A*vqK(B zd{$yk7CwLPv3<#N(^qExiAx+aX0@)}!doO>vgD+R^Y$}O+`2DwoqJ_3x9Q7`^vN%^ zQy<&<pSjAr<pXDU`82OnPM<txzpuSl_ddSrugj0<kK*AM_82EF{G+$~QqJ;?{ii3{ zR!OQw&wtp{ebu6~@v%|#gzD|<8!Lhj{%7FbYOfuB<?Wj}N2h;&JTdTQVgKEq5=M+W zgx2riyJ2cw5q~5qZK2xY2i>!Mqwcf+<&3y_@7R)eX`XX$X-Z2-*hMqG%5E2%GV!A0 z&G~ER@%&w|bv{=`p^f`T*C!ubI*o4ayrRD-x{|wb!=Vo+wq05?^P$yq<%IQ`KYAa> zHyn%HdY|=1{L5b(5_gAuc+hvm;)G60vtiU7p2p8gl`|w%8sq1yJwJR;{#w|n7g4fF z?+o?7<(_>$LA7IE=)>OFn+y+5-LQO;@S%#IyT<H;+Jw|SmrO%0c<b4n&$?{7@b1MH zo_BuyPP41NoGthp_3p)+Z+qGQ6#v-#_&<YK*5~M#-?oR}lB=(OdM9^Rk^B9O3rc_A zz0~Qc`ps|jq5Pn&+Pgd10WY`b3N0+_7UEs^{2A+Q#@aJI-03}E)^Dv*{qUdR;4a@O zv-)Q9ws(Bx7Cmgbq-Be*)YCI7H9jXDeBG*Az?MB%Ug)37$=S7fmx7m>bbR7I8Mw$T zxiz76R{YHVQ{fC%Uqts>z0<m2nVJ@GQR#zGM)CTt((p^E8bbHHRkFW5d944m^~UL! z&&;Y4q+Z%MKG>cAX2-ifyv6$6xeV#O4|jB`2<I|(N4qIc^>bsWWV`(1IbXCs`;UFk zuKRD<(d~Ujs*+_}TWG6V%7dSI;fmb_yRXPCwtcnrTK9hjuAeH`(%deTT4zKYw{cuL z)v3YUU1xdPbsNJ_8@?iKz1oud8{A#&U49(@Xnn-!^orU(&6Mp8k*8GK-}Fm3Zk=%V zn2^WKN|k8|hb`IHrp9OPW4}_G@%HHTZ*`lxW!xl|Y~R&5=kr#*?`w*R>WbEQeKMRi z+xO%0_I;{1dyS9A$?v?%Qk3`a@+F-o4D;SwPWd~{_s+XQCE=djFYA*Z%>HOT^TYdy z%gS9hkGvLOdiRd?!~wH5LrE?M_F}8_>ms_QH_FWCz5D*~vdy;(_x>*R2;VjJ=oa5e zkxe>2zYn}v=4Up^!(^W1kH!blztb+*_%1&3J=}U0_gu4tO%4)&dbV9`?LQO5SLgfV zpyk=bjH-LvA8y;*A1c1Rs-%Ci*_sKaGuZ8m?p;k0(6@c^xTmnoBwjpY*4EQMvJaQV z-_$vAvC|}Wedg9(h76oL|1)F=@D;hHYOJn4{VZ&K@tTkFhj^o7#lB1NZTvRn=gjLt zb0<9#Je+cTn)N2*PYsUW)@b}GUsYqn|Il9GWbq^2iyIBH0+;SFeD|Q^U0&?-Ji9#O z`wZcn`iJ{PqT~HdcirSJDOS0j6LEK=R(+e$<w<TvhRr=6L)Ct4FJD$s_4q(kxA!9t zrZp8;l{~JB^grN{%bAm4ylFz=$(K=Dx$B}oE7}|H+Wyi0kn~w2{Wphm7rgRI&fj+L z*!Q)P_6KDqP3u!V`QQyp;bnE3ZTt4iY*}07DVF{Eb!D?ncvx}Uwu}%S!<nC%R-D(o z|2nv$qC);?@lo-XchQG-EnyMNuIVn6Idhz)^6m68l^%x2jo+(-OV2aZB!5U-ZF*-` zcBI?t&2Q6cC-^-*7=G_udGfkTJ7pOTtZH3!>(7~Iw=c@rK0o5J_tTd1(yn~VcBHyp z<}lWl5qJ}wlESxNzi!Ug+1?vIm@U&?Q=?dxpVxTbblvJbCn6^9I4+R!@LYX|&fE^u z%de*26TNQob4z_k*@xJ8<vjCQDZ0$JS1Q-^U3z56AoGF4;)LV_cm0+>ij~U_CVqJI z?$E2^CgF(2c`tujgx+(Bw0Qj8$ErBWE%4>?C!8m3-F+YXcg&O9mn-$@QuOYQ>rXdF zocuJsEI57Qgg|!*9bQ|7OL<!|kACrAc*m{rvApgHp0_<S9-Ud`uFgC0LUUlIoY9ZT zDf%_WD{kF;6>c!!EOcjM)Fm6n8B1o~vtT%`u<(QhgW#<7t6%+-y`tlKZEdA^yD9(A zlneP+bT5iDy}Rdes9e6{@%3DLmGtn%vii+iUo7iB@=I;et@}5xD4ow%zbVR7qc}~2 zp~&L3qPoqTtKRmV=JDA(`olME+OhA>h7-D?4|aZ<Zj<Qj*_!jXJZ4gM(S5(mUpf|l zw3}^vy>s4OpR(&pKmI+jx1J{95X1Ilp~}Rb4eRWKejF58t2cGcqt9n|9Qk-NYTE3q zugY(Jdy5`CP;}tSiDQ`uE%R5FmWI2YP4?Pu;JrF?v+Lr!=U#W$`n^oPCoh@AJV`X9 zEM|T}Hd}P9^TA)M<FclUhj+xLc~`U)-14|z-E>;pD)~Lz?TH6up6$#RIs135Nd1SN zyUxq*`n=wDKQy?_@%x-NWe1O!*}s{<Z~82E{VO@1owrxqJ8z^t;i1jyYH|K^VX8uw zl8>KH;P=a}ICkn-Ub*eG{|t}Jn^-n^ZMu~i6tl5x=eEX)eVjinc@=qk_wPPtyK^1a z=g^O;PY-;|o3ei8Y2AY-W}e;BIiYa=7KUd!kKZvLe35<reVyWupj!#wpUG<da{lbQ zeA!6}gF8EXcF!|n<B<D$Dr@_#sY_SCvMT+!XSO=mG4JYy>nQh$~N?yYswP+{t%c z;oi<$c6=1uE4NYm$F*nHk&L0gO_#8^f7U<ad_tJ}g&?25<?}w{BXSCxE|$EQ?bfAj zDIp-|<7u2MQ8p{!{D~)`ip95f-rVExYk^qRoO@MzVHVGwS_%&`1w481puzCxbzR-1 zeKX71exC?>b3#QaNM)Muf(MN41&b|jEzWq|bM=tyiKzV*FU5}=-o0})No88~>l49- zuJZ3@=y_(Q)K85Nycja=m4UVuuWsHo&%DNsli~_99JJ4$dlOqW$%ya50=bz>W(QoC zI$XPNmb%ciGU-1%4oz@B*SCAR{aw!aOS4~0zqM>7`{WgSr%YU9AsDS)xuW=<vs&St z#!s_u&)>N8Qd#Hmm_OEgKKFh)UAoqFe@V`DHt|n89<H69ll%F5P*uU!G;J6A>`j|5 zt-JS-t0|$!@#$_k(Wg^Zy|Z}yY`xEviqw*crt_vL?(1yyp7~5@(R%Caxd(nm%dCtM zJkP#1@lLk*tglVCXIE~m_W9YM#hG~G$)*#(1IvCrS6=ITXWpW@-_zJ;F8MJt_et<7 z(_K8dkrVZ09VHWYMw#;XJ9+bGor-w7HgD0tJKe$a^NLkANd~sB?33N7AUE58rONea zvBvtMXWr2lmm0ruabx=E$F7|8Ho)Ca=AY@g^AETDyVO^k<{R`jdFqTan>Tha9+TqO zvy?^7@}%X_=uJs2Ta~Vu-fw>??VN7X_A;V%`{k)iN^A1|KJjAeJ@Bi^!B%_o<&yaw z|CG0G+i-cU?wVz(9?JY|dGac6lST9ndHNN8o_fxpD&^9StA8Ym^JaxEpR2RsM5@>| zfelmVvxrY%T3GS!Z-w;E_0b>B%}>lu=b5#=W8Yz6J>K3wg{Mnaoj!J1*zTT(in-&& z#)E6JeDm@}m$kQL+41c5Zrk|r>bK=NPoB>Dbn$J%_5u$@FQ#URlS!VEx944b8T3cf z(%aTNwn8OE$fa9hcGX6ipBY^#!4sQ|YR{H@`f=&|Av?{!Z{LHjtSf0b_}j^0H8XQV zk!R5=euiy#K2MB$oBnuzyTOmb(k6uqxr=^2x?-}sW$OgvjSNrLtk&~XPgdi6rL9+f zW2<Pf^@HheR{wUb=nkEBJM{8fwn?k^X-`V&3*&AoWC+%iG(ISK_qeS8m3bUL*njIs z-F1JszF$u1(%Y{)Rc`amtz14=>UB=hQ*Z7g`kL%Kn~rP7IX<5CGwVOYxA{MM<>oCu z`0Gxb#^pPDC-rlmZrtfm@pDPP!Pz^LI`+shzObwLsDEsIN1gKZ+#2<d(MOG5ngv^J z%KQ|iv1y8#)5CYk6aVGN&&c6Dzj2-BZ_oUNTcWm3vaj7^ytwYve+J$?zM1tOejnMG zv1{)MgN*`FucqDp6e&5$MO=4JU(L#cujhQo{v!XdbbXKMUb%nIk9>;?`6w|dBHyIg zdh3Cpa`A1GOlGN_cvxumv3JSD_;c3}%D3BZ{(k7kqmOlyA1Ob~_4O#OPRU8%K0}X# zpZ7>nnjKq^rE>D$2Y%UKraxT%_Up>XR|OFj>w`a>+navMvv%p0UpY_Gwcck|?kub4 zG>kbF^04Xg^2r@7m%sa7_S3pG@9szKL;o2z#~;19WXlz`OUth4vd>gqY<h0~%3C{v zc=}~li(c9p^Z1D?3zKozpP0WZ{^{57U;LVOY3q?D@4uG&&h!?iZ2xEzs1b4Mkj+Zv zn%d``ku#n=-4%ZC{uceWKYz<ryiNI#->0*7>sL>nT;8K|w$J8x!jYGEM5E=)T_N+| zSAVYlc=!?fn~Me4>@<JmKm2Lpe(7<>l6lW0o=tK*bZoc!#HY2Z?1F_?vdn4XTy=2e zwskZ0w2Pm;@A&0@RKH8$W=xINhgtV6`ZOloI`AUG^4P<@iw-dVh<Nw5DJ#Bh|HkyU zq93gT=6hXJxb$XugUAl&VyS!4LY77@^Y{3a>nyFXNRFHT;QsCUN6(u~<lpS)j=XUv zYR|zlmuD(WUSV+RrNOb_6<l0R2Ib*PU+mw;-}}$_wb?(BADdaCW_K!^{c~~6U-Kl$ z>rPaBZc|2N$UMOrxhh&8&#zh@BzU1+<nGP>2l7AE?0fRImRz<m_!ZvuWUIo~y-zMh zo-{mhezIckqoe|-$}W+~Cy&;x{-gJIs-2{M+rl5=A7?-Kdw1!p=%3%YS7wH77w}?c zJt7_!6dN_&sfe-Swq))CeVOYA^Ly-=f4D!$?w)-%D0*+$leWnL*Y~`BZ+M-1Uq+Ct zYS-U4Mm?WIzO0|SPwhX$!I09o{GoP|mlssNS=@hSN@lTe#tCmdvAc`gJT{-y`uLss z*)e}n&#=|nVozDN*iGH_gXy1ecI)5yU*85F3Uh4ybZoKQ(u|Zip4{BRZ!;eC^ey8| zDyV$kQ&;jQ`-lIk(~oYSzTY=7YoF@oCKs`{%VS+$=B;s@vUfwugoXtyTxSlXJZEQr zHuF#Y<NaOn0#C2kr_JZh+9$qmXVB+v=_MPJ`dce`_gE+2a=82Z#*Zh@d)jLJKfHg- zn3CRpeAd0?t8Q;@*}r-7ERj-&!-W%$Esea|X53Sv@@UtFAC~H6XI6!}dp>&jK}w@_ zS>x(B)mu)f5mQsTUMX4h?6P7z_`WG@UtRqV&#i?fQpMgXsS+mNul)|4A;fTxBTe3K zuJO@w!R&hO9FvYemZ@@!muz5sQtNv!l2KWOvoYhq>&r6948?KDW?NUi-h6b)558yr z-W@F3ICu9#*SwSy)1N-v;3;w9c-5Cn8_%n3bF*FAv&d!tN8Tq(4fibJ=$0!e>MJ@^ z_@ANXmv9v4(jR%DLcMk;+9dxoM2gq{&e7aHkN+c&UE)XHze@t&1wV~)JFhdlw#aFP ztOxt#%Y9mnm%dE>8TIPN#A7~%=^sxC|D2`g9De8j)jz%QE%TJOZOg3=ZqoKKyYOx8 z-X+?Tw_a%dBQ5hg^gcsI9Pj0=?ahy-f9st#t5~J3dei!|C;2w!hMbR?`triFjeA@_ z>c{Le7s%fJwqUL11S8LmQ_1$Vq2==|)#rRWTA6a|e8;rscGB@*%7auJRyg)mCf(*| z_$t4?esN2x>as>%bGrv0rmg?5?AFVY^Bnd!-Y!q_nbg*$<XymWx$euxw_D7=tPlI3 zy1wa;`6J`fhx<j`iyl}`_Px@$TV>9KZ<`BFPd;``L2zR0`g76T@xpgsu9j;o$=#Ob zu`uU^U?<C)1c$@(=6t-~b?w3*(X|z)BWg8HuK2s?hVq@`oS!6>rfx{J_A3)U_B3zr z=Q)}eyUTaHIe+2w{#&aLUpMevYWw$EYaw^rvs<@hciRQdWIC^A_C)V`==XJ=^%?v( zyM5c<oeg{R>)q356SCND+>2F?k$tl6#oY+y65d1WT`ks&c0UO3Ha+c8GCR8dZF2sU z-nA^Z)|_BG=Dq0T^_@laTz9wromFT4BiU!?_52!J>s#(}&nwN9-2@(g-*$Re==m6y zm)CaQwa8Ud6~FL)%lljQ$K%94Jbk-ox%btQ$}sy)uk8H4g<e{;&L{Xl*TIeFxHQz) zv6lT4`f>3i|Ix6pTl@M~-juHVE+nS5Gc?pXf_=(cW!rF;u8-RM%~stn9>-p(abK=F z^;FOC<qj%|J%74&o~*FmVXyI6xk-D{l^Wp>N9_M7|8l*tYj@I`3xCdSI(_`C?v@Dm zBsNCoo|2<J3uPyozpK99Z7ScseQibhG+FaN{+)}P9vo!(WWc@8W8p*zLs_psJI=XA zUQD`N!;r*&_}h77g^H97zx8jboH#LcT};z~z9Z9qHOC33F7<wR*Z7T9ZjUa@)4r!E ztsxd)RsCv1o^-u4;pfQS-Xv@8@mqFEt^{{pTx6r}$$EXmW$)_p{QR`tS##NDzP#|q z=USf0d;P$Tm-WAF%e~~TmS?`$%)>MIl;Fhg_1&2=a@uFU_V-4`wey~?vA>+BI_>G6 zEt_}FbKTA&zxUbVW2x`VrUf`YxW4(t{>>LYrp@MU*{<>Fn1pKg-K|S_98U%+H8@YI zdo85>QosE_17n?V6sJ!8Lk{og-$fH+OmAr>q;PrVmsi{{db0AfLDg4@HL+QR_k*TH z-}rNX<B!&l_m3A#_jBAjx%_O-QO`}=y6&Giz_RMR+Oy#MMJLY}$A&HcZU67`e3^G9 zH}*s(<lnn$G3(zi%{(UK1gm2W{f?6-Rc#hNT6aG4p2+2kPq$q8VlA)cds_5Jr}(Y4 z4L=(?SZZW<FnR{|xn)iL-kw_{|Ipgj`H(?O#iC1=dN$9ub{&!plGvAf(!^)+TWKQ) zE#_pFCzG<W(#$RyZp>;g{&+p+Z@ZmQ<RS4R)6bc_kp8}Q>58cjPaM?g=v8Ev;FVM< zRS5T9TzBl2QO3u^>Fe)hUHiU~d3MUAhw_;Z3{U?|wyiH)Q{DA@pM38;rk(nwi={jB zAI!YCXji4^LJhaKA2;WPGkjVt!0`R+r+&#F*N@1Vc3G@>aAnKtt4SN~zWmRS>7CGf zGP|SibY<l+&!Fl&$+gNeu5MkzH$C~ln*R)`x$KVD^zzpwU1^`TLL~m!#%P;%MyDmI zsVdJKH!#?JG<{HKcyY^qzKXMZjCpTf%u`b}*PZZbY3NBN>CPL9%FApvetj9Y^&@l8 zkEsu;OLu%MI=jumIV&J)&xD_q|4iAlnAnO$8;<MF`ox>{_{jCBob7@YeYYO_?+J>s zd}I`9WyklFx0Uz82j;3L;h|b*XIyD^)eZLi@TTms=e4c%+c-{^bp3iF$e~d4agA5U z(ofE;lFB`^o~<!iEzL6Hhd^YEN}%@E-BGm@AF>n#cC9*9&fMhic<1Y|xZ}s~DNfC) z(dRug?Zb-mH`e}H?YM!VzCwgm^7*u!dF@+EqQqOa-gS@ecD}08rRx{5XaDANs_B*o znF|FM%M|zCJf3xV{%Xa`WjoJAR5Ty`b@WlB+T!$VOY3DqZ0fQ-9k;{#W^eAR`c%AB z^zF8l%ASv;GuFlxDNp)!rnbNQL%%gk)8ch++KzkudVffM)AeqfxaWZ%<$Ax}xaj1r z^|Ne}ated<JHAy#4zm0)QeW5de^dQ<Z~h9;N51^do3H2Gc$c9f_@5!uNkqscu6j?g zOzr)7#y_qJA9vEfrzfJS8~Ahj@*fVatG$(P-^?~^Y`gi!b9ypEL9FaOpC^pFi}lxO zB`(YUc(Y?mx5fITJBu9kRJJ)@Y}QF~@ce$<&vyTUUj1*CAO16Rlv=Mf_G`QIYFD7! z-mTf)5wlE=g`DQQHr1R>{?kdnYPqe4D^7oN`XGAd{;m3?X3r~qD$}Y3k}GZYyftb& zQY7HcutH%@-xp_t?&P`B*2W(;y+8OVHh;sV$Foj(%#2;M^|V7z5u5kw8IH#+PJCgS zcItK9hd*odO|JHa_T4>}X>K5YSmEB1d8Y*Zx7Ip-oP0n$j{RDx^nIyYvrpXIb0SY^ z>N8Je$NvnvYtK(R5m2x^c`@VMJ0BnVK7JjmchkMiWaiTrrgc3{*VONx=Q~ofr0~;9 zb=$(&u9#CVxxU$6K3KoSzkA>L+z0O^UtWyM=sJ_?eQcVfTk-D`%R2vE6ke&EeXKd- zn1R21{vVsa%l}9}%+_qKm>hKF0mr6g6IZM$^pcp{HSv|Xw$!<WZsHY2^VU2!{c*7B z`+tU8LS8Fw#k`sAQaEjQj}YVChQN@*o|F}~uRCU0Yvjen3-4Q4vZ-OC_!N!;%iM<? z(*CKu2Vc**ZX3gDnZ4PpPwn^@f%*qa?{Qtsm-gAYZNA66+m_xFj`{u(oUc2{oMrN7 zwf70dak(Fv|8X(aK2F)bX>;2rmDXFXJ1(hCJE3j#pwso(iM;K?r%nnt_N+X?v|sLR zjn}Ojv0dryYTmCa735zf&s^ek##?>HDcO|wJ0(`U@jP2nRodV4v~0THG@}M>!MdB1 z6}~IR%;7tdersc7tjVd0W3}@i>vzU!T#tJmIX~2D>fW81E@jhH&MiImyv(h(@ss7` zYNj)O7kDd*Yho{+y%T<2^<8dAZd#?Fe4)w|Zkf!U(!;`UCmyY2DL7hLwDHdCJiSDf z*%fc=&YXylJtOzLLZPgbIj?{<>Z5Rl(G8PdC$?|h;h^l@IahUV=i{RH66*6F_ub82 zCgHJ`XSvzmXQkaAnGemHHfvX1YrgH&Geu9lc?!?1kx1!`Q%&RUGkaS2<BFWthxbR0 zUuN4{yj=dx?b;=A(}I~+*Isa9SJ3y_cW<w6(X^=N9lW!h#pc|a)%M7{R6y<Cza#_Z z1+SK0S9rE6bJD%|d(x}JHo7>ioZ%c}HSt1f*|MuL>FQtBbp&}Q%jI&s-|{l(o`h+o za6r%esV+I?$vu^4-s-tk95arvYMCe19Br7}6xs32`sAE*>o151Z*=lJpr9eUW4*)G zuku{CV@;Q>&w1UN`Z+mM?&=-JPMaOyro{*De#IMdX=}>`DfSO*=a?Ja+4*VGIhHf6 zp6n9w2Dvt$3ivHoZ{4nT*YEYi{|v3A_Cn`MZme0SFwLDusw6s<fq!=1vw(xO4i=)n zxF6{MQ2*BZXlBAk_Re)|vn6xST+6$(Gf8yHE{Q`4>4lOfU-0?Xm_C%3sCf0NVvp^L zifsR@xw2P0c1_kfv-8!Vh&?BjC)NgDo?zS){;K}X-G})y#~0qozR$0xc6Cke(#+f~ zx6e9G;PmI&_I*32O%K!LPx}fy0v@_n%=i=Xc$M{rDeu1A`CcphP33}({7Th-s~>v5 z7yY5C`_c42L;L%v=o>2MF01ScDRkHASYnvwxva>|OwQx4+Yj5{8h<$cGqj}pee^$c zmg&q(^9esEZohfM<Y4=WH+{=oC-iyEZ80l8FZ%R9!)E;>l7IYHnYTv!UEL$O{t)kx zUu7%vg6j3HBOmTcRuNWE5xC${IB||}*I&+$^ADV7{^NUb%kTLe{VOtWt($WEP1M!a zFW<^1<i9!?u_kx&RY{dF8NojOGgptEUu_%bv3y<osbBZs^e>El75G}7O)vbg@XUq2 zt})whs<}?C+4xhk;;=_U>kO8O(mdXL+S7kb+0Xw+_L22j`^VenuK7`Zc*Dxn>q;K+ zKGX9IpWSu1ZWP@(@$B)b2hSN~zsZ$8T&MFR`T?)k=_AIcKRS75pZ#X|^1{LFx^K6` z)hg2FaaS(&nR{N4aXMr2-GdMI82<LJNIu>kdU>BbcdprEe`&ohJ0E@eDiOLb;PMTx zWG(I#!%uS<Pg+{6i(liNv3X(ev+rw5`Zf0do%D~rV*BBVSy8@|V~!T*#o0Q)WqqEp z>@a)V%NZw5oo<q|Gj6h2KhZS*=J|jhlB-{q1y}sK9RFdH*O6O4)`se@ZT`6Hcwnng z_^rZEv3YmrNeG@_Qg?aQ`>wBd^;9o>UA>?8-i>7^^h!=f=0+*(yji?lG&@}8v4wj~ z!QrKKqJIiM{%1Jux%TPhJ@J+K1-UUx!o`@9j+s9{lfjtAQ_0gfh3D@h?MsJ_6<6(6 zp0(ym=yto;Ki+@*{BT-xrFrYxhqL{5bVw}vUAyvAx`q6nwoh+;@|x#NiTi7P{h9lb z{vY91lVV?+Pcw-0wG0)X*pWPOLy-&{FHfJ9Ub1?=*UyXlG_t0JEk7I<)&FgdQSYV0 z6->9*-FeF-vzv|GR<ig`$UNDtKUyFEUR1*HE9p>Zgx<ICoCG;@|J^bS(it)n;~m=% zTNUo<*IPP!OW^dPc{+RcbEd9Zw=_|bE6z#xDa$;M){T<v%+DMzZ!OvOpF!}C;NoM` zqTXDN*`<F@sdvsY`wp+OObdhO<Oc2AQy3qp|7QQ<9|?}?9ipYyncFts_vkN3D*Ne^ z@$$2P;UtInGWM>wU*dUc)IXGW3q5=7zU5lf&5hHyi#-fkez$k#jMY4k=k&kl%l5q9 zx}Mj`<kpp+)`w^P2?JeFz!5g<^YIlPsjcs7cB*vFC=Kz~yW1&YaVTN_p6Xx!85(T_ zKYAZC^th+c*}BT^c;<~mYx^9z4(EA3&T+kd-_~xYReH;xP-gW*w>xz7osDg`Eo7YK zd*g)1%^B+s82?)?Q+Ujv(jwo^#C4V5G=sCrxoOYXPIKsP^7l6?SheCnkJj_`#a)j| zZ~N-n`sQrkD7vh7aRzrL-~L6)sxt%L9Qc{g6kSj$Bl}Zk#wUh1e%V3)86N&;XsHQG zxstZ)@|W1GkB1H}kCAjN{w$JO{^{YYFlK85KI_TO70<n{uX*>!{IRFP<#ktmf}~B0 zxi)PGW3haA<-vsZNgNi-=C{>J?!LJ1<^#vvN1Dmjw|{%3x7Znf)-n4T`1YCD*YjD= zujVgYTr2o=p4#Rg?H`^;UtYI0JG^tz$%f^E@6@$ymIg?6SZ~~T-0_6ywfaNR<&T%e zazEPF6sx!4;@w7>;CZXOU6mCJ3@3yJ{0e=`{b>CWUGcztPUq}ziv_Zim#v9R;k|rX zW0TKbx4Sb>ybrH&UtZxJw5j5cSO4Ny{4Je%b2i>H5_s=$X%Ul0=|raQHeYte`=x%D zbc*GxJO9wEzeGCx!`Cm<?>Sp^U6pV-oNqBJ>~jZC)zps1w$<03O?}+0-+n79vZ6WX zR?UvjYrm$<dZwt<(>vkxvsH@>WEOVL;CaKmj`K(T+81GBw~lT(9x?g-o^3%Y0xM3i z3pJ{&aeUWUome$%edb50=q+9Ek4`f)Uv|nf;gd?_w2Tc4YtC;yJ#p{3ii}STk~SAr zp69KoyF4}G%jw_$8MtfmF5M2irn_Y0j&P$bv!Cv~Ea~*&#Ab;<lkYaQGp`pt8TBJS z{^AzJ(nYVt&Mv<_S$5S+*VIhr<chLW$Hkd{pNU?^n)UM5f{$kHHdO*fcNT3)@XT{g z3)mT`t>MY6)xaggGpXvj(y#iy67BatJZxMwE=wG36q_%7Z*Ic`^M)|i^EK0CPgty3 zTs!@ac-hWr^F^P1mOeb|X#2Odn>JL|Z<WwFE9ZW)!)b*>wb`G>6HBMPcl|hRq3ZsY z^?nm8ZIbjAS`1s9{FHmyj;hPnxoN+$SU216BY#s(@Cs-7&MzmD!u~S^>r7$|FFtIu z;mAUd<9>ekmQ>|OSC~6r+oJ32_2JC2-{<;-nWif$avhm-T!{B=Ps_<ubDnG~(DOPU znry1Kyyqb3Xv?5Swsp}nO}eWc&z@cI_sQuUPmYT)xu>Wz%;aFUDU99wZu|1rQW|@% zf7!h@P21C4_oH^Iy|T7YtLjd6i8O|Jdp<`uyM3JBocvoTChBFk8b@EkC6gI46B&Zs zcQr{owh4_F-GBJymao^g%Jce{8yV?rjyf$nr^tHpj!niUx7|1;RFYSUE-J5j74Nik z?!Jj-7rj5+4vls*+8C|Gy7k`M9l4u$POCY-i>!Fiw`lFMm5=y&Zd6{5I-jcfQ>xZ4 z&106U#R<OWXH~x3k@)o~J0QdO)(i3J_oQ|=c}przxqW<zN}x^Fjl}2E_?2`2=`Jl= z-oRVA^w{#p(X!XKcMH9Iz#hCJw@;OQ&Wee9E^)jH5e)j87VP&+ZoAGrnU5w#{}~QN ztrb0`)xYJ%$A?{fUPcDD4tzPap4sAP!fQFX%Ud4l*U2BvtxCQTvr*`kV8e1Xi+6UR ziC0W2^4J~YoL9Z7lfJrq+rG^E=S$CgxUv1+jK>P?Gx9>2SAP0*C%Nm{d((>#f7Wj` ziRMhpE{d~mEi^tpp<HlJ&64k_0k$hY*)_FHJM(2_o%tV!`M$Z5Z}Llb2WqmK+9h|S zFhpgBI+@2F5WoH7x^i*t!`h$+S-C6J`fENJ-O;gs*|F+ycB4XQsH&T|y`IO}0`dP0 z;-<Z2cU5+_emxy=s8M=FN$h^ZBX3r3p679=xQFrH&VGTjA0E6Ylj`eVci(+gob;4^ zmnLb<yLVT)#_8j|6D)a`dNy+P1@!J@NqOz3o0<Dt++tnNJH3*R4_CTve7IY<w!q<2 zzUt1(vN?a2pWgoI(F^;h3nx@1@0YLqm=!en<*f&i?^uqXZ8|HO$Ej>zCx3UN<?(a% zUY}&ekB7_2Uy=P|t21q_od0aqBip5Cmq|>xoy5?5!HwbV*|cms>&vCq_bq#`eD7L* zQcO^2xlVQO#&ny>2i|3G4J^MNlx~{s^3{6xTDx4C<4dzV^DD}C-HJUDyU>PrRZ_jS z?Z@4d=RDeZS3dfR(v?Zq{=JJ-pTUvb^*DdpnF{7p{~1EqEdtI|uCseku`0v&i21fv zJ9um!q|S{gl@8ptk)>RD-o6h}TbFGtWZky7()P3Q)QWdCTY9In7p+OqtCBPRr+R8? zPvDiTdx{^5V@<-XnxgKlX1kdx&#U-ymxMFhIevS+$_GjF@@=BkW{O-3+cxPy=&5^N z{X7Snck_$iFMGMA@c8qX$)_L6^S+v}t+h5Yu`vJh+P;H&?_Sj`4NJdc)mP7#ooU)H zadesL7cr;j6`y%}p50~Ies*8P&6*4RAKsj>wGO?#aLLl86E`k;b-FTZ+dt)9QeAo< zayj}qwwr%!ICV+L`r)r{XXCEDsWE-9^X#$C^326sww*|0NSt`CsLiwN%=rrwdQQ)q z`?_UY)9+*3bqiN*-FtjW&#`-#E@*1a_1-;w;s*YEkD1qJy(-<`{%d-}p_ro?yJY@( z?6_OBdgtS*<=V5SrCTJPu#|Y;e6i?D&Y82@uKn@al_f1}S}HNO_q6}ih)v<FH<!v~ z)$HAH^GSb|RKT|D>Cty9bNNKH9g`+$uPZziW2~;c>CG|sy=lukw%(qZv}^OmT35BZ zGR3z}trgB;`19#Rc*cK*>b{$5+e~7uojz{)IA7|1R7A(IfQZWJ=F*#cBpE#}d_5_> zw^e4Pu6NL-qtf@=Zu#WtuYK@4>d@0^vCiN7o2uTcEJ>MoBJj_vr^nV8uQL0&Wo1h1 zgx23SaVa{=(lOJVx7MD1`&@GU%3K@P4_X<z(uZFruk)H=991#z+oQX8dU8L_<M?;B zZ~yCtpBpD>-+lOZjeYujh8KZ9#N$3NY}o5@#_5*D!d+cymRh23{~XPI(C7JFZtL{z zv0VkzWBt#`T04Bqy>s#23j=QNh}$J?k-R6lDx{m5HcqH~c&;jWYw4}9{^I3X#d@og z^|msc6#Ch#c6c7wfhPTBeziyQD)t|l<=$CpZ+~!}WIgxIv*vT2-FoK1(pur9oAf#P z)RPDMIG$8p=PZ7>UMTk6;k(&tJ`1`srwOrdauGkHP^xoyp1a9X?O8XKU))tcER}ym z+f%pq@j;$*8+WO_xUVp8H$%>P=1i8txVI1TZ?Z1f5&fTmKkI?Sw(V2bMW?a%7bGRl zj8$RXRPa`M#dGa>^Ce&07fksOx+lzRyZJux1FX4o@7caN&?%=oN9fN4#yf?t<GLSq z*i^4O#NNEdbY_Uhx=pbb-aZ!AGhJ_YIy~;3uU9;8YpYk$U1N{a8^0_+vR)vwo;zjN z#jhQCVh1eQJ{>!!sdHoEB&nxyo(Cij{=Jg$XrJT9W!pc@kC^3Kbne}~i^~~Km*zh` zbmH!bbe6e?uNEEuxW0PwVS9<SUp7~-%v`Cu>Vem<oa~~q$ycW^E81>aad_u?#(fv} z$eb=MUh1Bw=TIW9F>%d?9V(L|uN!XqJmH4&>&Q!5ZtiV+ct0i|tGv2Lyqs@)!Wqfb z{oz}kr8Za!>tyuYuHR+gpBT4x9e>9zA@kNh@qgz&T+Jesw`b?}NzvsePPp%@IHh^u zK|;^R$#MG2|HOT)Z<(iI5-)iB$0Y6K4aZH4JWlV{@!4Le=@2l7DPm4SuIaTb`z^<h ztW=J!7nxlv>{H+-$F}ctyYr-16E&VIY{;`(D=ISk#%xJ5dEPxnzmiWbxF2!jTz&Q5 zh3wNVe*Ubf<>AV{;6U)KX3rm+SN^b%{LR+CI^&;FsL#>DB$d_)&zH|h`ZVLWrseUt ztM`8xKTJQ^-w~E=qpkAEYvGY^b}_ws$};|i9ILz)tbA?P?eqNE_ZgRWefFPzI8I?> z*(;};S*r>pY*v{o%DfHQQ`mOAGUV;j-o>iba=EK(d_IVGZMDvR-~Dl2_a@nE-vnKC z&%W7Md-syJmJUO@GJ_er?B>|jKia>!UiwnK@{4tJzgdcryPDm#k0%eN^;tJuTrOi~ z#(bmeS)JLx3sv)v%4*#{-1*>kYm>>X>s5Qt=n74f*S~qotWrc<eiv8s<f*pV&ufhj z*-4ufyRNd_y}Ob7#J4lKkCK}Vn0ht~H&~Uu41J@&S}i(z;mz0gbU)nh-1?EdJ*VWX zn}V@yN9)?9Gri`|d@#*Z%*i~Zb+&Ya@}(_X?7QYEU(oHbGrGJ+$7D-F;+9?8dpeVu zdALrT*UT%5(h;cd2%qdJw|%+$H-Fwkx=AxDejB}=d`5OQ%WeUyIX$z^Zu_vm-zI&f z)3>_Z2fhc7EWNv3k-4?N;e5>m{+w@j1N_X=^lEjgpZES}$e7RiBR^_y`vEhfbE-Ec z#yXbTtdv?c_nyZNwui~5r`qrF5h&|noIkD9HaPZrso|=qdq<69%x83RrdBlP9*{12 zd*OlcB+ozEw-tWKuD#PKAM2Tu-pF%IRQ?c$eD%BM_J<_?g)XZTt=Q~$`Pk|Qf7z^W zdnZkry=KjJ!^RUuI~?WwnV;G%o~L<es_BP!e7tj#Uw`|jv}Jq$;d{bYt{?5ze^;t4 znV0h~kL|o>z`HV*FR6)>7~aN5{mA|n_jk+tJsP{(d-dOKVJ)kebgg=}rQQ=;r`FFZ zi90J#_gR&)aM-a`<a_;?`tWR!zm#<Ljy0*CD%q>2_r1D)Civ;ff)x)ovM9K!JotKC ztmJn6En&B7c{Y|GK4kZ2<{$9&sa<wAIj3OL8L^0iT$RZ^MeHKJTiyz->kB@7pL37l z1717Bk50#9w_jh%EAzf2=+TKM+a8JCuDo@6`%DoA&nG48t*^g5@?HNw1IOR1N1u2t zGn#hB>`ly+*sii)3|y1%?X`~m=(qi0yzuQiHHllVE#DfT?D<eS`Hn-4LQw31;0Ypj z?m40FrE9W&L~B>piS3T&U^pzqBD~Em_cuc%<J(VPZCBNPd!KmYL+XeB3`cU~{i9b$ zXS@xZa;)wq_i>|Sd!sk^);PXlVE?^r)8#{U)*KA;gOAxa`%cdP!#?r&(%SY1*}LC& zNQM0B>#f*k7gK#GOKX7@;~%4E#!YSoj!B;D%eOQis88*GYp2|0X{Prz;;Dj}C9}E( z+s?b;wO#=`|6lv*{V@Fv`^V@bw<OxVE}2G$>i_<rb4;|XY4*Mse2?e6KX-4(`t^HM z|1+>m|M<Q6YebFjH@A<hEvM9`JCwOzQB4ig+30Jg&^v=+aiu~^-3KA<uZ<;p!@nhd z@Y}rZM|8kP_O2S;oC$Ys{3u)~F12^shsY~uO<v_GXgRw{7jp5Peb5;BpMn3M{`rsh zoo65W&%pD3iFazo)kkxCgbox={~Wl@lV`{IQ^zIb%eSWgU1{lFd^<vw{meGIf**w+ zoWI3fOPPJ>mR;9Bv5#!?MZ~Sz=9hWw+}>5HWID-c)1+t~mzg)pCU7W=?tJ{8p;dm9 zNmNdnt?`?UF}J+A?;kXusA6Qvb(Uw6z^m%j>&`ruHH^Fc_&wu~+mF`uuBb?Re$+U# z>hYl<-FW{#|E(%o{?nRLT5o>%amT^7xbfP)m@R*2{4@R`e<1w2{nk&nVl&0$y#F)g z)?BPza^i`w)+(>i3Avv+Ir=<oinM1Y&E5M_YLDsF2j@k)zb&|I$9TiOW$8z``H#J2 z#qR1pxYA(oy85E~J3Yk>Esn*lhpmq(J%4|^f6fn;`CI*u_V-+OI{onM(j#f^hiwYo zTJmgd_Rm>&k5lKS?1A;ybIrdQeOP`}pEa{;-TK<aSyrk`7j&I)Qm$Cs@$f^>sWnUf zGl*O7V73X1+y7hdhx{R{*k>C*e3OpW&HAMAXnNR|ZH-TFa-QhD^ekSl;08m}i!<#{ zCK!lbl*#JaedXy~4%_ecX6x#c^d<iIUiCfRyEWUpdaoO!&US&L!qX>uoY>`YqvrMQ zPP3+Pi}l_=N`JFu%wxDX?fYZROD4TSM{l^VtX*VXoyl_e=}m2oq<4?A-3=6r%;tUl zy1vcM%)aT%^?e_wO<$h*KHch2dN^mMwGY$6igz{L-IX`pc#M^%<}{p}9lJAM_}|U* z4^M98uFlp-zcX{^_Jqw&7oXIAnS6S?q^#p}SxtAz(DfzfUww!dvXowbBmJOI=IJHf z)zShYvASnEj?R@~yW^2@@oGrZ8ky&|pSwQxI)9VCTypZ><A>*#CRVTN^vM?a<SjdS zg8kFk4&`ot_k9ewd52Tx#rC(%4_<EJ-15HZSM0Rb)xPTUvzNWn)x0!yr!jZD#?)<@ zjEocN-pCm6o~_jV{x<R>b9AK1>b+L4o%VL9gojOcO=wd3sjXt{w7_GHQQ(mya^{Su zu7~Pp>wYm<>1TLVcFRA8%O)1@a<|s=oP1b*`Ih}wy_K5xVy`shE_ZqqG3V3rio>N0 z*IQrzXOLR=c1!X@d%>4s|8y@-ji`)jJ+<29MOk}O{;ZPe>`gb>WpdZgtJAN^-1Jeb zUH|aknCRD43X<OJeU?d)ft^N`6aReN_n%>=*MrHQ!%tmbsrq)~{!97m@*Yic)n>Wz zSt*nu*K@w&RR0fC?-=)7PnFR(KUTDBTDixs>ybasKjxmTx!y*4Wo)dwplh`C?AB?& zERLVBIhn4i!rZV#GtVNqv0wl4K3o6dmFpIoe0Pr6s?fS)QgP9m-cM7xoSrb>EeJ`L zx!(0+*U`R(CGC-!PyT*W@m?vB=>A(h?UGgBjpw)a{&v`Z!NxhSq_+Ot_6-kR|EMNR zf2zRa^}~&|h-;(e@x7(LB@Qn=D%HE&c*mxzHJ%@P&$rjO?dlQ#zDZ}|-OPz=jJ7PD zdCkqp;GO}~ru8g!p<nK|*D(Heu26sYb$>^VXL@<<GFQ7}J1>_!pI5K?>ttb`%m(>; z)^m8CXuLH)aMt^fJ+}$3`;lArU2koYm*4p5n!Dw6;@<@#{4-(>t!+9{7yIg7B>R;0 zoBqkxA9UEq`LcY%-AwUC_cE1ACN3%1F8EeuO^#t>({YV62Fshz%Y`Xz-u=XVv4oqa zrmXmzpTBu4%pbe8vLCsteC%V^wW5hKA8(&h>{!*4Qz)g~)UG(O@2O>s)R*@H^#_f< z{54YTe^9o6*$b&tGh@6>C*O<w`G&Fg-W{#>4)gnLE-EtGY(H0@Gm*bN{XyBz#QKN% zJaH!<_-2Rgi~d<!&wI<^yzP+${n_>Dg)-ewb_7haQH|X9%~5gn(&_)WG#~4?|C9Ul zPd%&3bNd~ItykB)Q=RO;myh3LZsgl1EQyQK3aky++rKuwzkB1wH;TLo=TolQa8`au zKd?=F{}#8Yi(eL>wvLi@I{bFJ*(CA&X--1-TwN2J*6MVG%$+y$X-)iZ^%{;Jw;ycj zKC-K|`QVC$yZU_XB>p`7^k=Dhy@__?VL8XgtxEgi{xh^sdU@TvNLD{$d#=I$iRD~} zpB>b?!#wH2J*&#*@_UL_#doBBp1S<_{9z9LbzkyXe#-IJ1_w_1^iR4Xb;tHQAK$9o zm3yYhbW*9`G&z)EV`|T&BX^Qx?JN0gIx`pkGUh+L!$web+S~`R{?1q4lx*p(-@Nt4 z)89FtG#ykuXPgp!+#|ek;^WDZfs(H;%)b?UK<Yn3+n4)7j-q{Y^S^b^Fh6ziNZhl# zw=`Y%XbGPUIQ@NMOzr`7)1Rtq{#_L>j_9@*%&eL=cjayE&bLpS%x){#Yim0n`8ctu zU2)et$p<yZALY88e^j>8^lk6fYcs1$wI-Km?@gQJ!qs?B$EL{a0^6S@3oGt7u$H*9 z2kzdMsI}_X{Ppo7^;!3u<WzP>mcF*%cK78<^_%%?mTRs!<j=TZSMS7zx@Bso9@HF` zSl_u%_un<EXREnh&XbzCb+6^))VZy{qhG~kFtbGnhN`eS>OS2T@%J7d`}1q-m;9-@ zR4QR(TAR2!F52y%@19>?#zz#(b!P@>6soIyxnbO_TD|_j`<p`b-Pb3*wsKihzgfk= z_ZidVTjz{^q|AQiY4!Plg~c81UDM<QuKAqG-7B=qCjE%LxQ+grJN|0TGHZSqp5&do zdCTejb55LE6EgAdH}-ki=bm2tT3a6LJy+d%zWe7Bx;FjX;x?@5E!I!cCGT$OkK6IL zd)t48rks1(zeJc`{rl{<r+vySmC1!F^7DLFIo&+*vo0Zf<$s1Yo9+ki8^eQtObh#T zPrE^R=cSxwJ4+iHl6UUd;^Wb`T(KqZa2`iY3g6P1m-{*nCZ?P}QXBs8KSTGrb!YBb z?cA|-i^FNzvs(h+JfFK>{k{CFvK23zqrdIrx%kKU;f}Ay^|FV~tZTD$J||Jn$FieE zJLT`W+ST9gABx}XelTCGV~^*e*ZFHQedJ5ewoke6AVqZYsWT1lSp=dBo;P+q|5|^u z{?LST@ej{T$PnMSdzIz(zF()@Wb|i??3i0%zf<Y)`l!IOLerMk`p)kYtFqg?+Gu-Q zSmi|iv$-a5F$|9vOcc*}<5px{7;ai}UH7ZW#Zu0<Iq4I(Yvf+?*crRV(LqGG@9eC< zX4gdbiM^QQ{W0#?ardrk@p{&aZS?aCcHE0%E8JT(vE9j$rR3oH2{qLpiw}use>2|_ z8>gl<FQ)8})2pJ}Ethg{?Xa|Fe>m&auk+@IioK?5Z?@qM{%}M}=b>rG{IIPO(UofU z>682SZwxkSJRw<Td5k^I^4o=_m)9-b^`S)2J+F7_r^V6-Z8?qFiue_NT~983sA1Z# z_xx~}(5XJZ+u1Mgwq)4lHf~~M5psJor?Bhm`&KK~X<L_`UK+dhjPCLio?EBJc1+yl zw0L!5xU$0Yz8Oou?h6Umn{F2-zR%oTK5f^gX`Y*eOD;<!hCSxp%yWia;!xS^m)DLz z*e~Q;ap}h<<;0@ESg9*BQW(CJ3JJsro;a2Jcx`Rq${*#2b&C=|+P0lYbJI22`P;#< z!Rw@0d9HHraf?^gVN*_i_;%d2@AaXN_kQ%fV!yfRqmcB{j-mx8l{~&%7nMyo-TG+u z(d`%F&Yk$N@BPElyRGkUFW9i-%9<lPDz|U>>9>3XSLOLrEmdJ(TdI0{GBY3g@@21J zI^lhgWwPSkD>IFy@+DvI@AupKa(lew;!FCi$7bfsO|RshK4C+~o(XQ^`kFG6?^ZDP zTxWlz-@8xk<Lu7TXl9eer~BW2SlF=P*u`fvmqg58A5(nYwzoRcbd{phkto$`YqLvv z?`^8zxU})GwZp4_iNO;tt(q+He!}v3Gev*dKj6Q0==#GM|87qA*m+g=QGv?twuecd z4)yeI+jgR_y^LSa;rzXWmVb6%eP8;1v&;0VB|%XI|8loDJ#ykyX0h}*)OUuPIrjeH z`1bk2{}d{kZijy;pTEL-Qg^Y<#*XP3FFv|$T***1P5t^MLyL&Bk-KF>v@~{a{-yFm z`#%G#_vVjRe^<nNG<koYA`!;S*w67J$mP|u<m=OVr%rE@xPJRSZ%uOb!k_#P_+@3q zBvak?et6&UUOdF1=XrJ1{gb=iiP;9`nIE6Hok8~S&rcuf-{gOEK4KN)lv{N8@V%fd z-{WF>^SP{gHcVj;G&pZFvCkp#+P-H$ygzLA{BXTRVc*C7U0e3XiI=L?^HolYwmVSp z*6`EC$PNXz1pW`3pY014ZC^Hb^2XPf*Js=>{^tKk{%zog{D*xTe)%7Hk#CZyt+4${ zDTfrV*^`Y2#IAd(bj}c-V6f&t!y!J-HFxtLy>GJ#U&UMPw|UD|eW7a)mG^duiyIy~ zv+CmElH@YgQwtBUat0KXJ=<@k_T#`mmJdEv=}lieO6OW7y*FLAc-QlSI~9{|F8(zA ziom(z+e|xT^B?DT+bL%T{-}1}z2`&82ba`XvunblGkK&8&uB~AtCwBX2zlJJ^|*|6 zypZ&YU9!`Udh_>IiC#YaaBu3KaM9-{O77M;^R1Tg^Q&p!?$-5iLV})xr-5b7^{4X3 z?sL~TU;5+oZP${;hrfMd6<l@LcuGv}p-r0>om*wR;q&~pW%pEmL_U5i^zKn?R9VH_ z$K7wG`W86pOiGyhZIhz#GLgm!vD=w!SJxk&FDhHo`N#UB*tdG|%<J(=dk=Zcwpque za;asK&&mT~J=-eJS+37&)$>jG*>AQsuCmOo<^y{}9nY=%uB&Qdeci)@_<pYr7W-OM zAeHerehwd}<lXC*FYKmV*&~%}W6QVp!>;Jse7Dcdr}Hy59iB2dYmMHt-O*X|XG^$C zSSDGl+GZ#4BlFQ+p<DLt(k3fKR#t3X@$X`hq@$uzW#ogN-oyG*+fNzxeEBTv?DwO8 zVa35W54}IHxHWZZ-C2_v6~Ee*Y&R}RZHy6E<yK^Qw8ZlB{<5&znY~YC%dMkxvya5{ zzgu)^Yi`ta-_H^!a`RZG`@Nhv>D$HW+`Fxvr};GqU$^DiXYwQbF|X6vtxtAd(i39{ zu)Co+yO_^tnP+&We6hvxkA*(}8CqMHzbde6{a6xl$6X^Nw8LHZ#bnDH-#+B~ah^yx z*=No(YvYm{-4FK`FN=A-Pw>jQ{rjKnaGU3?@qsh7E491icv{`#ZFjob9$kI5=1;Gp z$w?dMhx3IiM2~l`(ObLt(glIdw+>71*RxA5II@Fz8S}%=!weQ{=UP9~KWeKMsrO#3 zJ?z4KvzLWykACwM6L56z%e=G2hl9~4x;>PgZPOn0^*@>)Zd)w6<#cYc$h9J$k`u}k zlZ`zhlZ{VLx|g+y?bvtT-8$7A_d_n#scez|uw{$kGH<Q9yIOiSy!}~FpmJNyjZ-ds z#{RWl^Nqew{c~it-_zbC|CW6^*OdD12jnWfSY7#=L(Zk|x%Re)?Nel)O!8peWOa3} zyMO;d@%y*MW~JR%$!&X9|K(&?D}&jeHGyqORc?mIO&gcgs5d)Ze!ulRXWZdO9M6MR zeUl5h&NaKyI(2^5f!}puH+r6W#uZ1*lJBp7$aPue(!Mj(!mg*z3#`<R>Dbm3tLDkH zB9rmllTZnX=Su5zx4zrG?x=b3p38NL6^o<iywuJvUDdAGQ&uQCRit?T*`DNr99Ese z_t&NN8Gkr7`BC+0&o9zHOm6;}$n)*<rlVTS(+>ZvZr*ubW%BMTX`4&Vi@&^Q&+OyB zEz;wlPti?n+dYL1W_i7w9MblcP4oD?deWAye;_Xs{XDGo;r2~iKHHq`E}itwd+m|h zA4x@v6HYJ}&08|bVa1mG(#5QLq1iHf*KM!;@a$#6tYbg@XH9rNanY9TGxTFbjg5Jj zZb!4rP0ih>QDb~Hf6sgI%xk9$D>%fr&B$CFV75Ya#?FKV2}g?i3ZtUb`;>Coa(Q#! znI4(C<lw%FOQxYJMu#R&n_4`7%4t2vW9$+uw=_RkJ)gJN`Ox)=KfD8H`ETY(O|9H> zUN<^n#(e8!;q65a#2#mweA_+g%5=7K?LHr#ZCw;$xBS7(W!H608N77w-TgS{iMTkM zrDTYZIgiCTKG#BlS8^(swsNd_w14w<L6-2%+gs=CkjdBAI}&Dlv&iE2-j~~di67PH zKX1Bia<<N9FTwO(4r*aqx3A3J*(BhuptWh^IY|$tRpv+TI_joh+>>6ISpVexoo=1_ zOs>`K+<H&kCYLi-Dm>x);-=^KI^ecjW|sQHbIVu8?Ax00!IRtOfn8c-5{p<tmqYyQ z_e?VLc09OLG1=*3-}Gfm?}V%UV^lWDUw+0X)-K}Dj`OFAn>=iuOFKN<8M5Qzo@AEX zhqbOtc5Ih(TDOU(&EUv}hzTMspD#21l(alrAa%dLPO&05UaV?&Y~>Pm%{(#HiH)}# zMK>uKFgM*U?nzr^?suYdY4+mVHoA}Bi@Y?u_~O@=3p*+~#kO~(&-rthwal_+Lcz{o zNt^ZruB;F~Qq{6C&b8q4oBO<5uRP6t6e5w_lJtQ2s^jD9TPt(!3vam__snvSd)hUv z$mebyj3z#O%1ov_pXByT=)KRjBi8qwsj$sAtJU$dH#9!zopiUWufD30r}s9CQRDlY ztFpdl%+SoMid+1s^~0R^MLB&FRDIhXds_r}JxHC?X{r8WzI<<*=cE4&f<L<Sts^)1 zI^A_Q7k5pZzuY4Au<*nSiYK0%K4w1l`0%!WDdK^V2iy8Gp2eF+thBT!3MoFo%zkNS z_IlZ<tdA=$-7CqQ&y=tGcw10~?k*oD<LlBLN6V~q-*lHMuRXtTYc;ppWtDu6dmah~ zD}I}tmff=S`2C+ZV+;-+NHD6^KAF46eZ{Ri=hJ#hel}?8Pu-b%!!D<?ry!(6fq`HB z-kzxMK_7L@mZe|uS;-dqbW^ax&)MvSg&Wx{AJ+ajn;GT3=FUygEq%6e_uQ=a-PXS) zJC$95oofNV<D9<?tH1HuzDw5Bevw(xeN;-m>q56h>~kUcdFO;peES&h*q2_ZdLVpl zz3Ye7k6gY9ysDC&eoJ6MMM}5P9RoLoM=a+V8`)P^X-b$L%aSvg5U1N>t|@xu2xD%W z=7BdGSKj`av|Zt2fA=5twe^Qwvw7R5mOP!h?)-Gc2`5$=t(2)e!DZlfhi~TF<=W9) z-|zg+ez5(G>4)c!9CF=be$3j{*=8F3+e3HX(Qj_kSIn~BJ6X}~MAFIo&2f((`~Of+ zKYYJ^!?KMJ?hD@bSKaxap+7dt;@uk6(1h~kQ#R}pd%(Q+<0PjE+K*=Y-;xfQ|J&;G zk!u%zGzV<;n0Gs17h`&dyV`@@56kBEh0l04S;A%=AHVfS_Q%JM*o&O`)iUc;=C%1& z+!+#4$9A_{&yhFnkV)<LYufqLYxAA^ccbp?|0sV%@P+W!9;?#cmQ(xur}d~c2rOam z7F^PQu5bd!V_V1dbJxCkZ(3IQwfo4viN`KWADgfu=0AgA=)Gu}^n%w>x7PHlsNBlj zE-rkE*`&>*bvOUFrA3TiSyH|{+OXv=bNJOKbLYM_xgFxam*<kd#@$nooETI-&t1$N zTj;CnSDyXCr)01BA&u)*Cf}rDynM<9PrMYIc<PB>^!J{l?&}_3TQd3Bt<|^GHuEk$ zww$w5nKed-ld1Nqk=K1K^%Snk7p%pXe;B+tpII;~E7s+4Q_bo2oOy2F@6O|zH-~S> z>sXOG(~DbP+i$6z_%2Ukf<pW0bXk#~?babxLYbO(Z(QO&@xsJ^^N($k+?i&Zj_-c{ z?^Jr<!){GRm)pnKELDSTiz=V5xpJm6Z~lk28;9-gu*Z5-UdlUQ*_9M#^4%`Z^Q21J zo<or}j*mQS7B7o_DWJ%*>BOZNkG+i?i%b+AtIzoudEK7BRM&IyzH5^n$8;I*TrjQn z62p>$Z3je^C69%E?wJ^R<?L$d#mDnkaGd#Ny^v**YsSKhcjO8jj;mkq_qqC({g9P= zPrm2XTk`z376$x|UA9|hQq7hYR+gSQ@0e{8uI1d?fB3JM(ZrLgQ+K`NQ0YHaIFD&+ zVDE7m9)a5I-nP=KOK0v8<y)A`Joz(c&D7cJPbAx0^Zj^vZ}Z$6>dEiUv%UP!!1d)k zcjm;*r8fSnmrQak%wChFzjU<|=dF)c(I<H>89mn2*{GS=aQF3%l)p>tQ{T7oS3i96 zqdqs`)B4GUqHos-8A=>`sH3U0&0p))@k{&l-+g&6cratScWt%)dnS&A(4O2p`7@<q zGu!Tbm~k{O<JR&<C66~H{%RNAo<0<@Sv+ti-*eU(!WTDR-!FPzBfdC4Ywpzkl8@)R zY<M4Azu3y(ZYL)vb>l{4vd5c*2^&?r-NKC~SOkQGbFX+|^=DFIsinSR@tLx$Y3&*R z{xnSDwB-^#u#W3LL*R#P(^q*`F3vLNu4PaZ_q|yv=kfZPAy<*@?H3+vnb%faI`8NG zgVDpy*kF75l;_KmlQ$&qJZ8%p<n~r}e_KubgR^2^le^@Vf~OhAi5q!1Sg?ibc=PQo zDvUe);r8S9!~HC;FPzP+ToHB0>xlJ@+<luTE|p-5j^2Mawd$#)L<tY)*_!VU?ce-o z5Q^P1`PJs^B6ntg9iH9yG?JCir2S+&D4Dpkow?xW#;gBqwtqO+vvyrY@lk`9-?jWo zem8l`e@jliXT?{ZeB;`_lb#V?Uf=8!zP!KH?6B*@^m(^L>eR00Zk)ZIH!{Xyx1U}8 z#yeK~ichmna%FGaaea0~1^c&(zw1h~XZs8Pm~`y>5nc&%F`bPsr+-`ZB=_@zsbLX^ zMHGZ~dowXwSpMLCIRDuGj(NP>W25e!x))*ADIGBL&sGQN^~LW$^@VR-zh(Nj<sama z*>l~r?=Oi}J`%pIXl8C+&m-y6nE|O@u}st1?3i;ueVp9&>A71#-OE)^GbjE@{M%UL z|6#FLy!;RTqh`0-=E~$GZMync`g=;Q*muF78OQU_?C|;ZY@g`vA1fc%O8ZTB+xg+t zeU*+=Co5ijvz~uD@1>i4d*kJa@jicYe%$|<etg%NdrBXktzCBe<{_5Phn!|FI^4;y zYnO7JTiKGjh`2qE_T^r(Gs`N9>XrRs`PH#l;r0{Ond&+7r)+$zAQb)l>ldb78K0x? zDMe-VB_EV$S-&T+pmeWScCMZE98ZZ$v%Jf;ryVonxI05@TZQg%i?^}4`wzxT|B;>- z-|_z8TIHj+To;s0@hpFKGRHgjvwH6>v(uB-?6x`JDEW?kVTJxf`y=@s)5~s6Z`otd z-tM!>e5UT+Kl7?J<+b)?J<{l4R#}mz@SwRd`kvX}DSrZM(=%6PMVZ_)N}YJ1>)d~a z^K*oZe9AttGCY_g>Qs0@=FzI+u#1x=Z@vq<wm(z9Y1jJ0r|UUi$uZ9R9Z+cO%o4V7 z^D%iIF5ljcRR`)<r|R(WEA6ZNP}cuY`n9H>jcc)byIereYVMPTipPBp&0&6ZdrIHe zZ(^P6{+$rBlh}2k^sJsQqwa^z&TBXq?Cn|fHg#J@q>$R(2`?7>5<TZzqhI*&u5kGE zb?HB1b4zm<AA8^VEM2qr-zL!@cAq)c{Cik6jz;8P__gYC+>d1TiEO>g9Up0Pr)H`* zWgppeMYNGCCi2wAnIg&W*R1pNW3M{#@%h`x533%#%kf;Q(Yc?xUAZRw#2F4r7KtZM zSY;Nke184<LDPC(>Aym@%typm)<2Dz$-8cPcFv{Ethe_*QIN?!esbsZhJ)oi*R5Co z*ml~#jaxe6nznY4!}I{Rd8rZy7;mdGzFT1!%H{cDtNN__f;Ucov_2|zWxAAoYusnA zi+xX9_dK6>$A$e=U|xW))YqS(T|Fgh{W&U*AKoXBQM#A&*y5Gm3iV%@%-Z{ZoLR^H z+-B~|;~%<yo{#>h-d^Lo(tY`>w9jw39%<a-y?prXjLmyAPpIb=_RP9_@t^3AsqfFu z&I&xAHN)2JyPxr=93$rAA13&(;}pHJ!d1WWM%?9%UsCtKwf?AoMCw1o+{c*<FP1!3 z3A;Z1JBPw2<(XYeCf&FD8CpC?pum>B_@7wbPQFd|1b%pbWDdHjvuvhvXL{y)of9gp z%;$t2GUhz9;Ss(u>*uf6$KvF-m`kzVoqKF0Pf_cH*w#*Q6`2(dX%_D%8TZuI*1LTy z`6tk%FaJY4bkikowWHg2ZQnjiN63QfU<`AEr#qjU+XLgkp!r(6T#HwKT71(^?c_(U z(}$<MUKhWvll8FOYip(JDcWY-$}B+wbN<|j5#G)&dZeQGa6ISN)umfLy#4-1Md}Hk zs;3@P^v}8|vB`!pZ&mljo^UQ@NtmSdZ2!mW$LbV5{M|cep8WPJ@72o$&dMIhR@hy6 zJL|!Y0yj^iT%|pS5B=lym;bvgU+7-u#DmgXd~=!gXUn}^^;Ycqy>{Co2lj<4_D$0? z+O~R4#VOYO&DlNICVPBr*%3OyFlS@z#fION3`GuatU>}Ssvn)`b-biI<3W*x%<m@~ z>}QB>*|yD&wJ-UB=ff^-Q#I#;RhL9r8jhY<c>9<^=GUw<a@rriJU-v{?abmor)s`R zvQIpwX*KD^g!rBRum5ZOC;QS)ZfBppXy!cSwolRBMGvAll3N=kc-C+8GjMpWAb4rv z$Ndd9?DflEWq!EjYyR+i*H`Hk>(`a`Z*nhZ{e6r{>)uL_yN4Ax&h4=Hr&Id#{891p z)gSI1cm6wNi?u%QE30aM-G5WdX9@>St1O?KabE9s8CP^3<CmWf&&3bT7cw<m7Jc&Z zZq7aCrN$<8ZcB8798J=5x|U3M!)LUHG0F05MPbZ8pI_~I;T5~*`~C=i+}~Zp_+b8~ zf0uX{RU`+BYi1`Gvfgq}FMHG2?XdirP5P6Vi6`x*zO2eWdN=H#_fe&L?uAloE}qzz zBXrD>Wu4P%o_YUf+TG*Tz25Rqv!e2k{o~UdU;o-Ut=RUxt7}n!U3lwb|EUd666Tb? zj(NMjVckEW8uj1y2c)y-OS)#4s(i01J^Ju>>DJ8?_i2Y#d^Vqc?&2Q4Jwk=y*)?gL zn%S}^Z4z>8_#d7vj{G~@WUkWns4MYr&Bes83$2})dg4r0yPzbeN)rb|pT*G{<28TE ze>6XSt?Qa+!u_86)vT26%<4of&fF){93-{~X>fcrdwZZKdBOS%_RaIue$;<Fe(3NK zIf={5Z=CrMQ@ib&$2!G%hW}Q%PM1tksl5<V*!LizCi3sRI>~<*<=Eu7e{`qH-Vys` z*%6&)y+bcpOHN>^!K=F0CF=XE-g-|{2`Mj|*ZxSof6IS{u3hgIuDH9eQN^2g&jjyc z6KlPx5i&a68;?vhu>6z~*15ytgv5{I5$z#Aj2HW^x_9ILf|)JTzUzHHyu|5&VX-mm zG;akrk4lN#A4I%b8sqmzwI6u++a7dD*>zLf=ts+Xm)zG8^UvqV_4dE~IFx5H`}D#a z5B6P({h?T3vED#lU?1O)^WK6#%mcU0y5=!cukK2ergCqaN>jvcnSzs_h36z(Pt|&9 z%cJgh>e?=QG1FN8<Ga?)-t4<&@1=JF$Ml$$G~z8}TfCJv8=a_oGjU_jx4Y+T&d1mb zO!k<3_@CL;zOBo)^h}EKEl@K^ZW38}%HTM|ob(N*-`RVY{;+-E8}$C+_0~oEF6^;7 zD`huvna%3u$2a8mMMtP><Qy|9&bYWhz1Z!i!XNR+`#Xx<>sP+06NxO9NS>JN{WxoB z*Rk3Db3UpR`YIeNS8D8^p5|IDqGg#^c{THPlC(ZM#~ZoFE<37k>PCt<d|WV>KVXlY z1Y_@VN#(7PTR*;=p<q?tyOn!|>z<>EZbf!=<!ymmG)^8kXXIC_eR@ree*S8wc}lZG zn;u?yF0|>`i|X8m{@Z1m`wv%n?$PA=aQcy~Tj@>*pJ2CFM~fD)rf_&azOv7?s-Sgh zkJQe~ujY$<IsH2Q@}kT4IJ%~^J-e<{u-qcwps#G+f%$&f=f7_G(O<fJ>5o~jvOPZj zKHjn5apNwtAU3N>i|=3Cs`4@CpWHU?{A|`Y3HjcgeAhyAa(^H7npC$$-s@{U&r5mP z(ht+`iEY}lefwOtoAE+<VUi5i8-(W6v0E&PvTo|#W+U(SL2Ywk#;&vbJEfw3^3Q6! zrODE{{l}4u8@LMi*dNtyDfO;3yY`>qZJqknMYXO;F+OK@p8uV*XOiQS4d=37%=P~k z`{Vbc%GqZxEV@)G&R*iGviY;1LHSRGggLT@pFOwz6>j-3zS(S^;79Kl_QECJr)!;b zJf+sztaO?q?pgMnq4ue=<uQlX!8$H>m#^%&Ja@~DkC~;lQMV4oZ{K?MKf?^}HA#=Z z^RW9EPgtz}cS81>59eF{Gi1aI9B19%RN~%tt|aN>PJNM6cf>4j&H2^#U2^@>FZVfr zc*z@N)k$stEu(WoYNcGlI}RUC>HWX9+LV4>zpRey$L5D|&E=&lYAmj;-_l(@+q~yT z+M5|~^PcMNGtMq7Zsv?#BPm<h#CLD%@nGo_YqRH?yxbl4{OBz8H~GKaf3)2=z3@lX zqiau_bf%p)h&au7uyezk1HahTFZjpx@A&)=Q(m2ZU@w33)hxC3**R&uHt%U^o65{; zbWm&V=2e@up2{oCpIKxWAM+#sAD8??>xh&Ke^M9R%c$C8J>%tOk4bGY0xF#sAGZZg zoVca*^<~k!nfBY;|LCyp{Lu1GTxxs!`-Rhl`Ddzby*}mj&Rf>Ao%%%@>PuQ>il?6Z z{Cq}Ol}hQMx!;wW|8ahQFgNemai=S9(xyh1tx)`P_Hgg3^n&91f8!WmXup`xP<L>; zJ<pb2ug8bq7e899-s73SxMQvFoghWKgzdA^y3d5kA9^z3E~l)?KK2^xYxNJc+Cx6{ zcdvWDN8WV)lv`!n{xjT?dOLs8sxXOCrt_w6ybdd>>MBj1aJ<3p_>cULn;-ah?r~pH z5$-*=ZTE7wn%lC;XPf?MM)|O2XBKNM+3{Jq<j&6XPFJ5^JLdaRtkkJ(*Q<W>AJQLo zKM3#Gs@*GhAzp9e@^{l-d+t{E-@CQWV%n|yr}d2Lexy0ilb-c`zCaD%htDrB+bqk~ zd-j9h>a~ZO^-ftn0gG1ew{c6SUOjLkxu^L{YkRMa?4!A!rn31ift8urg`)dbKh?Oh zptq|{(C6bG$GX6sF;kNk_h}zrH2v}XhCQjd4`;{LU4CTVuD48A_2|RC>k*d|CQLKB zdu(2a@S%oWo~|_x?7W|)p8UFUZ<1NT);s<T7yfX5+<(~WbkvVu(Xq*nUDDl+EAPxy z*zX$VoG)`>#`QBo?)z)H1gEqf@{q5(_Tk*-B{d#W({_G%ny`EK)+t9WL<{qLn{2?f zvXE!hW^E0IxAP2cD6}c<yZT}MG5dBqgDsQv8DIY@TW>pg58Hj;isc7+PB_2OxtMtH z?(}1!Z43|6DkdMi$Mn&@d&_?Yxw{qhC$E?s3CLfwtj#h`e%FTGe}4w<l6aEd!#_i7 z1541V?|d#_vd;YZ`jP$3*Xp`o&(=RUE$z#Gboz?br7Mqe?A(4={MSyswGSs*ESapk zz0UZ?cBVbtZa<tq{@mLC!==t7)2?u5=QQ15=ia`Fc2`vo-+r=nx6$Wq@dh#vQ*`53 zT;Heqv9G<{_Ibx2{d~K&PhxGay+7-zNBqmN*=D44;*s&`8B#f=8mp(tZCy|ieI%-P z?b*9)XRU3SXi~WK+{uKAe%xy&F1U4CK{+FVLy~=RC{OTRmX*7s+&}+*y#B`X_-kSn zHJZ!Tp545TgI7e*&RWge(2_-<tM<I<hxZ-(ljJ2U^8Wn}{_t*=$7OTnsGAm?Hl1^i ziKQHrd@wa|k`ZgY$F2EqCVzN-xK3%?)qVWg*X20(ObVH}M%VAJS^gZ8MHbP8ja?f9 zE_!f1E#im?pI4K<^TYgx8h6qCM`Eo5E}GnsoRPixcIB+<_v{us-6o$Zs_%=P@8?<? zbmq;QGg%KUx43`W|7fn)??XZ77r(AjnWg*1SS4qA&YPF_nd?vQc&;E*U}PL4*ZxuY z5!+syd(u}_YlD4f7tDS;$6cn@?pq)myJDy5U->^lKZGCl3*3##dZln>-=($NyiY9J z;VGaOax7l8JGo)`v*Ui+pUNK{f7AIf_*k9J@ASier6eC5e8!Z!$W208RDwmNzLL+c zQuNKmV+YqoDmO)>S08w=Px@sX|Hj?ThraEz-MoF<WL>%G<%)AVpG<8k3R5`pDe3<F z!b`h+i;vjzZOQ(a{K&g{u2F^Cck{k!GeYuYOn4rCXFK-b4Ljow(YX)hf2dzSnlGC5 z`A6}w>xG%-f(>%)tT*}^lY6^3J0z`}ACw+vwom(G@wdILd9gQpZ|O->UCr5VI-eWm z^EGT<)v(F;>EoUUJYVekLKU|5taIP|eec(mA9$a4Z;6e&ayUP0dJxN@^E^dcy4F2W z|K-(o<A)4;LJL!IL-sM9e^RgQG<WU3{KvHFR{M<;`Z--`ds5XW*ahu&|FC=0iuITC zCF;&qmACFOul>)!5z<?l@Tqc<w0C>g>-^R0oV~g)ygO*SyX!~s5j*+odn6x8+xk85 zUhJ}FU+kUhPMpdz4|v}{lPR$1X?{65D(I-$d}ZUcp3Bx%s;-;3yu$5Gbk?qrPj^>q zExPBma(lLbnUdIpcc*z)ywLt){owks_pRHCBVN=CulH+ad#`t|R_%nujySeu9+hPu zr%p1IS}BoK#QCZ0<F&>|d&M66{^*kqj%=TD{hL_Fx*aFjoZhuL@%wK4b9{T&8<YD@ z!pGBQtv`Iac;)S5jklt&Ov`+Hr+7-(Z2@*mEw+kB8;*oN3tPQls@l}YE5DU3FRgy? ztpDgN_8WgP6IC|MP}w|5GBHN}u5t9HbM5);S;q?89#7I<zvbid_LAt3$;W@aoi^=a zdudyx&F>Y=vi})&<)yryyv1=#^LK{VpRXV0Z=I)oT}U?lka)OL#VJOe{HM+njz;JR z9CL2sRIxZ9ag0N4--?gy2mP62qWx1pN<EUcZt5ur@G$EW?aBWArugJf|Cp-lb5%tb zr^hJQ_E_vwtq^uMiawjS>Gmtbg}-a0-(1~rbffAji-2Wn%xAh>?m7NFag0xG`<gBH zWTrhk_ABkuNrlr(8nq_eFEM+6U%BkI0#6m+*Vp&-f7man(DvI}S+cV<R`-%X{zBK^ zTviOL)^G7t2&lgq{C?I)U*Ft6_PMfOSIJ6V;Y``FrDS){RQ9L+MQe7m$FNBpcMj%s zfAh*^_SSy3%X|DE^K+jx5x%o`>3Y3s*FULUVB-uHIK9sEp8$XH<fG9$cl@Y-ynXwm z?}4>S5198VP3TZDn!l@8|IW|0@*IX|+u9rcXnu_P_N!jtCDWZ4_x}uvAG5Z_94ps4 zsoX65WK!_*nmN}e$v0S)?wikh#HwZ1o{i$p`Aa3DGXCsIF`ucBCTlK{JX!MhvR#Tn z{N-tBFSo4At5|+8>UztGE4gcf9*Io<p40x;NJL%9#YpYIV+o4@ZaF^9c``qiK7Q~z zH9zm3!sR8>v&_58I9{xK#npT~?5DeezUb+f_cTBHx2=Ev;eP8Hma=CL6AkX_Y%knd zDjQa>p<(&6qc>c6Ud8&d%TF%WsVaW>`*iNP=GxrfOAW=dQ!I~hxwpzaY>Y|PsaQQ_ zt$b~4xuV<oyEfY+KFn{fDK-(0<8Hg`e<knfr{|a6=_NPm&MvQPSU5pQhPN@qFz@iJ zwEYjd^V{`V|1Hg|E;aG$P@VK3>cH-Ux}Tl6r^I>Q3lT7!IEU9a`vH5`7e>>we>SMi z<@{`S>vpV4n9U-m#=DI#uNG95tXqCyo_%+y{~JkDwSDbeHFIP4EJ<wMeX7;vlYrT$ zwMz45i28+X*WP6o`08TkqCaI<)_!@R^6^-c+V*LJ;<wf&7rc>H7WB1LoO<QY3a;OV z?54Zd)tK!1xNJ6m$3EWf88YfqzTKKRiSwPxXY+TuWe2Yu>2X?RJ}smq`D}H1la2ZV zU$2PAA4)&Hu<A&ZX!B8yX_Xav<vR6Hk--v0S=-kaY-E2MpDCTa*ZHVa{zR1^mGkvQ zPu;oa8_r8pykNj%sIR`lVojWq;MB(py^L<o7w}!GfB0|Iy~jt(C%+62U^e>Ckh<iy zv!18>j=8hcc<-3cTCCh)RT>^IZo*sk-v5eC>_dyKB@Qm(ha&Qxwss!Q>oehaTD^|V zn%{rF>WAfrty{Ve|7u$>>rC-8lWiN_cZMAges+S#_oT$>?U$S5;@8y({HRr1TQiUM zN^ab*w~wOd8V99rbAD34y2mjuX`9drd;M8UKiyQ^e0Z9weJA(CuXfQN&6{eXAJy~6 zcz*aC-yPF+Pu}p$i8%II4u_{C3ncLI-JKD;<DlfTof>OP&$q1E{?G7=?jCKMiJK4e zOtwf5x#g`oceB^~J~mkgTS>R<^&i6<_o>Sk>GQ=z#xBt=yL31+K~CTVpMAONE}gn0 z{og7*O~qX=zSJ5&y8C)x<HyZjo34DBYOhi?_l*Bam))C|*l2khFiYkbDl4tO{pr|s z-#V3QweJ@Bq80ZKHivlgcWj&0bWeN5j-6Y!<=P0jJ$!a(6Q=`1Q%K@Zb_ols0R2vd zCV#;{YPHHifis?1l}PI|^&LMu@y-reX3?)K&qYuF*#5A-O?l7s_z!#co?E|CQ%g5L zf8HhU7WTa7Q^n8BSX9$hB%SfJkIk;~ik(qK^TAv5zh&Kc`A;^IGkwdpE{}`bChg8k zcT%0MlCE#a&R{gpHOR~Rdwr*u*sjUeYmJZF*<E`7&a@+aj&p(R_1~TiZJs{Ob_r9v zpR$S0VpX>|AE#My{z#nY$JVdMrwT?cYplOya!}cAQ_9Ssi07Ru6GM2~do9%`R9&CO z-#x3oU-ZF8zv+dmJ#%&|?!T;{-L!`7n)Wu)_(v*6eQfTgr?S4)neW@-n|vs0@04j_ z1q+4U^L%f!CU5_4C^-FiWX#iDhU=z!$ClK&oH`x6eebq?UDqs2%$kpE<2v7Y=54_Q z{g0EGema@4tII`NeqU#H|8dNwn<p3euHcQkBCwk0^cDja2E~wgQ-+wtXl7ftBLC^; zJ^HF2d*akLTz$XptHdm4lX91+ev^-%4|ASldagKoUo}_T>m&10m!5sM)OK5=%F??> zx9Q&Ulu6k<LDC~{xw_@sd%KjqPTzAAmA%)#_4Ve8`k)Jaiyz#`+tPhuY45ysp=;xH zKU-NGR(!{H@pVISoaKt8*V{@po?dw`$0XuDo8!-lo1NB$CavcfZ70-bcWm3YtD0l0 zESKh1i#+EylZ>Cf)9{+CF?CAWgEobp<mTvm(z`!;ztUQ%H}|Q?kqMiA{@}jZGh12q zbKAKJwsi(x)?FUo?D=n0>_1lMwjuLh$;PG)u|Mll7BkzN_;=h=*(PnTz`t{LcANK^ z&ze8=QFn#Y<|V?mdtdWE_LvrM+t1JTL)ll+b3fvbMLnCi@ce%Uu3g8jU2~sWK6^@K zqe|+`5D^K9W3qk52TYG<#Y@zw%X;2E`fKjny^9U|O9WSRi2W1j*e&pUC;K|%ON&0e zusA5!{wSX3MIHB*W!raO&E4|)^d!|u7niV=@Yu!QRX?*>^5BGZwc4#aHvGuhuDDKj z*}h$2Hpj$FlB$f|CNbWZxPL<CbENpK`A72QULMl!uI>#wrSmBIgI)Z$#nLu+gfH79 zZTJ!^?)c%hx7fb#AANd{PU77#Ex=%3&Ek@pQftE>*EX#9H91JkWb0Y;W3zZxn$DY< zZ`xdQ$T}nHev$C}8QNmf8;bj?pY8n5@MgVWyszxN_GO-#&z`pAD@IH(RAIU_XTsjk z(@gK2{h0Ua<bQ@sB^h6~*y<%FYbDzlOg(IoAEWSfjc1+Wt%{3#Ca2wc?9|N9C2&!| zLvqK7Ade?<?U%b&?6lr3DfVT4%Xh0iL7CspIkRovEOSg@I9K`f$)SCZc1XL6D*sX6 zvvGH3$y$vp4(X?}EM2a1HqO~~%HqJkSHHt*&rN@%>lu;p-RXMW9p^IFbE3PZXc_rc z_4EkF_O-6dn5DL2;vYxvFI|#Trk7<j1~y1pOq^bzQZM{?Ud3y}*&geHxlUd7z4GOF zqx#Nizv~X?De)dS=gq&zu(8QX=1IxA@PH4!?{5Y9TBU94ozidQ?v`HUc}uB7=x+bn z<9lm63)j|2T`7@&^IkejV`Kb@wbHKU6BT*q-(%~XI%CCSnWm~o8`u5O*Kgmm*Z<-9 z&bM1_)oOH)RIL;%&Uwsac}R4!#n0+V`=%^4x!Y?y+2_aoun+H6X6*i&sh9V*T)<3N z#PatYotnn$mWlIzDs8W^Us&NCa7pjpse9K{wq)F#a))D%xVoZa?xzBS0=|1j+SmT6 zR!l!^CwFb}ho`L{vuC6#eTZHpP_A)nb-{^K$LD#a)>g`-XUZvjSe5x*%<$!h1Mjzs zZxA#+5MX)dhW3@`%WQ3D^+yXld7Dys`j7EP*F(<hDwwW)3Ran;WTcfKXR~bL70-E$ zcSL05XJ1}?eUIjv7rptZABEmWZrX0p@P4^U*?$IOA+DdVj+{9Dx9xdjllIo_AFp@q z;a;7$;aaYZldA7Z(FZpb!W1-wj+L!^{O+q=bJxl>|1Qo`xh7Q4_oLh`dUumc@tQS4 zX1NVhlO8Af6)?-sUY<4W$+gyH_trfB^4I)fdi%uv8}rq+hTA1`UwZV=zmjvRV^Hzj zohQ^;u1}21+9!Ou=lehDYw1ciJ11BaO1=C2<jzWtg_i0CHsx#mg?<<xvoqW@%h&7K ztusukf*A5*1$Tz}+eT?zk(<Ha!yv*Kv8%js%X`kOfLGyS^|`9ktSj>;=1CeK=6G6j zOm^e<0QU<#VH^FfsRf4Jx%Z!;wKH|;?c=#QKAW~V`Lpor&)$-!rs<_6!1(6KyqoK~ zs@L;Y^hZwA|0=qF##DYq>rEaHoi{!2-*teG&&^M}>-rw|WvA}n_`a)P?<|M2x_e&L z^v+?utFJkUQ9)n3XOeO7%?ghnvu=5NPZY_Nu}s@GvHOq_hqm&ZDZ$4)PJUUan{(!L z)T4}j+(xg=qRx~pJXd$xSVLvv0iRO#%gxcpkJ$@u;g(o>A@|6&>mS$j8q{mCO1{)K z;IS>>IKMYFV;}eI!{On=FReoNE#>B2R`YW*i^a)%MF;mku$lL0`}=?DKazdiE^l42 zY~m8GMZ!|2&aGkNl+-@(e8r!aw{A-xwa)6%mgl?w<9NW1Js)|d1v@Ienf#{gpToVo z_7&}_8?S6UoltnRWS0M-ztIjm#qIfZa!oZ3=S@;FEb>>KIV<es<6Yb8t&VJJvKPL8 zxcs55-goEi1;zIBTEv)tBul<Oe@}VV!u1ux;eB`Zcb~oA@pf{~N{$H!bGUkHZWr%( zzN~<+@R-KrvMV=t=ar;C`eKzLB<pnSo9CU5hu$TTV!@MSn4*<4WO!sgpBFtJ8}%wq zZ-3^~4{xGUxGFQBIa*I{T7J5{_4vkf#V3y2$~8Zl-(F?A|6A<3`T5H_Ht`s}Ym{}k zdw8Wqs-$Gt_qQ?gHrGE`S$cHOkIc$)&e?@iLnH%Lo-3*-KMOFtlK$G$?bREll3(W! z*+$x&ej9Y{@e!q4uD7{8w@FO+d*=|hS7f{7)2iol(sz7lKW5MI!|M2N!!0YmEIk-3 z%_<;!lfQ-geE!}h!<c!yAI<Nn>YJUITVF9NwQW}K)7Z$Uj&;xYoaK#A>s+=_ZqMBz zt2Mv%;Rm;En{V8U^<NtkTfe^RWz4A*n`wvjW4;{tHOo&cx+{3&!nHLnKWeMjxc+D0 z+IKy4%YLoKcP2>_qpg`w3p_G8an6sCU42gY;vY?)zcp<8Fzc20t-D9hPC2Zxt9D`b zGp*ZQ`=>2V2tN0q_OR5a_aaN=g!*nreW>qTv`xVLbZWIs%^P;bvV}pGZ@2bKs%`&L zf6M;Sx~^@XU+l^W_IR`V`S!V!#8PBq?5g?-mQ>FP%agh(>ACz_mH2`8eE-hLsa#E; zemv^v)px6nI-hL6qNfshW96-K$r)ST?AK$T#reuV>sfuqeYOhzhf6>B^HsDxdUmhk zV$iW?E@_H0-V0PZE15DcUcghqGH=Ts+v3Of`>K9LRlE+osM2IOeQT3SuiGCUp@vgu zmiJG2P<p50eCVU|H=mt9&}I6b@lNLEIcf1*j=V2?Cfp!$S}~J7ezsQiqs>pR2R%32 zo_^-^;vZd~4{!S(B_y42Y5M1PDq<@-+)uY2pZP3(vEtW9%QjxhS@TwH!$;niSI?|k zk)#zGIzymP`|0gh`{S0)estD7ZpWp?lm0U}ww1TJCD-QboQq(d%CmbWXW)TDOvdNe z23*{dFQhwj*VUT6YS&zoR$Bf2z~?7Y<YuA6_=`EV(=PhXA-{J|rrW7}2;CC+GEP$e z;UD#BygP)84A$>U*q3>yc<$aE=Vcyc*~x#5o4Y*k!=3djP4;Nt&Y4-LUiRcfU*UCy z#^Y?;O`iTR&n`E5IqmZ+p#$zyE-jgO^O!W_jAKhvHFrE&X<K==B=DuZQ0`j2XA|f9 zU-r<Ll<^|bVU?#u>E8zv>IEhj*cxfAoBl^=v22N@rJmZ>8+Mv^4)R3kU28HfE_vz@ zbR)<^rEg|}z191Y{p=NH@7=avw-L@2x#Y7y^Hcs@xp>u1#wgX=3v)h%Zg8_oTN_;w z?tESM!So|$^K&{{Ri@?}My&Jvdy)OwamCr}pVr(Jet5NU60h^aymg=MiDk;E9LeQo zZn%B&=ZptW0}}Z7Rl<TZ*YdSWZ@#w0zEAL`P94j&Kf2kAUAgQ2c~_TAOi9>Xe(wFu zVC#a&2IhNv;)BzFbgnw_PwK<nqZg8P=cy*G>#<a^yZgKFfaEd5bJ_Ry7(Uc*k`oJ` ze<b*o@aw#zOLHA>D)4xQ-Pt&yMWBdV%<^^f<)$Ca#UJ*&UJ-hIIBMqheT`F-ypt|X zSde?@jZETB>FqrqzZ_IZmtOP7==z&ESyD~i?b{!}Id56;ME?CT$>Mj#m$w#sS1yZY z%++hISu20a>3j}@a&tpL;a7&=VQcqy?^Atc=KiKwrQw;urQ1JK+>DIMRs<E#`L0qN z6FKcEr~5U1b3Q)Z+v^|wT(!SQ=hx={7e2*z%-_;}WW9)y-E`Bdk1c-g-*hSB(6%bc zq=+j5R=o#)ebV0L-(9Ekqw(QtUG8tKmwEp#@sT?n9oh7{s=|rw#h;c5+nFs-B<*Ck zJX`bhw|KVr{w@C*4qm;oW{>CJ=8we(tR}tK{(8kx(PLBB99pHeeRs8={FzDYjJI?f zJdC%jyY)?9>{T4s<*l*K2kO*5+Mf8RH+k#2oJSio67DLke%F?LUdLZdS}w;U&@W(; zv&MEWy_iW+i!X=HDNDcj{XfH&#vkGz-W^<a<^7-h#mA-JU0oX`F^SbuE4?$ha_U45 z-j23{N=b{CI`t2h?24P8oVz0OHFwgbB<qlkJ!cD!^t|(#reenC(BJp<=h<}?n-9<D zc``lv!?&fiD_w3+IbK_^mP3ax{LR0ZLUWd{VYXAceq29lFRFOu9Zx*pJDn{vm4tMr ziJ5IUu!+;}CFdlOr|10miodLV`LuIynNq}DlMDaaY_k6|u(E!5e>9%^#*6zB^3fks zPF#w~yr;Uc<g)v$(_6d?(=7$>RLkqO*I8XZA7}cXp{Xx(AN!>*f7Or5Dg0+>S$fJ_ zD)!~J^uI<1#nPKRwH#$maj*+{@NwQ^7ya}7@T2uY_u@^bO-=u1d75=n_VSn$<^}sd zU+AmMNx#tb<vnkO@{#cO+V{NJZ>1b|m0fA@#%80j@s{Sif*o=5D_5sZywvtd=(y)< zle)=2+W&DCKAz9-|Lr{U4b#;&(z)y2=bPIZPr9GpD9ZOHwXsa5aNgF>{eAx#a_zh0 zCBA&i-*S9m)^wh>cfZ|xA7uB=sr%?rcDuPL$ko2x-|}*O>V1hHn-0bLAByrR|9EWn z+~{Jj`*%Z6{A9CWpHqIcw*0r<zZ2nhW)~Ljt>=q<x#8AM&&PYWS7-JdRz2+YN_6rv z`Jy(NmCMarmtGF=TYYu@eDir0KiUreR?BrPx8yCf-rZiiB=^3~noEi8iPslC26?td z{m0oyyrwq(Cf7dPN<P)#s<dU&q6eEkv0aV5>-Ii*p7yu<2mdo{*nar;Be%_qkFPkk zdgGGqoyuJPVQJ^0o13`h?w9TB`w;#{k^j(quGd!m2YZe3#j^4e=G}MSzw487n|WF0 z<F+TR#;!`jQ#%hta&T>Gl}Qb^ST=Q%o&{fSUY%m*e};|okH`zI;jGNqc0KsO=G%At zIXpZHBG$b(U~;qjEpYa-!u6eh)c$t<aZcKP%l(Kwf834poI=}Hb2LSBcZhD>n>MxE z>9B%H(4yx*B(JOOFScWg{2_d7p3Jmo2YeT0eG})DecO9SXZyCJ<<r{&3nv&k-c)J} zZg6ws{1tcq&^(TOp4bZGqh-kv7xg&BHCIlpxTP+k6kNtXXG#5OBUz3&R()DCkE~r} zmE78NajpN!c*cK6=gDsGG+A<C?YrD3w^b&_u!O2k`EoLiwc&YoaRbLO?fd_v{~f6l z`OuXWr~V^4x2)8(^WXW0uWwJ3ZJ*~+s1jt7r*!{2N6ZJlkhFcreiVOL{;<AjtMv09 z*^j*UCLf-*&F5nVFUOvWd4{|HsebZSvI%@{*wMXr7w^9KX^Yucez^bE`@`-dQD>&v zi81?Lty!q^%k_hYX=sqyk~WURl^b`mxSRN^<Th_T$7l0v#__<L#*0iW%fj7{-DAE~ z;@=^s`k$di{t;X2iWmFzyenn5@H(l7C`xC3TF0y-t|`Yd`$7-XP6iqI^pE0id_VLb zjS_v{ZsWPgwLI5SC{}XLOm{}NyUV$cGvqP!-F^MqR{8j@wjI}hg?DZFJ|X7d(_8mk zgsi(Oo=OzT9`h7RC~P~SB6KIbDJ%D5_MxgbQt8d5J4(;<dT|+C-4`3|-Fy6er%ER8 zE#Z^;N><y?^c-$HZxi$AXO7T9@m2O#TjYPJUEBEK{jsyzAAZN}yi#MxK3nIO?3=or zhh6fTi8I+}oZvH-IGrwO@%qX6-&QqxKNhdO|3mkW<9`N@dE0Y*wp-ck3eLQ~Qt(B@ z-KNXUTi#Y&y;7pCZ2F6L<-Z&9Jfe9vR{NB!zAapG`sv-jJsnSa&r8SbR#s!<7T~iu zmVM%%Lfxf%Odr>GZ#iL;zA&<4O2%|f-M$6W-J*ARC~)RJ{d8dp!=F<}9VL0+U*+-j z7PK<lwtK!p#r1C{KMEga8?j8cTDNHSp3YLAO~=g+Id3{~Q7m@(L<#mCYWs@B=2`xT z&dpx^L+Z=xUA2eYuHTaVwf5?@nMKEQPA<<XI4ZeklVe-=`R!e~JB6C6>Snz9)qXTO z`sW^pi|dc@vq|>ec3-rnDsOEvpM${3gurQ^l(;)pJujs&h;#)N?OSLz|ADR8KiQ)H z48N`YGn$U9UE#IKFD!8G>PhGN7Hqq`xj%4n_}A`NGpBESdO!Hn=Y#V_>WpgKud83O zQ8tpkZNsm{9-+6O{M@x$Ham@e*qfhfV2)oFCErk!{#f&it@pQ{3va(h_w(5V-N-6W zt>5xk&*?wI;?o;tk6WbPo#uO!MXo0Kar{yJ8~Y-3OZhuC#?QVh=N@fa@7?EZecSxF z|F+%7pRW_2;kE1Jg@vLI?9Bf&G;NLkk@YFo`dj6t9MiR0x9+-BHI$p5`k~N0+fq!# z`P1aN@8`%d9xGgVK2Y1`#o~-?vAQ+M-@1OJeg5OSyH8&HM`m24XpL#gHLIl)Uh#ap zE)-*Wkh{Sv_Z+uO?XBO=hpXJ%{#fcx{j;n6=DT}r^S^&O@+p6!@h(SA?Y`!BbIc3l zPn_?rf3WU9!`5>Xlk-<(#?|~<v&rq%x9frtncr4DXNtb=u|!kCg1sPNzhRMxa7_O3 z^SAoH&Hd5;=&bnBc)=RQ2fO)&JbCwo&oldQZGW-qBS&f3ZPUXpEZtL{vs`bX--RWc zrs_Dhx2=>cI&*c$DVy8!SLKiVXK4G+z+|VEW%ldXLeqEskF=v(C+X(9@9aD0@uW32 zbjc%&v@oYrzZ>uD;d3pRFZiD!GdKLeuTAmG+h)go;Oz-~d-Y57;T5sbF>~(~?7Z}- zHMLJiE6Gu3>C8<h8dCl<SpPHpG5urs;aj$A?;p*LdLPK@eY`N=elpv^GdT{E$~uhZ zF$SM}Ec#+UzkSC1u6^?RwqDtzzSeHOmh+bLQd`gT&D58vOF7!D%w!a0(|n#GY&E-f z#>t4K*Mom)e{er0&;R4S@7Aj}+_IN%Wo@Y37^5ZHoYLM_d$x6gKoNIdd~(!3<@Q5X zZ?A~|Q~c;-_G{a$W!J7{+q%q*GClX=o~2lJdBUCCoeg~v`OfX~Q$B9*`e&B$vHp<Z zs#j8Sd%1pIoPB!cyEkgnJPzdFVcMAR=XjNt$4(vIYVnpW@?B<9iu-=dmEGR{sI~62 z-QvPR?r5Q<E=8`&8zwfYYi&}tI4OGEN^`fZ<l1}BUxxhCy=*66k#*?$qpg3ZuKAo6 z((dQVm^-&g`DEu)k2yVx+}hffw;Ed`uI<yTNV@OpYpRr-TI9R;jQFHeE$k-(r3Ies zbUYEWY7P@?P3e+~+Yk0Po(bEhd*%5@-lsRjPO=326nHRk_nXgmIXJ>fV}J0ioxqV8 zQ?~G<_`y1X3sKh(SjF~DUg2xAE<AFA-}#*<xN|moY@CxgHMHZnbU^d0xU+xPdQ6To zsk+{6;;~?^^tYO;iQ6ydEbxdvwEe>xHq}n2CDW#NEDG*hv&s0$V^*v1bMtI}bgqod zG(7uJa?yo{lb+s-NS%JVwB#peN8ao@50;-^Mf?ugC${eI{m&rr)#0A#{-%GQ9tC~! z%w2Y1+QheMw_2r)7GCLjE^k)ESFzsUqwo78+%wg>k442Uxb*40>b~VAo4jT!Xhh!8 zUcgYZ%K7`x9qV3&$oOSV4!SF96ZkvfkM68P`79ONuDw4tEij!SnkB=H{k-Uv_rlNB zn-<Qf)fNx@aqic#e%AE|vvnu0-7xjxRjIHmlZ*bePM9d&#K=`}>c)e4TZ8@oPQ832 zs`u!BhPL<5OSX4-m~<Bk?vUP>{PeuB(o}^90-Um+W7qb#ztPE0_^@nxVs83scexvD zzgFtqdzcnbxVwl$b_V~Hg<9@K73-G1xwIv2x#_$&KgE6b|2X=Q@7pVT(L48!mWv*Y ze7xPgKiz3zpxL5b6DLo}>3eRu>T(6srF)m&>30boEaG5^nf6J&u&H=U&6)6hB62rO zzx-SLD8FOZx0&W`HR)-2I?GFXTNj(I{j`upT<y-fx69}2G%(HMJjQ>1pWYAI^{ytF zOYYvj8>y40()HcYV@2_#$MSYhPuyWE{_(gxNcWcCy_T#BxycXgS?<Qi|CoKas`2Xg zhSm8T5zjfq(>$jfW3yD;Ce!EU8`1r(=XwoyweX8?-iu<~goMAfO?vvBDb%ScNX$PV zi9vXN)yMh5-b;Vfz00*b9J_n#>@vIK39Yh+<QOXX{;n$C+4T0{i>rC(kMlm-se3u% zqUu$#>rag=^>vB_oIO4sTd}s)reU$<Ipf&<VL_Xxt>`QLFh8{-`rGk~`xIVsK6o#8 zuza~cCok){W(jW1!Y#)O^IDT~c=kOyyd!YOgI~*fAN^+#&)no$xa2%{=C!VM(=&x! zwf-}R$=$8_DcK?M)Zw`G=F5-H>Obu7Gd*o-+AF1L8f$g8zC1JM)iT-BPamJ^me+XQ zeDZkJmCOGGDxM$SuATkR*Q-`JiZ5C%CDJSR?qngozdMh4FJt;Q<8Rcgy2l%{@~%z% z`l;?p{fDlT-{y11#horSNYl#;I;(R0ton(6$)e{iG7j1#uT8pBcPXm&?5|rtKFP|R zd_Pey?6Y&)%!NXIVx?1RHf#K6h<sXmZm0H%PxnP@^gi16d^x!6kDpcA#yW}mWiRi) zxGZEi?VQ=<`R{nrw`KRsGyF+h5@Y+krKEO)lVHkRMRD<sC-xsYmUO48)m43|i^k=x z^PYK?RZ0C*xo8?&<neVq@2gKgE_?6Ukr(*y!jqm=n@(%*s(bVO!0o=N#okvHKlE+e zE~kA(XU(3Qf<l)biv0_C#a!Ub685w1!_<O`v&B()^B+&ypJ_7tuY1rGfeU+gZA`eS zWv&qBqJ1tP`LgJ%U;dr@Bz`pe<+49E{oA_d)f1O*PM&&w;nOm5r##R6eMG=;p2hP; zYp>*7z1TH*@4Kpd>wmlbG5V-Bm&eZL((+yh?)+8v4vQX$w658>WkzuS&&)lHll<7S zJ3q=zf5aQ?P@DU8##UR|e?iwS=lahm?ohfZ$L~MAr>~(oWcmaC_SuIGUdsv3vX|Ss zCGl~W_vECm-UDX@S9_EvGoLm5^7_`EBQ>rc=S|NqUXpP+x}x;KBt_G;djyYb8*O8f zw@sOPs&KkW0pszkXUpB>KfV6=Z(XKV?^=JK4_E#(2->I$XG!_3PhFh(Q%`Ys#U=4@ zhPmHX@11#@Ig?9b&V%dKsgKv+JRERc$MkRD@{6SzF+SU`g?);O_AC%-Sa?Hnf?QoH zv%=iF*;6mnBrd5q?Auvq@gsHO!VaVCjz`x%o;azywdq~zgOpSbi(7_grR$kq8dOxh z4!xKkAG3W^aecaI!{*=KyOZ;8rOYk}W#Qp%bwAs;V`<R!Enm_$mPN@uFMf1i_D8bs zzq>zbm)>$+vO~yy#Y>&(pXM2rpEoFHkt<tOP}Mhe{saA6&X02MUcHi=S^G#<>AS8@ z)P?)Y*DTJ9@GZJ{T=1Vz$TFh><D)h03v0YS>NlDCIz2vAZDXlZzkeQQxyhz&?*bo9 z;pp?X3~>s#sGGX;(SHWH8oeLy6hHiD=t<mNy{_(fdCGQPh9b6S)w!2cB9&WzUS^)8 z>DBCgzi;lZDa&r(`E69+BhO;vyKJtp$JK`)+!o55*dCVj%X+QpooPY3y_YHzcOKN- z8NOfQy!s<~@t5+v$@9*AKJ-ah<Zk+!I4@J}%=vBipSVADVq;+3eDL|&y82i9S@#4k z$SVIXb@cDX%Wn^KrpFtVeJYS=x@YkA8DEe1(-%dI3RT|^EKbi(tk_kyv$8gciEZ0F z*X`X#DQw<lch$rtbaz%BD-N_WXsNwk9C7-@cVGE$i$7*NeY1Lcwr^!>xny64xSFCw zkeOTVJ@X#pWZlU<May=cbv`0~t4DLiALVK9J$G!A%MqKt?z7t@KAYW@e#|Q@k3F2g zDRHzmbWz=zf**YxYyU~bMpo2^_lUEuUA+79x|BE(+aq3Yc6Z7fZM%BT>iYHl%r)X` zGcRp#_@`ZCZ6|Zx<cCmpY+yuIRP3$YMHga{&+x22=*jkAx%I}&vqCkGzFru()VkcB zZ|iFLj;M3n^D`g$21L~^J#~<ENs*ReQKh)>gynaWU-mG@oi%^+aqa!v$Cvy#cj(kt z<r$tl*B^QBoE3bkW05tdig4qWc{`6s{oVbe{gM66w#Nr=wYUE>Sk}Jg<+Y23d$vza z+7aY_Z(@+_yGfcV$rapJlJ*;}|Id(Bf3y7I@ix<Z{(tAEPv36NZG0y(GJDe<=al^l zY!>PbzS?elkx6<D8!ZwqWcmv|T@reFrQ1ofn$3^mZ@zwXzxB)4kG#EiqUH$wIlas) zd0Xz<Ih7elD`Xi`Sw8GkUq3yTd#}Fh)>>zm@>yRCzJ2f8rpD8=V#+pE75P0P1s1$9 zpkayZ`JHkaA9<|eyVtHYNtw|ax~cO~<J}no_tJdM?rv3_F|X=#e147UkLZW>ol!pX z<bTZ0|Ifgw60kF=KV4_GV55civYB%1ZohZOPIWkGH}}t_mb`N%ldI-iIR7^J(S3Z| z{Pd5h>*lL`<k7sGTv*<GUYw`k?g2iwDu%4B)BgzHezd)H?w{Z#f9&eTGtVt@6T5U$ z_v&uOy?;)mlt*?*+)-kA-moD2)$@b$t@6D4m?}R1)4VTrzI4Hz+g_71s&3!*wF&oH zl_2)r@RZ~y<BnyClN|3^h+aPbpMllvgM6Fm(;wxJbmfo8G40Geb<A{iVQRkS?VY}R zzVWKgIofCW`HA}6BVX1e_U3!2X$Je=oiAD=^>@lX$(r;JwO7AS{5$Vf&7))gE_s_r z??~s8IFhqxvnG>y@Pr*tQkpLx{by2lq@Jy$GT7%wy59Q4RogDA6p73dOH1tCw(e8R zq3CySg*vXt?<k!3z5aOpt@Z=|8ANTA>mRO{&JO2Z{3@IKY;khcujG|Z>?d_+FFAa} zdQ1A{b@sZY?`7}(NUr*$^Ks_K)Rx@;405yX2vr_ZxZTk9<!xV`fn-F};r%gp)x+Y& z+Dw(E)LuSVr&wb&`=HfC-@5GIt4r>!+bEdLwW;8=+TAxE=dHJCK7ScCpDS;VaB9u1 z5{_*v8$Y!ss#K_~Hkva%$d6OE!S8Wg{zv~u{M|K<t366%LrYqx?4GeEVOq@Q$={ch z-IO?-ob^G3@tje1#;(@oZ94z%KP>$nvm*Yl)&tICDiTRm3XJ>P8H-<E+w0-vXTJAL zs_0_71Dk%xFZj`?{?Wd9tN#!8(q+CMPv#fAWqbGRp=g|qT#N9$x)<wSM}8>1H}^sJ zOFNDDi0tsPW<8T`_1!x@dG+>PXx@{OvW?UE!11gf0e^yjOfF4%eq_2~mY{Kq+a$N! z0(To0v7~YtRVo=-o^!2bf4E|g`=hnOejn32Qh&?euGz>qbK0qM=8{?~jg5`veuOEj zcRdN;xqA7+Q;zu`%6?tT-YXx?_DE#{M{2${^W5ieo`y2A6fBwcMf60>k9>zow<^x9 zHk)*0rT=CRAu*i-Zs+gO1+qKWFW39W{UbbXXY_xDj!m~>e4nXL`}S$d#JQF{ss|%u ztsnYJoLAauFO`}3@U7GHh!0=)^%tkDSo_2;rSD}RpUlsmNIu7tDl3>3c)s5BU)b~V zcJPUkFW0}=K4o2cbhdKd%#=^(93^#S8e{ntK5(3uUEOufPBHVt`z^sL_X^G(YD}{B z|7f%G#JA8DruSuQ%&wZuT)%YFynA2$bZt75c7$2C{W(#**YLZ|HVONRM>}H8j~G_; zz0H09<!H3XOr=TXX`c)3NQ$~$xXq~Y=jLNB&vhLK_ok$t&F$UsWv|iGv&W{Vip{i4 zEuC7dpwRQDDe0iQP3{SWuWQc6y*?Hvm^nM9S1(tAb@{Y=9#1*;Or0!fDPj4Xx#!WU z=nB1O=bm}*ExPe~SD2hd?zC?aHfx@rPXBaa^MiWEq~$x;^7B?WAAZks>E?~-pSv=I z(%d|bWE`KSsd%gM#qo)k_giJmYuxwTWWM0!qZhbi<(<6mOj4fpWXBEvk7c)ZKJ}m3 ze2npBKtI!uRj-a{3P%0RlhJKi*fS$Yx^kjO!h>8c58kuo;z2iF&zjMEI4OItYf6aW zEw*{aH+GwG6)-;jAh&gG*{r`UhB2NiB9Al6Y?-Jy>*<W1O)RGxkIOvYv3TYi&KsZq zGw|H_VSRXefUoSF3$ZCDHr-uqdB;<|*g)p_kEsp^&X!xv@BAnGW8PckE2_Kq?kn7V z=5qMivf@cBeQy*G{`)-1eZ$&bF<qla&)<p*#by;-v1nI4S*2aV$$rQ2^*@`iqtE&m zM7-Pm@3Nh2#?PRGL5zEn)9!JtWNBisby)KBDj)CXm`5e@{58S5E~U47Ow66esUjD8 z>8Q<Zv&p;E!V;b{x9V@V-FWi(e78$)^{@XE=G@AeFS45b%Ir*rqTNo7LUPqiZiW-% z<7>=5obNRK&#?JUynFuY%mwmaZVT}pk=JJPoTX#`z1(R1!d0{0tzMXQ%l(_hj!RGb zu3lZzCldYgaPg-tJr5m@v%3BB{I(`GJFj<6{>o4HJO3CavUsk#b0$ZzV|w^!#+I4x z(hrND?0a`ZdUq4&*}}4GxBfnu<ZUg#^?-2JD}!Svg(op8pDg=qwBuw-n(TqIwXSP_ z=pWeiuf4SVVXoe7zg?S;JeY9L|IASbmz*`xGh`BK-&tR0UlM<p-;7`Q##xQ69GqLY zwO867N#@--T~bBk<d?OIPkb$w%lgY)$tjuZ_AqJB)ul6g5>xyA?=_iePu?5xv-^gD z278@V_=b#I;Z3@4r=351T~{VRp~dI2=2X55GD{jm8aypz9bWlqul?w{Z1zfp-jXR3 zSdQ*J`qDeCGo~n{*gnrL@Lh%I(+@S8%>lDi_Rh17^f-M~v!dqQ4z`RBv4uAee9sB> zie;HHYj?6rv(JYw3u{;(>2L9Smptj@W<@S5ZBbR}azC%n(ck4Pf1FQc+3+gp)(b&n z{(Bz1Hk;<;S_exUjDMeZ`)9cM;yZB_Mlav8O_rN0=G8IHUN<!4sY_AQtDEn)o;;rK zx6Z%opFF4B-16nNM~*ODkl1se_=N%2_TLUqz8-a+l<wVn+K&B0+Vr(9+wJuC_zND^ zS(dvmXtj1qfuz^egHIY3ls($JJLpI4BYxi7Cm+3M&$23=yN2;bgm2#JPwMyX{5)+| z#e3X#^?_Wa9oKnwE!{R>z4ZyR*+1Vq^YSYHGeop7gnaOOJg<6QR&HRatkkQkU*DSL zdYLl#7hG1}l(@-E<EQlP;*`SokzTqRi*47HRJ9*_-x27mH#zg+O}+K{5!x!|yedHg z2PQqyU}RKis9W$P+<a+;@X>vydn3R8t~I*+UT9m9k%<pq{k7>2JAOKS-0{I6d++6c z>VFLSeRAz0k~j4-8mT-#$+LXjgS8Fydz-sH{dJH3QK)++xJE11OS?1W=hMqqPBO$5 zN$kAY*k9-8_}1^*3$xz)Khn)Es>S*{Zf=g-86Xup%~@skZl)bv4(|*cY^%b<vp=do z{NBEH-`U5#oFx@5`P@1mY8TztDLQJF%ADS_jp0ex=kvmu{~3gXuElyi58Ku6Q_d~_ ztt4l%HDeR^L$|8uyyq;|=C@s_U{lLBF8l6Zb}#pi@W#)4R;<E#hx3#tESc}@_5FU} zz1PkyAAO%U{YkF=Hoy6w=w2gr>1%FHcLNgG+Uw8n{=0DVa%P!JS@k?yf6ukax@U9U zRQfl=L9w%Hx|57Q{ha?=x{O28cCYsBn&^k!*_!YE`097&mQ+`W2G-p!yVe(YtZd@; zlL~xudY&(H<DdJV;n3mT(+{7S<u*Ng<+H$lGo@|p;!lMev#M6S@;GQy*q3$X?i!cL zFDi3>t^cF2>T`v;M=h%=gYi3KuOBa`J#}YinfUs=(q>cHq~k~Ov#vXC<$TsCm+3U) zuH>egJ%^R^4=CI4eDdmgmE+}I{p~-4mG{n+z<n&Cg7d0a3nDZv8RnF%Uc_OlaqHHp z8<~?%c>SDq%+C9JqSCU<^TUqs&F9Wfp0}j*&V%D^O7&`%OG-G;PdaSL@YGRK;<$r$ z-sPj$=gDuIWV(^#-5Tk)tj8SAF=!O*IOi@~B~{m-z4lemX&s&IWgmqmnQk&Ya^ir1 zeen*th@#sYjOWcQSij)<m)(>9?$r?sJiTR8jQ*_K(JO8(X`Xx|S?=m$uPBeR);X%z zyC3biob#VyTa0IFuH4<03GZ&6n&h20BUw^;-kz{~%>@(hnQeWbHuHUQ$Rvf-QbC!A zH@B^m<WLYOC@`EOb!yk_Lzm8R-JZEo>P^L_jX6)|xK23zIYn-#t$)=d(<@s~e>QQt z_UV%7soS?aCQflX=5%Z^V|(qtJJ*U9?aC+*o*iX;!^GF?Kf}>qt8Ujgew4}hSoh50 zai4k6({}DHjC$-oyBaSSyr>O6GN0oQ^8%Hs{)YE)m!53ev7@@;YD(J4bRKS&pA8bS z2W>ycng3nBIR1t#|KWdfJFls4F;e-i)0@k|z?PD9FycYs4xV(0N87*nH~-VPT4U8) zci4OTodwROXC~?#NqO6?c(>1Zj?&84yEaV`J+r<x;Pw3utG8=!Tq@1()=dkQ5Su8v zb$Vm(4Iky)hYiPV|7M?=edN||!~7raU)j!EeoC_Z&v5+p?v7hEHlN>qjpvD4dgP4k zx(4H2+NI3$nkT-h?sz$CrTWpetSTwK&I&?|V&^P=iJthAS#5W8Rr$5!|1bWL`{Df2 z{@8r3^`-AcGfv8+N9}XzXeiUV=_>JABv;w`+#NZ)s9)BBAJ-qZ@7pL*Q=DYuSawEb z``(?Mi90%%oIkT>hZg5KgVht~ElAoo`|3Z|jIuhVEtgGJ&)9OhR#?bv*6f%wJu@<{ z-ktuv%dI?h(~&31v#$N9|5*Nz_3FFD3t#>c{kv~7i{q{9L8)6Z!t4ypw%ttn*;kf- zx+EujrA<icn&je@!ISfzAKN~E^Yx>rwLh--@%Zp{|0SmmF4?iEbNS2y!|C_d6wZId z@Sv1w-}Mjre}oTxdgj0FeDVs@J(1ZN&u%3Z6gW=#_sUrEyiJ>}f%c3446XAe>{Naf z2W_0YR#EJG>pE%wCesO%>>Ok!PWkozyc27!t9|QMd6^#*?bK@|KZg91ytY0iLw}F` zTCrW*cd=+Ha!fY-d*Sq!+?Y>`EoDSEOHB-mQqGE~cvn-s^gqKv{V)C<Qn&5aK6!cY zKtj_iRgNRAb|D@-9jmG<d)Vr7X8kgH|IKmwx5y7=t%V=i9d}(X(Jp2Be#DGZeq#3L z`t>{8E9b0?i*jKVmw6C=c^CWf{|qfs;vH%q)H`f~CRH?h`F<}G`_ZFTVAQYBt9nAY z?pjVt3X^NC;)D0MrXRk?yX)Wii;BNPm!5u?q1Q6q$>IKM{u2_+x7i!tS*$k}>|d>I zv3uTBj@7?UJhc<~!|@~g(d=k@nF`rly)Cns94Y_iD>G?_V{7WHn4Wn{da77OzliPr zt?|eD$L@y*m;UkceyekESFU;Rrl||&u`zHw(c<WHW9I$5cyUR}y6BjX{+*`h*)yMi zi`l#J!_=?S=c-uoOo*1XdSCpGDN%}Z(dj-jgBU|yNzs)L*UMD=XLzLAoh>h*5YO@I zJHLtlGQXsT6W<;zw%r)p_&E7<o`c^dt0vaUODnbde#_dOo>;72F#qAX?%!55Cb7|v z?e^VMyx4m9sNBlzM4OMbU9R#k%|ALm%Sn+G+Vqg)aBiH#>5uJig+KfgsZD<P_UgLj z*%m!(&#qZ7vCHM$^`NC(jn`LCV3fIfd%e()?t`B#F20Yet_$)m37>a&i3X=z&x)WQ z|GxP@JX%*?<MtzX&8rPr6Ka?)m;7houjmh(s{d|{p5UcRkrE<zg${+O&I@5zNl9m& zFzfQo`;Ts%E!tYQeA%C<{|rt2e~dTokdyhbZC3N_naZE@YiujFiTiCZC=}Sm;-PGD zQ(gMw?k1}m&Gj`kKQ^!Vu{!Ky^{Ydl4`qG!PhRnEitZ9!wI|zl{&qImB$1rZmN@Bm zxd7+U%JuDatUvA_y{EhX!}*Rq=H-iDiv{LS5|3=M%voV@@~KXcruw8chJPHSez`v^ zKRCDk;hN8JuU0bl-7-+`ofSSo{6J(%piaY7dyOO6^V%)eop|{2c!aTO=$rFFKXm?C ze=M7s`B+!)ec<&qPo~_t9TR!#81H8W=f%e=Y8P|8;b&kxTi5iW>Ug`2<D*)s=f};$ z{Oc2CR_9i0xfZMFsy)=0;NrBxQuRsC>Xbh(uKs-g(4X}W*N6H2&p-M%=;wXW{^7mm zn%HC;tK2W247D5*TPN80y<KeiG-`$VTjs~I#z(pzSk}nrKK$#IZm?#%@!rpZa}U2s z^SEYyXJ?Ylk~)i+PnKGjf~vDJ&ujl)^H=cdyMKl+s$N{yU#IrbZhEnjXJ+ZrMUGmB z;^pF}GOaOJNdDd`W%<ZSa$y2@Sladvmyg&fe(Z{R876=8*X$FDeYfttUA%V+i)x7Z zdzGnIYHsuR7+%~s=i@Ec_ir^8oenFB%uU(m-PV-2>ts^NPoLST5sT|MB$ynpOpLNq zy}XD0(YEH84}EKM7ya0l-Z6Q3%%0xj?eDugPP@y#S|QE+R8QHVQ2CR#_9-jrW%E}) zxG!d({MY=^zol%OKL(xh_D#BTH1F0Pq1tIhfuBC^3=KNkkdR!WW%(f7l>g1whw;sq zV}C3TzWm5eK3p|FEOcj~(3i=llRA&NJ(haM!;w&ReO-<J$GEv47Q6NPel&giZ%0pE zg)WOX<Ae{%!h3pZJ)I}9TbO?M-nl=gU!X!fXkwlCk7U0s+iKV91pBI77k1V9^SWWx ziikgplcqfoK6teBa`5~QUoE4zt@)MuPxob!b^Rg!VjW(d6BE6ZZa<xT>OaHklyDZ= z!)Xurc{tBjsvnKcXRp}xv~<1fe}=Rl#nGH9VgD38-{$J)8BSWMyF)dNr@*5iM6SZZ z^mEF7`St%9GPupQeVDhsc43^B1nA0%8OlvIOdRpbEat%z94()Vep1-@W3~MJC0Q4F zmF_0b5>~x((B(w*^Sj4V+!E(5^-g(idYwo2`^ClcN-G1?zcu{e{n&Th?ee3KEpKi2 zEU%7@n%ZUDe*XN1Gy4+Rl_wsw`L=#)seS7`jSt?pD%xH5Zs^nQH&EHgKJO`CmDjo> zZ5Fnoo-&X2z4^d@wEKSRt(2(TbL)QHn`v<K@4RWJRrloH|EpHUWZdV#(8DKwecwg# zhk9E@cAY=$Ev<S@#V&K}RmR#G5BE&beLD46Wx(NEd$}T3Uhda<Tzco(6w7_$$q!?l z56h{4e6?=!0>MJn%^GQ&jTlwdpMSr2LSOVYkH=llzRKSWf2_Oo&$LS~#MUY&)_mL3 zW^u5%fqy0Yv@d^*<1=5~7yMImYgI+ivyW@@b8jvZ+je2sF{LT&_f`v7pP9?(=XTHG z{qp5M4nGQS;@JPO#_YNGRGXDbS5iFGPW4RVd0zDK<}uq%*&dHp>9^{7mL%Qs`EmN; z^d_792i&_Ss(#&KmZ|LYZ6dQtnyYlgvEzMKOnV*KC&p*hur(iy%8dMDSJKU!^ei$p zqBL~o<4M7d+f=wFDqDQ9uq~T>v{?J$e}>k7%2$FTFMhSxIu|l=-l_Z3gf{bt@;Mzd z;ILpYzsD|m_<oj|o%mJ0sjDioPih&o2ko4AJ<l=xHrJBe<|c-Toi7|-2L`$=>vpqC zmzDhX_x$nsx3pdN*7Ln8E6O~`nbF!A@%E14F~LO)8{<|<)bHW15B{M3mi^=FhkIMD z?bD8U|Hp8p@y{}=m2DBzjJi1b&lDRltUSrNUH8<ZecT_WAKl;a<m4jH%D>yQ4kxW~ zjB;>1T$wBRSy^^}<-8jT#c_>=zwORHy8mNEovg{X?f1=e)=RuEvaHjSFq%`M*!7)V z^tg>l{z=n(=d9wgXYSYS<bL#jSoA%7T0VEy%FM(nxm&RYZ(Pz@te1Eetvj)xz-Dd3 zH`(m7HiaJ_$9{Ob_T<Gs#>q>Z_1_8oii~=D><+`(seQ6X(it?BnP0|hX5R{HeYiJp zi+o3JWo^+h6AzQ$ft}rUW;$z}jPo9IdD=&Par?XU3xB(nPvM=63$ZM_e_Or$Zobm? z?Uumjh10~G0>3|CoE~_$T{N5X)OEELE5q_@`4`)WK9;{_9KCt>)sk)duIuE7+>*F= z`^`oLr^Pk765A8bm}>~GPQJdh)c(U#Q;B?&+uGb$E*)EJWqWn$m4$jX2U<3{E9WJJ zlqVeTX`J<Qd*qM5#UCee<kv}8+<JA(h5g*cRJJ>c+&x<g8rW^v@4Tv)`lRhIRTFhF zZPKT2@6MfL-fMTcs^N^;17V>Df*adUz5Fb<Q{h2ZbN&X)mkYnw9`D>I^&>v6PqsMf z>ek&qo&}18Z9K8^86TgX%BLF*Mn%j`Y}L;;Y_-2V`{1VRZ`1y%f4Dm5blw5S;_}jG zar}m6?}N8EE8L!NN@h;+<XJzH57mqA34UbHclzPmV85$1)oE`o9BTF{ow8ZBCF-n3 z=hL2@Ts2z~Bpz4jc6~X|`p5dimu-c&Dzpz3`LA*>NZz&a+S1u?&AtovoaxP#bV&=a z2vcTXaaP?){?oT7#hy7Oc6O5=^&egFZja}O^+(Lh%{n#pQ-$5rj+*_w$~EEriDMUj z-r;kW`=`3LM*7F`N48G)k5p~)mf7d0RQbds@4^n2KWCJ3^!ToZe6xHq|5AL@EwPOs z<?dy3B;;z{l62|XRg>tG8rapDCLN(sBgXQ{?b7nKwcV+|b^qvpJT}k&m`NA+lF(14 zUzq)OyE*TWee=L*@xx8)+y1=}wU7Gd9r)W~`^q1gsUMUd>34nc_;Ow}Iyz3}-PwE% zqv$(Ngg<NBU9mXNP+fXrO~-$RH2&^?Y?t0{wdblxd-dKgEUofcpZDpuve%m!TV5Es zna}t8`j_{`KFQrb{2$1M9}|8ZT=9ufTPOL@#dotxlzCOY{b$G!T(gtCm_6bg+Yz>X zK_AuMeti(jf4E%E;z#^~qiMURU2@+a8TR_@jp$R=71vD5UF9u5%kQwXEn426@1Z^G z%3`?{Kb}80{^s{b_G7`ByOy__-rOp|@+tZ}%SPKN2Aj-|2TC26OX-+<Zgz~~?;~>B zZ*#-HiGIl2YqRO~GhVxYGAHxv6PCm*=3A*eNh-i1O=pJff%S7s>TfR&{xS1uhMehT zm95?@T`%taux8TDd(H+diaR>w^->e;UQfNla6(=5OL=Qay@W*4N4=SkEVk;hNj%*- z?dO!pS7mRv7jy6E<S8(2YWU=Ts%mP~k~!-)+N|CgRNr`u|4=@2=C1bcp#Ka<51o4< zxqi!S*6Qwvdyd;O6Zv;%JrOJEogzQuVdktk_xVk0_2PwVjIJHqD-u1mb>YONT>-y6 zCK+#k7JStwdEzncD>dSe_L@h`v<ZHoy}MpuOQ5#xN$Yu6m~MPF-{P`C@~4vwAJ^o# z#z*mde=OP$f48%_vZ(3&k@9PkRAx<^m@R#h#r2@juH(<$9!%J?M>)Ut#)@yB_U)Q% zWter>|BS!vt%~N*k3Lnt@22aBU49#(_h$K2y)z3PKgZp>b82^^WD<w=yn>4L(``b3 z>;G~7?f>n4<5n}Pyz)(6OP6%Te27wIF|$0GVsT#K%ld0)1OHk6&^wkd@T1zV{aBRA zZI!O-V43hho>gtL?k5?Y;Lg)oxnYHlXqDWm!UcZ}DoxKzyb7xd*<7=pPr1v%;b)8M zlrwJ_&$(0_Gdx;y@#v>lGv~a}6?T8<-(DwP@!Rcs%8rfGidRIQSQ2M)Zg!EmL88!+ zbItZzf}1xoe2n+W6#u6&%k$ly;^ppZOxnClu9k#E=v}iZkd=5BllS|<%5xrZ+VAwm zD$YMJ?|QuLqg96a_4_vp|89!)_H0ur>y2<bZzQBLvAl4@k%iqti+lR}_nFoNe7th2 z<=6DXl_uXWBuzfk_wBOqS#JI*OAno%%qG6#Q>eRS*3~3cYu97<QvA4!k8SO5jJh{> z&GAS1tj>S8n00KA*S@p+!IxQ{{_l;iwC6nAGdtkg9>WLw1srS3*ZpTmd=<w1Z({C} z_wy>H7qW^>RrqpycY@?QZ8v^_iuK3#srkAc4%)wSj_;E_3zsE{mq{$~d0-&x^g!R| zW875xgSY=PNJgHOKeDxtd&)FJxfKU>ReM7O=PsPCxZ`evUxCP@U6oH|)xP}kta`K6 z=F;!S?+^cHkcc^S>pw$l)Q2@X-Q`6a&Z^|@$UVDCcrROV?~}H3;<Fz82~K>x;_~mf z`vJ3qFRo*ZuHWo1L2ILpQ=piERj$g)#Ks98rZ2_sGjCbnDwW#awe|j6ei7X_Z#ilO z1zl8~x24^Y%b6m*X`<ExfoO~M7xkNW)gPSSQDsve$2w2*k;BA0@B7mCH6?HxofT<5 z!?RrC5YH0<+rp_C$A6@*%3WXa=k<@|53i5TD%;4mFgx%1gr~P$*ql@Dx=GZuPTv>) zT!n|HFmC4BKYAaYY~T3f**)R>(wtZ4zCCO)GI}u4?yG~5o8Q%wva7#{ADO>7z4?!0 z_wI`2m$ojw^{uMwj>o3OJXUKurR%=wH11QH@#O7|J6EpRaqazJet53ee}-=j^G;dk zitai1%`^V=RP)@=WgWKyHt}f2?w(Sr@Hu8{cCq#5QeG2#GaKjMWq%xh#MbN+`ykhx zn6A3&-@|uHr+qeDVgKraj^T`hPnh^GZw<U)pY{Is_D8c%|DF73zPaPhySzvDd^nUd z&uIB~Z_ZGs7V|SAc?XZZ`fc_*@CWlpWtYjmm*!m#yR0@x`L;&yG=a09x|<a$``8Pd z1+R;q%8C*{oX_`Cpa1aR+!{lZ9n;R`+MScW?NWAt$z$7|)506>9IwdRZ}8llm1W)H z`dFu;@7p(i$UXjM`J>t@%k_IKOY;|5=9{HtNZt2K=RIh+xlt{Kxz$bC(n3=Ca*hAP zTH^=XCNEijgnPBA_ll;NxX8@@av669>%GSf7pi>VGQ54GF>0RLkINsW58V3s;eJQ7 z@3qLKjHcNIQkKpO6(m}gB(_ViM$}$@9amfa+x5q3$1Be-KA8Vzf4bxEZ4I8n(OyUY zEN?U1<~ZTbZgIIC>sA%bR;$|Uck7yebA6gr+w@iIb{A_YJB!TL7j2qnut0x$bMLy4 zx`=h<$2L@)KC;hm^|FfDK_7mrG=?4f6{t2>QJqz}v25bY-I9{O@4jyQ;rUqp=DvK{ z`2rQkr2lGVPsw<`b4#1Wnw!n}VTO4|%iP4j$Zh@ly5iL515tC&?fECZ;bVJqUSRU( zYbF7kYp0g2d%hzmWuj^ri@eDSzndnZMa`azlD=$wP*vZ#Pvb|j%j|%UIm&(+G4FN? zbytUn1&AJ*w9@92+0)J^P1^3^-QPMt?ms+Z>yAg4_XIz*URkqjd&H!FcO#2DrpC<I zm}JD~kl6S2*X|E)`V19^J-2-nv5NVSIjd>OW!snHll*yB$T~LJetRwECwfPl@y4uU zyZ+AEpW4s+$9c=g`a}M5{ER=ANq0!S;?;Yax_xJ73eQX1HEhoL(!D3nct|84uvjCf zeQ&o+X4!>5E<66tw9oVxc<EjH;rd~5rgLY03fy+PJyU$r#%RfdT&w3PpL)FDz|p)K z;~(xHy+f`|e)#^lv~T)h^Z0$!uD;JzGuVBgxoY1dpS;zVrMH*F=f7xw^!%tl`ybP5 z(y<>!+t!vov}pD$T$3T^GAo49YR`p8>(~u`Juz)x;<jG+WBKFmhwS)EiF<y8o6hfe zt6tRf>`)|^$4$knM^+s(k1N_Fns{mJ(!R;Ny`7e~Z7H>9+T-|J{*UL!9OKM+f*-Ce zT=o9Y?3K6Q6g2;_&?^_Ru<1#be6;6w@PCG;(m(zm>f4rlEbo4|<@L&(r=Ol&PPk&T zsK>7O`GiFdv#kvJGnFM-y8gcZ*niNz^%ig2+K>DX!#37F;1@9Rw)?H?x$eu&Wp}5G zhxI;pYutJ6-eU%?ALozX-=?<u0YCTc?MG#!J+Ex#JhE}=e}?u)zkO$RdVV_9)GcHf zzxP`^gIQ=1Yo@ofWu~l8s_Saw&&v<4TwbFTJ$t{{56>+Tf|2oITRru1FD#O@xxVAZ z6P5bP84p8>j{2K^3Gdt|nR$H|S6oHYE3<zWwtW`6#?gA_vdew5l!nC%!zB-vp0_DJ zTQP0%@2LIXCTG?0ZxhbrYh5SdEqq+9d~x*cj)$oQb)~1Z3+FsY-m~jR@5kU{QQ?2o z0;BI`+NY;<ztLIv<(bn=o{5{*Z20)S?UCgP)78uEw=SHrXx>J<ijV4zbqW>A-|IM< z-oBMCQqk10xV<Iebmq578wKtk6|_DeJt4e3=8xjXd&})_?I|z$Rl~37Q^~L7ao|70 z`GnJX?UK^6-k-0O|0=5Qj2FnsT^?bh@o}-@k(+MY3g_&MbYv{N{Jn?&N|<Q-F@CWZ zVrTA|Zt3%mUVL=#3ZX3%=9x|ZnIygQm?!fNTec|=RsP=fEcSnFx!S(*A73BG^DBRT zubuXvAtij8r=irmc@exDxl64>i{JZCf6%tucH`9=$(mVr_s+XIO?uKvb>`N{2CYBx zyF88;hu?pkx~_lG-OM=d4^OAgtn`_-`QE}}vBx_aSyB~hmp5LPcu^dex%!Xe$L-x} zzx6wp@7mENaCEWOi=LS>KMPy^I8IHCv&~*TZFwxu9Fx88l3wk<earOGe}>%qjt_S{ zo}yEDyScFBdFBm9>qji#)f<2Db=~sidUQ(v?TqOGwMRPND~8RD+}|yzrN;iDCw;k1 znBUY@XV<zZU*6*Rb++?Po12FY=PW5cGdZ<CiEDAv7V(Gsx>p_Qms`8y#VYZf50N?5 zp}HqRcT8ksD?Y)zQa0N!<ZJSiTF$52Kbm!>Ja)bMc739a>YN49cJXtLtvF?T;6d{w z*23#n{~3B7sQ;Efd~43<#kq4T<9sp-FPu~qoccXxCHuOHwUss2%YG<5xc{U7P<DMP zcWVASRq^yZ{&QZR<&5X=sCZS7z4t#uYxBe3ugx$2iB&1Ou{$Tdvh65CK}gB3gzB(4 z+r#giGuyYE<(|})(s=WLk7e`ICaq%WT=QgVN_WAlchS;qRvOIr)<@T9?Yg8Q^{jDu zZ$b3i%6Z|L>t@U=SFAl`xcj2NW8CJYHELFGd{_N3-MwSub|JQ#E00}>Jkxzkz4Wu= zaY>&QU*1OFYMZ#A!l`2Ip7d4sqGQDL=HCq1Gwq>qL)4pPSG4b!8Cf3pI(Ws~<!suT zFYbNjM>1?|ckYQ*+2x)0bJEuohe-Di8)fDcww}MV^Q`~Tuzk9BrrqP-J(oElOEuU( zVGX1H&MRJS><ig@K6d@CJ}fTJvo)4aVvFXrfA{WobiUKGyCC}Uu%!AO=Y;uw`=&mL zv-%Jd<$C7Uzt(kszO$<x`<{A2v5hm}jeLUqojhxv!pLK*{6mDZyq%xtdLNLww|iQ5 z+?D(-U;i_NCg*)Ts9`IyWsOTqUvnbE*JD}pTi=xAGag9XvgzNEeV$TkQ*W$U|KeEE zk)7((p06$cevAD`_K|tNbk&agHJP5-UKAs~mBa9JTke{|tJ5d(uT6RxcF0q8-@Yqv zYut7-nK-dVFxc>aJE^?5-s(m1F5~d6Gtd9%kN?28yvDsJZ<cRRn1kHixax_0Y=X{) z55C9;X=(FX9~BSW^g_Is+wHeg)&!IMrxWU{R!LZ>Fqmz4ecSZKv?!PGX@ME>d@WVH zw<ft59A>-OaL|5Fg0#drgH!(NvM21kTI2b!Q0JaflXr(|&dI_IXHBhw-P5fPo|pKW zrT0E1@6y(3%W4X5?EQIZPyWjIJBKPVp2_(xW_{SurayJJ%&CYk>jUMaKm5I!cG30R zoXJylmF#Ekb$DK=Ec5lm?LM~x?Z(-0*Y|klT-)|b#PF~YPt5&ONmD&+Dl_HJS*1T? z5xl*(RLZ}(q$A)^%)(=Foa(7tD=m*bapHV3i7~Hw-qk684(YDdPo8&Wa>R%0UBR9o zzCPWyQQAp$Vo<$R#BCL$JxazK{fySA)O<OxN~*onPC0Ay&%l_QKZ>qTNe}Vv?({Bf z?fJ7}`HB<j`&X>@yr{Fj#<o{I;Ns)W9UFDNP2^cqw^Vf7Uru$4*Rx(Pxx7#IwUYna zl>T6&m9ZPwsh$s2ayT(@hus>c?<+!s-6l2Xe3X@c*w<a8oG)<KY}LUdZJx?KOyU!k ziZe?-Y5w!NbdTzz*G9Mc+w<0zF*r5_uw?B#!O&yW?{xFo-u6TCo2DP<E&KL7_`}Yw z%U%`V9gA1qao+L4K*srMTjA#wkDuMS)Aj8?1K+=6n=54ZZ~xDbv7<El+IGf=^W7@e z<%E8+^GxVZJ>Vl`o?BFTs`0bT@;J?yrGCCQx76%h^2hUvjp6cBvyRO#Rk^$%bbF`E z##6#i?`)P?lx(T4@L0?E(#G2l{xckT-|2Mc=z`2&rppc`oAZ4>bAHadL!w*^mIsvW zuKwD%;D`7Fx4Da5`CHz6u{1f<{3IihV->sG9c~`|fWykN+E42xU&V8OnH%@)^Mfn5 z-p%=VCMYmhcFi|o1qHFTdyjlCt}mS1(l_J88MhT~TEFDgV(ZRE{av<_WmjFlc$e7K z&$e?mZ7Fx{Gdd}3kYspFWFLE|=_{j}IM4~>$qTZqbf339>G2djI%69z*M5ZuN0z(~ z{O+u@A<rtT{7Cow&RIuN*O!`ay8M2_;WyLHCKlUdo@9NJdMo7dj3)~7+SlqIj_0V+ z-M%Ao@veDKZwtjZSDH+W+1+H`l&Tgp@A<qrrR(|ww=P?L#%k)e<tyXPnr@pbx^J%F zvA2#qJe7B39TcxO&SQM?MRe|(s2baySK_>@SD#+lQeQgph+@Oj?L7Oerrj}om3_@l zJyVWp^VN4IGxPGKEqR}KtqGnue`be{<74iBrq83MA3AC3t7d(lKlZSS(L;e#%QV^i zB6j9+p7_V}{L-$MA^o??EM?8+E?SqAU8nX@Zu-*3oThsxudI8`;NxuTKT}$W|H{A6 zv#yVMlY^V?ox6E%hq{_!rjFv%NJfT-Kg+(Ue0isxb=dRrKAHQno9|`)Y8HIzC_H0f zcmX#n%iA2rIjnClo8Gwpx?Ujla^BYNvy3_=Kc}Cc_UwA<o>T3ApWDaGooQ*gZeHoP zQbp(ZYUgRYKdhUSxMkNz)tetyJJcL&OOFiQIH#3)fyF-sN68cKU1r6%?~%^6z2EjF zy0`3A#&+%%%X&jo><fNooZ>iX$+}(eXQ=jlwpZW93~Rgol}$c#Dmp7uB{}~$&tabB zvJMJg)D~X+!}(F@dI0|_FO%7YJ8xcW$=zt&!#K%-Vd8naxmv<u*W#7^_Pw&2&;Q5& z($*i-5B+Bl_SvxRvBor^q!LMmhaR^M^gJ-oDm<6<ZTk9(X}M*OJ%5C*iMyNmo#&AL zw%cNj2P96a{Co4UXJLT*f=9c$_1TU--fML3)lKESlg|ap-npogI^#=t&s*t==gTbY z7VTXgv*Ba<VO_4;_`|>AR<7_AKA!*0UhA00OqmrERKC3xxu8?C;Vw_h<GeSMW2S1k z+V&><{ZcQhx&KI>|HrQD!HFN61E>3KC=WMyX<*Znbe?yPkl~zd<uZbS=IwP1$BvnN z6g?*1_^-eG_6PY>d&Q6J7g62ey*m72zRRc83Qa%qB@>EHJ)ExU@8@Qf@MXPZw!P#+ zO}X~GkOIzK9WrH)ZNgnriv5Ci{=f9Q+UJMr!&q)ttABG>{atE$BxBwyOTi-_&oJI@ z{j_0r;jv4F7oP3ed|aNrPQ;z%Qbp6fqg$<oR5$IJbkDk9@q%2@!B{swzeC1<BG>1C zIR0m1K4-1&e}*q!;r%rUzi+kwEu8(I!NGK@YVpN6x6+?|@2*p=SpTqEp6kaf?OZqM zoj2E(?p5rcu9B{D)OOn8CkYR<*R10>=XAZ_^U?i|UDsz8KG-W&SYB{u_f3(BjT26J zmY;gQ%~Gc1@$w%B|1&7ewSJL(aUcJGh7)d=|Ng9>u<mOrUrKMnyREkR2j(-{sn--q z<<39;<7r`{l60(_dFs5obKM-K3Od{=+#y$69KY}%>xcP&v~RC`vnM>coNe~<<1D%r z$~y#i`AAguE4fWrq|>$VoAuihY1)(6&L7_YQ}o$?hV>o$=hiBIT>Q_&yrce&l>L{Y z>z%Q8)wWo#cz>$Aj`hQ|sg+AIcWs-Ro|$*yM8EtL+3gI>;<q;o<+CflXMTNeuk`W% z47~efYkV)>yZq?tj9Hg1-dwAH#XEP!ZEM++DttSp**RLo2v|J{vp?AXQ`E-#KSSJx z{|qmttoQk`@IQmX%ldo${}~*r9<AEVCz>i7`1$F#?sb1ufB0vw$hx&}<40z%t{2C) zmjx_7oym4VdDgpIMoUi4pBCOHRCzDZ%{M*bNBhI)y(YKAKh!Pex$Jf3*(cA3vqXCo z^Cy`^#GZOEiTmASY1iugt^1$cvvK|R=0C$P-nyWFr|mzfzStk#|5sSmRdTm+eA=v? z-;S+)DC>QEp6u=q_dAvLT(_~VTIzbyK2`DrYw<qi?FFYAqQ4ycxbcH{?2l5(Yta$j z?>TNQY29~a)1Ggc^XKwU>zb@?W1M*XYUAT~`rP#=`8WM%SU3N7&<_31`=9dawEi=! zkKX@8)63Un;@mGAKijo`nD6*;S+CR&w`<pYH6tI*<nhjwR$@pNyOdj+Ge=A)eS6h+ zX@CA7$*$44<}r<;6P34feHZjEW$Z1`E4tVc!^9xTTJ`7V(UgDZ;y=0N*uUOfud?c% z&3}eTjVtP}oBs>E9^I53JS{Y;X2oZJ@qU>f`oZF96*ZxYW8Xz*AD!8IL^YiA`E8Zz zl!NEbII!QC9IsR3{bOsL;&kWBLYE{HCsYbPGtDR$ij-yJo_2fcy#>sdm)1`D&+tjp z`9A~me})Uab-{l;{xeKkzPkSU)%~BQZ8<!v*lb<tEcqk+A}^<zN9lJ7yt+1Pi*%az zeWmi7(xTk@)1q?vf2OG_XV@#=%F2F!GyTx5X<gIjF>I7te8Sv>@67j$Tbc_p78fZc z_AzMKc9%bz|Ic~*e};GJpGAMM{<iziaN;5R-=eMm87`)6owL)lv$_1vpR*tH+iC(I z?KL`lxF{xD&^KSBFXXcBpRK)tT{F(^2{<Z0i-Bd*l0J8z>+`bW6h1z0c_Q}D^zyr8 z2ica%o81ey8tmk8+MFO$!uz5+`~`dSe}*TEUe$jS-~FHA!mWL&e>d7cv1I>Sxa&W| z#qL<G@TonEzNDYrexI-8#M-C6>>+!7P3KB(S@9(4S=`QvskII3ip<?&-S57QD->I% zQ!2LMa?aGai{~d?U%E8)#LuqPMhYkXy$`-IG45~Te+K2S#s3-Nlm9cgEUn<%`JX|# zWPbantS=dM*~<z~E%tW4QDgdX^^sk30$<Kk-yXdp)I~0Li_)zJZuK1!cXmn~%<WtI zXVumJ3<ut-zMUWSp=0}XrQNlC)B9X5PU2&p$#in+E8~-|C&vXp_|Nd;KST4MZ|m3n zVgJt{XFmVye+Kz~4cS&3zZHEqF<)qIdrsK<!_&P>H^*@5+&Ia9GtZPeV%a>8KL^%a zJg$1`$VRIKg_4+c27MuuYJWR?$f+}(TJoPk_+@kGmflMq*WQI>w`-NN-4bvUmpFOs zksq6H#k0o$3@WFC{xfWt`Oj(J&L64&8I(o$|E*sCDeC#;eak%`$65Z!{AhgGs%F=* zc4gni8;ZYam_`58p7`nCQ|GDiPF00npZ2Oh5I-s}cJK7s%&L%W6PusuynC7w!o`?x zcp|~^=jN9OzOKKRFHwJ@v-Uqj%sTs}W&areGfXsk{clh7e+GxBu8OwFP8&a})HCiW zHE-23nJ*c0D{I;+$BDDVGs~Ea7$uwv4`?|zpE!A7&06(u;(IUV>i$Vwc*AV_@?$n9 zi+(?ESATjthv5Xnb3Mj)N5b!3m;a;{_n+aq|KC~r+J89yXHW`T`JW-~{%@a<Q(G2q zHeKpxR5gF@JdwY%O!mt=L_d5TxBX_ftC57*-Gqq|g3=zljn3_P&RTf>j8XRWrGNXk z=$iZKf3(V&rg5^%GEZJ;LE!GfGQq{o^SGWb4~}>HccT6i_s96Zt&jdQTok?W@0$E4 z)#Lx(|GRA3>f^J;X*H{4MqTCW{|pRo{}|_1uX;I8dv@HVF9(FUW367EJ>sb~t<=!C zwY$1VVw>R{Cco^b=Y{@VtN*YpXW_*f=7oos#weC-&HnJI)vwJ}>}bHo{FzhdKa-hM zxqfR6_kRXCIkW!^WtaamIIKT*|5pA#r(6DixBh3ikiDH{@8Ybg86lT+7r$HIKL11D ze}=BhYp%s<Uwrdq`&{PPXC<e5@8UTaVCAZGs;`K9Qc93jLSfvl{|s9~kN1=Wulvz` zq&cGP>S@&}J)2^VU*PHNdOy`u;q8qc1J191CVZIxYjysw2lG!{U-?7+ef)oh>&gEa z7A}=IBcrr);ldK_lS_+V#@2sZd)-ETweHicch5~Xz3i#t?%nxto@>X`S&<u794s%| z-PPCVTY2{VTkD7YopF|v_{CpNyDpjVpCP|D>h5+sr=Qc7<R<N4oau2|ZtA0WvHjOy z#D9Ics@`Nh!-f4%3hNiuzc}@BVSBq)*_HONpvm1g{-(>Z{+RgiJb%AfM3mjqho=|R z>@@jsQby%L?`f&LbM~#*C11ER?Yr}VuXpJWIqBGJM~CTbcV$k>_!gX04BTD(vq|HL zrA1oNlIKq!GyY@#&oJ5E{_EBHFRW|lv(=wyt^fC={+Dq0{OXfOXL-AH$r*fD-c+Zb zCGhIoh10o@BqZmS*7I-LdU2BCOx81jE(w#h%(lOmobid{LHMjc(LdHddf&2Zc2=02 z@a%vK%Rc@2o20qzXSj4l=G%l2MdALh>zw(P@LXT>@A!X)Pa-@1GpwI|{_m`v_P3P( z`F=hoAM&5!f>yexdUDC_sQJe7J@#TX-Zt0g^X>_>I+&}`FJ`oMM(3f`E2h6WdGcqQ zQEXLn#INsdU;i_7i?_%A*qAL-wRK0pt#$LvJnh_-9)_@%Nt~axq$(kNdfjRHPmCY+ z|F%5-&u~%j`gODUpY-qkXV_K$ML1ShWm>z{<lM#2YSRyw-RJpZZ{P7Jx0Y>lzR6md z;Fmp@&IB1Yak&WO-K(oNY+7l-GWm==U%G#n_@>u(TpQ+jSC=FmiK*nVd)2JNv9xKU z!kl+Jbvsx6v;EI7$yEMt`4#&wOSS92vHsqt_Mc(B$$y567q4yXy?Qh5n9ZK!mvcWj z{8)d8GehjN@2(wlT&~YzNivO`!h5#phNO?+lm|WY3}e*~^Ed97vXOjz*8EWUw2RqN z&MN!-b}!rg#&^M{<62CC^JVf*HQjA^wr>rn08shQ5b&R2!_w>jy88Bhez5#c$FKCi zrIUY}R{mJ|DR!|}LCl(;^WCo0SU>!+{KC3Dj!RB#ywh;(+}jlEM?vc*9nM(5=KFB7 zNo(W7>RBJH^Lykse{cDdVUwKr@TB5L&bDX9t8SiADi<<foX4>=EMrOP$%3cHEM8?l z=Vz@yaq-dl-@LEvPg#AEb^qt)QU69_{x8GTF=}!~em;kmW@@Wc_wD}e{_n~ylj4dt zi`+fo3%9g|)bnlFYPQOF>aLCT_ib|6btEP@Dr}E>RO&DH+D_@i<BI7AgYO?yeZ@U} zmZe%4x5DW>9+zs)Hy-w_W%jK98J@U()c;%YpTRTx+&+o=lT!J=SzP}!EZCZ_Rp{-K z9=19CM4axn4^P+aHrx8h*W*U4NSJ(*(<aZ!je8T1WSnt76Y}umsR_oBaw<QzmM?iN z7?m0JpCNbqr^z+fi%cdp8DG-)u&TQ0xw@@w<@)aZpJb>1+Yw#=A}E}7)qjQ)S?^!U ze-eFhxoM-9@4J|f`bYkTJ$wE;EqXHlbdA<dC6&G)PS=PJ+<9^3t%>uN2*&6*=}TIl z%}*@UUYs{6p;cgWX<BAvk$X*(t#;p!_WukDEBC)q%>U1@sJA-*aQsiP_5b!ij1BIJ zR+fu5?!9Uw{wUfzY~Q|}E?ejMHtIe$z9TsC`<~5D8?UpM`(1r2&t_9*Bb-@W{NZ;% zwQr{2qY0-xRU?`L7pOXG>$6*aIcoWz;R(z9_x(@fBtP8#=cTs#KSQkCvOljbS<ac0 zT5^8Xp4yL(!#~!yKDxY5_eWE;W2%aGZvOH$*S=kL`N?yhh4+b|e2|Ls9EL@ECI^4) zKawl%(HwKJ^vCl{%hPVWx}QAN!{W{>VRea<ibjWDPkg#xvi|Y0`~P;Tf6lu4QU1>) zTl3ed-b*F^XxzVLsWS6@J?DRhjQ7$t)>oH)WS!ojw{*`Wp-U$=t=&`f_JPyB^4ZUJ zvOJ8lF<_Z^O#9~bZ!14MTfFN2D>?bgIeX04WW~8`uj-qd(U<<);t+Rt8k1_x=ETLJ z>?;nM{#>vAr+H2N>lgLv>y96;|0J{TKf}6A?^jcvzBh?kwPUsNoBh%?K_8#@GRIU* z@}8S^&2^$u#k%Lyt{N4|MRX^6s4sM2U+e$iKSSGgJB`HJRY@^MZpR`GvjoiVOmf$1 zbn|2o?wQ=T_0$jPf1Xdj|K0MR;b!)Weun=HCpE6rzuvfF^3#iornQl8=JV92`rpj< zop$-i_FuPe#;j>LvCZi3D$b&UgSR4@669wK&NIBy_3PY!h6nH4ZH)9w<Hah1UWZ&* z>t(ub<FYfqR&iWu;yt@EV#&7LJ##0Xl#u+nw@&SY_@BwQ<-afa=e9rFME<9_ylDOP z$^RK%npTEpd0OAOH_7McbMFu32kr~K=w4kB^xprY?vjNf-pggb^+a3to=Ek$StQaH z_t!yk{al;;-z*jS;aBqX?WALSnci$P<PP|JbArc-S!&jy+Y4&8sXQo-l>gv&{->GQ ze})Z>|I+rm*{J_#klQZ*e*3>Rjk%T14^vNR#>!9q_5ICE`@_9_{K9`+E-%@~cRzj4 zt`Fa4>t5{NKHF%cno8dLO%BUfhuv@8pL)Jk&TNZs`XO_(Uzd1$WsmN?e(Rp;6VZw# zA%-5udsu@w6rSymuqpn}ppt#G{_E5K44cEBng0>)|L1D!{coT0e}+q)+F2EydvEsK z-(AvIeJp;%(r^2h9IxfQ`faw&I~U$^&aOkU4NdcEW=dC_)R9np5dPe~_a8@%|A(U& zCe<4FvdpPGR@QefXa?`r6W>o*8~3?o|C;{e{C@@&x#RzK#r|h_;kI94pI!Y)vrG2( z>i@E4J&f}T(+j!Od;Zju-5+_3az56rFD!j(<t{pP=^i)Hi0Mg-@7$TJz_njboXg?& z;;w7E{27lIKmEb)-S4t@&W1_<v@@a#o;3d6tUhDa-jfH^x33MnUjO*f^MCv1|GFy8 z|KqR!uNT>urxz=WM{oRizx``w>PO?VYu`BC&*+qkoX|X{c80i$e8joh9cz1~ADQ<i zcK<f_x%^~DQ^oO_e;37_(-Ca`y=hs(o=-QJZ9d1H1{FxR&HontTejzV{C|cC9se2D zEB`r~SpDK;Ptc8%+dup<J9IhX%AMPPm+aoL@xDwD-|TV=xrE>YHR&r)oK4TN7ZE=k zH7Pp#p4b*|n>|G_?mClBHyNy3b;^9o!$zTP|61J)s_*9ibD7WcpW*tN`@f9#m_Pdd zr!uP6{a=&Tl6EdH-<bXENA_w7Y>v(P&+uZ>JlB&tM>jbBy<Kx~|4ruomv+_~dt4~p zebBBovo>QA)9HF+okT|!+2yPCgH{z))n-3CFY@<v{;yy8&$Qp<^ZaKx(YX9S!*#>I zS@RvH2wjv(+x~E+uy@2C*V^(`(QaNxS$7Dyg_KV{aoWCy&)s6(?gQKJNp`7i|L`Vz zSzGA6E^}e^vfQ&fK3Lj&UAVUYNlg5&_v-%|<6<Ak|KvXVCI6{Q*pg%6w)%l~qWgD! z+A3O+$EkQvQvR%t;i0!b+b?|Je9qi8&BF9ZXUSi+hf0pybFORdKE?8Rr||T=BL(bP zkDmQ!n0WI)!|N^cf9qCFssD8O@5eu{qSzN{tp9ed)295N)wD;CIQdTGy^(y<D!lUV z5p78Z#>sQ<7G&S~WB-x=f!*|n$>}vEXVVV7{H(k7mdSgi#?KqKv(A|x_V%mj^Ihlv zbcoIOtpCFGBmc1dC#fy}8P->?|I4-TQn#kro4VsaLjQ2&@-6?+e&kmFp|XlSKNel( z%9fMcF`;1R<##FGzjOL`ek%`^P-eJ(p<d)aL*}y&Y@N%p!&X<XeHqoe(>V4=8SA9G zW^;_rs+|3{X8VVhz@C~T$?TtxAG`laD>MG<OZI;)U*B>5XHZ+4`tQyDU((n6-rb#T zYjSz(MV&f@AE6)5ovQd_xUP2E@8CP{_LWTgUYGRb%@n(9$^GxwU2<35p#8kRv*1Vj z!-5F$hz(Z`35lJ0p(EZR$H*)9ptdN~ec^hgzccnfSug+Vz5b`FSM}NUKebQ(XNbA{ zlk3%@wF{3u`MX^Ai}@efkGEcjZp_ZL_S!W+XlGiFbGg2B1xx<qf`_|`Za%*7`1O6J ze`ohg*jf1e)A)G!#_gLvTr(cD`tDHRk$t%9Kf{g&u|Kar?|!)aPj6WL*Q@)#7{*^* z{^t6B29+@R<Nq0)*7aw-3w1xe@e|wZ{|qeWF6yOpCSHI0<@HY`eSs@FPiJX13-R5w zId8~#{N7=PYN>C3_5X1;KDZsLd;R#WkWZGO@izW{mo67O$F1$!ne<pf$ZdwoC)e7Y z>+4TcAFlt#Z~x11^;_=xpDNe?GX(!<*c5K3E^Ki!BILf&l|S3A{AYMDeI8@CUrgkI z4{l3SH@O&f+69QroUx#1ec+aP*-!iB>rVY=;Hu-(z4~pw@T%KK-fURieRoaaCr6c6 z@1=zsZs@S*aQ*9&|L3^fzWvksqy4vn|Jmr<zuvO{Z1yyXnJ0H|_H<QE{`sHb??Riv z$JejStLMuIxDlQ6b6w5h(&7ydH1GUSp0kqC!lqCA89)CY*XwUg-FN?e`tQJrggNi} zJo&Y!rt0kfAY{w2eutg@e}>~rkN>Ua|0{L%=krDNCzA4i{gOYmZ?&FR$gPaehP=nB zjKADJASeB!_OU+OvbC#B{&8Gg?lW2RkoWRW`>nOkKb@L%SVjN(tS|CH71s}nO)JaH zUUBwOcE&9W*)2Oowj{b8er|Javw_9$Rcsa9^R_<t)&6JFUHiW`?Wb0rKcxSY{gwRJ z-}3+3u0Hb<&oy6UoywYg<B$L2`^{2)(~B2m-l{#j<#yNez{=zaeLaB^8gYf&S!Z9F z_4CdT>4z!*8TMCl>VKALNuGROWrF{e2H)TxYyUGSpZ?Eq-T6PmLa9UTe}n$AmN-rF KIO{q8|4jfOWC#BM literal 0 HcmV?d00001 diff --git a/src/yolov5/data/images/zidane.jpg b/src/yolov5/data/images/zidane.jpg new file mode 100644 index 0000000000000000000000000000000000000000..92d72ea124760ce5dbf9425e3aa8f371e7481328 GIT binary patch literal 168949 zcmex=<NpH&0WUXCHwH#V1_nk3Mh1rew;7xnn3<SBh?$w0g_)U!m4lU)g@u)iot=$? zhl_`Yn~R&9mrqE5mrsz7n_ECkKu}mjR8*9QUtB^=L_$bJR0L!QBQpyND+?<pD=Vi6 zFE_6U$>9G120;#{3#<&xj7khlf{e_9jQ@`?$TKi7vND1J0~9baF|)9;v2$>8asNNU zuvLJ8iIJI^iG>;DY6b?zT1F;j1{Oh9Aw@$+HsQcTcBMiQqsEB~Ih36?9uy6__(8=u zsi=vQOH5osQc6`#T|-mL#MI2(!qUpw#nsK-!_zA`Bs45MA~GsDB{eNQBQvYGq_nKO zqOz*FrM0cSqqA$$<SA39O`kDy)}qBrmM&YqV&$q$o40J;wtdIWU55@IIeP5)iIb-; zUA}Vl+VvYZZ#{hU_{q~}&tJTJ_3_i^FJHfX|MBw|$X|>M%wS)E2#Ckf{3Xc1#K^?L z!py?X%EH3H$W+e2$iytj!m4P<Cgd2%o>(ZXWYowZ;xuvL#)F*7#z7xMlZq~KiK&=8 zRQ(9@8rWyVd8~;npTRwb@YgK{9%e=cCP8LF2787de-rdxv0J{qE}F*?nUrSJ^Y-;w zZ_(YG@;)8NyYqGRhT98&Zfx2iVf*@|`vuinuTE|uiFFtFEN!l=&WV`!^SSM+OVJx9 zb~3CFJf>CBoy_}_`#keHt<+^JE@>~E|Fm(AkjDWAzRdf{2Twgo_+*<Mxb~m~JG*?Z znZ(WT>}CGTs<@sMm+i6=$xR8Y7P@bl=lHnrNp*0_R)vS*DqmHei!N8n3ukm!Ug~yX zyRK4-o?WW!#|XbQ)1HTFWzG=4c1P@7@ximHdl##Dp5r)RxAk(I%j(HjCeB^9S+&7P zaC?Jse{kfX+`O_+YCUF+o_E+dzkXfXXYM>jxj*>NswW$!-ePl9R*~v(yZI#7;>6kN zEz-FXCpmUsSi!PUT|vIyYwGl@KReUT@!N!GacJ*WZLgZ+QugsM+e!7k)g=#ZS;}nP zu*t(~+QZ_W!V?QSZ!MTmU_8k%DCaXr*fFb1J6J22E#F_-^)sjN<jouXiQ)E!vj3(k zq^VclImKr6!F{dZpI64$7jj>a3URwtw%>2DXm^>r?(Myu!j|Xk-lyht&9!s;y_kJY zZI;9ZtyO;y_$yZY$*S;}I>ngbu%*Nc>u^zDudaPhZ$vZtF(w~p7cDX=OK|sdTvhgB ztzLnJ!nRuL&>5ee6fvIjWbe<@KC@CSCh^Wr=FJMRPu3N=S(+*fRm7NCeK!?K6)j+V zE_vK*^X`)cq0Yhw&Q?yIwo7(m*DJrtf0i(bHn4ZCdN_OfLFWC}_j;rRJ=o0fe8D-Z z(6A}f6*g^OVK?<`Y1yKjYtxhFC>sQD3so||50=?;+hf8?_64Hqlh*8=TJ<(6jLFF2 z^#RHEVNYwFr`_UIiIm%ud$<4Gl+=mGIBtLH4-9Ha<7?gLXBS`9R$6fLY1N;dF9X+X z@i~=Ibm~>J0^?=%1<P!f6-hox({7DDzHq6=S*bR~_Ml}8(pUsKoA|TZCZ}b)ra2cH z>2X-HB>cJ-`ezaoM{yIw^GoY|-aJWpQdK2&diRVca~{i=GcPR-4vUuXbE`c)fBwq9 z#u3~7&lUH46J1?AlmE<}WVOv{+FRx=`PldMg`;&w<<;1WQ*GR(KNyBO=&Kp_FI?-X zsIzYY*Sc*_EOK{W+x6(u#$#Wl*;yLrRs9azIxk$6|CAet&8)6lx4Ep-zpOsVwVHu3 zQhalv^TfjDJG-+5+=J)5wc-D_wPYG!I74FL`BN66=Oh0#8W_Kh6`jnl&Mem~>uaj( zyR&5D{#3<Jho&7CzP~j;GWHWEi-Cl7pT)OzQI`VTgbNrx)oO>`dKoft-YU+xtrwOS zo6WlO^6k6o)eHyz%y{|LwCdj1ZBHJ2J-IH5`^={OP8KKL{|Mc3#f<k(YjOj_lYgRX z&un#f)4%db*+Pc-_19&4Z!Jo<ueMa)u*R^u<#FN3gU=RC`d}}SWZbtmGpBvw)^CrL z*_Ust4z=!nATr5Qec^GIu$b=^Q%_hp_pair=eZ($*NjtH$6eX>cgU8ROMi)eb&o8% z-6?A}@9McTPukeuHTSQL-?__ZrSwUiJHi*L!)h;8HhieCH|lymY3CZfEoruwl(#+n zzB}cE7RO^{ONm<*=h;n{<u*;8;AwxTIwa_J+k{Dy{bg^oWJ;_=rhe68;XBR~T3hvO z)`#6}mb$xt)Mh0MrX5<rz&x+ep)odEyJybV*D;s6bx$li<tAcq>(1j}L2gS#t=rEO zgznY)b|kDn>r2doc~)11jMD4w&yXq5mOLKIwlp^~Ny*K@_lD)c$ENFZJbMc#FrKUB zO+DtR7tMN}d296c((pT+pV?(A&enXbu-<k)Xv(&X7r7^Xuep7m*>=^<=@|^q?CM@T zx9?3pY@NgYd%=_RmETs{UGY{=sIV}75VGt}f0Xd8XLBaEDeF%NFJMVu8a(R>%Lz5p z)bs3Jjq55cj#(a;;aYb+x?7yVAkM7MIGn4jYOc*)&a@q|ukSzo`rOp_PVe%C=M}#F z$xN9cu<F1x8JRDpoLq04dzU0I-rCC*a_OR=W@Lotb}{w3Hy@8Wt5l}NKG^a8LfYCb z%s+03+H%OUT4@&@e)sNqpK;tXskvKic6}9kl{&%k<cSrtZf<)lulP^Z;@K|7<;-G| z{$~n|3TH)_B&+#Vu)q7Ze&KRny^7LR@ySfumSxL=pPgf~T+Qr%WaVzf0}78D`?Fp? zxHK~|L{rD|ScR$P#cr!S#j<&IG4rzS1f^@u?Q@7som;8p|M!!Y{+negZ`JdC7-J7y z{I)^X;}ydzO=;Jk-*dDKJeYPq<$jSZd3)tyvstedlo!gcwYqn9!fxx7zI#(|%F0(Q zKiS-LzcqNWSB9L=@lPA%e#(1&UUhikb-(f}hqFrqxO(4I9<beitgXd`;nNMCWXt!_ z-OCz&$|&=++0C2E@?q}9)r#_O!-f6dY+mYlKUns$;qwgDewC}q9QQWPnGkMW+#EIe z_GZtvCx++G9u1nN$aCXoxB1FPTl^P%zp+BVEz~)oe(!lv^=X%O8w;2-Hdt3*o@dJ1 z#lZ1CXhvO3-T{eMm8*8$d-A%-B+an(PFbJvD_3`w87xczpA6py8{AkR_VPkiC}+gP z>oT9`eO;sU<jkElYfju*cTKh5uX%4sSW=}z@ws~iTA7{`w|#7txU*Pt)w|n{+6~JW zir(j#6Fk}9acQHpQ%~9VCCpDw7r#7f>cNuEki0$SQiENPIP<2-_qIKKm9~7v0eSU( zmXCWb&oB&dJie~#$|4;z;}bF;=ViJ$tE<o3A@cpsRc~(|VR_X}XZW+`DKYi*Y%6a5 z^K#>g9&w!li*r^|J2nW*MS6Tmytk$Az_T|_;?IA22Gv%qc(N_Q&B)^5d9OV>Kh)d~ z3%>RfJJ^3}_pgHNjmFc0Jx*jhH=op<XZbQjy<y8H9>G4tSn1oEx60&Kz6@EHTiDyM zUFJd9iYJqOo~~QV(XBG~@C4W7yV2=?*Dc!hdv*e65XXs=Yi4)b?-8ww%0BaS+H%oS z;bTVx54;cEX3Y28W`g$OeVdf*MEI_D>u&VpXTB0@yDt4nc*yN@{+HIcN}J5k@vz&n z@dzKkO4ZdLN<Yg*Bwt?InXb!wNyws1pxz<tP2h9}InI~oG{1ew=Q{npaGusHr&UY7 z+ghwkS1CDWt`wqGz?XH$%m0k0<lA{uHXf0f`;&o>^L?0N!vmS(=KiHgPj9^F(J@gx zm{<GR?aih+6D*Fs+A=XOc#A+mrLD17?s>-D{9dPL#)p-z_@?CW?sy)bwW-^|hGTaU zO5gGN1^2Wn@cmq7@Azr%{&QQNyG`u98F|%TW|Ae#*Yj(YH*2yp&fqCs?$x!*>)lD4 zey_$GIxPup?`$<!#_}GWB(Bb|?SeJeBy)D=#pTadZdpCgs`0$6X3)dXPaf<REc3Q* zx*Ah{<*IjE>j@P@Ww||}C*JX0@KpIK+BIpy)9oqGC00(WU9!^dLHg2c@m!zia?_|M z>UR}{ihN!2PB-s(@_fRw71E2Go;)ZyXZb6{zkoT#Ao=CX@YJ0x%c6Gd;N!E9c$c+i z`ivgF#n)EZJT7?q<BHH-{u${##f>3Tw_B!%eo@bE3Xu`w4W9O7nr)kr@trHa=B!g5 z_wfc!`^;5&^2@R_Q{FC2io9)kM?~-(Z%C!HoG0_fRi9#Zmq~nC!E@tD-P9@T`gVj~ z*>-t~CBp>k3+X3$qSprNl^5Nq3cltL|MYFlW%rF<OW#b^-7<Rz`{e5;Kjy4FXvw^A z)$GHD$}44<gO5sYUh(C9%%?E-)qYF6y}S#KmtWuNyFv89W6@X(OSwH)TNyMJCi&-k z9b7H9L@TC1+OYBK`Kn^${Fr}|%S5dUj$6JAVhD9ezVLb0*~Ke;bC@Tcs$%|i`Sjez z&eQUKSLL|AyzpgtAotutWbRqpl@=Dqr2Aj{@LBhTTuGg=QhJlSg={7_<2;5p{%cLS z+qdp(zURcK(#HN}#dfhLa(^`qJhhMixZ?6Ar?JVx=GvTXZo+GGBaL@RC>Gzi?3^GY zBz@U5;uNEG@jK0Z6~{}@7e_5QXEk+V;ydZ)ElicBEd4uVwu>BktS-}cm2u9yV+`yo z);^l~G<0=|pUS-@DGk*@+9_|77@w`yej~|}%eF*lCZFSzx~;q1`@=G)Jx=0K-5B;* zfuX$c{=Lm_|0Nyx^>}SuYiPSq<E@q1I}bdIY3=;V@OWbQ+k+GP{HkT<Em{?=aCd4P zpJmp?t?j!R8!w9}_nvzCLoqG*1lQg6s9RgRx!Ru<X-(~6f2zRT*jF8PY%WJn;*~^q zn=h-3bFOY}Vc02g;)LAPI*D!`(Ua<yQMo<pS*$)ODb?4G2rwD!yu*0THGAiD!&x8L zo##Ae?spE75LprPxMxDO)V^&wKf+?t_h<FKJ(1)W{-eU?(bQeD9bcvE=tS7-_)DJm z32u?!qjPqPnepqcEs7jv%iho4Tq<%h;Si6^1S>($rP=eAsxJ(BB$6b-bhwVucJFJs zZ+Dwz%<C3hcT`$maN~{p+N8VsQzti`v|*l?;c4q1H0!4E<oyl1j5R-t%;WqQdiGV= zbCr}iACE`9EoC`jBY6H)t@hk~?Nu8XKAtdbxnI09Xy5Y1w-+fS9WJ<grIc;Hlq5Ir z>J366eH^A-9t-B{G_9(dc;!DstGCR5hCR18Y-2cEc`{PY-?TfxCFIWob4l4(w?q@l z=G|cEbAKEf=G)Hlr{#%;ti9Bx_TSIB*c`vFi|Rk|s%PChl~oHnEYvetG@sA=a<pSL zlP62aCWFrs0^G^v%xxx@B^dVw+&_BoLAc41YtKVMzex*(8>L1(-MHaDgO!wyLC|lJ zzYqMqM2kNQPGy+HF0oQjbjs7n+3)#mS5FGsZ1rHv&S@7q=lL!vC|FZ<)l*qtu_mRl z=i{}l&)pbyq(~$l)0%v2l|-)0Ri{74w!4`eSS;jlJh^YGbHc<8ksIb(u01_tUrf)J zCxW*&J=rEB!}_>CINq^sSJli@cexH3{IuS@WvcDwV5J!WGBW8aBv;%K4>JDD!)IIj z@)gt1EH-=NS>G3&w_7vGr^bKB=ZP;oUi(a#8Q5TP^7W;q2}SMmW28FfHna3RpZGHR zvz*VecN!fJiYMPlo6}d|pP!ZXXotiB<(_hpqdM<*Y%@F{DwMM9o35hHlTPO3g~#l< zHuS8RZy!8o{W`5CR=YKh&u8sw-4}SQ>gzGq%CEEbJ@*m5bFm{~HRH}`_NT8e?~UoR zxEnEX&*LVGHCL2`j!T|6a62mSjIyf*7sKtwvz4Z*YtQX)-<ir;YI!nYzu__VhhCGC ztvL@$9DMtA1<w-R1y6Ttep%*OP;~SP&&2N)OnX-KF5YAq>n)#g{zTb>61yu6?uvY; zqVwf7o{P%lFk7U#zyHkFe5oaAjcD;^n{W1itIpZI6uPpRCn+>WNO<Fmtk7Er4;~Zw z{^XJyyY#mezYmz&PHp0!tS+fC=kdHLPxY0As(5al;%al8_w$8jYwV2OMa#DphdsWx zgJ;!Z83wB>{=#gE@hV@~nMD>qd8e5Zk}6~wIA`j)YW}RYpo@KOGCc`gdjux%aZRd> zDgD0iVGqL&OB?<uzpymDmlD$rSXg>CzGGZ-dd5cqH_5bjR<mB{B}R%roiM3FS#Ij| za<OBoI}{jq@GaV{c`qzKxv9L|^5zAtw+A2h`38B2`FvnzZhRjt&ap1mkF73u@2bs5 z);-V@VLq|m(d@EC%FMY>#3xLg`gY5u<5|_u^Neg)$LC!;;nS2E#t`y0Vc!|6faj@s zO;0`VobwJ?IbnBS#d#5{mfE!^6VKaRYdsQ?Q#_C3_MOno#W#K?UMa|$eEq~-m*`6I zqIGQl=EyZ|UAshM@5VV#s={In=PsEVRMo_r5q+j+!x^LED*<!wwcg&jIoq12Z>J>7 z*Q0Tf&Th+fB6!+@d#>4NZt{J_@8@A!VKw7l>IutNg}1ks9E&|ysrRf!{HO$j!E%O4 z*1tm=S7-_B{+{spY;xscjhVFvtK{ZKCGXVnR7swvz0l)%mGt5ep5v0N73VCTO|rhI zFUitWmueHHb(djr!NEMQ?OBtor-sUuzn*6pb>Au2<GQ&sgIx3WwPBN`J3>$Ge3EXl zs?clwG0*d^Z-ezBgl01QlA4*LeYdw#vhkkT8*BF+Z-Z1~{VvWsWfeN5Wfzl&O5d{O zpW07P-11@Z>(`M*cP@rxoSSxK<w=KXo~xQVcN7&1ZoayD$#nZ{g@m~~^6rG_CLBHY z!RxsN+pMq)S<9ANT}yC#!ozsF@ZRd5{GZ-wPd<M-dUCYIy{<jYljj-PYH{lP*>Nr; z@3^#U+M}#hkuxqSt;sxI)1<X$LLVo~ljpCa&gZS-6Q6jlR%`B|)*@!nyXOk8?OZA} z<<v?;o~p0MZC4$Uxcg}W!<%EPL{pPEWIiyOsua9sNtkZS9~kGSG`;xZ@~~U8CY*BS zY4EW8qvbX;bYGsiJ@c*Aw-h8<CihvI7Ahp&;bY^_y|%9?r1q_U+}!BZ8+j7U)e|g_ zn+oqMo^tXSTm8({i<JH|=uh9BareB>rEar1YRar1&sE6J_0ia>msYm&MPP5u@z5vf z*Ox{`$H<;yGqU`;`r0??8S`YGZ+!eR?9qmhgnf}gYy0+UUtR1y_pb81rKz%KzHXJM zy>C|4@3ot4wn|sm#gt{z3Uymo^G)OC(X-22zBlXk%dGBmj_f`1m-fCAc{6F_qwA~B zmL)qbe;+fIC7sJ(A#}x;Wj6gY9bfI$&bxO-%Z)+f=Q(%f{-~|IZSFb(MTPHYebZda zuNJhe&Bdzhor}Bty|1QOvZgbP-rNYec6HqhzOOg8v%I}k@h9tzRMC+xK8JG;|1(@) zJI6=nc9qQU%q+n&CZ}!DPnS$ODEz&P@7$g8bqjND1(-Eh{_J>X9pt;rAWg=o<ja9| znGTkHdcL|d<P6v?WsmO-n(l9C=J!0Oz<+7k^)Rmm4a>9oAH1mB+FP8tqxJlmyUcv- z*LE!Do*S~PSU7T{Vw0$BbMoZK?Pk>y)9+3)Y(925*7VWasneDF`u~{ro1{JoiWZ#Y z7xP?QZtK%szA;}DLuI~Pdlw<J;H`v8ao4H6&T@}dMOG+oj1~Qq=3wAfdBS$J-bYTE zB6hE{>y~|gm&(Qwx%;t%?Z2tYb)TFM95bHmH%X}PIG5wQYN_OnsV5HHF>JoIr6;)V z<$SYgIV)9GCI1X~F!}t~RYp&LY04Ca<#EO^c(SD1a)`3bwB^vf-M96opT?sVUv~z^ zN){PO@I1e^dh<I8dky)u{)J7P3@c;{L%ZJwm~}F~Y(BAW$=a3Yp4M_sGkQ=j$ZT<p zmE-0C<>acaw2PA*f7&uWTk2Vtd&6c<Lh-DnE9F`)u26Xz(o^96u{P_HL!|%d!=)=0 z`3O1Os?~Pm_^#A^tXl4?@0Kp#caFTfmd6;VPhDMbyQgt?S$#{%%1bN>3pY-C-?cqI zXO+_m6^+;LU;C`fUdvH;c7ov*Ifmt`GgB1wF1bs-bFaF(ZF8DJ^5pxM=6_>gKXbe( ze4TcNu8*p&kEG6xxjW+AC7#b(t-3JaPt6~>`AbXUQ#l1we|r8?{PT))!LgV*RXyP$ zr57GeF1NH^&D?vw$>I0jqp5c@A7?#QsCulnTk_2{CkJ+x4;;@{_-C*^ay;(9a7?>m zY4)6TVd>oU%b8mEc6?b^_ulV7z?lfX%JnY0E`M4ssk|<m>DTe>32tx7k9)P(PjC+} z?(gH>Y4P#~pVreoG0)d!y}l_@RCv%<bE2D1hX+GC+n%3${Z72{&6&Y$uOZv8dc*BW z2M^r+y6pB5+2$ff)8#xa#!ODl2U)^Zo|GSwmC|la*D2#kDGaVu=I&#(sm=OyL!(>a zoysTitx?`45<iP<e_c0O*7xGzy`vm&xAm|dIQGc+%H`I50fxcHv#yD?G&tPukBZ;; zGbd)wydBK;t;LpW&)v9u;b;aMr^3XyA*r47xjX~xUVdHsbCFTX+e3YeMd#b@4Ao%d zDW3Cvq3@RH<+(lCQ<a+!#y>hAwcLRFgoN$!wOO$)P7fBmjx1hy@@HM#kzdzSEpv*` z7EPVyJZEx4b&xpwqCV?cZAF3|Urh9hI9O)AZ{BV3<g`-qGldfeUp8K9n<0GV7uUK? z6PEfpyzjemZ34%MdklX*M<11$JauCJTiuB#BwtmB2*>8$v3lNfHB!Zzse$8c*rYHS zx#LT-CLYy%6_MG{&ob%oUWe~I{JA?GzYe{Zrn>Xgw^f^VrpjEKW*Kvuzx>l2p?az1 zss~doC67C4%66QPX|jA9FkS9(#`}O%eh(s6my5J^sI#w64BUClc#^~0OSAVk6ck5p zu6S{hdxOdo{+i&6eU7qOg3}WC?Y*Y575TGo)1K$P&?{H$qUWpK4llzVSUasVDxQ02 z_2EN|C!cLm3NWbtzOHQdysKK%HySD2p8EdUvWO4dJX4vMsyJ+FD!%?QY(e*8w#S!t z&g*-=oU4Un`Rc-B#r_c=s>GhJT%E=cBE03-@4#=Rl6i|IUq{}1?vr-ysawaBr^WLs zR?KCP;gR>+@$rMj!^#!&)IM{k%OtgR6>Cp>veCM>Ju1<{^1R~8OAP1R9y5Pl^+~qj ztxaF$%dp8ir>tJ0eYWWYBTx0L^~x&>WQ6;SXZ7BBAGBP3ulqB>IbS9JWY<N%Dm*QC zp=6T4<MLBhX^W<IoV@EZDfe+E+alv!=jO@tjH8Z5Je^y;$$fSfPY=%(UAu_M{drlO zdFH>HuSm7I->OQH`?{;GeRkM>mzd8*g*QSr?0Zus@3mn4Nrrh<QoD1^<#yPvj_o%p zwcKX1FnCTMYsRgGLK^A{UFWv(6ux{JEp~Cz=@SR+d&S($O>_g^%CH^$tL?@T-0ytc zCTVrFhLfiR``(<WBMX?qUj}a8Ik`McH=?F*Vck2cS@$=%C@Y%Vf8RXuXPEC22hVBD zee<sFP1+s3ELze+G%fAk{Ct&`rkkve5)#L>lddugc(8h$F77(Hsep~MP*FMKyoB=d zt=R`&Ey-hEE+NZny6j*!yWsl7J}0iGl>3Uu_!pX{F3nxo&3oLECA4%xicQJ{e;#+y zD5J&Nf<_!CBwyKmT=gks?v7K9bMN;0KTChY-CukzYq!8T=Yr-rU!HBwUu0{=yRB<- z&Et%i?cX<F+MKtTe~TtV@rAG{CqzRxo-6EHTo&neMMmcFUZ-c#^3HDNQ8UC7L#D|X zyuGzSpH1dT`g*^s7w#S^{w!eYAiG*Rpqt_Cu}hVvE%S>nw?togsl0<{zUEUmr&(J? zk9}8RTHM#R^Xd*RhP#ayrmmiFS1Cd4vE}PaJ4G*kTDy3u`>DzE44eJB0(QRQw3&Bf zP0600mXB>YUKIw<UYc<`|D4AQ-oo=UGkO<mEX!JYNY881x;sql@^ej7G9F7PJnor% zZS&$8Z?zj6iqA%PdTa8qU9yk6dN}A+n9uvgcBy3<%VeD`4zf$w@>)gi*<yX-NdnJf zQQuT)2K8rg?hD@fccsqb`Llk<6Mmm?lUX}o9KFk}oflBJWBrP^KC@JNdhhxx%Un78 z`;d6kjbrYTzb+a0?mWTp)o$t@)8uK#axd?@#^L6!Ao}u+wpEJmq)P3^ISI^B*I9j1 z>N#Gqvu(~(W#IFBQ(Liq!QnT>o-d1L^Bdk2Ncr}7vY*Qx2Hoa94#{V;!lx<r%Nm9W zbGSVU-OI2(%~~!ra_dfko{qypobsnu-$~#-y61qqgXP)S#4UPPZy8jck6#<SGkC{J zW#$#KuDNF_-``73FIecvB9m;nY!b84J9cGDljR&OsSf8^zI|J@RytWhZt9$;Dftr7 zF8<u_5;z~sNeJsv(0uYFd19o;5*GGr>yI3;U=fvDK2Q6^TD=u-m&@<CyxrRA=@0qC zUAub9YabZinK$3-eD6QU&kV))FD?6QP?@v3_<euYr&V6hmvS7{7CV1#iICM_U(4rd zWdS1k?9ZO}gv$PB*eM;cI`4o=*{{%zhJq6~(iC{M7R5Wq#c~U7bBL4pA``OlgluE+ z+|ygCdO|Y}WLhP&_Y@TOZOv8sIkWrE9wv9M>N#&sR~Fs$?9p>PZgXWv>I4CglP|2F zE$Ywe-R-o^@udBwWrDKzHLW{r0&f45T=Chw@U+~e({mm?)+usaz?#Z)cJlScgDcr2 zm=5PNE0iyjc)~JSBKZ4G+bo$NxosOIC&sB2EnzS|9yR+^5dW!z8!zwG+AMpZr@(@F zvhM_&oV7ja@&=ZsnXxwxW&8TvZtJ^h#CTHXNjlr6Jo}pCPb_86J87r=^_e6o&ck@{ z*~WFE;aV0sC8jt1%%hagta$gu=%!=YftME^Evl$1I^Fg)?mt7+UOj0Q(U&KgRyPD} zxB2p2^lo0e%1p6qdE(c3cZAF?Kf)PwdfuTqB6E@_S^d6pQGKS`wFwQjmd78u>$N)G z707-3ETH%xdrz&FFhi&%>!!M$Yt<M}Xqht<Hs86T&3?wyVfo5bQ+?;sol*DX7Ux?$ zkh_{@dTWgYkFZOgRmpexxG4vo8E>C<tN8rVl-beJUpyzv9@nu9ye<=R?bDj<h645v z+q0JSTryNi?R-4XUaRxjjdJ6Jl4sjnX0}XE_FNvy(Ej`I1b6$na#a&7f}79zS*-c- zOq$`O_FLyOqMP_^9oMydwOGEeE>rYLVB_VD|4Q}#Gw5^Q-pFh^Pc=xQf9k=Pee=C0 zpZUxrS|ELITlc=_#usPVWt@8OoOyEJysJx7X4JGvBp%Q{`E|_<#)4I6w?_PDm>kPC zKX=bt20lmC)!D^dPj^=b>lt6S(Ujp|o252)l854w1iq&)k1w^mc3;x4L0a~F)%C8^ zX9Cz+WOvxUnzZRkxLfMp{%PE~K^zAUp3^+LTqCHwck%q`8`s`gWAr#Dxjshls5kGl z1E-XAC-<>e&DK3$JYo0cS!O>Q6MLrKzVbKQ?9oYO=Dq?C^#$M7-TLg$^M>#5-45B; zX3tLUnI|I3ZgEs>hgxB|SgT!;$U6J>ZME4(v35?fA=6k=(soB~IdAB-!QSvrk%g$A zuU>#OgYcE#Tn7)`>YwrG-T{W+jX6aeaakU^4fZ7uE00;Oo0hAe&Biz*eS4L#&jIVu zhMXt!7KDptWkne;6P28ppTo05%j_|0MCn@B%N-78;yE(?FN2R~K4p?+t9vQ&r25K- zNir*Sn+i{T?)s>8!7JS3>x-+G&a9cXa6;~>=l>$-En3odUGdS+rUwbn_xio+a;_?# z?;Lb^?u=XBjK`Nh4p_Ndw(ol6@>3lTwph!0NN+G$Rd_b*Afr}~@g#>-=GGMgV!a}Y zKMOyH&0XVlYSm$8g@2~60+(NTygGPc(WT=m+In2Y$E)`9E;_L^WNMPVRO;%U`7_>} zGiN-Tb(?8@W6wO!#4A<TH~LA<3wd5N{f2$nZT_nLyfYQpP98XEx3x^8;>7W@m&?8O zvM!i;bw;kN-@UJQ7T$O?rE5ZjHp9_=brn9tw^0Hwy|uPIJ^k3?_0O=i^JZ|h9zW%O zPv+XubyIaJ4)do4-r81h;pCZTll}O1YD6>lS%~;9-!hTGxM^WwU(~KEml*;KJWsy9 zwaPn%#c=hL1@d0c3#BF=Ik`;4^7e-9401cxc)!-2v?JvhYq|Nidh0%Zo4m)O=d%KH z(xfBUEY1~AjJe#nCq23SitdyTo-uP8s-zC@>YZL@P*8l}LD{3-+`mgFJWqSHeE*03 ztOI)*6!|Ci71?U{1@x{dJy!mzXnMi)f{4EtTkW>?mpHBGop-zA$zScISDbUse-yl| zEU_-{Wn_@=at4`?w{|RLzbHFlMarER_8ca!$E^KcYu@bcdOD+uPxHHul*4Xsjpq^% zeqXKBW8TJi=<$4qY*)F4XEP?9SfZJ5`q-W36QWV>3d!uv7yeDvX<60N;2*>9)m#^& zAo19Gb;+7U_1a@*Oz9H;KCW8V(cXH{_En~59kXcMkst;MjXZ`2X2wysUOh8^=d^J} zs={+o9f3I$nDf+`H!gdkc#>uE@$+E|-EI_ko;;UvN!2xGn(V@>(K0;6ucN~X*owCZ zZ(-nk85!Vs?3vFBTjR4OQT1F)c;?NJb#;BSCjY`bZlyJi5f-w}<!oElz72J_!z}i? z&oDSLdLj3r={5y??$@^JuG!?~_Gt0to>2F&RE=-i&UyVD+*ke_&=35&%#)$DL1yEV z!a3I-9h9Hh&=_q!W4+&8R;O=Sk!9NhC)C>Z=Ch|2pUq6>t2lH@Lh193KD()`S9DH1 z^m}-{LPBz_Wnj_i!-h{-Z4E=#1=LqtyEz<Ow`21pPl?N}pPy{B2yE_=T4}q}_x7gK zyRD0FZF$NOAs)k1P<@rNL(TD7&Eh^Q;aIL%zHnKe>J#S*3RYC}wQbZ-I+4F?LGh1p z=VD3U0~$&E#Rp9L%Nhiy-g@$+`TXn1lS^X4i|5U{GSBm;yM?G{5=&2+<%zY`4F`4v zar|`+5o~ZwZoIC%aUG}i+`_6Q?pZDSE>BwUD{SkALv1S4*c)5}+YG8EMet0#wN>Xz zkJy2)?_*3QUj<(-`nz>^&Yi-hD#3eeIkwL@VUhMY^JU;IFX<ot3(t!dnFjwp^x)&M zi`VB(eeU(=_*%cSJQ*i$t!|UvcwXhgwTG1!=N;#5O-W?G%ieo8bJHp2nkCG4W<Ae5 z`Km;1(H0F~v1eKa4DT<SIz2MI=fPt5e%7@zX}_{3ADcs-1qJ?;_Fta0<rm-gaLd;n zoBSMdgbcFPo~Z^no^$y6GFJDDl7U|l!+GVkNq3zb?r$-)nf0#k)Nz^n#Y`cVmNLyh zulPi|>o}aN__8*72GdSv?fI8h%=qxc;N|^myC17x_?)G*TlUYlFDp1zJqlK7-RbOk z-eesjw9?|#$JoG$&re29oxymnLX>$<(PGJ0oX?iebZ}yiJGA=5niEEr$1T3DYw7d6 z)8>A<z(`Aty^KMbx$D~2i+ZMF0TU<j8E9YFqy0hrh@H~p6sgi9n*?{MM4bHWzFk(^ zebJRCb9Tnhd~!bTgt<_q<ja8BWnAT&48@bQ-=1%g-|+U`$`x++OlRFbELPOF-C;}f z<tH-#N^iy09f%W?Q{L8f`e;y=n34asOuG|KE$8!!BR{+SZr?JcG|=8k<>|(&EB8fD zV&iy!Y2V|I<$r|thh8p?KEF9z%<%SmJ14(`Dw=be!tJJB%DBJbeY4433A3G#PA=b_ z!0o&&^ODEv`_ktnS4?iYJL}liU-I+od^$ozl*^s_v@#xAK9SRYyEplp(}#0gCOR+8 zvYHYX7Rq~f$LXFAeEg!%?pgfp+LQTErFwUCV13G7d5f}l7Pi{fnl(DF+LR3IzO|n( zP?{rCr1i%urh(1C>gwzJ9QQN6`?H>5(-eQNU-K)Nb<OJSz5Dirt6bOX`IZ^#|1f34 zk%R7*vc)gM7O`0zWY_bL2~KL4>G{pImFr1D>GyS>Kjo%q*|JH@c&uLZ{PNE$O)6Xk zI}(g+4TBVp85DUw3Enf|m50il0*;rFxjV1EUGr6IOX7@4#&5JVl}<iye0w(Lpo>DE zmDmckTSklr)kVXUZ>>FZb80}sw&HVIQ%=Zk=RK$$^~lChLfXA1lrx;a!NBtE(R^ML zgSpY~(!37(x!XNjX}nV6`IT#}*PQ0wuqpYr=2(DnU-JUdi=wsscBMHdX4M|<nZG`& z^|p@ZS-aGj6e0eoHRmE^9z0)~Gil?QSKD|s0vu&RQoCiCM3UN)&NeX~cpcclZz=hG zZQx1Gn9YJZZWhY7wyZrM!P5LTa@$_Vf2C_P<sM(3_vO}w0~a?lOuRn--1fD}iqo}E zK6$(}<%W~0R%H<X^H|ZI+=(xPt~FiRn=bcAL_av%z)A8{<Agn5UcU`l^VpU@pyFuG z@jRy|{RN!IvhtInH>O>>ot>L{Qdv?aY0KM?Nvk}MuV3rRq^;=GvOe+J7RCOZK77p= zF7G{=^;=xw6iZB=?2PZGE3*r?B+j-;VK6?M<|h4qUBGjNFWhgm-Uu!!T$%dmQ{jo1 z??Z(mZTc3dF~k`isJdF+$($D>_<~jY)WyltITJKbJnmX+vc}=}?#6Q(d%K(uCw^eO z!^W|y=UMo}K3l{0zL`u<I~6@&|IOT&b&63Zu#)RQ;Vj=9UpBnn;dScF`Q9^o7~BdY zzxTGsaj48;wF%uRVUopp>&JuV&2J+=ZAj;O-na7|Z}IlJ<yQhOom_18fc4ZnmU#u% zVXUwIbcr+>ReW9h`|?)Fc7^_98`e)&E#Nbp;4V73{K{9QN!OnEDzG{*KYMWHqko%p zM_^z3-n5w;LY`ZE6%~$o+GxX5d->kRa68RY&wW!Xmeia*<}Z6Re%n-KOO-jF&lZJE zPh{$uRP{Oh=ugR?$E<R{uD4omwzpU5?P@DWi)l)p7PiL=|7zA<DO*2n>GVk+dA<p} z9xVzokDF(0<$d;4b9V-d%=PISv3KQq)$5jh5pOeERXpddOv;1LVLY>^e7SqwR$I>U z%+k6X!Rzy`=7}*(C}*;a>Dy}Z;9XVWbgj)M<zi*IOZF8QRQ$TUbYi&9ImY7>FK0Db ziaG2*z|Z=<WZ_~yk@W3hvUO8m2KIheTC&@4QsM@7p2I61tvo5ytFGSoX-;9+WzJ{( zyNb4)OcGY(PrQC5e5-5Gi$cFeQIfs+I~`?`CwabgsW3KInf9XUUufoH)&?#oIm?%q z=4?#SUU7TsgY>;s6SG%7_lr5Z&ACvjl{LKRvE@0fDQoxMR%m{~rgi1woQMB%czWhd z^$NQEDV|;8<jbh-xjxBHLZ>n{@9bcB!jmGk?zyDplMn7o<0`&u<t6W5U>dsEuJFXI z`}ago2Sv$F^yzi1UH&xQYo6@^=1G@?`?egIJ-2NB1fF?Tvo>^I$y1-lv0iG+)}1ec zqJ*68rS$ppPClNsVX~NxOo5e5*$PGph1yqhN|{-D3h(WB@_yw_j_9CNjkj}eC?q@y zS@HYCXRAIoe~A@gW==bPw%wU{-{i-!2lq8)H(&2M?iRDf^~d(JN}J}SH@^>?o>6ge z4il&D#A}-qPiooatXJ=|o4Ppb=$${ayS^-Wysq7P>a}GpmFm)mCjPN_rS-(2_9<iI zbCpk8JxtD9CLg!8x_b3U=T4`Ex2%(wCac`qpl#-roV#=}!-m%r4~V$)J+toj<FEOB zIbfRalFfWAkCud<>M=N0z#ws8$)bzAt6y$tbVy|^ig>GDRyU=ug@1Qb#rdTc8vQCI z$rnP5{nkY=1Wy0>XnW7xFYY#9-C_?t-FaHhLGoyt-_MhwlJ7X4gl#>{qPSh?^ttNK zk<&TuCFiNElvF8<TdT{jx5#)I<6*rz$8(QwEt)49u;g9h6`u0dd9y_}9*p^7`%1G> z$5VyLGN3qCvsh-6r><AmYsosVjqm)jGE^#?o-hQIz5lvws&v0hIZL{!i39IKvyFCh zU)_3<v~H_w!?`Xu^AsV@$D&b@EVC<=um5LQAEuJlF@-^<|M1Iz$rCCMzG7d$HR(~` zij!;IoQ!%rB+oH^UFLRL>fM7<2H_wb6}bg@PZGYYNa>hjy>YjFxy0Gx%}Wj2a+nTE zRQ1jHel}$4_sMOR>MF^mDaXuePG2e5`8rf3h|lrBIm1v{Qy2drwjBy)ckeaN3GGn( z++g{8@nuu5h|a_vdF(r1@J4UxIkLNKp2fN1*ucy=p(Z+Ql`20E9A^=IJ!^kHWA0pz zFUoVSgl)*PY4Ui$c;nifLSd~^`!|jE@9k15^qlrqw}Y{fuU7h3c<9m_;;unUUFMgo zFW<Rlt=>^*zQSY9LRQy(m)&N5`ta(vo`x#^te4)-W^XcIZc}u3oOn=q&b2*aj?pFQ zmX<6Z>iMH$?Gz8QDkmJ{51zMU?eFM{W0K+%jQ0N9ntkT%iSunoR)+oTlr1Ve>bI*h z;+*k8^`cp~nyy$##va^pta7zrL}lSN_p|dJcg3vip7C^@$sP-B#pgQSa!<lyrl~0y z*u8h0^K7^FT-%vH<M<d?nM>8(pRs5|Tnk^J-&x_e`im@n=9n$~S*~ucT`Kuy)uxEm z&wCngw#Tn6y&O5sL4v`-*8PcA%df&v-ibRH3bbMZes0}lX_-^r5HdBuR*UmZ^ZHXo z?t!yjJl$$7YnM><`9dhC;;p`oPqwd=-J3mWiQf!ku8^BkZx!9I_|G8tD<q#YOu92X z@OX09#p;AY#fO`F%q3T-vpnr*w|3)mt-Px6cHzt5sa^Zi!h*O{4Bk|z1ZjNgQfe|U zo_j;&cW-M&?9x6DS&hhpIp%*@<Q*fA&HZj=`CCl6<*DNXK6aaHQ><HN#Bud4+q^b5 zg5gfz?#=V&ZOyxt#L07{$?a10v)wD*y=AVdp2@p8)xp3q?MdUG*HQPMS<l@*@31Uu z;;rT9xSmFo$SvBo=0m8I&pY)6FTbpJ(s(?%+)OuFI&{MgnH9&}pT?@LUEsj2fA$Lh z%gCsb>cZ=Zw%RK<HEz=uIbC|Vlxg?nO_nNezU$tITt96`OiIdpuiINMZ|W#)wP6mt zd3c|}nf9!?3-qh5yF7GvT5hR4|Jdv+PoG~8nt#(~?=hnpx7_@zmKUaVe{L|aE?s+5 zG+grd86)YfsrTI^`7TaaJ4xX2`l@5z8#Cu@Tgvv+aKi?M(y!~113EUoY)cAx-n4AD zteaZr{HH$~S>}9Ommkux+vv%p!xl%2PsY6HSywoHf^j<wtM;egb){!tiOmr>Ue&jJ zYgze)HTgY%jtDt^S(hE$eMWa@-vzUYe^jcPV?K3Wl#CDVzmj|Lae^?9Rhj9jR|Tge z>)uuO{M&l#o=fDF^$Insj_s5U3f||goSDZE`0KiLZ(qmxou^~PB&GeHvd>z!X59_> zk~uPco~y5C9jdf^EXlT6vaO&l_)5>0HEa61@4I-Ue(IN5@wRKN^3U{VlDxN;>Ty_C ze>or3=4nu&(33F1@>f`Ad{A_(TVB`+*(wIHnfp}_3m9I|cl^(AeW^}}P&ohVIfa2@ zG4slkZ>_p!xT{JyFL-+~+naK(?SiKa53n@$gi5g8U7UaVI{Tcft;#ArxylRP2CH7V zBpyAh?0NQt!|bxh3Zu8_ZVa~ePG0|?A!_I8%KFMC$H#NNujS63#1_qc{$-?T@>09@ z{AFiWE!oUd^0@hJbXl-LhdRUKX|meAm){-WD&8sn?wxIR*0nzy1I*U(TfX;`VwrhK zyX97>vw*=-cjapfE9EN`a%C$-Lt@xMSvw2Qvp4<->h4+R=YEDc-08}*$v$f}0*;?% z=y`6-n|61bw?<BX@Vza1cRhmltg~Pjoo{ewr^L?+hIv~r%{;D>>US^Z^!BIf*OvyC zMM^dXFj^{K+oInvVS~&H$*{orhc>JA<guvTyLo<XiQ3F_U+yd{TU=@R^=!&r`MvYl z?#*}~b)7@tghgJ}HJgVsQ*83oCum7uSaI)J><Lz9{u$qnFAZf7eNa$6YqQcy)<}=z z`xsVT77buf(0DAndRpzo%hE9=@yaQ`9#mhw@myoyp3iS1pEey^zCd=b=4-ucmNvh+ z9#087UTP^_c3sP@T&7BDuk4{+3ERT$HR3qeNT^9L?hF3<I!tlLz2CE+zS(+QD|_LK z;1%D@nQMBSc^bF8Tj0Hg;en9*Io34O+cn3_3@`8Xl9}f&DeE6|P0!3Mc=tw=Nqy#e zY!%0|lK1r72$f*y^N{?bx$tM;9<kSbSI+hwdD2(OP-1EpJ!_@y#Gsc(%mR+;uluvk z?ARVqX(75%CAGfaZmXNe!J^%6(mk{8St)DYUfFNM>UfULDl}4w_l5t;wU$#kRD|69 zkFA<vZe3q3dtCIU-}~UEg>yb=p7XSLw8~rXxh=cTwcUreRtbN3AFflQU%vW|(}Y8B zpVeLvH@zyad~W3;%aV<g9u-VnEtcFMlD7Bq1MxT8*Vn{fd%U$xt?wp>@tqkbZ|toL zyt{Yx&HoH(_iudi7t7kFyW*(!#`<}-Z6=P_b&g-D3V*5JZYP&{Pk2MD_~F2)7h#<o z+l6kczxVv7etzZGwM#=?Gb%Ud`Jedl`@nyOP35hBWJ@`AY@YW%z@3|Q%7&ktcFKBd zec0byeJ6_bd0T#5@Jh#rKQG-;2@4B*aha7_fi=KG<$B?xwYqiE8LMW69;r$(KK-9T zn78WZcdylV+~;{qeZKN{fr+iX=QZ(zx2m_T=9(~T-}3zV#<KCU9_uPYcW>4*dArKc zWW5MK`{~M+6{|gG{d`y1^gL#Y%bDT}>cKz50~h_f9M74v#bLUATCD3y{@moOGs=lK zw$@x<{UbT{$HKMCR<C<iF17W^3-7yDW}==Cl=>Kcg^1s0>2LZvn|sQKZ>!fuYH`Y$ z&3^MQXXeZK{?8*mo!nn~WA!oX`3_n0x7fF-?P>b@HCJ%Wv1DJX>V&0!75dtI*)u-+ z_r2Gj=eqIAm+sx%d#r9pOgLooO(lHpk7idny~|O@9zXor*3WJ9C^En1?!LQLSO021 zIJR+VMcKVqS4$#t9~AG>HnaZr?c|E9OIOT_-t2!^EKYy(p5IlO+rAsJ{k=2MK;c)4 z+}A4+6_ca3WiG#7BVM}tpx&eJ+*@bouVC)s`usb-qg+m2KY7Ku9le`Y3#ageFRx&J zT;9I^Nt^1tROY`~MsG!BUh*E?GRxw;=)d#vT>Gq-Ugmgmp|o?6w#Xx6nTh)>?*6!b z^q>9Tseh_JoR6G!tX6jGX`$mMuIOIuI?=pZxKI1b>#&dJjenf0wwe8EojPsV@|u=^ zZ`LPHd*QLJ`|v)AYbI;$GIeW0`Bux_ah5q?_weO;iM3ZlRWq#@v^@8HQD^vi9-CR% zX`4)yU~Q3Ux00Ck*aNH{?F?-V`QRM>djE0z=6f<9pY__z+Si)7EbCm0+VTWZBZn6b zud+XHek_0RM2%qGrI+8kE18b&U92pm`F?_yy2RFs%~uaU*87=K$=SY)<G}02vsy<S zYMM_Tzqb6AM30*FoGYE2G3G3NSC4ONUtO29Sd)wGp8tv!J@#s5J<ZoeYgRKzl$;Hn zBU+Y|cmC(ujL9j*svBn;P2Mr}<$c?1y9Wi*nKH?uD+?C3u`^qo%Qku#>G95P>z1(P zHqX8rssHTrJZ5pc>g*iDR0#>om$$Yo51!M1ZnOH`Ej=k!;W2@SE%z;rEPL>u!D`*v zlaJ?T%?mIvs_L7{oEqI2y`*^iN<j(9XR|^?kJo%zZsyOfzRy<k#Pa=7TRL~z?znSc z+RK+w*H$(eXq&Ne_wb+F@>X1CgZ0K6S8n*+-em1HCs}Ul#T!Pu*bd&E$G?4VLgWMo zxjplv?rw<DxP9=%L7OY@q@}kpaGLeVOuW7|=fL83Z4b7~gz3)I^Sr}vtDSZGd&7$0 zIUnXtS)c2facx^~geJSa*M26$!V6lHLfz}vrr%nA#^^}$oX{WAt5dd1$`l7zPpmt- z;t^N5;gflHK8Cr>_N)3}u;bB!zEFi8;WwIR?gc6^h<x(PYQEy#x&Im)W6@ssPe;?w zZcUC|b6h6>ov*LKLEfGxMOriU=N`_mHETZ0zu{5KB&VY@+x&xH`c!%`l&8;Oyw0}z z?&OOptOeYRw{NXB?wxs3dBL;Ene(QKOkY_R-QaPzlWF_%;E?aE^42_)4<65IT@q<9 z^8oK0srq?7DLa089*|g<{-jn+E><$`G0*MB1Lt+$zQ~sQ>CC`j?f56_@0A5dJd##b zJ=?TiU3=n{a?@EpUzL6ti!M8;oT<Fwtiz>NTes><+n5E`&M7^<*4es5cH?zX^Kd)! zsb6IDm?qqrq;;lTv4OSi)j6Ye4?J(NCpt(Lglsr&BezwkCvsJ|>CuZ85|(yzuC<sm zb5Gtfhsple)$_-WcyX#$_efpra|@G8xKow4F7tx#UFplywap*z<~XqNW}n4#)8+Yv zJJ^JZ5B$-dvwec`JZ}DnrpviMEx+>DKwCd)+U>c4EAQNCY+#+~sdIzn%cFIN6<Mp( z=X^czKH}TMnGxDw^CU{vMyKVjvQB1Uj1_sbYx<eD3o|1WSwrT`$%}s-Y~r%g+9B~| z;!B@~2V#%qTCVg-Ms}R{d)^bi+&ALslzDHu0z%t39#5Xt<jIn8?!MCZ<V&3?Ke;ys zobqbeo7J-EE6<I%8K$@TENx3AF6G@R7rXoGYK@`p_o50BnZ{33fAxFCo+xZ?ejWBU zQH??G>cQK$)fbwI9@3h6l40WHW}icw1-DPCWcjz%*lkkr;oQe|QxDsoJK?!?WvmCg z<getV7Fyc+)}Hbuvs{=fBvi^CujOw#lC1qg`}B&f7rv}K?R{gOQOz1Yt9K`#T={L* zqP=?=$J?J*1do4rbgDS!8W+N=;1|wS^`AlO(d;nmq~D!#jO^;`S)``8G1r{)kd64h zv?n)ye!2Ww>-1@iDsp$N!@^@3w|Inf9Pn9P;9X|1n&ZF&1BT}+>z%YT1m}kTtNbeY zHh5L<PL<}%jR#leJ-6N!EuMSK+fY5vncwHv)gLP9N&eCm=d|sNM2@X8xHt2awxi0O zGm9rx$$ZkZzMl}KJx%oRx=%Z}k6(Woxap_B)Co^YrQIyPtma~BVm5l%c<b&ePPUlU zV#@2)mRi5?-MN)LK}6uTgLKFHSu0Ck9d+tm-RH$u?0;(R+n#j=h5??O3~x^s8JK-B z-Kv^iY&GlHiPd&0(kEGXQf4)UB+0hf^4Dp-3}aZ-AfZ>6*KYgDymvACGxl<s@YR0r z!z#Cm&h7auwSlFv-{)#sXPFt>z2bSt)}LrR_U_-l8LK9HKT`<#x$Tpq=#{=mrxz=f zZUy8%-7n}Z5SFu&B|Y!)v0EI{o$L%Be_R$k=QM|T&ZO+PHa)W|a~}toHTl&?`K#mx zN!uNp(Q{huPP$B!JNvC=4MJRVQogKtGPkR(?@TbmM2_2ySGZPd)r+~k56b!^)aCKi z^SEhLC`0RW)8l2ccV5oz^38jodE%WxrSiSSlkTMFJ5)<u=ri7tC-HoN<XH=+i0!Ai z^qKn%z1MbUd(T{*Jb@|q_N0Ql`=%D%I_S(eXJXTyqO2DU%#-YXJXW^OdJ>R(yVbT$ zJGFG<(ZHCtYe$Z@Cq#Uec+9p%=Pg71Y~}JetKhe5k9matZ1Y#|32WV=xGmK)@R*V1 zuj@G`Ha}PAMQ&;3Ud^y(^|9)tU9olsA|emuDxQnZ&t+Q2RCBRa=CRGMaL45bW-r!0 zpgh0oO|(pKUE1A_+`|Pr=7qCfyjdI?w9q4`wqi}K1#8BYZJaiI`{yq$x%RQ+{`+mQ zg*$kz-gut-CZg?XXqiUP56QeAt7qJm+IGS3?sDb+_19+0cuu^&&dB1#Y9ob+lk5tG z+g7`&s%_0VnUc=q^l<aBTI<Q7saqN6w5p_}%d%$gkv_&?YgD=Fy;T3~Gujg;|G0Fc zu)JzUc-X4v?@}6jCLdf?9L?&Z$hF4s`tobrX7N7JcYQwj&aZ2wmrUx7<}PMmo)21R zbv$~8xWS)4Z&gYy4tzVB=AS?30kh(l$EJHL+k1;v?cUsWH1&?_1ZTZ_R;%l_o>yL` zCVR#5B(rYw@x5ujLaP}J%0Bnk)J@%6EaMtkZZ*M(>*M*QX>raylUwVSo1Ro&#k*Mc zg7&+Ip3hk~dnNF2ocquq^IbG8x=`ihJcpN!T^-9O6_lrZY<&53&9|tznwug#Viqk> z_$I^nDyxEPy2|9;c>&Gmv?k6zkx;;)&TRS8SG-}WDxckpU*WE{om2X{E;+1Q<(;Q{ zKyK>pq}3{o4nGZ#Z(J92%2l1K+%RtEanXyJ;i~Ot3=Dhtw%%n=De?~9wlTI@`aeUv zr0C^HnMKA7MMmajc3+Rb6zANM7vy($hq~mtY3E+-%2#=(lCC^CcH-tRi)CeILK{1| zYx;I39QYXZ(JL+J__Lp$I@;5kKAE-($S&=)JfC%C>%P#Qgr3|3Cs+F~Jn^SDCCM(~ zl>5DdUw(y^K09g7yL9)Qva_Dw7Cv3A%xdkSe5LwY?U}=w0XNP&Xyx9hx#pI(BuweX z9k!~x=Sz#H``J7__pW_{RoK&;#XI!w-u?cos_W=p8*>E>ndbYluO*c;jOXk>=BagR z=YhQErf1`wq|BX)_>*79x-AL4_@R<}!jbFdRbg&-dxZOUU)p)g>dKm;SzT|Pmdw3h zk^6+}$<_`>bp?S6(d(}QPd^h45Z2vYXuI*!&bgtI6DD-+`SpE`s@$@R>5?n*_{3GV z7ijZ6*f?QMZt|<_#a9HhHnV7*{^RgvT~UGTzO*Ng=Y(7PZ@ehJp(!9@dR<{p{k$(H zJCZn5G@jdSxqP45;<3eRUxiHx1?UYC>Rtw~wGW1X9$#rdTc4<jDb?0Lt2`PK|! zoBr7^?=4~c6j8u=;^f-Al-(>jbwMIe`WiwHa#+STPyO|5vH#3XH`y(Dw9Yu_ByOC1 zUGiwE_Uwa-Cxwj?ChXp^I)GnUyY~oBO5c?e6*f!^PbQv?X5eJFdxeSdg>S;mYl};Z z&Mx^~w!-<sW82kn*PaH;n|TH}%5ClIeJXnL@Vo+k|EPKQ0-y2BNuQAIVOq=cv~Ia4 z>#ba7W%V`lzGisN3z1#Gbm!U5A9K6K?zZJwef$~LBF?R#=aDG!=En1T+x=Hg_6|8~ zuJy(<XL(58e+DP5sh1m`Fz%MWyVP^$_7t%%k40H-C$UVpmuM;TfIm5GdGgHFQ}gB< zJ~9ePmU!8pb!>NfSgQI8N#%+2*JhkMul7vUS+LLDIkG%vvb2EJ*GF5QZJe%qO8AuE zjlw1a%QdricBI`XFuYQA_4S2SA^lT?uM|fHul#gAu=$*I$Y(V!)#%Pm28`!xzOKr< zy=}e3`TD4ur87QN7f%ei^*EoMq3YMHwzGmMn{v+IQ}2-vbl!imEy1uS;i|sP4z1() zHgzWR(k|a%eUm-+cr4#kU7f5oJBu6+%kB4?C;Vyh#GdbOBMW1SICDOqjcj_d&Oy<w z$l`URAJ2=HFIO(}xG~x^-rgJS_E}_7#W4eIEA6I>^JfTOTC1}vAn`|>huzkmspnSg zJG#X6085@u0mJJbR~9+kuDEsg;6JJLqK7>=SXRw@wCv{%#=`=I5nJA`+%$DsOWy7$ z_V%)?T2HWUI55E~X`T0Og`9Kz3UX6fucT<)D(q{J+OaxP;Omv8PoM5&b$oMtugiwY zmemDzTdmdJPuZ?Kzv}9RJ(h*5&Pqiei=EkU?9SJ3>sILcS@oUBZ?CcZyS!8+_tUh* z?Fw_Q-`US#$941O?a00J=8IlibgAjQRlaiH>03MM8~!tJ=WbbBbS^WYdgX)jGY%Of zhkf~O`c3?>_Q@JUoo~D3CYt=(dSzb9^l%rBg+9OjGYBUy5M8o7w_j<=yEoP0jaxcR z&WbUvbQTexabt(WPP+raHHnY!^ZsD>{~floUScBuX_oArcXu-^-Wz$5Z9VUjOCA$_ ziw+med%A&J?%sj$_CG#9YSmV3?_K+9!yS|7B?S?SQxZNE-{6lrdiG^*&zipYNB<d) zMgM2$h^i5IVP&;B#`Ec#?aJq;G4`#L_!+wQyw}bT)4!GO*me2V>zI$yxArt}=H60x z=l=V6U+wDfhx$!xO!oR|`&zO0T~mBkxydp!rTDt+>KA9t9iy|8KmGJOY?quc@#nP( z<x$M#mez0OZXc|Zh_(0I6lV5<W6zG>vcBr;6DpQH`_B+@TWi(*%{&jh8w_8@Er0B3 zvRgaTZ}IAFE0uS~Z<Z`u=kP$l>aX^*{*GTu3jA{muFopT)x5Rwpx(8>_ve?oEW52f z?e~m(T9beC2^W_q+StaQ?8&zeU=6&yPd#JTn%>OZif=j|{48Ceo$s{e>ifRONoD4i z*xFqd(qq}xB{}0kQE`ml+=s94%f<K>s;&MzM`g;1i)%OZ8698AdtG$uovn?Fwyrt1 z{dhcgNo3?#ZSS2+uBjc&F11&TcdE_2&zUSI{?RAt{ULwd#Rf((cYJqzyrUt%G_9ik z(6*?wouW&2{XSbL^<3F5Lhk4L_fc|cwZZQDyw{qCTvco3kV{=U{S^DgfBI{Ki?Ysi zXP1=kQ`oWZW7$@n3qQQhX(uX7%`?>~SlxG!ef{2?{+?Oe8y0-t%2^`oDCSe!cXvaG z{6j9QP=CI<OVj>IY}wczcJZsNAJgG8J9qU8$QfSfxm@G?puf#t#?=2UKfAYT-*)ly z#hDpTR8PKJB4_;m*21l-r*$RE3d`MH?cXXs)R$JVid(y6+q6sTp3YSHS^P%(=s)us zy-PLjnZ;{gY!AFAkx<z2BVFRfy*=Mo|5|?dJpYUDLQ&bX?)5LsD%^JUa_jTCMtwJr zJHPeW^kMI}S(DD>&HB&aKhKF}g#m*so845+9hudeqWABa+TXN3_n!82&*`TU3Ih0d z)oQjG9%?@!yZX(2v41Bv{y6vctE|#L3Dw!}5BPD|7WY(zpWiP~$MI?(^CXWa+y*Rj zPu#Srx4M3F+s=uv1CJi^be)%Ual*_Oj;3xUDy0V>{JJ)0BJb^piC@01ny$r^$f3N` zZtIlTz1PaO%v*7C7jriM@jh*>m)<E)a^7eM)z2=l2`fD`mB)|M@<CO2Ox~M9-`mMz z4}`1)?+8X-ZjEW4Gw<Kj^#%K~1uyQk)z&MOu(Y(>dR6W?&+MIZ9w;Zj7khkb^@h`e zyXT}WpZ-MUtEfbr5uba_wd+@obQ&4XE5352V^0s?mf1!H9N(57<FMOdoB2k2n(lEG zc|UExJ8b^WuU|%9)M{*=)Ax08)|tXS+f1I@8*2<?t5Rm&-kRfKrdNAD>)=+Mn1`D@ z)~<Ft)aPNlG3fZp{aMFtIoNx?nQqTGa7^^v!`pL`cCL=xvx)B=$3fZbsA~x?xK`-# zNBL&1)Oqpt$%)rn_-2?c%r}o+kpIe-xA?;y0mmG@`rVhd=&lQ|U_5^1i_%0hlSf6e z5|b5=-Q982d+(B@ic_D;`S>439(p@f)InYD$8E24A%ojJaz=cGA@`HkMC{(dkgOt; zZoAqnyDe0;f~RomTi;nl;?FE4&a-WPzDuXbt?)wH;#t3Wg-#nf_U-Pse9W|RcH<6K znXeKrL)E4jSUe~{`7bnd$&H5h7R>9T{FB#BzV>Y54vvZ-<2g^#ySls&EoOekQ2Zim za!eCbn*}q&Whp1-6_(5wuIYy--&}6?Hp#p5OjnVJ;@imYMhy|kS_cYeMW*qz$jzUo z)q3=tQN@ABT~_lZ&AvO;Q{@R?GfRkHM2}2LRaMYNON--iUu9;V|GMVZi;4@&PE0M| zUGFtZA%=;KzrHGUXMho-gvD8ZuBjH1CvCIU-jr&wTxdA8glD^d)^3@E-qUmMt;yPx zFild@?$G)phC7OmRE7C=-!!U@eg2F&<GiHkVwSpig?a3fwpnWoYnJwLD9d~87OCmi z$!93uajklC%G5P+o2N8?YI1z=e8IQ1-KKnebsyeGeA{f2Y|Xq<Qsv*&mDyUo2b%a8 zAADW=VC&wFT^^S`!{1xYJ0MW0er?|SZDNln_;Gw$C1CdUNb{EM_g<dgYWq~>P4EQk zq}>abEi;-PwDs_b@OedcFCWi3UvOled4FK|y3m<7nnL;tUx%g!Uf^lIw_9ZGYNK3R zu7&1oG8@jv&0NNNSlY<IQZ}nt(24VfdsK7Ywb+@@m+v*ZeBq!r7l$QxL+#4YDG#ff zugku4aWOpgcwbdlkwc)nh04d)M?2FlTO|h_$(!+edFC-AUyly2r+(M|)ouCODlMV& zq~yS(WnBsjR<LZesc+Lhz2Z$($<opi-9223D;$hZ)_h$pcqIOP-gybxjltb%AzG`J z_cbqAdF_G#^Ap1-jkor^wB9}Ub+$ldO3A6`@0tBV?iAJSJGADfg0?~K8*8~M?-l(j zbf=y?F0rz#O0-DDiD~nP=y%Vz`gBS27#S2!zBE^a=aggY39E#Xm8aeWt!izMExi75 zRafp!2`^7wC!wPUa(CXTOR^4qvE3-w;{5l9qai`NEn=FCPbhS4&UvywD4>MpbNK0{ zJv;xLUS4@<cY_h1$4LuO(bMJjma<&43gpe-U70+q$Bprp<6~1TX_auh>Dnh=ty>^h zcwT;~fzV>cZx7_BUt2oYvxm=1?!f1e+w5h=pLr5jFBABr6jaN(shi9Eo>uWR`vof^ z|2$}|c-_^@Y3(e~Sf#&k$!Ep`JZC5OY&cqew8T>C*_E!EhEoBl)z4OVh)Y-URL$C1 zu(-@$Lh^vA)6?&4%1;>{OvqlSB;$4NjI8^qy5y7Z`@Nji9`Ttq{|ZiFex|M<$1HsP zrAK3mqBINRoY0#Rrn#JJ3yL_UZ*Fd=4&5YTCT=O~DH_S(yQInE<+io%r#33HTQXcL zN-26}B~*LzAdBFy%Tv9#J*o>nX8UsftL~!vcGg#07!N8xJuk_;wBSm*OYjRL4l`r( z^$Mj&qneDB--f9?E@N16k%Q6Ef_Ylv^?PfSTMoTrdCbnVJoecABtr>h$tN-&gEb<~ zhdq}0ZgOm*BeTk!Ql@65#JVsY%M)kwMT@(Z?=6e$ShX_esr9dGy}OTvyz94rD|n%7 z&5nqlw=MgXEswKpSsTN|`Iueay!d78hj5#lcV&4eFe<6`U9w7+6utEF)Na9cSq|l% zaNT6}DZ<(fd-^KRmRRK+oLDI5X)AI)C-mxhtEKBo&4OBQakD4+pW6Fx>xF2u1oj34 z{+PPZ(-EhiCAN9KVD}08y63mQj)aCJOZu$Mvgg_~V-K8^Hry?HG_tbbNfU?s+O&g3 z!HV+vGrynKXMY*I<dh?0g9GR3!r-DQR>Foi?&#-CoVDCC%(~<8g>NgRLagT&G4;H& zJ-#-0(o4A#7TzUdEXA`<p1Ei8dt%Jo(>uc}4l)RLo!rr)m3ynVaq@ZPmv6(DPOdWF zXu-BQwUo=@sXIgZ(sWJf6()f@d|&UK-P6NlRVO;P^vKNQNsKvMm*)0e-g-#zdf(LE zYMsEg^Xj&YYv!!WS@dh7_XM}6s{WzM3%{=UIWd);WrMmz-BsPEKU30pPdwI*_-@s9 zG_{O}^Mq_`@yYwiA-fFbOx(g`w7AUu$F<tGhursPi`vatb$!=jcR|h5=^GzyDCJF9 zvp_S3q2hdSWc<R*VsA3NSFk2TTf6%gzYcX<z@3mfV;<+ay4XO^J9c3*Umu&YR4q1X zex}eL_w}-`r0<>gYu4{s!1q;wk3H(umhNMvTpU7G*Jr)7>Q~M#o>#H%u-6U=#`!#M zo?q6T*!`~9`^1-M?Jd3w-u6u3$lH1`B3?}6>51c~8>)U^XHB%!msVz;*uS=9Te#wN zYf;a~Dvx$gws?N)czo`PB!@qYa}qvB3&u<hJhf`x)RVVj^r!5%He_Kw9vB_QdrtZp zi(J*?y&1FiPduyAyLFaRt9QDshsaY;Q8q7g3FUhWI*YnLKXhPu(0tZsMy17}$;Z$7 zotQSSRr+e|D@jJ?9X3)&uS7rPFgVUK&Hnk){MeM8D#^?i?<2%lt(tL?`*OLHwq!;| zUw&YrLQ)Z95YywI;ie@FjNEgVTS&Z&)msu?_~`?Oh2^^9pp+otv}jBAopM{7%hHq5 zZC4$c<mQw*MUOdsa?I5~KFMyqn>Q=ZyLu&-mA8S5d1B-Jml5F;8D{c?Y<%G^u_ns2 z^Vlmv$%zdr$Napm+ZSi{-pQ3U$lkWAF}Td*bOFcP2&>i^Mi2Mpl;lS}nYP@gdd}@5 zOw;5R-|lj1t#cAro=_ac&zOGVg;h_ApigvYTAFr${D*aAzoc&N?c(MZirud9w(rYD zxp;-i%|Anb=Kh+n#`5*s(4Od+6q#u!?6xj@?P!|KEqLQG_YUT{%a(ic{b$hOGn}yH z#bU-HzsGOvy{0j({meMQlf7Wg(;K(UJ*Jr!Z_hZPymB>%*@gg1=1JC45lKl){T$>= z(w1i@GzfY2^!;^Q8J&?|UZmv0FiqX!xw2`RLf4Bm!pt)N8CtcJ*;FQRzOxSEI3X?F zRC%{=-jw_evo<Puth&SJXmRr8`>@2ja_%hEzpAdV+3P-L=i!j~HLE7xa<b0BMrHNB zxvPH8cQ)I4<x=!g!}lle@cG^I)3RL0SkAq(-9h^2thLj6-u|8`dE$ku({<|!Z}0BD zyj0z2s@<XUdgq+h`A41FpHyy;KV6dH*VUQpzA=S7o;d5=o*kbB8%~~gunJkZ`%b&3 zNcx0n&l~Uj3Uj^u-e!mL<!kHw^)48HmZ|!{8!$JbaZdV5rL}(VoowgM^m|&Yc;a}1 z=j)KPgSHH^ouYYxyCn`+6^5p>Hyv-hwbm{v#_N-zOcU4duFiFA#uMlK3%S{GnDO?U zQ1{v;nv%A@QSZ{eq~3UEaO0Tmt1o;@uWmeXjx}*j^LF+9wpn+#91%Ku(Dt*-<QJK2 z@AB3hSn>MA^RC@IOWP{Ht?^i<Qv1*GebfZMh-Ar_TEm!4;psJIrV5jvgj%wEW!@XZ zZ1X(xedM$^qIMru_`cQ%72LQJz20{9EU!yei`Gqe-SaL-&i`X*y2A|}N81ytb9RRa zSTfJ|2~KXXtE&2ZG|20^Qr5ep8M<+9#|-WoS%<IxBmTi}`Px?#os&fmpD(Cck<`C> z-jjKUcG@#mRPnlpwCY=QF5y-?dRpUresFx{AGr@#<hZYtWR%>F-F5f=d*v1lwR=Jp zI@QA0MK8*V-h7g@?E0?$h#%S?a<|;y9G!Jw^^sNgLImF)d_T?feYu_d_AQgoZ{51Z zT_XNo%>s>;Pv(}qwl26HcEN+`=XyhCyR8rQOXP0l_`10`ecdamp5jT}nfYSLJrhs7 zGWIHZ`lHn5tEha(m$xZ*PHP=aUln!i{K<&^naAtwy*}0p{c+mAci)anYkbTOnQPiy z5-krspJ3c`eeS*bL&rDm4bA7@x+QCoVPUaFi`DZ6(aLq-56u&kliF4<Sh01>U%qp9 zwj8=EqcEfI$^5xz6IFLl(k|KQ_xZs0S@DPeYHqDfdvxuHsG{7<?ikOPPmkaKAnJW| zzI18#Y0FEO-D~yzB4+t-e{H;Wx1V*6-;Tf8=Stsq2E6jGew3^2wOQ#-<;GXLPUh>n zJ1F1%#VY!EmVfKl_5Js3=KT))$a8B+<o!aO?v2V0cCY$6v?{NL=CySeEu5$HWBsH5 z44qbI*G+u5yL6tSVz}7MPmj-sS6a<Kx8x&xlg=K~M5E)f%NDM7mHU1B<%}7RC7xLv ztIYXs`c5p|j^o3%+3Za=+SSV=j^y5Y9C{_rVLcO{U-X7!Ro74L7q`!x&-2QB*1XOK zy%w>VVmudl!%|P(+4*2<+}g>1+*Zw5dEDcbbI<pQ{{DUE!}g@_*!?;80he-@koeg$ z>rnBX&-SJrljpw?ANR8S*WGzj<z_PG24&1XV^BC>(^`__@vVJ1KfIT`4xjbMPT|Vo zn=i$r-!Gl_$aeJ}%^Qp_d%lUDJigL(;m_^6)-BMB`}FkP(n{k^X)5!NO?jRYk~DAm z{#W(Fa=8Zk+e%z7));e(T1|b$wriK=>+=jr3%ZZXX>F@0)!177`iH=OhT~gub{F<B z23`nfUS5;2^`p$TZ{OFlglWuh)T(<^e<1tHAH&>g)sB51cD)Qw-7qP7QUAR;=@PFm zZ3<0PFN;^cDZ9R5pK<K#?_txVzRk_J_Nj1Fg|l(W<8>D6v#-{uFUhcz+`aw7`Kb%C z%=_eiz4pJA+EFUV|L*yZjd9!`RzJGmu4|K8oc_3%$yV&y31iOWlO6|N9(;ZN)4KT{ zSNPli_^yf1usXAA-sDxgV@$R?<XP`(o;UC6l-Cw!lYgHM*}2_a{^R8Xm+nS7uFh%A zFZm?)I6-<Dk6oC$sQ1Bp3cI#$-M($+JP-dfEBv{SS6#ZMw_bh2KJS^`l{@3-ZsKY_ z@JG96TJ&mP+ruJG?DyoRp0)8ej*=BTY${%SbC2fZ6>GPO_CCIK?&m!T2JwBi^-^E{ zGj!Z%*>b+aj&)w-mnBo1W+v_K^07GaZGE@i*4MA4Z=`mG%$#P>wY1_`QTB`Xjqx(+ zE$->7yaM{XCpa-wCtupF7(Y=nuTS#Q`-LC-kG*dUk7LQqOPZ%SlOr_Zq@;XrMabno zhnSRq`@a4<`EmBc)b&SZbLzdRSv^BvLF+YF-lrMG`)}>nvdLfU`|!NTtE!l;+i#aC zY<?o7z3tw`V&&!BQQmi^Jrh05GwDW7;qj_-J0v8nH&y+<dUHu$#i=hR-iE{!xa+>C zT^(`n*r&A6g9mlDOsaVBxa-^;rpgC=*<Oh|HUyr(w)uI`P1}lfE4CD#I6wF2i&};i zW{+7u7++d*!a`=^+khQ$9M4}zX>XREV3gAHoNZZW**q)0DR+|9CBJ=HDKKZ^tc}qN zljLTet1b>-dn1pf`0cHgF3TCpM9U0B)?GYi=)9S=B<q&^jE7Yvrt9-Oxa@aF6j~RA zJSaJ)?RT$G&2ZxJs%c@*zOEK(n0#QZ#<EYdo4>BHka)mQz#d<9p(&_n37dS>^xDQZ zdACk2DEaAetT<dKc}K2vqYU${je+}OG?`7)j1?S=n}2mx3+~*seU-?uknQU&M1}8a zO|$l6cws5(aB_QoP+^mn@+YBF5dv0K7p67u%!>TbSY*Yw*wpP&l1jpw)ssAASE^3g zex`Wdf?roPB^y(dIF7$|^2tyu<6^9l&&%35r75E3$g{~syGtz?`j4%iZowEm@5hph zTdMohwag}8zclL-!vm(O;#n#EyID5q-oCc#+`%8`9KWoYweh~!(lwn+CM-Cp*!U!E zrLRWXLB-<xTZMK=SV+ol4)FLrrHO(0^3wEm&sVHcU!HXM7{B9L=cXq-N$WgzSKhw9 zVbz-%u?G^{l}*pxYmd?7;i%@B?-<m3W^aLep{E3kP_)DsQI+iD5(>OGY{GPJCtqCd z_F|sInK?|S=Vkrf-6LwrFn8ydRTr6*B^3%Ugw6<zWOK9aO)mMav{gE%d)t48*IaW% zW!|!{%~-6!*p#?S-s}7}o-Ss=v(YWBX^%6GOFUb3;^VABU5AG=mfhX?@5Sm1-kUW% zxaTn4bxl+LnYv5xHv6m%8$Zr@`~3ReT;6x*(sJDG>|*k6-4&a!bAw;uXW`9Co2wcE z5B?l^e0i_Gq`C!r^L5kP+!4<*ze*}EW@?%C{6*H9ANjklTXI>5=6U>Q=;@hi$xys& z@s6H7T?Gs$9)vqho36O*)a{e6TkYe%s3<q_-6>%8N<KXOR)k!!Cr_eXP{Ccth5MdW zZ+z405oYblEU{eTThGMJHi>&P4>|ojVevQX_%sRqGpZ_i2W{=Po(?KAYuXv9^n}IQ z_Q2|}hYo7NpM`sVU)U&Y^p<7b139fXfd=Zjr{$+4?WvlSd*f@yu~Uy9HZ&}GIA`vS zs*MVXleZYkntfXmF^A)N*`LzKOC#GfS!_PPGVBT0&R=*}eBIIz=N*$88y{R+#rku; z<qP(#slwTB{UUlAd?TWBKW<|?s;+M9e`%FrP|CTQ)j@l--kdtpFqh+<R;i<+mUt%1 zC-(TYk!`wXxF(3YNf<o2a#A|w!AglQPr_3&x4bFzTeS65klRZMhJ^JopA3VekM7a1 znNU<<koBN*U(RzD-sLhOA8*d|d(vH5_}Q#5dROeZ`s}NsE_vQ9iXvuj(i^lww@q1p zM^)rQ?Z#PGx=x%HpSCB_&9-i8P3BseET#v7S9&H!SF7%Fsg8bEwCT2S+kuA_+TT6? zGe|A8olxn_$}rVl^KI<vmn-Um#2e4u+v=6gaI_<UL3#4=sH?%IJ#W^WbGU7&T(xTA zxrb*B*YfO(WapiGgg@&3bpHt}d3O30iLYGo@8}k$5IF;pYpcwv#J0MdmgjjKt9VhH zZ54Y_FVvm=8QU)J-Rha*6~|>ZeOuE#<HBZbo}RwNld|3x-1=sumU`O!?(q*_kA@#& zSDpRzo#V@+aeEtFmP}*TVVCtyGwJd4IA(mp;>7W)@SRhpo=#>xz|!Ex8GK-+?3qBp zJ$-dCJy#`Ea}Q7OtCZWCV94cnc~aH$<y%v(7t0E%XKoPeVEiRt|6z6DJtIMh8jH8D ze_Tu4dG3;%TakmT?W&ZSUXvIfJeF-O^3wV>ZRu61Tr*|X+0Rm6Ul*xexNT13?%xak zGej*(y=AaigW>f#R;IKv6^5g`=3O=Pnf4~;bGO0EV@2+tR)@Wx!WZ3N9J#@Jhv1=q zw!AUh1AbfO9X#-T-Hxg`!DS|oSd3?Ky?re4D|B|K^-1jsc5zkud(+*1hw$D!ANqcN z)WvSSrQKpr_}GkNuUve7CG%Zwbi!20Cm)QD=G{D@l*)C#qSPkbHnVMN$ov@vJKu-r zK9^zR?s+^fd#f(LRqpcQb(?o6860>llk$CC+o7_6^K-P5x7Bk!T9bEt>f|k~3i9!% zw(G2)%FVNZrRY%GmW{G`rI}S>Au<W2^4HdJUu8&G)4uM`*L6|6PL>|Mr-ekODir>> z@-e1q_2e!6Q#VF<ez8gv%m2GL>ur*|ENjp#*NF@VRjXFmTs7OxwQ#~DtCT*i#rHH4 z_{t6L?)mn8U8TpX9$)U6p<I*au@$hU#ojYc6?q%;HSoYHqxj7{({&iF{eN7w{L0(0 zL}ucF=kjwCHBE9B7FBoOH<V;NR>Uv!{MyF#>%%kqo2;roSY0tM-#K;4hPXf1?dyy9 z9;{j8_;X)gwqA0cn{V}s6|p;Wo~z&6dDb~J;YgzU@5tA0y;sC=m&(XIZt#~}SM}|) zdJmuFvKuO@?>78ruwdys@ZI!${HrA!)9Tz8p3^MlUa;dt-cQR%8`GX_vr3-#b46F$ zY~houG+8v&b?49i6}nn`vC0yQlW}Jwc+V`{)}~Qld?RdaPfnv7qvW}Wu#<~o@>kx< zEH+v+)#mHV*tV%fhb5l&8SxhU3P`xv<QF};F}7{idZ}p#BpwLWeal|N?=5pF*6+7p zL7S3SLj_}m{ITt8)3|pC?&iI7T|GfSC&IDki;T>5_vHc)C2IdY+BG@dX5y8|Q|o0? znqN3Px%PKSql2Wv{Bt|I)x!gJHz-e>7=3M0nu}_2-^<srS~1IYCa1gS8r-sSD{QFW z+qGepc-w(8%e!}Go!zoC;(E61fhYZeUq!8BJ;I;n9_g9Wmz}z3m*rR4iht4Tp51ah zSN;3Cd2I<x&+fKE$0wgOU0hvy;^gV|rsv}B8YKCoGnC5qrhPYwl9cK>bzf`U*)@zg zrE8>j+B^%t!*PsJwlK<k(#$&>f4UV;(w2MXrt-neK)ukGe`)clvvUpKq{p7~Jg5`t zAR%kdb!>0!?j;FJr~lY>?ab?Qk=Kh0mM>gW{o>oya%CM3(VpJx$x6=*l!8JSUtjsF zt@e@q)Io1c+kUpK@Azl+@8&YFjF0yTD}8?EK%aH<1+Itl+I>vZOeV6cmKE*wkO>J? z2(zyGSDO0i&2a|(wMq+vPgqw8zm3VwE-O8H+o|PalG2?g-&ahs?O3o<LGJ5PrB+sV z+k>kvttjBUJ(VT-(pqb=uL|)qibN8wY&g8l=Yc@AoU3tW?3&Zf*X6e6Ng6ACSm=0s zU#8jVt}q=pi&QSpud8)A?JaD0n55aitjIlB;P&{+{267dxm*qi6+9`E&D7Za!uo|` z?AlY);%Z->7AOlls8V*`<UfP%h9wIb{xb;LO!Pl($?CzZ-e9TJzU;u{>ZxV2_pJ=s z=geEQ{9ujX=Y*mi2Y!W2a;iDx_rUr$SAOsm#VI{9^RKP?>)DlJ?BOJ;{7jb7QX!Ok z@;>9qJLHyM+wv{9?9P&^zGs`?P1ZTJU*pTyHEM4+ZYg!My;v5ss>tz$baP1RXSQc4 zTvij7o0h$jon$QF7}%#ZWx|u`x_t%?k0#aLOx2!tLc3LV<J-`i9v0^uMN21mEht#L ztag=n^JzE9yL~f7182E-&AoeZc2QB+;ylAckMFMyo{^{OW;`$3>8Xcgd}4Em3QyPL z#lmxbhsQ*DJeiYs=4O+2dimM=UFUZc&E&Ft=bPd8u;@;mt#8_$P19{^vlpq`Ok0wA zm0z{fG)q%<w#tJq$FwFF9ci+gYP)OF50*zOS5N8fF8^s^sZfyZb@jWRW6sxSn{~nq zEsj;EZCms9#yW`y!dJqCdi!4F#BJ^^oVVlopRP-NmZ~KQeuwPhr;Em26MezJzVT($ zw$AOVMPwOXcOCpWx6t1)smGAZQ$ems+u8T>v{$cBhuk|-bJ%uorcz^@TX9ce-`A~6 zA|>?&SWkaDo^vf`<%?{UOFQ4pXQ@%n<^6FbFZ@h|N5YPC9x~xK>N&o!Usl`sQS`CP z_37&0Eq>0<vrs7$eI&nmee=9er;eRDZt(euuCdYItMAV*tqomyKeEEyYf{GAYw??x zozCz$FtML|R=%&~r>)DLn`Kv&on7yGX4jK%-;2cbx<3AASQWR}{&9r7$UlvYdvcp2 z60R)VH*w>}INk?UZ<T*umt6H@e{`+hvqRb<O`qPZj=j6PG|28z*8>~xhp)SrPWt&c z`*nwcg0{e_#XlKia?dV5z2Gs&{owO;Ds>mFo|yBNe7~1sU@5k(kY|JXk4~HGlVAO3 z5X<{&`S9u=N0rSCHzU+1Ot^PLefg!uAGbdF&v47UFw&znB4?6IOwV^N-^#Sj$!4op zx};59+9t{<`g{J;<c#&f`$T46l<Thln0#cvsOfB5&85@sd-c{V?G?yv(*Ne};J<R+ z{p0h+^lgk6IzG&2yJI_v)luu%g44$Rdp>!-d>a?L@Th+KmoFQ)+}b|fGE?nEXf>DG zMzITjXWcjQ*A|~u^JMZo29qy0?c<I9PJNm!X{U6>biF|4`9%&X-kvG<D^*l}Zttt# zS2b1EFgCu`hJ9I$>E)8Q!ABEJf<5=$_6;)k5}#Kqes9-W>xhj%av$t0)zr;du%EGJ z=X%Rb`Ax^He_uamr~lDz`{Tc{Ut^O4rw8mP2()h$t>3lEf@#b1Xji7in)_AC?^*wN zzouf<@4#u<-HF_aUDv(0#%|m8a-I?UJ&W~nJ9f_x-ubyy^6HGj9eg5Hj5osOPH#`Q z-_0RnZgI>oT;YSuv)CnK&liYTE_-+L(uVcfd>7Y5WlYQV{&CacfbZVdJ3h>Qtyw8D ztLE6LPpaDc*pv(3_%F3SD9`6}+2OOxNy)^Ca|*w#UsuEUVY$!0bMBK&Lyx_m!Qj91 z+j^_59%hTqy|R!rx%o6s^h4?Qj(@R{bvH||pDVj_WZvSJ@eUQi2PPh0=GJG`CoUsk z@$zN#Klu;6+h(qqsnF;oQ@~nPHkU>4XMpK0kvJo9cJ_Nam#W<TCA;z93gu&^`HbG> zoV~g`WDh+4w2nFc!|F_ynTqAC+nQF!CwMNsefyYffsu8%>|=SRTNPa=7l(X0q1t!( z<ezLyl^eBjFK_&4j=hlD=5HjTGn3)H&12Iy^^D3F^-WFs{{6YV`9WoBc|wT1z#g7o zItxQ18mB!-3BBLAF=~J3+qLfm1)nAec76JH@9I^zs!uUL|M<#9Z>hR}WJUfS-i%q> z+h<;4b&JfM@HTSFSDWjH>$g5_?eEdQ9=~l%zwbT)y&sEXDi>e3+xjc;WAMYR$F@JX zyIMic;j`$K=h}U3`)%wqeR<c~=vP)1Omb9k3zwPrHtvwGsp=w|s-P`zzS|jd`91K| zog;IFS2{;~PVSf0p9GF?NWQhGlyMhx-?F_DTazzNx^QBW?9KzntRJsUJ1?lt+!OAs zly7n1<kv52e$UR`X<cdCnkjx&!s46d&+F{$msbC*-h5nc>sr$VY4RG6R(Z@&sprj_ zou(VHV26b4%h0m^!aE`7=6-CRw`E?$d0W@)A|ZJRo0K`TcC<4$H)u_gE4<#dQ98BZ zaetJ+U+!z0autM6uGKE`W;~%&)pfi>sGLvQ;%HX%zDu08tYSOP&MsKm@m%(Gm>SnA zHj(E|R@YQ_=x=$a@b$o24plABSN^ZPld7aXoSuF|<Uw_D*u^W04J2$0?no`<ymdh4 zUEHFzZl@1ES9$*0?a8J)-dlJ+d7P_1*2cTFSw?Qrj7|A>ESxxg7T#*lpRmHx;>qN& z=|Se&K1=Ea8F~tDt@L8M9>iUE@SN708#<on>bpgwLY_BH{rW!ig79YJn{AJz`>t}U zt4lKP%X-o|i9teX)d{C}x{c?bM{YTr<YcK>++Y<P!)opMd_}Mqr<0qJ@ukISCvD1~ z%$hE|Na*R6mBw<#$0c6|h&g#!+OCS+_wt0Ly3MTB%BAQ3Gpt*7m+xxGy(#813=E3T zhSz8-CU~CD+HI4==I6;SdDKzO^MUZhW4x6zr<31hUfy)2wJ5TadEShbfewMY8^10S z5LYO;+rHGw-1_rrb3ZNV^pu2&MKYTi!sY&5%?vP*e0ky7$|VOqo)_AbtoFDat*&Eu zYeV_o6RWvbi%pp3*x10nHY#Yv?hS?a?e<Nb|4e?L|I;8>g=2qGCZAB3@68vv_xx;l zzjnDvXoC%3b>X#jM-?XqdgRZ3#x4`)W7Pbo((=GskC;UZ6E8eT+qUyr#Gc7{0i4el za%J6d^fOwX)HA{VY2*d7M@|gJSEnrxS9zBd()h>b`HgEICTATn*{*9mfBI8vfAv|( z=avX=VJe;+dhcn+ts^{z{U27GSC`)ZKyBMj-uR%<q$NCwg-1;UB+};{zqF7~UcdSB za=$5@AD9{3Ys~#Jy~0%8j@}Sec`|p&=Pg%GnLlqZs61b_WYUUM>Fo@bmhbPaWeX2g zd9dE@>(L<JE%_WO-4_m>d)+^^@`d%)-xc5bmb89-9r8Ah@wBn{$;ayKOC!Cfo?vKv zWi|1~b)NNSlXn?)_4VwPdTZUBGH<`R$j!MIa^u34ZBH(9HJ;NW@NP+gb<jJV(-XHI zI8YocaVu)}XV)W>)Rg&{p4(P4hA-?mb+=ro`kQDJ<8z}1E{*3Ik4@KdxgB19{#e-@ zskh60^ZK-=<}SLCW48Na>&>>ee?qOIa+4%GnCI?z8MbiyXOU?yERQdZ>f)apDXejP zT~&CA=DeC!O8qzGTv)!pj4Hd<s_gdZc3J_~oU5m^4H~D+J;fjMTy*8~%r=vk6Qb7@ z#%j%a)tBje-)ZT(xjh0$r_N@+{W_{Jg3Y1j&H1}_%eKDVawOvM!Mk_5E^OO$e{u`& zAB*R?84vuoWIIot@6EZfDdG8hu5-IDb52-y_wi1p-P1Q5>EXENA2Uy@_22AmA&H+R zSyf$Fn7sJbHw()(e2+H@PIWk8d1}_Fc^B5W&g3}w^199Sg=d$G_CNKJE3e;T`&um5 z)JyCb=Sl4@OTo)h)59#fZ>N?Wcws!rn(yklS7x^*CZDjW)!wt~^5PrE+3X!$i>20X z2y7~QV-fS6Y3Y*ebA{hGKJ_!aZmG0!N&UUnV|V1-vdcq!%tB|F=X*VScl?x}o4d+2 zn?*%VoYRCS>^GW|QamfL<X}hg`J8!+Hut=qWM25QFmU!pl{savvUH2ZwWVHKy<;eO zm*uh}NAS?|^`_mTA7Y;C6yI7VuIPU6r^l18C)T`qUsSnfO?KtO5JeT4bfr0Y7D*8k z?2>P7s=Fn<@Nj9I=KLHTt9QvKkD7{nGkkvGZuHbX+b7e*lpC~e#fU%1laQJELVI@C z2L=%t^}zX2TX`=EX-(c4-DKQ#OJLh^o#(ZE>ux=7@Kouqo4TI$)HA!f;9EPrEvM&s z#vb^3HooaY{=+_hWz+j2lPs2;n-OQUIHgVE(BpN*VMlKr>1_{Byv)2WduH^11{ED= zo8tLVGxN<_8J-CD`T1oh_b#uVyL8`zw1ao}tR^3S8UAR$?~=BI>MAlHvb(olab|EU z@3Sgd%c0*adR}LFx!TfwOAoxc^s_6q$f&UST*c~%S=y7Q9hON+U%yX#;+B1uj1djB z{$88DAC&AfZawB-^=!)8owp@qtzSiVFwW%oePABrDx+8W!lF5wYb%Z>^m=P8U_11m zL95Suo0i+tTWkgXD&Zo}Cf?-Aoh_8rF7e>q3)|IJk3-MoF*TlN`IN2Xz0L5+gaS{S zZ(mkj^6zt=%D!sWvr@h9R#(mDUd+p0HnCjuKyuI5myzb>NfvjzWcPCG2Y>mt;>?*% zLcOh$538ik?3+15YonI&G5(i<b;nl8Mn?Vn*dKQHoN+|BdFs>;9Dj?$-`zNQLW1F% z&+o-2b$8oL6<t(bmKHPZ%Hl%xSqp?BeubKBE7NV_-@klo>}0;XhJ96Em%B=8HgQV6 zVvkyvtq^!+(X=HS-`u;pG%@37$J2hVny@F&8;oCRd)>Rsq$Yk_t>bLW&S2A$9YqC< zK_Wa=*P|09`*c#BmMg4ykv;da?m=dicec^Cua|9bC}6)UlOk6fTaYgDIHhD(M$oE# z8InIYxt53}pPXc1C3qv;Iw8#TSdrnC@}s$j^-o!*vd`(e-&%Tfx6G!_OHqCX3vyY$ zy^j_v*9uA4H1E!1(^FBgtB*;`>)T9yZn`wPOhijVJ>SWi>!sIomA+k?J?{Mz>?LJ; zE$+VId-X!H;`_4=kN5D1^BuSC{Ib0J;qK`Yc?H=EbBb=qa!)U2mSmT2uR646YBK+c z+&gbq3!Qz&bmk|s%A|__3}3@^zuwT@&9ykcaPq9SD4)dzPyH>JZ8Xk%o!*%ryJylF zt*b|VCM@hOzHV!`b-vmGqa#Zi9v9eV&x%WT%DW|^C$W=P(SrM`|6S9Gl|^fI>QqQa zEA(akee*Q!@P?eio&L<1O&eFniT3D~PvAe{?{iJA?c(bq^@PxGbCMU@8b^i~uT0+A zHTeMZgiN(PCyzz82RWS6TC$z%om)uq-oh(c)^iQE9n#(`#PmME^1MvQ+8*XZ-w(VD zx#ke@q=7%bYNsII1L57=J<JEbud~cvd2Ny~<G#?R8$*9;d2$(595{K@=grcT8{S&; z?xZc!TIGMvdUD@Z!Pmv1E4sHVJa}jEmC_{<9f><59W76ntz5f^W#0X$sSchN7QEN( zk7T>t{bI89+L8$k6U;6|I-Wf1$<^~<?t-4)#b1`W?er;C-d3@iTWG?nx&U^I*Y2i` zt{anY>0V@H`FiX4oRHO@eO4(SJZ8>(Yc_|+&jd#Kd$Nuzrz^N`NG_Lt6@2e#^h)8W zF@N9Qwe2-H!nIAL_>ZktrScuOJ8iEIKKOk(#dp>61v1H!$1;4*o!z9`owX*X`uk&1 zzmEo$%=VYoPd<@9W5?^p3GRD?=9z_`S9O;)(3Z5mYrKe4m&bc{(M}oO<B~RyR_;kW zdGNr$k1uE4*xjO^zci#`dLhS>^bKFv?7Vd4MaXSqDIF#*9=V<GLzkXNSn^hV!CG+* ziJINN1@F{m+dZ8auH~UT@!l%FOE>()T)8K#iGKRC-KK2K>`BfBZ!C{y#q5`qIQd-p z*EQcebIg<6S-z}$m9FzB)pycOWm6|7H#e*AwyT~VP%viR!FTh0$Wqm!=pE~Byk7YH zl+{H3S&runk3S4wEB;JI&f;jW@43?roU(;c-wNw|-$q9}H090;n~?WS;gfOnG_ylK zvO5_bvu$4UAWY`F1=}uZ=>kS&>5ij`dS|{Qir0F+%{?r3SmQaf-PY~7Y006FSDZL; zPHW#>xdTfNO|Uq*_J$%)#OgL?+3b0q@5<c_GgaI(v-b$BC<<Tkb=~;`Q4YJWKJvWN zIB}*`LYU|lyO<tlQTvj@W7(Jg3H%6p9(OhO)+NzhjBQWVWuAXsvgX3-B`depzWgxx z(1ai9hpmd1rSI6;BGJs(@Tn;4+lJ$@*QYLWEKFV2yYaZhqwMCpd#CNZ&+y~gxBm=5 zwX(^Ys!Lco<v*QCW|w=mxA@R5*Qx7f$^>e?=ZU?&QhlZAnZM7=YD(6vD-yHkO>+^x zXE`s%WV>G7gQSYk^NDfpAB)|tsNY|5Kskev_3hh(w`SVpCw}kz@-pu3NA9CW_oI$3 z%d9J(bAHQD=LV~kU$Y+D8U2`b`r-W6q_#UQrH2K$X5M|WkzLQd?8}#>6)W}~`?BEY z)a`b9AD6fFO)gg5d!R4-^V}0N<br-T9<aOm^jCfB^5_%Y&kWB0K6Gb-?dq!u`*-Z- z%QM(?=INXbCoR9PIT?IzuI_|KzBkL1mtWcw85-NadTC2R>&-K-tSoo#o>tPE)N9au zWu2v|XQ{@P({s<W<ZS$uoM%*cv~2R4FsZcVJ3XfcJec?VLiqgH8(C6E=S<gRI&#kL zWzH;Rz1qMjnm0c8OTMZ)-n;c@DfcxVkvC0>M+#QFS-h=!*5b^?ahlGX8RQ;!y?s+7 zyy{fXCAZZZH<X(@M^C7+y5{5Y(Lv96PRD(V<5@4~yqP+4ua;lbW_E`Qc}9~ZW`&<; z^mzU{)@(UX*+iX3Hy;-m-ITSLn(ceZw3>VE`b3?q#qZvpe;TW{wl?EdoL*z+26K0X zW5#i{o~!3A(OexXc~AEG+l9B*IjwU%_;2c0^+T&4u5{+zld@_9!<HE~W$UM_eR$jY zc8T%r6O8BFr(gK1eeWN4{H6m7rHl3KejNN2ZtAur<IS?!e!B8*rhEIQiq9|j&tULi zg7L297fmH>oLA1S2t2in@x<{<)BgP3?Yh14mi`2$8x|^;Dy+P-Z5{P&eoSWA5OjC- zLNDzLPiAH5E?xPu@Q25p=+(*0GF&IG)fnpbWc*N&<I`Sw!Su)bD~u+ojt7|5y|zy6 zDAB&RSKP1HtLCCzk;NWYtvj3SihoRhc)2{`dAi1uw*L%LAJ;Seo$dcIb?1(sT&G(L zZ#>(#=32>$t+^jPb{wlJU9W$sPQX!YW6`=z-rOg5svI+$^Fh05l2?@U<F^_s<()Pu zemH+~-4dZC8y=>}avZHItGi|=vwiQsn_DOBinw)q&%!D5XT`1H-&*@~@#-JdPP6^@ z-?dV_EzRe4C;X)SHu=_B`7E!)%k<6)9e*afT=)7s?OXn#!cSGM+nzsdsP=aD$7h0V zc3<xB?y$H!?`l<by|$K{^yJHPo-H&xy0NE4eNJEYUQ=1gSJ^5-le6a}%llpRi*N{6 z5UT3S4qPPNW?*|_g=$AilLPyYjlL#)W_ONPY;R-Xsg_z?n6vTue%rs=rEj+>#uT{+ zXib@RM&zmIbI~O!_m&C8@^~tTCY61E8Q`&cn#Eer+)oAmeug1W9F{y+2zz<w*ioZB zPfFeg9pAk|p(@}(x`I$u(rk(6vRdB-tvtL-Pps9>G<(Z?akZ{hIg8ZpydynAwXMu% zZ=SL%$jBYvn|WN3M_l53)S<2Qx}Pl9dc+s9e4MxZ(zJ!yo0BBl?g*ZE@cByU36;l; z?(BP0kG<|GoK*3B^|f^o6Uv$AZMhshbIVzd^QWiDYdkQo>Rpm_r15yn#4DGbWe+#+ zmY=HaQJ4DEt-APZ)K$qh+SW!Bj2o;P|GZKQD4c(6Nzjprhk4TTi~R!Ui9cO7_h{Zy z_1<Jj=BDcMRg)Gy?R1r!y3{1Wg^%IHiK9VN3JfP%UCP;-Z05o;$v$eOb{_kCjw?O$ zqb^S~Vzgy^erxm7{(`*!3|`?oSCwh{{CsX{u}bLlJU_|y<x69C1T1)a;y8Ox@~zG3 z5;>X&zpmW0bLq{yzT(qvN~Xx9f$FAX3~!@?+!*ejl+okQYB;iHZ(A*E&F@<OtC#j2 zWo?)wF{km`5<#}4P!HvKTFIRE3eWpx-j?LzU9wR{_|~RpJ9lkzahSrzXHXwilNZ{@ z#_;vI$l|hl4))L2nkzi5@4hzcx?9oJtXo1$`of>4-fr#>4qhf@)G+P+`>s{XPurVY z{?+nWZYVSPz(0Mjm(h{(rX5?q>K!@NoWb(#W%%2JDNoWb&k3vXE8=s%658=jx;Sxz zM1p|DTB*y<r>cy-ZniTs`c*3L^^lzz^G;IsKf@l|RZHr1Z2jJ($ds;T$o1L$?TKK> z+^uSN*_Bz{xHw`;)D~u1#vWI<37&14+oEXO8=iaSj5AN}LFefBm9y0*JuuEyXTQB* zMayYp#wN=HKX<I~JZ!+A!91z@a#-S=xw|_ad=Z^oE@fhKQT`OiPk)BKWox5Po_Ol< zO{VLV@JvZZ1~W^otcbhLOh$gjlVjd}`)n3fCB5zZ=bAGXUsrb*9hk$oThemP>fpxf zg|<ajp;wfD?0RmwF8l7?*(#Sz9?i*-xMO_m;q8~f?0kzetldw~y<7WgijVjl=EhcK zl}Bq7B_w<L4$n#3-jerKEyz<!tYt^o9d12#+lsZnIS#j3`_G(b_#%7$Hk$?!J%1KH z?Io9weY?dNrjVXn6|#8Yv(U+Y$F|Phm{jC1BV-k}b?GuLGqaVF-%O(p=^UHg##LW( z?FfSq|0#*WhU{IMx_yyeN4vfGIAb*OiW{TNcGXWg{FKk@gYl)wzRg(^LMvo6Uu9=q zySc==sg)t2>#9nRWm{B~Rx+2gtwHhmsw=)Wd9f?FlePRMR-3I@CDMAj-|^(v)u%Xq zmTk!0U(!{^mn|tA$#1yH?AOQ0@Nd7>xbEaXm)m;9vv<J;og0>4)<nOUD8VDN<D9?O zyruV^v0hO$-uYp7dG%jyp^u?YjB<ZE{EYbeCwt+}mbL)P-hLg{q%1DyIqA9w)t8Gz zzRMR+D>i>6YZ1d_{c+Y~)2$v;XNm~!o)ey16Xbi$sbI<HOFLo{>b^EAJm2mZ^fo!- z<ea<>YoC5NWqDq<Fy`#<bnV?-Y;{{NW^Lj$fAHsk%;Q;)zIysSGCrG_uIwHd9n^aD z{=MUY$3>mIH@rH(JM*0JthR5-yOrewBPYeoc`$F@mbW*a&Gk#kcdhNowMaZy9n$t) zy}AE&%#-qzl=S91S7*F4my^!3d^TOn_<7pPJ;yjKRRW*$alF3Iwz2ixh5BxhhZboM z=0^!_Ry?_vcg3^AV!@yL_^LxsyekR?ttm=yE?HVU|M<N%hl|d*@!d~8mhH0D*s8nw z64&;?mtA}E%h#1pvMM>oTU-z$!*KkW&D9<6Zcm(}zc#O@+)CrC(2rx69G=W;nrA9F zxqpvUzkk&s@3t6?KN2M?uk@LjUA|M*wclAUc*)j1X#s0)1{pRU{B^Cze7V-nwD+%U zSI=zx&fwEtX5jfk+lzH#pqJU737*PZi%*4_w}d+{YkM1J`*_+rc8irqKO3<<-Ff`F zX*<ih`30qtDy4r`-3ixP!C}$A({AhGps;XTu7KTJdpWl<EYEt*ebDyRp6P9>Cv(_r z`PT*-=hr^y-Ki|MRZ?+bO8ykh$8uYrpIdtIRq)c4<!{w;-b>s*)Og`<mU7A2-W!jv z|ENE<y3;ejLE7<W`&QFucbwKM%gBVAq?D}CYn~OXWGz%F@o2M}b>F>UyFH)7?z!Iz zR?vLmU$xNir{N^d$97lOq@G=5G)3sn^5Q8!t5ZJsJBFx+Pi|PU;_aQQJ5z$X=g*&0 z9N=jYc5C&9$Lw}nFP2Tc*t%8or=$vFb5D_0MTP(6u8f+UGIs6`m7+?*GR<?6mwK07 zDC|sA*eT0?ZSCzpYm6_1@=QyTDEX`HbSQCq=Dml-lMb)tG+minoRNFO!>qwkMdnG# z+S{CcpWJn-cnV{#ZfW#tDqy$!x{>wd3CV;%2`go__s!XAkuIxK8kRFJQeoQ31HL!7 z-$#{Q*I8os_6T45-eR-u)>AgB7#u(4R?l^D`}7P2gX4BruS?1Vwe~e>uf6d1(F_a4 z_WG>-qE|W=dED5{Cn0)3^qlH70dto1EW&eYGZXhFJ$e7U!E@b?ea}@M7q9X44OkH5 zs4$N`%Js^h^HT&r%iTR%tR7@27GhJb{*x;?>y&}HXy9ehOKZMaN_o!JzOUI|HHlq0 zeQ)Z$_(Zk}mA?-v*OXs1oGdT%U|Jq)P;Q`?MVVZJh4RLgleRToeU)*#Lb}Z8K(gKP zdz;tm^HdkP{bzV|@UiH0y;U2hIlPki_CB)sm9Ns|2~2%{+4H>KJ7?_WmA>nk7%8zq z)j#>#&bdxMXWmKgd1Cn7a>e@6fZN^4g-<3%gwN`W&p38(@jTa}(;F|WIcupOBy#TW zk^c-F|E9WS?>&+%GwW>ioK16Y%C#-5<V*@#f2Qi$&Xk?o&3$h7#WAM{)mp54v{U<B z*}R=!MO$SLvohyZKAtsk-7K4?8wbwY7RQ`3i;@kTbm`gRSoW}2o)(smyGqIxdJl@v zJN)Zf;GX0jgV;MgmnVIg=ENpZdh&qj<jLEPhs4fX_9vX@@Ko-}CuOr9`E(s<oKt7o z&id&c%Z^+AcaNK<#3e>NV6c*pnp&2Vt<8IaLA|g2(%OWdtNVBN&3qysb*AlknUNdA zlUZ9?FP&67BdStRc)5#h>zzHb&E`y%WM<sCa*}O>hT;YeWm&taPR84_KDe__oVClt z^&mU*<nwY@ynS01*B;4Em5!fyuE3W?h(kqarzP`>rR74C#I+XG-1)LxCCN1RlBh~y z|HBni-fYz~x%=ftd)5-4vK{JM-L>Aw2vs~*p5PmqDV1@7X9AnKoZ<V>RQ0^8Cjw6> z{3|`Kxl{JSvPEg<C6hlJa_vbd4oMB#WL~?!T>jeDxlYEO-`fn2SDoI~+m-S_$jyC! z)>PGMvog22*N*uf>52Ftz~pFmb++-F1WrlY-(hRdr1KemPM7(%X7*C{b>cGV*LE$q z;5F&a**z0BXzU2^SDCkUcHtyGj}wn=SAD(oXEE;q3-(K!muol9i(Y8EdY9B3(Tv?M z($5v}UHR$GvNm`IlkM-&=PG%}%qCu1Y1Mnvw%_Y*m(9<Mn}u!~_}!7K3cK5q@<ix3 zbDtI0x$RC%gxLKGqpNBvgS>?dUq&xqsWolc(mB;k&7XxY&w8no%-8Z*;uUN1%a7Yc zdU(o@mTWT=-oC8%Kf_#~d(*97IvRalyDQi6=5!0?iP2%x*0elfkg0wDG9;(LNNeHG zj)S%pYj;b;db6o^D6>?BYwxz!yzJVs@YZc3!#TO^J%6*W?i0vTce$pU8v6Ok{nog~ z+Sg|nc3E<5()0ZKuk`jGyU4cnoZUR;jFXl#JPGl3Dhzq=x%eGFcjh-MzRvnp2Y&9| zt*bLh^Z>&*xn;X-wIg?3{<3VxXTB(dRV~F$mZqnoUYCniX*pMHoSA00(Bh}lyd82= z<AXmkNzcrEyEH7ccDBH$J>fD-Yx#Quzi(B#VpCEgy=B(Tn!663`_GmAOb)Q$edqew z`9l8`?*5qe>UB_NT+rn$yJ!4;cjtQL<Jm72=LeP@=#x0XTz=2uIolrfBf_<7a~Fkb z?5}lr+4X3x=z3$@8kvwKU7Xd`)|=at_*H~2+qPyMRBrFqGFtHGz|~wk-iwQppMI0+ zdhx|pbji+M<sK{H$-CD-jB{D#c1u21Vs}>RE93KJJb@0!)Gc-9%sM5<d3~#f=$X^Y zZ>M*rvE<9XzWwZ?i9hd)plqovr*m@|?wr1IqFU?v{A@YH{U1{|#osx|H}T<%J8SGR zj%?PywDs_nE??tGYt?1L+Gl0$lW03C#_=aqW%5+k#vn$O{|x$7lU**BdaDPfu08PT zc%#ZvPkX1VzTJ=b`IlT0Z4_Z{OL$()|1z@p^(@&dIlAASmHF&)9(B!Gn~~|cV_#ZT zkNK~AGqtupojFsWDN3)%dd{`AchAo6DCxX$lxO1;9<Lpxe_o&aqx$$}u3CiD-{%?& z_|2I=t=sPRv2T9a=I9u=NsG6+G&k91H{R2CzSgqXVpddrTh6|t(k?2^nLnKpr_6d| zW1nf>o~JlVd!};Bg9Lq*$r0PcqG~3(<)lqhP5#dOeBPg`@ZgoN+|K)L?tOPXae7w6 zoG)Kj=DiPGdg^@irBdnWwU$BYQ=d98wdFsL6>neD@}1-GDX!<r6DQcdK3!v(%zDQu zZ0b`_ar=s%Szp$-mzhnndwY9Ix|-XQ%bwd)gg15D_B#l;W-W7AbKuXOM_cvZtMuJH zliQmAzHD95jhB~1dZSEJAGB7bEq?CE{C8UIla$s8Pvo<{%-Jd0KWD0F&~oEHp1OH^ zZZGF5GH#C5Z%gp*UfH~8Q{w^ly#;2|^(40RY&>C^7(2biR7s7wN#>Jlap0=OCikw( zB|83APxg-5C>V9BdG5|*)m=Z{e_QZTCQj_b+b88Y&u;zo;oLlb@3DHmt>311o>rY~ zrT6TX8~ZZt&&}U%e(b;ftlKHWWx|r^Jy$Ife($Oa{bDok^X3abw#sELsc~KT^3bVI z-WB)H^!l-^z1kXFT~x5-&()o_(^M7qz1{O`;@bf3P!2u|nH0XO`)#+_o^Vu2vWc#9 zSgy9(biqLx#(AvyTjxo<V_Esw;$?vCvS-Q}Tzj}gwrrADJ;NzD`6-J)6_eJQ3vwQk za&6m}Znev|kx9?93e}!nP{n68>z2`t=OveRr<<2E#5{HUzGkQ5g9pX$V^yDUu<@A- z6lse+Qe|yd;QP1rqFAw~-m;j#1`g~SMcJK<=aj83TIW`H<+1In)f!>U7p|S0ne)ar zUS9L%wdFkxr_V>Vvd6V8>1@dPP^)#BTk6`|$;~%PzpnoFc242M_m?&b?vlHCK5pyM zoZn@iPgpKr5plE6FZ!8Q)zufODtRnS)$&nCJUMhHUtgMW`-G#c;RT+My&f62-0m?a zZ{ySaV^m=L<I5_+GaTv@7Oz~b^`J-d_QW|?Rcm`@sj=jpE}X}nH9>HL#<}oym1iBL z&Cbl9xhtjE&rPL&c2Dx__o2!5is$7->k<t3j4!_oNe$jEle}JiZS<@(_V+w|3$9uo zi?_7=%djjkC`h7#{S^E2P}P9-TiN3;t&cH3d-Cy(;t*BK*Wb_Y&zh3a^ZLSL=BAxr zPp+9gr*E$3Kdoy!k`{c++tbIJ8msQ)|1juc#+OQ^dq>^l>!Z5mwV3J!v_7;O$uPND z%?i7<c;aU{#^Y5#r?33ARx(!dm;uL$r#o-4N99kE;a#|Q)tjsXe;)e3D)h9Gj#eyS zIPo^Pq}Q_NvBYW3Q_sJyn90ZRPoThZ^<?MC_dl%QI3B9-)pYF{ZO@3tCC3~sR32QA z&%C`^S=RH>;wf4(Z6{Vtc{rm<qV)XottCezU)8)*3O9K$xq4kh1H0p;bt*>}Yw_K$ z`#Lf2IKy|-Dxre1WZRRbi#)T=Yi=)2y5y$g&V57p&#NQzE4MQ(XW&1#S?oQ7GHXtO zVOZG1yXFaum)Cmb{p#HPBC24&Ig?Y>gOa0RpQaw3IKhfXZj0@~kOxnMdzddxEZd<X zBY0`v?&fO;98OxQwg(*E8>ZD>Jby-dUvaRXN5awV={r^&sS)17R4u2ecDS}9tcGa` zgX4LnwTCSfCM_ttV||5N?vs)6#LKo?Zl@R+AFpHORbO!RY;`6#|CD@{sz>WOZ8nrm z@O*nCOn1+Yaz;;vl;>MB4mYiyW)Zi1Z_2}U%l_PoxYm~HKZA+gPwT-HgNQ3)$`iZJ zHkiy|;F@~k@x-&4x3^?1;4!n5cpL3zR&Ja>GgAER%m$sqa~ce+!X20SG?x|KlsLIY zI%d`1yJy&(<=VDwx%S!M3>V`KzO64Wbw0VW_uQ(3XF3c*3yKbunC?szlG*3I@VNv7 z*R$Lh7s0ZYAS1>n&$s4Bo;v!d=D}BGTmMVD9?LD)PLE%{?r)3SVuq^g&bdN!SJ(v} zJRqAr`|^`p;!`aw75$lZ_1gUG{+z4lz_MPYzBMY$>5J)_hd0G8F(&!@%~*LSSt4hG z^}H;VN+rj0wYz$*oNeN~z2)&UmC}{Fl0DWJFg+16D(opS?OmbKS@5JOTDh-n>pO$h zJKkA74VTrndok6I%`@inIc>8yQEsvigr@&=$)3k3|9sZ-_lLGg6knIQ_Vrbo(~|d+ zcc;F--1U4bTL|yubKXUU^N%fh*7aO-jrUfS<lY(Q*aKtKc9m;}Fld|%zEfv<Cu{xA zqVAqPhZotM*OWtpTNHoZoqTZR{;<q#$9Y%v_8dspF=Dg2F1|{EeI3V>o|1KkLw?R| zU=cica-DTR{MXrig>(46tiREjRdlO+!up=lSK6{qetxJt@oei?hQmJ!=X)KRQJM02 z=U#2sw1lgjk7u(q8L>w9e%d2bA9d30bgoS3j%Qj7k0suRUDTXDDWPbm!tdZ~NuCE^ zRrPzVn)K`Y%Hnw~AG`VkcI!FnnZ149Bj6g_+SHoFEc0c}iKh&0CnO(KUA@5>x8unN zR}-~f?@Ti$1FLe=BA!j(B`qc2Mt*zfXI}nb)_(4vedY!^A75VTO9<3Ec6;YJhqtf8 zlDezk*|5H=UmDh0ao|+fPN}!4Zx(#?Jzr)j^mj+Xiv0&F&R1R9uG6(x;qit43|8mc zpT+SxeQ;Rq^@MjpUxAx%;i+1`6~Q}~%O2)*PRWybZn5&u1>+s>^A2Cy+^C$*WNY!{ z>fAFArXFWu@Gp!JO{toaaN5aFAerIwB<moL8>xYl?#y94>d-Rxz@N2!Y?&-;71%A4 zjIx`;iflPnYx7UM=@*{$j(N_9EKc>mw~e;F`FLq&L6LPr--7a0lVb7$l!N<T&ztw< z(YH_1VJXXAe3M`(Ra%tBCd1^%F1gIJ;gz`DPg9mN2ZRnh;PZI4Eo@(#Z>-?%gmsUn z{d=Fa)@t=;AwTw~vnHp{U<|V<;;(9p;5xy^DeJNJ?l;RjCEDg`D(m<z2Q4;W$y4Do zejVh?SU4w_d85d@XuS)D*DrVJmb9)?X=JdGz4N4TUftFrh4uz7#v8x>W-Ytc+Zktk z%-w6Anp}kR410C;rP?=^^lE!IS?2F!m+#GrKDjv~%`)HdoHmzv#xHY)l=QtZeGfd6 z5+uWSu&*sSdgtiDypn0#(=JXiU@=slcXg3|5hI_`y}PR?___!&GkMtSv3u>9by)uH zW+ry$zT(&k>8c*f`j*5ms8Kf5eS2+IKG$lo-wQW3zKr=&HK8oVjN_c2g~;_Q2jq<l zCm*Yt^}5?aRd~scJ$gI(0=KVY4X$<m-ZJsiI^&4uz?L2CivD5ezpR)Ys8wL_^i#!` zx3jK#-8L5Yd$#1(q<52_o%3Js81nqe-Gi*#z6bX|k2KD*ncy@%-uc>QJyQj{n2r99 zF3WZazIl@s^J=*y3zMa?%(dEUi_ApASe{SVyISmV(4hwt94u6>O6Hq2EqMGQTU@>9 zs&!8M?kkdRmyX*lsGB-d^_VAPgXDvBQ|3F<4xCrsxI*^S=VP2})NbofJKAXdRz<+` z`D?#$>&-hWo}@1g5EfXvz3{D1^&*dhPd*ezyk8hCwJByJ<Bl({-ET!RPguHJ>U8G! zzKY|{{*lrJzn9<nYT8}PJ9*=h?W!|`>;f!T^6c(B^q6_)xopcc9;T_!Uw2KitO&e* z<=N(}<1r~SmrUp5`oPs!UhlO(zof7y`QmC(cS}j-70=c<+HszitI~KIvE^LLxi0SJ zIc*R4986cIJy9sCT4z*!-7>v+5~GE}$79)Hx1QI9Cs<hbXPw=aDRJj|SM2J87Qx3V zO>@(%+vPPap8vd7W5ju;W|eh;`~GWdmGiWgFrT-NI`_@QbMNWs+1hi=?k(S!dGKcF zY{v4wzpI!(i?Fx-Dhv}dY;b%qvFlj=&YK)}C;9AGQvAJ!tyXKbGJD|`*5JmMUAr#K zWIXXerl(%3=W$JC9OL1X>&8=m&6}cGDf!v0DA4bc+dnJ8$m={z8zp2pxvFMen`h*m zkm`8wyQtd-mP2op85*~*ztr)f+|AC7_0#ToYnbNw`_->aiJiMVnQ6!S=<NYdw@;qK zyFhS4w$$^YNztse+N;Fw>`z_TZ6`6oz^(9Tz|^YwySuLJc36Jn<CaiKMa%jr4eX*X zE|-N{rn{XuF-uS}$IP$DZYtNo-`CVXtbWhu`LnuY>8EeY{A~NQS9&f@K0j5odgHVY z?KV7&*KJ>?oiPlYATp0rbS{$sySn9<M_b>DXB?0`zd!4u*Ri~*y}6d|r`lD@k5|21 zv-q=_0B0&gLf?F^=W8OGmS_aWn$7Sw`kwsyz_Pm+mnclWymD(I2gB5`vd|OUjnUUu z-A+m{ywiMZ(;J4=(AXtBPdDG&z9vy$YVKm?$<1@F*u8nv6PR_$%&=(ol+VZWmzLY} zpKK4`CS5-1^!9?+pG($7Nr*V_mYyL$c@9JNvJXpgW^Kt8vO0BxnSJHgby1tPT6)|v z*}FO9e(;<1!kOLTZ7SEcynbEX>+avn9c_4LvE1E%Qy<Oa{%Cr>d+Y2M7dGEJ@z!`v zcF&|L#(4Xe^Mz`B7gel}5xjHao8TS8ner<77DsDEKeQjc6&w@w>e{OLx0FH)mKsQ0 zKa=pWciF3)%Af1}c})M#-W@fiPWOj%<fUbs`kq}%6Do@6pXw>gTk&UB$o%|?X#t)5 zr}oEt{gwNebo<pW@o#-A^O=t%9AdJ#=bj%NFaO8=!`8Vy+)v(3a+|m$L45h+*vQrh zjis_TAE%lux9a!pH{8Z45g?wtIa%UmY}nLQ5fMsEuT+zNZ*UKluk7EjjyZJKH1&v! z{<EwM&of`!@m}=DrEKZ!+u7l2k(b}R)v#Gre*D@Vjpgd8JHLraEnCxf{`h?{ojv|5 zeTz#ZYb+P9pPrw?cezxr?x);L(a-+<|FpB_>0Wt~KFuRH@zg<~?OfJ{K|dykM|YcU z?yT9d`MjmduUVgW&u&&ewZh!!``7i+yzQP_&a;b0o{Tio{?8y8pRaY~?XTw_mu22F zpCnmyuBbxUbbevZD|3$-ch7OI5{}a5ea!GXe7#i2&&sHc4|ZPh`)+IR`ms93qTakv z*1`VTZdvUky*8~ay*>TYO&^Gz*WJw2clwLzjSM-}NxVCg-_QGcIGpe59e;n`?rhI_ z_xX>!p3i&dz`<t%Y7q-8pIonfw7=`otNVwaGPqPaZ_cwgDQoyT-g4gxQ|*=xbJ+sk zj352cX5V&&NIy|yH%czADHlEXX4*8{*6uw08NY8ojPF_dKKJ;o*&KW3&z^WZ>#IEX zk9NN;_IdM6stYGb>=TjtbLDcKS=<Y=oN1p0-d>qk{5tUHZ|5H~oJ(_A|1?>;g*v5+ z&RQIvv0!!gvi>V?tsjdwCtsO$&NI0$t^V$`V<OdC%gp8}T{ab|G<m%v)?HmFPxQy- zWfj|xTAh8FTwZK_>V7HvGwoOP&GEut`T3TJNwowYYtOLD67YW<d2VV}_N=nBh#Xg~ zO`9+L?tNc(S)hK$kxz#AcG)v$>CEc8en8;^Yh_>aBa>@7LL~_Yk2&j>?i1Nva^<m> zM?#UuvpwrGF8hABjR`f?5{h$QUGY5FDy{Fk-y;p46zh4-m-b8Tv-+{gU-FOF^{tGR zsz=g_d9tFP1}taKSbu5$t?!Q_K1@I4S!{Ol-R%?Y@)dK69KNkT)#-HSj`peFOYV3U z9(yydUh4NPUq3CMKi^vIYfqf_PEG#fGOu2$X4?AAJUeAM<EGYW8}2-If5M!mt3}$O z@lzIBO5X1(nyzh|ad^h_vzs~gx$y1XyK2p}<9TmtZvNi)^_m3J<WIeO+m{CH+#Yex zli{nq*ZEtqS@tQDEpK;+X-{L>@Xq?GX6{T+cE!Dp>)ITc1vhL^mz&?48h5n!=TDCp zg|qG%rQ0mpJ!kLPW!%#wZ617I<GtFk!JmC=>2<SLCvF_HJ)3ynx%c0^sn@yZn2OFl z7xqjnOntqrYf#FK3U#$@@0E|M7S3Z$iBY>Q`+D)hzM}<Y8x&f<nfzg>kdd!S+Q7m* z^|{RDgOVqeC6C%p^g0`}p}&v)Y~R-^%@Yq8{8z5oG3OH_OSROdNpFwmTxIr@7C2L2 z!7~5S`sfp(oq5%K*;1Ap*e>6;nYBA#Q)b%Zm26F_!ex@X=M))k`OjdrX;Pj~)19x+ ze}<V9H#q0ry|w1J#R=yA^;zX_icd<N)@tCpv|K{w!sSVOIaF#dM?QLNU(rAPQp>KG zb(b$B?mU<E-RP;FG0$U*1ILPwx?C0r`L^oWi;W7o%)fW6nDs)y<KWw#OZ$@^buOD4 zkv?yR?5gI|Cr&)SzgJ~4-}9BLdhMPk`BgmYE!WL5dKY@|bn35vrc<rOlKi4=wXS>; zmpt)!<NJ`AoBUPkz0PjB+8-OL%((OXQmy09?YRUPJnvqaH9hb0mcI{fo~!D+YCcUg z+}5aK{p?A#{ueaEvYlovJg)wXT|)NXRM{hrQ$A1f<ILN-=!0lV&;nLVh7kTd$qwdu zhc>#0+ipv9`MCMS-v;@)Vbj#^FiM;_&$d;yb!MON`ofoymo;>E%kZ(5s1%3HzH@$- z(!!5@ZhWpGsft}2B-ToXXU$nJ*S7kkB=6h>W>&wr-nYJ~u;?r{oOZU!(!%cQ!aT`u zee;%!#z`DFXw%qyK5IYMgHlV|SGS*9Ok3mX^du*FhfLZ!z2He}mhZ@a=^OE_gu9{e zoo~$c#t`8-&nJ04+f<~f;=H+#JyU)DbcvNLdTb&haeG2%EK>AfZIm~VIB)V|V$GrG z0v!kDdsBalW=~ZM)mzdt=dtYPz%#Siwfw9fPY%DQ_T>BB>w8_bra8#&ORCKIvhr1s z&&sE(8jklFzyD&girGM6-NS<nA(z%YFuId2$+Vy#QP#rt<<eTWPUi`AG08T+uHNVt zd+?v(fWN4ti0qu=8(&Np=Biy$k(vLkuP|(S!q)F5Z`(pxPvm?uytOUY^Hjr3mB)=; z&)?j!&O514X1luRUd0vunH#Dm+<CMsS$wzQ-rkCa-tC55dmG>1+M=715wp5~a>luP z$2Y8bZPpiAa3g`?(5&q{+@3bqzALEso4t-#CRA$gxo-c2vz-#}oVTpA-Ep);Olaz@ zg%f1TU;hYKO;>h%(EQBJ-=X^2x%n2UwmvgYo|jlRRj*xT;+@P*?{n-5j_1d@Wv|$@ zTTnFkk2152ko(#KtK56sya(jW<)&VajDPT8#fj(Y6Eb#cnOR$Va&TW}Ntsl{8ntb{ zVH?Bb?K;K>EZ0@tdMPBhbqeDPe*4y#ZM(P%%zigt+gxPgvEPulHSDC!oX@k)?KrjY zX5)F+mAoGf7u>r&zsy6{Fmn6$t`+6H3;r{RW$Trk4k*8}zQiH@oVo^aDuI}HB4 zVeT`iJTJPwwrC?;(DB0OWmVypwPkEyw0Fx&d@=1=*4G!;ZoJC;UDxC-$&Gzek7W1l zj-R{l$GZK2J0?7NSeIvbTl7fwlAm^wF)|YhomQ-i*Dvn5T5df@h~uA<rRnMWht8b4 z{cGNiC)MHpEB~D1v^-&7@kx97mDy?UJQHt7iEQ0CyRY4J1<R+|k`}hB=kDkcIzB(^ zW&Wlo%spS%WbZikcFBV(u6um9WG1`WD@?o)yjXYIlX<q8msjvk;P|qld4s}K9{2pH zdw<V(cj~h|Ua<1wzSx_(UsicMdBR|Pz3*z464wVl&zCO)u6F4iI@~<(u50|Zlc^_; zi@LD}>|j^EerbyWyMiHu)Vyr5#YKOlXRLc9+U|9!VRh+)$4#v1F0(scS)Q=1Sj%0p zFTl+~zFKM1l+yv5^$+mJ@E_aqwt3T&1SX@}RZACG#FeeIDZIAMrL{3|^6tHfTC3Aa z4oy~%aB8@{Vg8w`C)}q_I3?+E^6Szj-h+$>Wp}RZ;P}s=!QcEcrc`Umnks>X*@hd} zPYKUBsLq^kYP9qAq;Q5O1|~+6`}p47eE((n8kL$QvU`t5J(_Z7l6#F}ZiCRouey^b z6yE-$*{PXl*1PxAmzAkbr<@)X_b{GVD!}3-*!Jw@@u;JVSGpZ#D>%Dxa)u>$e^kR6 zZ~fFK!d;uLJ!MqA|M&8(MHMN>&U}4w^H}zBXK`s;bL|G_9+{7Q_H%8g#0YUHZod6> zW$V6(4-$``9kr9-*5KecX58nwHYCs6&w9!&*3){ImNPK1@ju84*`{?|LC$#c^_Ss1 z^82l?v>iXQZ{CcRtQ*qKd7O8ib$!CYrK^q9x&^ltaY{bku#7uUvFFe3{)bWi9FrUj zdt_4TqdXH&YqDpsPqLD_=yuv!Gj`Lg+f!4+)NQ>rPRL#H&TXES6j8vQ9K~o<7k1*! zq1mNb&Xw&l>)GwgKdhN`bGqn-^EY;|_Mh$P2|1Q55T?G2@xZ@OnI}ym$qWgTU%m}h zov<T}p@msObWtr+Vf3QUF-#I{T8`&U4%RH!vHL9dw_=sB*E%~V&%m>;Do@25oaTMK z&c19p%fl;IvoC+&UUTEA!wTR33=(?xeXcpj2)JE7Y5U54i-4zk<H<+67QNruy!7nK z9oy#{+I;M3s#rSfyWsaHUxNGU4{f|w&aBvQRw!oM8R7FuT01A1waIRY+_B@%4#|V> zY_shiJ)P)gHMyy{D`h%s)92=pC90cutH1v9%JQ9j*wbr=({?1dTc~_K8d`aJf`e)m za~Rjp-X^!gfEfnO>m}DLHM%GHK574qle_2n`}9qbWVHPDPdKQfaK{8ryJa&ji25|X zJ??*OL-D&*Eu9W?nRNCI|F&FU%=a_=x>C$&&5{os2eX0?JShIMc-C*3b93h{$>Q4h z;=sHqdDeZE%SG<?`xLkud=e44<zE$j=iK$=BTxMdPreU6ZndiQoc-F6gPq&i)J>k0 z=q-8N$5tKUnYnUF?97EC3+6Cnon5W9Q{kb%4c9`M*%3lT^>ZV7Po67md>Qj=>&ly) z5x2G#$tyPSREn<UY2kg$P;#s==8f)FX0``k&t^GmTEua!IB)Z8>D%IEIxlk5tgp;t zkI~I^-eSSLJkH(g@a6Qcto?qhxzQ`N4t~#5N$y*;Q_H+~-6UVJJ#9`#X6-+xv#*U7 z<diPEyqTe?TB=Lpqe7acLNfb;)r_I13cveZoP2FV-uvK7OQkb9n^tXP*v7}mzF)+| z`(%vVoa!s5r8dMqS;5{@d{%$zGd&3*%O}jYHh9PKNA>WWeCsvOnW6a59G<J(R}W3P znN!@?a_!B^=?O-PGEDBlk>(td5h;`IE!*xMlev1%-5bA;Pn3|fkUYLMCFW@B$%8q` z%*(VFUeURuXTV|eKrUPB*>&w5OiOxid|CVGi+j|vHRq~Axu>2elbN5j;-lWhrs6ph z=Uh8_CM$GjKt%d-wUr$QV*cLYDOq<S-tU<3vYAs=EGJtW`+RG0M&BEr2j7&tE@T{< zxP9KgFUOzoXeM8ln|hmVy7Q^kEL|5DYdn^)?Tv4KW}(Gq-8VIMiuNRF^#xy-A3QwC z>Q~>^_0H!edlwh`A7_yHJ?mwTnoekJle&Y`b=_2rd*Q4RA17W3``YtFNU}S*Cw*<` zx~-~Z?$L=RS#PB#-0m~(%P#kyGh<sy9&?Mj<o9)M=Uyzkz<$QkLVjsp#3}!C(Uz9C z=cH|Xw(%loWW<|XHLX);M7`D-UN^n{L+_=+6_)d#IUc7;$lXc4x98re*Q&BJ^pmvL zf4ID7yU>va%T!gbzuM=HZF}LVcf3yY-k!)CKfDj`vc2D^r+(!|wC~ziEYjWWjN4Ye zveoiuxRvos{b<LQxyr%5K?l9&94lIN^JSdv$LB}beJ|SBE{%@KDcNqc!KZh3zs;}f zOY08Gb3gfL-t*41x-EV4mL6}-<jXSsXRaT6xHx$7#@n+kJa=w>AK%Th;fK|=q_r}h zLMuZ533vT;Kk{qi)#bA?{ZH-D7H;sf{vCelKZAr#rp&CEFm9>8^9(8yuRQMhvHIw& zBa>czuDP9j$1%WwwIoSPt5;+5iBl`ALhdYETO9T1)U{7Kr#5cV`gHo!M*Fz0kK_ga z*z*MVn0)6i_#|*ICF1do>uY~h2W{UwQE85mqom?Dx#-Vp&xRim_|bRaWH!@5AtvXY z=U(lxnOrt;nPGHD4f`XP-P`&cUY&T{JTb;(yZE$;`<NN-MvHzETl-<(tz55?-JfnJ zKAgQ=^r@W9hnliS!MRzI_PhI<_I2}zNt@Jc%?edpFMM#(?j5@)Xa1ahZ%e+(>TZvz zAFN8&1}}-a6{FL!Zpq|NQ*DAxy}!+}*I;beaZY>Nl6O~<`prz1?NcjudwoW_h*37{ z-L$hhv)$R3Wo?lvoK<JZlHM45ywyfkXWb?d3tPiLbBRR@mTJnnAI|5p+q~vrR&qj$ zb?C<lwy*d9c>F;-<VW$t+qHGy*t&hEUNfELWS3^k@IF@kkgdSWs<Ue@yX{~ps!-e4 z@ps!F$>NXV-?A>OUn72IzUN-gCx?r|^DY&>jkmY73=gbQt2JJnqi=QP&$Ye#+U~M_ zVqcc+e>hI<;+u8K)g9B4_<bHLU)x~1pZ%3*dFR?E92KmquDAY^k9{RI$t5vC;*-DE zw|R2&RiA3h$*ewQ<Y%z+oBcuE-~;n?4d<FY;?{Nbvzd8-b?@t!KWeO(y`B|*<Gt?V zX^&KHZE9iY2|w^p_V2tuZhDG)KD^9$<|ON2GyhZe>-tvlc}ClIZ@X;cp71T4i@|8+ zBggyetA5@IwLDnt6z+cE;Zwgoxj{CYY_$(c)n4nB+4lR!?e_<Cs=}B3u=;Dib>Rse z^9MarXS!W_bz63Oge%PHnUwXuY3mM?`6Bg87i4<~KC4tYa7#pZ)<+R#tBL-*tkZTD zT>4_?_;<%Y{pcU>kB9w}zN~jEI+yXLs^)~6XTR^q6lg#9uDJU2j(C|xPS5A)f5tnc z?)TL=RxNq6<BIxJ$#$JJNBZifhFJ$Vs60rYV150?#HN;zaObBlg7@SZM7JK$-jS^6 z_&{pQ2F3~IwVW##wkIbiCi!};@P3k_`D(|@NdH)VFM~}NMV55TIH+azc-~jH?3^~< zo>CSbsaqvl2hyLuY`(X7-D5sah33C^zN~0Zb6Hrr?73|rA7{>lyRPZ4xSad^42%k+ z%MBAY${J3pW{eDv-gC%Xj3Gf!dy#gu@%c%YotfUL=Kgpvd7ie=FP=%&^DNiRdn6aX zsO!{@Z4aLJ9oqG1O~E<ab3yM|LXT-n{kow&Eq?ko`$M}<-}d8YmwbP3qh79OO`YkL zt(I|p&rS70J7oTeN>0z0ef9Q@&ZH;Fxq*poCnYV9ioH|0>^$|u&j5q!q~)Hwp7e07 zZd%;uzAiJ!uOPhds@aRM_rYGA?UIs`=S4GOp2#i{zTJ0qLjTsH<&$rOtXAZ4I1wfH zU3K^DfIHI<t&n^<Yxdix4!q5M+PrG1KN%0cD)cjcP}o%KYkfOeQ<f>NcZP~kt%iAo zgSgD+2&LEBTc>|ARf?H($Ba={>$dU6EqTY>E!fwZpXWH9XK-)X=CJ40tO`PwcY~NB zdT$)74%ue1^}?3-pUn&^pNk5rr(5t|zj3MOi!$@J%-hn%iREP{MQx5Q2`y}#+)zK& z<)e1;zFMvS3=_BTJ&{|ySFwG;1GztCYkqcn-JZ8+gVG6a-W!kmzN$>jbKF|k^H_PU zFV{*LP22Y3FqQ-tra9#b{~5e~-n1>XJEm4YO)#`A<oO(_WVf#9N#T~KOGV2(ERT7_ z8P5C4vbtfx#48`Fub38x1|5q%z!P24T6tWi>)c%S51J3k*Un62&b)Q7U-Fo1&@3g{ zPU*_`XY*x!mTIr{iCmQXoO{RPWm#gKj}ts3WV5|o+1zaYti4ef_)~Q|&*XWJb|<Qz zPN^&v{jPaf^0Qrl{Jdpb7W95kNSA8}x^<IDvhC{E_fgZz7ArhpsMS1`X3$>5k#NNE zl$@VI))}!=2mV&go0^%(!?i9(Ut!+VJZ?8h_10q!wy)LoLb4@RPw8UO3dymxdJ?j6 z^|X6zG4-PHlP(wDa<g?<{&zNW0z3ER*O5D8rB=L3-MYb&<!^1)<b`)noKAl?IqG}i z!>(4=#^<(Lb0$o<W5)Sv@dT}hm06mrb-8l+XGA>QAzxB&)%o_=ha+NvufuLOy5^pd zUM?S%efl(C#ILfo$)yXX?wT^Sd=Bd^<Ab)nJ~FpkpQJBjUdq?CGe>Y|<$=GNyWOsG z?C$zxd~19EM1H43F|Db0IPRX)4!iV(Vdqcp!n4IM&Ckx6dwhXy*4wSePFykbl-o1w zrLW9cyXAqoc6Ffzvpp2jCr8B<o<H>?ZlP~+*!L8^mY($crYrLcmNwk~Jn@)Yebg;p zUB1dCXHR=?@JKtg&f%2I#AvhW6|oD<nVbBxp1fUml`}3xj)Qq=R&?yD5}gNnhFAV( z?45by@{Ko&S7uCQZ5CpBAjg~k@>lmBpXTSm2bEW>x9@w<V{nU;;h}Zd(RB+F4-4)2 zWPJT)u;q<Qf;(SKe6>RQZ(<rl!PJ6R9V>Un3zf%xJ#;IJ_tRzpgUau#yH^P9EMs`i z@O@o+_`)kIOWh+%lbiQ`XR~0qk{lpkvU!E<@v3K&{xdw2F5JH2PF3*jaOL{#mT$Dh zLv8yyE^J$K;mZ2&#(9!qPu{)Co`2>2wMeeVg6sG$RGLhenlLG58e`d~<8x*m-MfcJ zrhodrhu1cg<}Td6Q8P>2=Y#{RbA4}-)s;7AiaZpaKQ&!nS-QRK%(Q<W^0a5}$$eh@ z@chchB3iR1y?l|FHECLG4`*ufR)4?h>-x1j51ZXdd9-V-liHkyCE~~39(Ns`cPHoI zF%J9QOsQEjt*T_!o^cJCFh@AzyJy?&D-Y%`Ee$Vx{Pg8KN73eT&Yzt@4(~6U-t;TC z`86@)`O}^Tf0fW+LC51P*XCRlJ;u(q+LQ5w!uNGowPm*L3^d*`ufXcjx?>e5o>Z5v zxXO~_ch5NNQP7Rsx34YT_w<;#`u4yb%#-IW7G27d`XlwH@wu!u-1qb2cGzmWT`^;b zEBtkh&+C?~V3Y1)$y?ExNtVa5gIMpiKe6^;S-C3g1%t(tCxU0QqLjq~{45W$T-SM4 zc5If3&I1Ll2RtRu*JeZ?pS)vb&>nvOL$g!!M5h?4Og^Z#_3gsD4Cf_n$`$@*H{ZH@ z<BOuV<Ft<q{HM1b|M_SwcVS=nB&`Sq4#}SfAFKCVUD{yg$C02tEqJrFqW|oo3GEW< zt?$ozZQP)eYyZB?v~W>xDCddCbAoNQg#>ZNdEBa>n>O#P^onRFdCmT_bC)x-T;eXd z#rdv6d0o~8r<3|;%(mHcO|pm#&swkE#~*d+?7N_@=$V(Ij%y1UZmHSd>vF5=fjG;C zSNzMfZvHl84Ja+1^Pi#o*2FjGXGCsrGwWYlddP~|>z2gDTOGH1racj;4!Ic3FuQ4= zyQ{4K-pqY7RxzG4zRqr{Q`RYQ?pf~ZCjY26J)&DI?<b3{?Poq?aXkFV6+1_Xq`Fj# z_t&rOl6-q%Pim#bo2)(8R;_O0dr&>=_O#>1ecz32rfNB|<UQH&b;X~FT&ZqP)!A=t zmE!o$v_?X1rmfbR2?7;$h3BdRPhU88cC)QR{;r|}UzoQFEk9ND^@;HDt&z7kHmJ+) zUAgIq3d2f<d0TlSW=ni8%(d?L*&mRtmu`LhyTdudYuofDE|$FGd5&4`YIg~r-{W&t zT+eRYE^)iOQMH^^{ocy+1&+%0`s=ce9d6)C__k`Z^GP1}xT#Czo}8OK?MT+|LzBu` z?dE1K3$pv>Y0JLWD>35$D+lkZ!ay5mh1TO+^On~NZq+gUB62Re+}_M^R<?Bl+jH5^ z9*6T)co#1?>Q?w!RN{S8Rd8|Hg|90gns}J^K6w7ptFCZT#N<0)R<wD|J@U?$Lndj> zLCJ%4g%_?^E?F0T)s4ezPJ!{O%(r<SPZFxjR|_8Bv*K|2jdasA>$HM1#jWyllU`N! zznbQj9KpstdCR=^OS8TmbUgUjW`5NDwi~DH-dV8E%i>&fAYs)4na4{L-v(ctvvtF+ zjKsYQnAh>WbKmN6q2>&~#e=Xj6If~rD(oEt|ISDea^n{bTroZP@LJDhNhdjDcf?uA z$nXT$EahV3{B}0WgiC(e#r{Vx17{al@_3%FYuZ|T;qz0UGu6fOX0mU~Y?3))VEt{a z<bu;OA8fNU0~#0(eP3F>VDJ2*T?=0=`4|=&Ib%+%%H!LjQtIn1Y>UH{V~o}@K32Xr z@5BzZ&fJ4Ri)E|2E^Sj`+Ffzt_>NVYViE}nldo-Ad*Q9ThU5deseQ*oOm1A;!oJ%u z=I_O0+I9C-k3F1l^We!7C)Riy&evJhyYq0~m$k1;QyG|dq))1vls(Jq&AX-A%3c!2 zpB~%tMXhrc624yc@cvTgjM>RN4)*s}f4jIccL!^g2J@FSs?xGwp5I~dx*Z@Cul!WD z*YBd$pVj9$)!EiWuU`DNfPcYpr6n$R<%;LX&9&zWY~Fd7bIbc;ZH88^UZu%bq)zW^ zuiB`!Z+7){*MjAzQyAnE3?s`0G+ocL@YH6<Ma#{#{A#)S#<@pN861ztJ=?6_^5^vF z^xne@*51C#wa}A6<_l=oNsfq6(NE?5rWYlwWnV2a$V;kdWOQVCyfk2k|K5phvaUI& zKkqK=&v~{vkIDVhTXmb_ST5ZXk>w((CyZ`N^0~2wY9+sknB4q2e0g^!1Ml)nt0ox4 z{8>`UytmXf;zOa(zQYogl_$<s_ib_67qgRLexdh{w~`Xcw^~n6(?0P2eJp3JoXzv3 zzpLI&;Jv}}$v^7W=H&ea))J-4dlL_eRVQ{l;9Gug>)U{JmbdP5vQG@w-c-A^_jlyR z-o^VomA2)oYb)sYCuz^!&RW>y@#P%n+Guwp1_qe~zRI)3o-guNt!ocVF6?BepL(3j zUEzA=hkt*fUsccC8F7QvR{p7l=(Dn*XD^G4P9DhlS9+tut)MjH`h-ie``UJV6f9nH z@oL-ZlYt(SkJ|IU-=`Q6F<Ufp-9t8gO}}@>6SQB{-}vr*#YXty-ZJU#?C#82F1;6j zJht82n)&bCJ?{SuE&500Z<T-RElgy4-Q<4uLfYQ=L;q|(#P_OSvEQ(EX>HUaH+`Ng zw>xs))#0blPj#O9t}1k?W=Q_DkFOH``0Y#FA(p1GSf%9IzMSh1TGv0f%-Nlvbf>{~ z_3eL(_bb;I^eVe<nZRHp6F#}uBKG#QiA52A|IM)XdgwjjWt4LJ=H1=?yYlsX{xb+O zUlzTYanHU>W3K9s(yh!AY46{@jG5kTV_BT?WNME53|8sQvp)3;?^~I<;y{4F?#(YO zWRI2}ns2<zQtKSI=e&=r*G^k5J~K5{<=~acnuXitdn?_0m9OL+d;g|%l3wcsCa1?e z*Tw%ca8BEG_TSEbK2N7^u$!^k@W=BbLeX!N<b(=4-FdWkx-E&ym8<?{w9DsFjpHL; zvq$1#mrr@kl=&FLd&lWl?z9hcQc}ZbeVLo@(;cxZQ@t^O@8kCsZ%SrcyWZ+BXjhrH z<a({;Z`<fApS3QP%5@z6u)QJfS!(5#2lJ|V!Z&8#lkCz?5m+J3uEid8Wb@8W5tl}h z^$z@Md-)G>%YKQA=?jagS?XpS<+tC8t0K=g?Ad>YHr)s9p3yT|v@VLC^FLEm-?ne< zkMbqAD=t4=`fX<Q-nFScE1is_FMnM>Tlj#H+PwU^e|7{gg?wN<@Ab?2LCN;b73FWf z1^(P9%Gy^ED*EJ+=u)xj9i?a83MYPie|&zEagD{tn4&DRbGJnQ*>oOfl)kk7NBIMj zS-pGr-s`NJ7i_eB+KrrvSHkbw3;YpWUgPvZ<yP8q!P!~cryVJ3`M$pM{=t9xKa?MZ zcB_4MjpTOKn&j1Y_~Ys+x0fyFjk+rn^75FetmU7XU&0TqZ{Ia-qD|1f6`um#?shPq zuli;icj-`Z*0P&Xu?IzO)EtoWH+}q%>&MwLlM`p(PSiMk<KgNHdn{L+T^HkQShV2D znw+{9>+NrO-rsGl6_B0VH#xpfR_~w(dqT`g+p`ts{aaV+{Ly@Ld&iO+_iui7>+%2I zX8iWr-st1E?uA5)-`<i3I(_3~ewWX*{|sC<{v~f}uC*$0u=B)z>_4^hrCyFtP_%Jo z@YBPd=Qn=*I=7o);hdc}%<YqEvxB%@HAEv=&)pF`XsQy(afiu~`TDhWw~ih7bJ+HS z{oJ~St5+|6F4=OSS4ZWZgecGQDeUYL%a7)rkc`kMvXZ(I#&dh7#e<Zue_na!GW5<6 zFg(Ff@@(f*vG3N87g?TMlyBH1%96sf&Ntn5c3YZyeSz)k6}z|dDqH@H-1p)bYrw3d z$ttbI^E|&So_g<~%Dm&+wP~+BQnl|hJW1N{e4EV)Bex>kjj>1XZYa4sm9u}Lebn*Y zm&^6eaq}%PWB9hNV@bc!n$io8^OTcfHka6!FrN5zE%b?`Op)>Vt);>@ws;iw2>!Sh zdUZw68phOD!M3Yc>B{9?-C~)&;|AM-ld|W%j?LpSmubEd9$cH}@jxcIhyT*XbxJA^ zG!8zQ^`h%dfoFd5<SV(8=a_G2+Nd{q1(#LfIqh}3xAPbtvr6H5zW$-D2Ls>VV&^d9 zXvyqp@BP@*ii|Wjt-IXA_+`aG>)Kw|u4k%lhimrCJ5avTrKRzhZ9#FsF^}`t=1Hu4 z{PL(>(=)ZtlG_^l>Zh7Nvv}J#rCZueI?v;=X{w?G%ab};t(u-&JGqz~tv4BWZ5Hu6 z!_T8tp>tT~vC<ZWt?CVXCf=Hz<Z5v_K_>lm@KMf~dCivR3*SZw-e}(P=A`<k)rJvo zC0}{|)i%4GHZj)AqpQGcp2bmbncR6hP8>6i3cQiJ^VH)xQc`CYr^|P)iQafo;<My2 zF+Z#REQfZ+0{;5hT^G%EyZNf!pCK$E`FP&dS(EiAd@al<-w|Z4ae^V_kg|jY1Mh+d zpC^akyZ*hWLZ^B1yk#?z4<|fe?5oW_F(s!~ru5FaN#?1cVO&+u*M?L~Zsjs6VpQH& zeQnFP-%orLWF1w$n6g~tX+2=`gsF1PS1YM7qotiqk5~0yxhmZn<gPw>o^{yTOYhFf z^e*1MHgKx*e!rW_vf81GuRNRj=Hj%IyJ`#%$P`~%oYAAsGEL>nYGM8N9JdVT2>MEV z`uU$B`nKKFt97S~C$8?>)|=Q}^m+0e#<Q8Xl#ExiCNUnf3YBoylz3))^L$O%-o>j< z?O@N4-n(CF`ny*e>(Y~+u3bJWAepPWzBf+nsh?d;3G-SbBNgTZcI9WX7ON+&2-qFM zU|{+7eayOW_oyys*A01PpKr(+2hJ{(alGC$KkjSF@z&huWgN%&v(^_GJyAR~uluEo zyUK3K^7Q9+J6>el>~rqPNw5+=8ogKR(%XcHTuFs%HSf-No(Q!OoHz9<do5q4HSZ*U z8>2jnHx5S~^)7A^idXo=W{|m7+v5mNfAUc?-`&UWCiijJYL}!hU3aoOzbAEv?5;Xf zk0*u)m2DVmv&wgz(y(=WQWaYHjBAajGV}VN><aY@=VDJRJ(9n(U7^&(-SDvNe+G?% z=L%dyXMW!v#AkhZ;xy+r#%&KCZ!OW-QtWx>p66*%jfZ=U?B_;p+pW2iEkyXTO!M1_ zY2U4z^I~|OBrT6_Vixjye5~-q+Wh1hFBa}}^1OR|!K3xA6+y1Ij!XX4p5eXEje|Mg z!76mc`hBHglFlbASEj}K?YbOrd;W|DPf6KVpYF|ZpQiKkj>8Mr!Vh;hI9RI4G%cRL zG~-sRR^pY7vPM<UcD%Bd-7?AQ=#|40Rvo|o@@;tX-ieNSmh39bbHepm4jwCzcy8Yt z-}PCw>q+5ve)fAi)Xio4!{!LPyUHy&+Q6cD%yNnOLnSTF!rdy*n`3^*Z7K=cujg*L z)ckjHf^)*hH@pdVws_pS=y7@07wetDljks499Z*v^}_8>S(h+R`qLbG?}Y-Fr{z1X zjWai#x|8r+`O?B|+l9Q27<>G5`_B;F*jKS;^;6aU`a|nto{F%jY>z23bqY`5S9y@a zc;i=Cr`fthO^wx((<2-_R1AMQX#ZKQ_S12~P8Km)!?)4qIR=%sZT@RhVm<d)X!m(a zzKsodSA6c;#@1>vk($=dC+Q2;R4=(H8Tj>RUaZiOp1I4f&pNrILnG%?af7XE*>Tr} z$2E#2iVrb9e%YV3<m1E61OFMyuWd~WabppRwyD)xa<R!zB=`I4SeY{iFZ-O&-(#t~ z)}O0Qz06UTKP#wZf}5>D{aj0dostKhZ#6sB!yS+^Rr^Az`ra&uvbWleH?DF_NS=51 zwb#|qxuMpd9A&fFReG;fNo{)}Ex{mEeXY04u=YsFV^ODbX1~uipJ%8F+q;N|P2pG4 zj^)Pd40o<(yP|#W-Hk85uI*i*l4lvPx4*vX#I~ZdJ7ky0&sJWW<>L2w%RBWsa#v64 z9nYyb{c(kh+lf?miFfR4qx2T%iOzYx;L)l`&jaZ>=64VGZB6w{EM-XDakx0b_N&#S ztLr*_ByV|2?-r<(yQ*~TaIygNuVjl~S0Y&__qo^SdrjjD`I)@m=iACc)BeIBedDsq z#}n9CqdP^`YdI%#A6J^0&9xz1rS10tx#Az8KNhD2L`u~2dAxofTj2RdJilmH^qW)( z*3TE_O|>aoGI<Y^gG&0Wog&dQ64=yNFn?XSsKxTLpx2}dmhfDQ<qPh0teKV(VzeU6 z_E%4k?JD(CH-zLG__EWi8BG++dY62)Nt))Zpc-(-DuKc3pXrsU+brJ}GesM$GGI`i zcs#0cZA4Qv-<;HjSB0_cH;py<cE(gan6<h%T_wX{mARaIa?}^YDLG#(SFRPdVUTzt znzg)ClFMB7NSRDs>BX2^6FdWMyMHv4)#|-EO{DSnp&MKkPpYn%o?dxcTfHQql6$9{ z!OthpO(nThR2~`J`OBJVyYG^N%H-zn1;(LEw^~|<<h?rb`DpRZ>_pF^S7)kUl=HMO zE5GOa+Nz_oCS+Yv#mU#PwRf~0@U+UZRbTzjz*?j7G5pBhK;1vq3u9m9_#L{a$i?w4 z;sa~S*KpQA*WYJ8PY;S<o_K<Rt8i12xz-cmYx^#J$p0hUA3e!pT}|R6ZC^37liAjZ z&rh*mDbT+9<^2u$hpJr)yLMeSHCISIbI5Rhf^|60$CAuUO{s&YqFpzCPV;t~@UT&( z$U`(N!(AfrXR_(9M)fy_A4+%pJ9kz2g#8}zCv$#XS6*9x(Dn~wh5xtu4%5@DFSma4 z&=#HX@IS+hFE6eXRvn!`$Jj}7=A5?{@2W4`oo$@A<n!6ug^%9<P&eC~wqCz&Pw4X3 zf&9Dq7PLuvetF#W^Y`)i&DW3kxASUTw=pc0G2H&A=H~jjg7GnH%XC~V{}|bxis&-F z?;m`+g+<P=e`##f?PmcNJQcF9A|7#DHt_2n4=Hf`v+9l54`rQuJ57ToWd~nc?j;=V zEOcXw%bdLPANtzXscsBqow7n%xogw5mjV(p+kMg}hdmAt2%Yid+uN=uQ`W_-xb2p{ zc15~G{EDwDp7raU-P6GCV0=F7qQGjin+66|&u6VRNhn~K|6A4eu5#+i$Zb8Di%zFA zJoy~xEum7}e4A;Digb60gw2Bxp2p6bpZepj22L-2W+?J&ijQN1df^}Iz^9rFd^=1R zZJ5cxtnlT;i_BwZ_}tI9XWhK=)a&`Qg)1j0oZxS$PL{1*wdUHKjiDAVyY7AB3=*w+ z()MMQar7rPhU6<<D?)Z(kyS}rlboH-x?6wcYJ=N5c{l?vEAO>jC~$_u+OJBgE=1_S zq~~+OE=`*yc}(l^qTf#)?2el*PG(eCq2=+eer|As*yLhOhf0~Sy}c_+QWK=v?T$?@ zyRtjx#^tqU8Z0ss=XBlOwEd2Vq0D#rbDQ5J@i9o)YckJa$PPMPqA<;WW`TKfo9Hah z-HY}y{oRwuR^HRx#Bna`i(ylNb3&OcuPcjBW3=+KmyO|O65oW(CKVJ_{JMDR*KD^X z-rQMd4#+tw2>AP-TI0sYHH~Lgf!R8Hs}2F90QsQ#*OuQBb$l37x>lJxqs(nltcO}} z(y>DkhAKT_p^tKTmRcOEw0&LpFs=5exyEz#p0K#3>}U9`Cx1G)Dll61%Iip(vv0gr z;t~S4*8U3PeQ<-TJ&b)q_R_sf7Ppg{_B2`5nV!rtYVc}ovf}xWy=YEenY&<apj+*Z zmvfTm-hH*?_-er^HdR-8)h=&!e7x?xSL2Oo63p}bFYQ|FD;aXsWL@Y48Tr{N^N+3c zzqoPo``6)Wg**FwzOO1a)ZDu7#d)u*PA5KPJreEuv@e9|$HCXHY&Abv#u*+@u)Z28 z8!@NsO?B|12|ELpvu_kJ>DRq_y*TS;q`wv$8@uJ&?wG{#+@CwnRbP{x($GIc=<&Yn zI8NsiyBnA#8Lk=Ca(&x=<z~YJfdwn$EZ>Ibo@!$-(6PGaCA5m;@Vv$IrdC}`wG3l0 zuvC`0ZqxhNTKZSogPXiPC3nxcmd=xFi(cy{){*2=@M`hi!hmx=S>p4TmdCMNU3j_l zcji)Sg)m8#QrXv<_otnZO__V~yI%9Edl7$(wr_~Fef!>2V$agK?e`wD=Rc2WYhUI3 zA^k|09oxnT^^a^DPL*;VIDJ&|iC%U3-YW6VecBcAN9S{xJh`MUf2*pZ_wCi`*?Dn0 z*7Gz!T;Ek={&BnW$K##q{^}96ADVv8SP_5u*1mjEuX|t3FTb;`*)Ps@y*G7z-us1{ zKT2$w)q3jVC(nk(+t(J|s%^PGX`P#LT;ZQK?ZrPDPJN&5$N8B%FY&_Lb6N5n3-=2d zEeu#ar}WS3lanueUo4j#b=qS?C-2!efyR4WLzleR_n_)}_mA5LH{8uSRIhkXy=c|K zB8T&$Z+5lqO<okM6U10{L$x8MWnEEilJtT947=TIwnZ-rU))yrZu!iv-lZv(vgZ%I zjxH^qq~bWQ_{-Pzx*t=guA6X%Wq!G(!p9%sOKZG8u9+stouORre)3Lq*U!sGs_tyQ zGiAagiODBVoUP&t%62~gwAVJ}#QM@XXKFT`X!vHk+AOwkkp+*34bQBTyY}CS^*Fyb z@oY^>DT8dwgXcf5U2Na-qUhYNzBAwUx7-ui|FQJ4pXk4n{QT;U^L?)G&XD7qr0b;K zF?UJp!T4)?iVyu~*dn_A(0q=U*Q_GCB5M|Z>x?t_ee&0}HTSoML@n!5X`E!e@%rf) znQ)W$wF*@tKb5x5+WAGi|EtS~r&IUM`|jpGpJzdVXsyTkioes=FW!A2eVb3^c}cFo zPZGsv>k{pcu6`RGZoYkc@g1MHO_%Li$|Tk=|Id)VzPEpoH&0W&ftb8T4uf^qlhvBR zSwYd#mkL%(1~*@wAM|Rzc*$SpBjQ%9cMfTudg#5~aZbs);NWWsA5|CMIC023p(4pL z`Ns8W|E`!{3*RR$XLk8%geiCC^fQ6q=kf<=pRbdy@tYnrNm1pJx1xeU^1)x>dTWc1 zzBnHx^5E*St+vMx%;(QPw(V@b$)p9d<)XhFPduOX?dE#*%Oy7+OuCsor)OtRLf@Ux z_?GzeeH**V9AxH9TK@d}%5~F^EfVmEIM3zIJ~`B6igffG;oQ(bo8u94*QNdapx^gw z&+*4`3svVIUhW#Nckfe4FSA~`f$ip(ahq30tFE0s>p;)fyq4<l^YOA<J56<+eJ{<O z`F3r<IVQUhV?K+oOQ!{Yo3Z4+)5fco878~t1&Yp@VQ<vLR+kvQcEa3M?ayytm%lbQ zSJ>_4&V4}z9x{*Cs#H#qvpIBc@9Otb{?5-e*P5zynF?+^cF6MQ@2dwTCD>QWytN6* z<h<pb8>-%VHnvIT&w{=JtxB=yNo5xn7iTTkxe<J4UcJ=9!W@q~lH1E=+y65}?c(1w zx3$vALaTDcy`w#edp4hVXJJ~{d#_C|md`C(A+Ybtgn~PBCP$WklS|Z}F#q1aw`IXM zwLa}PNNivb?JrE+$-&uRX}#*P+;UmZ7X{_lc$RE>{QS7(Ic=d&N{tQbwnkOq<@HHn z;<Y<io=Y5*|C{xE-I^}>9R_}0{a&{WeI88lb9;9^OK!=ESN_Ej<z>5N_;(+aJX%&> zmdwL>ck-cGNB3;j^Jg%7r|tTzz*ps*-lsdFwwA99W1cO{+}N+4TOK}bN&6k+D>8jw z&%P>adGOBS4X=<J-*1`RE7tKA?50945yF>6SC(gl%$Z<(LNqp))550k+M;V$TuU0Z zRUY5#H&G;2-PV9LuIcP1v)<G1!yjBevc#Ba-;I~Sxh9%31EY-1*!-+Rzidc55I6VW z+U{Hv0j>`V3d3_tE<Kg0Ia2y))ty_y8z=Ji-QitQeXXag;+TcqvMtBvZ#62o-|w|) zS9ab3=?V1`Hfam*9q75CRKoo!@3@8O!d!;LNk;z4va9Zx8RZ>#Ah&zxA8oJO-U>{? z&)->x`5I?TQQl}|FoA!Hc~)f3X|bP$Z*T3AF!|h?lc27)wmxm)>%-d>`n?XtrTfIr zYZp~rwEa{t`+C#RHJgr1Vyk;8yL$c3OP|gji<b5GI=l1ok;D+a$Mcsu-FHs8eBsMf zR~_zT<wcMCk1d*H{OqyT33rv!wPGE|#Xjsv@R0u9)n0#Q&Fbwv^NeHs*e@<g_h>TH zx+C@^p;YeKsu&0JrWTE3MR!-HJu*}{(KF$&`s<K9C8vdzI@ZZs`OL0z`JFhiJ1jI& znm?wmI5K#}G4rCTm1{c{Pn=|yIB;Gj%xu9Tp@^CV^A-d>$-MDw%JiV#(_eDloezE) zdS?FN9WvjS$Lx!kDz9dF)>-g|UDA#Nj1Di~N2w-H+`V7fN$9A%CG&-{wcJI5Mw~GT zO;y*7&Q9La$M~jlt+nH`xeL<wJ-oMh)+QOLw69wZEZS{mR5opOXTkjPY25Ry!fbQ` zMfACw3SVUv8l{}v^4`{CP42p7-_zP}8MUw|HoScOK6KfHx2IFvowoXUPg4;($X5_D z|J2OAjXGxxPaLa~5=t(r<yg;UWp0spLbNZ1rE%{1d2=0ChZn8$$e%H9>-1v%(+zHS zQu?c2E>G#R>fL7b$ieaMjt#cGA@e>YbaZgPzBg0#P=g19;p@qfmt%XFUtiiCqE~Fy zcg-Yur%}SZ#g`W@J8AV!eovaM$D6H_rnkoQ-rudxd})n$!McWZPLG%7izcgEi^~Nn z^*pwC#UJbw8R^JT_TWMDy%nnGRPrAMzp4suJzcc()USzAH*Y+f^6p(GCu2^D?53<h zYyK&+%dc&cDi;6kzRlIj@;lpC^^eQ$J6dKw%hf%vA|!2_mGRDd+LK(rhA=D79S<hC zm%Th2-BxtmQbJi$v}d+y?AaT7MThyX6!vL-U3<-dF{iJHU9?G$#iLpI*YD8Rku!Lv zvCDk0s=98{HzTiP<6T47pAK<5f}6ux-zDEkIjO>Qq&nP^_tFWDyAAexvVu#zR`Ph- zJgkWN{CwT=#hj6{47(15Ge1}O<ZHTar^>!}vm4e-tP7Ig+jKbpr^&~%Q~bZ3^H{yQ zwSwF>OxP^odHBl$Z>h#<KO3HCoK1JP)MC`(u=sv_t(_%HPv!kNO+St~tbD3IGso{! zXS1=PMlGARQPG)&6Q;i6u-m%0wS?W0%kEuO*IJX*z|Mog{Zp&1s^&7jN{QLCv}W^X zv#RPa+aon6B>UJn*!PwQFLd6WozS=M>(tsj$qnIl55hi7ic)6hes#vXqsvTW+V{6z zXLmlBc3iok@M!McquXr_tgeOLZZN1~K4*RHRd~Y6yAem`nVq!dPjC&{(KFTJ>E?Oa zeucY#RM;;K+|jVXW`fmquPVt?b9=tCM*IpoDj7UY;=HNef#P}9SGvXgIPVl54Skb( z;=Ag0_PGn1UsZ)|UE`!F%sj89Z)(sjh1unr?2^B(?Onwd7b5dTC0yrOZ!&w)*IkTT zdY&)emK`OUsy&H0d4=eFhJf9b&zD(;wP+t??aq5{H}%-}-R?nQH}-RA?J<vgQoj1y zV}(DvC%UUtUG?Dh+~~%~X7N5ef#pxT#0$qYw=X?A9dwJiEogVA#cDo@RR+hZl5I6Q zat|AQ-10D_ROEHV#t9-{UuE-_cW&!;JGt<#KoG+@%k!o-3OmCbw>*9pCMj|vaDq^X zLC#nEQ|oUXoW>%&C9%(%-)qa)bf^7#t*axt9&_!kGJN?nZ0_C-%+F*k9$#9xX<Nnt zp5K#Iwz(B)hiN!(&|+qJv|DM*F6FfF2yTl5zwZ=>=e)IxtD4traZIZ)Pn=n?<HZUi z-uO1z9XfpPeain$y)diecJ73~vrCvIxSJ<b2S46&{?v}!Jx_jJYbm?^-MA$9pzQf& zT4nKuZhtfmJm`8EHd*>&RtmSw$$6ZQC0_^JiG0|g(7=DjU*Wpjgyl0L+@BfEk&*jy zGncc-J-|Zc<BzLrCFk6mH7EAm9GhbY9+b)byE@Z$-x*~=iQ}h_mQ5Fv4t=70=RxWD znrm_klcmjV`R^W04)RW(XmaypOtkEYRScFkrRVp0F0ZJ19k$myI>qRu;Y}&GrQO?? zvF6@*VVoU4G0HJlW%3D^jE(CeJ57H{|JJWN^DUlt%jw$e$WFbjKShkRHE!o{ys*FZ zeO=1WC5w7iU+>k}c3$)E{QnFIrz>+7T(hZL+PrE@RFaI)UboM;U&e<YU66T?_tJIW zi(7uz8vBPHI-Dut*k62achUl`CwtQCwiO5+XWqXzdB*xw_s=#}!c(J8&v;xq`%AZC zv6}tv2;UW&%8gq-Uzad-5B;dSB`3sdrox{!g)x`2UY2T1K6himV}=je4^|Z|t7~mv z%qkms<LpYkgBw2;ey`Qoesy7LNSVfwiRZl@<(cmPl78#Okqt*0o-l^4{hImkr`qkQ zc^l<8-bQ?mjFmmj&$iuG$UU^^@%R2eioW`{-KV^GB^%w_W5oX;``m-;>$bdjmp1S5 z+rZVSL8gZl&ihwg>_76>Xy+{l?N5fbbyEW;Z=8L2`QmczANL>BAD-XAYX4B-!_}3$ zv;typ_NzJYuZ&x^ulVEfH?sNZ#{LiX3vKy0p)4Znbo0Ce7XQ-r{`-E^O<!H%+}Xo= z1@1qtbUrfMF4R_98lsYuGa-A^w8SX!-ghpVR{pc*%&Kqv`So#rYn;}PychcvFFxNC z^HzAleQpDb--o-NrSw~bCb$>RYufK89<}XyuG`#|2U(x?G=IPLStF(J$Mtjn8Kmn| z_S(JTv~m7$E182~%PrnJGw;8Cvi;ww?3)X_m&f0&^4@rz=aBc^bz9!;4}Nm9&W-u0 zf^bvSe}-SH?Fu%@JmHbcb`Rb@-*5k{bH6xs@*d`Hias|x&iI|ST}<T~{!`WSu3o)% zBz&dhYw?BdJsVt==S=Q-H2p-uk0eIs>&;<{Vpq8txI4cN;yAp|(c-(P=grmfwox|M zUE<T9GaBxexzthA(#P<Cb#*3pg3v;TbCxGfHZBY*ThIHs__~StnS!FF$z~O1s}0W; zHfUQtQd(?rQ1)!z*$K}zPufSF-qGh+@SMA+r})>kRo5@fi{<I$pWDVz^`y^p1=G`= zzYkBc)p~O6m|ObYbJhPDyw>I3l-R~B_VQ)4ruNM_f7aA!rA-j>Kjp??dO6CCO`hSM z#Iv2RJ-SXTStn5%^|EBer}B9Pb}wIKyL`D2HS60%1~<<D3zchY7wGWMaG%C^L4Jb! zR`=w*^`AEj&XL{mI_la7vG^JKGyJ*x?p^hGKB;=)MW&_2JEt@2*w$*@UA4J2^rXz> zd3P>FAAGt&XNf>T?a}C7$@v)!El<1VJh}Et_f^l&p8*Rcy!<NbmhPYGw=~vSgK_7} ze<DvDdUrN|dCaVC^4i1Tn1fy3gKw(?FFjb*JJDxi@0#cp2W(f{{W808WRkyw!^^16 z%~DLa!+)<@wCSt4!Lj2EjOVPctzvgNl2x>81)I9!Ny+2Od<&!2EL{3Tfbn49t=+mY zdG1`|1<#omtkVuXsk)2#<l{-%6)L^clun&EJ9Cqf#NzaMUj?T;k!#+$B4z4fgJXqP zuK4a~KF1!z9IY#OHeBeoSfs&`rX}fX)9>tic6Sn=ZN<v;2^$Vrs4qMkG-n=L@$0^? zxiZ0PYdM_X<`uYCO}kcOY4e|<HDpSgLJEJPH&1ipoZ`#Z7OtN2@9KT$teYQ>F!@!> zU0t1DB<fcAbzPOF(>i{?`CgZ|On!DNYD3m_(^kJ{Z})WdPW_YZrupaiorp<R9}lkK zNPAjW;Q08~mIphnr%x!-p5?vrI_KWLcK_LDVvn>wU+_9=!`+`b96I3=?3Z@Vu8e;A zdqMuw#)I;$S&k)~3Xkj4@}CB#WS=cfzG)|zwLkMCZ|~Z(_g+Xn3|U~|xApt|WAgk_ zahX=GPh2K0b!jtWZ)MH?Y<yt4-mE9OQrkYg2;Xn{%2xY}@{y{mU*8`(tM}`hCQJCl z4uN@gsWSCipADxhKV7kU@p|?kzBM6p=bjh*cy87HTMk0!K0RJ|PCNf#!O?u?e_v!z zPGVed_0euk?v0JAOLds7<=ptaUi{Hs({kD7nxoW&kV%C<uAlPU9r3#&de)f}KN{D& zE{$yznR)NG1NZBDJ9q3!WL>)Zq{gkT9d_$uzW48mxSuyGe5SOKz+wp%zOPTJ?)S_Q z-gvu0<+%m3>3ui8lgiz~s%59|3)v)W-)#LZ{h)R7%MIZjud14Twawl?QenQe&BlG* z=`!hRW1-5Nuj{n_{T9lVIPdsAZm-4N8$V-wtL=hv&zCFonv1DRuKRpAj;ZY#<F_>~ z$LF3sA=<p)czz~N@mZyxy|*vz+8rBF$s^|5Jtw7f-Emd<GV3`LV$RP>%kQk?-+OiC zq*D*&Wdp)zpM0=3*muUimmTaZ>wK%X&0eFzvBbyEUE#~wn2lF-AMfce2|TfUlE)iM z)4(GZt4-2_`Ic%QomcrlzFq2g*ZXOgE}g3GZn0Sq=f2<cZT*My_JVuNS@)D(<4?-# zt9j&{P|NQ1CI4pm@onb&#r0>EbS6(yloDcKX1=uV+K%0qmkXXR=u`;*DN@4xI>vOP z$edeKd^3J~<$4-FSTFZS>SOHmL(jHP4w&?H#+vQcn<7@cShOejVAPshY%3<3y;#zF z;K@ApOZ!9i)Muuy%J}EHM`NRhxk2EZUupX-_Gj|*u0Q;~V?)ew$*x-;`yAvo5^S?) zPvf(hXxs7V*^*`VCw_B(^Pl0da&b0O{%tk8kNJDMzO4-p=nwk)x?zo<vs}|YrN8t3 zByG=?N)2tiC1Gy*wRY<3O2gx7UvDk=bC<VL??ZP_f6?r3lb@@9Ox6h#Tr7LBD4N-R z!usB=y{@Kn>jQQg<=r*bnpDAM!L)Db$9wB?zi{t-lH<;z_kfS{@z$E=<>#U#u5McQ zGx7M!^QP}ozDz2b`Sh8oxJg2$Q|JT%W+8)!5>XpLi95NB=hsynb(dN4Hs_t?xr={Z z{hd>J?Aa^h%U{;7*ktp<Gde7)>HgWnOl};u7N)tnhs6>OJXg21*UH`F+FY~KMqtUu zFKam#Cit=6|5?E9zch4<?zvy<S^{p(Ti+UdK;G}GarFG+#vcBcVQ&`*J)Ga^UsT)} zmfW)?wd2IwiPyGtMN59pEGxb)Rkcyk!>Mq)^8BSKcV3=Vm{^uB_x0N8oRmCajjHE! zxYm_i3zv52;d9fPQf4@L*B6^#pZ!jzzBrQ1zHyE8TjLeX$;>Z%t}lyu>6%j9{Ao^` z>}#&qo<hc&oijJ@Fnk;3npOFE;`8!ZZXqj}dGCa=zMB$yj?KW*{$bqg!sWtKcy<OA zG0i%5#UyM34^y=Cw(p`#*HwO=l=Ip8uZBqOl1|RYT~AGI)!FrqJYT`w^>y`G)uzUS zCyv>&?=8BuY)Xrz=7eLDqa<QJ#X6mtZoBceXqdIz2?eIwzuLR6d?{co;P|#Cc*%}D zw)e@ACe~AO*W75bc)m9`>IP$z1G~hdwUH5qGRtgPb0c3a*>K`i-|EO$Ut~{}Rk@$y zdgy7oY?qXBN@7D?fu-oy)MbmBr>5omd|9ipCS(VTk?_gT*P+=)e6b}tP0Ern=_<uR zhnJZdiTBN5-dkq)a$kmZ-K!1fCDhirFP_QH(4UjQr88r8x^n&^IScDHyO-y(<8J#f zJkE<KU=9z@efVCdO;E0C=X1LstH13MFxqWs@$%GH+f_2YBC{;BYZaat_VgJxURq<; z_AgEPDSOYnrd?kzx-4|Rt5wAuu5{rsm%uTviC3-}b(;mbGZrrrkWOlsE@Jwwv~k@Z z+fTBGtH0V^eJ%9Dvps2*WO$Ri(q{b<)1*6%JCa*p)V_+z%UF8jkb_eLAD^GM9IM;S z?hMWymi9*T?4{(KrN3)9GTX8*4Vm=twgtPw=ks1qHoITbd(yT0j&RSDNscS>7RJu6 zQLx*8X=$YAo#Y#9`|RdNrA%6R=Uk(o!wJiycF{Q@OP9`^T+FF)lPjdB`1ZY>e_fb1 zG57nPei^ItCQ424ap5`h5~ZDQ1DT)X9AKY!KPIF|MmX%svvq#gj(Lh`FFd~9ulmxR z)|d@ROLxk9t$oh3B2N1Ejh6veFSh=g6<~1i`0FS!mDTbO;})Av%z5gxGO<7S+InY= zBuP(Y_U6FT%NF^)d$xW4VVT1IW6O9VIestB55ADLdD6pJN#ps`Ex!E8e5tjNa~{KS zbyJ&l*ER-DoqIARS?bT@GVA{gQ7a3rbyPG@GArBq@AbCXDP4HXfo0axvLhbHC4vkm zhD_eus#&HLbN77`yRvMpwq9mvNDfPK&$G3$b`q`m6F$^)o!MFN^U$BWg)g+%x;yvo zE!93<R&!uUQ>|<8j`<nNmd8b9KD|k^Jiatw){FFMhlTI$N-Fd#Q=9fc&%h&Y$62rG zzmpkce)qL)ihGhWxq)#>U*XBS^8>V9pCzC9ZZ7o1m}!Ywz1QTomORTBKDN8sopm#@ zxyjZyK9Zez^3k|6v+wMEp06<HN$InxD(PP(A6!jQE~{_({yt2Jx5@b0!i~pkxhHIV ze|?+Qk)XG67T><C%6KZFUGnv9Sd!%nPg!lV-E#wDeN`q{#yoU*XPb4!_~CIIh9cvG zYfk)N*vuMKu{tT|Ns3+--`8%BSH0JkO$nOFHKFLa#p5rgHs%a!Y{vI3l{WtQ7W1*^ z^I3n^<6N9FGOg=87cUbEH*IPCDE)Lw$$`IGCnkUII=Rz7pm5gdNC|x%kN0PzJv|ua zJl-M8>g;z*Tw5wvn|H?v)_qCtQS;RJZUk7@oc<H)B+hTt#&fDtv`i(Hb^6o5pU*aD zMi<<j=Jei&Nt}Jf*F`A@Z*bl?k}UJtd%xidl`lWL3p5X$a5$jl@VKX^Ds54Cl(e>O zmoS^;t=r$27~e*27i@D=Jm;X&b#q5^LcM;5zw7f^XQnAPth4<gv1EGC8Sfb<+*lo^ zTb?dCrY)4wH7R=5%dHX}7J<`_%T4XnalP5KBIoOIrd`UqdS+`kwpI$KFnGuoz6^Ql zGx?nV+ALr8Sx;o|l&w(NZnxhtR&eSTqpfH5YZS3N-}$;)!0}W{@yp;D#~co*6rWga z;Cy3Flkt47p!rFQS+=WgYha#xVE@wiR<;Krg7f39iWq3Uu`asHD0B5`%h3r{rGK&~ zZpnDm`M6()&){&M_0`)YTEC~HtF!lMaU7FYcw+GWY+R#<%^Y)yK-V{047M$uT`}J# zeZ9<=wGkne$(G9Rdish(bT6MdaGEu5`K2w2iXjV<4=@)zpTD+vZ(Q5QOJ}y{^hi1< zH@Mq`o~b$LuDs8>I<!LkY(j+4Im_e=f3@8Nr`j~O9^*LXztr_j?}WEqXZVafRD^GY zo(^H0u+HN+%RGCjwUR6hs}BBtzBD7!?X!``Vuk_+8?F^gcdj>nk#$=%<6n-5t=YA; zYqy_TlAJ9w|HCS=LiSJ|OLa^2{zKbx74L=cls@@&J=MIHXU@9LwQre}bAvc7*=4n! zWH~djRh;)K-DRZ_Gwr~^l~Mw$r=8>H-o7_ida5M<_PW9*{<PquwnZ`z=I%In==tXr zi(9Wup1h;{xV+cyY~e-1b06?k9Mdj&yW;jMEyq21=i?fBlCLf8W8OZ2x%Bzo$gUeF z4BjkZuzSyP<-Pp7k8@}KDUMopv1O|p?=5Wu{T@xr;PaO@<gMLv?b8jhn5K$#>t2~= z%(qui-f*_Wo_mjqX>7zRal_-Pi;_<X$?tKGU$M@|*W+^coW7Esg0Jsy`p<CiM~Pd! z;A>9dETNQWw;O*iC9jlQwr|JfuNu0KTqYjkDOK<Kx$XY3jW6f#YMp#Wb9?3s{`^au zO6$9W6PGeBV*Z|W$fwESjdl20XYs($Zxbz69}V?1e%+b>u#ewl$IY9Yk5;TdI$y+- zckRcfkV7(a<~8l<sj1l$&7r$=2gkY}I(H51JF1`UINvE}V>PYgd)d46N#-|g`u^;& zyW3i2y4ofs^qf~=Na~s5UH=*SRHnT=F#pUQ!-*$szMM~v{8;fQBKbc<#H+U#_#D@p zU9WNENk8G~eZud}djCT!Z&$P~XiuNJfw}qKzPgA^^ORaSX^BVMZFl>9ygcKhb!$w` z>dSUtRqiR*dPZrivsuT;@>TRv*gwt48;e(l1s<NpJTdy(KGj%9!Lt{_72X|u&b+iB zWYL4_3CE64`TCn*KqYXC(cS##&mMnSsr*r;AkE@wzJ6K2<euvAN&gvgy=8nhT1bEX zELZt$)$}^0J)5?>N4FKuy)BbGubpkvH{Z3aZ-36~`TBak$kM|rd3R3u`0~dE8&94f zZTDlJ7!SUl_iRts{UfJKLe{iK@a&LD+p^{NPt_MjCphj|$X2K=48C$V<XQjBH)6Bi zFzzciJRu?U^Zdiuu$hlI+NU_GY_ygTynJm>(EU)2l{<Qb+c>O$UHvN`Gclo{{dDZ{ zH2dAb8rc<dKF`{AJoaP%gZXWB7B4?8wzy;y!T8&3-GZFto2p;guWzkUeeBQnx}M+0 zwQ#|YNk`Y1N|$S~)kU_aJOA;j&3>n`C-~W6p`X1^lh+y4P31qbo+ndY(njQ$-G=VJ zOLJPcto3bwpL?gCGjFN?!u5*}CadPB#y>g7Y8h0%e0%bPtIiFElW))3EWqeBd4g5* z?OW?!$I0#eaBXAhvMj-lbqgjed?Qho_;uAr9==NE^;KU~mo*m!UlnRP(~x&up}#6( z)0@ca8N6H4rrA$03|H8`tuXjaXpe?;<8$?`oHu3OiabkoRdxI&w{^ZvWw`dI#~Wp{ zLl&~6=N&%B8anMx4nsQYPUfw#Z!SvBSkHFwj_|n)7N+qhb#`xi@cCF(*pUhE;@CLe zz79B@6<Q@D_<glsZeHrCHGx}OZ}7IX<^4TcVim(Hz3REezYl9(S0_(wyL~f)M}BS2 z%>y9~N1kpxe`#0d%{isg;Z`03h12da$d}K$)$y~q_ThmCjki{0zF5~KIGN>%R^Q*( zK^p%V%9!OiA1lv#(-Um5-0sLnm$lQ&PBl(gzSdUxC)WZ7!4vFk(<dBAX6X@fmv7%| zWwC9WNCNW&|KP7{FKxQ;bjns)x$D1|XB=aA^7v)23`d9S&*J9E=eK1UEuF!zoVlkt zjE6C%=Jxd8%eyW;^K$iW6-wqi{PdVL*Fvi;tBO2hcb-q~x;9m+erl1|*E`l>H4nEn zaJ>y|p0#Moedoznk6l$fcPV^r!LKFJi|<OZGM-SGxApF89$C?*KF^mY&aW+;HEE8) z<ix!F`V3N;)*`E9<~*Fa!;<}rsmR(^mUR-PO6y}pd*-nfpVOMjc$(oR`~Ic*+Zr`@ zOP*Iuwf!lfQgSq8uGgP~m1<j4H{UrR^PnebwRf6>0`tLRRgHe%E<8(fp1eEH_)gHm zlNQpAZ{LSK-K==v$;Ymw+X+*T$32=dJt?et?QK48ndB>_Yb8`UPTfD;w|M)tmATAK zoXT7M<ry01e=Cgily;ppVdF7Bj$=+&Pb|H&=Lws{n%!xJ3C4mqo~?K9T{5XUA)MFy zP1(Vh3m3EAUaWcC@k-g+=<v^1j8hsMkAGcb5|%ijGH!<HtslyV-><qO6f$w{?h^;s ztUNyR#!la$?wp$+-d_J^`*rS{meuYGNyQUf>t@vGUDdTS{ll{B!h`8n%VsTnaL2BW z?MdR-C*jY}_tcp4O<t;_<s2jW)bSjfcKElPzf0Ed<EglGDSM{Mq?6JoXK8ZU<*@v@ z-|@<B>Z{)tD{jgOt<?;DzVqrI_su&x*C|)rvYs)YXXn%CeVH}N&-YC?GWcv4d#d=v zfoFTYzb)E$DSuCV@}sp}70WODan9P#sZ@LS$CJW)dmbOYmMG*=b9bYNHM?U^iQU!@ z6|dxuE$+JU*PgZW*HMWpudn<({V2S1l5EyXPlY2-%{Dw&UR!CmaNW;$PwXCfTAnS7 zms>d9=cDW;rh>N<CttbVxAx@yNgj!}ukE!lmDr(H@#BrpVsqw@J0|Nq&#}Lb*tKNM zbj60Z2UkzKE`5Ucb9HELN_u+YWz*}dr)~Y`t<+vCDH8tKbE~_>lk1*K?@iZQuXlcR znB44)-9>ia^Q&H!ypERs+gT{#WO2_zX;-|quZdOQ<hyhICKo20kn;Y*=<r~k|JJJW zO?wm<S4?-C_0*K(-qVm4*C)^K?U4@rQOUQU{N?723@Ph=?R}`<9%mN4!Q^;Rw8gC- z=PX~w6fe2A<yqC2N!xW6{PoZJk^8`Vw!PGvX`dCQsr^3saejjKs~77^yLn}kr=_V( zaM`^*X`lGT8ugD#&mN|1i*A{*(dpF<)y)^eFUB$L`mu0{+lII$<`<8-WQ+8fPww0L zG)cqn&-vhWCYd{K#v0##_+#3|=%3=Qvs`?VE!I!{&ycsb>U`vfbB)EB2119+82fvV z+xk}VAN_qd*!#oMqrdlveec+p+**6oe_8g!wbe(WmiN5B_*J@X=dGI|C$+SBWHooK zT3q+a=GXekcc#7hy8h<pqy5WYZ*;rVado!N@wxZzNBzEiIBIuH#9@tl7p&5GPp&_A zzjao~w_jIRGtRNFP+nU5^nvF2Z!s*>G&<N0-?^@*yRN=?<rmAES*=gf|6Qn4>i7C! zxV3fvrTml#Zo}Ull@@Y)S3iHvwD{CP$$uYZS<CEY_xP3G7hgJsMcP{A?*rQ?r;6hj z!W9!*M76g!&)Hhr7wdlWLino+i(B`u?U`ks`yqtYdRy^sS=X$aN1r8jXf2+=_~cq` z|A(hjwtq}s_-*ZMlaK_b_3D%34n@git=*FPJ2m56nOKooL-n;a8V=0ziZbN~SCxIt zJN)P7F-KX}9LJ1>4#5YXOne<G@zwO(`UOY&PtK5C&?dp-XZRy@Ysa3{hJz11gV<ks zO?%|@^xvoLqE*_pjSl@1#|*UAyz^OQ(xscJv}+#Q<@1*o{T8c8O}SOX5!1Hz%2w9n zC#NZ|kY5`SE&OTSpH*MZSKTta@O*06H_Pm~*1F1zepdJ0N&dQK_FltHZ`>qOieJb6 zxmC4m)l}8?50g)>GRjQZ7SnrEeVJkCsiJea^YRN9Pm$jCmZvT)uxHkpeV4f26&!7R zuu|rq=!?%UpO&ZZd@%9W#`Rm?yt7bfzAn0S_NH`^r7NFKuZoy>l3}^z?aQX;UhUF* zTFM%{uW;5^?Y$~;k)DsGSMz;#H)2{Cdgy6`<)4>D%NL4Q&vRXo(UWvoATpwVYNhhF zY$;!kBi@xMbC_RfUwv<qcK6e2&-vdhA8pFpV>M|5ub>m(o0MmpvJU5OJbXLTXH$Y^ zngmPo(!7_mvV0!S=h*WhyN*|c^@-WL9mkBra=&bGwFvUJI9_$^ny%3ltBTP0DFXg1 zTvxVTy!tepK|4LOEbeO6rIU+qZ&nd7SiWFg*Li<+F0NgC-h4Y(eihC*)a|Dj&Utm$ ze+I1^8!tA$J@sk1&Kj$Krn~c(F@#vHyLiI!&+EAJ9$~y&N*N|)ewuK%hhvM6i@D6_ z`P27rjp_FcRsLT6@#^Zu+c&7|Fg#wKHTA85Nbl{C+ygH%%5I3yY?SL;AuYK0<ZjEC z;mVuC)EfldosVXoOuNK0anAf}b5#`EB$%ohUq;%Nn))28HYrJH5lg%i=K5^jB0h21 za{j1Svuyi6HTE?;{&}rzF-Ms~Uo%5rrK#Dg*z+uV_Az=bdM>Z=e8Jac$5m3+bDvk; zn{5y)({#MJv448kG;`$%k?x@}W$RqFUisaglDT^d!<rdE#yxdYPKFkRwuQe>DgU<W z_Q}G=1~*IFmy&l*aVkIky5vjJ<Syr%$xn*busdlphxAM>Ru(vW;^Yfk?V?AHJ2Yz= zuk>y0UE?Jw(<JGjWn{UsO0G6sHt@tNnFe<)KI5(hmr_<9<13taYt1XZ+eUm5Uzt{E z2Jv~`?dmSEcyfAzNb-)FCw#7%?%FEJ8Pd_8Mdzosr!sD;{us5<`Ap5UKbn~v)-FA{ zm`j+aJ&*Cxl2pSLr>5HbWnRnJ_+;YN#*@#R!%{5bC)VYpt8WcmbA0ucWzpq2ryO5+ zybN6z>KGth^xbyVn@d_u2g~LCrusc-T6G{-Azf*b!<$_*%jcUb2;VntuUZo_!Jl2> z+SkWIZj1+CWQ+Z5cAsR}w<kQN#9ig?xw5DCCwM4relmGd0mtg^H~4N>Un}gF?l|Xe zu~uxw<0&08zbDHy`}9A{DgUz4X7cTiM?HD0J@Xu8K51PKwl+I{i0{vaXIm0;wn-HC zN3E6NkuR_@PYz$)=v{c-zG~s_X^T!ilHT@>S)psLg~GNXHqDK$PaEeL3!jY%32>G@ zZYjg3745dM`G!l+#(&>8tmbHCIFz!@LgZ`bo(;(d>e&7EZB4V_tE(w8FvwOnDP5J! zlAu<3()K9VjR}+IPw$x+v~}lsr{X!Ey;iK1`g)w%boSJ<A<;?w_cZPl)onFNmg%3J zpXKq0A<@0gcGVZLd2xJ<C!Xz`v!+zT%r%cw^6_$~s;f6R(=Fdw^<BB~kU>+DtK!$y z6UwI^&c4sQ*WKc-ZMOlBS@=|YZN}@b!wzb=T{yRRy@ch8w~G%oFtC4J{ZjIV!Qn~1 z>DwJYnOWW7kv(pCQsF;?)?B~B#>S?Kx86@#dt_3cE#qLR4&C5j@!hm%?%Bm`TQtsc z&Exa1y}mVMXM;z<{&I_x@1t{>4J26F7z)p4EmzvpAzg0yr(@-_O*=O=p1<c(aHOxe zhw+@Y-m?qq6HmOldg&}j;+BTvHgm4k9<fvqJn%kj`GPx9S7o+bOO@E%d!XmpqH6m` zTFl8>w%J9`?q@P9HvW5Wxq^2G$0-KZw!(W`i}yVa`C|EPtIpET8|FPJS*f@s_lWTB zmr=cG9PIgi4kr7&Se^(xC}K6Wbv&4v#IcxzAuim)Vx>^d69#F?gGx&bTMq<SKH2#G zZJ@E%4i!=M#(PV%-d*gCHPdn3`Oo)2@!SQard2ocn2QpgPx3eQQ{K|XuJYuutkxC& z-OqTpOnWf#&x^@<FJ)eP8%Ny`VbSN}v-%kR_R2A%8Bg2Fu4=pRPk6m&JHvX3KU#lx zwH5yQcKq7T+1r)}#qx5nPwT1+Vk_d0U$HvuxU{#Bcj?)XKApL%jOSlk=VmSxGvRpu zw9RGv4Oi{HD4yJ9d%N=-U*WvE`CeO7fA60-<K64a3|$L0?t4GAF<j>J=g{8<$~X5+ zk$)@m;M&Tjsv9qKlY`qNq$`gv&5vAI>a=8`vV45ismqa}1;0HX%M?dXn|5l_n#P+E zJjs&mrdN4+mb_n?Cv)udxu^De{GV6O5W5j>!QC*`beHyog`T#>uiu6V32$wXI9hTv zOZ#?NP?MPUj-ulWMHgM1aYgosfx;xskC7s$7;dW6vijwoa`O^!4}KrLw9I?b2A6lO zes2EO9w(LN97!;XSi$n=u2B}J-~*jY+V2kBI`F}6(dw*OJyo{dF=uBg%WEB(8@Zb& zDDT#^Nzt3OyxY~bJa@SQ``N^2t@cLCi?lCX4&8b=C->2&Q_>|jgk>1`wA(&pt!#?* z3i$BKcq6ZLPi{{M^QD#9w_dv!s$H{7Ja>0F^Lo?I6(@Inej2UZcxB&;S6}zb{GBZP zbGP)nH#W`hV`|@bd&d}w=^X83<c}#|CmnQs>AqR%leNV|c?x5`EnL4xqrCR(3&!^m zmls_;_vB6a^f=uL(WpncuO+SH*^8cE+O+;pl-}dC$ho3BQ`DcCK0p6x*|adX$z^X+ z<ex@{m%mp2aMaEJ>^#@<L%NyS%Cmf>r%UbJz4M;v)Ek?M>fSF6x0>_qlv%?i#yQ)o zp67inRcwe0m-(I?Ae;L1Ryk9Z=)Wme)uuZOr}nj$?wNG%z-B|s<I1<T=-9*rhAD3n zRnWYBzP{?wy*Ea09eeK<-?$+A@b?Xy0@vb@_Tr@>Q%ZNfx|QB>^@_Xn?!?Z7zk4~p zitZ?tT<7F!5ILpx(w^l13~S?D6Kf4Je(zr&<XawP`{%Ro^!zDBjJDcm*2;Otd^7l5 z9JX^i*Gb-EOcN(hu$EuBZk0vr#$NF=lh~P`6~Dg1e{AK;3rCBkwggT+Abt9~-PS9I zmrmPuPrM?Aca`z>dpq^T*53KD*e{k<Y?09-vm0&<vS;&dYu#3ANe!O=Scb7{vF!e- zg?k02C^PQ*@@=iemmlxf&OVoxBj;eDEaDn{*J$mT?rRyF54TH5vYwET__jLm)|vEV z>BLH{<?p#BdvA`+d$|4N+$H@*4Mq;Kj_Wq*vPrT;OF4-MxEUDLX0Hq^y7qj!)j7N6 zXa6(E*(jE;jO4!JI_=qo{5#>#Cf4tspSSe^$3lr!PbOr)pD$ctk`*@TwioN6O^+Gt zQlfseACD89f1u84_a(J3@5&kHGi*aXxn*Bi7<%f<lWl6EmT_~vI36%We6V`7rnl>W z%&(6j4;4-<;E%nUDX~Fbqxf>Bgz3fV7iCMY6d&Hx`ZHvmg>2#Lz`t`ZOZLp$p}g?> z>gLn;xA63o9yJx`D;GXB@8(gJF5}cKr%xE4FVZsG#>1)Osm#Ui+_hh6Ly799`fi)F z35`#CPdW2FDfy#awti*nrJb{RSnodzT2QvuT0>Ut&O5I4A}5Z|=n>tXXS30?>XLbQ zXlNR9-yErTOJ+U~&CDyY$_VHX=kofzedXE+2JQXqO?>`qlcH8~tl{L5US}9}db$%g z<Lh(A?_;&t=bBefSK^$Oyv43Oard)%N}oa)-YjU`!91&#Pm)>B@80T{ud<FrhlL$H zG_Rcb+Sa{aEVrwMh1lr*t7`6%2|2@e>Gsv=eCLzruPyB5Vpr`yV?42|fXP&)t+3DW zmDZK58_fhx`R-b5&OGP&-qhGLmy{D7Pab&w^Xl!MsjOAWQ)PYAV~uubxk-GUko8VG zt2k=MF>fKmpInbiU0E#86*tCC{h_}{aDw~U$!Ckjr`<~yDZRbDr~KQhXPVkFOQtPz zOIR>XUF1bh*UD45$7T4w?%KxsBw>!|WA&aZua_~(2?*Uin=wmX_YB(x_T|>QucmF1 zE?|3C_s;Uy^_W@Vb5_q;$h<&gxi^FSbcGK_TI(-z9^BkvRi;w2PK9~yy{Tc*Y5@iX zg)d_-zvz+9=AZJbr_MC!x#vBvpDC=5mq+Pc<TJZFC#Gy^Bm1;>zLvThihCX;Fvf}= z>k`&!R{pxG>5dzNRz&kLO)tH3N8Oz*T(^{{Y<OVq7_3*^crxy9Z(hWYxc9*m{?6q# zkmO=bI+>}uq;FD_!3|}0<$2jt4{i<(bziyt;aStK+E*J&iwqX;tuAlfa^!+a_+&Y! z{(ELcj560}{@@S1_~z?rgUu^v-eBC3%)T%CQk~ALi<x!OyS8tcEpDvXpOL?N;`h~A zB|l56=Y+oY^1I7#_Obq`qJ77@n(o#~rbT<^Z9S7^b^qH*bB$AzHBSVdI3W7u`bWF@ zMYo^di?%#?HuuGLqczo!a&JhyjxM!abH4I}`f={R)`t%t+BK(JZ^op`Ym>Z+a&LSM zoOktA6ni(zB?nKP7AE)nwKdr*;>C0)o>=ejqx>U>h1qA1lSX{r=Io-Mf6f!XrD`!h zeDdQ^^*5<kUjApu)RuU+^>C>`(k8vC0zU2MCv#QYRQ{E|tF!s2WA%4Qkk`BO@+|X; zthqjK&SyR6P%8PlF=mFP#pS?^SH~|0ueg=2wCY6hugmK4850y39<Qsu_VwAsCk9$p z&$l|}FRfgz{%PHhz5U`-*Gfre^4++?%JA*mvh&Jr(b)-Ix4e~Q5(KBqq+AKiIP|E1 z&++T)v(~HcynMQAlR?5YeVzMH=DGf7NcE3;yGQe5c*Mm#<w<H5am?xLvaj||Z(6i} zN5tul1Fv^{{gZv)PO|RoEV=dH!uRe>i)4EwlA>3A-83?|%H#Dyo{-oFUnD==ew^jM z^04R=KF*|Y-ut)q^<CKGpTBC6r;IN%>$!gmeuve~{jK$Kp8OWioTWmmcpu&~@Hbt# z{D=3OViS&@d2vP_k3X#E7TWqfuKhy5)X4Ss<N|;DW_d6FV|6vnaFU92ur24e^%M5+ zE}XrSTX45UQuY_=N6!!2|M0UBFHYS2Onb`7S5+V5wJXveF8$BY{&aWOJM-Sf57H-9 zu3Q{t^5T@{t4fPqMWK_Y9lPGJMRxi{y{o4tco#SRxV|@gpIQGQIkC)x@mq2^C7dsw zIAHN*z5R!Iv(@J3e_P%9>0(`4@eTgxG4&mP-1R%ZMyeLM?vkCbXilEolCT>-_Se$S z{1Vi0UhY55dg`P{neUd(dKPSRS?JyKmBm-C?QPk=hvDS3V-Cl?PHov9lGAj9-R5)G z%}t>vl%H~0B~QwJyD()<zu>y%j#*s?CN0o>^6{kI)eDhFeqY@<g;`yB{no_DeglSc z5qw?l{#7q^t{(h3M}W;;CT&;pD&yU+a$intD)Ml#X*k|>Yip~z>w{c&#m+Tr4VVg~ zb@m$`k9x6IbV=}p)pL?%i=*DiykGETv&KTtnE7>Ai=-3fH3BbQUm&X$u~0AYTT9?M zj_0PS0*ZHTJIH*D;yt~QMW9vt(>$yBQ5X6ys@ys#Fz>L<-^|43?{oS%C7ISc=R`Dk zFqGJS^fgvH!Mn&HK}1o$+~%t0mIvNq&$pIz=cso-jcF+0b^GR3zSH5p8FSdi3r~wI zR-ZL3C^BCm!}qnnbXk+7N=aVTKht~nZt$2h-{8|$dUfJyx!${*wyUFKWv*WjKL73w z-zP?e0zUSrqq{Dv=#{6sakB+B*e%-2_wT^O)*#CRDq*R|W<2d<NW6UCWNmKynaZd4 zrU_fHOFX`};_RYkr3c!%(%bdx|1*SE@gAGPaeMBX%9oLsUgpeHU}8KjbIsW6u+O9a z44cX(PvEd=TUMXGqG#8NTNUh=c1z|2IzKGyTYl%N^RgKq%2x2yEs%Pi^{g{GS?JP{ zRfddyPhT9Dx$d02{4HlIi}~`ks%twwZ#orGQ1<)U*Qq;%G}CVPKYSZ-?5kwv^0y3A zc-TKQUfa6xGUulgG9Nt7zYNP+6c)ztr0BN$hgny*Y%$t3Pt-!ye=kRSS%9xe0|U$C z7Zyvi<#j7qwkxyLZQakiO|<Nj_`)v>AF`KyKKTAsruPo@JI`m`&U&y~rl<Ji`5&R4 zNuT;SSp<7`ypO&v_G)9F-=_lcjeoMHY+IF<dQ0My+3(+B{y`HPRjk8#TTY%UynJuP z9XAnyjbaJLyLM%6`KHL#!0u#xVwG@I>kMt)6O}4*O_L|4A7AnGSa{p{Q(6_B@iXQ; z{=sQ!I-TW`OGN+VU60pBHaT0eJTQ1{+Wf9|^@=%pryrbhdXTuA%|@zz-U>dW=pE;> zG#o#huTGh`U42gQO_tQU;K>Jal9on1o$I}p$$yU6gT^b*Hk3x5(0f(b$6&g$SbxfK z=~#Ew_Vs&<e>J~X+3&>X@iyS*@$%{!;i~r+NZ4(ec45AWcJp<)FCV4NuAOt2`4zTw z?xyFe%)&Rm{mB-4BN%h5Z`)RvRF@!!=kva<W!=eRWMR|u>tbfssUx3ziu<;%n7Ej? zCBfkJouIHQHA{_lGfErJdl39*zoCOhv`j(a&nt7<xR05a+SazZD^!X(g~%>{_t-RM zSBA{ly<Wj?3;GUxa!tQebMWJ&YOagZRs9}ZWR=m3n;MoD+Ob1=<8iiC=1~Hd>fBU6 z^CU|iFO2x!<t5<BWqob!?>RD`@60+mWBT1bH{<3@yB4h}_FYoEJ;U?&5xG6zSKad# zS}yZ=PFU}e`aPBwa_vi9``RszS8XfuGz<6Gc(v+kqul%H>(^=>-g~@wUSZgSz^20s zENntz?g=P)Y_O1AeZk>}lS2TXqujo)DupW*cyi;GgdS~}up_z8IMOT3JS0AG;;o72 z7%fklCRvy0R6UkSTX&c<UE2M^^R-^O`(h?<dA>L4Y3XXSUiA`Jo_d4hANoJfs-Lp- z!kmq-%I2|ewQ)MSv0=wM>#H3Pbc)OxU%!rd=bKaZ+qAah8mqd!S@?>qiAr2IZnxPw zuJ)MCQgK?Y<+0_;X{JiH$J^gk&5?RuT<bUE(yLQ1nOaozAO15<R4A%TJRy1D%W7{i zY4+_3p&hz6PpYyc%et!D@`l=aT|6eP+@l}!Z8c~9*6Z2%i6<FCma&H4y0eW_^5xO! zZOq9V8DnHu&)X{V?mB1izUH?N91bu~3ZLBP8ntbkYS#t{n}lEduU!H}xto?Z*q;2l z`oqcu5v?ZU9rLyd&7Jq~&5empBCWS4_)D&I-K}hFHI;YLq9uL03-Z`MybYS<v_4EB z!8GmZy0$sfJXXDK>S=f`$s)IC)xLnnE&4G}!djNrY*<y+`bB=Ob17%UVVTD(7FthD zPZlakE#ux^@VxQX=4H;xLa(2RK1nI4o4UU|XH#23@x+5NVZKMyoF_NFFb-d6mT`QN z!I3usOZR(qxw2;@6fIfrw{@wGSFhS19s|pGugo^zJ-vr5k7k}-$iH#MhK*@2x~!`{ z`f_<~keOiMo3X|#aDIVp(c%RwraG{5G1z)8)LUX%Vw@U#xJSF>Xt<^_6UQxg=6hSx zI*wIUe_7#^xHRmQ$1#VO(dv2aB6IJ~6bamzvxDWkEu-ktbk0iSh6PMj-&U--V0g^1 z@5VW8r&~-hDNh)x%D=Cey!oQAXzfkgMbm4h9(+0LdXuQ7PRMFLew$fqr4~I_*xWyZ z@odIzJ#W1bo+muvw(r)R+p*f~@U=T{1Lo@$&iUAQZ>@^Xs!&fZtMrwoMp|!wRwh{n z8Sh%NcDHqUo;&k1S#7(tb1hT9D0Hc%^Ht=O*scz`#Hhg1^LfsrnX)@dIm))xTV2|^ z#fbH1$LZS3x7KDSMP;vCoGG>Oj+Of9<14?en|4lT(Q}nP%Qex_h4N>cQl2;dIhyx! z<<?Noq~(&fKiB>8dhuj-VOo!&SIgTNx!oNvY_<OG-S#YYVPE))7gtr+RCM&D$l2w6 zU7not@z{zV(i=Qq7`~02(0$`+v6geT+9f~3KMp0UxpP+b?^Q11&q>>=xRt%APekzg zr8UcD$=<LySGd*v^SbUVuh~^Hf3_`rto39=9{={O#n-J8uYB#_eB4UQ!CB(|&bMFI zeGlDecB}Mssz_sN+P{wv!ffQ^e7P*rcgTevzcay*z4CnQ-NLv$vqj6f%e9ue{XJ|R zH#KRaO2>lPijICuzW=JaJ}vIF(!EokPVU`!P`y=d>ZKpMBolY;?d;mpcjMfff0pa) zBIXrL`>2?%RlIwF<$A7J`N=b1FPyygpz@(LUAvv8eLKIl@YmtDPN#m(X0~hEy*9=( zHCuK|{|?O)TzlqOrR|LTvVGs}@0SaYaXk2&UE!(zM96ow%&KU%DJe`R$~OyNxEek4 z%;Yx5<9F3}eqXocN9D5)4Fy9BNsH(AZ>@;AaWG@G%%`Kz=e$e(C!h7+k9W?dZjYy> z5@Bl2JC_6*PqjE2%#{>weeOYVQ+Clmi$$rH_xM%59p9Q18>7?vsWsnuo~w7}%vY`V zt@pEQ+&FG?ZS5R!pXKrv=OtxVYh8P!ZlT+LuAt&*N!auyqKZz(YF|&=vNOm^^Y{6p zr#<&mi|PW+4BKqDUTv{{#>4$^sf7gd*EJHexO=p=RQ^7&eQosC-PxJn_M8aq|L|?S z+T!56=NA)ekFBe!o4Im}m-pX0HHWv^W?%fHy7pjgTJlesWb6L56+Tjp%1`G!XtMmW zuKjS;lUXU<QeFzNhv$4Kjw|(ccYc{@u{`hjj<qd0%&Xe9=j2+5az`FbE$3Oa<k;~i zcaBW6J-=hkUgpTpYYla}mP+*S8NYYD>U>W0cF{4vd;TxIgg0N=c`4ZTy3@tA`gw}G zxA&+Xb`#k&ch%zkqSuZ;d>UFRXvTTKQhsj5_rv>zU5i)UKK9Adr(pd>|F7$pZ>f&< zK5Of{>t~Nh-IqDcKf+f!70ucc`Pt%+R`+fT$v-C3HmzQ=;#@`HmB+HYH9vnx{t=yg zB#LKO-&C&KcW<n}CFr3#L*pdFFR5S4<1erM^5NYpWrZhiADD~w7Z>N&XQ=Gzi8=J2 zVaF{$_cI(P*UI`uevVH*-z#=~;!kVQ!#0Myk3KbCao(0UuD2s*)x#?c<)zQ}meoty z2;JlQ(OIARWOAzdd&L?2Q+HY(EehN|{kt1`&h?VibCYBJe%w1U-&%n4#4+Q(D{IcR z-kkhB;?NF@lS{)@TCAG|C-$|?Rx99Mf2!W`ebmvc;7Ljone*JF`-~@5U&_64V46bu zoLRj~^9?)f4wvth44*h*LS*H)wU6c<H<@*(iv8A7hx;d#Wy01@dY*Zbe|{Xh=xl*| zKLU#Tm*zxi@NQLMZ0GTK9ed?!pVqXCcP?&D*z_jn9Yax-V3ar0qMB7Qf8WSuP2DHK zICsY@e&?uy`L>}EjN5lusDz#TYVl;dkI1$wI!96(ca+GtM)cY2^tAh^F7d))SqD$< z)Ewc1c{i4JsnwJUEx#-I`fTi^8_%<Di7Rn&KMY|!z&@wyl91%-2ETg-Rf4a*44-M| z9KTYsOtPH8YFlOCF<Z+ubFUqZcG`0z!c#*3ob6t1sn@Fgy3IXrMb`+QQD;cszjD=d zfi*6&H~d<vuXVfFMSrn8z1v~6Cc`xOqkX=~v4^)z+L2WEeZ{Zqp_SrO4m#d_|8<pp z(p^PG2ljRB!M?UR@tgM@lbtu^63@0GONM&UoXCttuCX2Gq~E9aRA2iyf7v^(C1zig z8T3D|n{?h?MLE&qeBrt5MchGq=Wen1u|?EiUGf9Izn*8=4?lVQy)x92H?C!u!Ni|V zDq+tvUVm9S-Pz;1mgIMH=Udw@>G<idd@l4-M%3^re~{I+&|{O7?lB1&_Wb&*edWG$ z#KOZG{FC2zo!x(tC3?;((c|~Nd>2_ab8_$0n@^21ey~Q`S6_c>ztr6C!{yl6HHkc} z9id!CMb+WS)j6AcqK-ckDEL$s_$uq@yse23S8UFhpLM0|f!|_o$(KiCCq>N>&C+-i z<t-iGzDxI%hsdkV4YKTiHv2ojk5hkC8>qT-<^^@zhWD}k9jW`SzT=s+JNKOTM$4qC z>)Q3Hxl#<5m}-wozdGl=?Hu3JrIjobriBMjY`nMr{*V0u`&*)8Jyq6;x2bRST@|k+ z{8U51jFI{4x}x_1S~o1tZ}r`}GwZqT+BItpb$%**Uu`FKHIC`T{gOE~SLL?UT(dYR zapGvQtMbAV7710)R#x)<oICZS(;7z}j+3U-Sx?`L<y>s>_!-036>CbBb*d#kSzq#L zXu2bKscp)Zge8yO^_}}1Fn7y~XUb;p`{&==q`S3KY0BTb%a@DZ{KI*5ORd{4f3Auq z6JPU?BbsIZ8LI9D)rHAjo%(V9L$!?`l8;_`SvAx6mPgI$=q>UpC#nRpyDB_xp5l1l zW)>cEX6@f)>YY<WRlZvM3)P!lA`~d+DDhz8tS3TmuP{j4{#<?S`jUN*KTW)C`fNwh z-Obxf^WL31_Q@rqL4onke+I4GsVCg-A9~!UJ*zfaLGkg|CB80;9xpuSZkwg-yES?F z?W3EwZrk7GIdz)vB(~=lu3x;*@hA0L#adl&_QNahSjl`_Khfl_=aTu)6F<v57kyjL zYpUMnU9a2D!>%q<b)8R1SJyw9J<7Oj=P$#D>jfNFMVRh6)5Fx%Zej6d&FL*ox{fCu zpPF0GZs1>9F}=km<b&0;2`2?l9NNYyxAo4;e=3uMx7qJCIwG&G{_}c!*s{LoJ0%WU zFU!66>f+Y(p&kc+`qf8$`p+Qx@?)0NgNg$Y(TX#YRcf;reoWo_^z4S;`lrqxQ2u(f zXu9F~B`?d(qk85=xk?`D^UOQ8XN9`v-BOz~E>o6f%VmFbK5A&aY;xLt9cLqh!uj7T z)|nj?&dg-wop}7(O7Egut#2l8Ge6;1WSzDpH&CU_$b9+*uD`;ZekKXigAcCNKJ~11 zja>A@jR*fTSgx&3Ih>&P-obj-x$PZqkI$U?j`MZYwFNH8%zTE2nJ-*lEp2>0=kBGe z)6+uQZa2lYzl`Nwm?9Cgn#sstq3e0>GRG!ngLiyvc2n20K4Mi!SKMo{ZpPb%&6#t} z=G<Nybb8M7!t)G|yKZkto5WJQWplaR)zi^&3}w?8WD?5Nw(Gu|(zxaCJ^zJkg?DUq z_s>-fY`w+q(|jd#hlI84f_(O8yk`?{-{qgKK5x&}D|6hAxhiKctJ_?C<9ok2OYByI zPP5LPd0Us}Z@t>U!>OJjdo<Cp;7IRM1H11sT{kxG3J7UFXzFp!f8qYjt&igh4iqik zv06yu7S{?1ONQc*wNG8^r?&aqS~9Ku**&4Sr{}Tgs$0*kFDx$3{j|9tqHp=q^q9zv zX+2ZYxs3a(E={ZPc-14p$F<=_)|NE|XTN(MP^}8vaN$sHiD6!@&7so=xR2Yqrr*hY zpq_f*n8TCb*WEt0sq_f2`v-?C-8SLx5#1f1mV6PpcgR0@%Dl6&b42XbjHf>6T3NWf z<0O;m^Ofoo-*&y6!+Otf?%w{Y)ujxD)8l7+o|HW=?PI!T@$zG<PBrsbUzL1#XLq@| zgtW)Hrf&x2q85oS?}WwN4wz$Dz;5wq=geilMRVWo3*~OOd*kcboLkXvxjc?<tDl?B zDLK`v$?W3`-<-^+DKWgS=La4%mFn1^p5wIQmUwZ3{QIz`hYm99&o<A~ObEExc6+x3 z^Bk%0{^HbaqQ@<5dF^J++<s%Onp_&6S>LKXY3&mvxgImy_PGW|PgoODtoVfa+LSvT zpHHw~TI6@Y?qO`irnd(r56jKF>Q^(#i$SvER`KO4mzVDft6_VvjxoV<Md0@-52_lf zL-v;G8bvClTRYx;b@tvutBTa5<La_jX<Kp^r-d3ZFg}@(6`5PkrjQ~x(^lK8SMcX& zkw;F;%g^>SWc`s2W-0QwT+_iA=6h<fOs(zfpgWU{_>52dx-M_{Wz&kgr&lUAg`VR` z{__0NlJd;(f~n=jpEj=GIm3DT@H)<4zpey(Z^?hK(USf0wK+>t78lLEb3FTDx7k0( zw{IiO`TX8_$osKo#!M?ekv#o;oz_G@34N8GKX*CT{Cu}n(_u9a<4)!q@=;ee`fgg0 z!(<&IaBRaQY01}LOl@~7vdrl#;&>Z*C+pO8(}n#>)7YErlB^yr?OA#FL0jC7qs}?M zr)+$zENSvtBZm2$n^A4;>X25o3GAtsdS)9B@a*YI7E5eAsLV3o%e|nvj9o${{mU|w z1r3sp;ZOK}td4q-bd&X%O8o3+j~TCAi@mL*5h_yh{KnOrPZ_&fe>yy7Uz>c_d)mQ+ z>T{CU#sozRtEJyL<!MtQI^AS0x6pE%s;k}0H5CJnG!>uE&pNwnr|O0RKkM?f(^fp0 z?C&)9RPULe=WVViBsMZ@J5M?j@|^k8QdYN%+dr<<(q62y#PXH{m(|4AVF|td@&+f4 z%dXm@$J}@Gh1TD7Pb?2A+xMocm0a%a4p`7x)@0mwwT|QDtw@KH#~A)*?Xmd1m;cgM z-9-uaHPm~aTvvIT8~Nhc+;6&v*$f-%8G~&%y=8Sj<!4*?-fvU4<lz#V=4)GcSXS^h z6*u`;JukM7Rn3<4WxFozc~W9&o9;S?*H>1`*1it%aN1#CozJYcFynx-_VszJiJDnn zO?yv$=rP*VJjrn0)gld}C#!@{SejhjcHpp`utkvd)v2kmrxtS+ZV|q;xoBT|jKcP0 zDWy%kN4~zjx7J01e`+K1iZ3f#yzUsPI=+1!w8FYi+9r9Kre%rg)6Xi*r)AAozP$fB zY+-7oI75jnd(?_e^UOCKcVLa#Uf}gWj?YteWz0I)+U|>P3wl>w>VF#cKryy#rNy^Z z7v8FK-QIaFd~3Y((?#!UYS}GTL^U_dtvi0_oh3^GzfbUO6%8i?HjaN=w0duz;NkzW z@Md7&C2yY6NAnM*o-RChTf#EbhH*>no8MQ&<7@c!Rogt?XnwN0vngScrAo@ImZszD z*lQ1)WErhy|I~1xxAA9#<m0XBG0}PFE{QZ1dHg<nYnzl>8gql;oUiAXx<2*X=X}}T zT>WR*#_P#qZx=SJXfX!vXee$zYx@1jjwG(_asL^nX8UJPeZsr;T=BJ)whICeyr10n zXqIPA@j0Kf20I)ZEYCTt`sBK0!eaH6cW?X-o9&dMqRF-3-S_V+YPMA}wSJZ9zqTcM z&ZXS7T#N=DI?JzoXPfzS^}{J`b@#p&F3Q<)YdO2j*A>OhZ2?Q`5|3uAuingd;%#C^ zc`gH6{H`kIsDMXC?DrmMCY}vxGD%Bg(0G+~cS~Z-r}8g$En%giXEk4CDhO^&Zt`H@ zNj9yz+mK+e^X<H^PO3U(+qo~+y6??cVtwGe7KgeGL*cERv2QnCmOabi>?6*s+Q%=G zwk43m(xyJ}-b&}GLB&m0$;+~x4o-Pevxc8x-WBb*YgW5rw&n|Mu33HXd4WyR*0+m# zXLzs~9ysvis&#h0P7m+tJIM>yR$I6@x<xS5#bqxNeASb_NWIT^-ofAUj?ud+0!|c9 zK5uIn^46jDcVpuG*~%=}miF)-SLQlyDf4)1mC4jC7OTv&XGaz1CmHQ{XElFq&LN|g z4F}GNBwMcWwe>7ZocO9<ZtC8g!v(48%&Q*lezc}w+q<*Ur8=`WEZ|#GzSg_M&++8_ zL)#2oLpEz_uVnCA+{1YAY-Y5ZPmO^4-L<(3DwXD~T&B0^+q56nE=}%^=RVkGOCP)F zU0kcJQaB?iaQjB~4eK`j%U8Nv^rFq;G~4ZIfiZR~OHHqCFkZA_=7F@BKK81gF~|IG zM=vzY^Lsuw`&Mz>eb0jV8Z2x9RWhY()GqS~ONyH9{&0r>b*$O?yyF3aKbtI=Q=TN7 z`X6C9J~N3`Jj3<h%lwydMK!CPe#RS~$@*Y>V0)`upt$PBo_T++xqj^tD{}cW^;~Ss z2aosBRr`Kdr<LX&W)S@IF=p!5%R0F`nymAlT<Y1f^RiUV^RKr*P0xAcsBrhwTN}oh zHIq*lSDm?UXVrM+>e@J$(~}B&o>p}|SHIfgy~(JEL1q2Dbtk+uE9aCd-OLV|(*E<* zqFqhQa@kT3W~wvty|ZErQQKFUl6$VK&%tEED>aUTEa|q@*FIj1cs|KL@RD)o)J@FK zS-!3|&gK^~VmsAfX_Ndi)aJ>Q)vFuNJ74)dEBbZFB!k<H=NJ4d<<(Rz^9hdX+kQPg zd51@6yN{f9y5Dux$SEGXo0)gc__8iG*<c+L6T79z;=oCU2W;eci~U;SR>}sfdUW;X zt1_wo3{x5P4dnIgT<^Fq&C9s;_=%S!*Cf7|{LU}CKK{;4nX@o~^L?N8!b@K*8V-x4 z*|OC|Jy_{=YxDiZ-M+g13rzgQoNX3L#aOR*d*AQ%S~~jP3RREC+<)w^n?C#}c5Tt5 zh$ELBdiE$!p8Vtb(w9*waVk@t@4hYk?vr~^ZtJs<u<{qRyjJrrnfD!EQXzfx+q7A$ z++O+daSKjhUt3%JP&eDxs<icV?CLphIMz0PG5y%v->m*&--6FcktZC&*$eZ&ewlxm z*V*?YTYJ7#ZrdlrEl1oq{xiJ3+#2fbdgb|gjjO#gU&X0Th;No*P3=i}vYlzq^9ZBc zC-bwPPSH8#5KwmARj<=*uFhuZV=2MCa~;n|ZO={TTdumMr~c~x^ZzdW3YuGAf6wB1 zd)!%zz5NsR=lo~jTH2gpwWV;z%(RS%m3O!e&hggVI#`!*yqux*fZD!8e|P4d`6tly z#L~4puyd+tT}(n#_T!@|oQJ-yuV>b)3jb`m%Jp*DCzVJ`?uK>jvL9@<_FNKEetNFr zgr$71&g&*w;o@Y;bG+_4^P=X|UcR>1q|fb(aBo9T^OcRSgQL}+<sMh~`k#Soz4Xk& z3(fa0t#g!|u<}Ic%gbHYI2UsoMSHZYd9z^hJocs82f5zm2=^DB4Qo?uJ+IE*yF})9 z*xbE~_3jzj`j)$96rH{>>Go8~uP1^Ju9Z$xJjPagUTwj4-_vt%D%-lh4w{st;dn~! z#@d`jy`yiBG%aWgKFlTSIDz4J;~Vy>HIo(@YJd8C(r&B5gr1TF_A}u-S8bi!k@a-P zQp1fl=@KVxS6MO&ZOQ%YKJjYh%hv(62i!Q8Ygq}0F~4)wE8>)S-gBksl~+`chJZ|J zkrDgau-r|GB^K<<YO~6A+&O3Vq_1MtqMB`YcstMWJ7`5`W@U2}+j4!<P-bLvJdyK# zby*m{O;;+z=RdZd%WfS=nHaI|3VV;7Z|N+#>ANM9+^wBU&&G(JyXrnwTR3x<$GL(% zpU(FAFIfBA*K{en3X|Kz#y_v_O<nq7ozptLhyO(PZIfQC%HXv3<E>qjH(i)6cT7Y~ z>*P*%o?65C$L8D3o8Z1LKvcL{(c);_)jiJ3Uz)9nthpXIX+eSZsjdGRr0!--ni7y2 zX5n!mf$_al-Zzg&>*GYG&Nls8FB}<d(kWzmX2El=y?cve%C<fV+dVaTW?aM#p$QH~ zj9=8|KJ(c5J7jh4tIm^lSG{tJuKUGadnM-QP*WUrRL(TU=jkFncb(4*iZgkaNd9LC z|L)EAbIt9WYaU7l%0*8&K6l5u;;@fX`efal8S3h8uG0_r=z8?XO#OLxt3vNQ_TFvf zTO8xLwAB4>pTzu^FJnsoUU>4P!HOr8b8Gs<4|kgH@4s@D^WEK;&y%X9<d${Ep4!!L zS}geBlNF+kwfU3h-uAH7F7lq!cBi&A<&L%C!32H>U)@taPq#9CoP17e_QQh-9I~&A zeqBuovUo6W-`4I8N6xeq&fBq2w1{=;)E}0|mu5uYZT_@f;j8FW4TF<SyDL{FPtksE zu{<#^)8>7;l~2!umF!vt?xx?KAKDx2`FGVmzB@ncqi6DWmb9GhS@P$d;qkcahX*aD z*+tKKT_;%Mx&KG><8Ikx{~Z;lEQDD9nV#47^*nl4;L*J1J?Rg4!w>BGdT(ZJzS2qN z3DGk0g%N>v67N|(9_@G9r}D$z{m1hM+4^Fcn(}jXS4_%nUR=(8C;aF<)gSeROJjGP z7Q4pV5K{Q#x^0!`x{S5l%j2hh@-Oa9-p%{n&swS=;egoVzO6;MQrYDNr##MkbwtTL zoVsn^obZ{at{q>nY}T&S)f#Of@6KP^eV_A{c~qv8UE*$w^H~qq=*)Z<z)&{HD*S>y zS4plZ3x9dmB)bRY!gFMP)oQnkn{wQ`J$FW^rT3kxx$O;KSO0#!BEchu-Djmu>Eo{N zxm=fG^^WpvDl(Ay*nez;NvxWr-qADGQaY&)5|6gNlUz4riPw!|9LGgJO?|R_(S=`K zd4c`=-km#lsdB5*#@nk-6!y%k7mO4A?e=3;uHB>Shwu4pn-rt5Gxt^KOvYpGSFT@` zXZXYM-RkJlV@r1Ho_J<1^H;0=kI3YQKH>k^F4~kYzrA3(%Y^8dDKTkxf5}-h$DIqE zekk`!e(uC4$%VyBRi!h|pZ}r8RZy^a=k1fCo0Bg~oUUS?P`7MD!kiNex6R%0U}Dd; zxpN+fs<}O9W++*|XxW+~-#fRu4OvxcZmO-1j$t|_)AD5Ejj-5_Ws|MH8>r6-ZJV*0 z_l<#vW#Z9t_gH?ryyMQfMh3^uo-w??HY+-2|FqLPJzv<a?%%rK&^kSjUqXFthGV6& z*scEzZB<+^y^h<P&Rd?Gy~1eK=Bc+Yypvy>b30D7x4^4S#(r<XhPcKF1xqGRsP4LX z`TgB4W441b+ErCom;CDWcHXn`ip|B7G3oMA`&kc*o=%o!yY@P!b?(DgM|gMM@;q^H zt#+*=+ch3DeU<e}TW(BWdHrz75{8xsUoFpOMa3=>eR?>hfX)5dj@7olQBI*7W>+43 zwq<Q8r<FL1T#Fg!D*s@$FFWtuif3x*dH2G9YrOcv#SA-GcO0+z9WI``(&O&IxTQf` zrUwRjo=}ldc;~-=Y1YgsQ_udMc`_kH>^QsH%!3L{W%HV^ZDw20zul(E|3Aa3W!397 z4V*TzE3>ViDd}Y;zKP$4??8Rj>MExN3VrM>a#zJ~+iVD!;CSF}=)3jJ+6%N6{8@Os zYF^@suiAIdEcL&q!o$0G`L)f@W?p%0Z5NaGb-C^N8Fo2+mI+1vThs5v<h3w29C)m> zDd(cz((IevZ?*U?Ue7$5d?$v-=tJT4zO8A$(mKqHjNBQ@)|GvG{;c9ysK3*4wv9R0 zj%^9IX?;~KP_cHcS?ud(g@dxjC)ep&FOA97^5#3X^~>+W9E>pueKVd&o%$|qo$cMD z$>E)wlQdtYJ&CpUmA_4i-PcC3B?moD`2B9xnRV$&&C%lHOtWh_FI<@R-6(}ez>o9o z+mO^NA|Bpy{EqKmM^1{Ha%bVT&2xI@Exxwt`TpalpZ#elRad#<<?J22u-4UT<;|Y* z)dBZrdiNeKe2~1gpg8MB{*>P1J&eb%t$7)B+ngnDO5x<l?S;34FRxV(6hCw7l*M5= z-w5-%gkxM!QuwZ(c3j2V_4Zs<@%3Bti&q)ts5I<2XB==d?8=X{BZ6XFlXe_e+ww5+ zsaDNy|D3B4x!<P!?369+o0=q=RJ6PC<O%z8d$tG1@-OcZQaR1UUH+g}OEc1d>FxO- ztuuww;%85LJu&bk!;K@NDo=#FV!oH_Pdduh>D0ubQXkc4QJLf)cegO?j1I#K{vd`W zhTAv;Cm&bezt;M0mdgC3c>w}^5np7!n0&ppuHlor<oT%R89g$|5^qCPW^>#)dGg@e zM^n}&&+}cL)@zX$@uykKQu)%_pEo6x6>F`-OvI(9)ZEdHYI?gpFMhhR%=fk7VQ21b z+gPw6_3oU6PlbOqyB-ES?Reg``dd@~+yg@U4NZBj+hv@1!gwrmN!rsDF?aQC-r8;L zuPxs3lwa03_|B=2CxV~(+_JUaThCa@FmKM6wLv@2Yi5P)*vWfP;_LCMld~RdRH;)b zUtMmQ^Hyd~%2j!lw+cL;`}V%tW)Su2M0w@xraxP4v<~QhufB9Je`|-$#xJs2CEHSK zzRG6Wez!{6DlepMX5h!qzBRs8`u72z(3GBI1#U$}2G*e)mhdp{o_BY(WTfnsM;TF~ zuZ;WVbY0n2yJTt-qfGO?O>buxu<$e$urJNLt(f}u=ht<b^I9!V-a58-VS->ly4~Kk zY(G=3$A!9mZmy}fChe}cRd~R(#EY}X;Lgr>h1+&4z4Lazn_a=ZKnVuRS5>n*FDy_f zIp$WIc`VgZ-gw31zGI7@S1`YOyu#*+ZP=qIKBL_nClqoe{``Fv5-{WL_j6WVoxw)w z+ZTRa?XmREZpPgUWDmUW>b`MRdt*nJBiE9eJB`=o?5yK^kd-RiAnDlW$GKdEHH2wN z`ucU5%gZvR&OPQV_Q+rX1LsMbS=+fb8w4=&Sf%gPI^fLbF4NqXbtJIn@j~V~^PXRt z*Y0Dg=KORK@6n>l<5fHJ6<lLv9z1wHDQjcw3_at|GCz}TLN;!6Si+OOe4VCB^sO^H zCM!NY&r;-S`i<p4{fv2>F9VM(?NF#$@bQJ#kwBF_4}|<{K88)&w@j$tNwsHFOZ@CP z#Ro)IatOJdc^bL-oP|wjTlW*q*5uxsU%ste+?rA(YPhxHouPA8#IeA4VYlK8w>s@B zaxOh;<8nLX`Md_kUspE@6uG^5Eb&cl%BE${&m^?HsJ^)9qJ*d9u?r$WevkP4w}$N8 ze(SmRj{d4!72TpXEAD=Gc(gj^nAx`TQ-4jq{W5gXMVa$w4o*5>^+a~|j^kBb(X~BH zJq=dBt}Qts%Ci1sT!D3no1yaOt97p?H&raJEj64}X83fQ%1TCeo1V{KS43T@)LJs> z=&sz8e_kgh3u~msFxWkK{9#Fn$^$j8j|bmI-FKPTy6#<1Y47BzGV}P@*<S}A7iN__ z?`NCsd_sFm<L7zvW_(||y>oG>W)r8vyaOS-ZJorU1aBP>lvi00*mY&A1JjD1-}wqM zx4oR$WNG)O`E~f(V>eE1_<qOwn(oazZ(2%KwyE?UNLF9@!ZrJ*i)6#8ro%mtdqN`) zL_7}K8DP{bT6D*wE;Tf+S<ApRZSLKRH>OTo`r@$V?=u`0x_wjEXEdoX6!(>vpWm@c z?CsQ^5|t;ve_xxsr%Oi2@jSCk+HQqnKPzdm69>Ip&$+)2e|zd@syCZT&-%4NTPCn* zZ=GUzz}C$*cDr?~bIozfmj~9n&9YebW}E36CU5n#pA;pT<)*I8mQs**)Ux_~PTTC5 z!Ey!}nYU_N--=FQJe*S4e70PdPjj_#(xD<}hT8#6ZtTjJwqESwJ=?IPi9=H5``N-@ z*Skve*`iJsuY2_^%EZfD`(BJr%3tx7>*TI~+x??@WkuI*hYx>`t$egM>gADw+nHvq z)7<P@H+r5r^(?QzJFM#7O69D{K1ws6c%*#VHsjl>2SvvBcJhneUpse;=MLq^Ey36C z^j*FFqw3N-ex5rgi}Q8FubWRY*;Xt+i_L<O^Xq#4AM<O=m%h4g{L?i=?HJ1^>0A4} zh3#`Ki@K!jgVwEl6rHi$$fnQpVYtk*ou~K9aK24xR?gaRr{ej?^=4Q1c$coc+izIL zaMa;-_!sYF(<=dQbUq~tiWbH0X0Xlf64-w1ZStkX;<kO?jyaZR8^;(3?2wM^w2=3D zxb^2-#m|$jJ@D!(JZP_7&bDvIhAVY!HT)NHa_SVkcKv7QR%=bGmY6bQ?MX?F+kT8+ z&sMs3|I?_jKYCV2D!t7l{>{p0!Q<(CCq=5Jy~>u_su|?vd3RsOw}Kg5SJ%H)J}uY# z^^0BXN8ZB*))Iv$Rm#?x{d;_Rvi1pE57W2%jDKWJmx{f&`r$#-yIT~_7Bfm#gx}sN z`cV85v!X)59RWAPxM^aAYj#e2`1r%8!+wWmx0b3~vXm_Qshpwkn7uL3?Ow*Ih61bS zYppDoCM7Fqr7N!9<n7C^TpOvP6>NFlR;%Lu9oe-FbG24CdH&qad`$Dji{DdL{;cn; zzNTBEX|_duj>*QA{?o6E@_bvZy=nC(-kpbjUE4OBe^wVy_4F0LLbgjeP1s%Mx7<|b zq_y}-^^Io_a_gBJ-ko(JdvDJI;p_6PMz78%oZ41=d#Ueocd1RgHHw=jWT{M<Zn#D1 z@xrA`ycXo^{E=av^-KQ2kG<iZx+cG8Ix{TUl)!wsDf_sMb)iAV5vjyE>egi`@+(ch ztUt70<h5A2z~4o@+kO`uc#xZSSoFc8CAZ4lFFu%k>-p;AkL^V>rVG}tKfJ*^Q>o+V z!4e}DS<k4i@vN_Ax$S1YBkjNOKEsULpFYpqT6`c*;?h3l7rDGo%)Wna`MvbR%i}pE zM+^69e0Wr&dv(zy$x>gnn@d7?E9@@k-F$gIlxgQ<&r>!RZ`=wEw_dJ$KEwOQ+Jvck zQ_JU-^UUfy_v?nC;3lodDwD6Rc=7pu_AaBC+gVa(YdI9e+ML!{JXiQ?s&vama{Eo! zts77EUGd{I73(`?HYMs+CHvdZMe;H~m;?LHJ#f=W5@(!Pw8?1BqkUpcW)sC(+O>CQ z^T&JrHU4q%;j(M{q+f5FX7*P4Z<7;Cg!F6~u0M~rZaPx9nE#$y@Wdv=E8#n*|1pZ? zHy78~E*Fw&x>Ku&>-pRzA)fiak81BQ;}_jsoc&Dw6yL?uG7qjA=7qLJv-00NRv-0M zY}V$^B|%*$3_@Srb*}37+RM7|q!05PKDNT(Lw&cmJ>i@Ab**#+W09DS;APvot#_qw z2T$C+;WtNk!0yf%IrnE;zw+(~x`p&ieCgN3{xsCvxQF-n*Okf*LTk4?;oWJ=TI#4Q zX?LWMchv!=<tn+R8hj6)Zu`%$iLKZx>GqDE++UwPLMM7!ck_IGJL|4Wvi6O}HjyXI z=O6Y*r3HrP*#-6pWLX}tHn0m~XTG+mlFey@P2avpD;L`<-8y$^LPh@UiF3HN#F$v` zVyZZ?=13VIgG0FVjPIh>C%T#Pa(A3#%h)zebi(9wsi_R>4jG?yxvmz@b!6u;roNf0 z^a~Dlm;C$GJZp2-8-LAdU*h&hom^HP)Ok5mIqON1PjXL6*SnJF(7QV~9cXTFSGdl* zY|acv8Rp&dv)&|LIXWdSdD=-y#;A^4>dDilrDuz5h;ryS82E9AcHyj(S85U#1+&lE zaP%a*ZQa!8^E7`nip@^c`F!^{M~Gt0<w^BiA9I5rOL^M-3!Zsjnq~cg?+4aS+P~*K zyJ&Cu)1}|%9egY=Ub}Vq<t-EP)I(3p)EmbYm#?`Wy=ML{g~n+~#pkk{rax-Ey2bct zl8=#pzfpi)a^&_nt7#U_zG}tSWnY)9=@+~gb>eNF>FWa#qBZ8{yzA#pomu}#_hZja zKF1vXs0Z)s6!t!8&%Cj?&-zky#Z<i~XAb1P<F5+O$<nz#KTgP4+3bzX+b?I+eM{Dz zop$?ta_G8QoKsASv_8*WwsF~v#krCy<zH7zU7S@M*L$=-J}@+8kB;=@-Jrps_8A8~ zbEM1#9Dm<Q&scPLr^$2%o}OCcYco6^^x3jXhnE>nz9QwOd{&|7<CXGdYqamX1<x`% zz_;YtCjCVTcX(tzxaLpXGRcoWC)9g((o^@c?=PLMxar>A6sz}CVXCA;)wPs~yCz6_ zm@Y3(RNXvNS(eY^>uR&YgRAr|e>(f}y~7#Tv>-PAYct-RdeGct`+DK*!?zi8rXH_4 zJKI;`N%4Ev8SBex9e+#KWY@9>)^lft^W@~u&hb@F4eig7kNT$H`HySsm3K?!yqcm{ zNc>s-V6N=)OY0ZxYPVig@R)s0*Kh8J-;bRC;bWqmTs&<@C({Y@)Xnc_S?&y-*_yF3 z@~efc{{jD{-dZfW!sU7X{~4mzzL4j7{E=HFTcqPn*_`zstHbwKg!^CqI{U<;T^@&w zQ<~3<e#<}jzIi{d>W1w*Dy}{I(tF?H7UQ=ywOxDPFPxL*_s#vluJAXpk9hr9cW>U7 zd06w->f>H--u`2{^F!aWcdK-z?h*&iq&<0G&O67ioTcAp(yMmEJvm#Z;6KCWbD8s0 zK7{o?IxF|s`^uLec{<Nx*R&S6@38H4%`w%w_%ywiYwF6=vtImp`=P&`{pQ6<56dPM zO6EMczT!vt!E4h#Nv;#Gmt?-S%_j1<@tr?L*La^bs9q__j4r#$nchCH{rc<R8w&+k zCqGGLUwQ0eJY(;nkV99WRxRIb?|f?SJUyB3S4*_-|2X-_a@DQlSx$4<6wIxw3gb>b zQq2Ci{6Tq_iDR?swb?q+(v$i(Og;aIwPtl@O-=mzSl^6)C7kM0c31H(XaBl>jh)~N z{fGVRuf)x}HaKlCo;?2{m#4bv7s(h^?uZBH_RjA1FaEgg<Sh*|5C6H+Mh5ctf<pSw zgw5U3Vl~Y|$NG!t^vqh(yZ4rw7<DR7`c;|qc-5AktY2>Dcg*BFctUpd&8$o5&Egem zSqCepCU`pkQJ0b0G3hBs&g7nJQX2z5^G~fZc%yYIW<$w|QyY%Q-Cey%w$F31ud36L zx0c#}oOi5zu*<+}$)BATDqW|=B_z`Y`x*-ak5_SR7K+|rdTEQB-f@4~cPBgbtR5uK zy0H05%`~pqIfe=XR<+svU4K>=g@{UiJ^4k{{@ctJ#d`-B|E<3;?`y1HM_l@X=vS|1 zi&z9y9+U~aQOd|=)fe*Q@rA1Jxwl_yo!zq`rmra5O*YRhOra&+-r(O?xur4hA74p! z-jj2~;rIL#*QRdU(6Zp1<C8~wUSv0Dr8iVODBz83kG$R6b5mx5{ZhMZfvP1^i<GrF zJ!}~G7p~3FKdk+r;qLD688=@$?%-Qe^7@47*34CDf|ESe7usqTmv9?jNV+m*s(W7X z{HV?OD<(-WPqAbP7tO5SIL-I*dYk8_^}hq2M$UNhJd+{W<Y(*Y+H-T?Z`0(QQd9cc zXWG{?R>=oN#g}$|xpF#PrTCXra{Q{tll%jZRW5m6^jKQiD|@rFG3%*~PeL`<yFKEI zt&%BQm0wXVpu#Z8TlkNuSN2Si{0EcINqiNZJuznS`e%1I)yw!5!bI;(6o}!O^HntI z*LyCHggp-)6!<S#Q$2g~6DCi^=zN<5`R4&o!ZjxOgx<W;yydy<=C@I1*AFSr$yMpm zEB<-i<nsPm9m^RTmCLytRzALB5MCIXeC*Yf>j9gsL$0t)6nw@v(<Vi#@70%@<y9*s z?!JwAQoicM!e|ygj#b~KCUSAhOg?TiD|2FU+VilG*@_=dIh?b+{em}O?>?T;2@k6T zj%`?H>b&Fcn_v3Hk;PfoojOODte6A7N^M+ew#3}S@k!x?%x_VbwYA$AWO}L|?Tqd| zcxv@S&y%vofw%6pO)*rhHI8`~W*!)}%QoEmBbWScJ^na<(af)A%F^GzG4@uzn_S%* z;GsTe&b2S*3`Y-FHt)M<{AJC%t847jQ_CunZomE6G~rBzj-lUg!{i;cpO34r%{-YC zIltk4zgHlipW)>DeN!J7-}p7pd#cdoBn$QhFE2cQ9cbcsP_^v+>!{Pro(I+E)t(L6 zxt*o2ph_mVXUmn#H}73DoRh1b_mrp7ZrRMO8{T*)Z+m=ceXI+Ie9Q#@s`I-imX|8- zI3UwkecdI!gm3D!*6hvuj87bR&b&6&+e}4WB_$>F_A$dF<>|^R+1IA|Jb0YRl0576 z(i@LfvmFh;wLs3V_}UuhqEk#?xKFU8ZHhei_V82tX<4q56D3&6Rpwj|cIOT=nU(wV z=f+u$@7U~u=iSZP?IC;l+3n^pO0(6N8V;16E534Nd$OhL?SSHEhG7=E$1kn)E55wl z=gOs1A%6~Rt6e1)Z#*^Nz~^hTYkg!&HTSqYsJUUg_eIymliFLD??_#4yJ8r7SlK3R zjeGKr=Bex(*p{BU>nbw)%K4`2SqyHM{6$kT&(5FnRdjuBg4wDa$G6vnHDw<4IA%7_ zDok%_ztbGEbQ2vJg*!W+EAH+p3EO!<@>o&fmFup$?UT56+&#{krI@mOLWQ!j>2%ZY z){CZ|=}=5z-=5%Zx;$MvFL<8Ci^5qGA{BZxR6cRUB&|Kl<<`ZaQhq+`P|&WOxA_(w zb7sxicJRXYm97VMn+oU1xw>vmF8kScsN#Hpq5Bz;rt-r6V>@&2<asZ&oVe#0OM$zE zt*>QhAHyq4m3dmr9`zXA-NkrqS!iT<vA|+xOWQ1|S6ty2Hg$J0eik#l{W|Oem!1Th zI&a_BFqOM<Zx2g8mR)t?xJB-P@+D95g-TomzuqgJKWka1H(zUv+>$4Z0ot9?yeDOt zUx$gX#;~#eXSnrk$;?%|tHczhc<f~0U2bn49OlV$+mBPZjNxU-<1>rv9GRQ64n8br zRWzJaZkm~0T(LXLueHg}qhDG5!j;wPj62oeO?(;PIy1O;zri2F;HCRQ3Y&@;WnVqo za^>plRjU0;24|uzZEdx#X#eh+e$Hy%%w^FoK3Ns#o#wSIZ!cor*><TYTy#ysyf(eC zgw?y4p7-=TkeTyr?QQ-EBDr%uZ(qLG(50w(PJ_jhuS-9(xM(Od?zOr!N8Tmv*{t2E zt*)O=Jl*m3N-%f7p$zkm&j%mdeOawEe@fBejgJ;hJ!KeF7xtp~(#9v5%MzZ<y4bH; zeDaRR6FJuKX-22cxCu+HUe&U!aJTHQEBwve=@QH=hHpdD`YcbXubi*J!&V?I)B3_S zq~iOk3EewAo?i*;KHMX-^5ij*;3(FKonf&zxk5@svU>7n&g<Nt5O8|lnZolwf-lL4 zz2LL@HEX*{bjl5OmK1BQjV$S_--O;h^?3cIt-1T!s??L!-@NNs*T*e<;=J>F|E|kt zq@|ypIDY!_2h(-a8mBgup0xQD@;a?&d74+_<x2}s-ne9NJ*an!Vz9Jl@<Ej%tzRx4 z@|x!i)*hE{^%aR0b$Hs(ti0B1n{}mvv8KY~Ibmi+R*z2$b_#wvv|EU|<ZP_qo*j}J z><kl6n7l|h#c<H^n1ija*Qvx_$5Kn{4ZMQO)wLt8UTq26<kBtS8aQF?_V;}Iz4m6G zYPFv7^?cO|1*66tt?Y~CqxK6Q=gE0*C9i8PynFrDs*;z!B^Fu92Cv<<XKnKc3s`zO zg@5|a?`ylwq7#(Lp74qG`4(#y7BHPxJ#{0>;6%B+buD|=UbW@2bM#dVrxfil7TkGn zuc%+FKi9To*-(>w|3}%nVt3yy*WXx?aG0S^eQC|skJG>1y`~%Y-Q|O~W4b`?`jxDF zKi&yUJbrDb|E=i9rB^0zZ!4ME#b8`suzZ^R9eJ;x3qD7!i1~asYtq%t{;?nBRz8~R zxxTd4>3Q((;%T#<IlcXL{YC#Dq3(w+^0#KaKjQ0lH~P12-O=S@{y(!GKQE|lW38*I z2tO><-c>ro<gMAY=+h@>=oGr_dGf{d_udcI4@2zP>$rbpADVV?jk(#kZreNiKVN!y zz4-Zyia**X&uagcirIK~ZiH6ct#!MV?su+PvtaM8%IiXY_Ywmt)vx@%er~?l9$wX- zJLd`cc<Q<RNxiyz&h-ryx8rtft(5w9S1I}X)uPbjep{bLo$oLC&3X8~Pn%inx%DTx z_8P`ZbM<LG-}vUr(&QuaAG+>ca_Hrv+#}N`7+Skk$^YA0V#jgu%^vY3uj35&^?0gv zOG}$hWV>w5r2ODl>6-WAH6eYU17>M(ZQ<G(7CecqV!hpunUAx(*SAE~HqJaV{nqT$ z3bsvp3>Lq>EDBl~cIU4D($gO<^jxmG@u~8wtoI}R&Uf$iQnNdsPh2uD$f$1SD)Zd( zhsSl9cd=UVENS9jTK<pWQvHTKCY&zSuOCGhedV$atMA|X*V=!p*y&uJ?RiB9iUO); zy?E9&X}M@g`J<0Qo@X~5Km4DeC!DingWoa9Ko1>up_Q+e?d<Q^mAd@ftk@`}j^#Ei zIj!f_c09cj<?G-vag7)MhpTV>1FE}IVsG{o_j}z9oT{}d<cohv%{+DCw~wxTRkiZi z>?6vu;k<2Y*rYp^ZH6x=SYOPo{<b=(=F(b$2Zra~XYEWin53vE-S0ea!S$jk`z}7V z%6fHF<IBsKHpfqo_eT2Kc|1{B7xLKRW%RdjLykHJ?#Jp~7q`1k3|zt((epO$YRjtX zGcT9By%i~$9oFjh^k?*P*;RkGy_g_+sNuP?^2FC+j@$|%HeW23pAw7C^E0^f*7kK% z?!A}u)+;sbvRt|4KZ8-wswKzgq^-O8;=|1&Y6?PDnoq9WKH_)kpxgW1=cAe)E(u_K zAl%sZb@!@AYj({s^7^iKd_}zV#^_~RxAX8Fk>IHgJ2(4r^<OnjfjDn%!*h|l1Ybsq z3BGI5IsJQqxtvw#{U5$I$`5ylnmVjI6cEbvE-misu}O1whUC8pN!6<RZrXcVzW3L^ zhKqM^WM7K7``n_*X~~2N-CO%s{D}OW=f6H<(vRw6*QV`L?26dA!@|>EZ|VpC?mgiT z&I{${%A96iEk9-1J^mlzW}D(~-ck8hp2H=x&iYq){neZ;-{WV>N6oJL&#<Te`g!I* zo<C|uHoK<Ed=nQINbKpq`&ib<V(ssEF^;V>6p#I`?s+?*MCQx-)9+jCh5q>KE$0!A z)pWSs_i*m&`%L?u{cwF0@yA=FIQAUFw)neq=4_VF`t&;Sj@r7fcI#QAL>2DWJzx3n z(tVLH{~222c~vH5PPv!0|HZad$DgLzp1-t@aqg1r$%=<IoB5q-jGO;ErsCe^N99Ll z)em3WWOGZr^#QNR$?tM6cWUw1l&se_nsjuRoX5d)*>?|JdfNMYo~)-{b(!j^6OJq! zZ4W+MZN&S8xk*~pm*c6^G<Eg4`=%<3PPJmV%U@H=Tc$F5>zU}+Nfi&>0wP3$FX)>t z&lZ;4z<7&Ybywr-$Zr?l27l&bm-+hZ+S3)0GuCk=?3o;E_{ngh(&}|)ZQ2*MRmx4Z zpAg8Q{aN#Qsb?<p%9yDEj1THXBR$-wIIy0YH}h`n#v8}38{g2$-ZJ;jho}WR&V9F) zzihkeG0(=JpNbv|$!mjmTb|4jIUsr7>xIY3*NZhy@jdViSWv{C9J-YI)01}gKI_n* zcLWY@K5^p2%aFTF8fk}xia*VN9_^$#V|y-#x5(`V|K!P`^U@NkCRoeOZ}lxTI#N9M z6<gVQmTS6KUM*%265V0>By7+2D>2`0%v_c>aoe^F{w!BldosybKbaTN9P`PioK<%c z`}1&xJxs1#_YEyXr!21Zo$}?*+b_SL_K7k~;%B&S`Dneo+QhsIJ>Ck>pIIE=oAhJy zk&iD0CdllWe?WL?#r4h_SDjCreV&}C_4R7~C1Wus_WI`bGxLwu>C6wB`~6JJ&R70f z&z0vKm$poN-F3Qp{uZC3GbYbz(9Bckmb-hqc5}4GlFBmOZ41f`RUYr-O}l&Fw^-qD zs(7E4zG0;0`%8<1M9gi{=1+L%|LkYxBm?`oidT9pxypKK>$#SfmhE`OX7MYmWb$;$ zCzD+-yeTRBwc9vXWn$mo>>$n7Q+X<U7SAWg_yoxw_$nW_b^DTgsSU};9p~M<s`*X% z%Ds^LpL^!aNx0PUfj{PNmPezi|A%?^rWzmJ*wj$#xJo_OgXwL|gWkI@FRk<QQ19EC zebPemSLw1DMaQ)YtV301@hy#btYh53`7SGLtHnu%glB7`4o;r8*iu<^+cd3@{CAn} zceR+E^L^{AC(%%SP50UCryHj6-#uZ=TPD>yp=E;vk9D|uVVUoLhMRZZGS6Qdwy^qL z<mJ5O^Z2z=B+qfr`?B4v+VY>^{cG#oHnuVdzij;T%5#cc^<^icM~?H@muJ1$WBJIl z#(0HuLC^j4GESX@$IRC@vM5Y4K5KI<N?BT<;{BgjVQXf(z4*<2FzSnO)ZucLgHswp z=575_emK5ESF+LOzRnSLmd9%Q?f-H7IHPlRiNE=K@u$AepB}AMfB5_6my;I{Pg>5- z+;u7N@?D!}x2Deg?$-LT>-XVFZfDk(E<fd%GiQqW`iF6cANF_7vhP%qi#_D7|J^(M zn4G}%b8GXT?*8|p$LRa7u(XA1UfHpHRH*ipxo!QP+2VDCd9GhaNWq2Q&X4`O^=ecf zWSUlUw|Fj`ry#h&Wx+PCiSOf;e(Zl_UGX~Ts?Huu9?4nGJeS?>t5`}T`9E*adfvaM zeAORcU-pB)bidyC$g)X#XYc0K9FJ~qVcLK1SYe#<$K#J}``@H4kN#0~-F^F2oA9D# z5o_LUs@XID>!!!^{2gN~dd#oop50{oht2X~%#!UHzYaf0KitcISc>^x)^*M7<&iz7 zE3H|a?tbzup1)=P+uY1$fAl`iUEap!oG90A<5}}q$Yzb1`m}xR>g%I^<Ude9#xM8p z;(TF|isNz9o}Da6y!0?$>zvFsi=NuY?~3E*{%2s-`%!6r=&$j^U5*9sm%iF`_S@CK z*2<|N$M`p}e2gtw@hPJ(#!snqX<1G7!@G`KZhI)CDKHp+eIM7nIBRu9n{mUv#d|B~ z?3uI7)8^S0le3`@Q-i!7l(H`kdHGr2DD!H`n|a5VSI)S_<~48ma*>m&pE?*m-gS@9 zI<WcrqJ#-&9-j^H$&qg2&$>9RM&n6=kzaA3EZ=dBv#~i5;yUs=M-q2E|FYb(`k<D( zOjTjTb#unK(Umbg&#$etTYCOf^`EP|CZ4!@_UisgYRY|kYc(GS=!MQ~eBL-udye=i znRSmp^DtFimJaxNkc(@@yF%wlcc!c<)m~}hQ9f0B&Y!Cp*{KW`K@uhG%`t&jW^O#m z?HlWHjNy(s^JP<;r#I(*%69*eqTKhFHEQ#<Z(b2QZyk}{`QZBeb?Yab-|^t%wzcl7 zc5mQ%B_dbxe5t#|mB^Rdtj_p__nz<%s(V}Vt8R-*{M|_lCU6{&Us|a*zj}LS?i!C1 z%73)iT;A%m)aa=DJuZId$X(N~N@*BhdU!>p%wcU`h1=`CXX}oxc;<V1TWg-<<AV1w zuJabX|D4ZvxAL)QMb?{#(F%5!2OnH~YbB+X`>Kq)e#3^2=j;=GbA7`tY)aH^p6zVA z=4Qavba>^8{|wvAn^ueQS(?msT$T4c;MZ#975Z~}o?ly38#sfBL;J+}y+t2i`P`N~ z;5=v2o{zz`8#k4044m^=Cd_Z$vVW(3%`y*97GhfR{lM36Yj)4%mgLki<9RDHD`k7$ zk30^01KZZXoijG7pHZF{P$sw4?&99Al1t7@r#id2m;OHT<=KjD3nv}6wVHgdduF+I zy4I49_j|%(o)_r${*Za{VAdrggQ=!Fx9ysey>-Ut-rf7=YMEVidFPN&#IJDODE~m} zW5#F;_S@GM{=1}*k|OuqG%aS?lV4q%T7!3dd3<T}vps>I7|e3NzKry(-^uNEd$;hN ztL}T*j2!Y8iWsWIPx@JxxA@sP<3B4Cb{%u`41004(e&g5*_-U^_eO1>Iydm&gBOf8 z^Q#VJJ$LcD?6-qqfeQ06?K;b_vb%dbUNFrG7fmg2aewx@fA6JjZ_{rvJy^j|bGJ8T zR#ePQ=S@bwvo)0&-oBr=zrTvB<B67taq{GOQx{#7U10d4aQj{%x2F+$+<e;4f3Dy8 zwXpR}k(rr5x@}RVXjJO0$o5m5FRW)>oTsql!6XlfH7A$6I^(JEL}PW(t_yE^b#+qx z4xVO{T(f(^!hOjb!g?=F@ZfW_`5bxOVWaMe#1pc;B?n*Rf2}oft9h=qhVR+C<4aTT zbo_f)Hu>Hb)qC%oFU)INaYuG>=0VH1_jV@+C-<!rz4erN+C2|t_O-01-~BXO!Tix= z$plCC^5Eu|o<eQ6+zj0O?Y3T9wx*&q!(!7Vg_P%$-<~zyd1py2tKD6j%?$^q@89cp zp;U{HeY@AWAWKW>i&Nxm7|M(1HSdksw9Ufe@omv0YX`{)`QxHxx9+O2FnRa+OROyV zZ244BX%j>9;p(e9bQ*J%Sif4l4$ECrdFOG(d1hN}uWL7UF!1h~!|xbe^2K=j-n8Jh zqii0w8>BC-<>2;Mb(5=bn&?W=E~ecR5_cS5xpLm^Jf<TydrH<URo!@#?c%g+{}~hl ze;+b#sJ<Gh%Q0b!gMj>O`%Bw<S8tlIvGI85D_6H`Do*^<Bp461Jqa_aS)LO6-B9lS znFKB~&KFia<tu!2*e+PS^EkP#QJ1r~?N}&tx!+ZuZI4f-KF^O4?9(>8ckJT3gp&fL zcMK<0UE%T8+V1mJ)-dXlgQUcppVe|-XRGe6(kwFGBDd#Cytnu>Lj#Gn97D<TL0TSt zpF|$Bq{z)QskC(cd+)mJ@x5Lfb8b)GdEP5ZDL7@r;>`*Vc+&f><_1n-QOK2<#9ozS zAQbZP{Cd#^+n%grn)AGQUh}mLMOKgRG&sl>cTFu+j5rx!d|K{`$hpG9B`03gZM6yD zS-nD$^Tpw{L0i^ji+M8rSvrNOD%XZ5^oIK+?_)b(*#*v#_tH%YV_2ymcShSyLd0kT zW95@yfn|A1Pj7T%{rSUz<GJP87{iIZOExBcZ+Ia0Xx@j$q65swq@T*JYVX~8@Zo;` zlco!e;&vWlu=6-xRQr0@RLhX8<96DjJf?P;w$-wxZ5^Mrer|HlS$iTgI`f#V){PGb zCy7Vrx?QWBlB%3`;M@Ay!pDB~p8b7V^~#!033ks;9(Wt|P0n&(S82sN$ymPv=}UVv zF7#B%OLv@keRb-iH~p?3=dE5}k;zjYRl3Xhdg(@W^;gx``SrV&PEs_AZQSy??d988 znR$kCsu%QfzB2Dza?okH4*!3KxIM;kvugQ66lE5zdvKAjCETg$MZf9QmFktAbKf36 z68$^7NA-1GZI;T9`Bffw3qPeR`bRx{m!~VH@zi;5taH;{$9LL#u~9~E%=C<Vp3T>( z<_%e~Yx8yCN3n-Al<F3<dj8Gw*r(>L$l!g#rswOo^)lVTt+Uzf?tEEUzeUk;?%O$+ zz7<q$k-N6|RW<MVBihRXpPpJ(*u(el*}VAz?@lRoay*_qulRMGrP`|9&6P(!_EZIm z?QnBGv1aF^`6^Y4#b@<9zAgU9Ri0ydSU|X;^5Dw-5ACPk5LVh(Dfw^f<IFXa@5mo( zUUSOg{!#x;(M#km)t@<^*8WIZQSte?_YdRR*0?_Y&tR~k>&rrB+2XSm(XWk!cUR`! z_saivYJqZv%onEVo4c<ae!gPgW!p=SkA0t!Fuln=vCq%=y^oyf&h666W?sC#GSa#_ zyv@90L*;}Ag~ugU#2;P5c2UhyZfi_uc2dZ)UGrUU{`hvuA#|%UKLfMo6M3KO<x4zs z>qUwVmx^9<<5qt6EBvVO>wg*Sg)DN<_vZYFK5Dgg>7{P#or#5aB^qo$hNo>a&Ym51 zeoMao+qKFLsy`1L=(qJ>u)@?{@?{)Hqn^6qy;pflgKqRJs!G4NucrTz=$m;llVc^9 zwwf*cYI`<3H_taakXNT=-g0$Q&21;2Zo2dRJkRUz_jIq+U95BYFx8@^VD+7(RW*q} zX3UfLu=Q|s%zT@p+YHzxUtYhp^DcXMw69`HSC}9BcGHLRWo%;gwy)++3UL>>y|I37 zbl450pL5Ua?V3~@RH?Uo;*wcmdhhN`@-4g1{*Uv=<j3;eZ*A-!zO~DKee-Vk_spri zo=<0A;5zx?S!dz;EVHWG-i^EFl}Ai6u=}aLwC?C1wIBYA{~esaDZJB8A<N*<J%fLz zGv_5)M#>~<Ouw&^wzVf$E;C1X?vs_r>rZ^Lzq$Ea>W6caKNjxcUbN|+dh67Do8UEb z@^<ceuymK)DgKzM@Y}yOIqT11<~UWN@O}M^{|painXQ@6VHz*=YH8o*N8Ts(-=$A^ zvO}-%{L)&+N3~8CXC`S19Xs&0^hx#ggK1O$t_^=uJ1yS%rgPkJ^~V~CzXi>iBu}y{ z?w?z;{iE~2m&FD7xy=0L8W%NL1FE^cte32~l({ZX_t8|Z{DbN%n3rjvEA<y}t`umB z4AT+by1B`>;>(hIZ@z@8o-N<``P=e`+^aS7^z!C~2HcEYENdMSwS{+0jpc?m-{)^` z?O^g0msi%e)!z59Y%`D8Zk73O`);x@ewQd${&iiNZ(IH!)0OTzUaRwU%DF^-6<*r) zRP&V0iLV=q0#;1v-OoNdd%a+mSeuRM-pQ3LMa;PmuAj5Iv&mQar185MoAZjQK403` z{-Jiy+WJ+m%8I5{SBFhdP}ZGzS@!ia+w`FHd5#UMBKz(=cs|jeRowFA%rst&h#YaT zZ<AC!KcCjly;B`}){AXpH@iytuU}zh%`C>R!;a+z%s;HWH225amcph5xp#Z6uMdnW zY%hMAx+-^yPO*uP1BW$p*qb90)ILckzMa+V=9CnCOyc|6nTb3z?}+d<i#)B~B)2gt z%Q=6ggv`9-eS5C;NbO#C$52_~beU*t!R#f<D$LCjqry(kbE|dVT6k9Xtj5`u8DFgC z8r7S~?mYbG&b3{cpS)(?a<k;vQ&-x&=tEI~heFTwl|S;X>AJb3Dl_yb{M-60Y`XT& z*X!%l#g|n?e)V;5TOw+y{Q7NJX*|ct<*y8*cB+a$FMHkiw(D!~BFBY-6=laRP6`#N zy7=%lcW(5N)b2%Rq?t0SSii1w4SV;OFFxt}t4h1M4}R{+e>CHZ#5#HJrV?qjIX^4a z7usFDRq>zUoBMx;*7S#4uB>04@ila^z}+J@H_WE~zG-=0eQ7Pf{6UL9amu^58gl=* zZn&pi!{g=otS{_8R3EMN_VBe2+o5(<Tsh~-syPKhdu!};FK=r4IpaJ(*Qv`F=TG=9 zW&Be7yVx<aOvR*ikz9Z7?XcUrHeFkXxzdKGR{NcQ_x#PF)24kpWp{B^R`~Y`2UO;> zexLSydBWB+br<C~r}aMA9lhg=(^}Ilfvv|RXH1;7?$wM{rFLeCU%jT>SMi@?BXDcS zo=TG$au08M$u6F|d~2=Xhu=r#R6oS^eZLfSlI6W*AIHs&p9Op7{0f=Bv8;XRvTYx; zK2)B%^fNWOUuWW#>-+!Ru;*X&;d<L2%QYDv^DZZ+ZQE`5rDwa=+c#C=OkHcEr+i(^ z`S9h+_~NHCE}syp+*CQ)<E+Xi;YsKGJWb{$Oqjst?%?sNHuI0#8v()d_n6o3brR=s z*YWr#_5Dszn8oGII~r#^UYTIvrgg;n+f<L!THlzaIIR(tc=GnRUvcnp?u1VU6*~U$ zON-Zr&s@FZxBlE_@c@36<cV)%Syw!>y<w>`N9yF|H{UE(1E;G`sQQ~-cF+DD<8F!E z{g-yVTo)^O($+idgj~2xuJZb-E%GTjd)j0e7$m=*H51&Vdq9u#z)`pK+md=~4$R4w z_?f*+e51H`S?KP=t+%HrJo$JftYoucn%kl0tX>KI$F}4hC@9-@zNU1|&c%nU-@T}O zytdR)b?5BMAz_)@jaO}IzAUlINMP0ZPtO+wp3K_*Jv=kWxp>DH)A`2J-E<q63vN8P z9_4jh=IYf`!PZ)HSI(IuJkK>b?gZbXq65{B)wblln|)fRxPe1~FMHOk{HZf|Qoep& zmG#<r=Bam&Q)V6rz29o7e*4zCo2NE1>+COe^X7jV=^+-TDAM3oUj1z2p5R9ki{#T9 zcl6ACJCF10n)DloN=-B?Hpg~VE}I#hnO9)R{4y?j&8vAeXN;qyzO8>|$9P_1U6fnq zvI7iHzAio~vu&f*T~Wz94suhK@{;efq+eT;`O9ZApLjuX*G((!=vD7xl4U|8!rg?H z`^@=x)X{pvaf`sq^S-XG5>g7OeYfMd*Xf;%zZwd!o9ZmxIbSbg-huBc9Bd7Y!@APz zEY3P_Zhb8Is@Q#DG|&Cp^W(IxPHByAKJaWoo%oj}J@XdNskbr{yqhuE^wz3*5g$(; zExC5fVy4Hddw*9qUDUUk8QA$GX|KHJP9YabKWCnl;;zhzswDyQP8<m3lb&~XWzy!F zro&I3ORi;;erg%CFyhJMl`F+mR1yUHuk~&<_B*N_@y+{tInS51GZ=3$99q6&Rg;W> z;ROD?uPNq}CC^{#j>wM<JpVeFJM%VkTh65HzK^QSm7c|%KifQymi*HRmI>TYblAE# zDe7+bj(a*y{AseRVw-i%E`~c_Ir>D}``=G@=V(Q5Hra}kOgpSMs<p2+yAYCY@on9G z&z;dP!V;=VC6+$n-?3(9VgGdIl`D4e*iVh0WqOc7ZfoEb2FCo^*H#)RbiMsz8+GZI z*v*Xx_2ZLkOg_5UX<y7;#u|H*F?mO+?CK|$y2-m67pm}2dA!fJ%KXjqN6Rnn@tURj zWL}7|-4*rU$Cp2kKKP>G+Va}|&3iPf&8F9E5@4xrdsJ(yedYa@yY}(Fl~3!WmN$5P zI#5+N^+4vX<k}vW;|m_hU3EWRK5KpBKG7e?k4#*$sXjgP(u@s!HpiremoF=JS^3RU zQF~vcJnxV5kLxy;f82ajPWi*Xt<{Sx_f}VX>ZBTOa+<I7`A7Q4HM-ehdq4KAR9m_3 z{+-uRJ&T|3-8bc=Ci8-m|3aT`us#-g`su#UhOa!IT#sJ(swu@KjpfU_vNi9jV|GQ# zo&RlLG5w#w`i?5!qboeFKIK--+wu0-^}F{!guGb$C;7Kxh5ykBQ!{l;qa#C)=e`PU zf5uvu{W6@5`-GZ1*T)SB$5$M!{rH$)#QkINKhEQiZTTw0-UnUMz4pzfsLq{t{%MoT zg|pJaqmKOfdFh$>Hmz6AiIoSBn#L}ypCWehnD(p>d8=4DB_AXd+_hXE_Tm2Fwc*Fg zHRUE|e4p(7J*l<a+^gMGw9+_Se3Rw3LLKV~>mI(pwCxLTM%>XS*1az(Y;WJ%u<Y{k zOY5F(-QDG();m*DHE4}Q>4`P@+vXaF#opvNlJNV=i>ntyo?PDUd|}<UU2V)Z^NcTT zN@v;jW;M@q+1FtwUB50mH`hbu?QynMC)0KxTB%y8Q+WScyLLutk^0KHd#0<FGu|#d z>$-FL(^s4)RjzK^czc>;f+gFcX_qt7)KBLWzYn-^#d>N_i@Bvj`B_($Wxh8UlE18G zyEAbD=X06MK_^?<8Q$7F7oEH-+$3<fq|7Ff!+h3)QPa*b9a|!NUZr%^hud?{6mE6+ zb2hq7U5Hgah<|CK+M5zLjhowNY&dX2ZtlnEvgz}6Qaxj8AKu$}J0xExp{Vv_*X@lz zk9}oXzRsXxU8Miy;B_XGt*X8MoSb`h_cD)XTa$NcR0*uGxMRdyY<Q~N?e>nqu1mdV z3ZK|LRo`E8-FnSstH<pZuJ^s1>-b>eANTDKgQO?QMVY0)eR(#Z^V`mQ<-+$bt+~CT zsK+mY$<JNHYv1CCva6@N9<(NK7M^6>=u$N4&B-15ZgyKXI_(IH^OUfBrTI4RY?F~> zHQ(cVn@Yc${@T}6x$_q1f#m)y8A&(U4<RyrGvv0c7nYP|6D^#d|DPe&@Irg+;vXKT z`Rb-FQG0r&GuSgHe4g3uJ#&gDv0I8xESA(bb82UT14G#BLxIwn2iaBlj;->}*`%1n zA3uA$=uN+{sLgE!``Yyjryk%~@OUwww%r4XrFTy?IX>QgX_xkDk*PCyZ=9=q8R|R1 zX=hCHb(yYrLD6%Hmftxrg{{M=ufO5IV^ik!=RD5&2l3{fUZ%D3?x$@P=Zizr8gBQV zx|zWAr04m)b>EG@<^7V(WN=`R-d=b%rh%0~l(GHvoG;6zi}&^wPwq)t+Qi4i_~|Q4 z&oyJS9-TK4T`>uw=d4zqE1q?G^Gv75mX`9yQb#(un#>b-ob&fTwncY|y_WEf#!r(k z-`a8W+M;V~?oBjsek<L0;>4;;r#~|l?%r`U+c(c?(gDM_jTb_>XP0t6GvwOwy6@}f zzy2FqVz(GB`T3Y-s!F*H*U8;KXKb)wc-nT)|H8GWua5DF7V%r;eVtvh?)4--hZ7DJ zYm*ngxU{r*{=Aw3X`MX{Vw<0zRF`1+eQoU>du`TJPl}2!t&Gvypm=B!18aNKC8MVo zzGgmrzq7MgSe!*5vWjbQQM+P9t4hiH=x`+y>F=^TPXrjTrk-2<y=>Bvzi&#`&G37) zx-HB&j!C4a;lP8m851|lwxl#!9*s&6NVd_pTW<1V!7V<<6Yr|8*QBSe{4BA@cAeEd znPV2u?aNK;tj#C7-77qH?Y+<T9#-GOy4SC5c`SXixWPlY-#^N7?iahVC6<9KW=pqC z*b%CdykjkQM)c_#0ZW;rrF}+@!Ke7j`5vvi&HIDP+l|fhcGvl{bA-1CG~JACnq+gP z);Ox{+tSOesW}PHH!khE8>6ffm#k;^&G?;mv|pn$|CFBRma>|~wr3XYoVSECf9Hf; zmcHdnqYYV|XB_%G=lS{#t0x{(=3!br?P0l8^&!sZJO}0!9#|u@b>~%%rK=3jZe}uU z_|I^p_{5h-(@*{M@nN<zKAw1QOWegfY|QHU>-eL@F0}vN?VvFE3gi2r`$n71+LN_U zemb@5%W;K}aD#VuYPNnm_{ugrGKpm)50g-Z%=3E-Cb1?+`icHH`B?o|nC`36V{bEx zFGq{%E6X$$p7*m|wfNwPn@x*v?b6KYpTTf@-h+9pp}%z!x!#@@Q!uk!`tIIe?kwMk zBLevkRt8ul&$%eN{@y7e_vGuMt8zoywY(m$JRa3&5nXY+r@C+7mD%AeGi3q|CugcN z^ERK2mMml7nO9Y>71F!tiF)wlcUs4%7_ISpz#so{P2ZGRir%Fi4|?0@e1942DF41( z>x-n^&t)dADf%0>c``81x%yh=vsX$UgMeS<e+H#F(cZP(cW>-XO_R`KayXV9Bx|#4 zTipxU-<L~%gu0)-@I~d@+pw>J-?AlRJ(F*SUz=<4+*BmnYT{CMOIyJcKc*im$P~{_ zm+4l0EZ~&;%<x6+%NqaE^c9&GqdG)+PM)7(mv}rd&h*ja+K2xcL}Z;lMo7x*aN5lO z&k$PnPx+%r@Qs&IlRPH5DwQxiv`*T$XsW84S@it*j}3*6UMbG^YoC^FRh@aOXJb?N zvj@L}4y(UAC|^+^eQo=mY?0zOdmEZI=~YN_)oRabb5>w)I=tc0u07|ZU*x_le<P!j zBlBG4%ewkUQragbEws#AY?`Yk_GAN#Ox2e)^94Qh7M`qQIIccx`ig7Ijae@*5ZrlZ z@8$p>#+;Q3a+xtd{Wv5=PNwke;J&|dd3Hv|++&hl>AYQ1Pn&w4^pw31*uav)d~L>Y z<pn3cF5krK`RCA*bQQ*Xt-DT2zPu6|tjEZ{e#J6z73TYvOROU<N;RC1F_6{luklcf z>GxW==d1es_$ZO)rlLas1rfWp2l323K5x(EeYXy}pWQ8cHZa}Nq_Ral*&{6V*uKh$ zCr{+A@@!&m-0B*ZroucYDDOdmpN4E_w^~Tay0%OCZ`PU^ZF`x=7*M}!@7dyM7vIe+ zp8R^&cH5J?rWCdWZgr~;u8!=wHJ5ejX8}%2=B4Fvg7I5pcn>Rl`M%!t^2F3q$phck zdw+PQ`}Wv94w=cf=5@xLb1z(-t;shpph?K&P~&m?hw-+rx9hKXz3JrK+p`y}_x(6; z!?s<~S|<){P?o#;tV+bUc%>LuY@fx-t0%H9hNs_?|KQz!^Pjx@A8$LYtGYFR&0Rug z2JVcv`FsAf<oc!d4>tZYo9y^^o(Vsn(^J0vYZiHkZv4Gt%07-S=d^G9XLvAwKbQE! z<p*r#A`?F4Z%q|1&XYG}e|P<4{D-LBpKjehG}m&|#oXOHv~ODmMqexY9`2If=I43# zYufTR;UD94#UI?8m|C<ZNJX&YLc$7`$Mc@;?T-I=cirOUCfBxiYCbUu{Ij&SV?F=h z34i!ASJW76+`3bx)9l2$lixXQKF95Rtbg;?Yp=`eOnKEq3{U>sp7JC|`R}Vgrv(;k zZJK27(fo9|^f#N?N9XA@JzNs6qtoX(x#-LBh3l2Ce^rl^%zYLaY80Ve#2WK4WY@i! zt7D>LBhN9)*RlmRzLQ?K&M2Gv^l{ab{S~j2RsNa0ymaZ=oR|8>Ge5F-N`<9<4o{lX zQ~FCd;DxX1lQ*6doV6agGTZC#Shu6bJi1NTBP_J=fJV4!&|}wK7o$8LvN*9h_6T3T zwku~*%bf3)oN8CML_gM@diY4Pz1p>7t_d+2W^#&?PweT{)xX>Md3r<fWu@J3J^nLf zM?X`D`|9>Yx##gl(G#!5F8VIleG|lJWf-Y!BWmx}RaA2O>4ke+U#%^*@O3}9Yue;B zwLK541j2m&ERk#L7qPnSEW-2RGLuojbJOI=t9g0>GgZ@5WrV83jgz7S_wc;o(ma1g z``YreVVCDSKg*7q{Up|Jvv-H<@*{^gsx)7@dQ;ycV1|?7r{`-!VkABk6&dzj`MOOy z{HbN&(L}S!J11Xu@%|QX>D=dE!0xr1CED=%ZM&^OydT~@XjMsgzH%)~g4yKW=j+~W zJsTD!9hfPWo0q)3u<^6ubM>WF?hRk3_FkxL?0YlSCT&k&^rRTWn2C3)Lf@)Kn-wp9 z%(J}rc-MoKUcucN?-xfIR?QF7*_a)6J2HSRe(%ed-Vfh%)XsY5uX`(TLbR<t*C&3i zKh8xHl}}FM*S>LmbA|HJ4~%l3&d-ZhpEy73^R3LNDCIjXis8X8>|3hR7DY)c>W$fW zCgFKw+=InOCf#!7))8FCHEGY|OMCJk9zWu1cgN||!T`1lNssnkcK(<mb!vhCodxoh zKhJL!`6;#a%<90o_SMr~9NhDvb>7sKk*{WTMsME~Hi;uz;xot7eOo`iKT^H>e8)bs ztH~k1fA;3Kvl`y+`}_L!{jNCm?H9hxTzX4=qIf0mW%;Nd;Xyw-^OyZt_c?xh#^h|{ zP48a!&H2^!qOf;o_{wE+n);chtIcf$A0|GG=f8KiWY3lvVlfPV%9U^Jn|x{OS@p;I zhkCOQ8Ev2UeHzb1kJURm9ZpUBqO{MT|B=c*qid$sx5EYhE`B~sgoWv^@t333=ii)s zRQBO~r*b;;o3@AxTAz2!_dmB=X(^}XGE3Lc<r-UGzN*>Fy5z&c%{#-*%idi$v9Q2d zQQ@CWNMpI|!R|6;iKEs0Z(|>Xd~iQLw~o7hvftIkzJ7P~B|lr#$lbX<<@U{%*d+`L z9>{zZ{W5Leo1YnHqh9iMF`m2JQ#|iK!`zs*8<olSd-4hjPka-3;$pA$bjl|K{;aBL z8K<V+-rZMyDRAG4t7mmjhgFw(1oMS6PriI@>q2||vs2%G`h0IiwCmmwCTB60M_ZL$ z1)oo1E1YMybKR{%&#YpzCnp=6X58GI@A@)e(*o9pa~#(G!9gn7#zHq0WOC0rN<4Tr zTP0C=-QBzA)pjK{#<@nHm?|;ppc}vX+(nz!xQy70MAB`KXI<K*a!^TT-NP#aZgx{A z>a^a`$h~`I;;miD`xZ@!46B?lY4zMQmh1~mrx)BVPkF5VRM!7#l=0gF38o$Svz6Ch z+O&RI*a4O&DZGc5=I^ppXIGXFN%NRH{dw{~({=&j6QO?p{G2{FM_vCpbMry=?d!B8 zls!bBOzp{Nm{-AkZ}zPdPiJKZEnB*Lk5tX<0+or?d=BrjPyX>0ie!^MD7W+E+Wlfb ze%{J7^S_WI@p9Xq%i-6g{>47|{3cs__Z)k%Wu<qPc^d7=`Fb?FqWJKqSH;H|RG!;v z_03Gl*PFuNZFpSt-9FwATdMeGY~S1(u6-=r)Z>`Hw^Hl$)`gdKPJ4(LNHX+gPx)y2 zCG5<Lo+aPb-WRXfvTCYx(_#k3xY(6h@i`N>3;9*eny$TRG0Rq=%$_A1bDrN`8#<*& zCT0FoGc%TiNp*9zEIVVqiCoez>^su)Sn_S)#Dli(!Tu6u><dg9nI;)ds!HqrCM2-# z%iZlvb7c~zH_ksaHRL(-@~T-nIu-vyX33q<-R`QOkkTC2{xCMMhe?mm$l+)~!2)Fq zg?U>q{HXi>CR}q;S@~nNzF9(7&mGuV6m4mFj`5{GkJ-CBm6mIME<18FepltQC7CV> zlPX>}W$bpjSz_AKGUtI&ll7HJUWeCPS~A;6txVLITGrh2`P28+mt5N{k1-s#T{*cr zuXvvEr(1`M`ga)=#_&xq-SnX6`_b}!2GU!$F%)q==}Fsj>|X5T{|sMW#xKmg@0@@1 zntaw4?~W^p;*<9JU)yA(yVkVjUtsdaJ`P*$6<cqw$b8E!P-Gp>z9QOeZq@58J#t#J z-h{+`w2gI`XRP$eS}^o^!%CTwmv2LC1Xr*9x__c_)8Pi*{Ig<pNgPXN8ofz#*c~Ip zD7&gMb=IXvvQ8)e>|Qa)YQuvkGF@FMpJwD8e;6edI^$}p*qeKisSnRPWFB`*4?3s* zO8m{bmme=5luBF6<E?uoUiF;Snl8ih8`rO1_#=3seWR&9Z`QUz-^>**C#@{l3zYWj z{AWnu@0|6Y;c$O<{fA!H0@t=>HT!kX3G8^`er<n5%9Upy-KLxFnw+`v@Kx(sFa5ml zzA3bDe%$xwPw?OM^~t*V4_xn_+n<>8y-sA-!-?rVDUOp5ZLQgxX}D#MMV|4c{foW# zbG(!n-Xp%Q!v2Wa#5=d+j$Ay=vwG4_i95CjpPT*={P>^Yq3-*G^4;@PKjc0#lq$Wf z5@hi3k<H>dg|5<ElPBAw|1->7%6(8{d&#%|3`(-{5yFf99F~9H_5FV9e+FsY8pa3t z;xDb*UU&QYd(OM1VYoBOO(O8u^^;}hZ__QF=UIGP_v~=6_g|akJP)g8J@LIOThz7n z;;}ooJr}%kbYl{b^s~BtA)fJ{{;PdV*VdHEYLzzm-d0s*JSEuN^X1VV<|9FSPbp0* zcPZHKb@fBo8l_pLM#-{;x0dbIxYFITEqSS?tJ-$=m+Z&oo9)DY9Q<G%`lJ2f>g4Q4 zyi$UN#ZpC^o-;g``SNVP&DR@Y)h4qowTvg;xqe|E<KLxqihnFW%v-pyqB>ynzY|xK zv~|~>Vf^56?9JDgaiS{^e7fzWKH;?XyYw8!Y3gbl4<8FzxvJ>p=1;=mvu9Pme^pY) zxaad)E<Mf!`Pc7bZI5;trzoed%RawP>ePoj$Cie$=C*pC7k$m2@-OX9Ti$#}FVCa% z*2>qZTkCGK%%AEmu|jp@<ELTF+bT`3*v@;RI7O~NTK?QZGd<CL0XG;@u1KHa%qiwy z#+oYg_2hHOg*uzg_OD>Rw5xHsc>GNB<lpx%P0}?KnAp2zt49{QmCmVkl7)T8mU_p} znflb9C3$Jie}=R?ovPv!md{$ZXf~c&?-SxF?HI9|g<FDi`?EYgt+!huV_POH-eCLk z;%$v0!+Edw$UhH%yFmKJ)F9@P_i?o@bI-jhf8i+-!&Yj+%%Z<G`?lkb6}DUr+{Gae zTzV%z`+Ms@gK<=WS_QMBhw?_zXJ?CU9bf7nds66z;<1R0>izjq`!jRa6-jTac<I~F zwB!L(h0M3r*UJ9z=!s9V+j{Qaw)7zHg-O@$DwoPvY<#SJZ;iKr%Fpc2OyvSq!IO(x z4~9N&zLK=Gc4^b(wmi?k#=fg&yLa5{x@J5}=!Dm@3v89|16ldZSKe9P$D2{9d9#`M znCFWuwMK`Ul(IW)_F8XR&Q%_E>ekc<=$ZIAUDh|Gf@fXh0m&Ct{KvNNSWC=gi1;{f zEAyd+AKaeSImo`=rFZ5*LC}STwySgO;(6-ZR_&e1yR(5^X5y`FJ`NM77_OR=d~Nle zBThf7o0{)@k-K_P@@2Ap%DgovvQ2I`_MX39a5iw~_Anm?#^cfz$A4VAGi{IPG5?)E zSKCz_TA-}Ze1P5ZkJit*Z+fRn+)rkEB=$38HB&{<9w{k7Y1XIFlef#dW}atz{><ox zrG&+^C4D+4%HNjVzVh{~rMIuozjZr%cC3xE=xR7_Z+`xq|JJx|+q9f>wI?<$_@H&A ztapn{gX4M8t*JS20#1*M)7AU5`I7yU7g|qLYBFoH;VGURDDrvAN*{wKZL+QrsrNYV zFvhV}2T$o_dwPf8>G(SBLxGtwzod%%+;opP2>-oMsbk#uGBUg%vD}br?PZw<;oeHq z+|w9V^?ZFD@x6d&(kVt|_1iC_SM2Ri>)v=aCc3F$W4`I^vi`{(hw>yXpMO}_m%(=F zu=?c2u5-J#PEbfYk#>TmhuOJ1eYfM{IdjD<X7|XoRE1@`Fup!+BY16_zCyzCh061) zuX(;Ryde1FQtzWJR<GRj#5K=LXc#g5x*U>w?4IMxusEjI+m$EZTFkH@&+0?*t=%h6 zeY5kH<XiG>#cscAcWRBp*FJSrWD)W>@Ktn{?8L6WcY64P!xVQYY*1|f(DPVr*TdTL zoky*$r49M-KDM`zVXFF@?RN1Kn@IJxY&q$Pd!02I<}hW)or|5sP~rHQxohT1l}e+k z8#gzyMwBqy%=@}GpYI#rlDEH#Bg-<_RPGqwzqM^)(n2#)4#Ott$**Ik%5AsO44Qmr zo@sF720jagqO3%YN<O<#n+AVJ&x|FLKg-@ccyjegsYwSL4lqw_o*Z#1TBUqd*p+45 z9&5jUANuYQhl<ut+i&x<6FuY&nN<>ain5j*RSDxVygB{aDji>qH_4}DR_Ac<-Wj#( zV#4$jyca$m%{-eC@XnQ|e)px-2G)!RWCV<iT^4mUZ*+?&Z{mD>`|`C#pAM*Yz0Lnt z9lBF+Vo}-iW$sJe3Ko}Z-8g8sbEWqp?fJ1jKc_~du$?PxJf^jM+Unhzij60pZCUOX zKh4P_=F7jxRs5WXtL8sUzBJiWw7S=F!X!REiy+HiR~{E6Etn%X$>V+KNu5*DHboAr z%|5N<WAjd!z#gD2HgiwZ&P1idjaSm!UbtpN9um+$wUd3r>%hpwUyMCP(LL2&mphnT z5<{mtTFQOxnLD?yWA(HJJ#K+r+E)J=I8DR-KGtrrI`i$an~IC?(ugA82=hQko=x`B z!3=zif3mx_ZZR*P?6=g7)22XbUo)fAe}+BjXVP{o`Oi=&Kl4(J*X1qerGI2S;?ND% zdz7<yOGT2ySJBVU+tnt1dHtRzu9^4LGw-C+p9^p8eRVq6TY3wh?3~A1$Cnn)7q2m@ zxnbkH%#HQ#=E^>Sf(NB%tD}$nY`JCgpW(21=BlXEOV6H6a59v6C%5(dt7$<m!!PMO z?bkf{GHk1M%f_q1f!pj=7MO|m$UWM!$GKE&w@i4FLJQ;k;-I-*UbiK<w;VD)X8GjV zhOLsK&6>})=BaV+v^>8)>v{f@NXhNRU8ySRelz)ukA~kpE}^u>yTL<l-_}U?Ga)=x zm+x#*^!Yr`YC@JJ`}&t*aYiD15pq{q7T=!eks5YVx9`d^OH-9SbCPFu&yo4IAj7Ee zP38l$!sA~3mQ3^3p5MzPGQr}p#cQ8?{vtgF8G$FB&3L09c+?~%c~07rhgBB^?!B@< zr>Wqw^v{kWyN?f&FHO^{JnE{+=G<4S`ElLj?;HG=N_Wnlm2m6ebcXB2OHXPa|K1Rw z-FEr-B*7WY{nvI?l$sf=DO`5{*m{?qSv%Rg^NJaH4tBhZs%QA4^Uvr<@4}ZW>?_M_ zMY8yn-}7mAeiS`zawF~J8|@eW8Gfk0YyP|bw?jq1rlyH8l}rAzWv$e&l)P56<>v35 z4`a1-g&i+{`4N1&>l#Z3;~R$cXXJnAhVa+~eppq*G|%@+Z9!3F_E)uYIWC+h9`CIy ztUs8x$L`kh!|$12zt|aT99WT>VBDziSpCC_S@|<A^*k08Nvk`(>r-@v(t*`7OR_() zy*?iGZEpIb)u&}PPEZZ?-7QmcwkG|zWyOx$Ka@@yNUVBr%Hr{*-LKzEZP_I7&MBRp zd6M?$sEuB0CjRo3{5^5ztLfsu*cOW1%MzKf@&QAbUB#mvxp9x3yVbwzy?T(qVEiMT zf8~#!4wc)=3ljh6_arZ^+_v+P__Rmv*-fALzqVVPUm9b%ZO4*_)tmQzjN6}_E_-C- zv5ttZkwzhXGbA7FDL*pLbkc_zf^#NL@X6o4ex0^{%txK=S|3-rD%szQwE9~db7G%e zvZoZs<vx+?sTQ8^H=foyoiT6nL(g239}D(g;mKNIWG>`>S@dj;%Qcg=ML(Bce$%@4 zyr)XX1eITXQ%~N@_Ir`6-}v{=vz51Ee_rN!x~Woq)>7Bi+YT+$ve~oI_-l4$%JwM< znsV)HlU{nQw2)Ajb$B1UZ(+7{^#1eHU-oA`6FU9o(q=w3<5_Q)n!dSZqxJSw%&|MX z+e~k9zHM8{dss97Zo|$4&zGh}oH!t(FL^$yX7jeoH~oXM)wyj0c23=@zxPyM-AnoN z*ZQ}!*%t9L^uLZ&3wXsJeEHTKJud;{i5D7gZ7zAY#%uM;75^D56h0YVt<4fY?K!Ec zjCrltCCyL?$#b6Py>=_~pJdQD^>tm^n>V><&#q2fdjDi@;rAUUj`>#YZ#MmNYUQ&@ zZ;B_>dwrZ*yD5d|`ObCg4}H(s?qz&HAzV#q(xjbtn~zwWRr_Lh;z#OQ?QN+Or{wC0 z?w<8a{lKl?$;Bs*U92nW{nYyP**>oy=~W?G0+&7*urtglUGIGLpKA2WYnkahyB9g} zUTK*l_alC3#fIJU+HX3oTFG?%t@X!UzmH7n=lYSC9r4Jgd*;lI%IQDcmuWw&7hSe0 zy+Zx7%BLF(jyb55{<_At_9N4?_m9-Juk<fE{8s#uk%on|@uz=HdyVcNm$F;E)M>L1 z&#N1U*E`;y^(*4yuT6el?{_{bcH8w`HM_)OKFg1NuMb!K2zt|aL#4x?)qiX4<KGq@ z`?NmB&CHjHW;w1^_K=OA{dU)n=A-?~;_kSYW=pN<I{aMrxKH@i_)YOWeEq6(&lu@^ zH+!%kZmC;wLsr(67F}!U#89`VUcbIr|7W<p?j8G&g9~msojP{kJG=JA>#c3|%JFsw z!aTiZoUwdizxRDC``gJM+26*?)F`!{I{i&Db#`&_)*H#nAJ%9nl`HgYIAHVDZt53_ z`g@l{t>;^I{5|UKT01-b%66F?rU&Mh2W<JbdW!D5mc-P=?_}IHQTNcBpu>gdJYLWD zns<+3598K;3uXJxbuTV&y72T_5qCyoXx-X#6$e%a>~mlcSTJ$^b5D^#H;2=jFW4$p zrnsb9&sZmI$=;y7(Cu~N>Pc=+Pu`w-%rd$E&}=&?BY~dB68~N<HxLqNfBr=wg|Vym z(ZtZ%tdVXWwnyWY-E)NY_MC2RD&nx6(PtQW`NKi)IqC8mPr~LNYT!K0eAVyXvd!-T zjK#DM{1dY{|2RrLE$ij#*qM_xxtw{vv;WaHdn?&(^|*h^#9Q0m335soENAEPcYYb7 zr+Y2K&&|N`{N9Wu)7Cs$>G$4w_6~oYU-OFC17rA)+6(iV9W{C3`MLkhC(XAnvM-qm zZ2RC{s4lo_dQP8%=;!`U{Usm8R-3He`RAId<Lkbgi{8$&)BN<J$b9<b*i#X6=D!Yp z`OD_}B;KxQTaRaZ^$*<V(6{lnn%XesTv4Uy+g;)ZZS5UzsvbM0VQyAkU7NKtC~98t zif<mD{oCSst~%Y1`!iADUV-JW(ET0vjQYg0GgNMM>}H6wi+Wk7^y8VX()r(ZCtQV= zIg31A{&oGFuV>Sue@`n*@?ZHra{HN((5=c>zDDLPP1C7-z;|O!r_4t6<tDvm63<nt zgV;}(TG(w-$yjr8Vuw??%&)R#8}A$_u`Tx8&G6N}m8I<*|JfVzUS@Z6E+lL?_@MdV zLbq$T?D8JW3NmN=S2Fjw%zuV?S}nfYC!X^TS<NOadGHOdJ9FWL9n4!}!dROH=TryX zFi8n`7u;lERhyme)#0i1q`~uDw#D%|bBb?^CMjI-Xena1_wwbw@G3uWZ9?xsl`p2z zZxbHtaeiI4_wxDWMw1E~e_nHrduF1N@a1ntZq&og7v7jePth|v-1S1{*n@3%Z&;{& zJX)|z_k`!RK1T()igg#47`bt9F+QmNeN|aAFS%l6_;15wMcOCcN$8%G`y&{)`O&mb zUp6f%Vz+!B=UDbT&*S^EMaMRVS@rYBZb)dCFy-$xS-bxwhsCN{GPm;tet(Qzw=(1U zudJTD6K72ex2G4Mv$0>XZEjuf<R*vpsZRPOKbHA09PSBkzvu8R+-FI`%13*nAHG|r zzvaH}zGOK*+l*I2;o<7@gyyoxT{$f|OM9t8^0SjFAEU*m&HgT`(C78!>zd4fqmy== zuzhuJm*lekfXjRQ^_o|`jCwcU+PR!rSy}PeNs*={b)mnGKd|qf_MbuMpKL|(Bfi<K z`#g^BTb{R^RaN5d1ly{ArawRaR{q0zX@7>sR$H-GKceDvcTT#j{^NLHd`#VWd(Kk- zrhj}Nr?-7|R;gN2Zn$gB@*;nZe<tf*IC^QFk6S)J$WM25#y7hS(JR*L>e@Iax3M}- z(fEC;>iSduKVs~MCS=r0nABD(D4M>tGxMDOZhFszo8OOVe-(bPZt=JO4E!-s`wUrT zJN5f}{rvuqtM~&$P0Zi9d8NK~V$&l&te)$1SFq^3xTpB1=O5POzTcH!+Z(!5Ie6KB zhQ;>$Y0^^+9@{U?{t@?u^U&@m!hPBb+isjP3u)}~RyVlI#3v&2+%|jaYU91K<{fKn zb{0!D$)qb>x6ih}kuS1-z0H?(r$VIKI@Asr9Y6mtrfn(zG)L|$X<J^doON;D!H3>o z_iuDMzT%j>sNBkwfRl5~su*wI+p(W9TUA}qoXg+8>dWk>zkPS@c;09Kx3qWeaa~ix zKk5nBcC9ulifDWA#q^!w%ijyyYC2_BoRpET`ozoUzd4I@ch);))m`D+UQRo$yGBjN ztbp(Gfi<tb+v+H9%AB(A(3*3036?pJ_qzQGv$(bV%KS%iTQ924*Ev!+kK^B#FPl;o z8V}n1t`j{qZ@cx|;`vfVjXM;NFMK|$E!MPq?&=AZ>dUlO^_`x(#LUs&;BDY+_0OBw z6$|c^nr2Q-?*Dhbto-io^{4x;a=%<6du~tjob;t-!I@7zb(TgX_mr-XI$X86@w~d- zzo}vS7WZB}wRSx_53eWhZb^?cc{7XSO54>o8?1ZOyv{?}CN#a#Stfz`&R5aHLArCV zY}0m^d%N+i<22oAl8@FMa+(+YR7PlT*0#%snGV!@O_c4aRDS-PMe1{wTEElWUJn&E zr{bwH$(Ob~p6HRl$uNhneriHx%ACfN3>&|!p7wpEjJ=sBZ;#-)>?ZHk*23mNu}ic? z6%x`d|M>dL?EbJ*$;sdHmA2Bo$Myy+#Xql}Si-AedH(E#!e1drBQt`p-km<z@%*Xv z%~z|hutvI{3w7FPVbi4f+VEkZlg8;(f6L{@lZ+1Vd~7};-<!|t^Q>#9j>iG6!`9n= zeKU<dd1QzC&%*h~Uq|Um<|IqJoS@l!+D&GK<a6z}u^T6OJ5LMwHRWPo@z%(~a~Afk zMh}$@8ucZf+n!t<v_Q+zm9_n2nP}u<z7RQwf8Voi>Bc?sI<ZhEf?X?SPR(78ReTNB z9+5KJ7kycq-Qo05wp{<C=F7gTo|B)Qdg>_g@?3WIox83X=?d(Xk26n5EQzjZ5an}t zGP#L0+At|-r;5gd4bMNWbV>1OU$i~YbGPW}yAy9YaBG%I$ZMQmnt$6>?ulRXiqi$z zdIHOA4~j<Uv&h*^U7vFCm|OU>yg4OnChb-|cIv2xLx0(^J2y|*Ut6o7vv97%Eu-R) z(8fBBTWpNyEY^C6i20SXJ!ZdrZ{xSHs96_RtP9w&<;)Bxj>P$smxj%|>tyH0J%`Dy zFnYCs^Kn%+X2wga&vHymxzo~oO5?4&UZ>n!sqTfRPNpsIZQmBYaLw=4!OsK^>|mIx zx=ZTSyWHE%<tzdPtm$V{nrv4~w20Z(M|C={e0zCyuAkbk<7avvGuu3v^(^mE#8b-v zqaCbO;q|plD-sqMF>f*E3AbEvEAd0KboJxrh^^_>vVFU<gJ(}Na5HSY)Au#V?Q}xZ z?wt(Z*J`imn4oZL-;%46$q^?VJhdv%SKXSmZ^h3$HETLH7?qdAHOzD6Hd6^ZHFxLh z8<$mYH8eQQ_i9<~5#{*l<DAA@d#y4}YUEV!zR0<CwoOu@|I)TEx0k9GPqjT=vM%bz zgqiHcrBAM{UGl)1Er88{FH3b<n@Fam@up3CRKs-)4)6aFc6IBeDO?hHIXsVlhD+xb zl({gfHmsdpdCpKhj%i|y(B?Z|A36ozm35yNxi7)rrutgz&Paou2e^-4+qq*sPpY|) zW5SNt{l!rqV^`eWT0XJK@|f*w>*$3SUTo<-`ZJv86ytH*{|sDRk8D@&Zs2#mw@_T` zb@Sm33w+F;EAtt6t`6U~+%zgId}GwZPb=zzL<H{cSo5>&iOk121zBG%X|yykgj%rh zWt*kx9eC=<yiB_;<g3k3b6yYCxr@>R7@xDtu3A1Pe1&Se&pgd@hs2Z>rahk@weGUS z3^B$Jb`O8=k2-hgS<#i^os%=z%Pf^`wRX#%xKtz|lhW5VCB|e8gQV@0@>Rwj4!JjF zK6@Vb<qeto?$`#UQ1xea3$C>;e%u<fKBx5in)3#0nk8fY&0Dr*ZTCCr4Gt30zQt#w zldF6!r8cB;9K6%xaPTi{#!;g~d*<tW;?q{+IMX9o@L=NcrLOC<I#ZL%Pi{<A4exuj zX}RyUNnKW2*Lu0~at?iT+pBwUl6Iw83rhpP#n;vM`L@QJUHh1>VV1l+NP9L%56>pK z1z%*grdQMl|2wz+>f$@MJMS&pcWO$g#ZuwVx30=YT6(YC{m8a9`AWLL<mT_(#r;dI zd<(bQ8Z4i=XUeUBFE3+EuWj4DZgSI_<?s3qtv<ZgGi}n`-%~z0zI_`u`Bi$hwxrdy znYt6jrZY3eoMe=nx%9)Er4OcE$`L9G?kkQtxBgM&`mM2-PMqEHXQvH+*8bGm&P&fN z>K`#&F3ZV!yj5C#OB%~_mHErJ7X4~wdXhXp>V4^q$9rApDW8-~UB?{l)>p)T`pc3_ zx;a7po$St&J>Iaay&zOozAV~{rMcj^O-P?}%(lxD=X-^3jN<S(sBZZ-(4#fv@ubRU z%RYTN*!cSLt*ICKJnv-Qh?Xo`C#~}2SFl8KPty7rCy~!Ra#I64nP0y46zOO<s_*9> z=zVqLm7tUWhKT3$ESK1AX_@cy`_jC^TXWkJi+6-<XjtX%W>Y6Bk;B*2n!C37tk^rI z4F^xyT-mTueVeP{4c5o|3&To&ly6X((|qFVvd$M7Hxss>Iq?19TK_E_j}AU&R_HqM znQ5D7UEEjEw=XK1R_7j<3Ea?ieY#xfv3Je(Q)_4cXJEOsu`j>RD)z{#vcu9R<Zb!$ zv>)|MIxN%md;UMpgBd43%4s(g2njdw85RFo?d5%c<LS;z>~Fp<Ju&Hw(Y6O}j-sFD z{}Ew6nE8?Y0ee@;qkh#h2D4X)6n|c>aQ)&m@$<3^^me=1bA7(wSuS>~Z)T~;i*+ik zj}MnvN~}8>ylLWdx0+2pe@gz&uklx@ldm=_bN6GgWwW}zG4jsdlMHijSDbuh9B&u< z@_Ia1ozai>!#%qL^KLE*mksQ5WdFF{YwOigc7?YGY@WzX{rSzVT{ZmF*7TPVI{v02 z)16mdTkpH=#R=_s?Y7xxO7{j{^Hk;$jCeYG=jvV8_ErQQX@4Hvnoz`A`EGe(aY1aO z?r!z9#fRohx^io6$X2y0`9TTMO$R<X9&=5JxxeT+_YQN}tf@yPy$hU^zT#{U<5P8p z=L^@p2;RM?UutREy|xKE6hB43;*D&3k}H$T@G-K$SyP(x9RJd6*ECK>N8O%e(ZySP z_AaiH%B<O};nE^xp*wHu{BrhbN48tau1Xe}@Q}?>W}2<$_TDE)oHtEVo;>TAr{hhj z;#kQiZy6eD3w#xK2t8Jocq}TiT`na-lObK^N?cZh!}G4ymbyMMyM#<;oOqre=s79A z=*jw}W(tw~F^?B6n6Nyr$d=tJ%y{p`x=VQrR-P|@9Uhgl(o(|WL0C{z_tpxF)fWX7 zgD>~(c(ief*o&p=8}lwPd}?4ceQ}TF!<<`NUaS_pJMs4X1J_j_-WC4s^pgGiuHt)p z-5wvk@FU(gR^0E<Jx}>xKDRd|GjI65UTM#g`#R>fKBi`0)8kiGY`cEwTj$a!JM{zM zGfLU_@j5Sk6_{mE$+c#N)0(B59KQZpeZ<sXDDO&~o66_ww!EeHn63pq4vRN(VrDR3 zZc}~j!l7fF#`l(Y#Ix|FKbn4E=bJ09eg#&(d2Zdb{T};1+tnu)UCy8OB3g5bn8l%a zj_WVSx8CF2{IOfwv&T4k3s243mJP>0R)?8w|1JF^>-ez^*_ZC|+TBx9$+i(vRi1o4 zG2Yd0i|wrE)pDvay8c;z=f0^c|JxsU(Nt1bZ(XEM&7LCpnZ<EiKh!_^yZq4S($eB$ z(*vnLbr;!J{;t(l{<iIs@`e2w`NGF}vPJitWVz6C%xuPi^DpCkd3u&J@LA8>dR<3U z$0c}r@R>fdZDNa`-j&Vot5bNj&*(?jKdq}WlIlmYR`@CP*1fuZc^>-}zSRpNW6iEl z(D199BlT1K&7)tZD)@EW++|<C)W7*W*f;smYT<;R&U3z=caFVx(v8dTrcB^ktEn-| z-ral^=d~h%?a^|bT8%Dqg@ift4Bv*?Oq)1iC0EE>iw8+lT$M!m74-PtXRUCQ&GQiw zcT->SK<4VfoSIG143FP6UTbqJVLcI_e4|b@)xlx*X}ibU849oMx>DvgVU}w}VsZ1% z0yZ{w<=3x+OkCRHqLnR`mu5uYJR)I|*en#;zSQH}(~C`i-~8F{Wf_#d(0BKp=kMOK zT{>uF_Aw&pzzL(>bHlHsi(Ze9*49j5uwj^KBljmv^-Nrx)24|H-i-GzzYbWOURK2& zQat(K9?ehx87kb_Z>_Rn40EcKEu1&?l4s5&(TNk@9aQd{>h<cPQp?Vh@sA|dESc{V z!*BBO+e;h!LME%W8LQTDo|JqNmVWqrlWxI>xcj0__gUL#RQ}1VQ>j?Q%k-bYuVvLn z)g=mi6)$H!OaF1dwCrN!VfE=k4XbuOTBUnbUa{9Nbk@!<o>xuw^F=J(+H|C6vGnv` z*XRAX|A^%@%Z7yk{BFVD_ns}DSkYeEbzb#YL|@OHf1=Oq%szI`nb14uW51*4wsRUs zU5<TB+o}5W^khw&>(aUh?$za0fA-nCzw&8O#N@7JDiZ9UmrUHcMLpA7xVfQvmU5Ee zeNh1$p7NCodp7>%4R;h{W@3C*`18_(6>&yc5pPfF-Fr0afu=%=d|lgY+20&&2X}m` zU1e{sW&LYb-TNtDSh{+dtrKS?^&6FDY!%dVPn`EPOR?2@6JN!u3)@d0F8;DwansIs zwi!vUqPlq&l&)T}Y6lP7`=~S9rwASYV*A=j{0`fl;`c#+nw~95u-(jL<nVy&S<2k0 zcMMsYFJIa|DVZ;%c}v&RukIP^V?7S2cU47r-geIS+%33i;yiz)y?l~0GA~a2TzITH zd`jkbSJ@(?;<$;+PCm<A;rLy0nfKmzJ@-Y<+)tVyP{dYg`s90$?_rtp^?o07j=#x2 zR{28vbXv`cyE_*h+h}Iu{QH4*O8D}ZOYTGp-j?Nf9T&M+XcO~1?Q1m_KGQrbndRs5 zOsjm}`(-jux7IR|?~5P4TW0b%(!6N>C((8Hk4XjHbvU^>gSo);>9lpf@|H+13_Hgw zt*Bm_d@oNiz>}f)!rFxUj$7ML?^c+%Cv4yB(!YzBA2j-NWW|dt=@~|z%1spuBid{G zJ^xOt(~J3|@MHPXtc}}ruaz1p+Us5Zw5^^g``hgBjT?VVf3W4M$+F((yS5lb-l^ZS zlgs1ntbg@y?;JMZ+wpkS^;i9Wgin8K{CD%i96A20dEIxS^c3_Czx&0t)zZl;P<@)w z9`(&u{Wp~#CtUyIy6VNOSxeWg%(cE5bIABe$C1MLKz|;q=KGoA8+E2#7ZlaF)8;0T zP;d1^_^6ruhXwx`a(Ug}2ev(u=le13Y2Jf*Hyr|%OJzP@Ut4>0b=FC{iP`IJ3#`pO z{r#tZa_rRybEaGmKEK#((L?=B{~35^{s{e@U3V_rp25x{JIcr@++%NY^)e6kQx^@- z-TAfh(Z0%0_wH^utiIfD>hHO~YyYrs_`7HyTg>ZQUMlyLK78@5%t@9vULaZWXH)h^ zrFXim(?TE2N#9}G>Uw6X-|t^@L)1_Foqc=xEb~8F&z`BZuluL19=0iER>h5?<=XSM z)*s4J*co8q(>Uw;$Flj~Dla{g5iM+!T|Mu+)!cOjQK^?RcQrB91=VKX`eR)&eOtt5 zBd;&A+Q+`mX5{7!Nk~?{w41+u*98@qr|t>9-oDm-r`)qk85sLK<o3S4Vki09{+8JO z^oi%^i!<;o+w<&|!NJ|@i?(JTlG^`GZ?ni+#Xiye*?(`%n)s}5>BZU0Rg+&>tes^z zhhgW}zrGP3#v43dIG4xqX<eJ8ylZQp$GNXl*w|l(&0~JH?P(n2LEF{mVgtWqom5Mg zF#2Ti%=y5<e^WNz+L%9+S?tN<-hES-vgAn?%~$+=yl3*;ptbw%{^sL2=P4;4bx-SX zrfuM)YqL9~9V{eIJ_*fSBO~N+n0Zo2$=aK`2cIyQ7f-&>pVj2yP;f*j<YRMq-ime6 z?>C;ge{)Sb=lwZhtamg%nLT2Zn|l3~_7(%b=4Zdsc2+;UdFb7_2)<=IS1DHoZoZt< z-ILIG;_+>fo;EkdW0&mtmuj0SA4zFpUoGeA*5V;yey)Of-m*P6msJ`1X8Eb92yj?f zNZ9)76bs09ms(2uE6Z(lUB>V{-}0c`zpY9qrFx86pUktm&T@6)p2)SiRx5*d7uq~u zu$Dv5u}E~2yW?fi^HCnV@2ezMd|!RqAmXyT!O2_JT_;_oVs3cOaWm7qJjq+QA?v^t zj;6P&zmjcNv-lJ?9AvBHz5Oz1Nn>LgtHawlP1+Ir0&UC8?JhrUXPL+6wEn}DT&<JJ zyf-CIt-H6}=5yquP!6+Wc6n7_SBgD(f8#I@AG@q;iDs!$^o=b{y$81oUP)f7b4GT$ zj+^1xaN#^lnZ}EISDrZKaPYa^T-JQ)X^ZAPGO3vJv{L@)t<^R`C*IzeU$^gTLGA?E zqZ{XOOQju($hWll<ePbB=9c85#(q|-jz)!fdoC+WPvvgAx7R;v&&M?htkMoo7%W6X z@92kdc^B2zt~L)|xLkGajVGZDLT1ciy6+rIe>O6Fuu5BLbE<F}*Xrx+OpE*8DfszC zzvuaK)F*ZAnOANvW?d|oUD8yZB6q(xFZ$iFKg`>k3?syZ7S5?zaLh{Z_@!;RGbb4t zPvt(ot~jo1Nrg%F?PAZXhc-kUw3MG}<hUiZz^!o0w`DqwA~iSi1N@_mB3ke9OIoZb z47>14OZ1X!^oj06ZkHlHf0{Sd>Dkqk;O~ur2V|c7njE!pneonOoyz1(6K?h%SzY)m zOsLC!C6BYEcek0cP^<QhYqoE@rsgzmx8)bTdOq!tLk!b`c?=J(TJH{g`e2<~<$33r zOWrFlye_qQ_U+)s0}RP`%GT_jZ4|8`vHsHTwN7U}Z42yPzRMPSbYes9V$Poaz=&hs z$=$-ib7i`tQ#KnY^hY(Hy!W`Ad*0QHcV4av5xnq~<*H=P&B{=AS?y(}p=)YhFS*lm zSnhJ`0p+z3ZBDBv?U6~TkDB=K_wj}-)1JmjmbSH;R<q>hNpq%`Wkz|uZ*@BI^=EZ$ zcGhvZq*k7gp80DNZZ8aw?1*zXVDmA$te9oOyh@4JG4I0NFI+mbI;*$BvtP%P_wCv2 z+c9(6R5l#rP+nTRD0Y?cC(Bp0tQnD~PAxLaJ!mz5t+%L;mB)+ZxjtI2Jazm}Rb9SS zyyKlibW@kD{jn9%cZ8BzZ}aSqobvZ#SeTnzxboAJ=U0AN)tvdNV(ZGHPHiDZb(PQk zSu3?x{5&ji+w$?8t26nepV_cJn6<*|#H#-cW+GCrmt6|CE8BHtWeIazz|Djr_jOr) zaVEEzrX}}f{h3%fi7koaML|K<hR$tfkK1J#C6^T}El&xP*PhVMJIQFzv(;YhWsI>4 z{v6<$zcjkP(t795O6lq=#R^krFob-)V_VDXGPn2f%0LlC#w)v;51eN<tux{{p7U30 zrPJ+7#m0wcBir9S?O@@V+_&|tZtS#n7uktR^Lb{^Y^#uYyx@6rOnArp)GPVjCyutT zwD_(5y6(}tf4atpFMB<8J=2`kc-4Jv<&x=@M#63C@2jrwY&l%5dRF)RtmBXFR(^7S z=rSp8y)?f<@r~=+E8<Li>$k<vU93K_>%yduHP`MQvl5dyTl{P8!AzOQWsWh)TdTrt zw!BNpteQFR=3;eeKUe3K@mmTutvu$&n{eaK&+ttPL08~hHGO)qW`dtp$h+8GGtG57 zyVI2~t-bk5O?SC%)wS9?J)U3wW{FH#oV?)c@)hTfWaoU;;Jqy&dNyl&ny07kZnjmm z3!03Mug_|WH1ZbSJu8-N_oPDy@9;G(f109haq{KsP~B$?^QV-)4-<0uWO?H51-?VG z*djUiD^Id|Qg~LUz0Q%{Rx`2Y1D|!sj?ZlODqlJax|JM|5$>BBmU>vYNBC#xwWQXz zdakuvbDn&$U9qj9YiU_ezyGxv4iA0>-%0$b-sODZl54Mx{92`k!?R*|_slbNP?qVN z@|Vrdlv!=gDGs(7^1Sc;c{nW|lr7(=l2ge%G5qb5Pm6NoXY_4#`KCTE^UV#J!men> z<ZQ+rbL4)mP>G+tu5OCW(iuWUnvFXdN*4WU5>vf%VDi`X`|TghEwlJ2vT4KbjVst~ zE7vzXU|q`4XB@xqKf?#V4$-aF7aRgkH0xB!9SHkkr`#=G=gWWj%RJ|0<;hzL=ghf2 z{g0#PlI=6gHn1eK{F{0&I_}XqvwPA#h4*&Ki^M6f<}_O6D8W2A_H*WHxv({Vj{e<c zBdFHDKBLZfTg-&}DZ8``xBp(_|1z%p;eQ5E-`Yf(OpW_JbN7Vbir>=Ty5>*qgW7U; zE|p0h5r-$9+SRlEmG<ZL2Yxk2czg@jO5V|WCV%$|<tFW?8^27sdfoZer#sGZkJEG4 z-rr(ulEW;-TwVX`^{l;D+^4rb_|Kqq^Xl?Ur6h)g>hGeb?wUobE2QtOc$t}2ZK_`D zF)N@h@yFzV!`gW&lef)y<>%B_e9l+dBh=xz<2h}Yb(NpWP1oi<zWd!#^2xQUdvCpC zb(c7n-FwebMb7H$T4~N(j@v7hFG%I-t}anD$$3?E#j9&!QQbRtm05>&&pBn_aA&V? zrf1g5@7sF59FJODn$`THNV>7BWn$6f8|QgK-n_G1DLla{-)^g7Gh@Z`m)B+`=cI1D z(!?6pb7FGyyd#BvuIddtpYQkT4QW>?Ii7dbFeQmmC3%A5>%bR57v_ol?B6fCF*7M; zn#G~_=WWW@oN%1{<UmYA_M%HCJlL)rPG46QuA6Bpy*R5ZKe%w+;tM8^lnb9vU^wv9 zx9Iz>$qs8iZ8WyjIal}5{$aSOu<7AE4ui$(SFV#k618LF&WdNb*BN-+_KLrbcvx_0 z{_OOWS6kM~cJtPKvbNbIIQiDD_582QXC-!3C>K@r^e}0k?EUh+nCbYOKMTSO7u?Sd z+x9G3+jiG7ZZEq~`KYh26Q3+jNtN2%y(jXEc;kPD?7!|0zAetRxNz;w3i&;Kxyxmb zS$F+ncmB`N)bPjhN4K>5BW=kVTMdVq1!epEElq#!T$P<$TM%6^S$W0FAEEM=OKcvq zUz%cc)FR4vS-HE_RQ*0JpRea{?LHnQe#E|S*S56}yPJy_E!|^w;Z!)o)VRV|+9%tJ zuPe=1@I<En(0nPTGe(8i_Wla^R?uTDZydIGZBVGx)|=ZG-jP_!+~;0*^$Y)-*Gaj@ z)-yVFE!RBHT<)a(+*>ou^1{Taj~nBoYxpm_NQqoe(1^SmZt=SB=Gym5dlWw|zOb<U zG{d$?_nMSvOZzOYZr+jmg3a>R)y|{{C0@xK#*-q?+RxM;nA13??5xFFzTbV@wn*Q| zXY|)%kJ>K8HsOJc#yiWSW|!YJ@T(*|xYoLLXZT5GTM@ahd%~SP%yj2yZDe9h%`4~o z_ci@QCZmp<$FZvt#~+6&FisIN`_HhsYXSp9UbwBs)~&W)xihv;i(pt`@%Xu|*akh_ zDV=TwEz{0f&3c{J_Ttxs;!}O|j_rKwq?1~4{@%%VS<<hnO15T79OHSMG{L~)t0>#@ z)NMk}BEgsEX??N&zV7kCzgo6MGB>9MNjklgTvwN0I``A!l$!95^W(Gc%Vr7av>Z)a z&D2x=D!b>y)!p~ACLFWWJHS*G@}EIKzxR6o)^F#W@0#2DX_l}>YozTe?$@mge0AlU zz0KP4ptxoK8G1_JD`o0Fm~7}~R<pdP>+|o|&vqmonUq;7{kYKDGUwg16~a3v&$)EJ z*qU?4Ta~ZN74EPXzjRud`1+03*QGNj^k|+9dz?}b{e*c^ag^D&mTe9vj%MD>c%t@b zr`*?y+uR97Y_(c%Q<H7)o~cwcWGX1in$xU1-|NEODFR+|1gye>HyaC2>}oqU^~94R zj|1v=E*;`f5q#&Xm_H?5<<gRr4}K4OE^hcGo_l<T!wH6}t_x;wl1_c{k2<$~GJj9a z-m^JQCpSwTFnOmI^eK|##9`*2S8qGHG%shL=(1{0?(;cvRYBT%ZufY-u7t(<?YegC z-n+X6Hx!b)KL2Nsh@Nfhqo`8&b=|CUP8%mmD)cm;b6l5v%<sL8&Jp45ESIFBrffNB z?%ihlId0)1yOIw^91@TAbR9~X)O>Kg--kQ*^5!Z&$&pkkU3EkDoAICM0^il<p_YGm zD|e^PncSDX`Qy}cN}Ri!=h<d=$6XN>O)ZXhmz>B}_I%~~$PcH*HgheuDen5TR@U1} z@UrdeYc=LlYj-EVd;9p_++UJ=k7o;OYd&lY+|ItYa(PF|Va3Xce2(j#u3UX5Go8os zm~Vhp;G7)8Y44;(v<26`^ZxMY$DPdcj1%(vSv0?_oA-=owS}ea0a@*q3sYXmsrO1u zlsPWl?~r}bXSu}rn&LY_x1HwBTW(&^Gs!@`XyWm$<@OwPs#)?pe|)o7MecTgx<jw4 z?$h&$F|B_XRf-H=9hv;^{8ndy+X|KkUpBw=U)uB4KDl&0e@6Yb^aI(_yEVUMmu>uc ztvsRkq=qb?RZ34-{bBvCUsKl~o*V4`QFhJSb(tIY&8^Lv_~$@l%VfDn`}F@d{%6Q+ z|Ka^n)JAtrOzs6!^+VR%e@(Z)wBPHW;t!_N!BcG_mz>ajo)W*!M0@vJ1G(k0=d7e& z9X{)ICCk=ICiJ1ky)EXiU*7rr{^t8*6SHRZ9_ugr+4hfFe#&u$IfD0Z?U%IE_)&K2 z^ds}$lGg=1W>ROb7*2h;#iM|=ZbkOT^B=O0i{1LNLbqgl<T@Si`7>Mu9@~BWX<onP z<jRWEQM+fJp6m23^Tx!!$dmuJyk73-zge4K)nfI#bx9cq->f^3IOA~fjYqrpdR^52 z;^`3-(Gb#?J;k8oU37tp{E_SFi%+C&_VASUIL4p#G<t4Pm0ZC`-Md>RS}0CeR@+z- zz3ftH(3--w$EKIF#hx9GnBKU_xq*H8(qcJ<EuZvQ5Ajd8neQdHOPuX}@vV}V#}+PM z((*v2z<zG{4yR4l`iZwM?Oe~8&GzVuOLX~0i$}X=A2H-%-0^sYsrjXYs_Dgd|MC7< z^4dyq%f!#R8*gu4sokf2p=|Pw<jI$7Yp#CSA7>}`(Ra@zv(uS%o_tm5%d%e{JJLVl z)JFq(qdw_NJD06_Q$54;v(uUAkmUW$%Az_>PJ9<nJbtB>A?Wm2I{dP!PS`=W5P_Qq zj&cX@p829{(vh_d!3^Kk8Io3=736t1xnQm3W8DUa1b${&Ey={6(K-c{ccWH(bq*@u zWI5NxZSDR!8(wKoxRM&NM5|$%P1DsIuL>JNRwS(86K$9LbzQQWS*`B1o}cA&`>1Ct zruN;6n#m_+X|TNDypH`;r^`80a%A~FWL`QpbAotjfYAZ@*O6;ACH**#IjZg1`RYyI ziM4teGdbC-#nk6q7Rs@_RhMMl^K8YI^9LjjKA7_{(DdB*yXQnEa6FKDI%!wpW|OH+ zcS>cRd<+x&Se_uJQe<7ro8Va!P_vvxhOg>Esi|hu!Ia~9g#n9;D*HO_C9tLaJXd7( z`QEbTK$iJanpS_>X(6#L@GHMzNcwZ_bN7sW|6NQuuDbcaa}$g03$*s^nmZ?Iatfb_ zUQun`lppJEb_+dbe|qA{vmGzKrYb1Q|Jxe-@3P^3MvrrL!B?*BS--+<QO=v(cUMk` z2%TCiH$!e~(!CER`CBG&zMS<~`D&MO?n#OB@fWV{j`ewWM_S@Z^L0`2LaRiRyXOv{ z(_4`Kqmq5A*O|$Or>Z<(W~)8BImF+{DCN+^b9|nw17967ldulY4?cKQ<I1+<DPhaz z+}SiIrQ~&pUaaILrGxzzk0rjJP4{0RcCxqO<desyv+cI-C^-JqLV2mn(zO>aOnqGR z_wKtV8pa2nYhVAkO0#x<+BMa}2L7zmyRJt0G&m;My({dQwdmJ8k>1}SMf`hn{nAAv zZoK*OddVRLh3)ZcOT@}+MK%Pus}!Fts7n1c`E<$Km$9;2uLU%?tDAoDvx@nlaW!-H z#k*#oBxe+V&XY;LwobcK((v*+@t$ic#_4tDf)~VBU-aJTm{hP_S(Y{J!Mx+k-33*$ zR(@7Zzq?2DpybP-T%HIf!|MulQ+a2%>KtX1<*O15a$0kVGn{Aff)|GOcB)Fpd|UY_ zcCyxap)GUf-I1F*w@@Uf#ZpD?*_L;9g>!h)8NM71n!s9ceA<&_(`Q%0(ickIdwZ_z z+kKXlX<sDPeBUg@aO0L?le=^D<rO;0lJaJLS^A1>4wffv`o5l2Pw4r1F7DNVjXHIX zS394iZC<|VkZ_OO4ACohj-6VwB!%&S^2+m3=XP(+J+gs8;rD`)vog1&E_dZUH!e+6 z&U0gz2`$d>ROZ=l?vu7ly1VvBo^*Bcj#d2(=lm+4Na?*zeo^qzQ*xq1^3340cYdC> ztXa3CH^#g@$<83$m#N$=l$;=GKR15!_PdAX6rV`GH1$ojfTyDFgLLg3Z3@Zrrsmx; z3#wF+W2*`|nY&dm)bPIj<6sW+XG+H<58l51Vad|ud0R?$%V&8j9N^+OCcQSAVU2<i z!wGfuZB<vozU@$dFL<Fz>y$zsL-1wEm;Gz=&(xe#yy2N3F?HtVz5>>;I}SmscbA`@ zVEAL!g(>gU8RrN#zp2%l@~~gWlbJcw!g5`QX?DcVJ#OD!HH$tQ@ffl{J$P`{d~IWM z#px3qpZ3P3u&m}0@-yt4-y1IYZc4*aPYae`q1#IrKEJ)<5>Ng!W0Bj92Y%m=N;x%Y z#knWP1FD3>?g<1WOK<LZFw2oS_c+ht`BRcJ)<s&s>U}6|bA)+Cko)$;A0gMmo<+C1 zCB59OJMYo*j4SWdi#}iZYVwvzdClEd8(j|WJ1Llc@I@{A-qMFFKVP}N@MzD<H!E+J zTJj6OZp&Vo(9fu>!q~U`*3Rt6eVGCq?)f|WT~!r)RqlCG-A0aMjp$C7y*GX`OP;M2 zidpsibnNyr$JKWw=58uHXH;FQZT0B&TeF|%Esi;^y7l$OtOpY~&sDCecqgUvJ#KDQ z$np!<i-m*pH^0&gx3G2Js~od=;oG-ec^ir?6pAYCuEuE^>{K_+C>L`3d3z%}+ro)g zKDc{DN=)*r-MK>M30JIJyYbwevbLE$9?$o3RNBp(vg5J(`n5c3TU$3hS`)Q0y}-6O zG%?5X$JN#5w+$2L?RnI%X!J@?qHo5tWns3nC2gv%<n1*)zgO$@R<FLhnbu0>LMc2& z#>eZPt+viPUi`9aezjcTr^YMaSIpom`)YDvwNjtIq-o4b+0S9$Qs#V-eZ?N!)99HI zDD=UqPDHq=;*aLt6X!22F7B(k?8DBxByD=33?KVaLyPYsj}I;}EUKD+uIcv9^VeoL zzW3snyTYiD!&k|^*IYTzu!&bQ_jHrJRK}P0zC6?J|IM0wKz(anOZ`E+JRhkg7umJe ziOl&NKR;}Sx!~Wbq<vTac6{ButYVXkQ+>4r3*Viut6SEp6g&zl-1uuU?*XyQKU|g% zzOIu$=Bs*Wqnly{OY_<6%&M8wj@DOj#83J4Wle46hraT3+rrmzZLgkBRn6s>`pCOv zlCNQj*3v$XNBeF6Gi1bb@H77js6Op+D&p1rz2_74Kh~B0a(@(gO>JVhYRAFv>!;Ue zu4n2OukiX*aov1c_Ok;aMI5hxrR_QOG0b|yR$0qsHT$NYEf>f=Fv*JR{LX|o)jikp zW|p1IGq2fG@;>}pvPw#xgiT|gZ_V9^qEjz^E!RuwQ1uZ!E?XF2A>D5AZMAS}<4+IM zh~DGxo;=^VRMszStJKA(5uY!AUa9k3VAu0ynKc_C`z?<r`%JpA$iPzN+P2t8v-DuL zlN}RyZ^-tB>^wiOlChfS%bLA*FCY8%9<X7YwYy#S1WQ;@)Qim8wh4?DHe9RqjgqhY zE4A(`>|qXl#@h9`xu+mY=!zA8TG#;wzAsl@GmS6zRs7XbI4#Ezdwk)u<xS=@4{#M# zg{m|c{hP|{U$VlWw)5GpFPqIS$nbn_?)w_-aPdhi%cq6@1_Bl@tRGxEw!B_;>SVv) z(OC~eKAtTIoxe9@_1uz`_rqd;)Gm-0sOU_bEEIkFxayUYJ&!CdY_wlm^SZw1*S)pn zRh5~~(htb8Rme}Ro&H;`BJBH-S?yixN^ZODyW%%f$KVK~z46D!u>HC38?4+9*Yo`` zypn5DT`L^3+jH$#iQEn*hc1q!eLGdsc5j&a&@XTH-Fbb=-0D&>d;MqE3I4I3ee|Eg z_Kq*Q2b7gf7k)f_R4lwsDW5+h@HpGlrHnk6oNkH-H-6rJL9S`9vgd~Whx-r879TBc z6#cwn(*`ZCjnn*$_B&3FH#t15f0DQGwBjrCp1+P;CiOMtm3Qif&s_xvE-i2GKX� zi{{L*;}W7)3bK6GA3YZE*?qLT@@csRv)s;?aWg;ha2MWx?cYDo@cO>0kjfy#?G063 z8}sG9Jm8WR+9kL4sa3AJZT8hVsXw7tY&h3u?0&cL;qT>!@otZmbiNk8?D{lmfrYK- zqxG*0_xzJ9l&b8PZj!8OsJfWFXx%UQ1yZSR`!;i(U2^C6im0>SQ@0l!Y%`v>HDRLk znic`8<X_jH+s$1YTaopOd$soI+0`fZU!7gq_2&5ocF`~CjrLjD88w<JcB;+iujRVG zi&O01qWSOpVy+cu-HR8RoL{PY!TN)vPJzD@o7J_o%WaDo?KPMu$7O%m{U~ngN42Bx zbndRrd;HAXat0^+j<2FG1!9<9o!=Qzv#>Bq^K(w=L9<?q;KK5dyT{dSHP0-KXW*al zd3VEB8J-hs@0eSvH&}N~*80z2V98KqIOpoJ^5DH&v}2Ae?Xcv&tUNE9JE%qN%?6u~ zuVYmY@vH9m>2c2by7|fz@yyZ(UM%lFwqeeE=i7&^H|yQtH)vR}(egp*ia*Zz{~3fn z)aA4u`)YCEX!PY|HK&CJPs*Oul@>>BHG0{?daFoU{o01AJ74ZhJN|5bui(Rv?>5WV zZ?$;-I`Gx@?EF;G4G-3zsoT2yqp`2qevz$5C;zLSS!CVy*p$0}ON@1Lx#^-Ce{QY+ zsIuqO+s_-%ax9pi722_J?Ob!uNe{1Q<$aY{HuX%jN4Nim&m51t-jvK0VBtH(@b-Op zi9Nr>6miDQ=arZGuFC3MzJ40Vy~PX@FKxN)Y`xQ3$$EPi$G5l48%^75YYaS#iq8h` zy*jU`yxi9Db>wBAl)xKT?oQ1$QQkRYOV9B+zd~3)7<#=wXL#N#?b7mDQ<pu>(n#FB zTw-a<=k4odE_*#Mvzuzd{h4`A^4Dc5zl7Z+CRuS^+@2J`+@rs|YK?NH_*3b^``6Ye zXe?%GwDs)Cc`|`ReVvvWPs>}G=Q5$M^W1G7U*GGsE%AniicqopM7!2%?`bU$(nTje z+V)wgcmJ(*UA~5og2Gkmrk?#Vy<>`jYU7_(xhpg0e6jJc+xlXk*e<1W5#MW{o)>-2 zeWiTe?Zd{aqAb~eREUOek~z~adVb#v&EvA!T&i~!R?j-}Ec^I*6`8aJn|n^Gu`=J3 z6>oog`s9gY26a>KxUY6zwj$`q@t{4|Rg-!%bNDWJ$hwB?-ccDb=lknf{wI3R-O3kn zdhl`DvBFs$KNddu&k(|r{j%%P#guZHdF&2ae;f{Qs829<+V^<dH2FuouD3E&i|X9& zFnwF^b;(q?e#t>I=D7=mSSx!^N$-$JX5g8poqQnb{bZhPLEF6KC*KHY&E-4vDaQT` zqiuyu2-ki+F9Cjawbl3Uw#_WMY4P&1songUKjaN%dqdYR?B1pQN?bVex<K6Rrpa#Z zXD?iTo&QJp`?qQBkG>zi{IE9bso(Zx$CQ-ZelBr7VEWT^<$*liCBf&!75Keg>`(vC z(EV%r!TlXlX}c2*Lp_<!Ebe_d&vDuHgq^<@e(ZmE<)6U^^)4H$O<VRUZJDujg=OW^ zo-d*DcMks5{y6>EFV+7HO?z@Hm%K9AyZ7qS!%in2%QScWJ^ImX%YOy|8_~rzP9ORf zs_wpjtK0hcHsuQ5%kv*9eE+`weE#j}-?DaJ$}918yWn2A{%%`!w{*F&pGflanv^G# z<E}pLICOVw>Gpb)iVgeZg-=c1{CiLT)Uq|JMcP?AUjGx_y5yA7<fdrZ)z|8T{~fWH zs8h%k`!4oRaM!kN#asL<JH+Sx$SeF2et91Ee}<;8_}e-{Keit$3*&8w;+BXC5Bs81 zpnYh{W7e|swZT*FF6uv@FP{0YcKw{4cUra;#_T=1^NLRKmif~sxYnJ|*#E(Iee*5X z#iv)#O^!Zr=U&RcsNa89Y3)7#Ch@ny330#ahuh9YdfZmJcVg}2%PjL>#;liiwT-;W zqno+DFsDwhBJAUqx1phJj26%K7V_T;G7?vEIVV2rZ_tPQKf=4e6-;{O{aT;@ZdSMO zo*cdPb044jY9X;U^Gp2A!w-2bMfyIp6}#pU!LiUl@@c)_k}K!M-NYtW8AnyfxMm+R z%w4bisoei!{yW*IbC({4g&i<(Iph9-wbt>&x9c(2|5&D_Tq@PydSqTObGlkg-;blU zckPeMvs9>iUS8+cnYeiGqv_i&FWTx@yxoFz3jg$vYx244u3t01b!=g3`SRmZ2Ocb5 zD5?D;+~l(q=jwm%tJ_Z*PV@`xyO;5EzxR*AM}I?&+1pAzL)0R+uI9b(^=ixdo4=1& zO=8$5wYx!x?Pb?G_D9(-JN9SU^X_rowlkIGO&tHznD1Tx8FJS1XNU=JDf{GYXJ5AS z{d><eiRxJU1KS&po1Z?JKg(vVeae3Z`CU(<ZmfE2ow{54<R3Pzc?*AQ);J5y|1s_6 znf-UVJ{H;jJsURp9~W!MHxJ*nn~jXwwEoPi)t+^|{=vek-BEti%03);`Y*D0THrh0 zl+PMlOT|jpY!(&I^wMbh{w?#zoR3rFM0ONOv>w?w|M=RXUF+X${pcoibdPYghOCsh z+h60LsQQCWHje3QE6;14mF!$}tN44r+X_?u+xw4JElIkky?o<oru5#n`jcy(_W5SB zl{xFLnKxBAf9BJDIzK8Oo#)K|ck9Exjms5s@@Jj=)_i{g$I;5ampRL~q^4MEPrPc| zTN}IJ-|af>?FG}NTB3Rsm`)ckKPhLo3HM(6$M!@2+suc);Q^Pwyte22@$T5ocL{qo zI11gFVEpvN;<j^EUqxrF=RBz$Id}7+u*JSt%BF;UtNMHV$gu}My_jX>in8Wx-w{9M z@it#>#Yr;Tf*hwzviW<RoyVR@+wAKGN0!1Hvx53|%LGrodf{ZLPJ-6t8`W2IS1o$} z^jLM*nccH_3OLS3EqQZhF|*dbAM09uO)865T->p1<H1`uERXq1F10$G=*cC%!1iqM zMPng<dwu44R}FMz%gb$^gs#d?o`2hOE=%|!*PMOE=VPwCUNJRASx4mC+n8TdoIkxw z`+D4K6Ssh0)i>K$sbam!K`-vchHO+Wd-vm<K~{!om_<x~ef+td|GFnweK~7q$>%kB z%ac;mvl`|rUk0t*Uc7qi)jK<Um|t$66S{GQ^$H>0f6X?}c3R9ms4MZ@f<;d2OSu1* zr#oztE&pgwU2S}G+1Z)zXK=EgmAt)U;;j{T?ioLjv^XyJ<!Z5@_6g^n^c7#vx)$u$ zIP~~};I+vcub-KuZL(TAPhHaH(W2iTNtPDu@8*5ku8^#C+(xb{G|gH<kI(Sjy{l_P zZ$7=YGJEzn^BjqHx0{R#@0(tH`Q2xMkaLlhTwz>gX3d4w?^u3Iz4-F_%@IyjPnq9U z;g^oSsH;2o?cDcj<}JL-7t7U6U7T)hd7^0cdA}V>JAQLt<=$E)lk(;HwO!oYi@0Sp zbMM;v@-EIQt~OrM<gcP}GA%B${bQY|)!FIkG4G4m7{7g4b984~yTsu+ld4NsdM}!$ z{aNFn>2Zs%wpO9>PDjt&_Be6!<;1ftDVZv)Q)Bq|@CRhB@eJrbEI3uyFX&CHybRAI z+w7Ao7M)KLo;s1CznU#n*2Ctq(^n1KZS$jcC?xmvF5r2*%yZ?@{qL>_n3t~eT(Z@@ z)cnqKJ>9Mn=?<39a~^GezFo-kkHZF*>+Yo-&YvHc-&Mb~d3n3c!!t8}ZmJH;yz{R4 zdN5N2hn~kh3+BG8-M3dUZ;?-o4!XTMPkTy!@VTt1M;P5#p0GSBe&ySXt45Ezr%HQj zU#}1TvU*$R=OQEf-S;NduDM^i<ALaV7oLj~H~Lwg^S4~{rds5c>ta7uZ3#xRjqEFr z+8V`t+%A8Fo&Dnq-KY2372dv{_j9#DdIrnelTSS#JifH<o5e@d&@JkX%z1}JPM$pL zC+hT+k3E6it3yw4#;$}i=Dl9K8&yRZDpvch^`Esic<v4Mlbh@BSte+4DxUf||A+<q z*0?^S@OMn7C#;<_D`#S}(4=(>K9$SuZ_QYq>o2t=X5O)wjSmb8KW$g&>dbAHV^n5l zw&B{X!rJ^HoaNJ<kZsr8Oz*ilKVJS((EpZoR^ppmsUhucZpl4)$Coel$~}2#LdbWO zs}J)JoZ#SmXL0=68r?-3wIZ13tay_>eRk{@(;nG3XE@i2Ca34ISq4>IH+}FoGv}+m z@Wx;cy=KiOJ~#FY*WP!&>s@-tX+e|7_EWXmC$`)TxSciYNRG_R$Ld+zKQbS!)ngOt zwJX2!Gv`p|)hDqWHNoc7*PK~ml$TU)9vri5%`whPu6K$GKZo`0t$yw)dQRHn*3rJA z+H9?FZadp66GEB_U%!o;lshl2O>BL^`4W!<ETyX^8+CM>S-jw{@^y2NR;jtMru+7$ zliMfM)@JRRVjU>`;YfnK*V*tJUZ0~3x6e;8K6g1}X3@>KEjiqQy`R3Gzc%Z>(U-^9 z<|~|ddE#xLeSq=A7aFNiZ#q8uA5@S^d~&I8##wRK2muCvQ`^;|b$hErt7_c&j4w5s z<hUJAv*!EK!!^0D_}WbFX+Au`n>RD?tluk@=P<Y8MXj%^rk2HnM|0wppV^cy+n~dL zhGXfrh7%ok7})u{`W&2!XU%gwG}YeJ;mK5+NvzWS%a-_5K4+WZ=9l?g;+*9&i{%?V zvPzE?Wd2}Dn=Nr#K59BkihyRb<Z*>dGG)s}58R#Qa8uSGlR?aGr^s%H=S$VhnY}pK zC;L6f$e8f+RuAXo(~Ldg7ymPC{<rZz1IPLP9FF9tHnaIH)a}phtNBo)t+z8vS|OiZ zY42k1bJN$|ysOoFT0yH`>R9p9NfxU&e@#BLYvZg_0%f1}I?7a~T-}>ncY)L5_3^!x z{fG1gc)cCA<{noSc_;fZZlcZn%rLHVM|gVg?wk6iCeT;T_v>bx??*J1Od8(a@>Euy z7?=Ji*H%w=iF?q&D?Q0J;Ty6G+F1(sTd=>3k=vVbJNnG+mftg;%=-K~YfbNhH{b28 z_No2w{3H0d`*x}Pi|M-04;(BIkz4&$v}K*Fr%m5;(J$ZM3V!%eG2Jcm?FIMR^qGro z&r2%&miifY?RC+E<_VUv9JZh1L~Bd!y19dIIh|jaG50XDP1Q%A8%5U7_u9@@`S|I= z`%m)>`wX-v+AA*zXjb@QyD`YDX3xfx=c|@|_vk4%bC0uFk$Pq76p;yr=kLCrb<xdt zwcy$8Y4T5s3g;Oa-rBO|^+p56<L9j9ELPp}n{Bqy#!x9?=P|#^^${PJAM7<hAkVS( zPk3!*@!zf071P4XDy3CqV}5<mUS}dRb!PLbDU;l%pXz>Qezwha_oGD>H+a?=U$}JY zwuhypvaNMU&%=jFbua$BZYnIfJM+@qQy*?mPd<0~{=IEmbPeCVn<OGVW8(3sGn)hM ze0hI7>dXE1SxGZp&I%@9dAvdPb7V-KVcM0)=T*Y5te<r5t`g6h3w>qZL=R>E+I`>5 zTu^GBVe~xPoxgRTY*bFJ)N!-o_j;r<!>e8LxKH^Sji4y+;#H+FwTIu@|4_f*z4XJg z-K);Z_^TA&t~_`9<M*lt&HWO&HsQZr{)A7Cy_)l+R_Ltn-n~mKQ=4S|z9~H|xAn<? zhK=8kSlB3jbUUQIz0KOY=di~7h3s4FdNOZqZ{H_$a8<?WsB0y?=7*;>d9Q7}a?*?~ zP_+8<QH@Lg88R~8)qZ2zCT8KEZ(8Y^`Op2i{oBK;%iFfz=c-`#J{9#+jJv+9tH|!6 z#$&sO?yuvGpW7s>U)o*Y^`Ajl^~b@F_DAguc6T_L&b~fRqy5k3{zdu^3}Zs3-HSZ= zNBgzL!QiIOpKbQSI%!Iw%f2Q`suW+}>vi_~acOt2-teafE$p`H@#n}Hp3P4w;4qxn zQ1!_-BibdB<G}Hpuwr|M!_4-rC04cz<}mj8XR&<I@MTs?e{W{1^>FgZ4{twz+!?IC zajo=krNvJr-(Fjh?SAUR)OX^Ox5#{ZwzN;3YkORjq-67nD$UhqZw`pto_jOvbd%cD zgUm`>`2soqYUn2~{qSyo@shho3$u$=w;u7~Iw_p+{Ezm_`)%@D4fSQG_b3W2R16Pl zs5v0V_VnBO{s+5K6dIef^Zl<xD4f48aaL`&xZje+8-L{{R<o^Nc6deRrKMMU<}A6m zLE*Q&^V=ZfO(!Ss4C%coyZRx2+kUYc#}A*LF1fhwkh8kcZ6EVP|DIM$ef!VATX(fr z`#9gug-4(4y!ZKrW$^rkZ|_atlI_+X)ThLmz1XhF_~%~no-&Iyt7n*d++@y|P~B-N z-)<AXwBp)9y)W4}-c8*Z;m5rEO6atp69ON8Zz{0(72=oi?S<D%Pb2M&&)c(D)K|#z zX55R?etB8IcuPvkmv1X{l=4l(lT!*OU)u66^zoMB1E=P#e(PE0UcIuG|J?msZr6XC zKk8epq<7KAqbhmDdeyC)CcScH5c0R-`epridGmUk+>do0xsN^zS*J(`q^n=s_DAx! z@%gOe`62O}kKA<+Vl8pAJ>PW9*KN<@XBB+y54vYR?^%;qE+fS5^<}N{fr&2zIQ8la z7%bJ-W#2Zf_UHIxvuOhFbiVF}wV&qAwOBv5PO-*6H|UkeS^;N)fA2pnd$LQWW?fwK z9{)!XIg{Uf+ad8}d)4RLe?8Z!sLZ_|b$<8W>g8%~Dw8kFa%Jt``Tb?EtZ#0vr}>s8 z0`^=%Go0_tn#AF>LS^Fnpgj)!eif!p_k(&?PCFkr=km`JCmH**ralgsap3stz-c`8 z!QLxwIdeSuTh%p_O<skksw=C(h~4?}UO)d+d-(m2O*<dpwrt*MC5Gzi(CH0%ho128 zO`X5I=VbFF|AlK;Jk-9BexccQGW)_HrqE5E+%Np2cJs8RKAE(9`Bs+?Ob2>)+PW`g zGm?;zDLX378N0ad?!(f9H4{%ttdl=>W?3lbF~7p-i7{K$r8`W|RIKtha<Tk%Ib5dP zfIaG!iRGWwlAIO_W$U80y}5tl^0FlBq_%Z2J>4^THe1>jN6j+bY`s#x({{C%sgeDa z>yb-uOC;RyyQ|@-+Z~>#)WK?TV$Fk9&*!;{Z;wb?JjpL>N%15jf63(+&fWEmcpB=! zp2zq;NYiM$|GCu;+>M_eZF$gtI<De;qNiTN)1;$IH$=>Nym6iHyW2k3W=`E;d}7_! zb>;Fp7R;CTrbYhXkN?=WZrU!riRCNqoVww%y=AxMH>TN6-99fK?T-GTIC*~#&!a70 zGMmmZTCz`ac(!lS5AOdAEQfxqee9j_&c>0eBHVXE8*j~z>G{8#C&tJBQ2xj1{Xmz` z;&#+Wv6ZX*#Irlhjx71N<Wi7_WxVresfw_O&bvFS%?y8p^0WT2|H$6I$NO*h!@Wk2 zL$9dRs0g@3^w%%nTX(?xk8t=y!Hfdagq1z(Z~goJ@@RGaVf!XIjvwZ^Dskc$6E@6p z<<@=7d-(+W_c@<`gm^9L+Iwu}?pGDl-}wKw`*HhW{bA|1;>WiOY@N2CVcC?myF836 z?;LKZZLMWp^vB}E@z(nK^d+~B7IdGzvO;CL+`F5m&PVTyZmH*RtGimT@N;9lO-;z( zbxHru&bsY6O;h#GVa1)=eKWqU*IJh7r@7))wM5OXrP0=ra-EOg-%7fDxa!F)y_r1a zmyeX~W_#+M!x*dHurA^1+G876y!w6S$)=;qjhk<D{keFhPS<R5p?SyLOAq{&wYB^2 ztxn&Y?)*C_%h0D&WRub)4~7T*`BfiNJ67s<#{3FxTzdMn@28*h*PmRQ`H{6J#^q00 zLbm#mU;ZumCMWevyQ4XEAI3h*40V+FVw?S0{80Q>w?&_vWzRlooafppt}^M!w{`y+ z9+e;ao9?)2dvn0d*oiKSuDR;SJl68~wwxzr@sdTUfBQw=bM^e{JAYhGe*49|8rwz3 z^}16lB7-6#w%km<!hG5E<NG81?R6?Y#6SAg)*msS_@mqZin9GptJYgd+R69N#Q%K3 z?idx%YG>xSF6-E%XHKb;eBLQf{Z$pdv&L)3hxbSBGiS+(U6EL0F2ASgS&j8!gQxMI z-^OfQUv|~~<&)|yFRXN}tZo1NOFy~&pWdbS@7|e4zdk-Iy77~Dp<?FqU;Gc_vmPaW zl&(MIE%PhvBln~weT<^_e+Yl`yOJySKJ??a{rUOnENeE-4*M*ZdM-RaRbu%c_v?Es zAD#%ierTWcyr(%AHsAGGu72lZtYPb=Yu`=hsTs_De0itBw(Gi)>+;nEk2u_DZ*qL+ zTPc4eUpUq+Pt3aE45wu9B-V0st9c6_?bZ<c9z6TadVxgV4craxGFQ3n87c}>+^5~j zUM8ctYsxnN9kSUg6S8be+?#`qV$M&z^K)Ci;Qh*jA#;ocKQVdN#lCuy9<`6*@bY*+ ziLZTk&)ZL}4PTlm6*jRT>b&=+t#?lf9$HW>mz|m)>-~1lg5!7lTaQ<LQEpu>npSXb zZ`Q1BH4Qa_k8aP`%doLu8IzaSEoNXZRkrw{zD(r0mo=uVl=O@a=`>WAn120yR%H`k z>`nJ|yzVNWaujSDN^kF$UmL!0Sx4~dOYTRFPd=J$IW=YDm9_sFZhn&ZJb!7e=5O;q zp;v1pb8Bl?sGePQTw2BPa^}QsbHXEQ_jIa+Ti936nf&9r^s3u4Z@KA|^&MXwuA5_O zIj>J%FmCGQsqZTHUXcqvZ}`kJHFHk$#J!y=bz8fOPk-Ld@@?Jh*p7!E_vlr8Ia(Za z<lOAC&$n$?>24O8opE}e(32)l$>)7pb0$2PaqL}n`P%;so1Qc`u>W>jA||1tC;p@J znB%v#k5xB5z0#c~f8*Gt;_VWzJ#^=KmgSzF)A#j?<1%r#H0SM-4@#C;Ik(yC-TTwG zwdSR<e9A3fnKuRk8z=esTQdK=y5h~Pa7ND)lIM)OF4fw|88|4-(>)h5&-gIoQB6<t zl>yCe8Qbmlekd>bqj}HKdS=^I*%NE?)$@*Ol+B+q$tw8q#!60E@rCOmeN9uUOjg>S z*^zsux{PP}_u|Vh!xdaDEDjf$_3iJC=sOx|<S4tB<5$4O8K;dVowB%9p|&&fO<=e4 zVxM<O9LG3ys)A0mxZHeFE;luaJK_Cy>1}<E@BJp-uTd-rkgHgl*S?VBZbq^<qn?9w zh<?~}Q^$utn}trzJv7fZU)m|0$MJ2b-H8|jRR@MgTbtcyM|JPLdFp8KKIh#{m2yp6 z-n=&#;90_VwaF-2<>}{R>`_WPwa>X}zYu;?S9f*0_3rF{iwhJQ=N^|7y`1^0iN_!* zU>?VMqYZlw#_l&?nSA}$u58(mp1C)|UNOGNN)LQvv2OXo==jbE8IL1#a)W!SuPxnk zn8iZ1^X<JIy>>q(Y9CK1Jh=9@^`&sGCkD#J;jCW$5sNP`m7RI%XkWQz(<47lbY` zoGNLl(qR2;<J&yXL!EWb*JWR)ojnocDf3Ns_1P8GAzSb4Qf3w8ymNfr!vm}JH!C+S z-gx}esu#CI1Pafq%VySH+>s#rq_8o<v~=NZw)g9fN>A<WykYTv-u~X?voeK>jPn(~ zKbik;Yj(`pjm)Y3Wq)4ly-Q`BIYa1d<MFyft<Or1d8tZz`q(|3WO<&2ziMg0nU4jx zCtq6c`?U9rU8Z#Nxq7aXb7xL%;4%E8wD`i?*0?Z7ZH=GhGU{suH%oM{l$mFIS>)yu z9^=Vd3g2bzUYWyCd_LyOvPbtiZa$WgT+NsvFyAEi7N^C5)gQG^PM$NN;@}J0Y^|Gr zj)mH+kT|$jqs~*zsZiogmQ?x1vo_&YdJab!&!1s@P{I;=kfG?#gowhgzd|!&Q>3Rn zW>yjW6*^<;jD!gf+a+cA|LxU&x!NLT-AU!1b$0|O-rxS%aXWu&zzuc=;RAnOoe?`P zrE%cFudkw&ik>27;)Sxm!vbfD?RPf0Rk=iV4dbigUtx_~omOs;UEFxwIb3Pet$-CQ z!gIKGOqi+6abMrQWd7^mk~gz8oxL~9M4L}ymVIoYESss`n!8Ztp$OBNzZFNbxf4HY zHJqwqstQ;A=pOd((1*7NgCw6YnFhY9|8?~$%X3p<skOn&p8Zm8Y7hE%_xe`O4J?6f zVYcrl_LQzyzP3*4aGah5!<&$)7LRtx@<)l8Prs<au}OjF@T9HBf9!49zc-*fWkU9w zg>n%q<mY?&Ex9vWGcHzg$&T%L)(hTto!+`Hw3w&2HRjQ3&$7#`6N(Nu8NZA)|70+6 zS#X12;j9g@-BG*d8{YMEd>iv;T`G$l*O#@HrSe;DB_tQTj1*cIt!!QU;%bv_<S7x+ z;;G6D-UgU7%D<Ph4#}$7#8<KGg!!bxE-v*$CqFYEU+S#X;CHbhv+Jp}sQIil{4$q! z<b)qLS-e)ez+>4}(H(MAo<7et`LdjU%KD|gjnm(rkT~bQQq-9BXPf`^t&TYr$BJjo z3%k=&!cev{_l?_hr8IVn*S_~S|IORd^EjVf{njkQ=5v}2ZyqlfIVmEhE+3caXV^FI z%NyP$!asgp=3By7m+xn9)$(QK+^TsqR#*pY(Nw%BW3ifF*tqm{=mYybGHKgb5+Acm z<Rk=pcHTHOLEuJS(_$@mzo~T*ZC51@my3pH##B9?HDRaR{iuKi|3uap_D3-=txglS z+TUKbKl{3%2Yc4EKZS7%3uTXR^>6W5dH&K4|5md@*}rF+Jry#XALm=Oq1BJ!#eoNM zUk}E4npA$Bzo*vqw@Jm}x3feSS=O7{mw)<dA*=mL*7VG^i|^$3*oekm{rUGp_>sql ztsX^9E9r8-Bfi}B=lU%r_vJEvnYTULcePZy*6xzXnd#egTYAdbulx>Q+`eY6wOu>Q z<f1Kp-A4p;0{8vVP_}rNePEwaP0WY$hi;orkG-P2eMgD4j_|V``92y?m|ta|s5AX{ z*Ieq%_9*?sC-$ApIh8p1h<QfMOLwOP=kM-2pY4;rUg~`}JbdS_EBb0z^zNSf-926J z{a3X`#ozjlm+~0xeO7(FYk%hM^^!4O8(d8GS_lZ~@73-P%YPZOY;EbX>~D*nbiB<! zZkJ-C-T$q9Z6%wZ)uW~2Mk^RRZv46~vSIbCmvdjqtovx)U9xwN^S5Zvb=G38YOC)= zXIr1iTpsg_$Hlie?4Ht<H3tOZPIJhbnQ5K>qqghc(_?E(Ctm*E-nHW4W4X3Fm(srO zZ~5B2omY3y3F~(;3E|F5D{KW8P49f7{!V*k;yZ_R9IvY0ZF;D(clVCu1Mvo5)=fVY zrSeN`Desr1d!9VctNPU(@^IO+pjqDTE5D>4tZ)7F>ek+k5jHoPi<?i{U0wJ)`Hsqd zfiLlFxAM&5#5S-w&S@?-KU4fpoM~VG-)TA}Gi%iD>C92Fs-3(0&bb>8S+XK`{?UG7 z8}u(<s-ivmqv=E4(lz%^Rvq2dn*2%s!H(5kPg`$3cZ=G&`MlbNS=BWw6xJDJ&)Iob zWRlyF73}P`udnIpitwbY>SMabw)&yrTD_}3)hr}s4PQt2b*+6>7QE*1zT?`<y*9e< z=GnU|ZSVVse6zDx-mpp6S7vaRIKQ>RZ~Md7?|IIOlxLNB*tyA<^nYCM@k8~|#pFlc z7Ee;E6OI>cmw5a${9Kwyy2Oro&-m7;s@ywzzssI;tE_v(=Pk1%^*q@P-8k)A6Dy3r z6@4u4+-foTx7M?BXExj~F4)b~_auF7ZRXP0W7`Dd9bV;mPq-KGc%9qjFKcb1AL)c? z7nZKc;uUS(B3HdLeky}3`_45QkM3*rge~7}qsnPlm;AK<wzTiXeG;$kaegRo%UQT- z$K{fTwbd03m7C70%NzbNj<^2Ne$485mtvc2aM-SW+dG~rPI3yYYudHH%g$uykNJ=1 zCLfuu+OVr&+Dr9&9^ozW)9rf;`o*Umd92;1{rcr4Kf@{4mY)e(tE%ZXJ4=6ovl<7( z$1kg0yERVUxw|oBf=JEtrb@Oo?g}v*AJ(^vUe4unJAUj&{S4m2`!eI=IB$op>vW5> z(7y0^tBcAp#-v(T?VkO@c{ws|Urb-j<J};int3O=vA^nbwWLem!rgLHU&YDYmYXJB z7JcRN))P7F*Ek7<9nf2B8Bn<{`{?tNA8sE%kXCqL-SXhvQ+@{f_I*9}<5s|~B7Mty zZ2r!#o%cJct~_;Ub-uu3-JZ*Ff$FyXdyU*!9V9I!e}!<X`CnQd9J(`6Lcq_!`sxkU zb7tFR>!!}wRL=6)G*d+`s^?L|wdanBH6KqH9AQ4Dz3lS)DG3am=QwPxbLMK4ALEet zeSE>{`?tAsm3}&G?*ExN&)DC=R_uOQJ^vlmTd}8;wamUwQrEiQAe&wH`rDF^yCc`G zUA9#6z|C(f6M6Nl!aJpp@7z(DHg#T5-Dj!Gmlu7WBe!h%B;C7Hxh60Fuv<3v{t<hz zS9xi>KFTe5SHIiPasGn!P9Nmo@;>^{z~%n*PMqED^xe9dH8&qi{ES}lC;Oz{QxBGm zb)0z%!v6NR-TV^W8|8gM_wB-jo?eB|lKl>1)0MXN+HDN9OI53?nJ@Wf;m66Zr<LV3 zrG^-s*mJD<Z+86A`CG(vxLl`Bz4GL7^KrI4wp%3>C0g>1OWM|L4Xaez$9~rL!JL}o zqA@FFKG%GDR<&9Dn4Qh;>+5DNnL59$_;X=Q&gMPucTDon`l7i<b=f`F!zL^|sg-M1 z)^Hc*JviceCjDKjgvq5VX70wUn@_M+K3|)0`{nN$#g}$@+jIJHI5JP3*HB_wcl(gJ zn^Th#|Jv+R{^rHAqf@)|7!H^Qy*wZzpuJ`Cfn94J3p#k%&D-km$K)f+8pg{rR@&@) zU|^eB)ah$Habf|VpXb*V2W0+5taomI$okv-{d-;AaK`PP8Wz8<Jb$>aJFWcg>l1f9 zBZO^jU+HYq`WyIM!tRDlXh*VQWf1?~D%<s~Hd+pxs%Ou%HU{os2;VQa_4beYho;MR zTOD3rQIyHkyT#jj61&Xg8~kg7de6-D&Z|gWlGkosRD5mw!k#@@RU2jdqkhfz`;q?O zJV)fI>A!ThZC;aeQ>w|wU{0ysvQ2O7q%*FE&rA8{IHMuzmgucjwtH9JQmOVVv&;L` z<7GT?vTrC;jOfXi^R9l~Rb%tvNYE53-c2qoG7aT&mTWuTi~SHj{Cl3atga~IVFQz& zUd7v{*%j?*VBVo=@nxNLZ0+ad4eOV$sgrcB-O(-3eUkqK+q%;qf)7t{l6rN@a=G@T z4u6w1Yq-j)<&~oxpPgXMekEWcrjUH&(Y^&+esC_l8|!x1-@9T)ea(u;_qKm|-&7~M z<+E6>Zho|7#FHd<|7)|ncUYa>EBJBU%*<zAOWQ=`YFDqC#L1&%5#%Ys$CBlj{ko$@ zeqm<EqU(om)$abpkkKr^-gM)#3fJfUh7Y%I?=z6xwn)p(dXmFS&zo8L8Bfl)Pd_y4 z*+K(>O!3cbFE`!otM~eLzBPWs@?-p6+fJ4)`4Lu~t^WMnu0n~w*{|bo>K}Cf*7IX- zX(rp(4{j|7*QEtE79IF|p_Wth*UY7vX0!C>^G@yE6?N;-Lgg;Q*1%{@r&+suZ_HX5 z?Xg?$`IGYI{SPM07ktlClx_8I=CZ}LPs8+1*>inc&;Os{p!^?e(Ovb~KhAwz$Mx{+ z8ixMErFETxjR)57^S)+}_P%{I=l1OOHaUx1?JUplJX^NR@R;t3r7!lMdnhB5UwLx> z{GSm&g%95U;FaHcPx{K^U01&P2FG-nu|%H;Q@H<L@Z|axe>gwPKN!#bR_Oj=IqAz= zDlR0SX%gJ?H|F!N>+zE#zi-@fhoS7N>F3aoTje&|T9qu?qT{{VP2_EY(^t!N=>Z=% z9eTIwRg4USZT8%c{~0=hoi-+MhKA}C-WGkx{Am9-^IKb`=g$&4up}jAdkxp8^tip= z+s<e8i3wg^J>TtK#nm@oJ{H>?;(a6NXfy5G*LCSf=2`6gFugtQ-@mVUvG<D%e}-tj z{j2@lJHNXsy#H(Y^tgGoQqq+z6W_7aamTfPjPox2QK6TjS-$w#fz|I$J}I0fvgGQL zvQ>tC7u`?G%h#EEuFTrJVB*7!*;6DBs4xG|ux?-BHJh;OEgqL8*2R3!;}^|;+_#<g z-gfQdhN(#gr+zB%HQQZ%TwZnAWC{BTS>xD=OU2f8eVf$1rLQ^qdY)<Q{EUe$C(6<n zDBr)fbEhfy3W*i*#_C*-Poy%g*c{$6L9(B9^^5t<`!_yY_)+-b!;jzgKC<R#t*}i| zvh@yj`V^Dg{M5~=q2lCPWiM;vjn|qy?+2gw@>V%~!=~+5_g&6SN>qx7@@&kre46!l z{*jY^l2_jU&ye-XC^p{fc0<|;<z?(kt8M->u>NOA@3p&ApIPJcQM{vOk#jePki`6# zb0%odz5Yk=gR)=9&JT}XO}xWUv-9b0o$@jjuIJf&|1`5o{X(w<_2le1!_WEZ`z^Os z%PvNIvu3lpe(gSs{==r9!bb)EGi1c>xGTHnIJa2cYxy|q@PpxT3bPMKor`+<ZXwHz zC+7p_8OJ?+7~f}Rwf66{1roPkDT%h#8y*PbvQXOb>QdKL#Y;!3_w2d1{3U;z()LTG z)!EI<ZpFUz|75#c@3Dma5#wv?YrK9qFRhq#<JB*p!paYt`k59-iWTLJKE91({LuWZ z`9k{TBh#m^EKy|H^!^Zo)suN&{xh`IZ*jfzpF!yTmfzRsJ$Kwcw?}Z=fj*l8@oSrx z#x6Z|A*rCRD7a@=?LYTZ+b`d)@IF#5C%bb;$j-ipx30<Lo^kDC_<G#y*4CK}q3<U- zs_!k7{}7mKcTT?l+sTD{wza<zjCE6ba4fR_M{u3YE32v3+jN#(Rr{RA!t@|v;;Zb} zFD*|^DtcApGbb@DAXf6l%c46q55M!zV0{_pa#lcIljn}$9L9)(yFc@%9y6S~pj2+( z)w)~ZnZ=V{6&P8|S1nt+@~Y(D$z}Idz22*Qyu5#_wc-rsy`q~OY~A>)R%fX&XC7j; zv^{5kY>UleHKW_@F%u&^Z@lW+C3$_?X(bQigYUGbU(LB2dg7kH1xrfWZuRa{VaJU4 z8G0D!J=^?l?W0NwjiknXueLebUG1)tI`($)sjaa#Czct1`m?9;z_07JYIBryZk|wI z_%?3-noQ}d`+^vse>huIHE#;{{JX9GLD@|~`OaG_=d9SmVtD)vzxuC`i_yDkZrm|2 zGXAqV;0Dvd88rve`yS2P#=GCT;#gs%X0)@U_N%sAQ96yY^CTY2d|i2L{uVYZ73PKP zYvVU;6f|bLbzGA9(w4Vh=B@}`$m*Z-SoX8$saMY?cE2ey&ipN2$j(#6cw*JDgEu!+ z=9H?hSa<8O#}gq=X7zb(tIQ^GYcfo{%uw=m*|K{*)7h(4ikXfclz7EowL!Nfg)L@< z#Hmlk(YnjE-m*_}GrV)<!pkEJx6e5|nHafkdwQzH?i+`r)l#$=neC5QrL8!fEj3NO z!CG#|x_PgzIT@TY>tmMtI<Z`O+GL(33`VuDl(py05uMi-XSV9`cIE3LpOv*ACmS5A zc<np)<Mv&Bo^o5|=k9;*WbwlIoVLr&`y9&@>+d$U@m}Y>5gaGb{KM1U;QO+6cgMyF zi<wPkPp@ZRaNwP9Ou6Oj<13Hcjh>;BV9mGV;F{-2<%|day)FASZ|V-V1F}C}$9#P@ z<-)dy{j+cF?YQ!yt~6+N)J(HYChA(8k0pLxdpq^;RCdb)#~A*+YPxMSaSoGfW|YIJ zQ(cA^CSQK-vMib7=Bxb7H>;R8+I(!N3ir$`ZhJ88#Or%Iqa(O96@Jb=ns?jx>9RKu zr>_t_sT=#QN@Tj;a{p9o=bnaI-~1c*I2nGgGQ8jQC}C$<DCZ8D=96nR@^3Tj^xb*z zJdc0YvnkT)C0Y@0T5nm&E^JC~Vq?pkbeG}JwyU-rUqzd<R~Uw=%-zcv=ayx?`?Ji> z`{$FE_b<~n_5E%Y8okyxdgp=s8J{ZH*JZVQ7JIN!{bE(x=A~E8TYso#ytle`uY4iP zM)sZ(kvp<`AN}1Dd||uEpIzGnDs2t4S~hFX+o4jbzSp&Qg%Z!Zyoy`(bAx7;sV_*L z^ZBTK>LTeQi!M&`baXg8uUtS&VabG5Y!*DWnj3vv3wJB<%#WJIGfjpq-ubAvZ)UQ3 z{Oqu}t#T0zMMpmQ+mx-fQ2golz)ACj<vHK<TN8w>5AFZ%9~?e$iq%ThF1cEx?1?Au zEDd{gtabUBGkawV{Qk9@F6C2U$<=yNX2W&7E3JodyQQUQs*1JUPaXbCo95KMOI|kj zcFwh~(7A;>{i>R;B&}bv!k}k%wC#_#5uBE3K5B-ymz!2eZ!$7#JI<`WwAf<nDl6s1 z=8GmqbAJ!rEqwXjdPR53_?aQeSFW2(Pvo@T{Q8*x)9^*R6{oCtkWeS0vcA~+yV>;S zEgM244;wt&qy6~W9<?iPzHD$)Jn~7v@_g3U*K<9hj~buU2ol*~T_Lf4+Meh&o@=th zx34+!^OD@&h6nsht7n$#W$k&t@L}53zjH-dzx7B*|H&#^_Mlry^yHeoaZV>rRBADp z@~yO=Sh6Ya@vUjEUgjx(=0CfqNc)xUl^<{WJm1-!SJv)hv|#SaS^2GF+s7uWuDZ2( zMo$vmD!#AzUD@$7x~D+%hIFcDa)t3t&t;p%PqKUtf4BH^l7-FJN1JZ?r2Gm9x*^@u zm2Gg;!{CUV|Fzjl4E2ZFj_o;?TvmK-_6eKI{lR@xmOQOo(j}G2p>pY>Z;$5F!tL^N z4X*UuWL9Pg@Yad$pEBpU?5blA3|mjU)7qkAmMnAShhiVUSM&t8Kf=F)Bijr-*)L7) zR5!U)RQorRr)ax_{ZuWb37HGKzQ6RlSH@Fk8rM{PBWDJe=c84^!G1SoKE4f*%gl>$ zcR#%T+AfaAyb>12Mb9%g@h>e2>+{iYPFG&IOml*_oV)zo;EZ1ni?X9!6pO+|y&Q@P z3?1j)p5m2|&`|kkRtWQjkGIxXO>i`6EV?)Et7@68`-8tTvt^xXn=?{FldoUfo9(h~ z`!wC#H8-pJZfAG>a9pss!pw5+T;8LH6IRWi!T36^Gdp8ia?+7=WzTj0Y>t_#aA#fR z<=wM4o_ighpS-eJOeyteBl}Y0NBsR;?WJ$txDn^Q-FK5i*u}cnJ6^qgmE|vZQ^a*% z#;KW{ue7J^oud)jlWgmnDpeKr)Kz)%H6fEOPbbz}Mh1p)iN@knXUusrdDfSDQSom7 z$-1XYCD&V|+`hK!<!a?^b9cH;W#9@}y3)Tst0u$qoZ;W>;OL2OESWd1+kJ2!-{hD% z)|#IJK6$);8}i5W;mNIU{iHJ<m+{<83p^0_Y+u`l=}k+o=qX+@spz|!>YiX!_{#9g zmEBuYim$DBR224$rR-F~hDPS(Y!9oIUqpS^@Xvj!aUkqgw58>F)3@;=HtNg%=v*qf z9Xj#c+LApEr$1M3w3~Y1NA%(Fs;e*hBqB7Gjpi|YUy~?)cIEN&rNwt^%pY_2bN)Lq z>sn(@WZoa=m1?uv3r-#Ey=?I90Q1N7y4fyG*RvWW0z}LD4(+a&_&e>;Y1d1+ju~HG zNY}KapP9OA`<HcQu9JRlo2ou<u2Htj&U=k#FTP3n+qrz^25vEhaQ|gL%4GFUzn$Lw zbn^G|s$a8ie0bmbxQT7|&NChsj$hVgAFtEVi#o@|R%G!vW3H>0S#;;kUo!E%UtO*( ztC(tYBK#S<{HZ;!vS;qGU!{LD`Z;sKukd^s>!tV4c^oT@+1|0Hr>bFUxZ#ci3gPS@ z?aYfSe2<5eMybCQS8q32n7BGR=B~(@i5&4+?~k$h7TnYOaeiHm%O~A;cXQVyJ%~O$ z@tJ(M?Q8ZUVoBBIx0V-uGQR&ZW|C!_PrAhFg)N5<em-QDzG(H8mC|NqO##0x)bH?V zExFLtt~~4f#(g<Oe*BVaRVP?z-(Ht}acA?cw3G$M%qH*``qU`Iq-TCveVxPX!3I;` zDf>_NE|JQ69D97R@w#L3nvYi6B~F~OK}9D0)-uaTw#Nrdwg=99e7AA0eUzlfY;Ohc zNes{SrhDhS*s$-DInPw(h3geAr`Q$A6jdCpTH7<b#Nf#De620&$(Bk_PUI;Rc>Hv$ zDqU~;@p0~!R^#o@PkOx(4^|Se-f+&f@_x^Il^r`B?w1I;s%d2hv!*325%x)Y&NkaU zs@!bDLq*qPStS!TeYz2!wQ8^C(cM)6*5bY=Us&|ZvTAumGsyAhef225yf&)wX7tn8 zH?_8zg2{<u(itt2g!~ilT)pjE`sCiWYY!L?nl`)&o;}mx@DIk5%a^S#d}1PKKAG|N zsl6}XNYB;Td@$v-?vvT?W)>+q&Yd6C_%&JMaDw{|gC4nm%dcFw6+N!-;6H=a>~jYt zfA4KrqPpzZ->na)l`(v}YZ!jRIe*KYn7PYWDV!8Nwf1zA*|eWK7~OnJ#MF+vy6n6v z5*uTFXTy1hUpxOz$?@$yt99ww8}@DOCz}i6x7^vsekI($(60I6VVU6jc8gc=Y;OE? zRN@QskJV?k%8SOo7T36RvLjjfRHKE*ffo#GI^R8;R92~?^QOpGd(-wi-!%3qWM15@ zrS;R{$%<FLj^;<ZtA%{b3U}Jxp7n`!>QqnmNtqW8t6pBob!6U;MQ2~!h?JXH|FJu8 zf|bKD(Y(frKiYHVACKDmJJ)!}`55_2(_KEOtz7Ff@o>(QZH7my`w#cutoj~YGCkmS zra(e;y`}8O@RL_(?mVXNQn7A!>Y5*IsZFZ0ijGUf%z3tV^~3jX);_WqnL6#&wP+7F z^U764*{}3DYD_+?KNKsL>-GB0MrW?P%ykB9Dqk7LnSSj4c1}?B*z^a7zm?Q1z9YQ5 zeAmT_<4NKsU-$MMy8hsLlbysK^{5@&ckD|!b(@WK*BAAzrRGvCMlTQDI;nX1?UJ8U zbHi6nyfE+UNB?#k*UHruO}Wv*J0`t)`cq$9Y<;l3@VXX3S7ndYLJuS4wDOfIO>IA# z=rUb8{WkpiiG3@3cK*rc5B|~nFjvxHb7cBt#iGKWf3=^z7yA>qb4R+zlJgQ_>c7Ix z#depjj?tLpR9-y!b>RDL@md?d-25^B;qRH!HNnnTSbo;!{R!FCeq=uTok$a>dm)T& zA41YUe0{dBs_)LZ`fiC=ys@*c=~`XcE&8%?$M@ASCu288nkQd;_G9+a?wiRQw#<@N zoUqoMr=CmtQS2<8q)TE(3lCebt3R<`&U}8({2bo5^P}!vvN5k*VUzheSACw<^Lu?^ zUw2r$CtuqC&~DbtGPi{u=R)1@om{J{_BiOu=_Ot+J;u{ca-TImT+eTJR^YSJtpjZ8 zHjQyB7u>jc>+mMk-teq{AHJRq>gu|4_VnzO#2@tsw+pY1xih!HfOYnydpp)^{as<F zEzMvjUr~D`=uYe8pn3B9MQRuSnzw9k{iFFuX2&yBn0=3$_RwV`PxOJ#f7_f7t@yX~ z<MaldJe$zRA^Wa8smyz?cP+a8d)mt{l1IHZYZ*KZPk;0NkMQ<~KK4BI>9I=A{L`yf zZ`?Dr<Dm9M_NQlSon!J3%}}~r!@S_88`ILga|#=5r-UcO@GV=n^yl2OFLtcZmaNmg za;*DdZPcHQ{+n-|)JVM1s#3SL{lm2jFYohjQK_Hgwk2}O`S0_esed+Y{O$Fl<%K<y zO<^^gT!hI<37&5+<3+OV<@TvnY<IZyX3OiTmvvnCcu8IJzsGumLB6+g#!ZXMUbpA& zs5rJ}*0Zhs`@i<fRMa27`0k2nwRgP3rv~2&^&|IhpFdE?wbv?d#^l%Ae`+0K{d-IB zRrceXe`Hr=303Y>yuMDQvnWbaRps3p>D=@K`^2(4Z+lOVx?=u$La6)t$8o%?-rS1o zj^Fc5^TI;$ve|zG-`1)9UGjB*$7ac=TYc@$etvpTKKNzKzSWPzd@U#Hw%&PjfVFPH zuYaYFf4x8Y*YDRyw%H30Co&64Ee{L6Ab)DtU+Ku{K9|<z>Ce)5-=yeTKbx!i$|^5w z*;A|L@9JD|?JKX-uebRZl^sO4?>Myl!ZrTm@wX(m%(dd@|B-z}?Vm<q-A$f7nl;J& zhxZnKx6|8sef`$8X7`?Xo_^%C>du3Yjp2J-f1CCOdvB?(&eZ*CuV1q){q_X+kHR4f zCGC~#%4N6Pcpuuuw)SK9ajEq7FE=E=%7#60WXb;SEw{8kfnDWy_~kf@zil<VAI@3i z*7!c|O%J{Djo*%!?Vywff8nH}8#ZZsjz4(Tz4{OHkBzzO@7d^zZe4onsEUuoQDsGr z!aLXEd;eLzlGC`p=&I_TnQ8*7iheNk?T?wa^|DsqtS3!sQzg8=Z=HYQ{g?ck@(<O! z)GIDOW?Q)2r~YZ{yJ?NnZFhZLAM&H|<8J2*CY?2miAMJ_?IgBu-?X*=G`CEb__Nx5 zOFqX-`#;{jdTq!Zot{1pWp;*HCqCA9KE1j%e4oYdkX1rq=kFbOY<k)<bk)w(?O%7^ zSl+s1&dT@Cf64M6)%Et6_w`-L?~FB1ioA7{ndjYj8CSJy&Ke1A(Z|f}lYRT{Reul7 z(L7fvx^;O4bHr6;Bgf6m*ZaQi5xu%}=cCXg=Yn!`f-is3^$rhuvrhMucy)>Bi+KV+ z+@;lTE!!cqX#JVyrN!Uwab0_}PUuu^pw4&M+ny)v+V-w~V1Cf}qjKaGliBOV<09`k z%@DfPxV=y&{bkJ8DUZubCW<V2<$c%hS$$W$--qw*Z`Zz2ZuV*w&*>|kZnyK-)%z{+ zqSJ0iZ`*$*Ptn)jH}=pAnFsUptA1%8w&%3b{h+7qZJYPn=cDf1H$rRgp6^iNmGPd_ z$)NsJfjM6APsYc#?#KCE`;_*6xVm-g^7bQ5*RJX={`7caaI->u@tklyu1QC)OtpS{ z<=Q^Ib$plV3s-;4KYsS(`A7ejKWg)x;I;8~)G`Af!w;O_)lF|^7IkN5Ocm!?xrOy@ z*JpjU%0i#m4Jm=2o|LTncBpWRfkJZc;%oaZ8GOrhl{c5_TXW~>ZmZosr=@BR=oviF zk3Y6OSLXN@r3ri4thk<*{JyZ%u~6dmwq4%VYZ?x-Z1~xcXBen@?RiXE$+QlinJRO> zN<Mxa<x#W4t?F^luQ1uQ4=PS1x5YdEd3FAFc^)g5#xX`q-k43{)`>x{o$gHf(>;Z! z@U!6S8=+yrZ469B(H1W<#1+I?lI;xwDt=v<F8Th(q{7CoXOo{+%`GU864lSy^P_=T z;lbpXzu)GmN^ptG2+z45l)}Nu(onTh{?w|N=!tqq6YlUX;i(gS9&$hU!m=+LkDp$A z?3~9z`^(p6ZDW_7VkmjsZ|n7Cvv}H{vX>bh->P|eW{gOX;oECFo(8=;J6DTMblSAW z?;1vO57sknOWgE1IVgnn<>Z5Fxoyo^#L5ml_&hQC+pVfC)n?iWPsH9H_d0u4_gpLc zg{OU;Q!H+YeBQm{kJi#-Q-0{23T-d2Soiu(_J&-C+wON|LWD9GUbhT$s=Sr08CuP< zQl;|Atw@$eDY1WI_7_4UbtUxPHnV?S_w2QwzriEJ27`#=$q`b$D|;sJpR$^D$$0n1 zB?*^yTdsU~=cq&c^l2;w_Q!U<zR{M#=)kVJZJqY2-9?L=w=zCSo*eUT>7Mt;8Fx>- zaNR|6t9km$GqJ1G_*t48Pd@*!D%GRxL9R{8x3$toQ#&T@?tGBk7^&p6Tt?21!&3C} z>L|Guxg&E}wLIj09MgR9^ol{?R(IWbZ3}YG+2x586y96juPV-1^=(!7E8mb=X-}Wc zGux?k`bWC@r49NfOLG_Z9`6Y+tjyti!gtC%g`r4W>C?$66Sr3_x7Yu=cA?pKJFTTA zg+-aCjtHJ$=biX6`1Y|?%@Qp0IA6Ku_~u<Qw@g~h`{~i5K2dkAfMiSdz42Qv7xSlG z*`nOW#D8jc<8#p>4QXZV2~`h1XgTawWZ)5f-uLtC@?&qGE<X{y-ODRH%vIxdk?SGZ z)%`Pml`ODY$go}VT&>p3J8QQ_%&U67RLJ}DMi!&*$9<C4X|GDLR1VBL^*H19``t}i zYtMe}nU>_9b1nXs#D@c$C$O{kXQ@q2WUlwK3hPu|$me%^TJK{Y&-BL|&J|_8E{ZUo z&b@ts?Q4ZQt;J26`?DB~wq5gK;|_UTnk-i~bJ=wj-e-;{e}-;6ztwG>YFb%RMCrj* z`UVrH&dH1UvnQQxsi)IMOU4SBvK3R;c&)f~<x)paYwRi8T~a$G6kQJUo<FrDf$Mym z;{lmDPadsVvg*FEkekC#*TS>g-U~0&`#n4C?R1x8F(2FhRj$_6;NP<0T#>ez_2g&0 zYhoVsRfuN3vwU3Uo|Cpiy{`JU^FFbR%ifdR-Y(>LJlWr<vN6OWxPNxxldfagz315P zIaMA!C~80F$e;TL@z*wQ&U#*wo-4Rj_Lh>HW!cxS-&a1^7n1Y1tm63ky-912iL&3d z?W>U6^5eZz&AKw?CjR{o15f<QDbcK)o%XX`a8={=0-LUR_r9!DF;G~q@;QQA@A;E= zEJf~2%cAE_Vqnj^x?cBadEq~^>%DD_1+Nv|Q*Lm5s$4%WKUL%Sq|?{uZGBNMuyxsv zz0t1LO1(ulUVmM0y<4&K9b4U!>g!h$GJji@*ZTLKd0m}#En1mBEZ#`TaJTZ(q{w>- z5;G=PC12XM{#fzVV|UV*X-~f*x_HK}dDXMNOj|xxmUDf~8LxTTLK&y*C6%^3nh~oY zvzqVU*0^_Uw;U|bKX-QC8Kima!II~<<`+s#VQOH08zN(6ZzJzjWBf*4ef?T#zQdAH zX3F+a1&7zm2!=@+TAWZ`8k}mljX%)4sNE>{(TuE6#mn;+EmCMcFY<=NOXKb=&0gNP zMN8{48xp#TpKRZ%&8%~K-L;tHd0P|P7>~zaxav{l?zO|nEqeJ<6;I)f2UUs#@}4&a zowKl+QzabOVAf}ERhM+9KzW%}&^u;Jd&j_a%wOO7740}5<!~a^QfY?YMX&!1RWrZ0 zngrblj%Ay6_{|FrS*uyk8_(vwRFN)V{JHn#9hKPfJN`CuTAP<Ws^*)Tcp&`woDjb9 zWOj?Q-j|(iB|{gpZ1XGj<#PUFsx2e`I>=FezSgp`X$s6=O)kv*%6|B)ZO$I<CC59( zOX?ECzOSwBZrR3jB-P_x@%*Kh^%qT6dsp0$*Scr1t<RFnIOf^zf^XmcOiC%<uKXjr z%Xix?o43(ByC3m}dB1L2J+0S*wg1bS&@F<;KAr4OIKDP^>XF3na}4dKY?~!|Zr$ro z`#4U>_J%0@Q+CzPt6bmPackp-Td|uPZ-fh%N-#X`ne}>~!ttj+W<{q=ub<G>F3X%e z>uG9}d(4L;Wuliw-jp3r>WI14HaAiA%g5tFo2}=rvh`oEB4KOp0Rcx_i}g$E)A?K0 zm;YxF)&1gdRQk=<&gqu<@2{;AS6b`m68|IgL))iI=dRt;nEBOuS?q)2)_?DRT)#Vy z>xcZ3KZ+l$v!t3<?4RhJ!oRC<M?>xEMSthjv8Z)s{%7En+bcfRq+yGu(Sucw`_Ju& zzZL#y$vxGp$``kM`_JIq8fnbQp!uTSYUiy<yY767nd_TU;eJH&?Vij>l6v#bS(eRh z@??upzqV=#)1~_-n^d}t8iW?`JifQ)c)IA8yi><@4Bp&%erv<l+5Z`goO$=G{me7T zooPq1*w?gIRuX4-Jxbo0lAg2Dw&HB5ob-oX9}A1j7CdB@tJms3{L3;;@29GtLB*fF zuJIqmw#)Trlx@i5`XIhyxz)sl(#=NuRDQJSnqAY5kXh35Heu`I&DM8!zhl|>vpekG z&ee9yOFnzN^EP+Bm@PTII7MjnoT;Kuyq0e%PfWWc^`GHI*}cRE1_x~W*A`hF{q<hE zdENo3s~`C`h=y@E8`?0=V=bD#BxUk^gU>xz9m`Gnj&dr0mTk1uoyWN@{D>IarPl@W z+GVo6rK`7}yK|FyYwD{_OHX;Uq$@YSjJ<NZ+iJnvm8TsIdmdlfs<7*h+1K}TuGw@y z-6_|$yvgt8v)xs)Y?r;(PQ3D+X_1bf@%44Cj?d;D$zxupRk0($lXc%zm$hu7Mg@*? zZ7p}IKHvDORkWw{iQJW5J{8?b{9E-E@>lY1QR6<actT~=m(`ZrDk?pnOGqByTF{@l zPh<*Hl%0{)qumlS>mSN1HdrJ!zsP*$ZM<~uVjpv#aNbAk`ZaD<T(9$%%UdQ-oM(J% z$6P08-6w1ODvxD~Gi?<K;LEskf#JZ?B}<nvH#J^)d?RGh!;hP67T8VYdnfVL?#pUz z#-q|*hmQyur!@cjxO~D2jxzO|S!y$HuNJb^GCp}$Uom1so`Knd1MlDa_PI}->TYwT zaN)!T`OeiIVIsHoR&O=fr0?=NrDZkSe3|Xv>!$iHGcrue+4y8q)s@tf?++{ql5X<1 z)ryq*YVy{ybxG<08?KZ9+cO8lrzKxnp2D3j#df${^k$9a#kEVXOo~3RTBzp8#sf!9 zS~4owAM9KI=;vYQbY&O2&u=Z{p6!jPG5XNnC}eWAG(&w4Ltc}O!14>Tp6^qrsh;j} z;kL(z-?~knQ_~tIcqKPvAB>LPwRdOcl9{u@Y<8+VYgfD0RJiZ?4LSLb*IV~kZQP<U z`Bb!SPXgEO)&H)D&6C}nwy8BJcv4aVhuqXpoY(H%Vp{b^dgalid#{B24s15ekNLLd zR?*$2E{`wsJO4Ate0|?BJ*akfz`Trd!Ka%O9o`sdpMUFoUgNRoyv{w3SDJ2Lb~~q3 zhl9Oq%Otsuw<bmtZlzl&ub0g%<&6qh8aPAU=Xp<v8Os}v<z-gMTO*r2W_>DiSTgN( z*M;7^wCG6RQoVwh$;T?!eRlb9v(MmsL*blXVb@#j<aarLTlx5qhJ?y>&)Rg>xtkxX z&@y1t*roRU#&czlw*r<it9mBS^Zd3>JMOCL)%-m>iZ`o2U0W~o>R<BD%*JyD%U1uW zJ9JG`>e<WdyeH!JT=^X1#hX>SpT9<KS3~b|P67Y9drp1JmAmeBNjI=)e#XhW^Dpg@ z%9nFpJ}u&oQpx%4OH=RGc<q?lV9tJu-SQl-ySdX(y{&c|rH;<5=}|Ig$a{G_eramf zJf)^Pn~z$mawxDpD7>~WWXF%y#nNfk?W*qIR~zMbSxr5(!`STd+#4@4wf9O)(aHOh z`O)T{!N(Y>s&lDZHvWCAp`JN$|ADak2Y)DU`zYJ9yVCRV31yq~$#KaGCfB^To^Z)} zy5)Mm4}qWb!aRPYq$;yZDs7yyGo@!$nSJU%p+Bx&&kt`CJn^*a7~7w(66;;(ANy8t zWZiLv4-7W5et17P->>rTbi>ct1&g2ZUI^dp`Y2Oxiu<!kvnvvhWnbzJ3eR}7yKlNx z{w?*Rf<Kl&c-~)f+hcalEYkx#?%~|?_P5qZKj4>j`^S4}U0g`uH;bzcmProBO~0jF zm>ceYWzDk5HQ`~KZcp%Y&UZ5IKek`n#{7}=Uae!FU1s(aznnff^2Fkv)*{wQ$w_-n zF5US0>E#N~d4C`A%N^98vFi8c&v~|WTc7>f-zoI=NyUfO*&j`h$7XHvH#2{G;>5E} z=~w1imj65$%4Wcp{Ve9TU7P7-TY2v}ch79Tb7z(4`8YQ1c^|j;&wC!2v39wdsH4R5 zwT0W`6n7OUdxn|X)@Ca`*Yhm$Jg;t>_2|jfnR=VN@7nr55L>k2$ESzyY&P`^)V{r} z@MV3}kBuKQ-`^~VOzue(jPK!p8LxKhm3UO{g`HccE|_VduKrA}ZL5FR)4gHY?MBuz zGGA5|PB*=FJWO2N&#-XbbJsOLHhmAvk&Ia(lb3gI>QuSrW%o0pT0X~k%PkiS-_~c7 zoA}3Z^N+BcT~l&)@NVH-P-^m9Gsv~z?Dw6F^~bjTDBXGSyyV{4b7{}go1C|NKgJ(( zd2Lj7+pUZ5^7fRQZe3eZcQ?i}-+acCyb{~qpw0WFN;=-mI4J9yb0uZVmCsM+o6gjk zc;}Y;GwH~Ue;>3w{;)RI{E_&#k~;TUr)pJL!WY-reEd8A_QUAi6?Z*vgkGsRwAbtJ zKH1x6CS}c1UHU}#B%_n4?FQGvl|j>YTQBQX_REggz4-ZF)AxUhYnfiAuFt#iHsT>` z|I_%?e`n-3&p(>av1ixb<85zmNw?jXnDtS)sMddLRrs5YkLI&w-uh$ZH+jj+TlMp# zf=vR|XKvwpQ~5gH&-2l0i>03eLzY#fFfhh^wVk^5!k3ppt6e|47k}RWkBj>uzr+u7 z#}D_GufKoOI{W&hXy5cCz7vANTC;!8e;zLuso)gqcICvOzN_E)|A@SQEH?j9Zup`3 z{5g`Tv%RKn^>tXta_nf?BKacA^=)sT1()|3+&%DD`^BeU28&&bwBzH0pKQD|W%WtV zJFoxP7F|2>dWVo-QLXmU%UcWkj0~(MA2dA_9V5}mkRW)aY;{!H#@3i=I{bk*!k6my zd1Nkp9Tv6fX~e{a8Bfwbu6<qWa%9Er13Bpo1-9C!b4nF;RxuYD9yGla`Pz3w?{Vek zSw~~;n$3K%A&bjA_k@no5gDeePjPDsH-47Z{vJ46X@{?QD6eGL&-z<$vg51|e)@Cs zgy`&8-<M}zCG4xXGwCjS-A>btnAHnnCiq7j&w8%3H*byG<LkGUN1wmPGkHt%iC2X& zQ<cwbwSMV8<%P|+{F&`{A1BSbchzW@!Tp`hg7+tXT@#@%AhfD*`#S0UOZ{_e_-BYt zw|wDWzqWE~+4p|8DYLFhZ#ZT%Np#oeudB6%_4x1GFtvQpw&Ff0z~ndMNnhn!j&<zs z4n1xD92fKGeYM<L%R861HOfB=VYiRExV`sk1@k1o=#AgkOxZ0FyP)~yJgrOd|2_sr zFgdE({AY-IlDj>vv^eIHmUDaH?S6+W&SOT0nUyb#a^GiBVd9o+DDGNWTsKiOy{Ki5 z(D6?zw{DZ3`X!}2;#10Gp51Mi*sGqupRr5ipTL5vzfa0J94<DvCDD8LwN&*a;~fwF zGjOv1ymr!7FQ}Hs*PrKMU6OzC>zHRtnMI1u)WvzOTlO?!pZl4+`;YBh>pOMo^nA<b z^S0jQuTM64bIv<Jb$i0p^9rSFj`dD3`o;5HCT-jM0F%WG#~6;U%eD*UKGY-kJA0MJ z+g|Uiu!vJnXBXQ2eRXy3zR%y?<=U6;RY>aKa1y^iA?xm<w}zj$$`loT+Wt6v-BZ6s zo86;M2y;nT+8@bkJtU^nuJYJ=W3<qLa>4K6>#|zUxGqlmY4Ni8(sGwCc6m`VHbqM^ zsBZHA&{wf)W!@?76xn-oT{Af5i1M8iwlT9*>R5B-wA_u^Je<ll{VUe$Oulk-tzOrK zLzna!QsigbT)Cg7({WSo@zPAkgye9ACzH=zY|tuPzGhv~>f=Gt8KUC;NvUi-lDbaq zKm8v6seEiY-E^mmpK(KhwbZM1I-+$6YdqQC$?+z}I)%tg;#Z%1w&d8!jG~j##cb&s zZf`WsS-kC9TU_Aq)32Im-c{3^9;Y|6S;|Kp-?=kIB|-SMt#-w-Tj?xMbGhv*Boueb zJh#oro|^Mm_2ZQ=&%MXq@aX#_t##LCKWKU4T;c6YyJB)zPQ9&vyuhVGtHADss7cTo z*BKx7`UZD)XdNzas;ZLOGVS(_)J>HSzML&SsrKgh>I)ZIPdB_PSlnRT(;sy~XzJ9$ zxie4L?FrRjeq0!OJT>q_SW7@kL2=`R@L8W%?anB@e08#0*|s8P(HB+0hc+Hmsgrp& zJ8$-cl)RHKyJkyoaB7h?;E#F|RQBEP>mrw2X_d+#(cSgE-rUU>cQ7wAF!o7d+3s?C zf}_plX-X4UhFQFkp4I8OHSf4f%C+X3_w(NI7oMxvstIR3#k+)mZ}WvZ(TIQVmp!N| zyfmM$Xzh*-GIK6xy;NT4tGaNhAWzS6otr0^H?CAI=J9#vz_c=X@`bC82JB7Fa(g~T z)@fgvcIotqFy;!ouUEaMTL-#@uGT6jN@sm!{dCX%U30JeIlS_HOwD&Cvm}XsrK?w4 zDo&|6Al#<5(|V?7T}1k|eaj5J%-oNh{Oo!1owv!u&eywl*lHU+WZC_@`j^zyC44v7 zS>60iHYR7Dd@?WFTX12sPCm<j2F*uHqA&PefATwQ>(yCrbhl6b8E$OTWO-jkpjPv% z)RoP}JVg@@)+N8Zw^^-awfuC3&=+|Jf8RLqS1Y|WO-63ZcI{+M)r=i)gROo(E|<Ty zY~G0m4_m8`A&nY$q`2<z1zehb&%oW({&dM40hMEhp-*}i9(*jq&^F60^T?%i6A`UX znI0#XHFjyW_;NnKw)U9EgGr8}es+eJ);7<0708p*Q_J{$MW=e-;k_QG7+?42gzyy3 zktusNx%@(yjGvX@{3@rzEP|JpnsS_ENoz~|&v0$giIm*)7E467O!+0&aP3}~dGrKJ z%Qemi*7gcN@0@(EyDM6%sCV_JiDyHn8lK;twY7*PLn3{hVb`j+TdIU_b<Z@~uUu~X zQ*`Tt*Zgnw1z%n;V3m5vs8S+%HhEM3-jk-c{%CBD?iab$6v4t4#9mYKH)F?=Eq3j@ zcDiPI+}>`(d?jgTZ|S~^25t!+KQ|p;n(6sn;_c79w^y2;Qwh$NnzbP3n1yxa*&;Xd zGMj&Cb5GBc`*8U6^b^7QlDP{K=KTJv{c?SKJmb_qmh~&+>)su@bSrvh%5kn$OFPal zV-5N{f1mK_b@5Th6sHRr+%fE39q;+?nt%3($=_T*-o3h5V(Dc6Xi;0~n&k<{ANW>n zT(;2f8Ta?8LH1&$-Vay3ntna8oAaH@L{Ixe5s$wd4GAqcz&H0}*qb%yC(9KSET|Jr zPFmd4!&Epyd&W1toC^6v)9o~`tu;BFF>{^XlZYgS(liUv-|`=XzvXY=y5-WnU)NMN zUwXT^yXB|K1pb)~zpfvx|KQ8ty6v9bkC*ATZ``7F)o#9@A^2&UjD~&Z`m6gTvp&AG z3fVR-W1|bZwZ+{x+RJ!VDyKequCIKu&Z^?eOR3PKtvyY*cyd+Uj2Mow)_AYG!&qDp zF~|6wq@~UEJ%3WJF58)~;>`)ZM;u>Y$J=KMY`NaA#JJ_F^4?_AGw)7B%RF0N^X6Vu zp8CSLsqsFSub4fGN`F#v-gJNZ!<p;fT~3Q~v#{=~FkQXs<;999la7hc4HZK^IlhhX zJvQlCYO(Ib^Ktj|dId8@DxV}2pR+ZLD_-|%a@@J|$`9m3*|T1ME&A@MnZ~azRQ|ZZ z)^6+Ztgw@OpWgQ*JSktVw769E-r>C85|fWb6cyfP-@mu`*Sb{)rnK87JxQ$M+P&(P zQsrEQb5>$6WBxqfpyT=Vb<D*#-}H2KC1+bt)E1tWWK|Vbdh7zHMe?uys>{19gP24m zp6<<_b$u(xnuV#(?Y6#U2d!tjT4n_8zbbauPr`g}Ld>h4pMuZjmaV)Kv-k9*<9&w~ zsf)fi#+g@kOlHxfh)I<uPjlq`t8!&mM~j`6u5<{n`kQr2=;R60$;`Ql%~9VDpOdYW zU9pkn1&77CTCGRNBABoIns;T|w}UeZCs|60F1VP>b;^z7pve1${IyPp6qRh!d3Oj- zeH-N~*zS;Vzbv%fZ%?SN<dnD^i<rK@#?e;y4ll9kVtbZXP!;5|x%<jGrUOsr$a_7F z+;rsGHq-72CmX81u8B!s%XaZb@QDRHfv&8rB66%E41um95lmAnO;}Gno4kIjiJH$Q z))>a~Rax6lxhDrcpQWj=QR(aP`j{yMXltoq%nQDl6UDeKwndqR(IcWv3Hu%ppt z$DMVq32n-I^*&Y2(~NqUl=)s|M_GFAaa&(IO_zkKtHE8dPs*3^iaptx>CNQuE6A1a z8Q1-}juK(Eg~6N-GV>UhZ&<r<ab^xv+kq43Mc1c1U_D*<GUoWLNPnJ+mAT8+t(O$p zGA<NME8k}PEO47^jNI23by8PKav5v>dVP~jkvDL)%|6n5MDR%Dt-#~l`(>_$p1pOd z%GltAciO_`7s_J&7n|<y-4(^wcFkc0JM-ScTgQ*qzh$_cYN5Q~(Vp5A-tW`xwkjGn zcrXZiPj~Q?-T2XU=j=0;MTYbCW^S%nW+_|dB_OxMwsv)kv1syvFUt?zej;fZx78z8 z*7V=5v<Z4{_Z=fYXGL$XIa2mIvfo~IKUdl(_q@ubd5@yR>#q2@72M5~dOFQWu<vnb zP>@^kk1G>>KMNFOHeYyeqp<YLj}LASuWzk#Z&&?vuF~4=apN4WPv==<CT4wXQ)z!7 zd~2`#;mv{;ffLr5&AWQkblq}Q*Og!S51vig6upA=itGZ$=2^eO9n)sn-?Io+?kPQ6 zll@_PkYJ3_JMFo9wB<bPrhfU)(6T2+=w@1HxzXG;(i3by#!gXRx}@Ng?wcyN_RPX> zKMw7TIQ;ifRe#l=6F;sl@_xwQFE3#7cDKN*+=7MzF3-<gf0ZxqiMw!j{-#~ZR&!3= zX;G;PKQ@1BdTZ<Zqy2Bs-d?<KQ?Fdoj(abU)$Le$wCLRI&YLZH#-8)-@7y`v=XQwC zc;419x1SPo*lfPMj<vbPvR#N{?Ul2NcJroAd}M2t&%Jfht7)HZZ2jX_9c+_YbK~H_ zl=Fe}zJAW<*VH~L_jtbc)tSQDZbu$B8J`VTXGzK9F!FpL^?Yl-tb5im>k^|44>p&q zvktuezEr(f<&5C|MnBe)po4zi_bv*&Dzo<WKDupNk(I`8mz~E1p70;rqVw#x@64GE z0pSJl&T;W+o;%`<&sG`LJ@)6?aqiUD#J1(EDaBs-MN_OUOPWnN)%LJAragvvN8p^K zo%4d6drzM)o){J|=?43~*@rGqdr`R7;*ZYj#aC`6e%e^}{%wG#{jA&OMf~fl&Rl*M zXU?2|s=jO4p7!MFZU@erPALfJzOXYX<=UDTTX@w2udWl*)w>t{dhxV~g-`c$?W`<( zBq6(2FE>ANp4rL1i0HC<t)m~#cf7aJugzW+<#F+3uGR?->#ADq7dQViWYoXy)w}h| zQm%68e}+hr3~uvn9uLB6c~<jwUh+HhxlnSNGH*I-$tnBI`;SQM5r5RS|N7gsjofSp zORYqlIL|qnzWL7}x<AiX{ji<v&g~zro{@Uqk>2yS&$@n=bn)Mx(ziE!T|Z|}_M^Mu z$F>C>EVl{!aBjBi7S4Ib2cGSj9`xbuvF?U%{X7yUtT`lB94&Zb@F_H8z4(P!hd;{Z zxYSPeG`zm+*ur(MX7z1ceb;XB>Q_RN>+(`9)9YW@u3EKO^@IY$@{L~?hODsmns%<9 zE3Lj}6+_x;uUksexp!xMlAZSMiOl1@NjKv~rt~~X-}r2++Tnu}s`?6JPE2%pA}6ih zH)C<pgL0{|rJuDXA7A-8R&D-Dx!H~B&oAwHcI<UB^PK9h>$=W;Z9K@@XZ3AG!OpdB z%CBud<`VXlQT=7t-3?bdT{%vzs=RZ2d)0$CUs>H4QiP2B17}^|yd$W4$CHUC*c$^L z-pPu3QEm`#Z4h+o!2I)<)_321(t9*|gY3SkC!+6blpbbUAW*S3JM%>7ZH1qGj>ihL z`wFY)7EC>R;+aOFbmJV87C!&AS<$i2T$QCAEtC5X?L4vM7V}Qt9kq|@mu9$@bUl98 zW}))<ljzYfn^$MPXq=zAtmI<s&q;=NCl!?QKU)2=WTWS&mFEMBe}(H!U+SSzwtMm< z%axP9ZdjO_bjqkw()8KYwrTFm{kAO+mRk_yqVUe*_uS%e<$XzBZRaYi>m6fSiYJK9 z+~>Dsd({5S66RD-<*k)pHSf8XWG!E1rM9<RQboJZz&4BXU1)f5@$21lW}TZ9pmxrj zf${FV#g`Umo?3CtwsOtd)5Y%Eo1#xQEibsm`Nm)QWu#Ed<{j2;#wS;*@05$4W_j?0 z`n<iXwVsuR9Aqd8c~By^wP5$16(^NE*EMOUtm?fZP#tFb=fwmAi#vDT+I$YY8?Uum zC*|=zf6K2&6JCj*wVrXLOQI-Zo}c!GrR>F0Q+1QHzsJ5=z5OZka_0XG>m%RnOX)G5 zR3&(A;f}qL5fl5T_bzzSwf@^BuHsL^Q?*~mzM6Y!qkY7-WwR_ieob0XSMRkyS0Tb7 zaf+<?rHw&Bn*=-#7ti<FEAnuIXI{m#m4|K%>jX`{@@1!DYMMIx{Pm`OuWoqDb051u zTPA6Xqg`^&T?xy;^I28yduQaHn!tG8=el%mmQ&`O@841q-m}i0c-A|AIiuRs`^STO zCeM$$W%hG=-qn+~tDdf%=6U|qVHv^00k^m_Q__wvYqi_G*WL1LM6UTs>kS6}mTQ-^ z@Ge)F^Lg^6dDq@bS&IanKgd<YYLqH1v-Rk-E62|6nbY;$R9lVlTaUgC|HpNYzJJdW z4PkP3DxP2UY^#Xg8naK8j~A{E$_}2CnZ59N`Nzr>CU%<-73;FT34JnFeCTiUb=~36 zhKAc70n3}W&pNnk3r|6PnZNU`y;fPLo=*(SE6$XRpHXByDSB)4_KCNx4=Uf^>-X)9 zbasQ|BGxpW9yfM{XS?RkJo9B^9>?~NO<iuq^BB)&-Z=7U*UF!b|Fo9p%Q?EM{OUWj zU1z~9QIY1p8M4}w!aA?YdK*OAWEFYV)RksgOjDH>=W(z&#_KP&XsU$tl|M^nMNUnf zl9w=FpQUfvp69+hE%QnpkLt2VCGuV1RQXWYped%W&)qX|4ujR-jL#w;)^6?3DGpM* z@rl{Yligy?-dRCbk5#ixG`6K5R4`6fXbe2H({Y+kOA))o>c+Cwt4beys=8`fv}8r8 z%Ga1=(b=tArDk<<8@k0g%_%vTCAvGnBcST}t1RxB8;)nlJeX&(%F|M>fbCL!+x8ye zFY32VzL<)|2t8<x`C{AuWu5hrThr%OHWf4o7+9!ndzTk>@8)eCPZ=i5^~Tq}mQRY5 zozd@?eeF<SVD7v$v&~aNJoHobpBb4|9@Cz&_eAoEJG>bOE4((Iw0!$Aa{D{k@AXz+ z1s`pi_n)E8*K1O1g7L}MT`N@@!~3#!osm5G#Ne^yGNW%R>y);ohFN#4i@mW~?40N7 z??vMFUduw}T{$-QM7>Z}M&3Pf7U9NQi#4~)wap6eY4n`FbH(&S2?rYvuG(Jqo1s)* z^Mz~Z6Rw@<B@5n6e-?b;d=_i^PTz>d>3d_0mL6ddU};{sJm%%v-j5qn^4zp0=XGvy zWNUn9KB02alsT6@k6KUBkO}nm^k8>0%DR%0doF8J-@UC$0(|_*_a+;stT`foX;A^k zIqOTi6FwAsMB5hr2;fNizHGbf&!x5&%Vx2uiUj&>u+>gJ{6=)ii9gvgU)JXHZxGt% zYT|w4&W`?~6q#?UgpQSO-)^fN`;b%OnB_aImKB~S)lIe=X}+;ZX0~mu3O{&Y+vP0r zJR?ySFaMayxAuIpI4yXi>iVJzF~{sBI|9VdOkP*15OUhZ)xYIS{dSvok<*`YMXVHk zQP1#C=1#@_$Q}vl({r0^7PGo#p9l(@I7#5C`3ARyN@mkv=D(%?Xte*9I`vO?kx6O) zdiA|=Qi4U#(x--Qm3A+FvA?;Vb#0C4B4?ehMeaR$7SBaLvi}iX{7CCwg|z#JfAijL zyB;-5XLkIPdL7|Q`<?%({y22|&^(!4u5*=VIJt2iWL{clQGd|E#x-?y#r}i8V&`0% z=CO3oEVap1ZR%X^*LJ0<TYUC@QX0HesyMLU_x$v=4^l&|on?ysr6Uha)A@W%>xscT z=6U@2Q8RNk9bhU?+xcs5{>ER9{~1_jU7U6IPw5J+RW7-T?R7?{yoGzNU%M~(wNNg( zw}JaplU4YM_z%APqH5g>D?a;9atYSmBks_*V5OG(<ypU&kJ@Q;y-QCC`hA=^|8=au zmCstMBR<=A=s!EG^2zY?<}Gpu!e`y6@OmD$`?gHZs=Ly8q1o3{FQ<QGz0z>B#lECZ zbDsG}y@?;DyZ4GLnYHHiHtxc<33E#GvqDuRR-fq3UThH?blCq#{c@G<9V&Cy2^lz~ zTl@=sRCR89>8e*oad&c!EiHooFkf1F{f}$?BU?Z3(=TsDO3a^noWq(iB0QX1=;Y^= z5}VI)s!@I6IZL<RIN5ZJd-tNAbje41E+3UTKEL9$bgoZ=f~Dlz`9j$TTrN2Mo-M&F zlYISkOxA6aPn#!HK3Ccia@V)p@As5vN^TZ4DbJUi^rwVuKJ(!1%iEt<ujg{<Ik({P zmvz~(S3mR!xkh|GUG+Pxi{ql(oAV#l*2`!elwhc|c%gl^RQvh9xt&QNa>ij_&nCWK zmKtWwxMu3hxTP9Jt2bY2u?%QPo5QBTEW$kN<;E3^UB<2wOByO{{%ZUCO_|1gZ&UHD zwUOrnucYtg6}ou$<;92W4pn_tA)jym*?D`OW!_bP*IlPp=Cya-%LsG4vg&bHtxnp- z^UgEgeQ#i7SLnKaZP}+UPHqN%-suyMrrkY|J6~%L^PG_F>%Ld99?9BqNX+tWm($ZL zpKo{eToS&$)otb8m7I@u%eUO}ZQK2Lt+D@=q|CMHMe9}-&g0dz)}FnzR`9s|^tGa2 z<U8xrt)o|}On2R#9Td~r^mq#M>$t=<f0RG!^+oKP_t}kKpZ$#C>xe^J)Hj<<)jV8M zSW><^Tq^hMYSC%pz3l;~+&{0dS$?c+{;BOgrygr&mI+=-ntiEZ$CA&Ut|B}^8A}%L zRpipJ2@0B*`GV0^Rj*=+xbR+flk!Ck8$MJh?=@d>Jj<$osceO828%`6_tg^^h0=SN z&xVGuzYg*?;NI$Q`|{2-)ieJ}X8sereQBZkEQvX@a+%e8rm|1=o!Tz(WyQfSZyhZc z7i`$Ea`DfACuJ+9Jo$X(^4yILoJSQ+^c-Z1z5E=GtFLwOGj<ZPJa2N$@2BH+<y$j% z%ktS~w)s4s<$Lc6$Ndl27UbrO8n-6j-&-}Uv#RZt?2?V=mwSEGcxrfJosoyFYn6ZN z*VJ7ex9cQ$1n0RHhxJ~Z^0=h>ebf7Sr~cgvI?Q!PrZDdD;);z*Er}mIZ6+V)`>}r7 z7k@#Q**u%qWZ6bAXfKcNz9;tKk5lwrPxYyMHXY~uU&fW&JT4U}_~dn4-a}rha;HI? z-KpwpuGbGo&+jYpU374T+T2H>+b8*|>am|Jw(9BVv^D25ejRU}HGdml|ME4Ri(Xvz za5!ZBFkG%h>cJn!-_aGvBd13DdYEL2Zg)4`spewaVcVPSC%WWvp-Hb*=Sp4v)pqRv z&h2_t(e&v1u?;al@;xtJeSUrY`^l%<F0nklB7E35nfZ0R*1s$B<@D+^<a@sFQ`y@7 zW}fT@*UMYHbrPIY<xkD2+J4VIYWAb~Z^J(pKbCKMTVwv1U*`U+SvDN|QYW>xsw*#? zvO+FV{%!cQMNM;7$RvxtQklHVJ@;1htHf7(?ilm6T$Q?bHAH2`G1m0Z>0%KZg02@f zzK*@N*kJocp0nE<479s1F8rLonB_6M>Gns}>$NN{$UMI{QRup(bEj~VVX(u(8x6%> z&lRt5@$TEp`8KL-`&<V5AnQxQZnqc=tQw;XUDUUy<nN!;94Yp>lOyr?+H6-vAyz*} zS;tkK=Fx^7`?U{hJxN}ded(XrADNHm_U5fmU3{kG<;jvAy__)&ennOVyp>Nb{AV~F zB9Z#`_N(kK=l^lO{vGni<Z=xwd$Wyqxmf!nvHDG$V;dA^`jrVBUsfD-dHoxe<;jx; zU9b0RmDw>|vD3<olV!W_d3pcVtr{tZ?|9g`rrOQ@75<X_P(FW+$&d5Dbt}3<Kk8Uj zUR`+c`L5|F4xP@L7pU;|6-Q#cRgKEuY3!~48M1h5ZGxAn9&diOe^Sb>R^|iAm3;T- zFL=;X9QXWpb&cu8`t<zPTk|{quxF|+u4rTZ@b^gJw!}8eN~3gJ4;Dr@Wl<ZSOV4gR zTiD*pdS>yy?|1&}*}(i}L(RJbE3NmsXSKfLdKI|L?$hV4?V>BTHHL4}yEFM^%-5xt zW3zX%TUfi>YKbjhP-b6s<NNWYMa4WZhLYzBve)*!Ykq2Z!t%hnGVdfg$2ku-`A4<o zvaa4KBP@G_e@frZbxp_KIyIcBTOHxm>eW+oXkE13Nq+xBYZXsBui3Iog4NIS#L?`V zcZ>xXgO+?fZ+g<PbSneH<a=A!JP%{^xY^gfRb6h0X5@|63-_FipDpn^svwqiqQTj% zyBe&*HF@tzG&k}4XYFTw(OdSM<x};u4F#spt+S)AOwO8oJg0B!(r+(rsorwh?mW*= zyKVcGnzj2aZaF?$CiNloVf!-Pf-6hz9naC$Rw*-l#cKZG&yobuw_(axCpxfB^>|QX zxlVTLenY|S&2M<+Z~bS`PIPA}VcPN3?d6@<%cG7jI$F0pF)heyQ{UCfQenZ=^L_=( zXMN6&jcqI5J^8|%f1*qFDF~jpH2rf#Ps+!x&&%D8ul3uMX)XKy+k{&cDVmL2K2Lld z5c9f2V(L$ab63^X<-Q)P&zoepXa4j#a(7>CxpnWs+8v^S&GUAw5tYvRYE`@IMQOOy z##`ski6mQB|22&KUe&3!WTV0-j|bO{&DMoBDaw4jyf$cl*o3E!Ja>!d@6uZ6<ag%D z)M{&~@4uRpC%2t9J$pB+f10IF$?=-2*?T>j$}R5H@+O`yi`liBp{nimwY^>;^Eww# zTc&a``_0C33(1%BzPzq<>GE@UzVhGHrq3HJf<*W{UeCI)ZRU&*<?9Ui3}gRvX*~LM z^yWpC*IJAl3a`jLTI*UMuF^Z>IZF!H@vUjMKU<zFytKYkc9Yed?_X9-5pu0guikt^ z=)q=9$y@x(1H&dZ7d=Syusp|FY?#Hfg7eNPzY9nH9NLommG}IoCkr0yRLw7pF<x}u zYi`Dk7YS2-&fd1z_&)>3W9D01loBP?EiIlTTYNV?fBW7}`x=JjE8m7I>~uJ|Azbo( z&#be7*Ul%WMz1yxa@3m6wdO$G++L?QN46bqa<n&h%95^bwfQ;Q|6^$8yEDtbS1|4p zm$?-3wM=;RvZcB18vJJ@rvB42`yH-Xaa-wR?ishchqva(`uMy$o_F+3eb=US7mO@| z_b^$+aJ_7`mMLB_JLl<prLZY;=FhA+Uw>%hdfj7}L^*>e`R9BWy?p0z+reY((*E&> zHZ9+taD(}o%KX_&%QVyq&VETZv~kY25j<xlwf^bf3k%XE?^va6Tc7*qQNgMsaywp! z99=)-KZDVy<#S{bu6s3}JoC=puP524;PBVAr%gEiGZ@&L@3UAXR`&K;k)_S!m7<&T znv74UOrF?yj5pn?yxgScl6sLKqk~n6ZD#77<7aA;8@&09-}-kJtE8_pKL6wD{>^y@ zf*5|^RPH)@IlH(t=&5K&o^<2miN_fKGrSI2_@AL-X3jzxjhC~+8@t=@aWnQ+{ncD# z(%ti+E~fg~=Be6Q;oFk-{oQ21>TrznMQzsBBd>(h{Mi-e@nuDRPwfb}VUaWM-c`4^ zQ)C1p9{<?iHYc-^^Qz|QX9kK9$;)jymN^Pr=bViD@nvObsOW~nSDJ%e^LlP~=T2Dn zMsDi*O`Ftj&DixaBH`xTGdG#%WuG=Zoy>b=<<<U}@P$7X2YbAK`*yol>q*t!vmV<x zt@zZ*oKmWoy{ac9@L=3>n>B?m4Lg7TD$3gXdYZzM2j4_ZAFq4l@G>NQdQp!IPnm3X zb;ME8C$)F___8(|o-6M89OOH3Lh<pfp~>5O<}iDRC%$j;<Ft6|8*<`5L-vI$sePCG z`0KK~i}&vO{NC4azml57gFeP(Px6>$LcSMFWtjZ-Xy{XqN7Ej(n^c~&T+yL@CFG;| z_Z=&5DZF51tQLrh+ajdrfBKHprJdWGzR7;v5dJD#Eu&_W^_6RzYI>G#^tI+)w_??c zz*D~h9e+RHD-yF|iOCkZ3`WPV&*oVw?^wn-KP!}ZUcDD*N{fKoJI9wkx(95Mn*0oX z)n_qqKAZ4msq(#^w8qBQp04bT4u`gyupK>J+{5#1Q{&mJA2t6OmL)SxlXx~!KY6WS zlE~|(s;ilgxqd!o-Wrn`nsmGO$UOF?0dpo_pX6(-dSj)f;HUjdtN7a&ne9s9aaxdi zXR*wa>vPwo?{2e`E@p7}b$z+Z{@pGLZ(X@W%GPL^O=}ZXUAg<=g-uxo;!ob4Gn_Z| z*X7@;H|}pgU~<(YnE%_9GtZ36oE9b+ET{^9vbC$WEh1*_q)A3g9x%q&{yVW>WbGcy z2d^t^;%%<&lj@xnu`cx6nxa0B1Fw%-T$v)it4Abw`ktbB3V#>viGB2XZLr(k%L?-Y z%-6GAJgv!Q)XtK&kL$<fN1Gq>_xw70AdtswN#t><Ijvll2Y)@=_w9=5`qpdvEUwrD z^DVWxc($^*<bu)LQxiN)f3D|!mGw{MYW{Uqy>(A#a+fmBnfNO_c<aQyrn=E)Q;Ihv z_OB56%BL1!wDP+8UQeN^%yXKrTz<Ru&+AEk#_uvSf<5I^>JFLv)da4&z3TB>DeE@o z#SD+<X}`|@;U4$Qr}toFWlV|br{#ZykGRYiG}Tx-)r(i`!JG5`Go-%12Q8R8Hv3zz z_TkwnJNzd_FO}D+l<hB$+SR4;d6lkry}&=Um+?GnrEVRP_$pg@nOm%2!+(Y?Uq3zD zx#nK>t|`0P78YE;zG+(e+&-u0Kf*7Bz76tJ+c7P3d3N_oqq8P0laBnJ_4uo<`^iKR z-@Tvb?a}!9eZA6}J9BTmn|HWW`o-GEpH*_#EY@1ILpJ@0@ST%d3S7H8PHn$;HYeL$ zx_lDLW`hUcL{Dw%ka)*9TT=VB?dx;1a&K~~*K$3&ewIhIM&YDRyUo?=otI3lJzTlm z?me6K?T?F*c=H^+`l#c(r_M5&mcU`dJSS;o=E7CsnpxYQpGxq%a;(5#ZO`!|w_fg< zxu~aMadX$@kL?}br*(;2z9@|GOrBS1`XXS-+q25Mrdn%n%;Y$$D|$D1g(k;YT@i-v zYttGGU8Ng>7bmUZ-|v+xc~Hc_Dp%^q>L+s^FA%*IeMfRa%5#f9wX4s3`T1w3;hgZo z#j(>vnc3$(YhBngacyb(w-x^HKDpPw49T5PY3y`g??L$TtQQZG6jUD1yV_rymptF_ z&w@|IcdA3}6<t29-ci#%Gx_D#j`hKR=i1m7uKMwcdy4$dt)0(`Z%Z7l{I)&!+3R2} zK8fa8zjl8M_>kiLP}e^)q1?AXcj4o<P|3WyttUI@Z(erux~ryd%<J1ef^IW|+}u3g zhAB5La!<J3zCdp4wU~?}=j=k6Wp~w;27dYRh?Pm`ajUFr&71Yw@}7Pk54Y;`XYQKx zX4auwk8L(iWHdc_|Bw2IqZd!T%w@DZ*?Yo%YSo-?EUbrELoE(|`MM_icB-dDQA=6y zoL`}bwp_hb&9WkR+FCi|m47%d>eWSOpYBe7zk^Nm@N0Xfuimj|Q!d_9kZCA5^1O%Z zm)fHnZbt-cPrMKO+wt!WtJaNk?_;igI2zKo_C?`oX5ang&QD~c4_PhiHSBwLEW`h| zM`2`c&WnP>>=x^{%sU&}Inm}$<B?U;Kd;Fx{P3T_@#^>Pxk>{5XD+#!8Crf7ec>!A zw$<Wk<NTZHC(cU7%qdy+XkX7YJEj-kbCn}veKT(Up2T~~;?L`|e|$f52VPYE>@wjr zds^7@PwRGswfeWtDP9^h|46^pG3yI%g<;D!O;S%uwVv|e(V`655TWHC*ZKr2Et(V1 zd{)iSXQ6dh;4DLTFV-Ek8SLy`nhTzrF#P>p6>u)H^XsyC8B4@OKKY6SUTfsKBjtG9 z;;dTb(zpJO-N%eHWu8xVPs(`kb<qO_wz(7MTrTcnP;0mo>|ndA`eNVR7cY-Wb3IzI zT5S4uvDtg3YecVHb@QyOChNM$U3>OS>^g0{@yp%Ny1lhoPr?-^sLXl%ZcfQc*T$LK zk861>_-<i8mFv*no_~wii!NMtyXjs@!`pcOs4W|!oaJ6l^_G7aAJzZXE=|mEli|h8 zjb{Gbk}=zpug}^y<M+<vqE0swe=+xaU28Hpec<HxRZ){So_}r0(`?hHtrNCx7t=Y0 zW45cc_p(jAap%Jx*Y(Vg6~fwfCR`6<veI>axb@S+X-;Jg7N%MEgCplo-4Je5?3tDJ z-ST9~Pl0(BUynMrxAv=q$DEc~(7WHs`YPv^jd~Tgcta;lnICL)J*c$sbDi2QTe}Z- z25t<mW1b$H@$HRQlfz5z%z|%EQa7;g^|<BpMdN8$i(cWxf3A);fnL3m*6xn4BX`9u z>Xm9&m>+d@LjKQo>wfiX6Qw0?O+R8U>YgpvwNK^hbZ>XQZS^_zItDKsKxcBy?~$|p zG5w(~`{6kAkD~9^Km2PHZ|=W&!pA)yBu_luIM4Xf9{(d{sVUx54ro=bzwn>o#_0ob z3_qTJaE`c;zO74M;8x7>l3$Zo>TNrHy7BLwlJ9GtP5LCW{`A66=a2exy!a>hBXsHO zz^n^%iv#vmxJ?lFx$#i*v#Ea>a~NO8Nk06cGVkMD%ly4ve}n%n`_GWt&v5cXt!YH5 z_uSyvE6HN_WV<A`O;cuh_n#q!=lY5HEdLo&=2kzFTUjkPHR-Z<`tG;6c0m@0o=oz1 zQ#R|8u9Nkh=fU}&+Qz38x6iu5I?-#ILxCHg)}AoC#NzGDE7q+(Zl~=pUa{h?<Fe?C zZPUKJOlF&(<ry0BY3XS>Z$p;J?<2pJ{b$&fbb!g<Z_Bmo>9Oi{%WbYnM^FBoerZOo z5vSz&OS?LC9N5d*Wn^k!ozE6pQ*rF^B;&BDGmGA&yDVjk_`a57&b#ybqp}VNubSu1 zyw+1jGOxJx<*Z95=LnTe%+)h6@MGVeH6#8_5kCu`Z?Nk@l~P;ddozA2KZ^-^s(mXX zcG91>Je(&a|7gy?b-d5r>)gam$5|fku)E60>c?<G{)o1^=*~4M-%PKErZI@J@KvrB z%(9$d=D%_cqvqY#^ET5&p3FUdb`pbya%r*Gta7Wxfs2>+2Xo!zaj=v;>oIG`?cM_q z9-E$5y}?=;zpLtscZpNqyglJMD~^7#S{S*OZ_aC;2m#O79X6Nhvx*Gv$e-G|WX?2Y zOSPrmliauk7#}Nb4zVn8TebDOmDrVT)|@8x_^7VzM;||antVR$sCmPJW0m&3?kaCL z@I0TlHE_|iw%`@_p5E?0X7l0xTe+)2-iwu!8){u0&i71kRKB->FIu+vb!=g~^USl0 z?i5S%`+Vb#npPRgWpG%+=34A3v6y<n7ur!LW&5}u=&zT#y5oh@WYgTkdKXVTo{;Tj zaYK~LYff?B*V#F-qEipenYZ)VmbIR4VFzu#zc{p^@Osddn>WwyE!!BoaC2Y9%CNT! zYdSf6nA}&c3Xbh<5#mr*XuPyy?d^P4KaQ`fOV;JAy75YPeO+k55}D^bRn^z_ggd#0 z-Q8WN(0C<WmgRNJY32)$w_n<}<*$S0lXmA5%nM9sFIvBG)0*FNqfRYQRGr#yAvaa# zh`GvJg^!bOZBp7DX|C;Y=DuJ1rOx*!14O3e7rJjUDGlvhrdxEoJUQc*QH5z(#<%TG z?JK@0P1z_Te)70#yD9IP`C6-XSR`;9H(j-SVe_h>9d~!UJ%0E28LO(W+Djr_M^EQT z9C(xM=Xz(8*?)!^a;!lWhfhR54^>Dm_dm3?*VeDx`dvzQ?nAo(BR{?hlkPOhlY&pa zKmWS+#2e>1Dm8kJkC*R_YC57IA>CaNE%9hqh~RX~M%mf@Q$1Pa3=E^TO`O5@X70g# z@4vTcyV=?Ze|oTLn}M}(*rUrH659LO=k)FOiaTSw$T;lGRF+h>qQYBCZU`6f+^w2d z81*@7^G>eT4%y=V%X^KYV^=F42=fo_n(jMo>5Zc)tefoRi{FPX;htI6SDp7&ZtBWX zfv3|mgRk`M`#Qa7>BKhCcE*CtYQ1gZRvIyWehdi`&+G0TTj8mH$}UEJZPc!UfK`o+ zrv;B++N?T5?~~uN0}OIaD+4b(#Rg?8;W#21Bt2*1<y%X565S`P$nBm}XBs5kqN3<z z!O(nZRmHroxh2|@mOKr4IDN%=QNGFkA@R27wLa!|wLaTgsgURV_57zb)2{bkN-oQm z4wSFmamQbMUACR{GB=x$rOCEmO`j)x5`KOC-pcJN%(u5%S(>ZcRR6lHCVA_~gA2Zs zq<*}pns+rQ<0SiaQ^SOqbV*rF)tXP@d*xbnxpbJ)`;5J1S}bys<~(V-aX{sYx<cu* z*~uF>ORc?PYbo2B<}J~!<;cD@>XP1(pw{GrrumT@GCpd=Pu=;bsjSS<Y--}Ux~+>d z#b>q1d#wmK!RE%XGB*Nrg)Osmp|H}#dDfw>xyzSk$1$o@G9=5cR^24kG;J}b&ao*x zL3~@bTugKo3B1C(K<?&I^@p?UWiBv1@6yz;;mSYZlq|BS(W_E&Nn@w0NMK@XW`<AL z7r`%UZtY$Cv0}NTQd8>2YiB$IPdwi7N^8obR`#a{l})oeeHt`hMwa^@e9SDvl=-5k zd!JN8T=vBL_^Et<s;;ld+_=~y<(7qv)aU;U%u!9(#dFwwcxHX+wdh#;m|@Q3Ni!e6 zj`?cSSGnw7^Hvp&l?rz4YpdTMwEq04pCvXU=-f*Ed8awjRG0!9kJkKNnU+6=VTQz$ z57|q8WIx(zV_j;jJt-{W3HKa1{+!UD>3fsK(}lf{PKf)Vd?-$5`;|jS>+{o9DiRM* zvv$^hko`QL%PmN_e|De6%lN#yo8NE6?fq@>@}6>MV5#=(9XWrF%Iuo6nfc4nn&gE} zVmFP-p09WxYZT~z*L-Oy>)D;V=N#GdVE(lwn^j^qTJZSG&D9iOmNR=$!hLV95XTfl z>2vQGOxD<z*){x~`u<(6O?<WK+QY6ovr;y0406=+IR8oXb<~rWOAmNYJDuA3a$+3! z2j(NX5C0bZdvNgEv}#FZkL?Le9#5_p)>qqYF3Qu7owAMZLS5)L(W7z8wKv^)ykh+- z`PHw3vgDE-XI$Q(zT(@OgISj>84LLA>f^I&CLI^4etxL&)UU^v7Eb#ygZae$^yWEg zc4c3V7QUK#lS_?neb%M>R*NTW)YM^Ds53owKdbt*JLgGu){RlKo_8$UUAC?HuiOnL z3C7RD@3QAjKHVu@U>O%~dQyE|bCkdtA(ne@=a|*yeLYmM|43a-kVaimfmP|+dg1I$ znWDr~E1u8$`c!J&qF+;Qd)?tXwClr{om<murRp=9BBL@T?>y}f_F2^Rb(=L)m&URN zjYVD3Oh<QV26>z{^WggOY<{NEF&WFZhq|WSSyxxY@a1gUmz1oTE`Rn`EVf*|-J9E^ zY)5|8nh#TD-5>f|zY9Im`{6-f_Nohd*E~anKc^&jJ!!mEu~t{_@u?Zb{m!9DQMOUH z3ZFdfIQTkp*4*ne`gj`4zDS%j4Z9v-6tVHd<E|6)-t1{t=`+aKduHlIrx)vQ@ytBj z2%5|5`J?s0{g0A7=O4qRmC>nYt4obFUaQPERR1jc;rqe;?Z$t?e$0RPpMmGLVE68+ znI~UuSbpaDC(&QkD_^cyckM&dhGUB?+KRV^B-AzS`4fEU%<BbjwYO9*JvMod%=5nE zYtub5+(Z~8=5g3uudGc;u3-@0#`t8`f!!Mp{NDNg@~n@`ZdJ+MQQPh=UZ1~nhMB-T zgS)TiT+zKU!R^A~W%vEP-h9=LWKK>H{PKL|x}skyjE}<{Z!@ng)~^m-_`+?uk!7c1 zzO^!onV-cHf!aUQSPY~izOD`rOwNqSV`(kgv;N1GJcm#o&cgl~p`X>>1&4<#8hi;l z*kP|P!h3RWWP$bM<91iG%vcvo7r0Bl^tvd1?k6+rIYyhbm0q_y*By)bXspjs+&uZ( zp8pJwv{d)acv|&fPWAN_s=K`<4p_W$lwjNOzGGL=od^SsK#7#(<$KF7Y&XhycqD#W zxLx+;lAZba(Px5+?pKtr`*it`nbXBtk5o%<Pbj>!{g3s-h}^fXhg)x0K1r5;98stL zkt?d*BYruvOkup^qANdrQ_iU$wThdW=RQ%;?S1pnqJ9S6<Nm=>Qmrp{PV9T+R{eF= z$0MnhEBBran<aYb;?m!Xm#@|TmU19H&o$>})RQlId(XyAP42RJ!c$=T@`mR(OY<!i z$IrA>UvV?Oz;%Dmu1H1+mQaqzzW<hd6PZ8ZO3$O^jb0)Xe}t{N<yO_VHBVc@t7o07 z7+>;y!R<@+r`*5$CwuL-%eqSr+^FZezUkuIz{XF(6361YInR84x_RO+O^fG^e!qE+ zJU*TC?Zo;ZZr(LI6P@MwRi;X=d6@L8_t4zk9k#933eVE#d1vZq@4V3XD$A7XY*Ter zc;aJi#?*{vd9woFqOyxm50}YidGBlOFgZ5Ucmn%gvuxo!s~)NA?N3|gpEsRetL7<r zJ|}Ia=C;6doL`qcnYU%_YYz<*r{^Mh$_tk)n&n{YU;Llp_41VmPdr*IDO0}uQ{m+o znH-bfZ?ODz<>cFwYzqR|W3F6$r^0wp_OsU$)0N9JKTVu?eZ|@c1EteEzZxUU*2t`v zd>hqs$hyem0CP`)uc6Gb&1%0lS#vE~T+I5_HuJlYWO|z2R=xT1v&*_~n|fSMDaqvA zbcsVYvN&d!&&Q1iO>f2CQQcB_%<-6&;L+r}nVJPW6J><YY3h1J<%Mj%I?JGZPS@=% zdm;lppHyErw4Ji;jWe@v(=!i=qQaLRI`dY%=@C4`!64W-b$0m@)|l4sFFlvNdeFPZ z;XKQ=_cJD`Jw5I>^K4Mc%{fmu{dA4sk$U;%^wddAJyzeptoeP~rZqK2_^t2ewARl% z8eev?oc^_U-S2W1CXNFN;p_h$t~0We{;_vyWNhr6!^`8&Y};<=tQe?NdQkRQb@;S1 zhaTPFy^&L5`>MU6bft~*<8JAv78UBA)9n^+%2E~8*rHzib#0wSjoruiW4iYK^A0`s zZ+6{nRlCGIxL?<B+BB!Vofb?x=C|C^{qs-j`j*r2qIZ9kyIs#u+ctB}6}Cxtb{=5) zq9V8Td7S!(cQfu;U#f{@TbjAjef^<d{gauSuI&y<+3<Gq#Hjn5+dFe@YCp>Au3K+2 zJ1pJoVTImfi<57RW4;Q9Jxy0#YBjwo;^*scn?H#4e|Y?@?fM@3ho`+eOuRL6uiacO z`MK}@JcsJ0?4}J3rYrQgHmC^R+xP6p!H2%;kJmM?%{C8vUHB-T_bzw*#z>3%#d+<| zau4q_?q6CHn_QW``pzrih+DQxSL~RW*yL%xYk>vB_O&IN#ct2TWVhRe1$`2|@~|SV zE^B3J7N?^7!UJnB=WxdSX<;b7HdBYmf$xyVJFUwvO3v>*y>+wZIm7eZeN%M;9$WX_ z`?}nAwN88QO__<87K@$gDc4lsTeRJMwq|xoD$fJ)+Y^u58v0FSagpiikJ_ieJMp^m z+VDv?zALlK`&>%Pb}dUeFIId<c+OR)-EKzpOS63?6a2)PSFQ>==JX)B@yholxsoP< zNx_!vwkwxz;xn9hZB1ofmr>zSm;DvbWxgJG9hjCgOZguAZ<heSJ8usgmwj2jB&ALA zn3YtxLxEd4-}Ai*S7%-nFD-C7wfMrX^5vZdvo}tv4isu-w~^Z-!Z@{3;q!d2w%*AX ziai@Y^)b9XtM=%4nY#^NM#ur{!oE2n6K_AC!+4(|XoHbyOi}T~3rTCDZf*H-;N`ug zU1AeIZeK6SwEc~aXh6Bdm-kUe4yAhg8tn7>Ch>gdT8k}b_A!fVpZIm{*!(4HdiUqc zIvlUM*6hKzn1Rja3D>f|yu9P)vXd7ayX2q4H?=bNmQ7yn5}w~lyPTJt7IYGr6h3#a z)|y{_7tT2K?qz1Gv|XjLe&eG3f!EW5p1hS%p6_+K^7dJqp5#kgpNDBY-DFhQd~2g# zV6x5Jn_t#P28DgLyc%BQvis919&?*_ug_-QzW=r-VIE&Wtu}*&L)Gd6MpKKa9So&1 zPl78-eu=H#y7KaWhAc5lp4|;BjDKrim0sz7ulPNo_WtXbRelGAD)cXWU1{@1cyc>S z0>77X>#j2CBbmiZedFKpOtOA!Ge0YHhYshRX7$A~=GX6SRNnEq;EkE#gXX_lUsrJ5 zx8ty3m33JCYiq~1?<Oow<%b%i7pU*`l*yAcw@9eaV9)BZ2+28U!LBer>SCARvzDa7 zD|13?<BrAM4mvxB=iHp;K8JIBwXf5(eFT=Q%-bW=IIHi_`6oI~Q)T%qkCuo{d!%~n zz?2-B?NMI6-`Jy02OE}L+%jpu(RTLy_~bBQ|AhSp_T`pw4Zp(nPug*-GWT$%ZEJ*B z%*Fuo;*-l3rs!uDbH1Gy$(W;gKJ3e??bBvh#+CE!b<3`c_FZ+hN8s+c;`fo?4Yc0g z@=jOj`*KxRPd|6%={V<>f3E}_-$!g#d-Ai$$ZV4P>sY@9^ED1IOInDYi&^P2$+P(S z)0a_h^Ak@k?W_A{v+-xyiU*UbeueqG2xpno$H=sOebVWvw|5$zvr5~fCo*YyTII3g zzuKuzr%p<0^%qS$rZ8u!%GWjdV$FK9mDaJn+xfcd?%|(v9(+9YD~!KeTI_Yt!sm19 zrk?LydfIpMvME>JRDAuq%d&7@+s0=tdLGAEWA^XVEqX9V=8MR|&+9A>{?$Hw-=$1< ztM=jvj0YI__I<TfO0lp^zBl8e%;!n`5-Seprb^h9NG@b{31V8`!(^M;dd$F`dExR? z&ccmfS8cY85vW{sK|CqVS>Zv+i!4ro702tIO-$2nvYNN&%BzFNs^)u5n!RnQiM6!t z(b8L{Z>-i%nYOup&FxmZsi#jfYuvFE*;ekKY%#HjSMgoUt}WHt?Y##jZ2hZRFDJ4T zajgA$)%3KX)kmWq;Y%A%7#eE}PrPw4Z^=TX$xjcbzYNtA&la+(zVg}Nq(Yr(;JN7a zqMlRQo|^=)X)M^VsQI`_0HbG5aI2~=gT|8cUcu)@6u6?iH104>=(%*!wL$A!ALpJJ znNX?SOP;@VW>zU%;GevBLZiU*_v!P!PVLD_m#wwBHsy?y;03NzH?Er(x~=j|WA5_b zIrGjByBqGyZZB#7n=GDW9bPQ-<cZ8eyBP=8+*LYcu`qVO)+!#Jgyz2NIF?%{$_*u+ z2;SRyXX+P=nCpgd|IAq3oEP)4I|pV=kTms>5-Q%!E`Q?6c5U6OC;ANg%GOz$zLw|Q zCmj1aJaN*o$mc~;8joX&|33S+dMUeF+A9s^roT&SoU7#z^K(`dl}=2W_VeBK!pBcz z_g~wy-210uKNmybwY}TFJ-YCp;i2S5_okA{rNZ~RJ@e9U6s?GCV5kdyZ05zZB7UZu z0e{rXZOda)ekK?D>FzE%<MDb{z=H)b#a~uirOnh^TFSbH>(g27)`+Xcld8G4K8okb zvJ<{icfOu|vYMZ`;^rTHUoLO>HFx@<`IBC~oU-EYJ)^_@YpV=qzI&3|P_&%&PR(M| z=l3~vC%wwvIyG`?fHnW|uJ@(7VHPQ$6hqx)nZC+LJy`c>X>nKHr46TdDqa4m`#h$| zHl&udxN7Q=*(y7Xn3eSZu+(b1pQ@BL@(__L|9UjxN7s|%xiS*RJayx0p8dNx_g!(& z+|$Zd)70ngd>eCb>#EkUKC@HvJZ)Dyhg><q%Vfsx-1RwLGJADi+$Ax!w1>Ah$W1j_ zxvTHkmj}<j7}of%o&EFAl%fmE<)aSDYI>YyNZPx?)iqLXR?MnHj9pRuObx~18y#Im zxH3S!7v`zu269_OEYu~L_nJ+OSm*E}%SGf#jo{=)pT#0?nC~`P$^;!%yT($o;^oJc z=eK&8lv<fSte7b=NAUJu=TgI%ZB|vKYyMh2ak-h?@1?Kbz2DE+_eFa09s8ue<-g^> z&H50WcT4Zdw6p*ETKKQ+_tAgDBA4S>8K&j@^>zHD`J10DDEZIOH;-wjj%R=5_9xXl z<ge{d_`1Sj_wGAO<PH1P@9p{ZVYg||nm*~E&3ys4Ll-MI&+}MU_Et2`!OiJo@7{{n zv3*N-xH%?qzJK{fd)BUYjYvMXd*!9;%?h^l%5GSldrmsAb?VHr2j(Bmy`Jf>Jr=LM zwVk2t*Y(_0Zn86YPtRNOeO=NwRo97~KO0|V&%0Qqd}(RWbJa@mQ+J-P_+lEayVcwM z1asfBt$K?xQhpZPcszMRR=3O2tJ?*8KGbHZN@q-KubS4vvCQe!!LrANC!T*WO_KP| zYU}ZQsk`j{8D}mr$jmbgzaYqeYUgp*TCFv+UCeWx-#m?UE;;sQ<rAsrd*YXw%t}6S zM1b-3#IDzCCrp^b^XqY!DX*3GY){7j3?Xa<?oscS%EkJ5ZF&}Fm$~=)t$W8JqI?oN zw5*ul#)YqoKUr=qmecd=di_Tu)5~9HKI~=5crt<g`mBe^m*+j)6d*Y7>)WHnuJY!p zr_~Zwc(wCxA77gtb>pG)#2%SzYpPPhZl08G&sthrEyK{7BU2nDxWl_(+hOj8sz)2& z>vsz+-TC!w*v@@M(-dSLH;4Ay%-i>6ebFR!Bi;kd^DI^_e!{~)d*`YbOJ^`%T7Nrg z^Mi)sd&|y5vpDu!JYH^EbR*xUiLGL#^5&aON9KGzUmUjf;o%~Oqk-nzmd>{L);R4u z+q&6%8-%ah7T#OM87R(WlxcTivE}2xbH09G*t~Ofe%^I=`O1Fz-jZ)pK4k)IMdnp< z`+JL~NlhtxU@Yfu!M5)7BlWplig)<@q%Tdr9wL@^-0-8^Q<ZrtZg=}0FI<;)%+7eb z<=gNYU+X*Zy?+?2Ldvp~*%w;8oW*@J%d^_DlWC=e^2CVCcAqczM{TXNEPFk{VwH|t zRZ{O3nP7nr88%(~UNJoZ-ARG2lE<%aWtOqD`RIR#Us+vl%LPW+&wlbtS@;9En$J~V z`S85#jZFGd#|h$=Ctn_o+^XJ_B44GWmUWxy#(BRTOiQooHAM+tc-%ZM^IPC2&Ie)T z9nV-Nvddk$*7DV0_R{PhRkzRX=5Z^$d~1{Tk`Hg<LWI0(4IP(kQ@*CRxgfmk!D88} z;5YhatO0KK9$X8(dAH#0Ic{P9?L{+X!<O_;ym(qB+)&8DKI+V#3+7D$3Ew1F>aOdq z=exUa@9V5fg&MyX%sYH(?upOtd`Z);Iq^A)u3eUOOqFrxb4k;!D_<7Ix?EZy`Q?4g zoohkSvbQ~$mzv)dJzKnP>t64LTjuobklXUR+h#?{fwx^xbMocbWhNNM>djxFdrY+7 zdCsrP{!Wp$bMpMpUMTE3ay|Ley2T008DB4~_-6J+eeyAF{pjtPhdds9JjpaGw&h)I z=m*c+N9{x}C|6v%6XmG8rkC^Q{FRKWjlb1gQQrEaG3UC!N?6*%#|DQdMC)#sDKd-| zf3sy**!mCgN3LD#)|qv8+0y)?$Q?KHoA<VVT4#LtvhU(Q-dBY#IdgVBIVs3Kx8=Er zYK2{}*zB2Kt}Xv4_Wqmg$8#I2YNTbp?Nhw0I@!;B{pQoDDs0O8IR6yKD^&O{+qGfm zj```g(q}H47?5agET&MEY<jisy4CfrJ<gB+iU)sG+g!SeQ%8(jQB72-g`uof?(gfl zA6#6&Z0Bt<@3TGdI#R=8_3Xf|o?d4G9d4PFqQ%QEEvgQXSoG(>*8^+)^)sIoUSIAU zu)%P%S#i%}S^ljdp*OeOo!IeV(lMjOt*<OZ8MZUz$(QdGU2bv9aQAyY5Ba5T*AB`| zJaNo+_41`NpPsxI?iSJM&yc)ReQWr<n>FY67{860q|bBQx|2aZYyFeT+3ojuJS9W~ zt6wGia&R{o?e+M&D%e5xIv3|-X3>lP8PWwWyp=7;oRrz+q0?H+s~ul7<y_#xJG~Q% z>fYys2t_BXXSO|B^7&=1yfV+82Hy13NlWzDgU@AVZd?<$dq$g?Bp1K>@}(BhbJok0 zKi_|8OWc{~d2e_=ZeJjBFvokU#oammRYw<ZnzLo2Z|*rGH_I3PrV0%!4ji;C3>RdY z!^%>1X_2UcK-sT}ky}b#mMG{>TF_@zeRahGJrO<jyz0x388?agtFIJYo}DEjG-uwN zEBg+oOf#FEeDdYXu9siV>X%!K^j}+@In6S54aXhBIVq2C?OrSGEi-qwFr(LsCs&W1 zI21K8BIAfl_m&BVEsuNM+i>9|?-b>2Z}(<r9rua|*!+Bw!SbznhchNJcs-POd(612 z-L9>s<LUl~@^`p$a?hUH^!aSSz6%#pG|tyAt&$0wxWnch!-M2&tL|iMWJ%>HoL8&i z_q)0C@pplrS>}qzthkQsYiLafXDL~?=+}+iqTCZWE##)2k3GhCsL#XV<lFezH(zWt z&Yd}8X~eKbx?I9`qaVi!rU_1Re*EgQA{o<C4=R*ed|iI5%WRS2p`MznYcg-fN)><3 z&~{=_5%SEN`O;6YG_SbN?6ar9>5>!YENnH8C`@V9ad>QN80|E7m!#zj-%PG)cXw=i zJSS}HVurUTUT{2~pe-fv#@$l(lXl#VEzJsS2cPuun!B#=n4ek8n;m*&zM+J2W8c-a zc?(YT?wQ=XTy3+iN6-@4KQ#w;tX*qaxHVF=Ug}hU$CfWvymCS-H#~SSaem;}bxqe; zO9Gs8<9A7I_;P6F%?+nd^=-WvwN21FrLpnk^N;H?wXN57`I;sjY_Ka>b)?*G%R|9b z?u(mGiabqx=D``XcXz_&DV@rZ5*saU&w1Px_QtzR+h3&6Tzh}MY=!CUY6i8i2iq)| z*XC|o5xj-%z%hw1-_v<PAt}op#3y7;dU3Smt7Y|%i4PMP`ECaA%l}*T{JrWYr#VGC zSRKxrUWs?%Hc;n1$<S9EA#PZy>Z!2KiuvcYj~(x?JYUas=G>8|+l#D(BgD0qb{<x= zJXam=S+d)L^>mfI*Wn#4XUuaLgugfb)m}I0u95!Ac|it8&sFoU-&;ISztu;BX~L2D zGv?=MuTD8VkE_YBIYLf<yWz{#nvBylMgKGKd@7FlajWKvYF^uw^sG+f1Ew5%W-nLy zB=Kx6r{oEi=S#CH&iiH8x_OHFPdi@pS6lANlR3g)*7wGxZ{KOXU9NfOmsOL#%hWoq zTvo8)x$?bLyYtoWe_fo$tJqV{*ud~@)g|5==UJ}2zrgdLIz;8+#-_~Mj*HlS9|@41 zzK=J;?2b@X2(Ki=@2X2X%Y8Pp-b~}Vv;NW=-<(Z<4qv{snf-M1EMfPeW$MTN6!`K? z+bwGH`}&3*$BJ4$zmF2nmOb@z!(;UyS#66`pL#hQI9?yMT=wwoFDlhtVLQHxJrJDp z@ongF*{tZ!nqzn8T#3#6Dbm8uHh0dY+@;JSimf7nz72t{49|KQG?XnCbuk2azV>uw zcyft>StQVvL3H7w{x1s-uUPY-I4a7da^ma_%UZsf=AGp5d{L|QpP`|o?dl&#KK7G> zMne8RVSWqMPdDD%*ZX(EKb}|f1!f1%I(7BgNkQ$L-wTR7m!5k1Zt=7=I~9wyt{rlp zp|qTR=cC>HTs2mEKAJ7fPE6+6)%x`KuhrG5caH8(zqD`eCHs`g*{dRL4<GATP`mcs z^rsEA>_N5KOMaX6Kg^fN{Keif<K?DEk7dy-9^HDcXjA;M?`pxKg=_ki=bp@{eBNlE z;vLU%_po_)UTCR#pyuTV)=xS+9~i!z_1#we@P&$Ozlt}x(LN3Ozi$4V+I}TGbfrz$ zuf1m<M4EPgQ%sqkXUV+rWz77}r&scCr}QMXZsIZ2EI+^VWvpk>YFFWt?_=lBi{JM2 z{;fLu$XoBzy<_!+mdyEdWO7_$z94(yKmDk;_L(O<|1RFTLPbZ4yCUGdrRDAUuVY#? z_crLUU5;5_eAD}`&zJoz+y1#eeYZd|EMk%2vd>NC{4?8kh>9O6_1>#?t<Y$`=CKRX z#kuE<YKtTO@qbL+-nQ;ZZIE(t!ePFR&kG(m+15?Xeq`UDvnO14N>u7@$5bATb;lIu zCG*XYbr6}iX(QL~>HnlomOec%qd2?ZVCt{`3|jAf*ObkEn!wYNu6u7se(NTQqqh~A zpUS-Z`Zl&_5_{UYnhpESs>3ID#qZf=@w~dzQb^nD)LJoqx&2X}*NbFZzmL;6_J=1g z_`uqJp&v62%1pbq=Hi*h?;9tc7d?<IuI#>fQug#SGhW<1TNpj}#*Ed!X4Gk17k1uW zpmO%|-=i{L-^V5DoG(=NcoTW!$>cE8TrXe0Po8roPyW<=Bh>cl+rVWj*Bf77&gY_6 z?8=bT^}>`(W6{(D8jHFTMC3FU^ju(c6$xN;6$#qRSS3~UVaeqG4A+;IFsbHze(5Xo z_2sp0Aq(Tu7a1%YEiFy1S=t1**-dFF`Om<!?$+@~>aFVpx0zIJUCn0y^=kIF-A6Q3 z_V2tc!6h@*^7qvrl@EV6XRm#Exw)<Fl{&jzA8+0LY;h*fr0L8;2Sw%wB?rfRO|CYI z-nLwKg<VLKk;v!fOFQod=v4ZwnN#>SmiJ2!^F!x%>aCAO&%Uy*?{xYlcx%UV?ibmT zX6K@QMx3A5v-*eBGyTQZGoI+VpW%EW^=hj*%eD(<^US%Pnewzq`_J%DZ2Thox-T%G z+?J~-<LNs=w@+ucGQP-aZcEt1aByQ&)wSL$r{<TuJ$d4N*8;D3oLWb|atEI*ub#Vc z<pQT(BW+g3hSNDO!*n0zyggl1_E@&qb&tl%=1+Y)zppk-vt;Cnta>9;r#2-yGsDvB z)RS+ol-fM5e%$iG^CbI);Puab+irfJKRwTXtCdJvh-AR|Ng+HRZ*8#2tuuM6=DZ{Q zv}N#pxvSTu&68)IUu~E7qqAW8Kg~HpXPX=E&w8#hO`2odPUbts!LQAqMgLruzweE2 z;jbxgb=oJf`BrmQuawi7Z!$Y|u79-Ad&##4Wna&q_Hb#=w3ElQoJA%HHq>kFPhaS3 z86dE&`q3;WpA&s%d0oEoTQ5DCvi?-1tzm3m`vb{m(s%jp{Sduya^bBP(+)ll=&)e< zx_VRhmA>2(i{0|P`|e(965lU>Y5kV4TQ#<9k1A|G2E6*G-Da+tvz)o-@!I0v>cWcO z{qa@P-o>pC_Ivg>ay#GF(DnE8CE1s;nz(dMn=-LK>f*>V|Nu=zdU|xBR8oH}zl* z-*UBrHHNROuB7T0&)03=x$YYG?hKD3+FMHb!<O&aFqbX&(DwN03r$4VJ2$sQPyBx2 z*XQtsd-d4-EFR0QULlxS{5)eK`;N2DX3e=KsSj(Cw;6_RJF>aws{N()%?S_q&&}2r zalBCV>(QEfiTTm_F4o17+shet7u8yYe7&$~&ibAGDh*j$aXXhRE_RX4U}`Y*vbxO1 zl5BFpz}Wwl$Fe@nuE$e8F)a6-dg8T*=79-@*I#?EE8gKxejTnWU}kx8RblhA6K69b zH0~|Fer=}C?cT^_K4}J?bjfweA-l}OeQutRN!w-pyD>Y-pR4e|*&^$1A^(^wt9!Yc zs~N0kz0pk)yOqUL`!9Ry#{M&N-S?JUFK7O4(4%*OFXNR^Eth!Mo_98aAzp8}d-w{^ z=CgS&KEb-dKQQvU0rMY=^Ip}9ZMQ0IpYWW0ebmL)QxmG>7PD;*m9j~x+qwF}r{Y-x zG1r^w7}PD~ru^=9+2Q2CQ+R3fqa>r^FVEIH>s_)c3~`;=T)u1%U)8$G<+n~h-PGqO zdNn3$=^Go3^GVwC_iQxSC$94Sz{-u;o6Q&O{;V4yyt}V?t810bjlUw-@@Cslahj7* zvevsz$mxiHb)&D{6Hl{R_TOT$=Sv^i3sz)ln(-!k&N9_LsI#Xr_&-B3<Eq+S2CG%v zQ)Zs~<aqG;hxNvP=hTE3KjiPOli1fgO(|cDliQ4a+J6Skf2FVX8Dy_#{S)|6ZqkFj zTle06>-HeA??LhX^--6&-Y(|Mcyy-zR_cN)$6MDuocLtYy%Wl9IS;$#Pi?G|SCo?b z7W;bt#J;w*HI6-5)1tTQPZQSaGIIQ~^n>j7$q%E8eukx`Deri`aLtl6eJj+@<aqF% zeQJ2l>Z<i30X=EXEB(%4>IxfE53m%TSDrU@a&3XKo_X?|^o=GDc5TYqcSPuv<DDB% z9-ADSEy3k*Jb2cs?+lY0TVJ1*Zp=wvZ@Koo*;`w0MX}^9a{Ma)8Ct!0q#bTCG89fe zYoxq=;<SLm^D#-wJ8KRtQ4_xtxZ&7}8x1V?oXg+3tZG+iDzN&tvc;A2u+Ysn7D`K6 zML!(KlP$2-@R6O?Rx|DQ39be5dw2ZX8ujQTpHZ`|cI@Kd$<u#&9!$J(>F<n90>LXz zoP0L9?1s0mUsN;`zt59TS-Yb&Boq8DH+H?q%PBK@+-j41-qgvX?1|RYx_MWpOy2q8 z;?#>1zm*2>EQ+=`@O7n4)6Ek)Rw*T-IS2lLTF^2n!7g5_Za&@hL?+Bv_CwUvht0_e z!i{&^@2%~%5|Lo6cxCZA^5ZeimpiI|U%T3(rNTS8fvx`6)!BD0F4^WDyfC`Knbo?T z#o+DRxaK7<Kc19HUsv6?^+ZP5(T3V5DGbbI{~5ksUzD+7vsUjaH?~^G6-CCAVtqMs zXR>kJ?_t=nmbG1HcmJ6)<$@O;&F3&^Iy2XeL49J-DhqkNE4mjpefhd3IQP!UmpdjN zTD!6T)RHIqPQD)B-fHa=XSL#cQns4Q&MlRTt?aRER)!m=qNE$UUrSh5n9?;H{s6ng z^D%-K9>}jvxUVKT<I_zWuB*FtoKaz7kmZlLrh1w6<n03oZ{L3%zu<T*|I9G2H|KH> zJV@B^%0JN0<4DGlmCxsG&CH!~=6J@*<7b19FV9mkNU*KGdQU_2;=BXPzlR!LDPO)M zSB>$@(<uen5ieaYmMwE*IJhL&a5BScp65MZ-$xa@FXS%P6j?1Q`FLG**woc|j5}l| zb|pv6xURD<LgvfLYs$jB2mTzF2|2eYL+HA**DZ%oN0z3#nQK>D{yDJVdDgG8Z)+sl zr+Fy6<(+!+<<X3&7#7yD2agqg&3g9SZCb70e(xPjt`dyD`?KzC-xH#@c$yBg!rK_v zz3-mz+}ZB@{>QZ`Qmge<zCO16x<;itE<KU;kp+XsgHI0c-v`fLZ1l8nhfHzIoT|>- zpQfJrZu{!gtDfV!P5hE^#}@83y0r6x-2%ho_u`g(u$wx+v~1&Mp|YL7Z~La5T(#L+ z%-ZRf{^vETZ~uK`6rCT(8xyuYr)|=OS??-UlOAie2t<pX_b*VXR4%C9@&0X4T#RMT zYO4l!-q4htr#zS*cAge}XS=$>WZI&sTQu(GO_;+b#Cm{j)4IS;t~&zNefED#SL$7g z&U<oPdCrqi&db@Y$7KW@PhDNLGAp<_RmFeGJ1sYUzh#^L1WU|!-0Sdqhs%xQ><Xo8 zw{c2Z9%DRacrKgy=uTh0ubX%Jq{v)aA6jjxuk_OKv&*NyTHgL5FSS$475aWD9^U_v z>&e#rys<CLt5w}OqMO)Rs;*kE?p%|%=R{Gv?doNh>y&hl#JR1_o1S%m_ec@L`p($? zylXd}#hFg!W7M&HwmGKeNzz_ES!KtoDY}{U-@=m57?m);j=Z(MQSVW(>aMk?ntP5M zn15<*CD(V0MIMhW&YC=_y?=dg<ep3K*2;gM_DRpp?TNCeKWq5BeUGL)JKYi1P_Fej zo3E*`K_=PMi#0Pw&(ikQkzXb!j2JDR%nB20@=oeme!8Hxy=rZ)a?~B|q9roHQJQP} zJW{`yT$?z5<yo`9)hj)B9M`bCW2v?&_B#*PZkg5P9KC%UFKS;+Ug)M(p)`r5?Xu^| zrR*lT%L2Bfiv+l3HU!>lKCpzXL99z-ae`R0=bXSfm+p92Uvw4u)uXYfD~w^SuXLm4 zSJ7$N!M-uk8)fUZ%+yaxKQp;OWS+b1>#y6tF<#2qBmAMmyPmP{@>{{JM;|SVIPvF= zy<_|gd-fV*`JOtJjHr+UmBIHEr)<B=At82toA&qe!}jc7=C|3&UHNibGpv^H>$H!$ zO9FrIG-JGeX-hzn-?=lN4Mn9gqn%INnIB!9Ri_|c$9qN0o{!_mcEeMTY$x?Swwd5+ zeR!H2$A*h<YJ7RGf7`a@Kf|tRPUTuB`+SS`Z*f25FBJRYaO8*XlSP~6YkfN^&9i`y zi|_04KhjrPugxuAa8LW@ojppSeI+-<TpzYsJ?VO}T%2XvbD23Y+ia5qJ}wd8Zf$c$ zF|oCyz`bf^^=cQ<N#cggw<XW<JI930&b9J8wej;D-o^bZ)}Fi&acq;<Z)xj}36B{9 z)h-rpYk$`Mma*>E^0%^&GoMU8t6iXU;%zIlXmiHG5Bv_sKQ8@o+$XjCn7nir*THMP zUICI-2{JrE(es%3_$-eWFD<?@?Iiz<l-38IuWxnZ|0sCg!7BOQ5<dRZuPW6h-tL*l zR&{Zw{@p0q`-d;eWEM{{7nRwZEV^}dR;yB~bK@T${-|d)axq7Zj!4dEY&}*~d})2Q zmaa<uR)N`WWwSmR`hK1hD!#W^?ceh^x8J>sKa;RW;mg}upZH}f8ox@<*RWK!Oz<mw z8=K!<`pr92FGWG=PsidP`?)^NTxxvklli^m$>Hrw%g-urY7ve(lPVG<-1Wup0<*}L zKqrQC84Gv<eVDp57O<XG6=9xbF0ey(#qAxJLc6`ocGj-GzSeX#+Z&e^p2w@MT(Hqz zRWUzg`{k0^+P!Z7%8rzMyEwhf?m%E}!u@QIO-4tGT&uQie{f#-kJgXshxL*#KmTV) zU*4&wr@K~9cZqhvA{};RnTFzPbJk4kH_kip$u`-2=f&k2dJ`wPB=zv8v9r{=21(qG z`<T3V-SXc$72CtFtA|GGW?kbIu3}cXyzj9E@0Erf>g!D(JZUJtwaM?rMP3!*c};T+ zJdQ^t$Xw|Nw<%lx!YpD-(dNZ{l9Ca%&Rl=DPkZ?6vdK=Br)Q_`yu}`n6!piWoiE(> zX8nxyw=CaHla=@GpEhyJ@BBS{OdZqrCI=^T%@)}zDI#O2+1Fa}Z0B09fQ20__CB*N z?%QL-yRgI3;<@Pg`!NEHY4<EoDqq|1bl+07GqYbdoj7`d$%5Thd&ZSz3?~G3<sCnJ zZQEAMNQ)ee<M(X7uFL!R&EvtGFWP+#*Hv9t-u4SK)Qd4TWD&bRNAN;u&;#Maf)k?q zM5;r(zuO-&FP_t9<QuG|<g?Esa1wKg{k4r>t&`quQE!oZyIqDYd2-kO{OP^i%+qCl z8T`7I<3D$CkGXZj!9Q7dj6`4WWt3q($UbYU=)#y|y&Eb%ZfDMTWzFyPq)zjWRz=X$ z8#0T8=RGN3w@CB+w9ulMl$7u5oFA>(|IsU+vD0gz&Bs2im#a@bGoIG-GwkP{o8H=D z-@mTf_;P+`LG|RoJ24_$?w8iRl-gsk;WL|CmDIP1Pj+uEcKqP5r_{PGpi(8-^u;ds z79E`nHb<*kWghfbJx=^MDM~>w_l8yS+O${utY;p6Tl1vq;`!yfI-cg<dHW~&v9&z! z&8gdO<(Uasg}1-nr?uyrdfGJS%{DxjOQm;yjczMTy0Pl@vb=+~wwkt~H<twUJFU{3 zxcOw_r7Z^poYwfupSa@9(2^|EcX#Ea%E=G-=5j1g_^cHhyZ6kG=Xn)td+ic)1)ij@ z%UWWlWW2N8mSOeA!*UGjcE^`$vquY8e)97;$nf?1+GuNbLrsOoD`|@^<vyNy?#R6Z zJ&YGZ=f;XfcI|n8fvuO%@NMWq^L<AynJ%66Eb?)r$ny+S_mGb+0?{37KBXpp7P4T! zwXt+9#~P*zb5Z6AejaP0YZ@F?LZ<AVb}z>5h|J`Zc3)>|ixv4s%=0O5lw4JNmURi+ z<VJ5-YcV!ZraQ{KaKS8g5u+SSwo0{m3-XpRg>Q4!VxIGOR+z9_Z^U-_>1(rZ>ai;; zREL#rN^)>F-JZv~C+Ba&Yo{{B-7|OnJy7b=^mt#k)SCDh)1#+1S~53=zMQpIaOr|0 zaUcDR+-*YtI&QyfoSZ4USBsZ}<MA|~ngfMjS3Z#pI`U-RzA2Y>&aUd)I{&nUtyR}1 zQMKTn$D*?*i4<?YbM<v3<Dm%^@7<2Pb5xOe(tm1_`i%#2^S&<JtT1{0q17hL1<KEq zS1j4xG0#9HDWviBtb(aip3ITC60pJ3z%^o`%e)!3A1}?23KQRPJn+Wzy;1Y-#456{ zkFyFB$+_4Rk}k_ub?t1=&%lXO|823pALO%A_fKcp<DO6KQQQ1}c)gYB_sjZvhTA}e zVY!9eR>v#1KOLT5#ijP)->P46>vId`f4xxi41Tpl>UZ>`_%_`=xgVwdt})zZ+q%TD zY*J-|-rpGte>v8-<Sh%CB4p=OskU#&hq#rckLp|EIIkp4*z?Qv@ymDT>YF74`@L>8 z|9$k?Xw}}^bC!gyIbWD^Fh1KT?|6*dqV4j2xypWxH5+A8i#P6`b#b<T@QS-`$3%Bk z@+@F*b9|%ieKdUa>OVG@o_Y)C{EAthU##~2>(YLfzpSAdw|q*TR=g_^|Gx3a&O8pu z1Mg#=K7DsR!R_f+yRAw8UQRi=d!<F-oCj6cST6tjkUoFqn#C(kRW4nab0^(;<N2t~ zJo_yq6iUvfNH<7s-a6%1*H)I<ZpPOyZTVsuWw!P?&(f;uUstcr*x0+>z;;8nlH~DI zd(3URcBJ0hd4OHw(5zUG+d&_0Nk&Xhd%p6(`Mn<Nw;o{6ROsoOv8vFw&uhXeOZL5f zo2KT^Xj6E?d~liB#mpTKIa3+Z?Y7!EeG-|o&hnMkEDy;dHm@grH&%wZ3-Zjbt7?4d zcjVS@&Jw1T3LkrlBR@@;I7jWB@l;#muxArE?g$i~wBElo{iNcJ9a{cA^S(}5R~A_J zk>%`;2MWO#Lb&$t`8j2~g{aEX$b<G~7AGE?a&L>yJRUQ_y6btaE`ONv#O`SfbDDd? zrp-8FcU^(;g7CFXjo~?b2F78zdOSXy2M>NZFFI%1EUA0P7iSbrbx29o;dptc`ufs} zx}+eZBgXu*3!a-kk<xt;Kf!>tdfw0VP8UoWrCpYGhCOdSAUb*X760V@+h&|rJMPoB zFF|xka+2N4B+H=swZ*?m?-=E3Jy+b;Jpc2o>sxjPIB2%rDLUSBE$^4L%q?-nV}6gn zep?c%@ucm<?^SzOs!Z6$FsJm{syp{)OwLTz?|Hmn)wAf1pNF0maXPqhKACr=$=IfK z#vF~)g3Xg7_h(kJ^KqyzFUk)0>*-w=zVPI&a)#`8p|Sj2CR=t^ojb3-AhGe_+U{Bl zhILL)_@>;paNeOjck#45<LIypiH;gv{~4;ku2GNOy4Xrqx2xIH(`-VE*5@A=)w<Zc zKQ<qlw_v{4i#Km?UNAh#W5n-&seQZasSoU2{Bd)OW8Mo~-h1Y*N}pG@XlU4z>8Czl zwcF~I?T{iD7a-R%=i9nfkFHG9*xmG4VdBBFX?Je@wA7lh__fUKjaq)z5)EsLG!zWv z_IfT%J@%=b^_!^8hAqBo{Ab=y@Lw7-^WtLbx)&14vKghN+Bd%I9IVRyIOpAqqUw+f zuaeAi%-k2QkyH^pCXmeif?wXN<KBc-%b%W?WLkNB-x00Yb4y-5yxQl+X0dE;Y@)iP z&4W4L*M;2A4JvYDXSr&2b;H6>w_{S8L*MRfe{;(^{94&E<%!?FJo)-<)#NOXCmWKy zYhOK9xps{Ij6Zwhec4rKq?%7OObhUMQGM~PQ11+@TwA^gF{>vXz0FX3KG3JSuWH&I z!-lFb74a6H#lpL_9OX}~J+5&=Ia89kkJI9P(Cf%Zk(GDvxt^I8dUyAQ$>(l4Pg6;m z!)Nh6@KET6hkHXlAN6sQ^p^-d=I%8!Y~!kBH(9!tJmIr=ReZK+pKaiO299}4j^y1I zmSfXiJGWeG)h7>ogO@SSdl!DT(OkLWWN72e#`pbR=a%MWL_M3ZWXigl*JZmO$V{HV z!BQP2(~&e;`Pwe;i%)JVr#$F0{<1FZk?)(@;yAnZq&q?{CpPj_tnIZwQXckhX<ANS zyJ-WPpH_9nNefHnYmGN$*VyUpE9LquDa`(KLf-M`F0<zDJ(#~G>Y#!4F>(1*JA2<O zXs8r5DVoRe+-~j)zcX!FTbIqWKQryT7+YQV%djAq3@^QiWSPEfGj;WCj87h|i`vOQ zExGZ9)`Zz_+-sM5YN;`3_O+Cnp1=EI^X-j?%-EM(to!sv_3Jdtu;VN;f-zI?o_#jw zUC({>74N?;-Eg_wpd;hFjiBG8c!R`t<-M8pnMXB`T+sY3n>F`khd@A)d)}2;sl3od zU78|lw*m}ZMRFKjMascD2N=Mk*nzGJTpEkI85X2%)t$R|i%PQSG^@{NvkokEVm)SH zv2d}a-0t7jx3_LvTfK@^uIT8K!-}tZ{5=1()?NQmd~EgO`R!G58*>Zfr1x5xl-xeG zYem@K>`%f@AFk}@d;6u<thjsU+DYG1w43H7oRFWU{l)&9{70|X|9G$eu~m8a^wN{Q zR~G#io&P?vzrM9~*_-ofYv#;r-?`?w+m3D9r}^u7J~UEJe=quFz2&tn7NzS&k5+B# zkaT9txRS5?I#&G{=d#UL_ShCP8LRkwoW{H$G3I)AP5km2iwn{rSKd!MRkY-|gyf{O z<BaTUOHO%7&H3p2qR_l*+0+HDm4&4x6HoH=NQg71+c0TATi-1&zLj6v+jQP+#b%$A zpH*I5DyVzEV9k2TA1D8Wua3Fn)0@lksq&t8Y4SX7`KX6m-{xsYYnDAc$y2~?!+dhR z+&;zai!a>Ld{gswsl(+gspdHo^5XZ$WiRM?BVGA;Yw<nlU>hT28RIi&C%^M8iDnD$ z*&tKJzqZsp`C_fRm6*?i#2wFO6j*3Ul>7>rR5Yi~V%5{a-32OgGgjSkuYbTBbl&xH zY4+}|;Ztii=5anRD=Lh6-&s1-wEE<_XSLm@Mb9&Y#@e<|a6ESL<=^bCkKa3a`f?N! z*#B(N{<He*9GO=)&IUi9KJna-$x&8YA9B<e%+dJzeND}?E{3D!t{SVA_o_^t5I85$ zQF1||t4Qz;R*}H72H+$SIOkHA0fWSAPY%ZetD{Pu-OGKv&M-9F+4=I4D_<pY7cwrL z+N7Y)tnz5?+Z9V!ZLEC1WaqB%G|LmOukGvpa7IqzdX4^rpMNTLeYq!np{M=S<>l<( zeQwVcF?Tw?W4-Lo4=#4{AM?MNEnb`X@w~J~<=Q8o7l+wAR$jkw-R?*GyVif@l{<c@ zEKJPMKU*R*_41SRGvyr&U*B7_)a9+{ZiDu+viVzC&o|pCRLJ{%^l#bP&Ci!1X4I`K zf8fHlp9|Z6ES=K)Z)^V<&u^0Jr$t*X-O=WqIZHF(xY8V>4F}mKOgxsk<l+Uzhbwfv zQ-b7t?F>(TTM#Y&rMrI1tFVGTp3QFaXEVlcnl&S0QIqhVRnbn3)rC@Be>#8UF1K6$ z_&jeE>u0IQ!P^{~*Z(?rX@B(Bn}6myJv5#qu|j<wJJW`h7bVUwY}GmVL@Qw3{ouw( zan~smEYA6xt}O5t*AwAMXgs-Q_vIZaPbOL9wQa0Yn)cj&rTepEjE5SViqG*DTXiJv zP_+B`GPd+X;O?>utJvOr{gXZQiu2E&hWsbbFLWIWpKP_DFY9HGt25K?eaT0|Goznb zJdtyc+FVgQCE(0X8@_tJtVwJqQrRsJGhf@3IahPiu{X;LS-+QkS-Ehc*Cgj$-k$!a z0eW{Ao-(p~!xKC~U&DCLbnREQtHNjI#tL_yn!}c+@WIwN=J*lKo_{j?+;SHvv!6Vk zb%)1!8>7MmzH0upi52ti=I1QyozZjbz~hPGoUt=)h3y=7?o$2SQyp3|V_Agk-c{F@ zrzP%~Wu~t2r1*H%S`|ljWrk1M*Q4dC<@6=pb+UHH8Gp6>W*U3)LHT)+Yrk*2e*HEy zm$leQ`)L5<iSMgduQ(LE;`Q;p2@fXsHE*>nVzXbW*KF2%#9fkEdB?J?mnJqaeV15s z;>Y{5KFf=nJeS>1@{D`ZIOoX~p*z+oPac#UwVhs&<S%((Wzu%1!)L5r<(!>M_NF~L z6!7wdY<Au4xGj~O*=2W*Pdc_>^QO%iKjP<<K40spx^@5Tjw`>XEzdhxyz9~$ozh<0 znU2m|+JgH(&-&~yl&S8vw^U}Oz2>_A42O=cUGp?)N8s&i8*Os4O1Yg2d)~fqHD5Vz z<(<znV@^Dom7o9Gx%5w_rYvZJFd$hZ(9L3*qQmpG63>^aYW3a;(C$Cy@NN03Cw<3e zusu`1w5)^4t*U&{BmJB1lXo*TRIJ`L<q)@;<kP*ctRozbOYgqQn^o|sW6FoUuG$l` zHycfL^Z2r4W$vQSX@T!u&-%XRu-UCsdiR{G>112BSM%6eI!@kL-2ZQ{_QI1456bMe zOq{H}C;b$|<H`3XseQWfsg~X3`@eTp<txrbKMg)#XBE8li`cT3+?|ZC>b9&|T=e$$ zS3k~E1^%|L9aG(IarMoV34WnH^-yl@UAC-4q9>P>K6sEK=*ggU<oTB+?JsQI*nQHL zZJmG0;_jAolVgsDQ+h63WbQL^x4F1W^i6gr%f>%Tn5<_lE}IuESN?p~v~vz2{JZ=E zU2i>~cwN+Ec8P(h@{IfQ{FCEd>&}G#XZSGThxXBXvY)$RmuRnuV*LB$_l-Z=&!aEz zROQ)WyL!*xnR|-mo9nbPF2@Sws+Voq5oQsud(5b|ak<##9m}PUo%mjMZQav7m+t-a z(da5vc0c_~erf5ofTh=4|9CDvZ+=VaowAL>+=Vj5JE}j%$Mm<z@&9=FVZBe6#M?Jp z@7hT!wS7{#HK*kK^{$_3w-4=Fe(1eq^o?wf4R!w+PPtEbV)RA#Y;{DJR>{?fnu||^ zR%)ESdAhFs?5wFbg`QhCN<8nm=5k$;gXQbXx3S^JVl^s~AGvK`woq53xN^fB#u>M# zTC8JTH(l9M{nDP^zN@P?R;~*z+Oxs-s4we*2R-j>H%FW;@~&A@`XFRtoJg8=f4tw6 z$(qZyxCczvo_0v^#iI2`?Oqy5%aoX&a;)DP!e%q?Znl&3ft{-TwjK+n3NP(*IQ_j} z*{1mTQm;)*8kj6Cq<25t@b*1JKu807PUyxG`LcIRpWL&|6psfdrZF&Z%@HW{|Lqud z?(Gq|sS{;harHEaFF5`>xORoaX#>W>gX-)r{oX1BUf5n}_i^Wq0xP+#6Ll}#3vX<m z!x(TUu4Zp@$@A@xBR|Cnt2y(`GY+`9RWyC&g1jOQ=B(%YtL!fA*?5eTfx+@@`kLJ{ zWS)F|H0NxCTiths=Svg5+j`u&Fv($+UG3s4^;)5GRu_JHzQNSvR5Eu1p8?0~S(A1A z7-M)Q6$WQZnU(Ac{XVTA#=!Ju#;z3}O`HGRcwiorwrAh9H>=p<r_1~^-JZF!fw6|q z?!)t0({?RVx!Rw3>1zz{>`hB*FJF+mx;J;#lbUxinkNFP%h$_qyk1stw!xj<=DKV4 z+D{9km!FaNzA}5~xqHhO|7XY*X<60q`YKz2|JL-ouT@sh;a$GI?ymNf+JcP|HS=R0 zgr(l^Fk6|P(DGHf*SYsXta8)l9d}MnSWq7GL3{CK39UJ-fpbLSjNfVZZmPKIZCo?+ zxU66HnoH-W2s~ddnfIR|>U(<FZArITH(qXeKb7f$p1bq4?QbL!n#|<7cC5?08hXRb zWyY(UZ(l}-Z4wDhf9QDPxw`D?xmWXp-C0V?@{as@`?Bqr*6AaBv4vYd?@0f;DlABS z>eOV#IFGmCVuohS1s>-vUI;f?)$6jdl#|iVT!iI;Omk%U#Az>jxRd*{UNlID2!H-$ zCK&mB!o<Czn<sx-|DPdl<F}WFtHP^frY&38S#s#l?IO!H-t9S}GV(FuzO`Hn5_bqs zs!B=Q@J=aC(o?U(rl9zJ=-c}RC0lPifA>7}A48-Ycago+(dt7Hyw8;t<~42Gs?l^T zWD>(;_Ps^Z@9&!0uDa{NJa*A7+QpJyyu#iqwj_GmTUb2)d9C*Bm+q5El`li*{aie` z!K!%H!s@CuOXe-w9%?OV5wVx|f|1Zo3w61xo0BbWEqR_FAhqLm_QYrDh0kZbG?_i^ z_V%)fFDxa?&&lkT710w}Ii+FW;%!-fcYgY|{=Ti-d#}^m%RUQiW|KI1V6BJhjdJ1h z%dD^El~vDDy>nsfEe_epUCXzx^(i<qhlxM%_N~<iq?|kt`lR<=P4(c2{ujybxARw+ z-sV@C61};rc5-k1H7A|<*3SP7B1$J8?)BH5l#qIUq20Zym-e(Ks%XlTuggB_n)u<^ zN{xVbit3j$PCQ$DYg=?{|J<5TtHUyZ8a8}&TTe~Cw`J?^%jFek_*{dwZO?qd#c1lu znXyj5{h7g|t;*Xq<yV?6PFyIjt&-U5UKe(iLuSsSRo9eW&b)8-iIe5|(&#N6=~GQ- zs$NieAg3uFJjskjPBTYp^NO}3+wUHT+xh;>^0ga!)M8|cJl{qHRI~+@Z9HJ>v0D7v z`ij|$cAlD(z?FN)H{$;1MTt*;o^bzt<>XtjU%I_*J_UzoJ&E_(<>d9W;T^AMj;Tlc zyK6!07H>UcGIdXwTC;E3k@|L?R=4nlYjeN8xy0iy$ix1T@9T^+5l=2eiFG*?d;1r) zy!LR@Jdo669K`4<5~{}Ns$jWvAw$rYCGY24y2NNaOM_V?m|?+1R|d;)9pekvt3RxF zYClqEb<yPI$8X^~!e>mrDDuw!)Q$+dG|9)Juk5)^ZZ4P=>!g-Cp=RPnS^k<jk$JP` ze2ty>?mvUrd;2Ya(se%>WW=yI@w-Sc)Jd#g@Sowq{Cmp%o<G*FxOvj<;EI?1lDwbU zw2HK!T1U)_-1GYI6vvD0!LQ>MeqesY^vCw&7pqSi)2uy~{Jky1uCs$_bI;ai>9g*h zzhK|9Uuci@!~Hz}88Wh_JF@Ox*(dt@v&BEbc;-K@KNha8@w_e{u!FB_Nr%$JPZQQV zZmG4psxSYeKjO#4N8EGcqpw~)IN|SX|JJgjOl8bhe$9Fub?Tmy|E;A{JuDe_NPbyY zb@k3)F7GLubreqBE4`7^z`=XqS6JTe!o<Wy_a>Y=a_qU5k>~B8<N28!%BPu`mDMdp zyC26o>g+MD)yWd+F82{Ut}J@=qo;|$HBUMBhciySyl8eWT3!8hbncXM?6Q^bBctTs znVc@={yrs{ZHx1?_}R@bvhR4joA#t@k*SWv#Ky(|li7^w&DUjDY35HX+WqapW46u9 zuQ)s`2){NxmNn({t^Q8G-o@tx^k*ynjNkDqe1@;KzxIhIn+;E@ZLM)HyL?va{hbBE zJs)_JudG;d+e%SdVNsXnG!aO@v4Q!-qAsllhNB{ZJy*UmENZe`G`B_br*BCe%bvFL z(Vtb1y;pOTv_JH_!u0H;o(YcZ6JL5R*tlrg8`boQn{KLXtC}CRQKm@xU_oAV#W9)r zvp=snSoT9{R(kQBuC+R;nQ`Au{<xZym%lbDdM{xl^IZ3JWU{j5V#_37({@uc69<bI zS+0r&R_WJf_EoG5l-zvbg6{d0zf-=ff7{=`kE3y7oXI|6+52xa^Iyg<-L+=*b8F$b z?>rJ;Wk2Y@;q78RU;6EO32pafFTabkZ2vH6clgI=``*s|D9>Jyw_x6XhN#CYz8Y7( zNIz8<X7i!e>MHkCBLSXtma0!$PY*h3ub8kw=J7ACwuDWqw$J=j&(+5rX8!8zr7MSb zceEx1>;8$fkzbo|=N5~4q4kW9TRz8zo=WY|Fe={h-L%_;=gm)@O^nAx3f~5Nb^GWp zU7A+5l7YELz}@R?cG1$sC)ih>__KQT&IX=oTu%?O%dR$x2uS5N4DRy{cg~hbG7r7o z=Uj94Mu>`m*3Fpb){W1$yj#R*)K&R*9&hmE=j?SMW>&?`5f)}&wM$p}&M`>f42rgt z<+Bdub(6Q_6nG!NR@6NC$F*iX?%u;$bNcF|7OyzxEVJG5VDJf1UGEt&d;O={lrEdA ze`LB>$eJL#_p^4MzG*1*fU)oDyLeF>4bxoRb&IT*I-j_G@=x}`{ELqhrJE%Er1nM? zKXd2xu<#CAd0Oy%Rox{wixmeCS678hTpv7VzSoPrH>W$ET3l{h73|5_Z}Rqb$h@oK z(!C7U@3wiY7St?0@TBytllU{0$vt&j^F%b8n|H4~s<O`8`Qy{(iSvvD&KjmO$WOmD z=}{R^xP|(PFDpbg+S+YVFkPEgV8omI^4nVL1?uapuklWru8_`rYxjD-$aQDlaQBHT ze_fu<ytmgdche<}#Ru(=c1^0~ops4)h4%KB=eOp+_!acHT5#fdhJ>qUoeULI*z@J) zgl<cjU;ONB*!4H%pAVlub$o5ey4lCSDV>j-EYl`4zv@{Q--<V&yL1<d=*o0yGM-rA zI45}HoTLdoNmJyObvLZMwk~Qx@rmPkTARMEwU#*cN4Se4^@}!-?>Pg@b$O41P0rj~ zwym_%C+xPPrTYG*iF{L7!UI<S%26@Qdyta0(#?FIcG0c-Dba<~UY`wnJoOjTe4Wpe z@2y+^UipFGyvkKQh7AiI+tx3QXiD5JGb?Q4w8u-kxj3Hu)l!R}-9L4g)V5PxCCVRH zNGta76?!iaz3U~w#`$$+!o>M1AF6@`Ztr{`6&kzTa+RyNhb3#(7s&<IY{wkFy$y^$ z;dq>-@5$AMg_}H{-|BZN;dsJx(9eIZ&pH*KlE*ToM;+$q6*s;PV(t;(=KH&{vb)4i z^Uunr#xH9n>#B>Y5=z&6IN0!bdDYz1wEq0UD^-_yw;ARK3mF7em74Y@7UX<oR7jHa ztN1F@b^A&Y=l8$bGp2qt-(WM#^?2|%`)?{gns!}3JmY#{=93nt{sX){;cIFlexzr9 zj6Zmi_v!kZU#$yVm!3*4OuQf*&s2A4p8d32hrS)kp4+iWQ*!bI!((Fmz3lk2>px7o zb?>IaZ?D4&ncSs5efC^mGQ+1$%y&LNS2SI9=g;Eb2^suLvi?b4nJ3y-nJabdMY{eo zw+h{_qMsMX@_e~<Y`@$72TSA_JAT-``*)2^+-$pcQD5iW)fW%`XOQ}Hc~b7#Nq!6u z=50M6q{nyAE#`ZE(ajyQg>B1C@1HXA_^Pzo=f*LAw$}MQDN+Y_%Z6RKw*89P)CX_R zvu#P-7k)yWrTl!<(`iY2o~(TRChJh_gSKM^R+qW8Wm}{sIvIp7zqTd!{r6?^3!k&E zzqDh=R_4RZ2W>t^aj!B`zkBlgYv(sT^Lk!~eUP}p+!A);sH54sj-?$u?6%pnbDi8Q z>`T5po6$S{N#kqhtq0Y!7sovgG4^aIYrYWT6cDZQpvmHOi0Gj?4W2eq6{&X&55DtN z&ujaTDV3?_HN|Gm$3Csp!W~S-2j50MO8b3pZ{f?};|eZ0n&)%oUG44LF+Jq{31*9z zXYDIfd2Yxxgr-c^a<kj_Ri!%R<o(_1e;!R;*Sp3?K53cV%h&UxChA9-xyKX~He`uT zSd-|japJkmr2_HmHv&b{l^1Ni>a1YNK5ysiD1&UDo+a;Y{XO|IrX=s;V-0^B220UA z%f5@B<{pvz&#*SADdW+cosrk~?Fh9CJ|SWAyzBJt>r$~R_e`?>6{dbmC8y`lD#L55 z&T5``p7C5_`I|F8-|t+$>`uOonN0D1i*=iQcOSbcz^cBEuc$WroXO84XN*5hs_J_E zWo46@^EQVA%nO&?-uU8XiS_HutBb>UJB_M}4}ATyb~a~&mRq$L_c`spjk`5M7Rx?o zmVEs>mbLYXlM{2zPv-QxY_TU3-jr3<oI11Q^RWW!YfE?QBt{5H7v`wfuPxpcdx1g7 zY3fP2onO}On7M&d@+3=g|GAx7AusYJmQC&6TysE-_p{6s-JretO53=OwJR4_SA{O0 ze>&)tck<+UQ=J})`B;S6e3<z%u6o7d3$I#rXSuoFNv?W2Q+m<!#bK^@mrp6P_{`?5 zZ^?Xbm-mE88h4iK6fn)3I<=Cam#HD7^znpj``j~Yi<iH;9&XVab-!x6^u|f$g=Y(^ zT71$HcW*a+Q8jg<mN$=mfmOKTiU@;9MwWzxkGJ-6h3Z^e&KkvE+_&$PjNl~86Kk?h z{&W5;le|FmQv7X3!B-LmzQs~K>MH%y%S~T8Mcw$UDs9U(?YsM#ClC5qOQm#Lrk)lk zK4>@f#O;+rHHS^FW?U3Y4W7e)X_t^;#_KIVLv{p3tWWOyx;Mk2`x$eY-vhsjUtw~y zIno&zyI$x{6>NBVx<|-%wd7h~;f+OtPxTxgd^_(|5fm|ZFW-aO6&_Pgo^DH(Y5cS5 ziM&yp^1G(u`!8cQ?J{?fNS6MyBdBQ2aog%}{*P7<ZvHTiOgI>Rii`cqW6}F}HtpeV zI_0leIP25;-tXT388}{EeyFgrP-h8Wd3r<r+;mU7>@Qlr5kKE)oISFq>&+kQhZ{Ej zywuQ8a>we*J&_Onx1!$)^SCUxkGk+Nza#g{Q?qO5jGFd}E?aKA`@-pKrXFt;Q{xPe z%f9a1wWoTextPUUzrFjjZ<-ta(b}~#?ZD!*vs6>mioMvXLRaUSJ_~v~rMK?0;H7B} z6Q8)4|DI*a{Y^`t@Y0%_@#oVHC(qq^?%uIkB0TSNszWvy9VrqvnX$8%?IY`N{gW*c z$GHR7EnH!oZ+v2J2ivSXz5_dCJ~#R|sqZLQA{4#UWS#4q-dr*Nw~RXB6W1K*ljy6r zI(f~+bi1?dPM*0JN~3Oj1p95j(K2&J&Dj^WniFq}_di#%xV_SZ)4aGxHbdFe_KnlM zS1#-da=ebamfVTbShVVZNV<p|t9n$dLlkIEAkgta0AGfKNT90$SKO6!k=19JOiZFJ z_4C6t9_zhx(qLBE_<*N2`%Agg-??ATb5-yko^~l~V|1Krrp)wf>jlz`_UoRHX()`h z{C8kJ`=cN0KfZR|vZr^+<&vwpQ7>3e+!oj3d^_!ET}zGM2fNvivtP#S&b(gWyK`xK zqsH5bZ=;>`uDeg{ocr`t&F9DcZBe2<fu{SOhsx_Su(9u4C;d-QJG<g;Sh7^@gD&=G z+Iv49Z~3at>sM{IyS#_->5~r*?_+fTO|4Dy$TXLKsQl|X&z;%3-3$V~ow)-pKWg(~ zx3y4QZKNHzbAx%=TIsoVdFC5+?=Vgb=oU|MS4ffLe;rqHId_(*(D|vkM-Paes0o|m z{NVLA`D0<meK$>C6x=l0=fNx^<gOc6{PAws^+Vq#HkJF9ta6lPcsA9dIK=hRo+Xuc z!sXMN6eaGgSRlVnYwx?|{ksYb&-tdGET~y~uz#D@Y>(JRb<=loFWz~b-E{Ws&jRcD z&m*Uc_nmQ2k$>tp&8c~X(#o?6%C|P>@61?QaC_<NS$$LY{amujG@4Z;&;vA9&#<UV zgW;@(q{WisCW5mBSXlzyiZ3;AX}ok;z`Rx@fK5Xn(ABc~(hklhjU`Kudoew*x;ndX znoLR+SEJ*X<EB-|bT2FX$>jKL|Bc~-m-FM=%ISGR+#GlKgLk$+?fSLonX91D<n8Ph zqEG%aY~pLEvHigBH?1UOdgSg|Uk}Q>Vb2o&!S$8%{v<YuDme!EsL#)}PcHmas*tdp zgI$aBtHt+K@BEds#2m^dS&FPLV0+5lcW2(QMbm;(w72)vKB!oF;i9hBcEk6#Kg&<Q zw&ISHjNI;D@7_mw?S8_rE`(?D{LizxB5o|+T=s6c#fs^Mm$|bpo{PI}7O}#5^P$H* zVKvi~lQ|9N87v9+`q1gk{PF_d{@#F{+s^nNJjZdswlFmN*R((9qJI0|aM`IWD^eVy z-p?hWt)Jj7A$sw&T=KnD=8Y%vIM$p@3hT~L*j8)RWpi`Z)GY?So1BhwIlkgtWxkO+ zHK%p5#mU!mu6?<%q^RbBc+Mv`Hf^(Sq5`}J43ss>6B=VCZAmR	M0dd$&Py#!YYb z--ox=u70lHW#v*8x9*UN_TIiXU)HafCC2x1hd@#By*<H?{kosKZTH&2GH>41i%!|M zq8=S_o;Ba-MMaz0w)e+p%`@V><8OCWIx(Wj`0LV8uBz+n`W17moF^Fmy0j>P`JlzJ z^k)n`SJyW1w4P*c49+`XqIZY!#7dq<<1O;%8s*-!{&^wz_M60$@&&%7+8gel{Mq?+ zxsu>9>u)O`J2o)BpXcha^0Q21f7BB7XVI4zpIN{Zk-oM3mdT+z3=WEw&vu+uWSr{G z@NM0_%l_4^!P^s<*MDENX2!gZS6}v)$#33pOXLf)%+-r!dQNYAZ#+obshw*TI*0e{ zojKS3Zs}ZpEA@`pafW%tZXG9IRUSWj*Q8nWL`-s1ZT6Ygs_*?Oxz2~b8=IMHvddk4 zqBPkm;S2MLMU!nc-J{$Zy>Crku&9Bns3$n{@d~y!Z&k;gJC0uoyEb2p&tE?3)K-7P zj$;?2`R=E0D}Q13Xd>S;zx9^WUQSo$JTB@qb$0Qj>d#K=9(Sd6yF_j1E@}AuW$hH} z&FA<FwC3)rEac(yubL{+$IkG@Bq!yj<ze2vhUc^x9(ta9zCbjyF7<@X<Ik(!HQ8)t z@U%(aD*i%sW11v)?#~VG602<z8XMe;?`;-)vbwnWZTQ03TJG#UU!I%%V)yPixo6Jz zcU2(_Us>k#P0b6rBO-c0`Rj^EvuzI;k1thGOk(t8Zoaq9=>;Em%KS?!h1MAM`7e*T zvT9*W`g?<gJv)|bw@S*sxU;+XqN~H&&xLdPw0wI%wLbL^_KgWs?QM9+zf`*Tvyl6> z#T+5e%Pr1dS{5nt&f<h^#tzBw=fwsu#J{e~s#DFobKSk>_ma|s4CS_aSI^xgIpy1u z?-zEgmOJ~~pknPG+sC()mU^8sn|p8X>aWG$ygsHZe`L2fT|15Ybpcz2bbHmG*dO(4 z=Q1CeX5Jts=+o!$<;2;#tu-wB+a7+oFL3LumMeEBXH4xO>;DX1*Ni+(&hdoY)zmDp zz5H$S2dN*Y5A5m@Jp9aL!j_cg!zsyZ`*}_Os@3ynSG7$q;X0pgec-Xg6Zxm{7ks8) zsF;8F`m{HP@{PnkEld6Bd7KSA&hnpuC+<h_qhmY1H+1T~lgoK~`@ZP);CsuK?2-uF zl2tV?aZagC*?Wf~50(c~J%-7168NS(V3tYw_&O%sR<`rB%$&dXy-MoKUmkUx<gU(s zYnkH-^`#tUS2p!{9<z{rb;!%WyTIYVs+SYEe$5HFxKf$RLgYl%w7}2(^>JH1EAupd z_YV$aa!}7uYkI)Ic`(mjie+MYp`yowa><nwf9h^A{@5767a_az@q*PHWph_I&&!Hj z66CY-#Lq*M8^0HaiA-v?l>GB*M_^BL^ZPKCO4-7R*EU_0Eeuodz3Om#>VxMtPp-TW zNzgbfcVk6T=nbp+OMN+BwpqMvzO{L`mFU|N@2B&1K40$3bQ37NzD`rv-atNnt>*n5 zqQMg^pKUdov1IP;u0PA0n}ggA#>oC>&}yF8mFYBlyA1P%-@zAWB+tF^<oVK!iO;Uw zJCkiCak|L(4%cd}KZm6o&U<atdeW1izg_10s_!~Cj=jC#?zKAN*k7L6mEBgY51POC zmdvXCaKq8s<GJ$ILbG$X+tpubhe>{NJm*`ae&=hy%jHtvRWl1uyuJQ9R&RP$<3S#A z<vG`<z5KPHBXt9Zj9_$F)H9i<o6mXJ9`)WGC9?L)H(l%Cun>lI7Z}f3&APXB&z(Mo z*!}n3X`jfcaVTd?)7g1y`NFlQ;{~m)rvCJ+RNt}QYE}6zTP{txo?DGQt!=3abByMB z%5Ay6JA8(~$_X<p)R+Ibt}3=E^5h-<oWAAv);U+D2NZ5$K3DO4YvtytThq6C%}*{l zy+e8OmX;@S_oLceEploe$T^C#sN`yhOt>3=ZP~r!6DKe}NMErouIx+at(C`DPOcSm z`m;xl-`4i^j6GY+^#q!?Jhp!vTY4leX+p?~<cVL`M9&a(<`Foo*brA7yCr^0`s|LT z?i-)qCY{eKdmwwftSVf6Wpu92&J*m-U0=Chiz;@qPM3I6xAo+!S(%avjLHhaFJH#} z)eT#IHq`I8jCPdK&Y;Dnmn!O1GY?F7^El)DrN!B*e4NZ>)$^vVUmUfe=G%z_>m4)t z?eaHXczNx%nedk6hT81Kmlry7G8mpb7EvlXfB8b4uKg8X)^#1bv1Z8x&cyjk6AorB z<S~0C^WceDanK@GPf@;~d<-fNlGb^0>YWP7eL3;cOcrmsD93GfOFPaP#(eIoGG3&2 z>hV?yzsXDXEqfp^Un!+De`!T|-?Qx9l1nF4?kqS{c=Gw)s`E#+H`Q;>Wvo|DpSeYb z?QwIQ@1qvo#W5ZGzTKa~=bP!LsbqO)-fWq$<&VTRUiNY*dy>o@!}2lazW?54%jA38 zegD`c>D=k*J@B7F>x(}3>wmnP9rD+t?5N$r=ppedbhUb!`I&vfr*ijLmKQ4Z>pYl~ zF1qiY^tKOQ?DAIB>@@u3WSM5S{L=3K3<7^VF6Amt)8~I_=&W`}<<g%scFouJREJD^ zAF#Xfo$Ql|ecqO<pGCU_KC3!Y`)&ERn@xI(?VFZ+^)xmKe_qAt=g$(b=D`Eu;Afe6 zN2j*4Pm-7)HN$O%fggX=s=gzik6Ea#Ip#g_y4>=;MsY14k4}|*9c$jUCM=RW`5Bjo z#QO+=9GS@{-^PZu>))Ir{As1lWTy+Wi}TEKZ57T;Hss!IdA8Vm`r6v^r*3DTu6$4? zy7p17``gJjW|ew(3o4j4J-+npvdK%myPOFYc2oG%l3%sf-6;FUAip-`#L_Z7&*Vvd zp34NgcmrN(EKz4`>~<9i+`+-7nX#xBw24%Qflb3?LHcqpj)Myvdy=p3wKM(MU=z&F zY-+mW&VyVX&$q5e?)G2I|Dm$AXI6Q4P3($f?$V`ucd9U%Et6iq&bQY8@w9B)*d;1& z%5JsrFl0Z!|3iI>;Sck}^Ax5PC0D#z+<qqTTBLMg{O>1R-~FY2bX|%LG(OS0VbUrO z$#oqki{`P0Jykwpr<Zl%=$h!C{qs%jQvLJ3J~x*-6a2J-h41+GOKbl4eAJP;wl6R# zHR3wQgOsAmgX@%D2S#iP`M`MaxZ0kVS9WjQbm8KT`89J4l-2uYuCVzK|NG7ZnJ~qj zNk=;m##Ox2y5g6r(6q{3<!@Cu&$3Hbgm<o#IkNM4CA+2lsXgW28g}uRL>Ih?IQ7X$ zc;e;exEbFUX*6%V^SDj>{=Gf+k9l9;{n2*J%*I_>^tp}jwRMyIGG#@=_Y@ZGbCA`N zRAuI}`ueC-qM@kb%UNgb+yJNROTJp?rYA{vZZf{L%IC+is*q3ntmg4A4YSmqWMt^? zxQPGJqMl+`X{lC`K-UJ1#d{S@zB6XLcYN06Ad)trNV9MjgR!@(sx^nkVv7Yl0S2$V z`-~kd7SFRdE6v&Xtjp)KD}%_+$0Bm9%=4@-3CT-X%6(nA?7(&7C4rx{H}n?XncV+6 zGK=9@_BH!-efHyz?YrY7E<X*r_Mag;y7OO5@5DdHe{yx6bTz*rR5Z!suh@reGi)>; ztml1ks!{B)UmKgP<?YGGuUy$)?z)K~Xs#Qd#j;n|&+2|Ts~2H1GjQT}f1fbhGczBU z`RB(U+oP(NUVi2M9Lo~b&yjP4LK`0R$9u8-oLII|w&OV4N^zlucYa#haMk#3bKtX( zF<)D{ynJO>Z?CB8qGJX(4qcY1Ol<tdd!B8^r0Me2I@Wzxj+QW_Pg8l)=eX!~adw%= z!W#$e9PZ2y(CV4UnOuCixhd=ZiK38{KI2(UC4oEJtUlRl9tkQlT-MI=bdx7LOYNO7 z-=iBW9X};*-hFSo-VX`Mq$=iv%C|P=O<AD+?6AzrbMB9$bGBN(U)PrMQ~%CN3+eq! z(_)?0aOAGIH~-Ss=W`{yj2l8Lo{LV^nW6t#TjR0%3e%H8nmJpoUT*oGX6WOocH+?7 zJO3HB#<(AOEB@QvW#*~2Qr3M<dwCB`3b1B9=Wxz9`Bj);+|5&y*#176nyPGFvCiez zq>Q(P!OKt8q*iBs%kETGw)T&?8s}*FSnlf8AFn<BoxYkDH#7N|_T=Qx)!`S9-}9Vr zcXjTJvj;TapO2cSy(UG@O>3J$#cMCd6UXDWM5N6rZtg35p?S3JQ{kj+%h1h@U(foB z?8q@>nD^zPn9jq!#_xmJRCtPSGzaR;WnZ~6_<K9kjEszzlRK8O^dxVslIvfq;p$`* zlEN65$~C3bdQ)w0&dpdGcXf;JCc5TIUcY6(-rK0M>0KxTUx975UG&OzPjrq<p2PZO zP3g6V7I)_!-|<4*>-Z6|4AB|v36-{*_YU1&@Sj02>ZE$xyQEtVDX-j3AM-4YXueXA z{UZG8TGL$31-)0yIB(TvA1Xbqw&}_{Wo3!tF1HC6Z=7G$rD4XUVZ)`_uxMVxoWGjQ zv!=3pO^U2K$Sq*_Wu<9nm(#}QldmnmEF!?nlfHA!TCaS&mnR<Zu}TST)w;S{;;^Ca z{G8BKrzc74ZZoVC`0{m`rCsa$Jywl>vy?x}ynRuz+L2jvRnRl@<2K(Gy;Qaf`n$R< zabiQo%C!EXhJqt}cUMha^0>}Q_;vV&_TY1u=lOCh>v<WlrlGHW#me00+KuzJCPg%! zW}aWQ-2B}+vrpC+cWQnySu|$@WBY%GxOpLFGCT>-MQ8K;sC&X!R2A0cvu1gA%0$;U zP1jO9mU7;)x^kG+QPMu{$|56ANoM<{N~;wupW8542kwYEJe8~X+A@bTJC0dATFmu4 z&#Ee<%VYA&Kbd<uorJf%J?1Gh%RJFP&r)gX)o!Nfz9U^JeP#y9&96OQNlTW`I6ddd ze6K?@-dV`6&5hj|P-IYeZKH~H=lQjAZ4*^CO+K|F?40HLi~Kj$9~tcZz<$H#`@{o= z9^uW$mG)a1Ii6U*xIU#{O4j(O_wo~dw|iIvs<!`UShZ<R%%V4ik5^WE8F~D*`%(PS zvZNyHaOlpXiv<>6HNJ29QT^@jha7q~-qovLzT51~v+!W|gycHoc<1b}T)CTXZ_N0x z<nuxM$8m`t!yW9@FR#~4vDbaNTHE+}lcmJ>vxN^f8aI6t^`Cy=(b97(y%+xcbbzTs zaWAi>$FYK<>X7NvHr<Lj&(h4#J>$f8c9A2&FPr;M?RDEFA2s*t$q+VmnP+QVx*~)u zR){e0Rf?uEhQ;uneCs+hf1?(IhqYhvwPh>~ewJTEj>Imlcx<`y+vf&;b%o2ZJ#&w^ z9XN4beW}IVpFa!xo-K*E-Plw9_)?4C@;UNxS4#L6ba~G!u$r}<L+1`-<E4cWr@ks* zH#JE~;ormS?{w+9)1|rHeVkub3rwCkN2YjE)|PbL0|(#u`b~V;P&3JDVx(#DHjNDn zWRLgAHAu~p3s%=EJYn-}fvaM(*7u{)J(G&(Sru4adGXCkzwl#2nc?ppFRU+LQ#vx= zV1wg{<6fd1p~}x}H=eUy6>^X5@pu1%s=t{tJ>vs=#hyJ#N#8HBTI$nWTf-ouH!2gi z%T`}VKAj>|%V&5rTl~W3S4ZzX;b91zH`C&5*bIi22gTv43~$fz+cLfnO>>kk>@m;U z{c>Sb)T_c*H>|hIOg^yk;pC!82YMGvo{w7o%-Cq&f{>49;Z1JVvmQmuP4SgT*K#;; zK(^n1ZDd<+i$U`IfNU*EzfUc-4`=P<JjT>#mAqGPnrZjW3sG6FJ9v)tO}&(P-DrY= zn{<!d)#EQ8yw6!zFB9&*?DUqWv7wE!t_9a(`@`C{?Y#c-(zZ9o6B}E<oGsZ^G;_v$ z<Ko69!wK1wHcnwMVDsjEb6EYuy6s+tpO`1ye4MdfYDv!A^JU#PWqEgrh3XzqZeW*O z?Z}X@L*c93p_$9wLW9c#&)H^22DaN6*u0fp-5YBy`z>r|zYU{^5ra(nv*gHd!M8mo zoxcxxvdDa2*Y@hBr~M(rc{7iu-*Z`L_J+0L6?<UZRQ>YgGe@*vC(qd1Z+ODMd~)9& zsb^oMMM{)2V(%KB)82IDEsJkk{ETnv(%DiKB5tP|rrTOy-|4wJR^Bu=_En+q%Lf)Z z20PFBJ864ex{!D5g69*t8*js(Y~Z_@dTT*q<IAAi(Jc-k49EB9gs+%;b>_p6OW|(w z=4Uy$E2!1`SKZszx~ZbSfFa#x)`_iJvl%7NOUA#B`qrbOpr~%Y{?g_;hb?N{&zbJ5 z>XYCz>^gXL>xq1oS<+?6A`(2S?pJ*OlkqXX<GSPJC!g-}Ug-)AsOOi>p7f#b$>z^b z?)Y973#vH3a?RX#+3E}TKE7@~%fEfAX;Q9!!kv8yCxeU(-}Z#h$eOO4eB|)tv*l5H zPtHDA9+h%g*sQncljHnHy*m$lTW^%<v*4`43FXGiCbmb#b0wetQ`t}*8x+d$_7(rN zP3Ak^IjnmfJ4<@@`Z+0IesLY!aUo>ViNlGq#i42W#az}ql@;2Qw&mEk<|zxtMgQ!o z+Vypna3;T`g=O5aReNV^Co9Za`0~ojo>`_Zf6BP{r!V|t&#d<%t@EI*=;|pMGyR?W zqo%T)vJ10sTwcCeTyv{=`%|Z~752SOB|8N)l^Ob@&WUdqWbBl-dp7y)W%<W;duD}S z(7kiLOSETYIz#h`*HIeBa#v3}z#kKCDSGn`x4H7QttM}MT`vir<5&2;=)33^tJBuf z*%IX^x5hM-JzDW9YW^G_yQrV)tG*reH+HU7NSzycyT|Y-=W=Huv8msGF%;EJ(H5*% zo>!}O>K!|mPjG4At(_|uW~8L#aagST_wA6yB4f8u{=#_<>w=>*)}<M__P#!xyqCY& zW3#g4a>g!(qly+wH!j$cZX%b#EW!}z_#n`iA<$J%gW;`L#6*XfQkhF{ZTX{gJT4w* zURpAb<8s*V$d-LvuD_45PjGk}^GjVJd`*qXhesT&S5}>pc&<|5zBJuZL)Rzk{4||k z{0HMjzVfsDu#2@ipme&rXnVfqs~xcm>$%q4Gr9K1x#&`S{OOIJT&@3N<d%ybbC&j3 zdM+I@^_=DL1#44cCmQhVj_5ru)AiZ%samC$?>qk$aVI|a?6|`pYTN&Hsbrl*!t<Rg z0+o8N*xlr?<Z>(ix>9Azo)(ov@zugXcPECa1t=d-5InCE<Ze;ZafN4n+?5=jQ+yJF zug_`9)z8rASFHFM&CqqUvhB3v*<2BxxJaYI6U<#7^1H<Y?^HZ;@e`8}W&gZBYyXZ< zk59`T;j6Cit@-}wW$X2>t&*Y@cSM+q+*nH!r#>%U)_$~DbLXSQGdZ0Y4xFponwTtc z@POS`k<UB=)}`OqhaFE}>G=3qW>3MK9;uQwMd6aa%2vI5x{33wO1DewXIGKnw1y0s zv@T81rh*wvfA&@`_>^h&Xj%*7oH-XABo;MrMR{p5$W2-BJKdyxDMJ9$qrNY4zKS9z zZ)hx<zF>*LQI-!HY&{9T12^#Xt2TW+U-g^$o79JriLavGcXdtvrd_(J;d!IVobCUt zw4X#v%*vj^+&J-^_Luf=#UJMXQH*E%Qt>QcdR6zng+*+R(mNb~@?YCwIMq_q-grB^ z_pPg6Y{g1>cWh)Xc-(W%r-6CGsk@!B`?lsiayZh&B~U%jV^v(%5ziAU^D5ReO}SH= zzCLUs--QUlp1#LDm#>OHJ#Sqd<niEP(JJXh&u2+SOB`TcaNP8T<NZjvoW*H|>mpMb zcLZ>-6#l%dvNPwHqXP3mc|TW`HC2@rw+xEvzV8hxQqECkFme{YwM$|BBBQ#Oi}cKo zMMkq<`1*atlHK7v$u*O#=4rJA>-e2LcCT^v%4H@u!^&84{|UzicDox-J*iUg;6!ur z#B<fv*FsO+d&AS+e0*!ftkM*grUr(>J6z{>PR~$T_ov9;r@l8cNm%PtV(b|P^$QK2 zay!?o?E89afwj4%(z3lXHW{sU3z6NgpS38D>G1-F5Bycnri42$6WX>QcB(+a1V#q^ z<oA)+&wN&%BU*Tp`@k`+!&4_0B!zaeBwY2rIWuAM!W;odo9q1A{=Vl<_^Q;r{TRhM z@9iC#ZI3VQ*?N+v@NCun-Zy`KuROrzc~1MZ-Xg;jr>y#HSKn^h68QM!J-?@pk~zPA zhrE<H?(Ed$f6ASCDeI{@#b3^5Y!%*nBzXhFmMhGKwl5Mqm*-f>wko8o@MP|*&3dA{ z;kl$~nDK>DmZarQB6{^+Ig_67n6s*+uggw4cmHif?9$B#n08Lzaiii%-`DkvveT}G zvOFm{s(b8<$vPYBBEG-~{j7y{(@S%&$Olf0{X4&7@vM8MKaKC(zD&9DV9K@^fekhf zGrHaKzFTldzwWkl4?NF)Y2E8-n(L!XUNP)&JXhbfD|5?T>!1W-0q^U)VY)RcA7zef zZK~2-woUZy+J51RTjmLeSqd_Do-NsDb#ebD(<G6nDboAeb}ldsO<rof0KC21BdMV{ zZ0%3Q!g)Vet*U(GoB6Usw&S?^RyAjRyW7=jITLPIn4TB%RQYPUex2vjMNWHvW}WJ@ zy=h?~H|3q_!ldh23FfAW)A{EWUhi76>eOS|>a=yrLW^y~dOdQ*-_DqFC%n%v@UEK! zZ}a2}ze28^Gkfyq?v7=#n#}7S_Qy@pH!8ca;F3(~lk&CJZYm#&3@>du&o2A>>h8>* zWVVL=#eObH?BBE2o=KeE!{i<qmN>aet~{lDNk~}S+#Mon>I<iZtbFkCWzend(@s@N zd|#Q~J-LB>S=MgZ#TFLJIPY8$W{YDy`96p(J%|6)=7gyS)q6ruq@P)}^Jl->gnLgH zF-`EWT=w_k<T+P1ZPsA6lvwd`_x{s8)6`}d-qbzzxXFTT^_||XBIEb7W_AXj`q{p~ z?rPABx6=I#^QLIu@H=yI&ur^mljm)nQK@pR_03#|_qR5$lscll>PP<CZJm$qn!Q$Z z@>xD_ZuZobZ&eNMC^PrSJZqS=%RaG2arxOt@~zY46k3I%gASRcK3J*Tmi4%FE>~pk z@*P`?9w|i^&AD#;TjGy*yhx4i?hkwaUhMTU$+LdKKjC-j>N=T^D*yOD@*Znk<N55! zx@2La590SaA54v?&hif3`QgSX!NZS4rcJk#`Eh(<ulOUmHB1tZ=J}hMs;f^t`R8+t zSMBAAUroP!f1CN>#i`?KZXMbk<Q6vBX4kxy@G~0~?A00ggQNBarC)ydN^8qy**tR@ z!7Y6=S8rru2)^=pVt@;$y3Cxfc2kQKchA2x@#03Eih~v>{=JQEQ@JHEiMwRkQU1FU zGIO3S<6vZ#+0J}zUd#5S7mmd=Srs=`U!LgIP<+lRd9BT%;yaIfE^R0c5RqB$?7U(9 zx+S`Yz9^(O`gbr`KHh(A3d4ivwv}gf3LmTb6(7@*ToSipqa@3E*MC!!40rBSVLq^8 zVSnQU+oO@~TAY^lYf~5A6^rN$jSMk7W+gQ{>3EOKq)N*b$#)7EC6wj=X3bMIl9_m{ zDkSQ->z50&j3<Q1uAS%cGFYd2^27$-@P3X;35Mru{dRDe%Y2;VUX^|3WZQ+<=9Ip} z_NV4Ztm8ZxQzG-Pq$6b8BQw2wb3ecJcT<!sVwP(+T~m@iH|l+o*pro#%FC>hR-Jq3 zo}*TIHYy?IVB$QhZ)d}IdK^@k5b{`g1>083OWU6Fm><7w`8wG3Gmp$aksgKwcdw~- zKNJe8tFO;5zUuYlqMP9agX4{1kK~Q!-F&vdg^Q78j@<ISk)4wLvbC>bf5{rSwN4P6 zU^S`o+4eUxU1pbkY@Afhb!cn1#f_rpE5EF3J6f>%gtE=7$185WycF9v-G8FF0(+b3 zm6v@>zZo36e9YhUM5IyEf|U$a-|epMPda+a>g0(xZk~U#Pfgoy+m*X`=jD`JtJZ!G zdGL5`$;5SE!jlT_Xsk2#pW<><MBcdFGN<`y$*<}*S9|?aclaLdc(dq>Ez7&DdQ;TQ z5_=k7MoyownpK^>FQTwH>h*UEh6%+zpR$&o(QuyA$L24?m%VM;F1gxlnJ3>~D(5No zJt&f1vF3KSNS``ax%|7n?4oCP?{?m?c;lOP#zW0C_HH9HL;AhFt32P#{5+#K?@fy5 z^3_Zp63lbv?e|*wEndgChvV~>w5|6nQ*>4|-z@%hMJReRkAX(vB=)Q?50#Itl%DeD zyV9zaPj@AEZLM6XHZvzR{V?OF-}AH9+r;^)FwA@2H}%ku<uT?$9aB$+%J6(!6g|T= zEA`c_mRskx&gAne*zvsY>y@>qZbrYH7n683O;dsS-IKx};ns^>HXcYnc<(<$Y2iGr zyT_Kwgb5#bvSyN6vg8wk7n!E1N$YEykA`oId?gsO)9_&7@0pL4wR=AJe_C((G4#TQ zSuQP;vnso9)Ml@^n*aE!$#rwCg1VrcPbOa5^FCyU__`0q=I?e$zJD3KFtgm?>BN~c z@5~XtwXi*K))lkL{wv=WJqnw6)9#%$bHK5K-O4q$cdXia+C=DYn$Je|YYQg0-Oyrs zwCSDFq?-p$-pKGie87b7Znsaf!uE$<ZO<MCmaXb9zBlVq(~?gftJY6XDxPz>nm2pL zwWQ-Fb89tU3o6X2=w_bi+O<p3Rx`9iq4~s0m*~wCe+2(&unH1fzAVe}V)Ep973Z_A zd|IaG<2&)%&XS%^3yXD&J$Gt#@t?Wd%VMvj*?MN-qB2E~cUrSvw%Hze&|uxS^-4_4 z(Jit&O`|+odO!8~XJs12wKKg6atks%@8xy>y2;{cGwnXS+S=&8a#uN*#-d&~kwEt< zJ*Eq6RYB{kf)6b57D?%2w>_)K@>|M^r=Yggn@3l9RYT>!l6T74hwjPEj=PfFWP0L6 zx?R)W{|xRIj&9vkw(;Gk>oO&0gMT<a%#P)E|LyvQU-#}Y`GObC8%$qluZq<2S|obw zFthScsn1&H=iZdd_56J5y207jLrqJx5<b-0zVg`ew6}fMnX~tAe_Fjc?m(oY_LiQB zw<RA<T-INCoF(N+Rk-r^seQR(treF{*t6O#&)c6`Y$R8ntb0A*YnFq|<Q*$yp4-go zXgqn~SaD;(o9(IU%NG6Y-Ldo7y&JEzgboV4`8nsxY6YirYYMlsMilx+hFFwIyT`76 z?eBKzMM_mcX=bXbqs^T1^|MPmdv5((sh}`zXH7!#-df3ZSsP#Os=4&Doo8v+wBO4` zKW8OncRrD6FH7>@x!##?;!WqY6Wzjd&tCts;ui1espo3X#tOU(Dto-$D|B1#j>jL@ zJG{JgEOSec@#LdHI~&|jNUUpqlR88Az_EhrYjrDgf|Ty=4!GLYy|dp{B*>JfOJmUt zR@oOz)I}J!1iH#4fX+4**)m1=tp}^j1*=PPQ}jg`7JT$Lklqz!xnyAj&!t&jnm1S% ztM0nQbNNC_&-bMZ)$2dRAJl(bFPHJlBY4}p(lFbm=4pSmzwCOe)SY9tqwkh!#3Bca z(7*<Jub=+k^gpCeGL;uP&$OYDcMZ>DdE-*cuT1-vOq?08?edo|>!%&RTD1D~MfuQa z4}WG>yI)yqvg4;j+v!|Mn`f&$6=PQMe7AfVeC{brgC_SuOPOa23U_Qcw6E~%%S(IS zmDek8E19xxri$i?-?R5m^$9-}Kbw(%d0=Qr$6dF}msOtcjfgC2u6kHCao*I+GVX?l zwZv|$v}cvibF?^UGci(Fi$(I-+v7c7PrjUWd*4(^Z^QSEeOKGdwVM7j?0Hfm@i+U* z!r-0Ht}o9$u{8D5=PN58@ZG!0xkGFD`_x@mf@2n{O!C^U@J(s6`W|hy3x3AU$C>tO zoGiE5sn#8Q_u;m8S~vcEH=SKxK4%?6&hz&vQj0#%eO@n_lTdOra9-`EiF@id@&CBi zbMDD^;le4568*Dfo~_t=>}ibr?yJ#ruJBjRVVCwi&)jx4G@REk!9cvp^A)Rem!`)~ zm4_013z+;juG)O+b*`aub?%?KWwSQx^hJD-R%c#xRW>S-x93v(ts{a5kIPMMS+suR zmh_a0<ws&8BCS{aXNXi#5dLHD^?CKu&!O^`C(dODKN4H{?QQB+H$i`yYp!eBymOat zEx&g%;#t+Ju)r-7`@R@`o>UknrNeeW<@@oh-gd{H-&bGm=;%M)_hrSAZRLe81C0gv z>oQwAMB1jF{&p%Zu<gOOwd`Bf7p$2bxo11eoUo^BKbcg#sLgogt$8x3E{X9^mi%Uq z9;>`>YkLp({ky7ktflszt2NiN)U8*KSV(s$e2g}$y7TgIicqEctQE;Y#*GJGWIE@( z*jp8t*0_1))*XEx%XZ#4V-Qi0opeol#!WFx?<T|R{l|99uKj)e`Z~{b-yQe-mhJYp zzk8hdSKubqTi-4HJF9~C&M~(Unq$WAzqWF2)wb=c-B;X>)oC}}q39kHK6MA<ZCPW# z@1`BMG!`{Ge*F7z*3HZA)6N`u%&acET8rg$)vs%(H{E)9=D?pL$t)r7&di_KUul0U zZ|+I;t-cxeqTX64eC}GYc+S<^C7(G?{Ly@8rm}!tBBuJ;63HODsR>bS=L!nFzt!-~ zcr@?Gortu5x_hg-swZkqRcKwY*mtj+yH8^<i^9jFzPs3_Yj545t~5vKcF$I?Rk0r` zmjA4j;6A@{`38;!D-Uh6d=PS4PrP~J>wuprDMkLDmV|2ExaEIorphGGo!=(TU+Uy= zKt+aY29rTVvfPx9a!<dWw^;bfbRm=4yQ;2@(jEPGpY)$<>Crr9aaO^{<Bovs%NXgM zit|^Vw|MCl^Y*|prS<o0cLo1Y5#o^B@@Bi(idn{e|Nb-d2Jcd6dobr?*OYe*6EFOd zT50oJ`B?S$C1Pb8r<WX7?`vDN-_qiBSbD;7#j2}ecE_4s%=daq{A{zjQh$WiUnXT+ z*|Y8`=NIlz-7ja}V&l$iy#BpBYl@BVt$n>eCO(p`7yi+vy+YS@vx)Or$)7&+7VVS& zuw`x9N*kABuZkl0vR|HWyDzF^<DbknbB##bE7jXFYZeG)Up$zk>{R#d%m-s0<s;h1 zi!aVU5dP2lM{Z4??w;Q<HXaXz+ZaA%KU{s+D%R**b>!sJ)5JA`*BNAg4gOXzOFOzZ z{BYEqRoA4JM6}-ENta}i`l0=8`H!+X`9F!*bT8RX+b$$2(tqWj>Ba6I*{94r;_rSY zeEH8{d?G~Xh`zknR*?izn+N5hEM7%?1zKmgWLTLQzQ2!4e7n8qjrtQVN9GlFQ|<20 zEc@i|bbqZ=_veI!$4kAXjSASTg{p%TUwDK+v$WxVxXj|`cjm3TyDZagUz)Q13|~=1 za+lCX|HR$qyvH+7E_c}-dZWPewbueOf%Se1$`+)C_prX76}>QHjaT=E=H2U~wy54J zSl{?YYuP6@MwySZs!oJIu{TdXA9Z%|E-9r?W``_(?v|QenY%n+@~L~)l1W8u1?(%A zFO*QoW8L5B?{#|RuGIHa*i_yze0dqfX}<B8!^`GNE0t4H%pC2bW}GPBU~xQ7W4}|% zy9oCLr->InxqD5#Vf5wD^ZkJV%8e85db|wQo-_H=go<a|V*8|~Z7@ll^5+k~W1tWF z+3gleYbw)E2l2i67I&4W<+1h0c?-I>-ju1%E8>+qyxF$mnDynwk~V#{uiROeKG(6H zQ~q@&OTwnc?^RE(tLx30cSkDaqDufz*Cypu?c?#6CP_4FJ#W5}w%%E2!|ij{bHYv5 z^*hbUU$H?!QhAcQ#n-i~GfpXOV^rV2G_XryM}YgX#|PF*=dp3VKd0TbI6wK~a#>T; zoX^G!f{NH5XfNI}q2W}WtIfM_>&niSO?v*6<w3&NwX;1rH4Ka@lx-MejLXwwO_weA zUVbN6%R_>>?R~87)N_Y+CIs%hd*Qld?k*#VN#eG<xbAM*rP^i@_{w<JlfrAqOHxb9 z1Y(q#s#eX5UT*SI%}A5`dk4#EuH##FvH4H@7kH!ZYR0|J0ByU%E9<M?Elpi`FnY$? zin1p6GtZm*woZBV@zj&XiRU;Ue_DP0l17kmYhByMCllVMvNP|?zPfBuxO;o7p=!NF zUtQ{h4KKeei!pjDZB&&$tIgBv?SWe!C(c(btXv^o`{s<OQ_9N6qSqx$-KU%UnquR> zs&>}R+z?@HChzL-xodQ*Yfc14Y<$>xkZEnqYyFjX{eEw1pK|hrtyZ*lqLj%xZ!-(~ zyX!i1`NH>JEDF-i{lM;WfZ@wJuSaD&r);!l>S3x}YwPv$p2LazYIo$Lo^GA%y4YX0 zE~v=!wf6-xm#C{ht0yQXojCsdz>93=h>6}4CGWUPGK(sCwrCaI-uo*oWyJ-rFt_7D ze3>`)^4vaSQhn&{WYak^Z6|D=n=V$YjF~@W&Q-|(#XI%_8aK8~TrCm(I+f?JLh;d* zJGXx7epzi+o|ty*o>kiVvw54<!l%E}NV;*5@9>HfUre>EK2ETBF7kSHTJPrVEZ<fb zh0Hs`6{cxD?Q!Cq$8uM8J21@K8en<A^7vl+vszZqMYxVGIH1lp<J^)jkJp9^rEff{ z_s-*QR>SOqyH}Y1ybe0_U}21mfVK$FC+pA|OSJB{@%kQJxaYg;-Qq)E*Gh-;@XK1I zU)uR)!nTWZ9_`Y#HIII-us^O=^Ow-^Shrq5N$J|x{ntzmW<7GT<h>E@x+-?nhn)`+ zt{Jb~)n9nduq)Z`n5f9Qr7}$huByrji@E|&E^Ju+)}PDLc9lV4ke2ZE`CetO94_os zzqHr<VSeMe?FG{>EB-doG2r-pHm1F;#^%@28%|{|OT>#`zKwhM;P;C!rPU@3PD>0} zin3IG`bAy7bmE(?v2)v{gMH@>Zx;6yu%>%1Ia->xz$wW#!eVt)-KOhRIX)7T1b9}y zK3}D}d)`Z~ndN2`w+!m0o_H*}=*EMs6PxXNTBdc#{oQp{{PI1u=S3&nK$ov+mL*S} zep-j&>F&pS*&d0_`S<2Tkx}@iP2UO=H=ZqOJgD;It@W<Ue=bO8oGZL??Z}7dlNJ&Q zoCjEnG&kKi!1;4ypa0gPbCY+5ZR``vZfueL7%ZK#o$+Y_AD`n3tt;OHB6NCpCM!>J zc)Gg%BYVfar#*!-n(WP20@g|^1nf50r}Vn%(Y2I@i4wuh_eGysg|5pD{cwB&yXlpR zwX<yXLUY8^7-YVz*{h@zr8S4~!ngHaEjcsq`bH^iVEi<3^4oiJwl&V5U@sir#nbw_ zYt_Zgc7BfQR`2bO$~y6+eZg_%k89SZshUj^*m>a3>N*(%dp)DV$X{P~t)26nJtN3X z<LcBa5B<F~7Bv@`1aK(d>+%E*?*~Aar}Hg0NjKps?qWD9-O!M5>7uJ{gQmN)rz?Zx z$wgfpXKiP&GNg6IO<`a>xmK3z?D|rU#1JFH#8%m#YaU+P+y5>7gY%EwkL>2O@T-Y` zPSw4j@m&4ZhSjEieEtgqnpc|2J--#tS)(;i-~-$A<qL0GAARn_|6wz~|I)HtW=)?7 zk(Ii0(v}+3{oLf7@Ib)g_*Tzv^(J%Lc#Jr|{t7=7viiK)&0o4!S#yNmq}lF%Sl(op zJZbOotktTUkA)~Cznb~{b*xO-<HCf+FRG-v-uvqmw_8v7WX*Wnbke*Ps(xm>E%)mz zPF{Il{nos5Hzg!(PxDD_z3dy?F!hH2`ofTB%^A0>TF+H??eO|FqbN3Z#&tjU7`9go zPinQf-evsxu=CTCoF=QVcZ<ZFudGg1R-UIl^UBlk?J5l%Hgk$<Utd0KZN0bOSkT{> z%UrmVxiY19xpZs5wD2O&BCk1pg+ZqczZ_s@;E#_wzH_(6)9pMHxAYy_JFDnL&D)Hd zlkQr*RiDS^5x4W}n(Cc~a&IR2Rob3de&-eA)d>vVe5<mxs-GrLob=;e#kv=FZ#<aV zslH2Z#p&kO*LOlP4bC0<-6&fe`RHl%Ld$P9A@Z3a6V0_XB&}CxOWu#36?l4g-mw#9 zHdSHr-Fh=kPVU*<v(9d6q1vY_Us;|@{3|_Gu{<>5^r0JRg>#p`3`{SYobzFCiP*lW z=kMuMnueXr*F9GywR`Q;^)mB!`DJU^U1up`JexIbnyz#-SDSU={HVp&q6aLGZ;keB z*`OD_ereF`ITJkXru^yLwzSOB?%9lccQxM}nP8wf<9U~>f~D@Hf~<&jl6>VdRl!__ zlCRyTxy$~2`K#yh_NyGs%F6e)to<r<WW|BA#a>H3HisqMSz^Y2sr$yX66-yO=P*<y zEp5_yx+6d9{N@=sGLyfq)vjzSYrMW=_1=p!%l)>0esZ&SPlNHx=zj{Ir(KdxapUTq zW`Anqmzh)ZlKESov&>&xE<D3`<{bT7oB<qab5HKt`Aq!%(<6Tp3r`#^d{^}3vE+K+ z>(|b`Q+4fJSY*6?ZRNMc%eO9>$yFwoRd(l+-czXnzd}zx2Xmfh6Ia&zbr(KfUo}6X zcC}36r^RzZW~C%LCb=2Tn>xGJa#oooi}01eE8VeEKkvA@yF9h$!RJtsnmgBe7X&Qt zKXQpJa_fvOuAX;}O?rCI=J7L;69?{;&2zPT{=8tp+#7#1)N=zx_uf8H_T}x_sA-8( zlY7ceEOTc%vgES5;)In?zCN0<e#MJ-MF*xy*sgYBJ!P$_>YC!7m#W-1b!Wmei5mh; z6Hkb+JvEzu>O1>dZiRxv#ycV30~9S89$UN&opxpQ#5qg_THAS#bsyZ#@?36fu2FEk z&zDt&x0nhKDz9G}9m$i$c+4tkvZr;s<HskpPw&`fz7d(KlCWKr`_%1CY{f5c&5)ht z8pOfAm*Hw>O8=ea{!@zr%AOZ0@3lUo<hPekb9n<>(Y|HV_A+~S9QmTd|7F#52ey}U z%0+V*3#ChnTuwT-cW*{Un)M;?!UJDd{Ap8`I4`?8`?q}p!#|VHOWsNbAAI@NS1CVv ze%s9@(=%9RU6^%u?IF$BC8cLGf7G2+y}r0-!kva%?KM9ZS1)^IKFfFB^rg$@nEWml zJ$roip1U4?<<$&UTy2e~leOKt|FX#KTYMq(#@w|k!p91g{$73=m~mihpJ9)T%+;A9 zE9<BC%@keZ^JMacU+fRIAGchPU27k-%fO@gySep-;u~Bq?X#*m{}evF{77?wQS2=Z z)yMJscD(YfS)H#lZPMz6_Ug*A*|%$WKQ_Fwlic&++iI<8)0l-$>lL`~-y1c%Z7yHr z<)H7o=5cOMIBr|rwON3-r!ORJZe{M1IG>J(Q)N~tJQ19gwJ`16g+h-PzBjh=iTB8S z<$WEzruu{m&vVPKE0mcN&Y!BE8X5RmrbMo-Nl%Sqg64x?e3?IZ${tMan|Vz0C}+&d zV^%?LP9;CfDSbTId%@-Ejm?tE7SGqZNhmTDpW{5{>aW1A-6NC294Pwf#^fEW?=tU* zedE1dSG%Xnqa(ra^}QL-<@N4=Se`5-z-MF_xp}3qO8aSrb?*xJszO%1Zago$YU43R zl~0ELEFvlbwOYDY?#AqV*6O?0$XaR^`<+$C=kXPXgum0PRGxFS)tW<L;xXHm5x$%L z<nAebdHdSZo+riz%<MffS1smSdp=g~37rwoGPzZK66e~$^VTK04nLULb$eK4f>XJh zI8?TaT(vi9m5?|Wy_KcG&#&;<#mlclUlhIgVtMn?jiY^q^P_5*wRdM&zI>+@y;R;f zU0GK1;yMO~!afdBo4(^q*^@jL^Hs*(pBmROMfur@FRNZGP5$X&cQsG(oY{k<o$74; zZd3MsI>SAIyI#D=QZ(<D@B7}>#~m*#|H+zD#H#Y7t~5<e=&hF7wCBqu*V`?LcfQzj zyDaDGwxo4@j4I#XXvf_uSg}AxCf)vVgn_(n;CyCDmgXy0zs{CO`Vn}};oCaNtaCeV z%JKv~cry2=g5bQXtFsHA?#hc<S5zExckQ=J#=kEdex~rC&q8#0X3@c5R?xut(uAvh zOI1q4rfW;8?yBOi+M)L-=t1JP^}2J)j~17GKeADQDMYyEQ`YTREm4))hx7J?2JcEM zl}f$+Qv6K7+pXTB&zE1@l&2RcpJ9=BUq-6-$(xXs2PIjA&%cf=4`!5mW~op(Z|loT z^JdM{&A7WwZDGwt#oG!heaq+W_j<a=dF5<xvkpVgbeXnShp%mkJr@|+Z9S){itEuI z-xYcbSD&4JUuvQpzhmE$@Ko!QFZ#7MzY5>vzGFv7PlLP7udsUy3#MIUjcb2;aMi35 z?c6+>NwK>GuW+qh>8DaI-H~|bdfB<>BKfsvcJJOOXqkK`vAX{2>goG;@aq?!D-Ji+ zUM3{KR~r(>di36#o(EMypQUP#PJ5Ubmc(gcQx%re<b6HOCV8RBqo=o3K4fn4+o;Fx zQ@1sI-(ruY%0CN@CYYzM4V<|1gyiae`B~ocY~9y}PG(_ZV_&}1wflvEyv~!tzuL*3 zJB4LrijVJ25-Jzs7d74Y<;G7f<AWmKuJ|1fE?x5T!j_KRQ>z<ep1zy+F=gV!x3T4I zr7aUWmMULpzPI&jJilwPw9$lenVu4nj4y8GPs?9a=2aYg{QA~J_W=H<(N^pFzP%|h zZjLx2anSPMlB>PJ{)r*Y6N)Ssq@<L8HQ}^+5^(l&>EZ<^85J!pY*%@le1HAgg5ys7 zA|HNNl`cATJK5=O2g6s{?7T}KeUw!gFF!RsciXE%;@SG8hn#j=NW6aU%TfDe_MCak zZ3KNCY&Q5izI+{e>~&}Jud>y%Lzt%>keT!S+tLfulf?tJSKP6Tlisnabf@m=GY1Pl z^)-B1HN8x6%1LpS(kT66mou+4Gc~7KT7Fp@EA2izY>!8>o65vV)*)49lg(C_O>kOz z=bzKw=0pFa+g*EDna><QcmJO0lvhQ{vzEHba+vHDE!myA-6bIWy?k(Z|GOn8e#VrE zuG}ah;52!T%$1-6b^!ux>g7>~=l!1Z{ayJ#&i%qSOkBiHoKz{$UgR*xbH|f8nnw%w z^WAcrRZ{echi9rxc!she^Y+O%%$KiKPo9}sl6c=$ckSu7b$sF6$D`KmYCcqOV25M> z^scMBC+IxxpZb^GInY-me+z>|dEk}nCJz<2T<j|iFOzxL@!-+wUa!oK9tHg-qioMF zFFutEEcwLvGT33-HP5-H&eXT??eFzTdb{G5;gU;oC6hc;_4_aPdwtGz@nyZd<ZikA zjMAf3SI?eIIO=xwm|fufb36S7G6nD5+HAyHu(Y|k|I(HxzOOHA`7P)E=;V=Qx9%1> z=H53C4!XHmf%{I0DDSV?_XU-5PxK_;+NEu6nmdy@KR@b=rhd8e+MFN{ImdZ3A2(iF zSD)TL)vJNw_}*BLvTcma?DA2YMHnMz&eoliv~{C-tdIDXh^Y-Mg~zg$kE~RQ()sjO zL4eV2=DH`hR4xf$*Ph&W^-PUxX#e3OJdJzZtb;EdbuX!m6$uP3UZL^Y@mUvxgQ273 z(nV7nG!``(yFFl=EZ?gu0$K&H$LPx5==joy;ey7}vx=O3#jY9A(e5jbDTm!GvU^}F zeQTvBx2v)??;1W1lXXmPyKiv)4*%x#VaBCBrj=`r*3T?^bk87s(vH(I|3W{px0&oL z&5h!&P%`p(C!*E2{L+4xJ-kbuANKQS?#kifDLBCVPFAL8*2iM6JzI8KZN7QxrPkD) zOE=l_ojkyjtRf><xwbl@<|IeT35%yY)|LCr{_d>IeTVPs<;>3?1RGOtH%MGRW?oWz zsQ1#&Ds7p4qUG{=hn82HPW0CL`lP2s_EmQ2Ptl!<)#+=aT%C9D&AaQGwlq1EWlOq! zY5LX~jmHf5ERSa$*}FAq!H4Dhs;{T&M0eg=UjJd@t)1CVPw$$}xT!9u<lEY$`_7if zox86r3Z1%LsBrS7o!Srgwx8Y1{I2nwaqPTx?z0cFlqA25S^H_GZ2vulsb5TAT+FlD zd}_6?_2NlaBp>VTxO1xVcu=ixQoP^6bI;DC)a+(6sC``@5G?K4`g3;E=_|j(mFtaH z+j+{K`gXLImAy9db416hi+-Qpn3WmGZWlh5trgiVGo4}br11HtW>!{&wn>JpIC(a0 z@5ORU1>wK<roOoxC1>jF;dQpb!tX!Bzg?lZ=XNk|p5S45G^i<eM-2149q+>e*sL3G z8DHS}9A#T(Y3m;2wNfs0+mj;xz_{#3vF>lB-cRHIwd15s_`+AmPi#4!Bc|h9u{z7` z_mS{*mJA{+^R9B1x^0Y-kXoJg@POsBP5x2)SIBPKc`kZiR$EbVNVZ63X1z@wAA{Uh znKR`@#peTqU#^^@{G(U(PBj1i4J&u*7q#8nDY=yS2G<O=vQLKh=II{p<IiF*(%tiz zX({Md9h0xpY!MCCrlw0D_gOAaj5{>rs=rN;b~2YG)8fia$LH0)6z$B*T=+{od5Rjt zpVdxx&lxR9xn^V#c;(TSH7bW04m|kseZk}fn;ez-r}OrCu6=79J?U~y5mWevH`(TH z9li%&WiQ+EVgIa!je-kV*z=}b?RmPaZSK~6^H(X&->htDWAK>y(&nx5%+YtYOq{|X z)3;YU@0xY3s<QvonQlexUHdj~nXu)Q)As!fS6xpmmbb2$?ljr)ik#T*_9^*+k>6IN zOwcnvTh-rRvi@!C(ZG-+775njb8j8EaKh~pueaOAX|rbW@ot@I!7{Ni=Ffedxdye` zd9MmQx^47hu1YTWY?pYUd`aj<PqzrUpQ~SgIu_AqyK4KCfKQB~3wazI`|d~Cy4>{H z%=V)2*782L)RW6+I6qz?H>F9;e@3~?<s15Co+78W%$fYQYrXQu$r86`O?6~e;a|R1 zrTbZN6Mv4}R>h5`i*pax$z0oF9c32w`r0PlsoUNie~|U)RQHu+yD1#A(j@M1{;|zm z_3-+f=eAn>7Rk-`zbsp+t9annmTy;d{Fbvk==b7KDOfP8BtePy^nFvMi4%U?>m6DV zrsy$Wxu-TW&VG*Ep*4BZyPovbO}Tq2yxcj6_jZ!SBfdR7zXCQqp3`8<>#@eEjhV4p z_*#?XvBz7Oj2J||ypXz4wCL><rYq-dL+14DNow%4c=<|GwlYjv*|t^e)uFe1ku}F0 zH!$BfUA&=^<w0$>mGY*bo9_>p)<*oDduPK#&t-FO%=A9Ap>u0?`@5Y7MOUx5$q+Gd z=jVA@?afLI{^m6kEWfVZeR;-Y?j7q{HwPSC8^|}oIog9g?b(_W`_<U(zHH-K&Bi8T zdGh<Bh!4m63@>fzUAuD5y1S>&iB=WgTBtg;&o0g?ZJEMG<)<t~g@L(Ge=yA2uPmKq zz`tur^{lBChxi=7Jh;H1Fv%{zO0;RCa)C-R)3T>qQ?sWjC+=vn=l9wuf2LZ0<?*N$ zz0C(DZ7rTH@7>lv;~n!p&Gkk#-S!H{-0oRDn-*Z!CO5a&^%+x9h^S3USIQ=#CC$xm zFN<VfSu5gx(k!}R@dn$EfgTGDuV;QW$yeDlfnP>GD%qMfj*mS_)9jn0#QngUgKBP! z$5o{AXNb(7Zr3)=Ei`~b(&mbrPtjrZ70i3n&aL>_AG29ZUjMhs*OhLUX1skH`sZlk z<ZDa#_!xd4{<6|kXW^$~70f%%M)aQA=5dE#!ZeV7M!_q~_hD1FZ98_5eW~u;BY(OD zPfrR?NH8d#_chOq>oG%9HRHLgS!L(hZ4JZ3e2=e;d-8R)*Y7!-b8Wc~Id0(HDSNys qL-$kSwt06F9^aeEJ!j6`!;*4Wmbu<rb6Cg1!nADLG4U(^Zvp^g9dY6S literal 0 HcmV?d00001 diff --git a/src/yolov5/data/scripts/download_weights.sh b/src/yolov5/data/scripts/download_weights.sh new file mode 100755 index 00000000..e9fa6539 --- /dev/null +++ b/src/yolov5/data/scripts/download_weights.sh @@ -0,0 +1,20 @@ +#!/bin/bash +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Download latest models from https://github.com/ultralytics/yolov5/releases +# Example usage: bash path/to/download_weights.sh +# parent +# âââ yolov5 +# âââ yolov5s.pt â downloads here +# âââ yolov5m.pt +# âââ ... + +python - <<EOF +from utils.downloads import attempt_download + +models = ['n', 's', 'm', 'l', 'x'] +models.extend([x + '6' for x in models]) # add P6 models + +for x in models: + attempt_download(f'yolov5{x}.pt') + +EOF diff --git a/src/yolov5/data/scripts/get_coco.sh b/src/yolov5/data/scripts/get_coco.sh new file mode 100755 index 00000000..0210c8eb --- /dev/null +++ b/src/yolov5/data/scripts/get_coco.sh @@ -0,0 +1,27 @@ +#!/bin/bash +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Download COCO 2017 dataset http://cocodataset.org +# Example usage: bash data/scripts/get_coco.sh +# parent +# âââ yolov5 +# âââ datasets +# âââ coco â downloads here + +# Download/unzip labels +d='../datasets' # unzip directory +url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ +f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB +echo 'Downloading' $url$f ' ...' +curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & + +# Download/unzip images +d='../datasets/coco/images' # unzip directory +url=http://images.cocodataset.org/zips/ +f1='train2017.zip' # 19G, 118k images +f2='val2017.zip' # 1G, 5k images +f3='test2017.zip' # 7G, 41k images (optional) +for f in $f1 $f2; do + echo 'Downloading' $url$f '...' + curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & +done +wait # finish background tasks diff --git a/src/yolov5/data/scripts/get_coco128.sh b/src/yolov5/data/scripts/get_coco128.sh new file mode 100644 index 00000000..ee05a867 --- /dev/null +++ b/src/yolov5/data/scripts/get_coco128.sh @@ -0,0 +1,17 @@ +#!/bin/bash +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) +# Example usage: bash data/scripts/get_coco128.sh +# parent +# âââ yolov5 +# âââ datasets +# âââ coco128 â downloads here + +# Download/unzip images and labels +d='../datasets' # unzip directory +url=https://github.com/ultralytics/yolov5/releases/download/v1.0/ +f='coco128.zip' # or 'coco128-segments.zip', 68 MB +echo 'Downloading' $url$f ' ...' +curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & + +wait # finish background tasks diff --git a/src/yolov5/data/xView.yaml b/src/yolov5/data/xView.yaml new file mode 100644 index 00000000..fd82828d --- /dev/null +++ b/src/yolov5/data/xView.yaml @@ -0,0 +1,102 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA) +# -------- DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command! -------- +# Example usage: python train.py --data xView.yaml +# parent +# âââ yolov5 +# âââ datasets +# âââ xView â downloads here + + +# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] +path: ../datasets/xView # dataset root dir +train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images +val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images + +# Classes +nc: 60 # number of classes +names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus', + 'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer', + 'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car', + 'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge', + 'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane', + 'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck', + 'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed', + 'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad', + 'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower'] # class names + + +# Download script/URL (optional) --------------------------------------------------------------------------------------- +download: | + import json + import os + from pathlib import Path + + import numpy as np + from PIL import Image + from tqdm import tqdm + + from utils.datasets import autosplit + from utils.general import download, xyxy2xywhn + + + def convert_labels(fname=Path('xView/xView_train.geojson')): + # Convert xView geoJSON labels to YOLO format + path = fname.parent + with open(fname) as f: + print(f'Loading {fname}...') + data = json.load(f) + + # Make dirs + labels = Path(path / 'labels' / 'train') + os.system(f'rm -rf {labels}') + labels.mkdir(parents=True, exist_ok=True) + + # xView classes 11-94 to 0-59 + xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11, + 12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1, + 29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46, + 47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59] + + shapes = {} + for feature in tqdm(data['features'], desc=f'Converting {fname}'): + p = feature['properties'] + if p['bounds_imcoords']: + id = p['image_id'] + file = path / 'train_images' / id + if file.exists(): # 1395.tif missing + try: + box = np.array([int(num) for num in p['bounds_imcoords'].split(",")]) + assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}' + cls = p['type_id'] + cls = xview_class2index[int(cls)] # xView class to 0-60 + assert 59 >= cls >= 0, f'incorrect class index {cls}' + + # Write YOLO label + if id not in shapes: + shapes[id] = Image.open(file).size + box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True) + with open((labels / id).with_suffix('.txt'), 'a') as f: + f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n") # write label.txt + except Exception as e: + print(f'WARNING: skipping one label for {file}: {e}') + + + # Download manually from https://challenge.xviewdataset.org + dir = Path(yaml['path']) # dataset root dir + # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip', # train labels + # 'https://d307kc0mrhucc3.cloudfront.net/train_images.zip', # 15G, 847 train images + # 'https://d307kc0mrhucc3.cloudfront.net/val_images.zip'] # 5G, 282 val images (no labels) + # download(urls, dir=dir, delete=False) + + # Convert labels + convert_labels(dir / 'xView_train.geojson') + + # Move images + images = Path(dir / 'images') + images.mkdir(parents=True, exist_ok=True) + Path(dir / 'train_images').rename(dir / 'images' / 'train') + Path(dir / 'val_images').rename(dir / 'images' / 'val') + + # Split + autosplit(dir / 'images' / 'train') diff --git a/src/yolov5/detect.py b/src/yolov5/detect.py new file mode 100644 index 00000000..76f67bea --- /dev/null +++ b/src/yolov5/detect.py @@ -0,0 +1,257 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Run inference on images, videos, directories, streams, etc. + +Usage - sources: + $ python path/to/detect.py --weights yolov5s.pt --source 0 # webcam + img.jpg # image + vid.mp4 # video + path/ # directory + path/*.jpg # glob + 'https://youtu.be/Zgi9g1ksQHc' # YouTube + 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream + +Usage - formats: + $ python path/to/detect.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s.xml # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (MacOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU +""" + +import argparse +import os +import sys +from pathlib import Path + +import cv2 +import torch +import torch.backends.cudnn as cudnn + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams +from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, + increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh) +from utils.plots import Annotator, colors, save_one_box +from utils.torch_utils import select_device, time_sync + + +@torch.no_grad() +def run(weights=ROOT / 'yolov5s.pt', # model.pt path(s) + source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + imgsz=(640, 640), # inference size (height, width) + conf_thres=0.25, # confidence threshold + iou_thres=0.45, # NMS IOU threshold + max_det=1000, # maximum detections per image + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + view_img=False, # show results + save_txt=False, # save results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_crop=False, # save cropped prediction boxes + nosave=False, # do not save images/videos + classes=None, # filter by class: --class 0, or --class 0 2 3 + agnostic_nms=False, # class-agnostic NMS + augment=False, # augmented inference + visualize=False, # visualize features + update=False, # update all models + project=ROOT / 'runs/detect', # save results to project/name + name='exp', # save results to project/name + exist_ok=False, # existing project/name ok, do not increment + line_thickness=3, # bounding box thickness (pixels) + hide_labels=False, # hide labels + hide_conf=False, # hide confidences + half=False, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + ): + source = str(source) + save_img = not nosave and not source.endswith('.txt') # save inference images + is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) + is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://')) + webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) + if is_url and is_file: + source = check_file(source) # download + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + device = select_device(device) + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) + stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + + # Half + half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA + if pt or jit: + model.model.half() if half else model.model.float() + + # Dataloader + if webcam: + view_img = check_imshow() + cudnn.benchmark = True # set True to speed up constant image size inference + dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) + bs = len(dataset) # batch_size + else: + dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) + bs = 1 # batch_size + vid_path, vid_writer = [None] * bs, [None] * bs + + # Run inference + model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup + dt, seen = [0.0, 0.0, 0.0], 0 + for path, im, im0s, vid_cap, s in dataset: + t1 = time_sync() + im = torch.from_numpy(im).to(device) + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + if len(im.shape) == 3: + im = im[None] # expand for batch dim + t2 = time_sync() + dt[0] += t2 - t1 + + # Inference + visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False + pred = model(im, augment=augment, visualize=visualize) + t3 = time_sync() + dt[1] += t3 - t2 + + # NMS + pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) + dt[2] += time_sync() - t3 + + # Second-stage classifier (optional) + # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) + + # Process predictions + for i, det in enumerate(pred): # per image + seen += 1 + if webcam: # batch_size >= 1 + p, im0, frame = path[i], im0s[i].copy(), dataset.count + s += f'{i}: ' + else: + p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) + + p = Path(p) # to Path + save_path = str(save_dir / p.name) # im.jpg + txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt + s += '%gx%g ' % im.shape[2:] # print string + gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh + imc = im0.copy() if save_crop else im0 # for save_crop + annotator = Annotator(im0, line_width=line_thickness, example=str(names)) + if len(det): + # Rescale boxes from img_size to im0 size + det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() + + # Print results + for c in det[:, -1].unique(): + n = (det[:, -1] == c).sum() # detections per class + s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string + + # Write results + for *xyxy, conf, cls in reversed(det): + if save_txt: # Write to file + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(txt_path + '.txt', 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + if save_img or save_crop or view_img: # Add bbox to image + c = int(cls) # integer class + label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') + annotator.box_label(xyxy, label, color=colors(c, True)) + if save_crop: + save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) + + # Stream results + im0 = annotator.result() + if view_img: + cv2.imshow(str(p), im0) + cv2.waitKey(1) # 1 millisecond + + # Save results (image with detections) + if save_img: + if dataset.mode == 'image': + cv2.imwrite(save_path, im0) + else: # 'video' or 'stream' + if vid_path[i] != save_path: # new video + vid_path[i] = save_path + if isinstance(vid_writer[i], cv2.VideoWriter): + vid_writer[i].release() # release previous video writer + if vid_cap: # video + fps = vid_cap.get(cv2.CAP_PROP_FPS) + w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + else: # stream + fps, w, h = 30, im0.shape[1], im0.shape[0] + save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos + vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) + vid_writer[i].write(im0) + + # Print time (inference-only) + LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') + + # Print results + t = tuple(x / seen * 1E3 for x in dt) # speeds per image + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) + if save_txt or save_img: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + if update: + strip_optimizer(weights) # update model (to fix SourceChangeWarning) + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)') + parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') + parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') + parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--view-img', action='store_true', help='show results') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') + parser.add_argument('--nosave', action='store_true', help='do not save images/videos') + parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') + parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--visualize', action='store_true', help='visualize features') + parser.add_argument('--update', action='store_true', help='update all models') + parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') + parser.add_argument('--name', default='exp', help='save results to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') + parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') + parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(FILE.stem, opt) + return opt + + +def main(opt): + check_requirements(exclude=('tensorboard', 'thop')) + run(**vars(opt)) + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) diff --git a/src/yolov5/export.py b/src/yolov5/export.py new file mode 100644 index 00000000..15e92a78 --- /dev/null +++ b/src/yolov5/export.py @@ -0,0 +1,559 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit + +Format | `export.py --include` | Model +--- | --- | --- +PyTorch | - | yolov5s.pt +TorchScript | `torchscript` | yolov5s.torchscript +ONNX | `onnx` | yolov5s.onnx +OpenVINO | `openvino` | yolov5s_openvino_model/ +TensorRT | `engine` | yolov5s.engine +CoreML | `coreml` | yolov5s.mlmodel +TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ +TensorFlow GraphDef | `pb` | yolov5s.pb +TensorFlow Lite | `tflite` | yolov5s.tflite +TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov5s_web_model/ + +Requirements: + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU + +Usage: + $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ... + +Inference: + $ python path/to/detect.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s.xml # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (MacOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU + +TensorFlow.js: + $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example + $ npm install + $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model + $ npm start +""" + +import argparse +import json +import os +import platform +import subprocess +import sys +import time +import warnings +from pathlib import Path + +import pandas as pd +import torch +import torch.nn as nn +from torch.utils.mobile_optimizer import optimize_for_mobile + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import Conv +from models.experimental import attempt_load +from models.yolo import Detect +from utils.activations import SiLU +from utils.datasets import LoadImages +from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr, + file_size, print_args, url2file) +from utils.torch_utils import select_device + + +def export_formats(): + # YOLOv5 export formats + x = [['PyTorch', '-', '.pt'], + ['TorchScript', 'torchscript', '.torchscript'], + ['ONNX', 'onnx', '.onnx'], + ['OpenVINO', 'openvino', '_openvino_model'], + ['TensorRT', 'engine', '.engine'], + ['CoreML', 'coreml', '.mlmodel'], + ['TensorFlow SavedModel', 'saved_model', '_saved_model'], + ['TensorFlow GraphDef', 'pb', '.pb'], + ['TensorFlow Lite', 'tflite', '.tflite'], + ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite'], + ['TensorFlow.js', 'tfjs', '_web_model']] + return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix']) + + +def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')): + # YOLOv5 TorchScript model export + try: + LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...') + f = file.with_suffix('.torchscript') + + ts = torch.jit.trace(model, im, strict=False) + d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names} + extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap() + if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html + optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files) + else: + ts.save(str(f), _extra_files=extra_files) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'{prefix} export failure: {e}') + + +def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')): + # YOLOv5 ONNX export + try: + check_requirements(('onnx',)) + import onnx + + LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...') + f = file.with_suffix('.onnx') + + torch.onnx.export(model, im, f, verbose=False, opset_version=opset, + training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL, + do_constant_folding=not train, + input_names=['images'], + output_names=['output'], + dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # shape(1,3,640,640) + 'output': {0: 'batch', 1: 'anchors'} # shape(1,25200,85) + } if dynamic else None) + + # Checks + model_onnx = onnx.load(f) # load onnx model + onnx.checker.check_model(model_onnx) # check onnx model + # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph)) # print + + # Simplify + if simplify: + try: + check_requirements(('onnx-simplifier',)) + import onnxsim + + LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...') + model_onnx, check = onnxsim.simplify( + model_onnx, + dynamic_input_shape=dynamic, + input_shapes={'images': list(im.shape)} if dynamic else None) + assert check, 'assert check failed' + onnx.save(model_onnx, f) + except Exception as e: + LOGGER.info(f'{prefix} simplifier failure: {e}') + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'{prefix} export failure: {e}') + + +def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')): + # YOLOv5 OpenVINO export + try: + check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ + import openvino.inference_engine as ie + + LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...') + f = str(file).replace('.pt', '_openvino_model' + os.sep) + + cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}" + subprocess.check_output(cmd, shell=True) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +def export_coreml(model, im, file, prefix=colorstr('CoreML:')): + # YOLOv5 CoreML export + try: + check_requirements(('coremltools',)) + import coremltools as ct + + LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...') + f = file.with_suffix('.mlmodel') + + ts = torch.jit.trace(model, im, strict=False) # TorchScript model + ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])]) + ct_model.save(f) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return ct_model, f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + return None, None + + +def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')): + # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt + try: + check_requirements(('tensorrt',)) + import tensorrt as trt + + if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012 + grid = model.model[-1].anchor_grid + model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid] + export_onnx(model, im, file, 12, train, False, simplify) # opset 12 + model.model[-1].anchor_grid = grid + else: # TensorRT >= 8 + check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0 + export_onnx(model, im, file, 13, train, False, simplify) # opset 13 + onnx = file.with_suffix('.onnx') + + LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...') + assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`' + assert onnx.exists(), f'failed to export ONNX file: {onnx}' + f = file.with_suffix('.engine') # TensorRT engine file + logger = trt.Logger(trt.Logger.INFO) + if verbose: + logger.min_severity = trt.Logger.Severity.VERBOSE + + builder = trt.Builder(logger) + config = builder.create_builder_config() + config.max_workspace_size = workspace * 1 << 30 + + flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) + network = builder.create_network(flag) + parser = trt.OnnxParser(network, logger) + if not parser.parse_from_file(str(onnx)): + raise RuntimeError(f'failed to load ONNX file: {onnx}') + + inputs = [network.get_input(i) for i in range(network.num_inputs)] + outputs = [network.get_output(i) for i in range(network.num_outputs)] + LOGGER.info(f'{prefix} Network Description:') + for inp in inputs: + LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}') + for out in outputs: + LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}') + + half &= builder.platform_has_fast_fp16 + LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}') + if half: + config.set_flag(trt.BuilderFlag.FP16) + with builder.build_engine(network, config) as engine, open(f, 'wb') as t: + t.write(engine.serialize()) + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +def export_saved_model(model, im, file, dynamic, + tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, + conf_thres=0.25, keras=False, prefix=colorstr('TensorFlow SavedModel:')): + # YOLOv5 TensorFlow SavedModel export + try: + import tensorflow as tf + from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 + + from models.tf import TFDetect, TFModel + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = str(file).replace('.pt', '_saved_model') + batch_size, ch, *imgsz = list(im.shape) # BCHW + + tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) + im = tf.zeros((batch_size, *imgsz, 3)) # BHWC order for TensorFlow + _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) + inputs = tf.keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) + outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres) + keras_model = tf.keras.Model(inputs=inputs, outputs=outputs) + keras_model.trainable = False + keras_model.summary() + if keras: + keras_model.save(f, save_format='tf') + else: + m = tf.function(lambda x: keras_model(x)) # full model + spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype) + m = m.get_concrete_function(spec) + frozen_func = convert_variables_to_constants_v2(m) + tfm = tf.Module() + tfm.__call__ = tf.function(lambda x: frozen_func(x), [spec]) + tfm.__call__(im) + tf.saved_model.save( + tfm, + f, + options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if + check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions()) + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return keras_model, f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + return None, None + + +def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')): + # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow + try: + import tensorflow as tf + from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2 + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + f = file.with_suffix('.pb') + + m = tf.function(lambda x: keras_model(x)) # full model + m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)) + frozen_func = convert_variables_to_constants_v2(m) + frozen_func.graph.as_graph_def() + tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')): + # YOLOv5 TensorFlow Lite export + try: + import tensorflow as tf + + LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...') + batch_size, ch, *imgsz = list(im.shape) # BCHW + f = str(file).replace('.pt', '-fp16.tflite') + + converter = tf.lite.TFLiteConverter.from_keras_model(keras_model) + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS] + converter.target_spec.supported_types = [tf.float16] + converter.optimizations = [tf.lite.Optimize.DEFAULT] + if int8: + from models.tf import representative_dataset_gen + dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data + converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib) + converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] + converter.target_spec.supported_types = [] + converter.inference_input_type = tf.uint8 # or tf.int8 + converter.inference_output_type = tf.uint8 # or tf.int8 + converter.experimental_new_quantizer = False + f = str(file).replace('.pt', '-int8.tflite') + + tflite_model = converter.convert() + open(f, "wb").write(tflite_model) + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')): + # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/ + try: + cmd = 'edgetpu_compiler --version' + help_url = 'https://coral.ai/docs/edgetpu/compiler/' + assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}' + if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0: + LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}') + sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system + for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -', + 'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list', + 'sudo apt-get update', + 'sudo apt-get install edgetpu-compiler']: + subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True) + ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1] + + LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...') + f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model + f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model + + cmd = f"edgetpu_compiler -s {f_tfl}" + subprocess.run(cmd, shell=True, check=True) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')): + # YOLOv5 TensorFlow.js export + try: + check_requirements(('tensorflowjs',)) + import re + + import tensorflowjs as tfjs + + LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...') + f = str(file).replace('.pt', '_web_model') # js dir + f_pb = file.with_suffix('.pb') # *.pb path + f_json = f + '/model.json' # *.json path + + cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \ + f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}' + subprocess.run(cmd, shell=True) + + json = open(f_json).read() + with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order + subst = re.sub( + r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}, ' + r'"Identity.?.?": {"name": "Identity.?.?"}}}', + r'{"outputs": {"Identity": {"name": "Identity"}, ' + r'"Identity_1": {"name": "Identity_1"}, ' + r'"Identity_2": {"name": "Identity_2"}, ' + r'"Identity_3": {"name": "Identity_3"}}}', + json) + j.write(subst) + + LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)') + return f + except Exception as e: + LOGGER.info(f'\n{prefix} export failure: {e}') + + +@torch.no_grad() +def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' + weights=ROOT / 'yolov5s.pt', # weights path + imgsz=(640, 640), # image (height, width) + batch_size=1, # batch size + device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu + include=('torchscript', 'onnx'), # include formats + half=False, # FP16 half-precision export + inplace=False, # set YOLOv5 Detect() inplace=True + train=False, # model.train() mode + optimize=False, # TorchScript: optimize for mobile + int8=False, # CoreML/TF INT8 quantization + dynamic=False, # ONNX/TF: dynamic axes + simplify=False, # ONNX: simplify model + opset=12, # ONNX: opset version + verbose=False, # TensorRT: verbose log + workspace=4, # TensorRT: workspace size (GB) + nms=False, # TF: add NMS to model + agnostic_nms=False, # TF: add agnostic NMS to model + topk_per_class=100, # TF.js NMS: topk per class to keep + topk_all=100, # TF.js NMS: topk for all classes to keep + iou_thres=0.45, # TF.js NMS: IoU threshold + conf_thres=0.25 # TF.js NMS: confidence threshold + ): + t = time.time() + include = [x.lower() for x in include] # to lowercase + formats = tuple(export_formats()['Argument'][1:]) # --include arguments + flags = [x in include for x in formats] + assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}' + jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags # export booleans + file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights + + # Load PyTorch model + device = select_device(device) + assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0' + model = attempt_load(weights, map_location=device, inplace=True, fuse=True) # load FP32 model + nc, names = model.nc, model.names # number of classes, class names + + # Checks + imgsz *= 2 if len(imgsz) == 1 else 1 # expand + opset = 12 if ('openvino' in include) else opset # OpenVINO requires opset <= 12 + assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}' + + # Input + gs = int(max(model.stride)) # grid size (max stride) + imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples + im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection + + # Update model + if half: + im, model = im.half(), model.half() # to FP16 + model.train() if train else model.eval() # training mode = no Detect() layer grid construction + for k, m in model.named_modules(): + if isinstance(m, Conv): # assign export-friendly activations + if isinstance(m.act, nn.SiLU): + m.act = SiLU() + elif isinstance(m, Detect): + m.inplace = inplace + m.onnx_dynamic = dynamic + if hasattr(m, 'forward_export'): + m.forward = m.forward_export # assign custom forward (optional) + + for _ in range(2): + y = model(im) # dry runs + shape = tuple(y[0].shape) # model output shape + LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)") + + # Exports + f = [''] * 10 # exported filenames + warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning + if jit: + f[0] = export_torchscript(model, im, file, optimize) + if engine: # TensorRT required before ONNX + f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose) + if onnx or xml: # OpenVINO requires ONNX + f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify) + if xml: # OpenVINO + f[3] = export_openvino(model, im, file) + if coreml: + _, f[4] = export_coreml(model, im, file) + + # TensorFlow Exports + if any((saved_model, pb, tflite, edgetpu, tfjs)): + if int8 or edgetpu: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 + check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` + assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' + model, f[5] = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, + agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, + topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres) # keras model + if pb or tfjs: # pb prerequisite to tfjs + f[6] = export_pb(model, im, file) + if tflite or edgetpu: + f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100) + if edgetpu: + f[8] = export_edgetpu(model, im, file) + if tfjs: + f[9] = export_tfjs(model, im, file) + + # Finish + f = [str(x) for x in f if x] # filter out '' and None + if any(f): + LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)' + f"\nResults saved to {colorstr('bold', file.parent.resolve())}" + f"\nDetect: python detect.py --weights {f[-1]}" + f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')" + f"\nValidate: python val.py --weights {f[-1]}" + f"\nVisualize: https://netron.app") + return f # return list of exported files/dirs + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--half', action='store_true', help='FP16 half-precision export') + parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True') + parser.add_argument('--train', action='store_true', help='model.train() mode') + parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile') + parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization') + parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes') + parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model') + parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version') + parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log') + parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)') + parser.add_argument('--nms', action='store_true', help='TF: add NMS to model') + parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model') + parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep') + parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep') + parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold') + parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold') + parser.add_argument('--include', nargs='+', + default=['torchscript', 'onnx'], + help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs') + opt = parser.parse_args() + print_args(FILE.stem, opt) + return opt + + +def main(opt): + for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]): + run(**vars(opt)) + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) diff --git a/src/yolov5/hubconf.py b/src/yolov5/hubconf.py new file mode 100644 index 00000000..39fa614b --- /dev/null +++ b/src/yolov5/hubconf.py @@ -0,0 +1,143 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ + +Usage: + import torch + model = torch.hub.load('ultralytics/yolov5', 'yolov5s') + model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx') # file from branch +""" + +import torch + + +def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + """Creates or loads a YOLOv5 model + + Arguments: + name (str): model name 'yolov5s' or path 'path/to/best.pt' + pretrained (bool): load pretrained weights into the model + channels (int): number of input channels + classes (int): number of model classes + autoshape (bool): apply YOLOv5 .autoshape() wrapper to model + verbose (bool): print all information to screen + device (str, torch.device, None): device to use for model parameters + + Returns: + YOLOv5 model + """ + from pathlib import Path + + from models.common import AutoShape, DetectMultiBackend + from models.yolo import Model + from utils.downloads import attempt_download + from utils.general import LOGGER, check_requirements, intersect_dicts, logging + from utils.torch_utils import select_device + + if not verbose: + LOGGER.setLevel(logging.WARNING) + check_requirements(exclude=('tensorboard', 'thop', 'opencv-python')) + name = Path(name) + path = name.with_suffix('.pt') if name.suffix == '' else name # checkpoint path + try: + device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) + + if pretrained and channels == 3 and classes == 80: + model = DetectMultiBackend(path, device=device) # download/load FP32 model + # model = models.experimental.attempt_load(path, map_location=device) # download/load FP32 model + else: + cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path + model = Model(cfg, channels, classes) # create model + if pretrained: + ckpt = torch.load(attempt_download(path), map_location=device) # load + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect + model.load_state_dict(csd, strict=False) # load + if len(ckpt['model'].names) == classes: + model.names = ckpt['model'].names # set class names attribute + if autoshape: + model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS + return model.to(device) + + except Exception as e: + help_url = 'https://github.com/ultralytics/yolov5/issues/36' + s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.' + raise Exception(s) from e + + +def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): + # YOLOv5 custom or local model + return _create(path, autoshape=autoshape, verbose=verbose, device=device) + + +def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-nano model https://github.com/ultralytics/yolov5 + return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-small model https://github.com/ultralytics/yolov5 + return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-medium model https://github.com/ultralytics/yolov5 + return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-large model https://github.com/ultralytics/yolov5 + return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 + return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device) + + +def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): + # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 + return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device) + + +if __name__ == '__main__': + model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained + # model = custom(path='path/to/model.pt') # custom + + # Verify inference + from pathlib import Path + + import cv2 + import numpy as np + from PIL import Image + + imgs = ['data/images/zidane.jpg', # filename + Path('data/images/zidane.jpg'), # Path + 'https://ultralytics.com/images/zidane.jpg', # URI + cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV + Image.open('data/images/bus.jpg'), # PIL + np.zeros((320, 640, 3))] # numpy + + results = model(imgs, size=320) # batched inference + results.print() + results.save() diff --git a/src/yolov5/models/__init__.py b/src/yolov5/models/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/src/yolov5/models/common.py b/src/yolov5/models/common.py new file mode 100644 index 00000000..0dae0244 --- /dev/null +++ b/src/yolov5/models/common.py @@ -0,0 +1,677 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Common modules +""" + +import json +import math +import platform +import warnings +from collections import OrderedDict, namedtuple +from copy import copy +from pathlib import Path + +import cv2 +import numpy as np +import pandas as pd +import requests +import torch +import torch.nn as nn +import yaml +from PIL import Image +from torch.cuda import amp + +from utils.datasets import exif_transpose, letterbox +from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path, + make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh) +from utils.plots import Annotator, colors, save_one_box +from utils.torch_utils import copy_attr, time_sync + + +def autopad(k, p=None): # kernel, padding + # Pad to 'same' + if p is None: + p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad + return p + + +class Conv(nn.Module): + # Standard convolution + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity()) + + def forward(self, x): + return self.act(self.bn(self.conv(x))) + + def forward_fuse(self, x): + return self.act(self.conv(x)) + + +class DWConv(Conv): + # Depth-wise convolution class + def __init__(self, c1, c2, k=1, s=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act) + + +class TransformerLayer(nn.Module): + # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance) + def __init__(self, c, num_heads): + super().__init__() + self.q = nn.Linear(c, c, bias=False) + self.k = nn.Linear(c, c, bias=False) + self.v = nn.Linear(c, c, bias=False) + self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) + self.fc1 = nn.Linear(c, c, bias=False) + self.fc2 = nn.Linear(c, c, bias=False) + + def forward(self, x): + x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x + x = self.fc2(self.fc1(x)) + x + return x + + +class TransformerBlock(nn.Module): + # Vision Transformer https://arxiv.org/abs/2010.11929 + def __init__(self, c1, c2, num_heads, num_layers): + super().__init__() + self.conv = None + if c1 != c2: + self.conv = Conv(c1, c2) + self.linear = nn.Linear(c2, c2) # learnable position embedding + self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers))) + self.c2 = c2 + + def forward(self, x): + if self.conv is not None: + x = self.conv(x) + b, _, w, h = x.shape + p = x.flatten(2).permute(2, 0, 1) + return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h) + + +class Bottleneck(nn.Module): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_, c2, 3, 1, g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class BottleneckCSP(nn.Module): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False) + self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False) + self.cv4 = Conv(2 * c_, c2, 1, 1) + self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3) + self.act = nn.SiLU() + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) + + def forward(self, x): + y1 = self.cv3(self.m(self.cv1(x))) + y2 = self.cv2(x) + return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1)))) + + +class C3(nn.Module): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c1, c_, 1, 1) + self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2) + self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n))) + # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)]) + + def forward(self, x): + return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1)) + + +class C3TR(C3): + # C3 module with TransformerBlock() + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = TransformerBlock(c_, c_, 4, n) + + +class C3SPP(C3): + # C3 module with SPP() + def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) + self.m = SPP(c_, c_, k) + + +class C3Ghost(C3): + # C3 module with GhostBottleneck() + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): + super().__init__(c1, c2, n, shortcut, g, e) + c_ = int(c2 * e) # hidden channels + self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n))) + + +class SPP(nn.Module): + # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729 + def __init__(self, c1, c2, k=(5, 9, 13)): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1) + self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k]) + + def forward(self, x): + x = self.cv1(x) + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning + return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1)) + + +class SPPF(nn.Module): + # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher + def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13)) + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = Conv(c1, c_, 1, 1) + self.cv2 = Conv(c_ * 4, c2, 1, 1) + self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2) + + def forward(self, x): + x = self.cv1(x) + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning + y1 = self.m(x) + y2 = self.m(y1) + return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1)) + + +class Focus(nn.Module): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = Conv(c1 * 4, c2, k, s, p, g, act) + # self.contract = Contract(gain=2) + + def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) + return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) + # return self.conv(self.contract(x)) + + +class GhostConv(nn.Module): + # Ghost Convolution https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k=1, s=1, g=1, act=True): # ch_in, ch_out, kernel, stride, groups + super().__init__() + c_ = c2 // 2 # hidden channels + self.cv1 = Conv(c1, c_, k, s, None, g, act) + self.cv2 = Conv(c_, c_, 5, 1, None, c_, act) + + def forward(self, x): + y = self.cv1(x) + return torch.cat([y, self.cv2(y)], 1) + + +class GhostBottleneck(nn.Module): + # Ghost Bottleneck https://github.com/huawei-noah/ghostnet + def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride + super().__init__() + c_ = c2 // 2 + self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw + DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(), # dw + GhostConv(c_, c2, 1, 1, act=False)) # pw-linear + self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), + Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity() + + def forward(self, x): + return self.conv(x) + self.shortcut(x) + + +class Contract(nn.Module): + # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain' + s = self.gain + x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2) + x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40) + return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40) + + +class Expand(nn.Module): + # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160) + def __init__(self, gain=2): + super().__init__() + self.gain = gain + + def forward(self, x): + b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain' + s = self.gain + x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80) + x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2) + return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160) + + +class Concat(nn.Module): + # Concatenate a list of tensors along dimension + def __init__(self, dimension=1): + super().__init__() + self.d = dimension + + def forward(self, x): + return torch.cat(x, self.d) + + +class DetectMultiBackend(nn.Module): + # YOLOv5 MultiBackend class for python inference on various backends + def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None): + # Usage: + # PyTorch: weights = *.pt + # TorchScript: *.torchscript + # ONNX Runtime: *.onnx + # ONNX OpenCV DNN: *.onnx with --dnn + # OpenVINO: *.xml + # CoreML: *.mlmodel + # TensorRT: *.engine + # TensorFlow SavedModel: *_saved_model + # TensorFlow GraphDef: *.pb + # TensorFlow Lite: *.tflite + # TensorFlow Edge TPU: *_edgetpu.tflite + from models.experimental import attempt_download, attempt_load # scoped to avoid circular import + + super().__init__() + w = str(weights[0] if isinstance(weights, list) else weights) + pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w) # get backend + stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults + w = attempt_download(w) # download if not local + if data: # data.yaml path (optional) + with open(data, errors='ignore') as f: + names = yaml.safe_load(f)['names'] # class names + + if pt: # PyTorch + model = attempt_load(weights if isinstance(weights, list) else w, map_location=device) + stride = max(int(model.stride.max()), 32) # model stride + names = model.module.names if hasattr(model, 'module') else model.names # get class names + self.model = model # explicitly assign for to(), cpu(), cuda(), half() + elif jit: # TorchScript + LOGGER.info(f'Loading {w} for TorchScript inference...') + extra_files = {'config.txt': ''} # model metadata + model = torch.jit.load(w, _extra_files=extra_files) + if extra_files['config.txt']: + d = json.loads(extra_files['config.txt']) # extra_files dict + stride, names = int(d['stride']), d['names'] + elif dnn: # ONNX OpenCV DNN + LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...') + check_requirements(('opencv-python>=4.5.4',)) + net = cv2.dnn.readNetFromONNX(w) + elif onnx: # ONNX Runtime + LOGGER.info(f'Loading {w} for ONNX Runtime inference...') + cuda = torch.cuda.is_available() + check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime')) + import onnxruntime + providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider'] + session = onnxruntime.InferenceSession(w, providers=providers) + elif xml: # OpenVINO + LOGGER.info(f'Loading {w} for OpenVINO inference...') + check_requirements(('openvino-dev',)) # requires openvino-dev: https://pypi.org/project/openvino-dev/ + import openvino.inference_engine as ie + core = ie.IECore() + if not Path(w).is_file(): # if not *.xml + w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir + network = core.read_network(model=w, weights=Path(w).with_suffix('.bin')) # *.xml, *.bin paths + executable_network = core.load_network(network, device_name='CPU', num_requests=1) + elif engine: # TensorRT + LOGGER.info(f'Loading {w} for TensorRT inference...') + import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download + check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0 + Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr')) + logger = trt.Logger(trt.Logger.INFO) + with open(w, 'rb') as f, trt.Runtime(logger) as runtime: + model = runtime.deserialize_cuda_engine(f.read()) + bindings = OrderedDict() + for index in range(model.num_bindings): + name = model.get_binding_name(index) + dtype = trt.nptype(model.get_binding_dtype(index)) + shape = tuple(model.get_binding_shape(index)) + data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device) + bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr())) + binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items()) + context = model.create_execution_context() + batch_size = bindings['images'].shape[0] + elif coreml: # CoreML + LOGGER.info(f'Loading {w} for CoreML inference...') + import coremltools as ct + model = ct.models.MLModel(w) + else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) + if saved_model: # SavedModel + LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...') + import tensorflow as tf + keras = False # assume TF1 saved_model + model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w) + elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt + LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...') + import tensorflow as tf + + def wrap_frozen_graph(gd, inputs, outputs): + x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped + ge = x.graph.as_graph_element + return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs)) + + gd = tf.Graph().as_graph_def() # graph_def + gd.ParseFromString(open(w, 'rb').read()) + frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0") + elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python + try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu + from tflite_runtime.interpreter import Interpreter, load_delegate + except ImportError: + import tensorflow as tf + Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate, + if edgetpu: # Edge TPU https://coral.ai/software/#edgetpu-runtime + LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...') + delegate = {'Linux': 'libedgetpu.so.1', + 'Darwin': 'libedgetpu.1.dylib', + 'Windows': 'edgetpu.dll'}[platform.system()] + interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)]) + else: # Lite + LOGGER.info(f'Loading {w} for TensorFlow Lite inference...') + interpreter = Interpreter(model_path=w) # load TFLite model + interpreter.allocate_tensors() # allocate + input_details = interpreter.get_input_details() # inputs + output_details = interpreter.get_output_details() # outputs + elif tfjs: + raise Exception('ERROR: YOLOv5 TF.js inference is not supported') + self.__dict__.update(locals()) # assign all variables to self + + def forward(self, im, augment=False, visualize=False, val=False): + # YOLOv5 MultiBackend inference + b, ch, h, w = im.shape # batch, channel, height, width + if self.pt or self.jit: # PyTorch + y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize) + return y if val else y[0] + elif self.dnn: # ONNX OpenCV DNN + im = im.cpu().numpy() # torch to numpy + self.net.setInput(im) + y = self.net.forward() + elif self.onnx: # ONNX Runtime + im = im.cpu().numpy() # torch to numpy + y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0] + elif self.xml: # OpenVINO + im = im.cpu().numpy() # FP32 + desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW') # Tensor Description + request = self.executable_network.requests[0] # inference request + request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im)) # name=next(iter(request.input_blobs)) + request.infer() + y = request.output_blobs['output'].buffer # name=next(iter(request.output_blobs)) + elif self.engine: # TensorRT + assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape) + self.binding_addrs['images'] = int(im.data_ptr()) + self.context.execute_v2(list(self.binding_addrs.values())) + y = self.bindings['output'].data + elif self.coreml: # CoreML + im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) + im = Image.fromarray((im[0] * 255).astype('uint8')) + # im = im.resize((192, 320), Image.ANTIALIAS) + y = self.model.predict({'image': im}) # coordinates are xywh normalized + if 'confidence' in y: + box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels + conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float) + y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1) + else: + k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1]) # output key + y = y[k] # output + else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU) + im = im.permute(0, 2, 3, 1).cpu().numpy() # torch BCHW to numpy BHWC shape(1,320,192,3) + if self.saved_model: # SavedModel + y = (self.model(im, training=False) if self.keras else self.model(im)[0]).numpy() + elif self.pb: # GraphDef + y = self.frozen_func(x=self.tf.constant(im)).numpy() + else: # Lite or Edge TPU + input, output = self.input_details[0], self.output_details[0] + int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model + if int8: + scale, zero_point = input['quantization'] + im = (im / scale + zero_point).astype(np.uint8) # de-scale + self.interpreter.set_tensor(input['index'], im) + self.interpreter.invoke() + y = self.interpreter.get_tensor(output['index']) + if int8: + scale, zero_point = output['quantization'] + y = (y.astype(np.float32) - zero_point) * scale # re-scale + y[..., :4] *= [w, h, w, h] # xywh normalized to pixels + + y = torch.tensor(y) if isinstance(y, np.ndarray) else y + return (y, []) if val else y + + def warmup(self, imgsz=(1, 3, 640, 640), half=False): + # Warmup model by running inference once + if self.pt or self.jit or self.onnx or self.engine: # warmup types + if isinstance(self.device, torch.device) and self.device.type != 'cpu': # only warmup GPU models + im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float) # input image + self.forward(im) # warmup + + @staticmethod + def model_type(p='path/to/model.pt'): + # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx + from export import export_formats + suffixes = list(export_formats().Suffix) + ['.xml'] # export suffixes + check_suffix(p, suffixes) # checks + p = Path(p).name # eliminate trailing separators + pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes) + xml |= xml2 # *_openvino_model or *.xml + tflite &= not edgetpu # *.tflite + return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs + + +class AutoShape(nn.Module): + # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS + conf = 0.25 # NMS confidence threshold + iou = 0.45 # NMS IoU threshold + agnostic = False # NMS class-agnostic + multi_label = False # NMS multiple labels per box + classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs + max_det = 1000 # maximum number of detections per image + amp = False # Automatic Mixed Precision (AMP) inference + + def __init__(self, model): + super().__init__() + LOGGER.info('Adding AutoShape... ') + copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes + self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance + self.pt = not self.dmb or model.pt # PyTorch model + self.model = model.eval() + + def _apply(self, fn): + # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers + self = super()._apply(fn) + if self.pt: + m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect() + m.stride = fn(m.stride) + m.grid = list(map(fn, m.grid)) + if isinstance(m.anchor_grid, list): + m.anchor_grid = list(map(fn, m.anchor_grid)) + return self + + @torch.no_grad() + def forward(self, imgs, size=640, augment=False, profile=False): + # Inference from various sources. For height=640, width=1280, RGB images example inputs are: + # file: imgs = 'data/images/zidane.jpg' # str or PosixPath + # URI: = 'https://ultralytics.com/images/zidane.jpg' + # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3) + # PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3) + # numpy: = np.zeros((640,1280,3)) # HWC + # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) + # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images + + t = [time_sync()] + p = next(self.model.parameters()) if self.pt else torch.zeros(1) # for device and type + autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference + if isinstance(imgs, torch.Tensor): # torch + with amp.autocast(enabled=autocast): + return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference + + # Pre-process + n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images + shape0, shape1, files = [], [], [] # image and inference shapes, filenames + for i, im in enumerate(imgs): + f = f'image{i}' # filename + if isinstance(im, (str, Path)): # filename or uri + im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im + im = np.asarray(exif_transpose(im)) + elif isinstance(im, Image.Image): # PIL Image + im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f + files.append(Path(f).with_suffix('.jpg').name) + if im.shape[0] < 5: # image in CHW + im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1) + im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3) # enforce 3ch input + s = im.shape[:2] # HWC + shape0.append(s) # image shape + g = (size / max(s)) # gain + shape1.append([y * g for y in s]) + imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update + shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)] # inference shape + x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs] # pad + x = np.stack(x, 0) if n > 1 else x[0][None] # stack + x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW + x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32 + t.append(time_sync()) + + with amp.autocast(enabled=autocast): + # Inference + y = self.model(x, augment, profile) # forward + t.append(time_sync()) + + # Post-process + y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes, + agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det) # NMS + for i in range(n): + scale_coords(shape1, y[i][:, :4], shape0[i]) + + t.append(time_sync()) + return Detections(imgs, y, files, t, self.names, x.shape) + + +class Detections: + # YOLOv5 detections class for inference results + def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None): + super().__init__() + d = pred[0].device # device + gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs] # normalizations + self.imgs = imgs # list of images as numpy arrays + self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) + self.names = names # class names + self.files = files # image filenames + self.times = times # profiling times + self.xyxy = pred # xyxy pixels + self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels + self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized + self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized + self.n = len(self.pred) # number of images (batch size) + self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) + self.s = shape # inference BCHW shape + + def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')): + crops = [] + for i, (im, pred) in enumerate(zip(self.imgs, self.pred)): + s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string + if pred.shape[0]: + for c in pred[:, -1].unique(): + n = (pred[:, -1] == c).sum() # detections per class + s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string + if show or save or render or crop: + annotator = Annotator(im, example=str(self.names)) + for *box, conf, cls in reversed(pred): # xyxy, confidence, class + label = f'{self.names[int(cls)]} {conf:.2f}' + if crop: + file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None + crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label, + 'im': save_one_box(box, im, file=file, save=save)}) + else: # all others + annotator.box_label(box, label, color=colors(cls)) + im = annotator.im + else: + s += '(no detections)' + + im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np + if pprint: + LOGGER.info(s.rstrip(', ')) + if show: + im.show(self.files[i]) # show + if save: + f = self.files[i] + im.save(save_dir / f) # save + if i == self.n - 1: + LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}") + if render: + self.imgs[i] = np.asarray(im) + if crop: + if save: + LOGGER.info(f'Saved results to {save_dir}\n') + return crops + + def print(self): + self.display(pprint=True) # print results + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % + self.t) + + def show(self): + self.display(show=True) # show results + + def save(self, save_dir='runs/detect/exp'): + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir + self.display(save=True, save_dir=save_dir) # save results + + def crop(self, save=True, save_dir='runs/detect/exp'): + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None + return self.display(crop=True, save=save, save_dir=save_dir) # crop results + + def render(self): + self.display(render=True) # render results + return self.imgs + + def pandas(self): + # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0]) + new = copy(self) # return copy + ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns + cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns + for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]): + a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update + setattr(new, k, [pd.DataFrame(x, columns=c) for x in a]) + return new + + def tolist(self): + # return a list of Detections objects, i.e. 'for result in results.tolist():' + r = range(self.n) # iterable + x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r] + # for d in x: + # for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']: + # setattr(d, k, getattr(d, k)[0]) # pop out of list + return x + + def __len__(self): + return self.n + + +class Classify(nn.Module): + # Classification head, i.e. x(b,c1,20,20) to x(b,c2) + def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1) + self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1) + self.flat = nn.Flatten() + + def forward(self, x): + z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list + return self.flat(self.conv(z)) # flatten to x(b,c2) diff --git a/src/yolov5/models/experimental.py b/src/yolov5/models/experimental.py new file mode 100644 index 00000000..463e5514 --- /dev/null +++ b/src/yolov5/models/experimental.py @@ -0,0 +1,120 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Experimental modules +""" +import math + +import numpy as np +import torch +import torch.nn as nn + +from models.common import Conv +from utils.downloads import attempt_download + + +class CrossConv(nn.Module): + # Cross Convolution Downsample + def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): + # ch_in, ch_out, kernel, stride, groups, expansion, shortcut + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = Conv(c1, c_, (1, k), (1, s)) + self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) + self.add = shortcut and c1 == c2 + + def forward(self, x): + return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x)) + + +class Sum(nn.Module): + # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 + def __init__(self, n, weight=False): # n: number of inputs + super().__init__() + self.weight = weight # apply weights boolean + self.iter = range(n - 1) # iter object + if weight: + self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights + + def forward(self, x): + y = x[0] # no weight + if self.weight: + w = torch.sigmoid(self.w) * 2 + for i in self.iter: + y = y + x[i + 1] * w[i] + else: + for i in self.iter: + y = y + x[i + 1] + return y + + +class MixConv2d(nn.Module): + # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595 + def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy + super().__init__() + n = len(k) # number of convolutions + if equal_ch: # equal c_ per group + i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices + c_ = [(i == g).sum() for g in range(n)] # intermediate channels + else: # equal weight.numel() per group + b = [c2] + [0] * n + a = np.eye(n + 1, n, k=-1) + a -= np.roll(a, 1, axis=1) + a *= np.array(k) ** 2 + a[0] = 1 + c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b + + self.m = nn.ModuleList( + [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)]) + self.bn = nn.BatchNorm2d(c2) + self.act = nn.SiLU() + + def forward(self, x): + return self.act(self.bn(torch.cat([m(x) for m in self.m], 1))) + + +class Ensemble(nn.ModuleList): + # Ensemble of models + def __init__(self): + super().__init__() + + def forward(self, x, augment=False, profile=False, visualize=False): + y = [] + for module in self: + y.append(module(x, augment, profile, visualize)[0]) + # y = torch.stack(y).max(0)[0] # max ensemble + # y = torch.stack(y).mean(0) # mean ensemble + y = torch.cat(y, 1) # nms ensemble + return y, None # inference, train output + + +def attempt_load(weights, map_location=None, inplace=True, fuse=True): + from models.yolo import Detect, Model + + # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a + model = Ensemble() + for w in weights if isinstance(weights, list) else [weights]: + ckpt = torch.load(attempt_download(w), map_location=map_location) # load + if fuse: + model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model + else: + model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval()) # without layer fuse + + # Compatibility updates + for m in model.modules(): + if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]: + m.inplace = inplace # pytorch 1.7.0 compatibility + if type(m) is Detect: + if not isinstance(m.anchor_grid, list): # new Detect Layer compatibility + delattr(m, 'anchor_grid') + setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl) + elif type(m) is Conv: + m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility + + if len(model) == 1: + return model[-1] # return model + else: + print(f'Ensemble created with {weights}\n') + for k in ['names']: + setattr(model, k, getattr(model[-1], k)) + model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride + return model # return ensemble diff --git a/src/yolov5/models/hub/anchors.yaml b/src/yolov5/models/hub/anchors.yaml new file mode 100644 index 00000000..e4d7beb0 --- /dev/null +++ b/src/yolov5/models/hub/anchors.yaml @@ -0,0 +1,59 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +# Default anchors for COCO data + + +# P5 ------------------------------------------------------------------------------------------------------------------- +# P5-640: +anchors_p5_640: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + + +# P6 ------------------------------------------------------------------------------------------------------------------- +# P6-640: thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11, 21,19, 17,41, 43,32, 39,70, 86,64, 65,131, 134,130, 120,265, 282,180, 247,354, 512,387 +anchors_p6_640: + - [9,11, 21,19, 17,41] # P3/8 + - [43,32, 39,70, 86,64] # P4/16 + - [65,131, 134,130, 120,265] # P5/32 + - [282,180, 247,354, 512,387] # P6/64 + +# P6-1280: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27, 44,40, 38,94, 96,68, 86,152, 180,137, 140,301, 303,264, 238,542, 436,615, 739,380, 925,792 +anchors_p6_1280: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# P6-1920: thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41, 67,59, 57,141, 144,103, 129,227, 270,205, 209,452, 455,396, 358,812, 653,922, 1109,570, 1387,1187 +anchors_p6_1920: + - [28,41, 67,59, 57,141] # P3/8 + - [144,103, 129,227, 270,205] # P4/16 + - [209,452, 455,396, 358,812] # P5/32 + - [653,922, 1109,570, 1387,1187] # P6/64 + + +# P7 ------------------------------------------------------------------------------------------------------------------- +# P7-640: thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11, 13,30, 29,20, 30,46, 61,38, 39,92, 78,80, 146,66, 79,163, 149,150, 321,143, 157,303, 257,402, 359,290, 524,372 +anchors_p7_640: + - [11,11, 13,30, 29,20] # P3/8 + - [30,46, 61,38, 39,92] # P4/16 + - [78,80, 146,66, 79,163] # P5/32 + - [149,150, 321,143, 157,303] # P6/64 + - [257,402, 359,290, 524,372] # P7/128 + +# P7-1280: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22, 54,36, 32,77, 70,83, 138,71, 75,173, 165,159, 148,334, 375,151, 334,317, 251,626, 499,474, 750,326, 534,814, 1079,818 +anchors_p7_1280: + - [19,22, 54,36, 32,77] # P3/8 + - [70,83, 138,71, 75,173] # P4/16 + - [165,159, 148,334, 375,151] # P5/32 + - [334,317, 251,626, 499,474] # P6/64 + - [750,326, 534,814, 1079,818] # P7/128 + +# P7-1920: thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34, 81,55, 47,115, 105,124, 207,107, 113,259, 247,238, 222,500, 563,227, 501,476, 376,939, 749,711, 1126,489, 801,1222, 1618,1227 +anchors_p7_1920: + - [29,34, 81,55, 47,115] # P3/8 + - [105,124, 207,107, 113,259] # P4/16 + - [247,238, 222,500, 563,227] # P5/32 + - [501,476, 376,939, 749,711] # P6/64 + - [1126,489, 801,1222, 1618,1227] # P7/128 diff --git a/src/yolov5/models/hub/yolov3-spp.yaml b/src/yolov5/models/hub/yolov3-spp.yaml new file mode 100644 index 00000000..c6698215 --- /dev/null +++ b/src/yolov5/models/hub/yolov3-spp.yaml @@ -0,0 +1,51 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# darknet53 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [32, 3, 1]], # 0 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 + [-1, 1, Bottleneck, [64]], + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 + [-1, 2, Bottleneck, [128]], + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 + [-1, 8, Bottleneck, [256]], + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 + [-1, 8, Bottleneck, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 + [-1, 4, Bottleneck, [1024]], # 10 + ] + +# YOLOv3-SPP head +head: + [[-1, 1, Bottleneck, [1024, False]], + [-1, 1, SPP, [512, [5, 9, 13]]], + [-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P3 + [-1, 1, Bottleneck, [256, False]], + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) + + [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov3-tiny.yaml b/src/yolov5/models/hub/yolov3-tiny.yaml new file mode 100644 index 00000000..b28b4431 --- /dev/null +++ b/src/yolov5/models/hub/yolov3-tiny.yaml @@ -0,0 +1,41 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,14, 23,27, 37,58] # P4/16 + - [81,82, 135,169, 344,319] # P5/32 + +# YOLOv3-tiny backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [16, 3, 1]], # 0 + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 1-P1/2 + [-1, 1, Conv, [32, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 3-P2/4 + [-1, 1, Conv, [64, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 5-P3/8 + [-1, 1, Conv, [128, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 7-P4/16 + [-1, 1, Conv, [256, 3, 1]], + [-1, 1, nn.MaxPool2d, [2, 2, 0]], # 9-P5/32 + [-1, 1, Conv, [512, 3, 1]], + [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]], # 11 + [-1, 1, nn.MaxPool2d, [2, 1, 0]], # 12 + ] + +# YOLOv3-tiny head +head: + [[-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Conv, [256, 3, 1]], # 19 (P4/16-medium) + + [[19, 15], 1, Detect, [nc, anchors]], # Detect(P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov3.yaml b/src/yolov5/models/hub/yolov3.yaml new file mode 100644 index 00000000..d1ef9129 --- /dev/null +++ b/src/yolov5/models/hub/yolov3.yaml @@ -0,0 +1,51 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# darknet53 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [32, 3, 1]], # 0 + [-1, 1, Conv, [64, 3, 2]], # 1-P1/2 + [-1, 1, Bottleneck, [64]], + [-1, 1, Conv, [128, 3, 2]], # 3-P2/4 + [-1, 2, Bottleneck, [128]], + [-1, 1, Conv, [256, 3, 2]], # 5-P3/8 + [-1, 8, Bottleneck, [256]], + [-1, 1, Conv, [512, 3, 2]], # 7-P4/16 + [-1, 8, Bottleneck, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P5/32 + [-1, 4, Bottleneck, [1024]], # 10 + ] + +# YOLOv3 head +head: + [[-1, 1, Bottleneck, [1024, False]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, Conv, [1024, 3, 1]], # 15 (P5/32-large) + + [-2, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Bottleneck, [512, False]], + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, Conv, [512, 3, 1]], # 22 (P4/16-medium) + + [-2, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P3 + [-1, 1, Bottleneck, [256, False]], + [-1, 2, Bottleneck, [256, False]], # 27 (P3/8-small) + + [[27, 22, 15], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5-bifpn.yaml b/src/yolov5/models/hub/yolov5-bifpn.yaml new file mode 100644 index 00000000..504815f5 --- /dev/null +++ b/src/yolov5/models/hub/yolov5-bifpn.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 BiFPN head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14, 6], 1, Concat, [1]], # cat P4 <--- BiFPN change + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5-fpn.yaml b/src/yolov5/models/hub/yolov5-fpn.yaml new file mode 100644 index 00000000..a23e9c6f --- /dev/null +++ b/src/yolov5/models/hub/yolov5-fpn.yaml @@ -0,0 +1,42 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 FPN head +head: + [[-1, 3, C3, [1024, False]], # 10 (P5/32-large) + + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 1, Conv, [512, 1, 1]], + [-1, 3, C3, [512, False]], # 14 (P4/16-medium) + + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 1, Conv, [256, 1, 1]], + [-1, 3, C3, [256, False]], # 18 (P3/8-small) + + [[18, 14, 10], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5-p2.yaml b/src/yolov5/models/hub/yolov5-p2.yaml new file mode 100644 index 00000000..554117dd --- /dev/null +++ b/src/yolov5/models/hub/yolov5-p2.yaml @@ -0,0 +1,54 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: 3 # AutoAnchor evolves 3 anchors per P output layer + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [128, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 2], 1, Concat, [1]], # cat backbone P2 + [-1, 1, C3, [128, False]], # 21 (P2/4-xsmall) + + [-1, 1, Conv, [128, 3, 2]], + [[-1, 18], 1, Concat, [1]], # cat head P3 + [-1, 3, C3, [256, False]], # 24 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 27 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 30 (P5/32-large) + + [[21, 24, 27, 30], 1, Detect, [nc, anchors]], # Detect(P2, P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5-p34.yaml b/src/yolov5/models/hub/yolov5-p34.yaml new file mode 100644 index 00000000..dbf0f850 --- /dev/null +++ b/src/yolov5/models/hub/yolov5-p34.yaml @@ -0,0 +1,41 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.50 # layer channel multiple +anchors: 3 # AutoAnchor evolves 3 anchors per P output layer + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ], # 0-P1/2 + [ -1, 1, Conv, [ 128, 3, 2 ] ], # 1-P2/4 + [ -1, 3, C3, [ 128 ] ], + [ -1, 1, Conv, [ 256, 3, 2 ] ], # 3-P3/8 + [ -1, 6, C3, [ 256 ] ], + [ -1, 1, Conv, [ 512, 3, 2 ] ], # 5-P4/16 + [ -1, 9, C3, [ 512 ] ], + [ -1, 1, Conv, [ 1024, 3, 2 ] ], # 7-P5/32 + [ -1, 3, C3, [ 1024 ] ], + [ -1, 1, SPPF, [ 1024, 5 ] ], # 9 + ] + +# YOLOv5 v6.0 head with (P3, P4) outputs +head: + [ [ -1, 1, Conv, [ 512, 1, 1 ] ], + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], + [ [ -1, 6 ], 1, Concat, [ 1 ] ], # cat backbone P4 + [ -1, 3, C3, [ 512, False ] ], # 13 + + [ -1, 1, Conv, [ 256, 1, 1 ] ], + [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ], + [ [ -1, 4 ], 1, Concat, [ 1 ] ], # cat backbone P3 + [ -1, 3, C3, [ 256, False ] ], # 17 (P3/8-small) + + [ -1, 1, Conv, [ 256, 3, 2 ] ], + [ [ -1, 14 ], 1, Concat, [ 1 ] ], # cat head P4 + [ -1, 3, C3, [ 512, False ] ], # 20 (P4/16-medium) + + [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ], # Detect(P3, P4) + ] diff --git a/src/yolov5/models/hub/yolov5-p6.yaml b/src/yolov5/models/hub/yolov5-p6.yaml new file mode 100644 index 00000000..a17202f2 --- /dev/null +++ b/src/yolov5/models/hub/yolov5-p6.yaml @@ -0,0 +1,56 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: 3 # AutoAnchor evolves 3 anchors per P output layer + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/hub/yolov5-p7.yaml b/src/yolov5/models/hub/yolov5-p7.yaml new file mode 100644 index 00000000..edd7d13a --- /dev/null +++ b/src/yolov5/models/hub/yolov5-p7.yaml @@ -0,0 +1,67 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: 3 # AutoAnchor evolves 3 anchors per P output layer + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, Conv, [1280, 3, 2]], # 11-P7/128 + [-1, 3, C3, [1280]], + [-1, 1, SPPF, [1280, 5]], # 13 + ] + +# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs +head: + [[-1, 1, Conv, [1024, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 10], 1, Concat, [1]], # cat backbone P6 + [-1, 3, C3, [1024, False]], # 17 + + [-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 21 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 25 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 29 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 26], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 32 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 22], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 35 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 18], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 38 (P6/64-xlarge) + + [-1, 1, Conv, [1024, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P7 + [-1, 3, C3, [1280, False]], # 41 (P7/128-xxlarge) + + [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6, P7) + ] diff --git a/src/yolov5/models/hub/yolov5-panet.yaml b/src/yolov5/models/hub/yolov5-panet.yaml new file mode 100644 index 00000000..ccfbf900 --- /dev/null +++ b/src/yolov5/models/hub/yolov5-panet.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 PANet head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5l6.yaml b/src/yolov5/models/hub/yolov5l6.yaml new file mode 100644 index 00000000..632c2cb6 --- /dev/null +++ b/src/yolov5/models/hub/yolov5l6.yaml @@ -0,0 +1,60 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/hub/yolov5m6.yaml b/src/yolov5/models/hub/yolov5m6.yaml new file mode 100644 index 00000000..ecc53fd6 --- /dev/null +++ b/src/yolov5/models/hub/yolov5m6.yaml @@ -0,0 +1,60 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.67 # model depth multiple +width_multiple: 0.75 # layer channel multiple +anchors: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/hub/yolov5n6.yaml b/src/yolov5/models/hub/yolov5n6.yaml new file mode 100644 index 00000000..0c0c71d3 --- /dev/null +++ b/src/yolov5/models/hub/yolov5n6.yaml @@ -0,0 +1,60 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.25 # layer channel multiple +anchors: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/hub/yolov5s-ghost.yaml b/src/yolov5/models/hub/yolov5s-ghost.yaml new file mode 100644 index 00000000..ff9519c3 --- /dev/null +++ b/src/yolov5/models/hub/yolov5s-ghost.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.50 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, GhostConv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3Ghost, [128]], + [-1, 1, GhostConv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3Ghost, [256]], + [-1, 1, GhostConv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3Ghost, [512]], + [-1, 1, GhostConv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3Ghost, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, GhostConv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3Ghost, [512, False]], # 13 + + [-1, 1, GhostConv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3Ghost, [256, False]], # 17 (P3/8-small) + + [-1, 1, GhostConv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3Ghost, [512, False]], # 20 (P4/16-medium) + + [-1, 1, GhostConv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3Ghost, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5s-transformer.yaml b/src/yolov5/models/hub/yolov5s-transformer.yaml new file mode 100644 index 00000000..100d7c44 --- /dev/null +++ b/src/yolov5/models/hub/yolov5s-transformer.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.50 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3TR, [1024]], # 9 <--- C3TR() Transformer module + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/hub/yolov5s6.yaml b/src/yolov5/models/hub/yolov5s6.yaml new file mode 100644 index 00000000..a28fb559 --- /dev/null +++ b/src/yolov5/models/hub/yolov5s6.yaml @@ -0,0 +1,60 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.50 # layer channel multiple +anchors: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/hub/yolov5x6.yaml b/src/yolov5/models/hub/yolov5x6.yaml new file mode 100644 index 00000000..ba795c4a --- /dev/null +++ b/src/yolov5/models/hub/yolov5x6.yaml @@ -0,0 +1,60 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.33 # model depth multiple +width_multiple: 1.25 # layer channel multiple +anchors: + - [19,27, 44,40, 38,94] # P3/8 + - [96,68, 86,152, 180,137] # P4/16 + - [140,301, 303,264, 238,542] # P5/32 + - [436,615, 739,380, 925,792] # P6/64 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [768, 3, 2]], # 7-P5/32 + [-1, 3, C3, [768]], + [-1, 1, Conv, [1024, 3, 2]], # 9-P6/64 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 11 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [768, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 8], 1, Concat, [1]], # cat backbone P5 + [-1, 3, C3, [768, False]], # 15 + + [-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 19 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 23 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 20], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 26 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 16], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [768, False]], # 29 (P5/32-large) + + [-1, 1, Conv, [768, 3, 2]], + [[-1, 12], 1, Concat, [1]], # cat head P6 + [-1, 3, C3, [1024, False]], # 32 (P6/64-xlarge) + + [[23, 26, 29, 32], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5, P6) + ] diff --git a/src/yolov5/models/tf.py b/src/yolov5/models/tf.py new file mode 100644 index 00000000..74681e40 --- /dev/null +++ b/src/yolov5/models/tf.py @@ -0,0 +1,464 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +TensorFlow, Keras and TFLite versions of YOLOv5 +Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127 + +Usage: + $ python models/tf.py --weights yolov5s.pt + +Export: + $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs +""" + +import argparse +import sys +from copy import deepcopy +from pathlib import Path + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +# ROOT = ROOT.relative_to(Path.cwd()) # relative + +import numpy as np +import tensorflow as tf +import torch +import torch.nn as nn +from tensorflow import keras + +from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad +from models.experimental import CrossConv, MixConv2d, attempt_load +from models.yolo import Detect +from utils.activations import SiLU +from utils.general import LOGGER, make_divisible, print_args + + +class TFBN(keras.layers.Layer): + # TensorFlow BatchNormalization wrapper + def __init__(self, w=None): + super().__init__() + self.bn = keras.layers.BatchNormalization( + beta_initializer=keras.initializers.Constant(w.bias.numpy()), + gamma_initializer=keras.initializers.Constant(w.weight.numpy()), + moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()), + moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()), + epsilon=w.eps) + + def call(self, inputs): + return self.bn(inputs) + + +class TFPad(keras.layers.Layer): + def __init__(self, pad): + super().__init__() + self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]]) + + def call(self, inputs): + return tf.pad(inputs, self.pad, mode='constant', constant_values=0) + + +class TFConv(keras.layers.Layer): + # Standard convolution + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, weights, kernel, stride, padding, groups + super().__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + assert isinstance(k, int), "Convolution with multiple kernels are not allowed." + # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding) + # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch + + conv = keras.layers.Conv2D( + c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True, + kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy())) + self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv]) + self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity + + # YOLOv5 activations + if isinstance(w.act, nn.LeakyReLU): + self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity + elif isinstance(w.act, nn.Hardswish): + self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity + elif isinstance(w.act, (nn.SiLU, SiLU)): + self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity + else: + raise Exception(f'no matching TensorFlow activation found for {w.act}') + + def call(self, inputs): + return self.act(self.bn(self.conv(inputs))) + + +class TFFocus(keras.layers.Layer): + # Focus wh information into c-space + def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None): + # ch_in, ch_out, kernel, stride, padding, groups + super().__init__() + self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv) + + def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c) + # inputs = inputs / 255 # normalize 0-255 to 0-1 + return self.conv(tf.concat([inputs[:, ::2, ::2, :], + inputs[:, 1::2, ::2, :], + inputs[:, ::2, 1::2, :], + inputs[:, 1::2, 1::2, :]], 3)) + + +class TFBottleneck(keras.layers.Layer): + # Standard bottleneck + def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2) + self.add = shortcut and c1 == c2 + + def call(self, inputs): + return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs)) + + +class TFConv2d(keras.layers.Layer): + # Substitution for PyTorch nn.Conv2D + def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None): + super().__init__() + assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument" + self.conv = keras.layers.Conv2D( + c2, k, s, 'VALID', use_bias=bias, + kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()), + bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, ) + + def call(self, inputs): + return self.conv(inputs) + + +class TFBottleneckCSP(keras.layers.Layer): + # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2) + self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3) + self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4) + self.bn = TFBN(w.bn) + self.act = lambda x: keras.activations.relu(x, alpha=0.1) + self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + y1 = self.cv3(self.m(self.cv1(inputs))) + y2 = self.cv2(inputs) + return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3)))) + + +class TFC3(keras.layers.Layer): + # CSP Bottleneck with 3 convolutions + def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None): + # ch_in, ch_out, number, shortcut, groups, expansion + super().__init__() + c_ = int(c2 * e) # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2) + self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3) + self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)]) + + def call(self, inputs): + return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3)) + + +class TFSPP(keras.layers.Layer): + # Spatial pyramid pooling layer used in YOLOv3-SPP + def __init__(self, c1, c2, k=(5, 9, 13), w=None): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2) + self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k] + + def call(self, inputs): + x = self.cv1(inputs) + return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3)) + + +class TFSPPF(keras.layers.Layer): + # Spatial pyramid pooling-Fast layer + def __init__(self, c1, c2, k=5, w=None): + super().__init__() + c_ = c1 // 2 # hidden channels + self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1) + self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2) + self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME') + + def call(self, inputs): + x = self.cv1(inputs) + y1 = self.m(x) + y2 = self.m(y1) + return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3)) + + +class TFDetect(keras.layers.Layer): + def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer + super().__init__() + self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32) + self.nc = nc # number of classes + self.no = nc + 5 # number of outputs per anchor + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [tf.zeros(1)] * self.nl # init grid + self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32) + self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), + [self.nl, 1, -1, 1, 2]) + self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] + self.training = False # set to False after building model + self.imgsz = imgsz + for i in range(self.nl): + ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] + self.grid[i] = self._make_grid(nx, ny) + + def call(self, inputs): + z = [] # inference output + x = [] + for i in range(self.nl): + x.append(self.m[i](inputs[i])) + # x(bs,20,20,255) to x(bs,3,20,20,85) + ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i] + x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3]) + + if not self.training: # inference + y = tf.sigmoid(x[i]) + xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy + wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] + # Normalize xywh to 0-1 to reduce calibration error + xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) + wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32) + y = tf.concat([xy, wh, y[..., 4:]], -1) + z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no])) + + return x if self.training else (tf.concat(z, 1), x) + + @staticmethod + def _make_grid(nx=20, ny=20): + # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)]) + # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float() + xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny)) + return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32) + + +class TFUpsample(keras.layers.Layer): + def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w' + super().__init__() + assert scale_factor == 2, "scale_factor must be 2" + self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode) + # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode) + # with default arguments: align_corners=False, half_pixel_centers=False + # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x, + # size=(x.shape[1] * 2, x.shape[2] * 2)) + + def call(self, inputs): + return self.upsample(inputs) + + +class TFConcat(keras.layers.Layer): + def __init__(self, dimension=1, w=None): + super().__init__() + assert dimension == 1, "convert only NCHW to NHWC concat" + self.d = 3 + + def call(self, inputs): + return tf.concat(inputs, self.d) + + +def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3) + LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m_str = m + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + try: + args[j] = eval(a) if isinstance(a, str) else a # eval strings + except NameError: + pass + + n = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]: + c1, c2 = ch[f], args[0] + c2 = make_divisible(c2 * gw, 8) if c2 != no else c2 + + args = [c1, c2, *args[1:]] + if m in [BottleneckCSP, C3]: + args.insert(2, n) + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum(ch[-1 if x == -1 else x + 1] for x in f) + elif m is Detect: + args.append([ch[x + 1] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + args.append(imgsz) + else: + c2 = ch[f] + + tf_m = eval('TF' + m_str.replace('nn.', '')) + m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \ + else tf_m(*args, w=model.model[i]) # module + + torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum(x.numel() for x in torch_m_.parameters()) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + ch.append(c2) + return keras.Sequential(layers), sorted(save) + + +class TFModel: + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes + super().__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg) as f: + self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict + + # Define model + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz) + + def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45, + conf_thres=0.25): + y = [] # outputs + x = inputs + for i, m in enumerate(self.model.layers): + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + + x = m(x) # run + y.append(x if m.i in self.savelist else None) # save output + + # Add TensorFlow NMS + if tf_nms: + boxes = self._xywh2xyxy(x[0][..., :4]) + probs = x[0][:, :, 4:5] + classes = x[0][:, :, 5:] + scores = probs * classes + if agnostic_nms: + nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres) + return nms, x[1] + else: + boxes = tf.expand_dims(boxes, 2) + nms = tf.image.combined_non_max_suppression( + boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False) + return nms, x[1] + + return x[0] # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...] + # x = x[0][0] # [x(1,6300,85), ...] to x(6300,85) + # xywh = x[..., :4] # x(6300,4) boxes + # conf = x[..., 4:5] # x(6300,1) confidences + # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes + # return tf.concat([conf, cls, xywh], 1) + + @staticmethod + def _xywh2xyxy(xywh): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1) + return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1) + + +class AgnosticNMS(keras.layers.Layer): + # TF Agnostic NMS + def call(self, input, topk_all, iou_thres, conf_thres): + # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450 + return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input, + fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32), + name='agnostic_nms') + + @staticmethod + def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS + boxes, classes, scores = x + class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32) + scores_inp = tf.reduce_max(scores, -1) + selected_inds = tf.image.non_max_suppression( + boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres) + selected_boxes = tf.gather(boxes, selected_inds) + padded_boxes = tf.pad(selected_boxes, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]], + mode="CONSTANT", constant_values=0.0) + selected_scores = tf.gather(scores_inp, selected_inds) + padded_scores = tf.pad(selected_scores, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], + mode="CONSTANT", constant_values=-1.0) + selected_classes = tf.gather(class_inds, selected_inds) + padded_classes = tf.pad(selected_classes, + paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]], + mode="CONSTANT", constant_values=-1.0) + valid_detections = tf.shape(selected_inds)[0] + return padded_boxes, padded_scores, padded_classes, valid_detections + + +def representative_dataset_gen(dataset, ncalib=100): + # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays + for n, (path, img, im0s, vid_cap, string) in enumerate(dataset): + input = np.transpose(img, [1, 2, 0]) + input = np.expand_dims(input, axis=0).astype(np.float32) + input /= 255 + yield [input] + if n >= ncalib: + break + + +def run(weights=ROOT / 'yolov5s.pt', # weights path + imgsz=(640, 640), # inference size h,w + batch_size=1, # batch size + dynamic=False, # dynamic batch size + ): + # PyTorch model + im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image + model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False) + _ = model(im) # inference + model.info() + + # TensorFlow model + im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image + tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz) + _ = tf_model.predict(im) # inference + + # Keras model + im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size) + keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im)) + keras_model.summary() + + LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.') + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') + parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--dynamic', action='store_true', help='dynamic batch size') + opt = parser.parse_args() + opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand + print_args(FILE.stem, opt) + return opt + + +def main(opt): + run(**vars(opt)) + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) diff --git a/src/yolov5/models/yolo.py b/src/yolov5/models/yolo.py new file mode 100644 index 00000000..f659a045 --- /dev/null +++ b/src/yolov5/models/yolo.py @@ -0,0 +1,329 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +YOLO-specific modules + +Usage: + $ python path/to/models/yolo.py --cfg yolov5s.yaml +""" + +import argparse +import sys +from copy import deepcopy +from pathlib import Path + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +# ROOT = ROOT.relative_to(Path.cwd()) # relative + +from models.common import * +from models.experimental import * +from utils.autoanchor import check_anchor_order +from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args +from utils.plots import feature_visualization +from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync + +try: + import thop # for FLOPs computation +except ImportError: + thop = None + + +class Detect(nn.Module): + stride = None # strides computed during build + onnx_dynamic = False # ONNX export parameter + + def __init__(self, nc=80, anchors=(), ch=(), inplace=True): # detection layer + super().__init__() + self.nc = nc # number of classes + self.no = nc + 5 # number of outputs per anchor + self.nl = len(anchors) # number of detection layers + self.na = len(anchors[0]) // 2 # number of anchors + self.grid = [torch.zeros(1)] * self.nl # init grid + self.anchor_grid = [torch.zeros(1)] * self.nl # init anchor grid + self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2)) # shape(nl,na,2) + self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv + self.inplace = inplace # use in-place ops (e.g. slice assignment) + + def forward(self, x): + z = [] # inference output + for i in range(self.nl): + x[i] = self.m[i](x[i]) # conv + bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85) + x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous() + + if not self.training: # inference + if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]: + self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i) + + y = x[i].sigmoid() + if self.inplace: + y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy + y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh + else: # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953 + xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i] # xy + wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh + y = torch.cat((xy, wh, y[..., 4:]), -1) + z.append(y.view(bs, -1, self.no)) + + return x if self.training else (torch.cat(z, 1), x) + + def _make_grid(self, nx=20, ny=20, i=0): + d = self.anchors[i].device + if check_version(torch.__version__, '1.10.0'): # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility + yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij') + else: + yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)]) + grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float() + anchor_grid = (self.anchors[i].clone() * self.stride[i]) \ + .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float() + return grid, anchor_grid + + +class Model(nn.Module): + def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes + super().__init__() + if isinstance(cfg, dict): + self.yaml = cfg # model dict + else: # is *.yaml + import yaml # for torch hub + self.yaml_file = Path(cfg).name + with open(cfg, encoding='ascii', errors='ignore') as f: + self.yaml = yaml.safe_load(f) # model dict + + # Define model + ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels + if nc and nc != self.yaml['nc']: + LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") + self.yaml['nc'] = nc # override yaml value + if anchors: + LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') + self.yaml['anchors'] = round(anchors) # override yaml value + self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist + self.names = [str(i) for i in range(self.yaml['nc'])] # default names + self.inplace = self.yaml.get('inplace', True) + + # Build strides, anchors + m = self.model[-1] # Detect() + if isinstance(m, Detect): + s = 256 # 2x min stride + m.inplace = self.inplace + m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))]) # forward + m.anchors /= m.stride.view(-1, 1, 1) + check_anchor_order(m) + self.stride = m.stride + self._initialize_biases() # only run once + + # Init weights, biases + initialize_weights(self) + self.info() + LOGGER.info('') + + def forward(self, x, augment=False, profile=False, visualize=False): + if augment: + return self._forward_augment(x) # augmented inference, None + return self._forward_once(x, profile, visualize) # single-scale inference, train + + def _forward_augment(self, x): + img_size = x.shape[-2:] # height, width + s = [1, 0.83, 0.67] # scales + f = [None, 3, None] # flips (2-ud, 3-lr) + y = [] # outputs + for si, fi in zip(s, f): + xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max())) + yi = self._forward_once(xi)[0] # forward + # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save + yi = self._descale_pred(yi, fi, si, img_size) + y.append(yi) + y = self._clip_augmented(y) # clip augmented tails + return torch.cat(y, 1), None # augmented inference, train + + def _forward_once(self, x, profile=False, visualize=False): + y, dt = [], [] # outputs + for m in self.model: + if m.f != -1: # if not from previous layer + x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers + if profile: + self._profile_one_layer(m, x, dt) + x = m(x) # run + y.append(x if m.i in self.save else None) # save output + if visualize: + feature_visualization(x, m.type, m.i, save_dir=visualize) + return x + + def _descale_pred(self, p, flips, scale, img_size): + # de-scale predictions following augmented inference (inverse operation) + if self.inplace: + p[..., :4] /= scale # de-scale + if flips == 2: + p[..., 1] = img_size[0] - p[..., 1] # de-flip ud + elif flips == 3: + p[..., 0] = img_size[1] - p[..., 0] # de-flip lr + else: + x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale + if flips == 2: + y = img_size[0] - y # de-flip ud + elif flips == 3: + x = img_size[1] - x # de-flip lr + p = torch.cat((x, y, wh, p[..., 4:]), -1) + return p + + def _clip_augmented(self, y): + # Clip YOLOv5 augmented inference tails + nl = self.model[-1].nl # number of detection layers (P3-P5) + g = sum(4 ** x for x in range(nl)) # grid points + e = 1 # exclude layer count + i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices + y[0] = y[0][:, :-i] # large + i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices + y[-1] = y[-1][:, i:] # small + return y + + def _profile_one_layer(self, m, x, dt): + c = isinstance(m, Detect) # is final layer, copy input as inplace fix + o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs + t = time_sync() + for _ in range(10): + m(x.copy() if c else x) + dt.append((time_sync() - t) * 100) + if m == self.model[0]: + LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") + LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') + if c: + LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total") + + def _initialize_biases(self, cf=None): # initialize biases into Detect(), cf is class frequency + # https://arxiv.org/abs/1708.02002 section 3.3 + # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1. + m = self.model[-1] # Detect() module + for mi, s in zip(m.m, m.stride): # from + b = mi.bias.view(m.na, -1) # conv.bias(255) to (3,85) + b.data[:, 4] += math.log(8 / (640 / s) ** 2) # obj (8 objects per 640 image) + b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # cls + mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True) + + def _print_biases(self): + m = self.model[-1] # Detect() module + for mi in m.m: # from + b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) + LOGGER.info( + ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) + + # def _print_weights(self): + # for m in self.model.modules(): + # if type(m) is Bottleneck: + # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights + + def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers + LOGGER.info('Fusing layers... ') + for m in self.model.modules(): + if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'): + m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv + delattr(m, 'bn') # remove batchnorm + m.forward = m.forward_fuse # update forward + self.info() + return self + + def info(self, verbose=False, img_size=640): # print model information + model_info(self, verbose, img_size) + + def _apply(self, fn): + # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers + self = super()._apply(fn) + m = self.model[-1] # Detect() + if isinstance(m, Detect): + m.stride = fn(m.stride) + m.grid = list(map(fn, m.grid)) + if isinstance(m.anchor_grid, list): + m.anchor_grid = list(map(fn, m.anchor_grid)) + return self + + +def parse_model(d, ch): # model_dict, input_channels(3) + LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}") + anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] + na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors + no = na * (nc + 5) # number of outputs = anchors * (classes + 5) + + layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out + for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args + m = eval(m) if isinstance(m, str) else m # eval strings + for j, a in enumerate(args): + try: + args[j] = eval(a) if isinstance(a, str) else a # eval strings + except NameError: + pass + + n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain + if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, + BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]: + c1, c2 = ch[f], args[0] + if c2 != no: # if not output + c2 = make_divisible(c2 * gw, 8) + + args = [c1, c2, *args[1:]] + if m in [BottleneckCSP, C3, C3TR, C3Ghost]: + args.insert(2, n) # number of repeats + n = 1 + elif m is nn.BatchNorm2d: + args = [ch[f]] + elif m is Concat: + c2 = sum(ch[x] for x in f) + elif m is Detect: + args.append([ch[x] for x in f]) + if isinstance(args[1], int): # number of anchors + args[1] = [list(range(args[1] * 2))] * len(f) + elif m is Contract: + c2 = ch[f] * args[0] ** 2 + elif m is Expand: + c2 = ch[f] // args[0] ** 2 + else: + c2 = ch[f] + + m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module + t = str(m)[8:-2].replace('__main__.', '') # module type + np = sum(x.numel() for x in m_.parameters()) # number params + m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params + LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print + save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist + layers.append(m_) + if i == 0: + ch = [] + ch.append(c2) + return nn.Sequential(*layers), sorted(save) + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--profile', action='store_true', help='profile model speed') + parser.add_argument('--test', action='store_true', help='test all yolo*.yaml') + opt = parser.parse_args() + opt.cfg = check_yaml(opt.cfg) # check YAML + print_args(FILE.stem, opt) + device = select_device(opt.device) + + # Create model + model = Model(opt.cfg).to(device) + model.train() + + # Profile + if opt.profile: + img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device) + y = model(img, profile=True) + + # Test all models + if opt.test: + for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'): + try: + _ = Model(cfg) + except Exception as e: + print(f'Error in {cfg}: {e}') + + # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898) + # from torch.utils.tensorboard import SummaryWriter + # tb_writer = SummaryWriter('.') + # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") + # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph diff --git a/src/yolov5/models/yolov5l.yaml b/src/yolov5/models/yolov5l.yaml new file mode 100644 index 00000000..ce8a5de4 --- /dev/null +++ b/src/yolov5/models/yolov5l.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.0 # model depth multiple +width_multiple: 1.0 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/yolov5m.yaml b/src/yolov5/models/yolov5m.yaml new file mode 100644 index 00000000..ad13ab37 --- /dev/null +++ b/src/yolov5/models/yolov5m.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.67 # model depth multiple +width_multiple: 0.75 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/yolov5n.yaml b/src/yolov5/models/yolov5n.yaml new file mode 100644 index 00000000..8a28a40d --- /dev/null +++ b/src/yolov5/models/yolov5n.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.25 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/yolov5s.yaml b/src/yolov5/models/yolov5s.yaml new file mode 100644 index 00000000..f35beabb --- /dev/null +++ b/src/yolov5/models/yolov5s.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 0.33 # model depth multiple +width_multiple: 0.50 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/models/yolov5x.yaml b/src/yolov5/models/yolov5x.yaml new file mode 100644 index 00000000..f617a027 --- /dev/null +++ b/src/yolov5/models/yolov5x.yaml @@ -0,0 +1,48 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license + +# Parameters +nc: 80 # number of classes +depth_multiple: 1.33 # model depth multiple +width_multiple: 1.25 # layer channel multiple +anchors: + - [10,13, 16,30, 33,23] # P3/8 + - [30,61, 62,45, 59,119] # P4/16 + - [116,90, 156,198, 373,326] # P5/32 + +# YOLOv5 v6.0 backbone +backbone: + # [from, number, module, args] + [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 + [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 + [-1, 3, C3, [128]], + [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 + [-1, 6, C3, [256]], + [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 + [-1, 9, C3, [512]], + [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 + [-1, 3, C3, [1024]], + [-1, 1, SPPF, [1024, 5]], # 9 + ] + +# YOLOv5 v6.0 head +head: + [[-1, 1, Conv, [512, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 6], 1, Concat, [1]], # cat backbone P4 + [-1, 3, C3, [512, False]], # 13 + + [-1, 1, Conv, [256, 1, 1]], + [-1, 1, nn.Upsample, [None, 2, 'nearest']], + [[-1, 4], 1, Concat, [1]], # cat backbone P3 + [-1, 3, C3, [256, False]], # 17 (P3/8-small) + + [-1, 1, Conv, [256, 3, 2]], + [[-1, 14], 1, Concat, [1]], # cat head P4 + [-1, 3, C3, [512, False]], # 20 (P4/16-medium) + + [-1, 1, Conv, [512, 3, 2]], + [[-1, 10], 1, Concat, [1]], # cat head P5 + [-1, 3, C3, [1024, False]], # 23 (P5/32-large) + + [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) + ] diff --git a/src/yolov5/requirements.txt b/src/yolov5/requirements.txt new file mode 100755 index 00000000..96fc9d1a --- /dev/null +++ b/src/yolov5/requirements.txt @@ -0,0 +1,37 @@ +# pip install -r requirements.txt + +# Base ---------------------------------------- +matplotlib>=3.2.2 +numpy>=1.18.5 +opencv-python>=4.1.2 +Pillow>=7.1.2 +PyYAML>=5.3.1 +requests>=2.23.0 +scipy>=1.4.1 +torch>=1.7.0 +torchvision>=0.8.1 +tqdm>=4.41.0 + +# Logging ------------------------------------- +tensorboard>=2.4.1 +# wandb + +# Plotting ------------------------------------ +pandas>=1.1.4 +seaborn>=0.11.0 + +# Export -------------------------------------- +# coremltools>=4.1 # CoreML export +# onnx>=1.9.0 # ONNX export +# onnx-simplifier>=0.3.6 # ONNX simplifier +# scikit-learn==0.19.2 # CoreML quantization +# tensorflow>=2.4.1 # TFLite export +# tensorflowjs>=3.9.0 # TF.js export +# openvino-dev # OpenVINO export + +# Extras -------------------------------------- +# albumentations>=1.0.3 +# Cython # for pycocotools https://github.com/cocodataset/cocoapi/issues/172 +# pycocotools>=2.0 # COCO mAP +# roboflow +thop # FLOPs computation diff --git a/src/yolov5/setup.cfg b/src/yolov5/setup.cfg new file mode 100644 index 00000000..20ea49a8 --- /dev/null +++ b/src/yolov5/setup.cfg @@ -0,0 +1,45 @@ +# Project-wide configuration file, can be used for package metadata and other toll configurations +# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments + +[metadata] +license_file = LICENSE +description-file = README.md + + +[tool:pytest] +norecursedirs = + .git + dist + build +addopts = + --doctest-modules + --durations=25 + --color=yes + + +[flake8] +max-line-length = 120 +exclude = .tox,*.egg,build,temp +select = E,W,F +doctests = True +verbose = 2 +# https://pep8.readthedocs.io/en/latest/intro.html#error-codes +format = pylint +# see: https://www.flake8rules.com/ +ignore = + E731 # Do not assign a lambda expression, use a def + F405 # name may be undefined, or defined from star imports: module + E402 # module level import not at top of file + F401 # module imported but unused + W504 # line break after binary operator + E127 # continuation line over-indented for visual indent + W504 # line break after binary operator + E231 # missing whitespace after â,â, â;â, or â:â + E501 # line too long + F403 # âfrom module import *â used; unable to detect undefined names + + +[isort] +# https://pycqa.github.io/isort/docs/configuration/options.html +line_length = 120 +multi_line_output = 0 diff --git a/src/yolov5/train.py b/src/yolov5/train.py new file mode 100644 index 00000000..88586fde --- /dev/null +++ b/src/yolov5/train.py @@ -0,0 +1,643 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Train a YOLOv5 model on a custom dataset. + +Models and datasets download automatically from the latest YOLOv5 release. +Models: https://github.com/ultralytics/yolov5/tree/master/models +Datasets: https://github.com/ultralytics/yolov5/tree/master/data +Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data + +Usage: + $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from pretrained (RECOMMENDED) + $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640 # from scratch +""" + +import argparse +import math +import os +import random +import sys +import time +from copy import deepcopy +from datetime import datetime +from pathlib import Path + +import numpy as np +import torch +import torch.distributed as dist +import torch.nn as nn +import yaml +from torch.cuda import amp +from torch.nn.parallel import DistributedDataParallel as DDP +from torch.optim import SGD, Adam, AdamW, lr_scheduler +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +import val # for end-of-epoch mAP +from models.experimental import attempt_load +from models.yolo import Model +from utils.autoanchor import check_anchors +from utils.autobatch import check_train_batch_size +from utils.callbacks import Callbacks +from utils.datasets import create_dataloader +from utils.downloads import attempt_download +from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements, + check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds, + intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle, + print_args, print_mutation, strip_optimizer) +from utils.loggers import Loggers +from utils.loggers.wandb.wandb_utils import check_wandb_resume +from utils.loss import ComputeLoss +from utils.metrics import fitness +from utils.plots import plot_evolve, plot_labels +from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first + +LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html +RANK = int(os.getenv('RANK', -1)) +WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) + + +def train(hyp, # path/to/hyp.yaml or hyp dictionary + opt, + device, + callbacks + ): + save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \ + Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \ + opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze + + # Directories + w = save_dir / 'weights' # weights dir + (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir + last, best = w / 'last.pt', w / 'best.pt' + + # Hyperparameters + if isinstance(hyp, str): + with open(hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) + + # Save run settings + if not evolve: + with open(save_dir / 'hyp.yaml', 'w') as f: + yaml.safe_dump(hyp, f, sort_keys=False) + with open(save_dir / 'opt.yaml', 'w') as f: + yaml.safe_dump(vars(opt), f, sort_keys=False) + + # Loggers + data_dict = None + if RANK in [-1, 0]: + loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance + if loggers.wandb: + data_dict = loggers.wandb.data_dict + if resume: + weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size + + # Register actions + for k in methods(loggers): + callbacks.register_action(k, callback=getattr(loggers, k)) + + # Config + plots = not evolve # create plots + cuda = device.type != 'cpu' + init_seeds(1 + RANK) + with torch_distributed_zero_first(LOCAL_RANK): + data_dict = data_dict or check_dataset(data) # check if None + train_path, val_path = data_dict['train'], data_dict['val'] + nc = 1 if single_cls else int(data_dict['nc']) # number of classes + names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names + assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' # check + is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO dataset + + # Model + check_suffix(weights, '.pt') # check weights + pretrained = weights.endswith('.pt') + if pretrained: + with torch_distributed_zero_first(LOCAL_RANK): + weights = attempt_download(weights) # download if not found locally + ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid CUDA memory leak + model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create + exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude keys + csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 + csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect + model.load_state_dict(csd, strict=False) # load + LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}') # report + else: + model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create + + # Freeze + freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # layers to freeze + for k, v in model.named_parameters(): + v.requires_grad = True # train all layers + if any(x in k for x in freeze): + LOGGER.info(f'freezing {k}') + v.requires_grad = False + + # Image size + gs = max(int(model.stride.max()), 32) # grid size (max stride) + imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple + + # Batch size + if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size + batch_size = check_train_batch_size(model, imgsz) + loggers.on_params_update({"batch_size": batch_size}) + + # Optimizer + nbs = 64 # nominal batch size + accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing + hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay + LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") + + g0, g1, g2 = [], [], [] # optimizer parameter groups + for v in model.modules(): + if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias + g2.append(v.bias) + if isinstance(v, nn.BatchNorm2d): # weight (no decay) + g0.append(v.weight) + elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with decay) + g1.append(v.weight) + + if opt.optimizer == 'Adam': + optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum + elif opt.optimizer == 'AdamW': + optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum + else: + optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) + + optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) # add g1 with weight_decay + optimizer.add_param_group({'params': g2}) # add g2 (biases) + LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups " + f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") + del g0, g1, g2 + + # Scheduler + if opt.cos_lr: + lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf'] + else: + lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear + scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) # plot_lr_scheduler(optimizer, scheduler, epochs) + + # EMA + ema = ModelEMA(model) if RANK in [-1, 0] else None + + # Resume + start_epoch, best_fitness = 0, 0.0 + if pretrained: + # Optimizer + if ckpt['optimizer'] is not None: + optimizer.load_state_dict(ckpt['optimizer']) + best_fitness = ckpt['best_fitness'] + + # EMA + if ema and ckpt.get('ema'): + ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) + ema.updates = ckpt['updates'] + + # Epochs + start_epoch = ckpt['epoch'] + 1 + if resume: + assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.' + if epochs < start_epoch: + LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.") + epochs += ckpt['epoch'] # finetune additional epochs + + del ckpt, csd + + # DP mode + if cuda and RANK == -1 and torch.cuda.device_count() > 1: + LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n' + 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.') + model = torch.nn.DataParallel(model) + + # SyncBatchNorm + if opt.sync_bn and cuda and RANK != -1: + model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) + LOGGER.info('Using SyncBatchNorm()') + + # Trainloader + train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, + hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache, + rect=opt.rect, rank=LOCAL_RANK, workers=workers, + image_weights=opt.image_weights, quad=opt.quad, + prefix=colorstr('train: '), shuffle=True) + mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class + nb = len(train_loader) # number of batches + assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}' + + # Process 0 + if RANK in [-1, 0]: + val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, + hyp=hyp, cache=None if noval else opt.cache, + rect=True, rank=-1, workers=workers * 2, pad=0.5, + prefix=colorstr('val: '))[0] + + if not resume: + labels = np.concatenate(dataset.labels, 0) + # c = torch.tensor(labels[:, 0]) # classes + # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency + # model._initialize_biases(cf.to(device)) + if plots: + plot_labels(labels, names, save_dir) + + # Anchors + if not opt.noautoanchor: + check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) + model.half().float() # pre-reduce anchor precision + + callbacks.run('on_pretrain_routine_end') + + # DDP mode + if cuda and RANK != -1: + model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK) + + # Model attributes + nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps) + hyp['box'] *= 3 / nl # scale to layers + hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers + hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers + hyp['label_smoothing'] = opt.label_smoothing + model.nc = nc # attach number of classes to model + model.hyp = hyp # attach hyperparameters to model + model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights + model.names = names + + # Start training + t0 = time.time() + nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations) + # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training + last_opt_step = -1 + maps = np.zeros(nc) # mAP per class + results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) + scheduler.last_epoch = start_epoch - 1 # do not move + scaler = amp.GradScaler(enabled=cuda) + stopper = EarlyStopping(patience=opt.patience) + compute_loss = ComputeLoss(model) # init loss class + LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' + f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' + f"Logging results to {colorstr('bold', save_dir)}\n" + f'Starting training for {epochs} epochs...') + for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ + model.train() + + # Update image weights (optional, single-GPU only) + if opt.image_weights: + cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights + iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights + dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx + + # Update mosaic border (optional) + # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) + # dataset.mosaic_border = [b - imgsz, -b] # height, width borders + + mloss = torch.zeros(3, device=device) # mean losses + if RANK != -1: + train_loader.sampler.set_epoch(epoch) + pbar = enumerate(train_loader) + LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size')) + if RANK in [-1, 0]: + pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar + optimizer.zero_grad() + for i, (imgs, targets, paths, _) in pbar: # batch ------------------------------------------------------------- + ni = i + nb * epoch # number integrated batches (since train start) + imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255 to 0.0-1.0 + + # Warmup + if ni <= nw: + xi = [0, nw] # x interp + # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou) + accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) + for j, x in enumerate(optimizer.param_groups): + # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 + x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)]) + if 'momentum' in x: + x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']]) + + # Multi-scale + if opt.multi_scale: + sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size + sf = sz / max(imgs.shape[2:]) # scale factor + if sf != 1: + ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple) + imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False) + + # Forward + with amp.autocast(enabled=cuda): + pred = model(imgs) # forward + loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size + if RANK != -1: + loss *= WORLD_SIZE # gradient averaged between devices in DDP mode + if opt.quad: + loss *= 4. + + # Backward + scaler.scale(loss).backward() + + # Optimize + if ni - last_opt_step >= accumulate: + scaler.step(optimizer) # optimizer.step + scaler.update() + optimizer.zero_grad() + if ema: + ema.update(model) + last_opt_step = ni + + # Log + if RANK in [-1, 0]: + mloss = (mloss * i + loss_items) / (i + 1) # update mean losses + mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G' # (GB) + pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % ( + f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1])) + callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn) + if callbacks.stop_training: + return + # end batch ------------------------------------------------------------------------------------------------ + + # Scheduler + lr = [x['lr'] for x in optimizer.param_groups] # for loggers + scheduler.step() + + if RANK in [-1, 0]: + # mAP + callbacks.run('on_train_epoch_end', epoch=epoch) + ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights']) + final_epoch = (epoch + 1 == epochs) or stopper.possible_stop + if not noval or final_epoch: # Calculate mAP + results, maps, _ = val.run(data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + model=ema.ema, + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + plots=False, + callbacks=callbacks, + compute_loss=compute_loss) + + # Update best mAP + fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95] + if fi > best_fitness: + best_fitness = fi + log_vals = list(mloss) + list(results) + lr + callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) + + # Save model + if (not nosave) or (final_epoch and not evolve): # if save + ckpt = {'epoch': epoch, + 'best_fitness': best_fitness, + 'model': deepcopy(de_parallel(model)).half(), + 'ema': deepcopy(ema.ema).half(), + 'updates': ema.updates, + 'optimizer': optimizer.state_dict(), + 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, + 'date': datetime.now().isoformat()} + + # Save last, best and delete + torch.save(ckpt, last) + if best_fitness == fi: + torch.save(ckpt, best) + if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): + torch.save(ckpt, w / f'epoch{epoch}.pt') + del ckpt + callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) + + # Stop Single-GPU + if RANK == -1 and stopper(epoch=epoch, fitness=fi): + break + + # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576 + # stop = stopper(epoch=epoch, fitness=fi) + # if RANK == 0: + # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks + + # Stop DPP + # with torch_distributed_zero_first(RANK): + # if stop: + # break # must break all DDP ranks + + # end epoch ---------------------------------------------------------------------------------------------------- + # end training ----------------------------------------------------------------------------------------------------- + if RANK in [-1, 0]: + LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.') + for f in last, best: + if f.exists(): + strip_optimizer(f) # strip optimizers + if f is best: + LOGGER.info(f'\nValidating {f}...') + results, _, _ = val.run(data_dict, + batch_size=batch_size // WORLD_SIZE * 2, + imgsz=imgsz, + model=attempt_load(f, device).half(), + iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65 + single_cls=single_cls, + dataloader=val_loader, + save_dir=save_dir, + save_json=is_coco, + verbose=True, + plots=True, + callbacks=callbacks, + compute_loss=compute_loss) # val best model with plots + if is_coco: + callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi) + + callbacks.run('on_train_end', last, best, plots, epoch, results) + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") + + torch.cuda.empty_cache() + return results + + +def parse_opt(known=False): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path') + parser.add_argument('--cfg', type=str, default='', help='model.yaml path') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path') + parser.add_argument('--epochs', type=int, default=300) + parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') + parser.add_argument('--rect', action='store_true', help='rectangular training') + parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') + parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') + parser.add_argument('--noval', action='store_true', help='only validate final epoch') + parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') + parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations') + parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') + parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"') + parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%') + parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class') + parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer') + parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--quad', action='store_true', help='quad dataloader') + parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') + parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon') + parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)') + parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2') + parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)') + parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify') + + # Weights & Biases arguments + parser.add_argument('--entity', default=None, help='W&B: Entity') + parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option') + parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval') + parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use') + + opt = parser.parse_known_args()[0] if known else parser.parse_args() + return opt + + +def main(opt, callbacks=Callbacks()): + # Checks + if RANK in [-1, 0]: + print_args(FILE.stem, opt) + check_git_status() + check_requirements(exclude=['thop']) + + # Resume + if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an interrupted run + ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path + assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' + with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: + opt = argparse.Namespace(**yaml.safe_load(f)) # replace + opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate + LOGGER.info(f'Resuming training from {ckpt}') + else: + opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ + check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project) # checks + assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' + if opt.evolve: + if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to runs/evolve + opt.project = str(ROOT / 'runs/evolve') + opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and disable resume + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) + + # DDP mode + device = select_device(opt.device, batch_size=opt.batch_size) + if LOCAL_RANK != -1: + msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' + assert not opt.image_weights, f'--image-weights {msg}' + assert not opt.evolve, f'--evolve {msg}' + assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size' + assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE' + assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command' + torch.cuda.set_device(LOCAL_RANK) + device = torch.device('cuda', LOCAL_RANK) + dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") + + # Train + if not opt.evolve: + train(opt.hyp, opt, device, callbacks) + if WORLD_SIZE > 1 and RANK == 0: + LOGGER.info('Destroying process group... ') + dist.destroy_process_group() + + # Evolve hyperparameters (optional) + else: + # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) + meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3) + 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf) + 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1 + 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay + 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok) + 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum + 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr + 'box': (1, 0.02, 0.2), # box loss gain + 'cls': (1, 0.2, 4.0), # cls loss gain + 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight + 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels) + 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight + 'iou_t': (0, 0.1, 0.7), # IoU training threshold + 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold + 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore) + 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5) + 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction) + 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction) + 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction) + 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg) + 'translate': (1, 0.0, 0.9), # image translation (+/- fraction) + 'scale': (1, 0.0, 0.9), # image scale (+/- gain) + 'shear': (1, 0.0, 10.0), # image shear (+/- deg) + 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001 + 'flipud': (1, 0.0, 1.0), # image flip up-down (probability) + 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability) + 'mosaic': (1, 0.0, 1.0), # image mixup (probability) + 'mixup': (1, 0.0, 1.0), # image mixup (probability) + 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability) + + with open(opt.hyp, errors='ignore') as f: + hyp = yaml.safe_load(f) # load hyps dict + if 'anchors' not in hyp: # anchors commented in hyp.yaml + hyp['anchors'] = 3 + opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save final epoch + # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices + evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' + if opt.bucket: + os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download evolve.csv if exists + + for _ in range(opt.evolve): # generations to evolve + if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate + # Select parent(s) + parent = 'single' # parent selection method: 'single' or 'weighted' + x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) + n = min(5, len(x)) # number of previous results to consider + x = x[np.argsort(-fitness(x))][:n] # top n mutations + w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0) + if parent == 'single' or len(x) == 1: + # x = x[random.randint(0, n - 1)] # random selection + x = x[random.choices(range(n), weights=w)[0]] # weighted selection + elif parent == 'weighted': + x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination + + # Mutate + mp, s = 0.8, 0.2 # mutation probability, sigma + npr = np.random + npr.seed(int(time.time())) + g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1 + ng = len(meta) + v = np.ones(ng) + while all(v == 1): # mutate until a change occurs (prevent duplicates) + v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0) + for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300) + hyp[k] = float(x[i + 7] * v[i]) # mutate + + # Constrain to limits + for k, v in meta.items(): + hyp[k] = max(hyp[k], v[1]) # lower limit + hyp[k] = min(hyp[k], v[2]) # upper limit + hyp[k] = round(hyp[k], 5) # significant digits + + # Train mutation + results = train(hyp.copy(), opt, device, callbacks) + callbacks = Callbacks() + # Write mutation results + print_mutation(results, hyp.copy(), save_dir, opt.bucket) + + # Plot results + plot_evolve(evolve_csv) + LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' + f"Results saved to {colorstr('bold', save_dir)}\n" + f'Usage example: $ python train.py --hyp {evolve_yaml}') + + +def run(**kwargs): + # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt') + opt = parse_opt(True) + for k, v in kwargs.items(): + setattr(opt, k, v) + main(opt) + return opt + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) diff --git a/src/yolov5/tutorial.ipynb b/src/yolov5/tutorial.ipynb new file mode 100644 index 00000000..09b2b33b --- /dev/null +++ b/src/yolov5/tutorial.ipynb @@ -0,0 +1,1102 @@ +{ + "nbformat": 4, + "nbformat_minor": 0, + "metadata": { + "colab": { + "name": "YOLOv5 Tutorial", + "provenance": [], + "collapsed_sections": [], + "include_colab_link": true + }, + "kernelspec": { + "name": "python3", + "display_name": "Python 3" + }, + "accelerator": "GPU", + "widgets": { + "application/vnd.jupyter.widget-state+json": { + "eb95db7cae194218b3fcefb439b6352f": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HBoxModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HBoxView", + "_dom_classes": [], + "_model_name": "HBoxModel", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.5.0", + "box_style": "", + "layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d", + "_model_module": "@jupyter-widgets/controls", + "children": [ + "IPY_MODEL_384a001876054c93b0af45cd1e960bfe", + "IPY_MODEL_dded0aeae74440f7ba2ffa0beb8dd612", + "IPY_MODEL_5296d28be75740b2892ae421bbec3657" + ] + } + }, + "769ecde6f2e64bacb596ce972f8d3d2d": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "384a001876054c93b0af45cd1e960bfe": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "â", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": "100%", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_25621cff5d16448cb7260e839fd0f543" + } + }, + "dded0aeae74440f7ba2ffa0beb8dd612": { + "model_module": "@jupyter-widgets/controls", + "model_name": "FloatProgressModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "ProgressView", + "style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727", + "_dom_classes": [], + "description": "", + "_model_name": "FloatProgressModel", + "bar_style": "success", + "max": 818322941, + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": 818322941, + "_view_count": null, + "_view_module_version": "1.5.0", + "orientation": "horizontal", + "min": 0, + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_c4c4593c10904cb5b8a5724d60c7e181" + } + }, + "5296d28be75740b2892ae421bbec3657": { + "model_module": "@jupyter-widgets/controls", + "model_name": "HTMLModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "HTMLView", + "style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6", + "_dom_classes": [], + "description": "", + "_model_name": "HTMLModel", + "placeholder": "â", + "_view_module": "@jupyter-widgets/controls", + "_model_module_version": "1.5.0", + "value": " 780M/780M [00:11<00:00, 91.9MB/s]", + "_view_count": null, + "_view_module_version": "1.5.0", + "description_tooltip": null, + "_model_module": "@jupyter-widgets/controls", + "layout": "IPY_MODEL_65efdfd0d26c46e79c8c5ff3b77126cc" + } + }, + "9f09facb2a6c4a7096810d327c8b551c": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "25621cff5d16448cb7260e839fd0f543": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "0ce7164fc0c74bb9a2b5c7037375a727": { + "model_module": "@jupyter-widgets/controls", + "model_name": "ProgressStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "ProgressStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "bar_color": null, + "_model_module": "@jupyter-widgets/controls" + } + }, + "c4c4593c10904cb5b8a5724d60c7e181": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + }, + "473371611126476c88d5d42ec7031ed6": { + "model_module": "@jupyter-widgets/controls", + "model_name": "DescriptionStyleModel", + "model_module_version": "1.5.0", + "state": { + "_view_name": "StyleView", + "_model_name": "DescriptionStyleModel", + "description_width": "", + "_view_module": "@jupyter-widgets/base", + "_model_module_version": "1.5.0", + "_view_count": null, + "_view_module_version": "1.2.0", + "_model_module": "@jupyter-widgets/controls" + } + }, + "65efdfd0d26c46e79c8c5ff3b77126cc": { + "model_module": "@jupyter-widgets/base", + "model_name": "LayoutModel", + "model_module_version": "1.2.0", + "state": { + "_view_name": "LayoutView", + "grid_template_rows": null, + "right": null, + "justify_content": null, + "_view_module": "@jupyter-widgets/base", + "overflow": null, + "_model_module_version": "1.2.0", + "_view_count": null, + "flex_flow": null, + "width": null, + "min_width": null, + "border": null, + "align_items": null, + "bottom": null, + "_model_module": "@jupyter-widgets/base", + "top": null, + "grid_column": null, + "overflow_y": null, + "overflow_x": null, + "grid_auto_flow": null, + "grid_area": null, + "grid_template_columns": null, + "flex": null, + "_model_name": "LayoutModel", + "justify_items": null, + "grid_row": null, + "max_height": null, + "align_content": null, + "visibility": null, + "align_self": null, + "height": null, + "min_height": null, + "padding": null, + "grid_auto_rows": null, + "grid_gap": null, + "max_width": null, + "order": null, + "_view_module_version": "1.2.0", + "grid_template_areas": null, + "object_position": null, + "object_fit": null, + "grid_auto_columns": null, + "margin": null, + "display": null, + "left": null + } + } + } + } + }, + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "view-in-github", + "colab_type": "text" + }, + "source": [ + "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "t6MPjfT5NrKQ" + }, + "source": [ + "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n", + "<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n", + "\n", + "This is the **official YOLOv5 đ notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n", + "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7mGmQbAO5pQb" + }, + "source": [ + "# Setup\n", + "\n", + "Clone repo, install dependencies and check PyTorch and GPU." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "wbvMlHd_QwMG", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "3809e5a9-dd41-4577-fe62-5531abf7cca2" + }, + "source": [ + "!git clone https://github.com/ultralytics/yolov5 # clone\n", + "%cd yolov5\n", + "%pip install -qr requirements.txt # install\n", + "\n", + "import torch\n", + "from yolov5 import utils\n", + "display = utils.notebook_init() # checks" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "YOLOv5 đ v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", + "Setup complete â \n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4JnkELT0cIJg" + }, + "source": [ + "# 1. Inference\n", + "\n", + "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n", + "\n", + "```shell\n", + "python detect.py --source 0 # webcam\n", + " img.jpg # image \n", + " vid.mp4 # video\n", + " path/ # directory\n", + " path/*.jpg # glob\n", + " 'https://youtu.be/Zgi9g1ksQHc' # YouTube\n", + " 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream\n", + "```" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "zR9ZbuQCH7FX", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8f7e6588-215d-4ebd-93af-88b871e770a7" + }, + "source": [ + "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n", + "display.Image(filename='runs/detect/exp/zidane.jpg', width=600)" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n", + "YOLOv5 đ v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", + "\n", + "Fusing layers... \n", + "Model Summary: 213 layers, 7225885 parameters, 0 gradients\n", + "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.007s)\n", + "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.007s)\n", + "Speed: 0.5ms pre-process, 6.9ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n", + "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hkAzDWJ7cWTr" + }, + "source": [ + " \n", + "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "0eq1SMWl6Sfn" + }, + "source": [ + "# 2. Validate\n", + "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eyTZYGgRjnMc" + }, + "source": [ + "## COCO val\n", + "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "WQPtK1QYVaD_", + "colab": { + "base_uri": "https://localhost:8080/", + "height": 48, + "referenced_widgets": [ + "eb95db7cae194218b3fcefb439b6352f", + "769ecde6f2e64bacb596ce972f8d3d2d", + "384a001876054c93b0af45cd1e960bfe", + "dded0aeae74440f7ba2ffa0beb8dd612", + "5296d28be75740b2892ae421bbec3657", + "9f09facb2a6c4a7096810d327c8b551c", + "25621cff5d16448cb7260e839fd0f543", + "0ce7164fc0c74bb9a2b5c7037375a727", + "c4c4593c10904cb5b8a5724d60c7e181", + "473371611126476c88d5d42ec7031ed6", + "65efdfd0d26c46e79c8c5ff3b77126cc" + ] + }, + "outputId": "bcf9a448-1f9b-4a41-ad49-12f181faf05a" + }, + "source": [ + "# Download COCO val\n", + "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n", + "!unzip -q tmp.zip -d ../datasets && rm tmp.zip" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "display_data", + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "eb95db7cae194218b3fcefb439b6352f", + "version_minor": 0, + "version_major": 2 + }, + "text/plain": [ + " 0%| | 0.00/780M [00:00<?, ?B/s]" + ] + }, + "metadata": {} + } + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "X58w8JLpMnjH", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "74f1dfa9-6b6d-4b36-f67e-bbae243869f9" + }, + "source": [ + "# Run YOLOv5x on COCO val\n", + "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n", + "YOLOv5 đ v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", + "\n", + "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt to yolov5x.pt...\n", + "100% 166M/166M [00:03<00:00, 54.1MB/s]\n", + "\n", + "Fusing layers... \n", + "Model Summary: 444 layers, 86705005 parameters, 0 gradients\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2636.64it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n", + " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00, 2.17it/s]\n", + " all 5000 36335 0.729 0.63 0.683 0.496\n", + "Speed: 0.1ms pre-process, 4.9ms inference, 1.9ms NMS per image at shape (32, 3, 640, 640)\n", + "\n", + "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n", + "loading annotations into memory...\n", + "Done (t=0.46s)\n", + "creating index...\n", + "index created!\n", + "Loading and preparing results...\n", + "DONE (t=5.15s)\n", + "creating index...\n", + "index created!\n", + "Running per image evaluation...\n", + "Evaluate annotation type *bbox*\n", + "DONE (t=90.39s).\n", + "Accumulating evaluation results...\n", + "DONE (t=14.54s).\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.507\n", + " Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.689\n", + " Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.552\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559\n", + " Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.381\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.630\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.682\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.732\n", + " Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829\n", + "Results saved to \u001b[1mruns/val/exp\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "rc_KbFk0juX2" + }, + "source": [ + "## COCO test\n", + "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794." + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "V0AJnSeCIHyJ" + }, + "source": [ + "# Download COCO test-dev2017\n", + "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017labels.zip', 'tmp.zip')\n", + "!unzip -q tmp.zip -d ../datasets && rm tmp.zip\n", + "!f=\"test2017.zip\" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d ../datasets/coco/images" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "29GJXAP_lPrt" + }, + "source": [ + "# Run YOLOv5x on COCO test\n", + "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZY2VXXXu74w5" + }, + "source": [ + "# 3. Train\n", + "\n", + "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n", + "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n", + "<br><br>\n", + "\n", + "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n", + "\n", + "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n", + "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n", + "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n", + "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n", + "<br><br>\n", + "\n", + "## Train on Custom Data with Roboflow đ NEW\n", + "\n", + "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n", + "\n", + "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n", + "- Custom Training Notebook: [](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n", + "<br>\n", + "\n", + "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "bOy5KI2ncnWd" + }, + "source": [ + "# Tensorboard (optional)\n", + "%load_ext tensorboard\n", + "%tensorboard --logdir runs/train" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "2fLAV42oNb7M" + }, + "source": [ + "# Weights & Biases (optional)\n", + "%pip install -q wandb\n", + "import wandb\n", + "wandb.login()" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "1NcFxRcFdJ_O", + "colab": { + "base_uri": "https://localhost:8080/" + }, + "outputId": "8724d13d-6711-4a12-d96a-1c655e5c3549" + }, + "source": [ + "# Train YOLOv5s on COCO128 for 3 epochs\n", + "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache" + ], + "execution_count": null, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n", + "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 â \n", + "YOLOv5 đ v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n", + "\n", + "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n", + "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 đ runs (RECOMMENDED)\n", + "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n", + "\n", + " from n params module arguments \n", + " 0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2] \n", + " 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n", + " 2 -1 1 18816 models.common.C3 [64, 64, 1] \n", + " 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n", + " 4 -1 2 115712 models.common.C3 [128, 128, 2] \n", + " 5 -1 1 295424 models.common.Conv [128, 256, 3, 2] \n", + " 6 -1 3 625152 models.common.C3 [256, 256, 3] \n", + " 7 -1 1 1180672 models.common.Conv [256, 512, 3, 2] \n", + " 8 -1 1 1182720 models.common.C3 [512, 512, 1] \n", + " 9 -1 1 656896 models.common.SPPF [512, 512, 5] \n", + " 10 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n", + " 11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 12 [-1, 6] 1 0 models.common.Concat [1] \n", + " 13 -1 1 361984 models.common.C3 [512, 256, 1, False] \n", + " 14 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n", + " 15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n", + " 16 [-1, 4] 1 0 models.common.Concat [1] \n", + " 17 -1 1 90880 models.common.C3 [256, 128, 1, False] \n", + " 18 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n", + " 19 [-1, 14] 1 0 models.common.Concat [1] \n", + " 20 -1 1 296448 models.common.C3 [256, 256, 1, False] \n", + " 21 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n", + " 22 [-1, 10] 1 0 models.common.Concat [1] \n", + " 23 -1 1 1182720 models.common.C3 [512, 512, 1, False] \n", + " 24 [17, 20, 23] 1 229245 models.yolo.Detect [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n", + "Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n", + "\n", + "Transferred 349/349 items from yolov5s.pt\n", + "Scaled weight_decay = 0.0005\n", + "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias\n", + "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n", + "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 296.04it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n", + "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n", + "Plotting labels... \n", + "\n", + "\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n", + "Image sizes 640 train, 640 val\n", + "Using 2 dataloader workers\n", + "Logging results to \u001b[1mruns/train/exp\u001b[0m\n", + "Starting training for 3 epochs...\n", + "\n", + " Epoch gpu_mem box obj cls labels img_size\n", + " 0/2 3.62G 0.04621 0.0711 0.02112 203 640: 100% 8/8 [00:04<00:00, 1.99it/s]\n", + " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.37it/s]\n", + " all 128 929 0.655 0.547 0.622 0.41\n", + "\n", + " Epoch gpu_mem box obj cls labels img_size\n", + " 1/2 5.31G 0.04564 0.06898 0.02116 143 640: 100% 8/8 [00:01<00:00, 4.77it/s]\n", + " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.27it/s]\n", + " all 128 929 0.68 0.554 0.632 0.419\n", + "\n", + " Epoch gpu_mem box obj cls labels img_size\n", + " 2/2 5.31G 0.04487 0.06883 0.01998 253 640: 100% 8/8 [00:01<00:00, 4.91it/s]\n", + " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00, 4.30it/s]\n", + " all 128 929 0.71 0.544 0.629 0.423\n", + "\n", + "3 epochs completed in 0.003 hours.\n", + "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n", + "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n", + "\n", + "Validating runs/train/exp/weights/best.pt...\n", + "Fusing layers... \n", + "Model Summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n", + " Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00, 1.04it/s]\n", + " all 128 929 0.71 0.544 0.63 0.423\n", + " person 128 254 0.816 0.669 0.774 0.507\n", + " bicycle 128 6 0.799 0.667 0.614 0.371\n", + " car 128 46 0.803 0.355 0.486 0.209\n", + " motorcycle 128 5 0.704 0.6 0.791 0.583\n", + " airplane 128 6 1 0.795 0.995 0.717\n", + " bus 128 7 0.656 0.714 0.72 0.606\n", + " train 128 3 0.852 1 0.995 0.682\n", + " truck 128 12 0.521 0.25 0.395 0.215\n", + " boat 128 6 0.795 0.333 0.445 0.137\n", + " traffic light 128 14 0.576 0.143 0.24 0.161\n", + " stop sign 128 2 0.636 0.5 0.828 0.713\n", + " bench 128 9 0.972 0.444 0.575 0.25\n", + " bird 128 16 0.939 0.968 0.988 0.645\n", + " cat 128 4 0.984 0.75 0.822 0.694\n", + " dog 128 9 0.888 0.667 0.903 0.54\n", + " horse 128 2 0.689 1 0.995 0.697\n", + " elephant 128 17 0.96 0.882 0.943 0.681\n", + " bear 128 1 0.549 1 0.995 0.995\n", + " zebra 128 4 0.86 1 0.995 0.952\n", + " giraffe 128 9 0.822 0.778 0.905 0.57\n", + " backpack 128 6 1 0.309 0.457 0.195\n", + " umbrella 128 18 0.775 0.576 0.74 0.418\n", + " handbag 128 19 0.628 0.105 0.167 0.111\n", + " tie 128 7 0.96 0.571 0.701 0.441\n", + " suitcase 128 4 1 0.895 0.995 0.621\n", + " frisbee 128 5 0.641 0.8 0.798 0.664\n", + " skis 128 1 0.627 1 0.995 0.497\n", + " snowboard 128 7 0.988 0.714 0.768 0.556\n", + " sports ball 128 6 0.671 0.5 0.579 0.339\n", + " kite 128 10 0.631 0.515 0.598 0.221\n", + " baseball bat 128 4 0.47 0.456 0.277 0.137\n", + " baseball glove 128 7 0.459 0.429 0.334 0.182\n", + " skateboard 128 5 0.7 0.48 0.736 0.548\n", + " tennis racket 128 7 0.559 0.571 0.538 0.315\n", + " bottle 128 18 0.607 0.389 0.484 0.282\n", + " wine glass 128 16 0.722 0.812 0.82 0.385\n", + " cup 128 36 0.881 0.361 0.532 0.312\n", + " fork 128 6 0.384 0.167 0.239 0.191\n", + " knife 128 16 0.908 0.616 0.681 0.443\n", + " spoon 128 22 0.836 0.364 0.536 0.264\n", + " bowl 128 28 0.793 0.536 0.633 0.471\n", + " banana 128 1 0 0 0.142 0.0995\n", + " sandwich 128 2 0 0 0.0951 0.0717\n", + " orange 128 4 1 0 0.67 0.317\n", + " broccoli 128 11 0.345 0.182 0.283 0.243\n", + " carrot 128 24 0.688 0.459 0.612 0.402\n", + " hot dog 128 2 0.424 0.771 0.497 0.473\n", + " pizza 128 5 0.622 1 0.824 0.551\n", + " donut 128 14 0.703 1 0.952 0.853\n", + " cake 128 4 0.733 1 0.945 0.777\n", + " chair 128 35 0.512 0.486 0.488 0.222\n", + " couch 128 6 0.68 0.36 0.746 0.406\n", + " potted plant 128 14 0.797 0.714 0.808 0.482\n", + " bed 128 3 1 0 0.474 0.318\n", + " dining table 128 13 0.852 0.445 0.478 0.315\n", + " toilet 128 2 0.512 0.5 0.554 0.487\n", + " tv 128 2 0.754 1 0.995 0.895\n", + " laptop 128 3 1 0 0.39 0.147\n", + " mouse 128 2 1 0 0.0283 0.0226\n", + " remote 128 8 0.747 0.625 0.636 0.488\n", + " cell phone 128 8 0.555 0.166 0.417 0.222\n", + " microwave 128 3 0.417 1 0.995 0.732\n", + " oven 128 5 0.37 0.4 0.432 0.249\n", + " sink 128 6 0.356 0.167 0.269 0.149\n", + " refrigerator 128 5 0.705 0.8 0.814 0.45\n", + " book 128 29 0.628 0.138 0.298 0.136\n", + " clock 128 9 0.857 0.778 0.893 0.574\n", + " vase 128 2 0.242 1 0.663 0.622\n", + " scissors 128 1 1 0 0.0207 0.00207\n", + " teddy bear 128 21 0.847 0.381 0.622 0.345\n", + " toothbrush 128 5 0.99 0.6 0.662 0.45\n", + "Results saved to \u001b[1mruns/train/exp\u001b[0m\n" + ] + } + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "15glLzbQx5u0" + }, + "source": [ + "# 4. Visualize" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DLI1JmHU7B0l" + }, + "source": [ + "## Weights & Biases Logging đ NEW\n", + "\n", + "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n", + "\n", + "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n", + "\n", + "<p align=\"left\"><img width=\"900\" alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png\"></p>" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "-WPvRbS5Swl6" + }, + "source": [ + "## Local Logging\n", + "\n", + "All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n", + "\n", + "> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\"> \n", + "`train_batch0.jpg` shows train batch 0 mosaics and labels\n", + "\n", + "> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\"> \n", + "`test_batch0_labels.jpg` shows val batch 0 labels\n", + "\n", + "> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\"> \n", + "`test_batch0_pred.jpg` shows val batch 0 _predictions_\n", + "\n", + "Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n", + "\n", + "```python\n", + "from utils.plots import plot_results \n", + "plot_results('path/to/results.csv') # plot 'results.csv' as 'results.png'\n", + "```\n", + "\n", + "<img align=\"left\" width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\">" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Zelyeqbyt3GD" + }, + "source": [ + "# Environments\n", + "\n", + "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n", + "\n", + "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n", + "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n", + "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n", + "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6Qu7Iesl0p54" + }, + "source": [ + "# Status\n", + "\n", + "\n", + "\n", + "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IEijrePND_2I" + }, + "source": [ + "# Appendix\n", + "\n", + "Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.\n" + ] + }, + { + "cell_type": "code", + "metadata": { + "id": "mcKoSIK2WSzj" + }, + "source": [ + "# Reproduce\n", + "for x in 'yolov5n', 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n", + " !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed # speed\n", + " !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65 # mAP" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "GMusP4OAxFu6" + }, + "source": [ + "# PyTorch Hub\n", + "import torch\n", + "\n", + "# Model\n", + "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')\n", + "\n", + "# Images\n", + "dir = 'https://ultralytics.com/images/'\n", + "imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')] # batch of images\n", + "\n", + "# Inference\n", + "results = model(imgs)\n", + "results.print() # or .show(), .save()" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "FGH0ZjkGjejy" + }, + "source": [ + "# CI Checks\n", + "%%shell\n", + "export PYTHONPATH=\"$PWD\" # to run *.py. files in subdirectories\n", + "rm -rf runs # remove runs/\n", + "for m in yolov5n; do # models\n", + " python train.py --img 64 --batch 32 --weights $m.pt --epochs 1 --device 0 # train pretrained\n", + " python train.py --img 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device 0 # train scratch\n", + " for d in 0 cpu; do # devices\n", + " python val.py --weights $m.pt --device $d # val official\n", + " python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n", + " python detect.py --weights $m.pt --device $d # detect official\n", + " python detect.py --weights runs/train/exp/weights/best.pt --device $d # detect custom\n", + " done\n", + " python hubconf.py # hub\n", + " python models/yolo.py --cfg $m.yaml # build PyTorch model\n", + " python models/tf.py --weights $m.pt # build TensorFlow model\n", + " python export.py --img 64 --batch 1 --weights $m.pt --include torchscript onnx # export\n", + "done" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "gogI-kwi3Tye" + }, + "source": [ + "# Profile\n", + "from utils.torch_utils import profile\n", + "\n", + "m1 = lambda x: x * torch.sigmoid(x)\n", + "m2 = torch.nn.SiLU()\n", + "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "RVRSOhEvUdb5" + }, + "source": [ + "# Evolve\n", + "!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve\n", + "!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket # upload results (optional)" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "BSgFCAcMbk1R" + }, + "source": [ + "# VOC\n", + "for b, m in zip([64, 64, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']): # zip(batch_size, model)\n", + " !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m}" + ], + "execution_count": null, + "outputs": [] + }, + { + "cell_type": "code", + "metadata": { + "id": "VTRwsvA9u7ln" + }, + "source": [ + "# TensorRT \n", + "# https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pip\n", + "!pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com # install\n", + "!python export.py --weights yolov5s.pt --include engine --imgsz 640 640 --device 0 # export\n", + "!python detect.py --weights yolov5s.engine --imgsz 640 640 --device 0 # inference" + ], + "execution_count": null, + "outputs": [] + } + ] +} diff --git a/src/yolov5/utils/__init__.py b/src/yolov5/utils/__init__.py new file mode 100644 index 00000000..4658ed64 --- /dev/null +++ b/src/yolov5/utils/__init__.py @@ -0,0 +1,37 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +utils/initialization +""" + + +def notebook_init(verbose=True): + # Check system software and hardware + print('Checking setup...') + + import os + import shutil + + from utils.general import check_requirements, emojis, is_colab + from utils.torch_utils import select_device # imports + + check_requirements(('psutil', 'IPython')) + import psutil + from IPython import display # to display images and clear console output + + if is_colab(): + shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory + + if verbose: + # System info + # gb = 1 / 1000 ** 3 # bytes to GB + gib = 1 / 1024 ** 3 # bytes to GiB + ram = psutil.virtual_memory().total + total, used, free = shutil.disk_usage("/") + display.clear_output() + s = f'({os.cpu_count()} CPUs, {ram * gib:.1f} GB RAM, {(total - free) * gib:.1f}/{total * gib:.1f} GB disk)' + else: + s = '' + + select_device(newline=False) + print(emojis(f'Setup complete â {s}')) + return display diff --git a/src/yolov5/utils/activations.py b/src/yolov5/utils/activations.py new file mode 100644 index 00000000..a4ff789c --- /dev/null +++ b/src/yolov5/utils/activations.py @@ -0,0 +1,101 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Activation functions +""" + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +# SiLU https://arxiv.org/pdf/1606.08415.pdf ---------------------------------------------------------------------------- +class SiLU(nn.Module): # export-friendly version of nn.SiLU() + @staticmethod + def forward(x): + return x * torch.sigmoid(x) + + +class Hardswish(nn.Module): # export-friendly version of nn.Hardswish() + @staticmethod + def forward(x): + # return x * F.hardsigmoid(x) # for TorchScript and CoreML + return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 # for TorchScript, CoreML and ONNX + + +# Mish https://github.com/digantamisra98/Mish -------------------------------------------------------------------------- +class Mish(nn.Module): + @staticmethod + def forward(x): + return x * F.softplus(x).tanh() + + +class MemoryEfficientMish(nn.Module): + class F(torch.autograd.Function): + @staticmethod + def forward(ctx, x): + ctx.save_for_backward(x) + return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x))) + + @staticmethod + def backward(ctx, grad_output): + x = ctx.saved_tensors[0] + sx = torch.sigmoid(x) + fx = F.softplus(x).tanh() + return grad_output * (fx + x * sx * (1 - fx * fx)) + + def forward(self, x): + return self.F.apply(x) + + +# FReLU https://arxiv.org/abs/2007.11824 ------------------------------------------------------------------------------- +class FReLU(nn.Module): + def __init__(self, c1, k=3): # ch_in, kernel + super().__init__() + self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False) + self.bn = nn.BatchNorm2d(c1) + + def forward(self, x): + return torch.max(x, self.bn(self.conv(x))) + + +# ACON https://arxiv.org/pdf/2009.04759.pdf ---------------------------------------------------------------------------- +class AconC(nn.Module): + r""" ACON activation (activate or not). + AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter + according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. + """ + + def __init__(self, c1): + super().__init__() + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) + + def forward(self, x): + dpx = (self.p1 - self.p2) * x + return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x + + +class MetaAconC(nn.Module): + r""" ACON activation (activate or not). + MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network + according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. + """ + + def __init__(self, c1, k=1, s=1, r=16): # ch_in, kernel, stride, r + super().__init__() + c2 = max(r, c1 // r) + self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) + self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True) + self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True) + # self.bn1 = nn.BatchNorm2d(c2) + # self.bn2 = nn.BatchNorm2d(c1) + + def forward(self, x): + y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True) + # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891 + # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y))))) # bug/unstable + beta = torch.sigmoid(self.fc2(self.fc1(y))) # bug patch BN layers removed + dpx = (self.p1 - self.p2) * x + return dpx * torch.sigmoid(beta * dpx) + self.p2 * x diff --git a/src/yolov5/utils/augmentations.py b/src/yolov5/utils/augmentations.py new file mode 100644 index 00000000..0311b97b --- /dev/null +++ b/src/yolov5/utils/augmentations.py @@ -0,0 +1,277 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Image augmentation functions +""" + +import math +import random + +import cv2 +import numpy as np + +from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box +from utils.metrics import bbox_ioa + + +class Albumentations: + # YOLOv5 Albumentations class (optional, only used if package is installed) + def __init__(self): + self.transform = None + try: + import albumentations as A + check_version(A.__version__, '1.0.3', hard=True) # version requirement + + self.transform = A.Compose([ + A.Blur(p=0.01), + A.MedianBlur(p=0.01), + A.ToGray(p=0.01), + A.CLAHE(p=0.01), + A.RandomBrightnessContrast(p=0.0), + A.RandomGamma(p=0.0), + A.ImageCompression(quality_lower=75, p=0.0)], + bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels'])) + + LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p)) + except ImportError: # package not installed, skip + pass + except Exception as e: + LOGGER.info(colorstr('albumentations: ') + f'{e}') + + def __call__(self, im, labels, p=1.0): + if self.transform and random.random() < p: + new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed + im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) + return im, labels + + +def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5): + # HSV color-space augmentation + if hgain or sgain or vgain: + r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains + hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV)) + dtype = im.dtype # uint8 + + x = np.arange(0, 256, dtype=r.dtype) + lut_hue = ((x * r[0]) % 180).astype(dtype) + lut_sat = np.clip(x * r[1], 0, 255).astype(dtype) + lut_val = np.clip(x * r[2], 0, 255).astype(dtype) + + im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))) + cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed + + +def hist_equalize(im, clahe=True, bgr=False): + # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255 + yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV) + if clahe: + c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) + yuv[:, :, 0] = c.apply(yuv[:, :, 0]) + else: + yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram + return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB + + +def replicate(im, labels): + # Replicate labels + h, w = im.shape[:2] + boxes = labels[:, 1:].astype(int) + x1, y1, x2, y2 = boxes.T + s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels) + for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices + x1b, y1b, x2b, y2b = boxes[i] + bh, bw = y2b - y1b, x2b - x1b + yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y + x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh] + im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax] + labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0) + + return im, labels + + +def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): + # Resize and pad image while meeting stride-multiple constraints + shape = im.shape[:2] # current shape [height, width] + if isinstance(new_shape, int): + new_shape = (new_shape, new_shape) + + # Scale ratio (new / old) + r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) + if not scaleup: # only scale down, do not scale up (for better val mAP) + r = min(r, 1.0) + + # Compute padding + ratio = r, r # width, height ratios + new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) + dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding + if auto: # minimum rectangle + dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding + elif scaleFill: # stretch + dw, dh = 0.0, 0.0 + new_unpad = (new_shape[1], new_shape[0]) + ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios + + dw /= 2 # divide padding into 2 sides + dh /= 2 + + if shape[::-1] != new_unpad: # resize + im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR) + top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) + left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) + im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border + return im, ratio, (dw, dh) + + +def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0, + border=(0, 0)): + # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10)) + # targets = [cls, xyxy] + + height = im.shape[0] + border[0] * 2 # shape(h,w,c) + width = im.shape[1] + border[1] * 2 + + # Center + C = np.eye(3) + C[0, 2] = -im.shape[1] / 2 # x translation (pixels) + C[1, 2] = -im.shape[0] / 2 # y translation (pixels) + + # Perspective + P = np.eye(3) + P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y) + P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x) + + # Rotation and Scale + R = np.eye(3) + a = random.uniform(-degrees, degrees) + # a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations + s = random.uniform(1 - scale, 1 + scale) + # s = 2 ** random.uniform(-scale, scale) + R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s) + + # Shear + S = np.eye(3) + S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg) + S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg) + + # Translation + T = np.eye(3) + T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels) + T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels) + + # Combined rotation matrix + M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT + if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed + if perspective: + im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114)) + else: # affine + im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114)) + + # Visualize + # import matplotlib.pyplot as plt + # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel() + # ax[0].imshow(im[:, :, ::-1]) # base + # ax[1].imshow(im2[:, :, ::-1]) # warped + + # Transform label coordinates + n = len(targets) + if n: + use_segments = any(x.any() for x in segments) + new = np.zeros((n, 4)) + if use_segments: # warp segments + segments = resample_segments(segments) # upsample + for i, segment in enumerate(segments): + xy = np.ones((len(segment), 3)) + xy[:, :2] = segment + xy = xy @ M.T # transform + xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine + + # clip + new[i] = segment2box(xy, width, height) + + else: # warp boxes + xy = np.ones((n * 4, 3)) + xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1 + xy = xy @ M.T # transform + xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine + + # create new boxes + x = xy[:, [0, 2, 4, 6]] + y = xy[:, [1, 3, 5, 7]] + new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T + + # clip + new[:, [0, 2]] = new[:, [0, 2]].clip(0, width) + new[:, [1, 3]] = new[:, [1, 3]].clip(0, height) + + # filter candidates + i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10) + targets = targets[i] + targets[:, 1:5] = new[i] + + return im, targets + + +def copy_paste(im, labels, segments, p=0.5): + # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy) + n = len(segments) + if p and n: + h, w, c = im.shape # height, width, channels + im_new = np.zeros(im.shape, np.uint8) + for j in random.sample(range(n), k=round(p * n)): + l, s = labels[j], segments[j] + box = w - l[3], l[2], w - l[1], l[4] + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area + if (ioa < 0.30).all(): # allow 30% obscuration of existing labels + labels = np.concatenate((labels, [[l[0], *box]]), 0) + segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1)) + cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED) + + result = cv2.bitwise_and(src1=im, src2=im_new) + result = cv2.flip(result, 1) # augment segments (flip left-right) + i = result > 0 # pixels to replace + # i[:, :] = result.max(2).reshape(h, w, 1) # act over ch + im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug + + return im, labels, segments + + +def cutout(im, labels, p=0.5): + # Applies image cutout augmentation https://arxiv.org/abs/1708.04552 + if random.random() < p: + h, w = im.shape[:2] + scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction + for s in scales: + mask_h = random.randint(1, int(h * s)) # create random masks + mask_w = random.randint(1, int(w * s)) + + # box + xmin = max(0, random.randint(0, w) - mask_w // 2) + ymin = max(0, random.randint(0, h) - mask_h // 2) + xmax = min(w, xmin + mask_w) + ymax = min(h, ymin + mask_h) + + # apply random color mask + im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)] + + # return unobscured labels + if len(labels) and s > 0.03: + box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32) + ioa = bbox_ioa(box, labels[:, 1:5]) # intersection over area + labels = labels[ioa < 0.60] # remove >60% obscured labels + + return labels + + +def mixup(im, labels, im2, labels2): + # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf + r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0 + im = (im * r + im2 * (1 - r)).astype(np.uint8) + labels = np.concatenate((labels, labels2), 0) + return im, labels + + +def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n) + # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio + w1, h1 = box1[2] - box1[0], box1[3] - box1[1] + w2, h2 = box2[2] - box2[0], box2[3] - box2[1] + ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio + return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates diff --git a/src/yolov5/utils/autoanchor.py b/src/yolov5/utils/autoanchor.py new file mode 100644 index 00000000..27d6fb68 --- /dev/null +++ b/src/yolov5/utils/autoanchor.py @@ -0,0 +1,165 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +AutoAnchor utils +""" + +import random + +import numpy as np +import torch +import yaml +from tqdm import tqdm + +from utils.general import LOGGER, colorstr, emojis + +PREFIX = colorstr('AutoAnchor: ') + + +def check_anchor_order(m): + # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary + a = m.anchors.prod(-1).view(-1) # anchor area + da = a[-1] - a[0] # delta a + ds = m.stride[-1] - m.stride[0] # delta s + if da.sign() != ds.sign(): # same order + LOGGER.info(f'{PREFIX}Reversing anchor order') + m.anchors[:] = m.anchors.flip(0) + + +def check_anchors(dataset, model, thr=4.0, imgsz=640): + # Check anchor fit to data, recompute if necessary + m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect() + shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True) + scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale + wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh + + def metric(k): # compute metric + r = wh[:, None] / k[None] + x = torch.min(r, 1 / r).min(2)[0] # ratio metric + best = x.max(1)[0] # best_x + aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold + bpr = (best > 1 / thr).float().mean() # best possible recall + return bpr, aat + + anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1) # current anchors + bpr, aat = metric(anchors.cpu().view(-1, 2)) + s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). ' + if bpr > 0.98: # threshold to recompute + LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset â ')) + else: + LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset â ī¸, attempting to improve...')) + na = m.anchors.numel() // 2 # number of anchors + try: + anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False) + except Exception as e: + LOGGER.info(f'{PREFIX}ERROR: {e}') + new_bpr = metric(anchors)[0] + if new_bpr > bpr: # replace anchors + anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors) + m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1) # loss + check_anchor_order(m) + LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.') + else: + LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.') + + +def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True): + """ Creates kmeans-evolved anchors from training dataset + + Arguments: + dataset: path to data.yaml, or a loaded dataset + n: number of anchors + img_size: image size used for training + thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0 + gen: generations to evolve anchors using genetic algorithm + verbose: print all results + + Return: + k: kmeans evolved anchors + + Usage: + from utils.autoanchor import *; _ = kmean_anchors() + """ + from scipy.cluster.vq import kmeans + + npr = np.random + thr = 1 / thr + + def metric(k, wh): # compute metrics + r = wh[:, None] / k[None] + x = torch.min(r, 1 / r).min(2)[0] # ratio metric + # x = wh_iou(wh, torch.tensor(k)) # iou metric + return x, x.max(1)[0] # x, best_x + + def anchor_fitness(k): # mutation fitness + _, best = metric(torch.tensor(k, dtype=torch.float32), wh) + return (best * (best > thr).float()).mean() # fitness + + def print_results(k, verbose=True): + k = k[np.argsort(k.prod(1))] # sort small to large + x, best = metric(k, wh0) + bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr + s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \ + f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \ + f'past_thr={x[x > thr].mean():.3f}-mean: ' + for i, x in enumerate(k): + s += '%i,%i, ' % (round(x[0]), round(x[1])) + if verbose: + LOGGER.info(s[:-2]) + return k + + if isinstance(dataset, str): # *.yaml file + with open(dataset, errors='ignore') as f: + data_dict = yaml.safe_load(f) # model dict + from utils.datasets import LoadImagesAndLabels + dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True) + + # Get label wh + shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True) + wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh + + # Filter + i = (wh0 < 3.0).any(1).sum() + if i: + LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.') + wh = wh0[(wh0 >= 2.0).any(1)] # filter > 2 pixels + # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1 + + # Kmeans calculation + LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...') + s = wh.std(0) # sigmas for whitening + k = kmeans(wh / s, n, iter=30)[0] * s # points + if len(k) != n: # kmeans may return fewer points than requested if wh is insufficient or too similar + LOGGER.warning(f'{PREFIX}WARNING: scipy.cluster.vq.kmeans returned only {len(k)} of {n} requested points') + k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init + wh = torch.tensor(wh, dtype=torch.float32) # filtered + wh0 = torch.tensor(wh0, dtype=torch.float32) # unfiltered + k = print_results(k, verbose=False) + + # Plot + # k, d = [None] * 20, [None] * 20 + # for i in tqdm(range(1, 21)): + # k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance + # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True) + # ax = ax.ravel() + # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.') + # fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh + # ax[0].hist(wh[wh[:, 0]<100, 0],400) + # ax[1].hist(wh[wh[:, 1]<100, 1],400) + # fig.savefig('wh.png', dpi=200) + + # Evolve + f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma + pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:') # progress bar + for _ in pbar: + v = np.ones(sh) + while (v == 1).all(): # mutate until a change occurs (prevent duplicates) + v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0) + kg = (k.copy() * v).clip(min=2.0) + fg = anchor_fitness(kg) + if fg > f: + f, k = fg, kg.copy() + pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}' + if verbose: + print_results(k, verbose) + + return print_results(k) diff --git a/src/yolov5/utils/autobatch.py b/src/yolov5/utils/autobatch.py new file mode 100644 index 00000000..cb94f041 --- /dev/null +++ b/src/yolov5/utils/autobatch.py @@ -0,0 +1,57 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Auto-batch utils +""" + +from copy import deepcopy + +import numpy as np +import torch +from torch.cuda import amp + +from utils.general import LOGGER, colorstr +from utils.torch_utils import profile + + +def check_train_batch_size(model, imgsz=640): + # Check YOLOv5 training batch size + with amp.autocast(): + return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size + + +def autobatch(model, imgsz=640, fraction=0.9, batch_size=16): + # Automatically estimate best batch size to use `fraction` of available CUDA memory + # Usage: + # import torch + # from utils.autobatch import autobatch + # model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False) + # print(autobatch(model)) + + prefix = colorstr('AutoBatch: ') + LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}') + device = next(model.parameters()).device # get model device + if device.type == 'cpu': + LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}') + return batch_size + + d = str(device).upper() # 'CUDA:0' + properties = torch.cuda.get_device_properties(device) # device properties + t = properties.total_memory / 1024 ** 3 # (GiB) + r = torch.cuda.memory_reserved(device) / 1024 ** 3 # (GiB) + a = torch.cuda.memory_allocated(device) / 1024 ** 3 # (GiB) + f = t - (r + a) # free inside reserved + LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free') + + batch_sizes = [1, 2, 4, 8, 16] + try: + img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes] + y = profile(img, model, n=3, device=device) + except Exception as e: + LOGGER.warning(f'{prefix}{e}') + + y = [x[2] for x in y if x] # memory [2] + batch_sizes = batch_sizes[:len(y)] + p = np.polyfit(batch_sizes, y, deg=1) # first degree polynomial fit + b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size) + LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)') + return b diff --git a/src/yolov5/utils/aws/__init__.py b/src/yolov5/utils/aws/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/src/yolov5/utils/aws/mime.sh b/src/yolov5/utils/aws/mime.sh new file mode 100644 index 00000000..c319a83c --- /dev/null +++ b/src/yolov5/utils/aws/mime.sh @@ -0,0 +1,26 @@ +# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/ +# This script will run on every instance restart, not only on first start +# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA --- + +Content-Type: multipart/mixed; boundary="//" +MIME-Version: 1.0 + +--// +Content-Type: text/cloud-config; charset="us-ascii" +MIME-Version: 1.0 +Content-Transfer-Encoding: 7bit +Content-Disposition: attachment; filename="cloud-config.txt" + +#cloud-config +cloud_final_modules: +- [scripts-user, always] + +--// +Content-Type: text/x-shellscript; charset="us-ascii" +MIME-Version: 1.0 +Content-Transfer-Encoding: 7bit +Content-Disposition: attachment; filename="userdata.txt" + +#!/bin/bash +# --- paste contents of userdata.sh here --- +--// diff --git a/src/yolov5/utils/aws/resume.py b/src/yolov5/utils/aws/resume.py new file mode 100644 index 00000000..b21731c9 --- /dev/null +++ b/src/yolov5/utils/aws/resume.py @@ -0,0 +1,40 @@ +# Resume all interrupted trainings in yolov5/ dir including DDP trainings +# Usage: $ python utils/aws/resume.py + +import os +import sys +from pathlib import Path + +import torch +import yaml + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[2] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +port = 0 # --master_port +path = Path('').resolve() +for last in path.rglob('*/**/last.pt'): + ckpt = torch.load(last) + if ckpt['optimizer'] is None: + continue + + # Load opt.yaml + with open(last.parent.parent / 'opt.yaml', errors='ignore') as f: + opt = yaml.safe_load(f) + + # Get device count + d = opt['device'].split(',') # devices + nd = len(d) # number of devices + ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1) # distributed data parallel + + if ddp: # multi-GPU + port += 1 + cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}' + else: # single-GPU + cmd = f'python train.py --resume {last}' + + cmd += ' > /dev/null 2>&1 &' # redirect output to dev/null and run in daemon thread + print(cmd) + os.system(cmd) diff --git a/src/yolov5/utils/aws/userdata.sh b/src/yolov5/utils/aws/userdata.sh new file mode 100644 index 00000000..5fc1332a --- /dev/null +++ b/src/yolov5/utils/aws/userdata.sh @@ -0,0 +1,27 @@ +#!/bin/bash +# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html +# This script will run only once on first instance start (for a re-start script see mime.sh) +# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir +# Use >300 GB SSD + +cd home/ubuntu +if [ ! -d yolov5 ]; then + echo "Running first-time script." # install dependencies, download COCO, pull Docker + git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5 + cd yolov5 + bash data/scripts/get_coco.sh && echo "COCO done." & + sudo docker pull ultralytics/yolov5:latest && echo "Docker done." & + python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." & + wait && echo "All tasks done." # finish background tasks +else + echo "Running re-start script." # resume interrupted runs + i=0 + list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour' + while IFS= read -r id; do + ((i++)) + echo "restarting container $i: $id" + sudo docker start $id + # sudo docker exec -it $id python train.py --resume # single-GPU + sudo docker exec -d $id python utils/aws/resume.py # multi-scenario + done <<<"$list" +fi diff --git a/src/yolov5/utils/benchmarks.py b/src/yolov5/utils/benchmarks.py new file mode 100644 index 00000000..962df812 --- /dev/null +++ b/src/yolov5/utils/benchmarks.py @@ -0,0 +1,92 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Run YOLOv5 benchmarks on all supported export formats + +Format | `export.py --include` | Model +--- | --- | --- +PyTorch | - | yolov5s.pt +TorchScript | `torchscript` | yolov5s.torchscript +ONNX | `onnx` | yolov5s.onnx +OpenVINO | `openvino` | yolov5s_openvino_model/ +TensorRT | `engine` | yolov5s.engine +CoreML | `coreml` | yolov5s.mlmodel +TensorFlow SavedModel | `saved_model` | yolov5s_saved_model/ +TensorFlow GraphDef | `pb` | yolov5s.pb +TensorFlow Lite | `tflite` | yolov5s.tflite +TensorFlow Edge TPU | `edgetpu` | yolov5s_edgetpu.tflite +TensorFlow.js | `tfjs` | yolov5s_web_model/ + +Requirements: + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu # CPU + $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow # GPU + +Usage: + $ python utils/benchmarks.py --weights yolov5s.pt --img 640 +""" + +import argparse +import sys +import time +from pathlib import Path + +import pandas as pd + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +# ROOT = ROOT.relative_to(Path.cwd()) # relative + +import export +import val +from utils import notebook_init +from utils.general import LOGGER, print_args + + +def run(weights=ROOT / 'yolov5s.pt', # weights path + imgsz=640, # inference size (pixels) + batch_size=1, # batch size + data=ROOT / 'data/coco128.yaml', # dataset.yaml path + ): + y, t = [], time.time() + formats = export.export_formats() + for i, (name, f, suffix) in formats.iterrows(): # index, (name, file, suffix) + try: + w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1] + assert suffix in str(w), 'export failed' + result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark') + metrics = result[0] # metrics (mp, mr, map50, map, *losses(box, obj, cls)) + speeds = result[2] # times (preprocess, inference, postprocess) + y.append([name, metrics[3], speeds[1]]) # mAP, t_inference + except Exception as e: + LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}') + y.append([name, None, None]) # mAP, t_inference + + # Print results + LOGGER.info('\n') + parse_opt() + notebook_init() # print system info + py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)']) + LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') + LOGGER.info(str(py)) + return py + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--batch-size', type=int, default=1, help='batch size') + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + opt = parser.parse_args() + print_args(FILE.stem, opt) + return opt + + +def main(opt): + run(**vars(opt)) + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) diff --git a/src/yolov5/utils/callbacks.py b/src/yolov5/utils/callbacks.py new file mode 100644 index 00000000..c51c268f --- /dev/null +++ b/src/yolov5/utils/callbacks.py @@ -0,0 +1,78 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Callback utils +""" + + +class Callbacks: + """" + Handles all registered callbacks for YOLOv5 Hooks + """ + + def __init__(self): + # Define the available callbacks + self._callbacks = { + 'on_pretrain_routine_start': [], + 'on_pretrain_routine_end': [], + + 'on_train_start': [], + 'on_train_epoch_start': [], + 'on_train_batch_start': [], + 'optimizer_step': [], + 'on_before_zero_grad': [], + 'on_train_batch_end': [], + 'on_train_epoch_end': [], + + 'on_val_start': [], + 'on_val_batch_start': [], + 'on_val_image_end': [], + 'on_val_batch_end': [], + 'on_val_end': [], + + 'on_fit_epoch_end': [], # fit = train + val + 'on_model_save': [], + 'on_train_end': [], + 'on_params_update': [], + 'teardown': [], + } + self.stop_training = False # set True to interrupt training + + def register_action(self, hook, name='', callback=None): + """ + Register a new action to a callback hook + + Args: + hook The callback hook name to register the action to + name The name of the action for later reference + callback The callback to fire + """ + assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" + assert callable(callback), f"callback '{callback}' is not callable" + self._callbacks[hook].append({'name': name, 'callback': callback}) + + def get_registered_actions(self, hook=None): + """" + Returns all the registered actions by callback hook + + Args: + hook The name of the hook to check, defaults to all + """ + if hook: + return self._callbacks[hook] + else: + return self._callbacks + + def run(self, hook, *args, **kwargs): + """ + Loop through the registered actions and fire all callbacks + + Args: + hook The name of the hook to check, defaults to all + args Arguments to receive from YOLOv5 + kwargs Keyword Arguments to receive from YOLOv5 + """ + + assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}" + + for logger in self._callbacks[hook]: + logger['callback'](*args, **kwargs) diff --git a/src/yolov5/utils/datasets.py b/src/yolov5/utils/datasets.py new file mode 100755 index 00000000..e132e04f --- /dev/null +++ b/src/yolov5/utils/datasets.py @@ -0,0 +1,1037 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Dataloaders and dataset utils +""" + +import glob +import hashlib +import json +import math +import os +import random +import shutil +import time +from itertools import repeat +from multiprocessing.pool import Pool, ThreadPool +from pathlib import Path +from threading import Thread +from zipfile import ZipFile + +import cv2 +import numpy as np +import torch +import torch.nn.functional as F +import yaml +from PIL import ExifTags, Image, ImageOps +from torch.utils.data import DataLoader, Dataset, dataloader, distributed +from tqdm import tqdm + +from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective +from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str, + segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn) +from utils.torch_utils import torch_distributed_zero_first + +# Parameters +HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' +IMG_FORMATS = ['bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp'] # include image suffixes +VID_FORMATS = ['asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'wmv'] # include video suffixes + +# Get orientation exif tag +for orientation in ExifTags.TAGS.keys(): + if ExifTags.TAGS[orientation] == 'Orientation': + break + + +def get_hash(paths): + # Returns a single hash value of a list of paths (files or dirs) + size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes + h = hashlib.md5(str(size).encode()) # hash sizes + h.update(''.join(paths).encode()) # hash paths + return h.hexdigest() # return hash + + +def exif_size(img): + # Returns exif-corrected PIL size + s = img.size # (width, height) + try: + rotation = dict(img._getexif().items())[orientation] + if rotation == 6: # rotation 270 + s = (s[1], s[0]) + elif rotation == 8: # rotation 90 + s = (s[1], s[0]) + except Exception: + pass + + return s + + +def exif_transpose(image): + """ + Transpose a PIL image accordingly if it has an EXIF Orientation tag. + Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose() + + :param image: The image to transpose. + :return: An image. + """ + exif = image.getexif() + orientation = exif.get(0x0112, 1) # default 1 + if orientation > 1: + method = {2: Image.FLIP_LEFT_RIGHT, + 3: Image.ROTATE_180, + 4: Image.FLIP_TOP_BOTTOM, + 5: Image.TRANSPOSE, + 6: Image.ROTATE_270, + 7: Image.TRANSVERSE, + 8: Image.ROTATE_90, + }.get(orientation) + if method is not None: + image = image.transpose(method) + del exif[0x0112] + image.info["exif"] = exif.tobytes() + return image + + +def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0, + rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False): + if rect and shuffle: + LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False') + shuffle = False + with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP + dataset = LoadImagesAndLabels(path, imgsz, batch_size, + augment=augment, # augmentation + hyp=hyp, # hyperparameters + rect=rect, # rectangular batches + cache_images=cache, + single_cls=single_cls, + stride=int(stride), + pad=pad, + image_weights=image_weights, + prefix=prefix) + + batch_size = min(batch_size, len(dataset)) + nd = torch.cuda.device_count() # number of CUDA devices + nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers + sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle) + loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates + return loader(dataset, + batch_size=batch_size, + shuffle=shuffle and sampler is None, + num_workers=nw, + sampler=sampler, + pin_memory=True, + collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset + + +class InfiniteDataLoader(dataloader.DataLoader): + """ Dataloader that reuses workers + + Uses same syntax as vanilla DataLoader + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) + self.iterator = super().__iter__() + + def __len__(self): + return len(self.batch_sampler.sampler) + + def __iter__(self): + for i in range(len(self)): + yield next(self.iterator) + + +class _RepeatSampler: + """ Sampler that repeats forever + + Args: + sampler (Sampler) + """ + + def __init__(self, sampler): + self.sampler = sampler + + def __iter__(self): + while True: + yield from iter(self.sampler) + + +class LoadImages: + # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` + def __init__(self, path, img_size=640, stride=32, auto=True): + p = str(Path(path).resolve()) # os-agnostic absolute path + if '*' in p: + files = sorted(glob.glob(p, recursive=True)) # glob + elif os.path.isdir(p): + files = sorted(glob.glob(os.path.join(p, '*.*'))) # dir + elif os.path.isfile(p): + files = [p] # files + else: + raise Exception(f'ERROR: {p} does not exist') + + images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] + videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] + ni, nv = len(images), len(videos) + + self.img_size = img_size + self.stride = stride + self.files = images + videos + self.nf = ni + nv # number of files + self.video_flag = [False] * ni + [True] * nv + self.mode = 'image' + self.auto = auto + if any(videos): + self.new_video(videos[0]) # new video + else: + self.cap = None + assert self.nf > 0, f'No images or videos found in {p}. ' \ + f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' + + def __iter__(self): + self.count = 0 + return self + + def __next__(self): + if self.count == self.nf: + raise StopIteration + path = self.files[self.count] + + if self.video_flag[self.count]: + # Read video + self.mode = 'video' + ret_val, img0 = self.cap.read() + while not ret_val: + self.count += 1 + self.cap.release() + if self.count == self.nf: # last video + raise StopIteration + else: + path = self.files[self.count] + self.new_video(path) + ret_val, img0 = self.cap.read() + + self.frame += 1 + s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' + + else: + # Read image + self.count += 1 + img0 = cv2.imread(path) # BGR + assert img0 is not None, f'Image Not Found {path}' + s = f'image {self.count}/{self.nf} {path}: ' + + # Padded resize + img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return path, img, img0, self.cap, s + + def new_video(self, path): + self.frame = 0 + self.cap = cv2.VideoCapture(path) + self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) + + def __len__(self): + return self.nf # number of files + + +class LoadWebcam: # for inference + # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0` + def __init__(self, pipe='0', img_size=640, stride=32): + self.img_size = img_size + self.stride = stride + self.pipe = eval(pipe) if pipe.isnumeric() else pipe + self.cap = cv2.VideoCapture(self.pipe) # video capture object + self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3) # set buffer size + + def __iter__(self): + self.count = -1 + return self + + def __next__(self): + self.count += 1 + if cv2.waitKey(1) == ord('q'): # q to quit + self.cap.release() + cv2.destroyAllWindows() + raise StopIteration + + # Read frame + ret_val, img0 = self.cap.read() + img0 = cv2.flip(img0, 1) # flip left-right + + # Print + assert ret_val, f'Camera Error {self.pipe}' + img_path = 'webcam.jpg' + s = f'webcam {self.count}: ' + + # Padded resize + img = letterbox(img0, self.img_size, stride=self.stride)[0] + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return img_path, img, img0, None, s + + def __len__(self): + return 0 + + +class LoadStreams: + # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams` + def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True): + self.mode = 'stream' + self.img_size = img_size + self.stride = stride + + if os.path.isfile(sources): + with open(sources) as f: + sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())] + else: + sources = [sources] + + n = len(sources) + self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n + self.sources = [clean_str(x) for x in sources] # clean source names for later + self.auto = auto + for i, s in enumerate(sources): # index, source + # Start thread to read frames from video stream + st = f'{i + 1}/{n}: {s}... ' + if 'youtube.com/' in s or 'youtu.be/' in s: # if source is YouTube video + check_requirements(('pafy', 'youtube_dl==2020.12.2')) + import pafy + s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL + s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam + cap = cv2.VideoCapture(s) + assert cap.isOpened(), f'{st}Failed to open {s}' + w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) + h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) + fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan + self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback + self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback + + _, self.imgs[i] = cap.read() # guarantee first frame + self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True) + LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)") + self.threads[i].start() + LOGGER.info('') # newline + + # check for common shapes + s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs]) + self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal + if not self.rect: + LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.') + + def update(self, i, cap, stream): + # Read stream `i` frames in daemon thread + n, f, read = 0, self.frames[i], 1 # frame number, frame array, inference every 'read' frame + while cap.isOpened() and n < f: + n += 1 + # _, self.imgs[index] = cap.read() + cap.grab() + if n % read == 0: + success, im = cap.retrieve() + if success: + self.imgs[i] = im + else: + LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.') + self.imgs[i] = np.zeros_like(self.imgs[i]) + cap.open(stream) # re-open stream if signal was lost + time.sleep(1 / self.fps[i]) # wait time + + def __iter__(self): + self.count = -1 + return self + + def __next__(self): + self.count += 1 + if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit + cv2.destroyAllWindows() + raise StopIteration + + # Letterbox + img0 = self.imgs.copy() + img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0] + + # Stack + img = np.stack(img, 0) + + # Convert + img = img[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW + img = np.ascontiguousarray(img) + + return self.sources, img, img0, None, '' + + def __len__(self): + return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years + + +def img2label_paths(img_paths): + # Define label paths as a function of image paths + sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep # /images/, /labels/ substrings + return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths] + + +class LoadImagesAndLabels(Dataset): + # YOLOv5 train_loader/val_loader, loads images and labels for training and validation + cache_version = 0.6 # dataset labels *.cache version + + def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False, + cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''): + self.img_size = img_size + self.augment = augment + self.hyp = hyp + self.image_weights = image_weights + self.rect = False if image_weights else rect + self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training) + self.mosaic_border = [-img_size // 2, -img_size // 2] + self.stride = stride + self.path = path + self.albumentations = Albumentations() if augment else None + + try: + f = [] # image files + for p in path if isinstance(path, list) else [path]: + p = Path(p) # os-agnostic + if p.is_dir(): # dir + f += glob.glob(str(p / '**' / '*.*'), recursive=True) + # f = list(p.rglob('*.*')) # pathlib + elif p.is_file(): # file + with open(p) as t: + t = t.read().strip().splitlines() + parent = str(p.parent) + os.sep + f += [x.replace('./', parent) if x.startswith('./') else x for x in t] # local to global path + # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) + else: + raise Exception(f'{prefix}{p} does not exist') + self.img_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS) + # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib + assert self.img_files, f'{prefix}No images found' + except Exception as e: + raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') + + # Check cache + self.label_files = img2label_paths(self.img_files) # labels + cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache') + try: + cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict + assert cache['version'] == self.cache_version # same version + assert cache['hash'] == get_hash(self.label_files + self.img_files) # same hash + except Exception: + cache, exists = self.cache_labels(cache_path, prefix), False # cache + + # Display cache + nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total + if exists: + d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt" + tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results + if cache['msgs']: + LOGGER.info('\n'.join(cache['msgs'])) # display warnings + assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' + + # Read cache + [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items + labels, shapes, self.segments = zip(*cache.values()) + self.labels = list(labels) + self.shapes = np.array(shapes, dtype=np.float64) + self.img_files = list(cache.keys()) # update + self.label_files = img2label_paths(cache.keys()) # update + n = len(shapes) # number of images + bi = np.floor(np.arange(n) / batch_size).astype(np.int) # batch index + nb = bi[-1] + 1 # number of batches + self.batch = bi # batch index of image + self.n = n + self.indices = range(n) + + # Update labels + include_class = [] # filter labels to include only these classes (optional) + include_class_array = np.array(include_class).reshape(1, -1) + for i, (label, segment) in enumerate(zip(self.labels, self.segments)): + if include_class: + j = (label[:, 0:1] == include_class_array).any(1) + self.labels[i] = label[j] + if segment: + self.segments[i] = segment[j] + if single_cls: # single-class training, merge all classes into 0 + self.labels[i][:, 0] = 0 + if segment: + self.segments[i][:, 0] = 0 + + # Rectangular Training + if self.rect: + # Sort by aspect ratio + s = self.shapes # wh + ar = s[:, 1] / s[:, 0] # aspect ratio + irect = ar.argsort() + self.img_files = [self.img_files[i] for i in irect] + self.label_files = [self.label_files[i] for i in irect] + self.labels = [self.labels[i] for i in irect] + self.shapes = s[irect] # wh + ar = ar[irect] + + # Set training image shapes + shapes = [[1, 1]] * nb + for i in range(nb): + ari = ar[bi == i] + mini, maxi = ari.min(), ari.max() + if maxi < 1: + shapes[i] = [maxi, 1] + elif mini > 1: + shapes[i] = [1, 1 / mini] + + self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride + + # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources) + self.imgs, self.img_npy = [None] * n, [None] * n + if cache_images: + if cache_images == 'disk': + self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy') + self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files] + self.im_cache_dir.mkdir(parents=True, exist_ok=True) + gb = 0 # Gigabytes of cached images + self.img_hw0, self.img_hw = [None] * n, [None] * n + results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n)) + pbar = tqdm(enumerate(results), total=n) + for i, x in pbar: + if cache_images == 'disk': + if not self.img_npy[i].exists(): + np.save(self.img_npy[i].as_posix(), x[0]) + gb += self.img_npy[i].stat().st_size + else: # 'ram' + self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i) + gb += self.imgs[i].nbytes + pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})' + pbar.close() + + def cache_labels(self, path=Path('./labels.cache'), prefix=''): + # Cache dataset labels, check images and read shapes + x = {} # dict + nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages + desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." + with Pool(NUM_THREADS) as pool: + pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), + desc=desc, total=len(self.img_files)) + for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: + nm += nm_f + nf += nf_f + ne += ne_f + nc += nc_f + if im_file: + x[im_file] = [lb, shape, segments] + if msg: + msgs.append(msg) + pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt" + + pbar.close() + if msgs: + LOGGER.info('\n'.join(msgs)) + if nf == 0: + LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') + x['hash'] = get_hash(self.label_files + self.img_files) + x['results'] = nf, nm, ne, nc, len(self.img_files) + x['msgs'] = msgs # warnings + x['version'] = self.cache_version # cache version + try: + np.save(path, x) # save cache for next time + path.with_suffix('.cache.npy').rename(path) # remove .npy suffix + LOGGER.info(f'{prefix}New cache created: {path}') + except Exception as e: + LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable + return x + + def __len__(self): + return len(self.img_files) + + # def __iter__(self): + # self.count = -1 + # print('ran dataset iter') + # #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF) + # return self + + def __getitem__(self, index): + index = self.indices[index] # linear, shuffled, or image_weights + + hyp = self.hyp + mosaic = self.mosaic and random.random() < hyp['mosaic'] + if mosaic: + # Load mosaic + img, labels = self.load_mosaic(index) + shapes = None + + # MixUp augmentation + if random.random() < hyp['mixup']: + img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1))) + + else: + # Load image + img, (h0, w0), (h, w) = self.load_image(index) + + # Letterbox + shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape + img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) + shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling + + labels = self.labels[index].copy() + if labels.size: # normalized xywh to pixel xyxy format + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) + + if self.augment: + img, labels = random_perspective(img, labels, + degrees=hyp['degrees'], + translate=hyp['translate'], + scale=hyp['scale'], + shear=hyp['shear'], + perspective=hyp['perspective']) + + nl = len(labels) # number of labels + if nl: + labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3) + + if self.augment: + # Albumentations + img, labels = self.albumentations(img, labels) + nl = len(labels) # update after albumentations + + # HSV color-space + augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) + + # Flip up-down + if random.random() < hyp['flipud']: + img = np.flipud(img) + if nl: + labels[:, 2] = 1 - labels[:, 2] + + # Flip left-right + if random.random() < hyp['fliplr']: + img = np.fliplr(img) + if nl: + labels[:, 1] = 1 - labels[:, 1] + + # Cutouts + # labels = cutout(img, labels, p=0.5) + # nl = len(labels) # update after cutout + + labels_out = torch.zeros((nl, 6)) + if nl: + labels_out[:, 1:] = torch.from_numpy(labels) + + # Convert + img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB + img = np.ascontiguousarray(img) + + return torch.from_numpy(img), labels_out, self.img_files[index], shapes + + def load_image(self, i): + # loads 1 image from dataset index 'i', returns (im, original hw, resized hw) + im = self.imgs[i] + if im is None: # not cached in RAM + npy = self.img_npy[i] + if npy and npy.exists(): # load npy + im = np.load(npy) + else: # read image + f = self.img_files[i] + im = cv2.imread(f) # BGR + assert im is not None, f'Image Not Found {f}' + h0, w0 = im.shape[:2] # orig hw + r = self.img_size / max(h0, w0) # ratio + if r != 1: # if sizes are not equal + im = cv2.resize(im, + (int(w0 * r), int(h0 * r)), + interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA) + return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized + else: + return self.imgs[i], self.img_hw0[i], self.img_hw[i] # im, hw_original, hw_resized + + def load_mosaic(self, index): + # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic + labels4, segments4 = [], [] + s = self.img_size + yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y + indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices + random.shuffle(indices) + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # place img in img4 + if i == 0: # top left + img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) + x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image) + elif i == 1: # top right + x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc + x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h + elif i == 2: # bottom left + x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h) + x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h) + elif i == 3: # bottom right + x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h) + x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h) + + img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax] + padw = x1a - x1b + padh = y1a - y1b + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padw, padh) for x in segments] + labels4.append(labels) + segments4.extend(segments) + + # Concat/clip labels + labels4 = np.concatenate(labels4, 0) + for x in (labels4[:, 1:], *segments4): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img4, labels4 = replicate(img4, labels4) # replicate + + # Augment + img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste']) + img4, labels4 = random_perspective(img4, labels4, segments4, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img4, labels4 + + def load_mosaic9(self, index): + # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic + labels9, segments9 = [], [] + s = self.img_size + indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices + random.shuffle(indices) + hp, wp = -1, -1 # height, width previous + for i, index in enumerate(indices): + # Load image + img, _, (h, w) = self.load_image(index) + + # place img in img9 + if i == 0: # center + img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles + h0, w0 = h, w + c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates + elif i == 1: # top + c = s, s - h, s + w, s + elif i == 2: # top right + c = s + wp, s - h, s + wp + w, s + elif i == 3: # right + c = s + w0, s, s + w0 + w, s + h + elif i == 4: # bottom right + c = s + w0, s + hp, s + w0 + w, s + hp + h + elif i == 5: # bottom + c = s + w0 - w, s + h0, s + w0, s + h0 + h + elif i == 6: # bottom left + c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h + elif i == 7: # left + c = s - w, s + h0 - h, s, s + h0 + elif i == 8: # top left + c = s - w, s + h0 - hp - h, s, s + h0 - hp + + padx, pady = c[:2] + x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords + + # Labels + labels, segments = self.labels[index].copy(), self.segments[index].copy() + if labels.size: + labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format + segments = [xyn2xy(x, w, h, padx, pady) for x in segments] + labels9.append(labels) + segments9.extend(segments) + + # Image + img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax] + hp, wp = h, w # height, width previous + + # Offset + yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y + img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s] + + # Concat/clip labels + labels9 = np.concatenate(labels9, 0) + labels9[:, [1, 3]] -= xc + labels9[:, [2, 4]] -= yc + c = np.array([xc, yc]) # centers + segments9 = [x - c for x in segments9] + + for x in (labels9[:, 1:], *segments9): + np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective() + # img9, labels9 = replicate(img9, labels9) # replicate + + # Augment + img9, labels9 = random_perspective(img9, labels9, segments9, + degrees=self.hyp['degrees'], + translate=self.hyp['translate'], + scale=self.hyp['scale'], + shear=self.hyp['shear'], + perspective=self.hyp['perspective'], + border=self.mosaic_border) # border to remove + + return img9, labels9 + + @staticmethod + def collate_fn(batch): + img, label, path, shapes = zip(*batch) # transposed + for i, lb in enumerate(label): + lb[:, 0] = i # add target image index for build_targets() + return torch.stack(img, 0), torch.cat(label, 0), path, shapes + + @staticmethod + def collate_fn4(batch): + img, label, path, shapes = zip(*batch) # transposed + n = len(shapes) // 4 + img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n] + + ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]]) + wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]]) + s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale + for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW + i *= 4 + if random.random() < 0.5: + im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[ + 0].type(img[i].type()) + lb = label[i] + else: + im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2) + lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s + img4.append(im) + label4.append(lb) + + for i, lb in enumerate(label4): + lb[:, 0] = i # add target image index for build_targets() + + return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4 + + +# Ancillary functions -------------------------------------------------------------------------------------------------- +def create_folder(path='./new'): + # Create folder + if os.path.exists(path): + shutil.rmtree(path) # delete output folder + os.makedirs(path) # make new output folder + + +def flatten_recursive(path=DATASETS_DIR / 'coco128'): + # Flatten a recursive directory by bringing all files to top level + new_path = Path(str(path) + '_flat') + create_folder(new_path) + for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)): + shutil.copyfile(file, new_path / Path(file).name) + + +def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.datasets import *; extract_boxes() + # Convert detection dataset into classification dataset, with one directory per class + path = Path(path) # images dir + shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None # remove existing + files = list(path.rglob('*.*')) + n = len(files) # number of files + for im_file in tqdm(files, total=n): + if im_file.suffix[1:] in IMG_FORMATS: + # image + im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB + h, w = im.shape[:2] + + # labels + lb_file = Path(img2label_paths([str(im_file)])[0]) + if Path(lb_file).exists(): + with open(lb_file) as f: + lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels + + for j, x in enumerate(lb): + c = int(x[0]) # class + f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename + if not f.parent.is_dir(): + f.parent.mkdir(parents=True) + + b = x[1:] * [w, h, w, h] # box + # b[2:] = b[2:].max() # rectangle to square + b[2:] = b[2:] * 1.2 + 3 # pad + b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int) + + b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image + b[[1, 3]] = np.clip(b[[1, 3]], 0, h) + assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}' + + +def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False): + """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files + Usage: from utils.datasets import *; autosplit() + Arguments + path: Path to images directory + weights: Train, val, test weights (list, tuple) + annotated_only: Only use images with an annotated txt file + """ + path = Path(path) # images dir + files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only + n = len(files) # number of files + random.seed(0) # for reproducibility + indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split + + txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files + [(path.parent / x).unlink(missing_ok=True) for x in txt] # remove existing + + print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only) + for i, img in tqdm(zip(indices, files), total=n): + if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label + with open(path.parent / txt[i], 'a') as f: + f.write('./' + img.relative_to(path.parent).as_posix() + '\n') # add image to txt file + + +def verify_image_label(args): + # Verify one image-label pair + im_file, lb_file, prefix = args + nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments + try: + # verify images + im = Image.open(im_file) + im.verify() # PIL verify + shape = exif_size(im) # image size + assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' + assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' + if im.format.lower() in ('jpg', 'jpeg'): + with open(im_file, 'rb') as f: + f.seek(-2, 2) + if f.read() != b'\xff\xd9': # corrupt JPEG + ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100) + msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved' + + # verify labels + if os.path.isfile(lb_file): + nf = 1 # label found + with open(lb_file) as f: + lb = [x.split() for x in f.read().strip().splitlines() if len(x)] + if any([len(x) > 8 for x in lb]): # is segment + classes = np.array([x[0] for x in lb], dtype=np.float32) + segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...) + lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh) + lb = np.array(lb, dtype=np.float32) + nl = len(lb) + if nl: + assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected' + assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}' + assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}' + _, i = np.unique(lb, axis=0, return_index=True) + if len(i) < nl: # duplicate row check + lb = lb[i] # remove duplicates + if segments: + segments = segments[i] + msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed' + else: + ne = 1 # label empty + lb = np.zeros((0, 5), dtype=np.float32) + else: + nm = 1 # label missing + lb = np.zeros((0, 5), dtype=np.float32) + return im_file, lb, shape, segments, nm, nf, ne, nc, msg + except Exception as e: + nc = 1 + msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}' + return [None, None, None, None, nm, nf, ne, nc, msg] + + +def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False): + """ Return dataset statistics dictionary with images and instances counts per split per class + To run in parent directory: export PYTHONPATH="$PWD/yolov5" + Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True) + Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip') + Arguments + path: Path to data.yaml or data.zip (with data.yaml inside data.zip) + autodownload: Attempt to download dataset if not found locally + verbose: Print stats dictionary + """ + + def round_labels(labels): + # Update labels to integer class and 6 decimal place floats + return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels] + + def unzip(path): + # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/' + if str(path).endswith('.zip'): # path is data.zip + assert Path(path).is_file(), f'Error unzipping {path}, file not found' + ZipFile(path).extractall(path=path.parent) # unzip + dir = path.with_suffix('') # dataset directory == zip name + return True, str(dir), next(dir.rglob('*.yaml')) # zipped, data_dir, yaml_path + else: # path is data.yaml + return False, None, path + + def hub_ops(f, max_dim=1920): + # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing + f_new = im_dir / Path(f).name # dataset-hub image filename + try: # use PIL + im = Image.open(f) + r = max_dim / max(im.height, im.width) # ratio + if r < 1.0: # image too large + im = im.resize((int(im.width * r), int(im.height * r))) + im.save(f_new, 'JPEG', quality=75, optimize=True) # save + except Exception as e: # use OpenCV + print(f'WARNING: HUB ops PIL failure {f}: {e}') + im = cv2.imread(f) + im_height, im_width = im.shape[:2] + r = max_dim / max(im_height, im_width) # ratio + if r < 1.0: # image too large + im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA) + cv2.imwrite(str(f_new), im) + + zipped, data_dir, yaml_path = unzip(Path(path)) + with open(check_yaml(yaml_path), errors='ignore') as f: + data = yaml.safe_load(f) # data dict + if zipped: + data['path'] = data_dir # TODO: should this be dir.resolve()? + check_dataset(data, autodownload) # download dataset if missing + hub_dir = Path(data['path'] + ('-hub' if hub else '')) + stats = {'nc': data['nc'], 'names': data['names']} # statistics dictionary + for split in 'train', 'val', 'test': + if data.get(split) is None: + stats[split] = None # i.e. no test set + continue + x = [] + dataset = LoadImagesAndLabels(data[split]) # load dataset + for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'): + x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc'])) + x = np.array(x) # shape(128x80) + stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()}, + 'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()), + 'per_class': (x > 0).sum(0).tolist()}, + 'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in + zip(dataset.img_files, dataset.labels)]} + + if hub: + im_dir = hub_dir / 'images' + im_dir.mkdir(parents=True, exist_ok=True) + for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'): + pass + + # Profile + stats_path = hub_dir / 'stats.json' + if profile: + for _ in range(1): + file = stats_path.with_suffix('.npy') + t1 = time.time() + np.save(file, stats) + t2 = time.time() + x = np.load(file, allow_pickle=True) + print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') + + file = stats_path.with_suffix('.json') + t1 = time.time() + with open(file, 'w') as f: + json.dump(stats, f) # save stats *.json + t2 = time.time() + with open(file) as f: + x = json.load(f) # load hyps dict + print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write') + + # Save, print and return + if hub: + print(f'Saving {stats_path.resolve()}...') + with open(stats_path, 'w') as f: + json.dump(stats, f) # save stats.json + if verbose: + print(json.dumps(stats, indent=2, sort_keys=False)) + return stats diff --git a/src/yolov5/utils/downloads.py b/src/yolov5/utils/downloads.py new file mode 100644 index 00000000..d7b87cb2 --- /dev/null +++ b/src/yolov5/utils/downloads.py @@ -0,0 +1,153 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Download utils +""" + +import os +import platform +import subprocess +import time +import urllib +from pathlib import Path +from zipfile import ZipFile + +import requests +import torch + + +def gsutil_getsize(url=''): + # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du + s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8') + return eval(s.split(' ')[0]) if len(s) else 0 # bytes + + +def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''): + # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes + file = Path(file) + assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}" + try: # url1 + print(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, str(file)) + assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check + except Exception as e: # url2 + file.unlink(missing_ok=True) # remove partial downloads + print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...') + os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail + finally: + if not file.exists() or file.stat().st_size < min_bytes: # check + file.unlink(missing_ok=True) # remove partial downloads + print(f"ERROR: {assert_msg}\n{error_msg}") + print('') + + +def attempt_download(file, repo='ultralytics/yolov5'): # from utils.downloads import *; attempt_download() + # Attempt file download if does not exist + file = Path(str(file).strip().replace("'", '')) + + if not file.exists(): + # URL specified + name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc. + if str(file).startswith(('http:/', 'https:/')): # download + url = str(file).replace(':/', '://') # Pathlib turns :// -> :/ + file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth... + if Path(file).is_file(): + print(f'Found {url} locally at {file}') # file already exists + else: + safe_download(file=file, url=url, min_bytes=1E5) + return file + + # GitHub assets + file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required) + try: + response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json() # github api + assets = [x['name'] for x in response['assets']] # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...] + tag = response['tag_name'] # i.e. 'v1.0' + except Exception: # fallback plan + assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', + 'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt'] + try: + tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1] + except Exception: + tag = 'v6.0' # current release + + if name in assets: + safe_download(file, + url=f'https://github.com/{repo}/releases/download/{tag}/{name}', + # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}', # backup url (optional) + min_bytes=1E5, + error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/') + + return str(file) + + +def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'): + # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download() + t = time.time() + file = Path(file) + cookie = Path('cookie') # gdrive cookie + print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='') + file.unlink(missing_ok=True) # remove existing file + cookie.unlink(missing_ok=True) # remove existing cookie + + # Attempt file download + out = "NUL" if platform.system() == "Windows" else "/dev/null" + os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}') + if os.path.exists('cookie'): # large file + s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}' + else: # small file + s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"' + r = os.system(s) # execute, capture return + cookie.unlink(missing_ok=True) # remove existing cookie + + # Error check + if r != 0: + file.unlink(missing_ok=True) # remove partial + print('Download error ') # raise Exception('Download error') + return r + + # Unzip if archive + if file.suffix == '.zip': + print('unzipping... ', end='') + ZipFile(file).extractall(path=file.parent) # unzip + file.unlink() # remove zip + + print(f'Done ({time.time() - t:.1f}s)') + return r + + +def get_token(cookie="./cookie"): + with open(cookie) as f: + for line in f: + if "download" in line: + return line.split()[-1] + return "" + +# Google utils: https://cloud.google.com/storage/docs/reference/libraries ---------------------------------------------- +# +# +# def upload_blob(bucket_name, source_file_name, destination_blob_name): +# # Uploads a file to a bucket +# # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python +# +# storage_client = storage.Client() +# bucket = storage_client.get_bucket(bucket_name) +# blob = bucket.blob(destination_blob_name) +# +# blob.upload_from_filename(source_file_name) +# +# print('File {} uploaded to {}.'.format( +# source_file_name, +# destination_blob_name)) +# +# +# def download_blob(bucket_name, source_blob_name, destination_file_name): +# # Uploads a blob from a bucket +# storage_client = storage.Client() +# bucket = storage_client.get_bucket(bucket_name) +# blob = bucket.blob(source_blob_name) +# +# blob.download_to_filename(destination_file_name) +# +# print('Blob {} downloaded to {}.'.format( +# source_blob_name, +# destination_file_name)) diff --git a/src/yolov5/utils/flask_rest_api/README.md b/src/yolov5/utils/flask_rest_api/README.md new file mode 100644 index 00000000..a726acbd --- /dev/null +++ b/src/yolov5/utils/flask_rest_api/README.md @@ -0,0 +1,73 @@ +# Flask REST API + +[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are +commonly used to expose Machine Learning (ML) models to other services. This folder contains an example REST API +created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/). + +## Requirements + +[Flask](https://palletsprojects.com/p/flask/) is required. Install with: + +```shell +$ pip install Flask +``` + +## Run + +After Flask installation run: + +```shell +$ python3 restapi.py --port 5000 +``` + +Then use [curl](https://curl.se/) to perform a request: + +```shell +$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s' +``` + +The model inference results are returned as a JSON response: + +```json +[ + { + "class": 0, + "confidence": 0.8900438547, + "height": 0.9318675399, + "name": "person", + "width": 0.3264600933, + "xcenter": 0.7438579798, + "ycenter": 0.5207948685 + }, + { + "class": 0, + "confidence": 0.8440024257, + "height": 0.7155083418, + "name": "person", + "width": 0.6546785235, + "xcenter": 0.427829951, + "ycenter": 0.6334488392 + }, + { + "class": 27, + "confidence": 0.3771208823, + "height": 0.3902671337, + "name": "tie", + "width": 0.0696444362, + "xcenter": 0.3675483763, + "ycenter": 0.7991207838 + }, + { + "class": 27, + "confidence": 0.3527112305, + "height": 0.1540903747, + "name": "tie", + "width": 0.0336618312, + "xcenter": 0.7814827561, + "ycenter": 0.5065554976 + } +] +``` + +An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given +in `example_request.py` diff --git a/src/yolov5/utils/flask_rest_api/example_request.py b/src/yolov5/utils/flask_rest_api/example_request.py new file mode 100644 index 00000000..ff21f30f --- /dev/null +++ b/src/yolov5/utils/flask_rest_api/example_request.py @@ -0,0 +1,13 @@ +"""Perform test request""" +import pprint + +import requests + +DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s" +TEST_IMAGE = "zidane.jpg" + +image_data = open(TEST_IMAGE, "rb").read() + +response = requests.post(DETECTION_URL, files={"image": image_data}).json() + +pprint.pprint(response) diff --git a/src/yolov5/utils/flask_rest_api/restapi.py b/src/yolov5/utils/flask_rest_api/restapi.py new file mode 100644 index 00000000..b93ad16a --- /dev/null +++ b/src/yolov5/utils/flask_rest_api/restapi.py @@ -0,0 +1,37 @@ +""" +Run a rest API exposing the yolov5s object detection model +""" +import argparse +import io + +import torch +from flask import Flask, request +from PIL import Image + +app = Flask(__name__) + +DETECTION_URL = "/v1/object-detection/yolov5s" + + +@app.route(DETECTION_URL, methods=["POST"]) +def predict(): + if not request.method == "POST": + return + + if request.files.get("image"): + image_file = request.files["image"] + image_bytes = image_file.read() + + img = Image.open(io.BytesIO(image_bytes)) + + results = model(img, size=640) # reduce size=320 for faster inference + return results.pandas().xyxy[0].to_json(orient="records") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model") + parser.add_argument("--port", default=5000, type=int, help="port number") + args = parser.parse_args() + + model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True) # force_reload to recache + app.run(host="0.0.0.0", port=args.port) # debug=True causes Restarting with stat diff --git a/src/yolov5/utils/general.py b/src/yolov5/utils/general.py new file mode 100755 index 00000000..4b7a7c6f --- /dev/null +++ b/src/yolov5/utils/general.py @@ -0,0 +1,880 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +General utils +""" + +import contextlib +import glob +import logging +import math +import os +import platform +import random +import re +import shutil +import signal +import time +import urllib +from itertools import repeat +from multiprocessing.pool import ThreadPool +from pathlib import Path +from subprocess import check_output +from zipfile import ZipFile + +import cv2 +import numpy as np +import pandas as pd +import pkg_resources as pkg +import torch +import torchvision +import yaml + +from utils.downloads import gsutil_getsize +from utils.metrics import box_iou, fitness + +# Settings +FILE = Path(__file__).resolve() +ROOT = FILE.parents[1] # YOLOv5 root directory +DATASETS_DIR = ROOT.parent / 'datasets' # YOLOv5 datasets directory +NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads +VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode +FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf + +torch.set_printoptions(linewidth=320, precision=5, profile='long') +np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5 +pd.options.display.max_columns = 10 +cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader) +os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads + + +def is_kaggle(): + # Is environment a Kaggle Notebook? + try: + assert os.environ.get('PWD') == '/kaggle/working' + assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com' + return True + except AssertionError: + return False + + +def is_writeable(dir, test=False): + # Return True if directory has write permissions, test opening a file with write permissions if test=True + if test: # method 1 + file = Path(dir) / 'tmp.txt' + try: + with open(file, 'w'): # open file with write permissions + pass + file.unlink() # remove file + return True + except OSError: + return False + else: # method 2 + return os.access(dir, os.R_OK) # possible issues on Windows + + +def set_logging(name=None, verbose=VERBOSE): + # Sets level and returns logger + if is_kaggle(): + for h in logging.root.handlers: + logging.root.removeHandler(h) # remove all handlers associated with the root logger object + rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings + logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING) + return logging.getLogger(name) + + +LOGGER = set_logging('yolov5') # define globally (used in train.py, val.py, detect.py, etc.) + + +def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'): + # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required. + env = os.getenv(env_var) + if env: + path = Path(env) # use environment variable + else: + cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs + path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir + path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable + path.mkdir(exist_ok=True) # make if required + return path + + +CONFIG_DIR = user_config_dir() # Ultralytics settings dir + + +class Profile(contextlib.ContextDecorator): + # Usage: @Profile() decorator or 'with Profile():' context manager + def __enter__(self): + self.start = time.time() + + def __exit__(self, type, value, traceback): + print(f'Profile results: {time.time() - self.start:.5f}s') + + +class Timeout(contextlib.ContextDecorator): + # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager + def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True): + self.seconds = int(seconds) + self.timeout_message = timeout_msg + self.suppress = bool(suppress_timeout_errors) + + def _timeout_handler(self, signum, frame): + raise TimeoutError(self.timeout_message) + + def __enter__(self): + signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM + signal.alarm(self.seconds) # start countdown for SIGALRM to be raised + + def __exit__(self, exc_type, exc_val, exc_tb): + signal.alarm(0) # Cancel SIGALRM if it's scheduled + if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError + return True + + +class WorkingDirectory(contextlib.ContextDecorator): + # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager + def __init__(self, new_dir): + self.dir = new_dir # new dir + self.cwd = Path.cwd().resolve() # current dir + + def __enter__(self): + os.chdir(self.dir) + + def __exit__(self, exc_type, exc_val, exc_tb): + os.chdir(self.cwd) + + +def try_except(func): + # try-except function. Usage: @try_except decorator + def handler(*args, **kwargs): + try: + func(*args, **kwargs) + except Exception as e: + print(e) + + return handler + + +def methods(instance): + # Get class/instance methods + return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")] + + +def print_args(name, opt): + # Print argparser arguments + LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items())) + + +def init_seeds(seed=0): + # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html + # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible + import torch.backends.cudnn as cudnn + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False) + + +def intersect_dicts(da, db, exclude=()): + # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values + return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape} + + +def get_latest_run(search_dir='.'): + # Return path to most recent 'last.pt' in /runs (i.e. to --resume from) + last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True) + return max(last_list, key=os.path.getctime) if last_list else '' + + +def is_docker(): + # Is environment a Docker container? + return Path('/workspace').exists() # or Path('/.dockerenv').exists() + + +def is_colab(): + # Is environment a Google Colab instance? + try: + import google.colab + return True + except ImportError: + return False + + +def is_pip(): + # Is file in a pip package? + return 'site-packages' in Path(__file__).resolve().parts + + +def is_ascii(s=''): + # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7) + s = str(s) # convert list, tuple, None, etc. to str + return len(s.encode().decode('ascii', 'ignore')) == len(s) + + +def is_chinese(s='äēēåˇĨæēčŊ'): + # Is string composed of any Chinese characters? + return True if re.search('[\u4e00-\u9fff]', str(s)) else False + + +def emojis(str=''): + # Return platform-dependent emoji-safe version of string + return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str + + +def file_size(path): + # Return file/dir size (MB) + path = Path(path) + if path.is_file(): + return path.stat().st_size / 1E6 + elif path.is_dir(): + return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6 + else: + return 0.0 + + +def check_online(): + # Check internet connectivity + import socket + try: + socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility + return True + except OSError: + return False + + +@try_except +@WorkingDirectory(ROOT) +def check_git_status(): + # Recommend 'git pull' if code is out of date + msg = ', for updates see https://github.com/ultralytics/yolov5' + s = colorstr('github: ') # string + assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg + assert not is_docker(), s + 'skipping check (Docker image)' + msg + assert check_online(), s + 'skipping check (offline)' + msg + + cmd = 'git fetch && git config --get remote.origin.url' + url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git') # git fetch + branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out + n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True)) # commits behind + if n > 0: + s += f"â ī¸ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update." + else: + s += f'up to date with {url} â ' + LOGGER.info(emojis(s)) # emoji-safe + + +def check_python(minimum='3.6.2'): + # Check current python version vs. required python version + check_version(platform.python_version(), minimum, name='Python ', hard=True) + + +def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False): + # Check version vs. required version + current, minimum = (pkg.parse_version(x) for x in (current, minimum)) + result = (current == minimum) if pinned else (current >= minimum) # bool + s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed' # string + if hard: + assert result, s # assert min requirements met + if verbose and not result: + LOGGER.warning(s) + return result + + +@try_except +def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True): + # Check installed dependencies meet requirements (pass *.txt file or list of packages) + prefix = colorstr('red', 'bold', 'requirements:') + check_python() # check python version + if isinstance(requirements, (str, Path)): # requirements.txt file + file = Path(requirements) + assert file.exists(), f"{prefix} {file.resolve()} not found, check failed." + with file.open() as f: + requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude] + else: # list or tuple of packages + requirements = [x for x in requirements if x not in exclude] + + n = 0 # number of packages updates + for r in requirements: + try: + pkg.require(r) + except Exception: # DistributionNotFound or VersionConflict if requirements not met + s = f"{prefix} {r} not found and is required by YOLOv5" + if install: + LOGGER.info(f"{s}, attempting auto-update...") + try: + assert check_online(), f"'pip install {r}' skipped (offline)" + LOGGER.info(check_output(f"pip install '{r}'", shell=True).decode()) + n += 1 + except Exception as e: + LOGGER.warning(f'{prefix} {e}') + else: + LOGGER.info(f'{s}. Please install and rerun your command.') + + if n: # if packages updated + source = file.resolve() if 'file' in locals() else requirements + s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \ + f"{prefix} â ī¸ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n" + LOGGER.info(emojis(s)) + + +def check_img_size(imgsz, s=32, floor=0): + # Verify image size is a multiple of stride s in each dimension + if isinstance(imgsz, int): # integer i.e. img_size=640 + new_size = max(make_divisible(imgsz, int(s)), floor) + else: # list i.e. img_size=[640, 480] + new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz] + if new_size != imgsz: + LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}') + return new_size + + +def check_imshow(): + # Check if environment supports image displays + try: + assert not is_docker(), 'cv2.imshow() is disabled in Docker environments' + assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments' + cv2.imshow('test', np.zeros((1, 1, 3))) + cv2.waitKey(1) + cv2.destroyAllWindows() + cv2.waitKey(1) + return True + except Exception as e: + LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}') + return False + + +def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''): + # Check file(s) for acceptable suffix + if file and suffix: + if isinstance(suffix, str): + suffix = [suffix] + for f in file if isinstance(file, (list, tuple)) else [file]: + s = Path(f).suffix.lower() # file suffix + if len(s): + assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}" + + +def check_yaml(file, suffix=('.yaml', '.yml')): + # Search/download YAML file (if necessary) and return path, checking suffix + return check_file(file, suffix) + + +def check_file(file, suffix=''): + # Search/download file (if necessary) and return path + check_suffix(file, suffix) # optional + file = str(file) # convert to str() + if Path(file).is_file() or file == '': # exists + return file + elif file.startswith(('http:/', 'https:/')): # download + url = str(Path(file)).replace(':/', '://') # Pathlib turns :// -> :/ + file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth + if Path(file).is_file(): + LOGGER.info(f'Found {url} locally at {file}') # file already exists + else: + LOGGER.info(f'Downloading {url} to {file}...') + torch.hub.download_url_to_file(url, file) + assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check + return file + else: # search + files = [] + for d in 'data', 'models', 'utils': # search directories + files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file + assert len(files), f'File not found: {file}' # assert file was found + assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique + return files[0] # return file + + +def check_font(font=FONT): + # Download font to CONFIG_DIR if necessary + font = Path(font) + if not font.exists() and not (CONFIG_DIR / font.name).exists(): + url = "https://ultralytics.com/assets/" + font.name + LOGGER.info(f'Downloading {url} to {CONFIG_DIR / font.name}...') + torch.hub.download_url_to_file(url, str(font), progress=False) + + +def check_dataset(data, autodownload=True): + # Download and/or unzip dataset if not found locally + # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip + + # Download (optional) + extract_dir = '' + if isinstance(data, (str, Path)) and str(data).endswith('.zip'): # i.e. gs://bucket/dir/coco128.zip + download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1) + data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml')) + extract_dir, autodownload = data.parent, False + + # Read yaml (optional) + if isinstance(data, (str, Path)): + with open(data, errors='ignore') as f: + data = yaml.safe_load(f) # dictionary + + # Resolve paths + path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.' + if not path.is_absolute(): + path = (ROOT / path).resolve() + for k in 'train', 'val', 'test': + if data.get(k): # prepend path + data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]] + + # Parse yaml + assert 'nc' in data, "Dataset 'nc' key missing." + if 'names' not in data: + data['names'] = [f'class{i}' for i in range(data['nc'])] # assign class names if missing + train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download')) + if val: + val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path + if not all(x.exists() for x in val): + LOGGER.info('\nDataset not found, missing paths: %s' % [str(x) for x in val if not x.exists()]) + if s and autodownload: # download script + root = path.parent if 'path' in data else '..' # unzip directory i.e. '../' + if s.startswith('http') and s.endswith('.zip'): # URL + f = Path(s).name # filename + LOGGER.info(f'Downloading {s} to {f}...') + torch.hub.download_url_to_file(s, f) + Path(root).mkdir(parents=True, exist_ok=True) # create root + ZipFile(f).extractall(path=root) # unzip + Path(f).unlink() # remove zip + r = None # success + elif s.startswith('bash '): # bash script + LOGGER.info(f'Running {s} ...') + r = os.system(s) + else: # python script + r = exec(s, {'yaml': data}) # return None + LOGGER.info(f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n") + else: + raise Exception('Dataset not found.') + + return data # dictionary + + +def url2file(url): + # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt + url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/ + file = Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth + return file + + +def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1): + # Multi-threaded file download and unzip function, used in data.yaml for autodownload + def download_one(url, dir): + # Download 1 file + f = dir / Path(url).name # filename + if Path(url).is_file(): # exists in current path + Path(url).rename(f) # move to dir + elif not f.exists(): + LOGGER.info(f'Downloading {url} to {f}...') + if curl: + os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -") # curl download, retry and resume on fail + else: + torch.hub.download_url_to_file(url, f, progress=True) # torch download + if unzip and f.suffix in ('.zip', '.gz'): + LOGGER.info(f'Unzipping {f}...') + if f.suffix == '.zip': + ZipFile(f).extractall(path=dir) # unzip + elif f.suffix == '.gz': + os.system(f'tar xfz {f} --directory {f.parent}') # unzip + if delete: + f.unlink() # remove zip + + dir = Path(dir) + dir.mkdir(parents=True, exist_ok=True) # make directory + if threads > 1: + pool = ThreadPool(threads) + pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multi-threaded + pool.close() + pool.join() + else: + for u in [url] if isinstance(url, (str, Path)) else url: + download_one(u, dir) + + +def make_divisible(x, divisor): + # Returns nearest x divisible by divisor + if isinstance(divisor, torch.Tensor): + divisor = int(divisor.max()) # to int + return math.ceil(x / divisor) * divisor + + +def clean_str(s): + # Cleans a string by replacing special characters with underscore _ + return re.sub(pattern="[|@#!¥¡$âŦ%&()=?Âŋ^*;:,¨´><+]", repl="_", string=s) + + +def one_cycle(y1=0.0, y2=1.0, steps=100): + # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf + return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1 + + +def colorstr(*input): + # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world') + *args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string + colors = {'black': '\033[30m', # basic colors + 'red': '\033[31m', + 'green': '\033[32m', + 'yellow': '\033[33m', + 'blue': '\033[34m', + 'magenta': '\033[35m', + 'cyan': '\033[36m', + 'white': '\033[37m', + 'bright_black': '\033[90m', # bright colors + 'bright_red': '\033[91m', + 'bright_green': '\033[92m', + 'bright_yellow': '\033[93m', + 'bright_blue': '\033[94m', + 'bright_magenta': '\033[95m', + 'bright_cyan': '\033[96m', + 'bright_white': '\033[97m', + 'end': '\033[0m', # misc + 'bold': '\033[1m', + 'underline': '\033[4m'} + return ''.join(colors[x] for x in args) + f'{string}' + colors['end'] + + +def labels_to_class_weights(labels, nc=80): + # Get class weights (inverse frequency) from training labels + if labels[0] is None: # no labels loaded + return torch.Tensor() + + labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO + classes = labels[:, 0].astype(np.int) # labels = [class xywh] + weights = np.bincount(classes, minlength=nc) # occurrences per class + + # Prepend gridpoint count (for uCE training) + # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image + # weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start + + weights[weights == 0] = 1 # replace empty bins with 1 + weights = 1 / weights # number of targets per class + weights /= weights.sum() # normalize + return torch.from_numpy(weights) + + +def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)): + # Produces image weights based on class_weights and image contents + class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels]) + image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1) + # index = random.choices(range(n), weights=image_weights, k=1) # weight image sample + return image_weights + + +def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper) + # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ + # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n') + # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n') + # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco + # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet + x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34, + 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, + 64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90] + return x + + +def xyxy2xywh(x): + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center + y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center + y[:, 2] = x[:, 2] - x[:, 0] # width + y[:, 3] = x[:, 3] - x[:, 1] # height + return y + + +def xywh2xyxy(x): + # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x + y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y + y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x + y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y + return y + + +def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0): + # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw # top left x + y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh # top left y + y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw # bottom right x + y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh # bottom right y + return y + + +def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0): + # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right + if clip: + clip_coords(x, (h - eps, w - eps)) # warning: inplace clip + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w # x center + y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h # y center + y[:, 2] = (x[:, 2] - x[:, 0]) / w # width + y[:, 3] = (x[:, 3] - x[:, 1]) / h # height + return y + + +def xyn2xy(x, w=640, h=640, padw=0, padh=0): + # Convert normalized segments into pixel segments, shape (n,2) + y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x) + y[:, 0] = w * x[:, 0] + padw # top left x + y[:, 1] = h * x[:, 1] + padh # top left y + return y + + +def segment2box(segment, width=640, height=640): + # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy) + x, y = segment.T # segment xy + inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height) + x, y, = x[inside], y[inside] + return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy + + +def segments2boxes(segments): + # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh) + boxes = [] + for s in segments: + x, y = s.T # segment xy + boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy + return xyxy2xywh(np.array(boxes)) # cls, xywh + + +def resample_segments(segments, n=1000): + # Up-sample an (n,2) segment + for i, s in enumerate(segments): + x = np.linspace(0, len(s) - 1, n) + xp = np.arange(len(s)) + segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy + return segments + + +def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): + # Rescale coords (xyxy) from img1_shape to img0_shape + if ratio_pad is None: # calculate from img0_shape + gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new + pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding + else: + gain = ratio_pad[0][0] + pad = ratio_pad[1] + + coords[:, [0, 2]] -= pad[0] # x padding + coords[:, [1, 3]] -= pad[1] # y padding + coords[:, :4] /= gain + clip_coords(coords, img0_shape) + return coords + + +def clip_coords(boxes, shape): + # Clip bounding xyxy bounding boxes to image shape (height, width) + if isinstance(boxes, torch.Tensor): # faster individually + boxes[:, 0].clamp_(0, shape[1]) # x1 + boxes[:, 1].clamp_(0, shape[0]) # y1 + boxes[:, 2].clamp_(0, shape[1]) # x2 + boxes[:, 3].clamp_(0, shape[0]) # y2 + else: # np.array (faster grouped) + boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2 + boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2 + + +def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, + labels=(), max_det=300): + """Runs Non-Maximum Suppression (NMS) on inference results + + Returns: + list of detections, on (n,6) tensor per image [xyxy, conf, cls] + """ + + nc = prediction.shape[2] - 5 # number of classes + xc = prediction[..., 4] > conf_thres # candidates + + # Checks + assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0' + assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0' + + # Settings + min_wh, max_wh = 2, 7680 # (pixels) minimum and maximum box width and height + max_nms = 30000 # maximum number of boxes into torchvision.ops.nms() + time_limit = 10.0 # seconds to quit after + redundant = True # require redundant detections + multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img) + merge = False # use merge-NMS + + t = time.time() + output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0] + for xi, x in enumerate(prediction): # image index, image inference + # Apply constraints + x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0 # width-height + x = x[xc[xi]] # confidence + + # Cat apriori labels if autolabelling + if labels and len(labels[xi]): + lb = labels[xi] + v = torch.zeros((len(lb), nc + 5), device=x.device) + v[:, :4] = lb[:, 1:5] # box + v[:, 4] = 1.0 # conf + v[range(len(lb)), lb[:, 0].long() + 5] = 1.0 # cls + x = torch.cat((x, v), 0) + + # If none remain process next image + if not x.shape[0]: + continue + + # Compute conf + x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf + + # Box (center x, center y, width, height) to (x1, y1, x2, y2) + box = xywh2xyxy(x[:, :4]) + + # Detections matrix nx6 (xyxy, conf, cls) + if multi_label: + i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T + x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1) + else: # best class only + conf, j = x[:, 5:].max(1, keepdim=True) + x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres] + + # Filter by class + if classes is not None: + x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)] + + # Apply finite constraint + # if not torch.isfinite(x).all(): + # x = x[torch.isfinite(x).all(1)] + + # Check shape + n = x.shape[0] # number of boxes + if not n: # no boxes + continue + elif n > max_nms: # excess boxes + x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence + + # Batched NMS + c = x[:, 5:6] * (0 if agnostic else max_wh) # classes + boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores + i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS + if i.shape[0] > max_det: # limit detections + i = i[:max_det] + if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean) + # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4) + iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix + weights = iou * scores[None] # box weights + x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes + if redundant: + i = i[iou.sum(1) > 1] # require redundancy + + output[xi] = x[i] + if (time.time() - t) > time_limit: + LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded') + break # time limit exceeded + + return output + + +def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer() + # Strip optimizer from 'f' to finalize training, optionally save as 's' + x = torch.load(f, map_location=torch.device('cpu')) + if x.get('ema'): + x['model'] = x['ema'] # replace model with ema + for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates': # keys + x[k] = None + x['epoch'] = -1 + x['model'].half() # to FP16 + for p in x['model'].parameters(): + p.requires_grad = False + torch.save(x, s or f) + mb = os.path.getsize(s or f) / 1E6 # filesize + LOGGER.info(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB") + + +def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')): + evolve_csv = save_dir / 'evolve.csv' + evolve_yaml = save_dir / 'hyp_evolve.yaml' + keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', + 'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys()) # [results + hyps] + keys = tuple(x.strip() for x in keys) + vals = results + tuple(hyp.values()) + n = len(keys) + + # Download (optional) + if bucket: + url = f'gs://{bucket}/evolve.csv' + if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0): + os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local + + # Log to evolve.csv + s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header + with open(evolve_csv, 'a') as f: + f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n') + + # Save yaml + with open(evolve_yaml, 'w') as f: + data = pd.read_csv(evolve_csv) + data = data.rename(columns=lambda x: x.strip()) # strip keys + i = np.argmax(fitness(data.values[:, :4])) # + generations = len(data) + f.write('# YOLOv5 Hyperparameter Evolution Results\n' + + f'# Best generation: {i}\n' + + f'# Last generation: {generations - 1}\n' + + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' + + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n') + yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False) + + # Print to screen + LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + + prefix + ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + + prefix + ', '.join(f'{x:20.5g}' for x in vals) + '\n\n') + + if bucket: + os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload + + +def apply_classifier(x, model, img, im0): + # Apply a second stage classifier to YOLO outputs + # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval() + im0 = [im0] if isinstance(im0, np.ndarray) else im0 + for i, d in enumerate(x): # per image + if d is not None and len(d): + d = d.clone() + + # Reshape and pad cutouts + b = xyxy2xywh(d[:, :4]) # boxes + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square + b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad + d[:, :4] = xywh2xyxy(b).long() + + # Rescale boxes from img_size to im0 size + scale_coords(img.shape[2:], d[:, :4], im0[i].shape) + + # Classes + pred_cls1 = d[:, 5].long() + ims = [] + for j, a in enumerate(d): # per item + cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])] + im = cv2.resize(cutout, (224, 224)) # BGR + # cv2.imwrite('example%i.jpg' % j, cutout) + + im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 + im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + ims.append(im) + + pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction + x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections + + return x + + +def increment_path(path, exist_ok=False, sep='', mkdir=False): + # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc. + path = Path(path) # os-agnostic + if path.exists() and not exist_ok: + path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '') + dirs = glob.glob(f"{path}{sep}*") # similar paths + matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs] + i = [int(m.groups()[0]) for m in matches if m] # indices + n = max(i) + 1 if i else 2 # increment number + path = Path(f"{path}{sep}{n}{suffix}") # increment path + if mkdir: + path.mkdir(parents=True, exist_ok=True) # make directory + return path + + +# Variables +NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns # terminal window size for tqdm diff --git a/src/yolov5/utils/google_app_engine/Dockerfile b/src/yolov5/utils/google_app_engine/Dockerfile new file mode 100644 index 00000000..0155618f --- /dev/null +++ b/src/yolov5/utils/google_app_engine/Dockerfile @@ -0,0 +1,25 @@ +FROM gcr.io/google-appengine/python + +# Create a virtualenv for dependencies. This isolates these packages from +# system-level packages. +# Use -p python3 or -p python3.7 to select python version. Default is version 2. +RUN virtualenv /env -p python3 + +# Setting these environment variables are the same as running +# source /env/bin/activate. +ENV VIRTUAL_ENV /env +ENV PATH /env/bin:$PATH + +RUN apt-get update && apt-get install -y python-opencv + +# Copy the application's requirements.txt and run pip to install all +# dependencies into the virtualenv. +ADD requirements.txt /app/requirements.txt +RUN pip install -r /app/requirements.txt + +# Add the application source code. +ADD . /app + +# Run a WSGI server to serve the application. gunicorn must be declared as +# a dependency in requirements.txt. +CMD gunicorn -b :$PORT main:app diff --git a/src/yolov5/utils/google_app_engine/additional_requirements.txt b/src/yolov5/utils/google_app_engine/additional_requirements.txt new file mode 100644 index 00000000..42d7ffc0 --- /dev/null +++ b/src/yolov5/utils/google_app_engine/additional_requirements.txt @@ -0,0 +1,4 @@ +# add these requirements in your app on top of the existing ones +pip==21.1 +Flask==1.0.2 +gunicorn==19.9.0 diff --git a/src/yolov5/utils/google_app_engine/app.yaml b/src/yolov5/utils/google_app_engine/app.yaml new file mode 100644 index 00000000..5056b7c1 --- /dev/null +++ b/src/yolov5/utils/google_app_engine/app.yaml @@ -0,0 +1,14 @@ +runtime: custom +env: flex + +service: yolov5app + +liveness_check: + initial_delay_sec: 600 + +manual_scaling: + instances: 1 +resources: + cpu: 1 + memory_gb: 4 + disk_size_gb: 20 diff --git a/src/yolov5/utils/loggers/__init__.py b/src/yolov5/utils/loggers/__init__.py new file mode 100644 index 00000000..86ccf384 --- /dev/null +++ b/src/yolov5/utils/loggers/__init__.py @@ -0,0 +1,168 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Logging utils +""" + +import os +import warnings +from threading import Thread + +import pkg_resources as pkg +import torch +from torch.utils.tensorboard import SummaryWriter + +from utils.general import colorstr, emojis +from utils.loggers.wandb.wandb_utils import WandbLogger +from utils.plots import plot_images, plot_results +from utils.torch_utils import de_parallel + +LOGGERS = ('csv', 'tb', 'wandb') # text-file, TensorBoard, Weights & Biases +RANK = int(os.getenv('RANK', -1)) + +try: + import wandb + + assert hasattr(wandb, '__version__') # verify package import not local dir + if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]: + try: + wandb_login_success = wandb.login(timeout=30) + except wandb.errors.UsageError: # known non-TTY terminal issue + wandb_login_success = False + if not wandb_login_success: + wandb = None +except (ImportError, AssertionError): + wandb = None + + +class Loggers(): + # YOLOv5 Loggers class + def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS): + self.save_dir = save_dir + self.weights = weights + self.opt = opt + self.hyp = hyp + self.logger = logger # for printing results to console + self.include = include + self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss + 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', # metrics + 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss + 'x/lr0', 'x/lr1', 'x/lr2'] # params + self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95',] + for k in LOGGERS: + setattr(self, k, None) # init empty logger dictionary + self.csv = True # always log to csv + + # Message + if not wandb: + prefix = colorstr('Weights & Biases: ') + s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 đ runs (RECOMMENDED)" + print(emojis(s)) + + # TensorBoard + s = self.save_dir + if 'tb' in self.include and not self.opt.evolve: + prefix = colorstr('TensorBoard: ') + self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/") + self.tb = SummaryWriter(str(s)) + + # W&B + if wandb and 'wandb' in self.include: + wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://') + run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None + self.opt.hyp = self.hyp # add hyperparameters + self.wandb = WandbLogger(self.opt, run_id) + else: + self.wandb = None + + def on_pretrain_routine_end(self): + # Callback runs on pre-train routine end + paths = self.save_dir.glob('*labels*.jpg') # training labels + if self.wandb: + self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]}) + + def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn): + # Callback runs on train batch end + if plots: + if ni == 0: + if not sync_bn: # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754 + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress jit trace warning + self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), []) + if ni < 3: + f = self.save_dir / f'train_batch{ni}.jpg' # filename + Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start() + if self.wandb and ni == 10: + files = sorted(self.save_dir.glob('train*.jpg')) + self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]}) + + def on_train_epoch_end(self, epoch): + # Callback runs on train epoch end + if self.wandb: + self.wandb.current_epoch = epoch + 1 + + def on_val_image_end(self, pred, predn, path, names, im): + # Callback runs on val image end + if self.wandb: + self.wandb.val_one_image(pred, predn, path, names, im) + + def on_val_end(self): + # Callback runs on val end + if self.wandb: + files = sorted(self.save_dir.glob('val*.jpg')) + self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]}) + + def on_fit_epoch_end(self, vals, epoch, best_fitness, fi): + # Callback runs at the end of each fit (train+val) epoch + x = {k: v for k, v in zip(self.keys, vals)} # dict + if self.csv: + file = self.save_dir / 'results.csv' + n = len(x) + 1 # number of cols + s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header + with open(file, 'a') as f: + f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n') + + if self.tb: + for k, v in x.items(): + self.tb.add_scalar(k, v, epoch) + + if self.wandb: + if best_fitness == fi: + best_results = [epoch] + vals[3:7] + for i, name in enumerate(self.best_keys): + self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary + self.wandb.log(x) + self.wandb.end_epoch(best_result=best_fitness == fi) + + def on_model_save(self, last, epoch, final_epoch, best_fitness, fi): + # Callback runs on model save event + if self.wandb: + if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1: + self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi) + + def on_train_end(self, last, best, plots, epoch, results): + # Callback runs on training end + if plots: + plot_results(file=self.save_dir / 'results.csv') # save results.png + files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))] + files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter + + if self.tb: + import cv2 + for f in files: + self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC') + + if self.wandb: + self.wandb.log({k: v for k, v in zip(self.keys[3:10], results)}) # log best.pt val results + self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]}) + # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model + if not self.opt.evolve: + wandb.log_artifact(str(best if best.exists() else last), type='model', + name='run_' + self.wandb.wandb_run.id + '_model', + aliases=['latest', 'best', 'stripped']) + self.wandb.finish_run() + + def on_params_update(self, params): + # Update hyperparams or configs of the experiment + # params: A dict containing {param: value} pairs + if self.wandb: + self.wandb.wandb_run.config.update(params, allow_val_change=True) diff --git a/src/yolov5/utils/loggers/wandb/README.md b/src/yolov5/utils/loggers/wandb/README.md new file mode 100644 index 00000000..63d99985 --- /dev/null +++ b/src/yolov5/utils/loggers/wandb/README.md @@ -0,0 +1,152 @@ +đ This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 đ. UPDATED 29 September 2021. +* [About Weights & Biases](#about-weights-&-biases) +* [First-Time Setup](#first-time-setup) +* [Viewing runs](#viewing-runs) +* [Disabling wandb](#disabling-wandb) +* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage) +* [Reports: Share your work with the world!](#reports) + +## About Weights & Biases +Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models â architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions. + +Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows: + + * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time + * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically + * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization + * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators + * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently + * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models + +## First-Time Setup +<details open> + <summary> Toggle Details </summary> +When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device. + +W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as: + + ```shell + $ python train.py --project ... --name ... + ``` + +YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> +<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png"> + + + </details> + +## Viewing Runs +<details open> + <summary> Toggle Details </summary> +Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged: + + * Training & Validation losses + * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95 + * Learning Rate over time + * A bounding box debugging panel, showing the training progress over time + * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage** + * System: Disk I/0, CPU utilization, RAM memory usage + * Your trained model as W&B Artifact + * Environment: OS and Python types, Git repository and state, **training command** + +<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p> +</details> + + ## Disabling wandb +* training after running `wandb disabled` inside that directory creates no wandb run + + +* To enable wandb again, run `wandb online` + + +## Advanced Usage +You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started. +<details open> + <h3> 1: Train and Log Evaluation simultaneousy </h3> + This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b> + Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets, + so no images will be uploaded from your system more than once. + <details open> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python train.py --upload_data val</code> + + + </details> + + <h3>2. Visualize and Version Datasets</h3> + Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact. + <details> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code> + +  + </details> + + <h3> 3: Train using dataset artifact </h3> + When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that + can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b> + <details> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code> + + + </details> + + <h3> 4: Save model checkpoints as artifacts </h3> + To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval. + You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged + + <details> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python train.py --save_period 1 </code> + + + </details> + +</details> + + <h3> 5: Resume runs from checkpoint artifacts. </h3> +Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system. + + <details> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code> + + + </details> + + <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3> + <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b> + The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or + train from <code>_wandb.yaml</code> file and set <code>--save_period</code> + + <details> + <summary> <b>Usage</b> </summary> + <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code> + + + </details> + +</details> + + <h3> Reports </h3> +W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)). + +<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png"> + + +## Environments + +YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled): + +- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> +- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart) +- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart) +- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> + + +## Status + + + +If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit. diff --git a/src/yolov5/utils/loggers/wandb/__init__.py b/src/yolov5/utils/loggers/wandb/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/src/yolov5/utils/loggers/wandb/log_dataset.py b/src/yolov5/utils/loggers/wandb/log_dataset.py new file mode 100644 index 00000000..06e81fb6 --- /dev/null +++ b/src/yolov5/utils/loggers/wandb/log_dataset.py @@ -0,0 +1,27 @@ +import argparse + +from wandb_utils import WandbLogger + +from utils.general import LOGGER + +WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' + + +def create_dataset_artifact(opt): + logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused + if not logger.wandb: + LOGGER.info("install wandb using `pip install wandb` to log the dataset") + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path') + parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset') + parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project') + parser.add_argument('--entity', default=None, help='W&B entity') + parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run') + + opt = parser.parse_args() + opt.resume = False # Explicitly disallow resume check for dataset upload job + + create_dataset_artifact(opt) diff --git a/src/yolov5/utils/loggers/wandb/sweep.py b/src/yolov5/utils/loggers/wandb/sweep.py new file mode 100644 index 00000000..206059bc --- /dev/null +++ b/src/yolov5/utils/loggers/wandb/sweep.py @@ -0,0 +1,41 @@ +import sys +from pathlib import Path + +import wandb + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[3] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +from train import parse_opt, train +from utils.callbacks import Callbacks +from utils.general import increment_path +from utils.torch_utils import select_device + + +def sweep(): + wandb.init() + # Get hyp dict from sweep agent + hyp_dict = vars(wandb.config).get("_items") + + # Workaround: get necessary opt args + opt = parse_opt(known=True) + opt.batch_size = hyp_dict.get("batch_size") + opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) + opt.epochs = hyp_dict.get("epochs") + opt.nosave = True + opt.data = hyp_dict.get("data") + opt.weights = str(opt.weights) + opt.cfg = str(opt.cfg) + opt.data = str(opt.data) + opt.hyp = str(opt.hyp) + opt.project = str(opt.project) + device = select_device(opt.device, batch_size=opt.batch_size) + + # train + train(hyp_dict, opt, device, callbacks=Callbacks()) + + +if __name__ == "__main__": + sweep() diff --git a/src/yolov5/utils/loggers/wandb/sweep.yaml b/src/yolov5/utils/loggers/wandb/sweep.yaml new file mode 100644 index 00000000..c7790d75 --- /dev/null +++ b/src/yolov5/utils/loggers/wandb/sweep.yaml @@ -0,0 +1,143 @@ +# Hyperparameters for training +# To set range- +# Provide min and max values as: +# parameter: +# +# min: scalar +# max: scalar +# OR +# +# Set a specific list of search space- +# parameter: +# values: [scalar1, scalar2, scalar3...] +# +# You can use grid, bayesian and hyperopt search strategy +# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration + +program: utils/loggers/wandb/sweep.py +method: random +metric: + name: metrics/mAP_0.5 + goal: maximize + +parameters: + # hyperparameters: set either min, max range or values list + data: + value: "data/coco128.yaml" + batch_size: + values: [64] + epochs: + values: [10] + + lr0: + distribution: uniform + min: 1e-5 + max: 1e-1 + lrf: + distribution: uniform + min: 0.01 + max: 1.0 + momentum: + distribution: uniform + min: 0.6 + max: 0.98 + weight_decay: + distribution: uniform + min: 0.0 + max: 0.001 + warmup_epochs: + distribution: uniform + min: 0.0 + max: 5.0 + warmup_momentum: + distribution: uniform + min: 0.0 + max: 0.95 + warmup_bias_lr: + distribution: uniform + min: 0.0 + max: 0.2 + box: + distribution: uniform + min: 0.02 + max: 0.2 + cls: + distribution: uniform + min: 0.2 + max: 4.0 + cls_pw: + distribution: uniform + min: 0.5 + max: 2.0 + obj: + distribution: uniform + min: 0.2 + max: 4.0 + obj_pw: + distribution: uniform + min: 0.5 + max: 2.0 + iou_t: + distribution: uniform + min: 0.1 + max: 0.7 + anchor_t: + distribution: uniform + min: 2.0 + max: 8.0 + fl_gamma: + distribution: uniform + min: 0.0 + max: 0.1 + hsv_h: + distribution: uniform + min: 0.0 + max: 0.1 + hsv_s: + distribution: uniform + min: 0.0 + max: 0.9 + hsv_v: + distribution: uniform + min: 0.0 + max: 0.9 + degrees: + distribution: uniform + min: 0.0 + max: 45.0 + translate: + distribution: uniform + min: 0.0 + max: 0.9 + scale: + distribution: uniform + min: 0.0 + max: 0.9 + shear: + distribution: uniform + min: 0.0 + max: 10.0 + perspective: + distribution: uniform + min: 0.0 + max: 0.001 + flipud: + distribution: uniform + min: 0.0 + max: 1.0 + fliplr: + distribution: uniform + min: 0.0 + max: 1.0 + mosaic: + distribution: uniform + min: 0.0 + max: 1.0 + mixup: + distribution: uniform + min: 0.0 + max: 1.0 + copy_paste: + distribution: uniform + min: 0.0 + max: 1.0 diff --git a/src/yolov5/utils/loggers/wandb/wandb_utils.py b/src/yolov5/utils/loggers/wandb/wandb_utils.py new file mode 100644 index 00000000..38354365 --- /dev/null +++ b/src/yolov5/utils/loggers/wandb/wandb_utils.py @@ -0,0 +1,562 @@ +"""Utilities and tools for tracking runs with Weights & Biases.""" + +import logging +import os +import sys +from contextlib import contextmanager +from pathlib import Path +from typing import Dict + +import yaml +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[3] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH + +from utils.datasets import LoadImagesAndLabels, img2label_paths +from utils.general import LOGGER, check_dataset, check_file + +try: + import wandb + + assert hasattr(wandb, '__version__') # verify package import not local dir +except (ImportError, AssertionError): + wandb = None + +RANK = int(os.getenv('RANK', -1)) +WANDB_ARTIFACT_PREFIX = 'wandb-artifact://' + + +def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX): + return from_string[len(prefix):] + + +def check_wandb_config_file(data_config_file): + wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path + if Path(wandb_config).is_file(): + return wandb_config + return data_config_file + + +def check_wandb_dataset(data_file): + is_trainset_wandb_artifact = False + is_valset_wandb_artifact = False + if check_file(data_file) and data_file.endswith('.yaml'): + with open(data_file, errors='ignore') as f: + data_dict = yaml.safe_load(f) + is_trainset_wandb_artifact = (isinstance(data_dict['train'], str) and + data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)) + is_valset_wandb_artifact = (isinstance(data_dict['val'], str) and + data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)) + if is_trainset_wandb_artifact or is_valset_wandb_artifact: + return data_dict + else: + return check_dataset(data_file) + + +def get_run_info(run_path): + run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX)) + run_id = run_path.stem + project = run_path.parent.stem + entity = run_path.parent.parent.stem + model_artifact_name = 'run_' + run_id + '_model' + return entity, project, run_id, model_artifact_name + + +def check_wandb_resume(opt): + process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None + if isinstance(opt.resume, str): + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): + if RANK not in [-1, 0]: # For resuming DDP runs + entity, project, run_id, model_artifact_name = get_run_info(opt.resume) + api = wandb.Api() + artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest') + modeldir = artifact.download() + opt.weights = str(Path(modeldir) / "last.pt") + return True + return None + + +def process_wandb_config_ddp_mode(opt): + with open(check_file(opt.data), errors='ignore') as f: + data_dict = yaml.safe_load(f) # data dict + train_dir, val_dir = None, None + if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX): + api = wandb.Api() + train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias) + train_dir = train_artifact.download() + train_path = Path(train_dir) / 'data/images/' + data_dict['train'] = str(train_path) + + if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX): + api = wandb.Api() + val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias) + val_dir = val_artifact.download() + val_path = Path(val_dir) / 'data/images/' + data_dict['val'] = str(val_path) + if train_dir or val_dir: + ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml') + with open(ddp_data_path, 'w') as f: + yaml.safe_dump(data_dict, f) + opt.data = ddp_data_path + + +class WandbLogger(): + """Log training runs, datasets, models, and predictions to Weights & Biases. + + This logger sends information to W&B at wandb.ai. By default, this information + includes hyperparameters, system configuration and metrics, model metrics, + and basic data metrics and analyses. + + By providing additional command line arguments to train.py, datasets, + models and predictions can also be logged. + + For more on how this logger is used, see the Weights & Biases documentation: + https://docs.wandb.com/guides/integrations/yolov5 + """ + + def __init__(self, opt, run_id=None, job_type='Training'): + """ + - Initialize WandbLogger instance + - Upload dataset if opt.upload_dataset is True + - Setup trainig processes if job_type is 'Training' + + arguments: + opt (namespace) -- Commandline arguments for this run + run_id (str) -- Run ID of W&B run to be resumed + job_type (str) -- To set the job_type for this run + + """ + # Pre-training routine -- + self.job_type = job_type + self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run + self.val_artifact, self.train_artifact = None, None + self.train_artifact_path, self.val_artifact_path = None, None + self.result_artifact = None + self.val_table, self.result_table = None, None + self.bbox_media_panel_images = [] + self.val_table_path_map = None + self.max_imgs_to_log = 16 + self.wandb_artifact_data_dict = None + self.data_dict = None + # It's more elegant to stick to 1 wandb.init call, + # but useful config data is overwritten in the WandbLogger's wandb.init call + if isinstance(opt.resume, str): # checks resume from artifact + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): + entity, project, run_id, model_artifact_name = get_run_info(opt.resume) + model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name + assert wandb, 'install wandb to resume wandb runs' + # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config + self.wandb_run = wandb.init(id=run_id, + project=project, + entity=entity, + resume='allow', + allow_val_change=True) + opt.resume = model_artifact_name + elif self.wandb: + self.wandb_run = wandb.init(config=opt, + resume="allow", + project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem, + entity=opt.entity, + name=opt.name if opt.name != 'exp' else None, + job_type=job_type, + id=run_id, + allow_val_change=True) if not wandb.run else wandb.run + if self.wandb_run: + if self.job_type == 'Training': + if opt.upload_dataset: + if not opt.resume: + self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt) + + if opt.resume: + # resume from artifact + if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX): + self.data_dict = dict(self.wandb_run.config.data_dict) + else: # local resume + self.data_dict = check_wandb_dataset(opt.data) + else: + self.data_dict = check_wandb_dataset(opt.data) + self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict + + # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming. + self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, + allow_val_change=True) + self.setup_training(opt) + + if self.job_type == 'Dataset Creation': + self.wandb_run.config.update({"upload_dataset": True}) + self.data_dict = self.check_and_upload_dataset(opt) + + def check_and_upload_dataset(self, opt): + """ + Check if the dataset format is compatible and upload it as W&B artifact + + arguments: + opt (namespace)-- Commandline arguments for current run + + returns: + Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links. + """ + assert wandb, 'Install wandb to upload dataset' + config_path = self.log_dataset_artifact(opt.data, + opt.single_cls, + 'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem) + with open(config_path, errors='ignore') as f: + wandb_data_dict = yaml.safe_load(f) + return wandb_data_dict + + def setup_training(self, opt): + """ + Setup the necessary processes for training YOLO models: + - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX + - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded + - Setup log_dict, initialize bbox_interval + + arguments: + opt (namespace) -- commandline arguments for this run + + """ + self.log_dict, self.current_epoch = {}, 0 + self.bbox_interval = opt.bbox_interval + if isinstance(opt.resume, str): + modeldir, _ = self.download_model_artifact(opt) + if modeldir: + self.weights = Path(modeldir) / "last.pt" + config = self.wandb_run.config + opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str( + self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\ + config.hyp, config.imgsz + data_dict = self.data_dict + if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download + self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), + opt.artifact_alias) + self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), + opt.artifact_alias) + + if self.train_artifact_path is not None: + train_path = Path(self.train_artifact_path) / 'data/images/' + data_dict['train'] = str(train_path) + if self.val_artifact_path is not None: + val_path = Path(self.val_artifact_path) / 'data/images/' + data_dict['val'] = str(val_path) + + if self.val_artifact is not None: + self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") + columns = ["epoch", "id", "ground truth", "prediction"] + columns.extend(self.data_dict['names']) + self.result_table = wandb.Table(columns) + self.val_table = self.val_artifact.get("val") + if self.val_table_path_map is None: + self.map_val_table_path() + if opt.bbox_interval == -1: + self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 + if opt.evolve: + self.bbox_interval = opt.bbox_interval = opt.epochs + 1 + train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None + # Update the the data_dict to point to local artifacts dir + if train_from_artifact: + self.data_dict = data_dict + + def download_dataset_artifact(self, path, alias): + """ + download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX + + arguments: + path -- path of the dataset to be used for training + alias (str)-- alias of the artifact to be download/used for training + + returns: + (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset + is found otherwise returns (None, None) + """ + if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): + artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) + dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/")) + assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" + datadir = dataset_artifact.download() + return datadir, dataset_artifact + return None, None + + def download_model_artifact(self, opt): + """ + download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX + + arguments: + opt (namespace) -- Commandline arguments for this run + """ + if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): + model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest") + assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist' + modeldir = model_artifact.download() + # epochs_trained = model_artifact.metadata.get('epochs_trained') + total_epochs = model_artifact.metadata.get('total_epochs') + is_finished = total_epochs is None + assert not is_finished, 'training is finished, can only resume incomplete runs.' + return modeldir, model_artifact + return None, None + + def log_model(self, path, opt, epoch, fitness_score, best_model=False): + """ + Log the model checkpoint as W&B artifact + + arguments: + path (Path) -- Path of directory containing the checkpoints + opt (namespace) -- Command line arguments for this run + epoch (int) -- Current epoch number + fitness_score (float) -- fitness score for current epoch + best_model (boolean) -- Boolean representing if the current checkpoint is the best yet. + """ + model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={ + 'original_url': str(path), + 'epochs_trained': epoch + 1, + 'save period': opt.save_period, + 'project': opt.project, + 'total_epochs': opt.epochs, + 'fitness_score': fitness_score + }) + model_artifact.add_file(str(path / 'last.pt'), name='last.pt') + wandb.log_artifact(model_artifact, + aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else '']) + LOGGER.info(f"Saving model artifact on epoch {epoch + 1}") + + def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False): + """ + Log the dataset as W&B artifact and return the new data file with W&B links + + arguments: + data_file (str) -- the .yaml file with information about the dataset like - path, classes etc. + single_class (boolean) -- train multi-class data as single-class + project (str) -- project name. Used to construct the artifact path + overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new + file with _wandb postfix. Eg -> data_wandb.yaml + + returns: + the new .yaml file with artifact links. it can be used to start training directly from artifacts + """ + upload_dataset = self.wandb_run.config.upload_dataset + log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val' + self.data_dict = check_dataset(data_file) # parse and check + data = dict(self.data_dict) + nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names']) + names = {k: v for k, v in enumerate(names)} # to index dictionary + + # log train set + if not log_val_only: + self.train_artifact = self.create_dataset_table(LoadImagesAndLabels( + data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None + if data.get('train'): + data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train') + + self.val_artifact = self.create_dataset_table(LoadImagesAndLabels( + data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None + if data.get('val'): + data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val') + + path = Path(data_file) + # create a _wandb.yaml file with artifacts links if both train and test set are logged + if not log_val_only: + path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path + path = ROOT / 'data' / path + data.pop('download', None) + data.pop('path', None) + with open(path, 'w') as f: + yaml.safe_dump(data, f) + LOGGER.info(f"Created dataset config file {path}") + + if self.job_type == 'Training': # builds correct artifact pipeline graph + if not log_val_only: + self.wandb_run.log_artifact( + self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED! + self.wandb_run.use_artifact(self.val_artifact) + self.val_artifact.wait() + self.val_table = self.val_artifact.get('val') + self.map_val_table_path() + else: + self.wandb_run.log_artifact(self.train_artifact) + self.wandb_run.log_artifact(self.val_artifact) + return path + + def map_val_table_path(self): + """ + Map the validation dataset Table like name of file -> it's id in the W&B Table. + Useful for - referencing artifacts for evaluation. + """ + self.val_table_path_map = {} + LOGGER.info("Mapping dataset") + for i, data in enumerate(tqdm(self.val_table.data)): + self.val_table_path_map[data[3]] = data[0] + + def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'): + """ + Create and return W&B artifact containing W&B Table of the dataset. + + arguments: + dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table + class_to_id -- hash map that maps class ids to labels + name -- name of the artifact + + returns: + dataset artifact to be logged or used + """ + # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging + artifact = wandb.Artifact(name=name, type="dataset") + img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None + img_files = tqdm(dataset.img_files) if not img_files else img_files + for img_file in img_files: + if Path(img_file).is_dir(): + artifact.add_dir(img_file, name='data/images') + labels_path = 'labels'.join(dataset.path.rsplit('images', 1)) + artifact.add_dir(labels_path, name='data/labels') + else: + artifact.add_file(img_file, name='data/images/' + Path(img_file).name) + label_file = Path(img2label_paths([img_file])[0]) + artifact.add_file(str(label_file), + name='data/labels/' + label_file.name) if label_file.exists() else None + table = wandb.Table(columns=["id", "train_image", "Classes", "name"]) + class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()]) + for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)): + box_data, img_classes = [], {} + for cls, *xywh in labels[:, 1:].tolist(): + cls = int(cls) + box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]}, + "class_id": cls, + "box_caption": "%s" % (class_to_id[cls])}) + img_classes[cls] = class_to_id[cls] + boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space + table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()), + Path(paths).name) + artifact.add(table, name) + return artifact + + def log_training_progress(self, predn, path, names): + """ + Build evaluation Table. Uses reference from validation dataset table. + + arguments: + predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class] + path (str): local path of the current evaluation image + names (dict(int, str)): hash map that maps class ids to labels + """ + class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) + box_data = [] + avg_conf_per_class = [0] * len(self.data_dict['names']) + pred_class_count = {} + for *xyxy, conf, cls in predn.tolist(): + if conf >= 0.25: + cls = int(cls) + box_data.append( + {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, + "class_id": cls, + "box_caption": f"{names[cls]} {conf:.3f}", + "scores": {"class_score": conf}, + "domain": "pixel"}) + avg_conf_per_class[cls] += conf + + if cls in pred_class_count: + pred_class_count[cls] += 1 + else: + pred_class_count[cls] = 1 + + for pred_class in pred_class_count.keys(): + avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class] + + boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space + id = self.val_table_path_map[Path(path).name] + self.result_table.add_data(self.current_epoch, + id, + self.val_table.data[id][1], + wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set), + *avg_conf_per_class + ) + + def val_one_image(self, pred, predn, path, names, im): + """ + Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel + + arguments: + pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class] + predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class] + path (str): local path of the current evaluation image + """ + if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact + self.log_training_progress(predn, path, names) + + if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0: + if self.current_epoch % self.bbox_interval == 0: + box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, + "class_id": int(cls), + "box_caption": f"{names[int(cls)]} {conf:.3f}", + "scores": {"class_score": conf}, + "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] + boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space + self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name)) + + def log(self, log_dict): + """ + save the metrics to the logging dictionary + + arguments: + log_dict (Dict) -- metrics/media to be logged in current step + """ + if self.wandb_run: + for key, value in log_dict.items(): + self.log_dict[key] = value + + def end_epoch(self, best_result=False): + """ + commit the log_dict, model artifacts and Tables to W&B and flush the log_dict. + + arguments: + best_result (boolean): Boolean representing if the result of this evaluation is best or not + """ + if self.wandb_run: + with all_logging_disabled(): + if self.bbox_media_panel_images: + self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images + try: + wandb.log(self.log_dict) + except BaseException as e: + LOGGER.info( + f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}") + self.wandb_run.finish() + self.wandb_run = None + + self.log_dict = {} + self.bbox_media_panel_images = [] + if self.result_artifact: + self.result_artifact.add(self.result_table, 'result') + wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), + ('best' if best_result else '')]) + + wandb.log({"evaluation": self.result_table}) + columns = ["epoch", "id", "ground truth", "prediction"] + columns.extend(self.data_dict['names']) + self.result_table = wandb.Table(columns) + self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") + + def finish_run(self): + """ + Log metrics if any and finish the current W&B run + """ + if self.wandb_run: + if self.log_dict: + with all_logging_disabled(): + wandb.log(self.log_dict) + wandb.run.finish() + + +@contextmanager +def all_logging_disabled(highest_level=logging.CRITICAL): + """ source - https://gist.github.com/simon-weber/7853144 + A context manager that will prevent any logging messages triggered during the body from being processed. + :param highest_level: the maximum logging level in use. + This would only need to be changed if a custom level greater than CRITICAL is defined. + """ + previous_level = logging.root.manager.disable + logging.disable(highest_level) + try: + yield + finally: + logging.disable(previous_level) diff --git a/src/yolov5/utils/loss.py b/src/yolov5/utils/loss.py new file mode 100644 index 00000000..5aa9f017 --- /dev/null +++ b/src/yolov5/utils/loss.py @@ -0,0 +1,222 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Loss functions +""" + +import torch +import torch.nn as nn + +from utils.metrics import bbox_iou +from utils.torch_utils import de_parallel + + +def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441 + # return positive, negative label smoothing BCE targets + return 1.0 - 0.5 * eps, 0.5 * eps + + +class BCEBlurWithLogitsLoss(nn.Module): + # BCEwithLogitLoss() with reduced missing label effects. + def __init__(self, alpha=0.05): + super().__init__() + self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none') # must be nn.BCEWithLogitsLoss() + self.alpha = alpha + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + pred = torch.sigmoid(pred) # prob from logits + dx = pred - true # reduce only missing label effects + # dx = (pred - true).abs() # reduce missing label and false label effects + alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4)) + loss *= alpha_factor + return loss.mean() + + +class FocalLoss(nn.Module): + # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super().__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + # p_t = torch.exp(-loss) + # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability + + # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py + pred_prob = torch.sigmoid(pred) # prob from logits + p_t = true * pred_prob + (1 - true) * (1 - pred_prob) + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = (1.0 - p_t) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class QFocalLoss(nn.Module): + # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) + def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): + super().__init__() + self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() + self.gamma = gamma + self.alpha = alpha + self.reduction = loss_fcn.reduction + self.loss_fcn.reduction = 'none' # required to apply FL to each element + + def forward(self, pred, true): + loss = self.loss_fcn(pred, true) + + pred_prob = torch.sigmoid(pred) # prob from logits + alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) + modulating_factor = torch.abs(true - pred_prob) ** self.gamma + loss *= alpha_factor * modulating_factor + + if self.reduction == 'mean': + return loss.mean() + elif self.reduction == 'sum': + return loss.sum() + else: # 'none' + return loss + + +class ComputeLoss: + # Compute losses + def __init__(self, model, autobalance=False): + self.sort_obj_iou = False + device = next(model.parameters()).device # get model device + h = model.hyp # hyperparameters + + # Define criteria + BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device)) + BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device)) + + # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3 + self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets + + # Focal loss + g = h['fl_gamma'] # focal loss gamma + if g > 0: + BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g) + + det = de_parallel(model).model[-1] # Detect() module + self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7 + self.ssi = list(det.stride).index(16) if autobalance else 0 # stride 16 index + self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance + for k in 'na', 'nc', 'nl', 'anchors': + setattr(self, k, getattr(det, k)) + + def __call__(self, p, targets): # predictions, targets, model + device = targets.device + lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device) + tcls, tbox, indices, anchors = self.build_targets(p, targets) # targets + + # Losses + for i, pi in enumerate(p): # layer index, layer predictions + b, a, gj, gi = indices[i] # image, anchor, gridy, gridx + tobj = torch.zeros_like(pi[..., 0], device=device) # target obj + + n = b.shape[0] # number of targets + if n: + ps = pi[b, a, gj, gi] # prediction subset corresponding to targets + + # Regression + pxy = ps[:, :2].sigmoid() * 2 - 0.5 + pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i] + pbox = torch.cat((pxy, pwh), 1) # predicted box + iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True) # iou(prediction, target) + lbox += (1.0 - iou).mean() # iou loss + + # Objectness + score_iou = iou.detach().clamp(0).type(tobj.dtype) + if self.sort_obj_iou: + sort_id = torch.argsort(score_iou) + b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id] + tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou # iou ratio + + # Classification + if self.nc > 1: # cls loss (only if multiple classes) + t = torch.full_like(ps[:, 5:], self.cn, device=device) # targets + t[range(n), tcls[i]] = self.cp + lcls += self.BCEcls(ps[:, 5:], t) # BCE + + # Append targets to text file + # with open('targets.txt', 'a') as file: + # [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)] + + obji = self.BCEobj(pi[..., 4], tobj) + lobj += obji * self.balance[i] # obj loss + if self.autobalance: + self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item() + + if self.autobalance: + self.balance = [x / self.balance[self.ssi] for x in self.balance] + lbox *= self.hyp['box'] + lobj *= self.hyp['obj'] + lcls *= self.hyp['cls'] + bs = tobj.shape[0] # batch size + + return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach() + + def build_targets(self, p, targets): + # Build targets for compute_loss(), input targets(image,class,x,y,w,h) + na, nt = self.na, targets.shape[0] # number of anchors, targets + tcls, tbox, indices, anch = [], [], [], [] + gain = torch.ones(7, device=targets.device) # normalized to gridspace gain + ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt) + targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2) # append anchor indices + + g = 0.5 # bias + off = torch.tensor([[0, 0], + [1, 0], [0, 1], [-1, 0], [0, -1], # j,k,l,m + # [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm + ], device=targets.device).float() * g # offsets + + for i in range(self.nl): + anchors = self.anchors[i] + gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]] # xyxy gain + + # Match targets to anchors + t = targets * gain + if nt: + # Matches + r = t[:, :, 4:6] / anchors[:, None] # wh ratio + j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare + # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2)) + t = t[j] # filter + + # Offsets + gxy = t[:, 2:4] # grid xy + gxi = gain[[2, 3]] - gxy # inverse + j, k = ((gxy % 1 < g) & (gxy > 1)).T + l, m = ((gxi % 1 < g) & (gxi > 1)).T + j = torch.stack((torch.ones_like(j), j, k, l, m)) + t = t.repeat((5, 1, 1))[j] + offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j] + else: + t = targets[0] + offsets = 0 + + # Define + b, c = t[:, :2].long().T # image, class + gxy = t[:, 2:4] # grid xy + gwh = t[:, 4:6] # grid wh + gij = (gxy - offsets).long() + gi, gj = gij.T # grid xy indices + + # Append + a = t[:, 6].long() # anchor indices + indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1))) # image, anchor, grid indices + tbox.append(torch.cat((gxy - gij, gwh), 1)) # box + anch.append(anchors[a]) # anchors + tcls.append(c) # class + + return tcls, tbox, indices, anch diff --git a/src/yolov5/utils/metrics.py b/src/yolov5/utils/metrics.py new file mode 100644 index 00000000..857fa5d8 --- /dev/null +++ b/src/yolov5/utils/metrics.py @@ -0,0 +1,342 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Model validation metrics +""" + +import math +import warnings +from pathlib import Path + +import matplotlib.pyplot as plt +import numpy as np +import torch + + +def fitness(x): + # Model fitness as a weighted combination of metrics + w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, mAP@0.5, mAP@0.5:0.95] + return (x[:, :4] * w).sum(1) + + +def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16): + """ Compute the average precision, given the recall and precision curves. + Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. + # Arguments + tp: True positives (nparray, nx1 or nx10). + conf: Objectness value from 0-1 (nparray). + pred_cls: Predicted object classes (nparray). + target_cls: True object classes (nparray). + plot: Plot precision-recall curve at mAP@0.5 + save_dir: Plot save directory + # Returns + The average precision as computed in py-faster-rcnn. + """ + + # Sort by objectness + i = np.argsort(-conf) + tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] + + # Find unique classes + unique_classes, nt = np.unique(target_cls, return_counts=True) + nc = unique_classes.shape[0] # number of classes, number of detections + + # Create Precision-Recall curve and compute AP for each class + px, py = np.linspace(0, 1, 1000), [] # for plotting + ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000)) + for ci, c in enumerate(unique_classes): + i = pred_cls == c + n_l = nt[ci] # number of labels + n_p = i.sum() # number of predictions + + if n_p == 0 or n_l == 0: + continue + else: + # Accumulate FPs and TPs + fpc = (1 - tp[i]).cumsum(0) + tpc = tp[i].cumsum(0) + + # Recall + recall = tpc / (n_l + eps) # recall curve + r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases + + # Precision + precision = tpc / (tpc + fpc) # precision curve + p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score + + # AP from recall-precision curve + for j in range(tp.shape[1]): + ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j]) + if plot and j == 0: + py.append(np.interp(px, mrec, mpre)) # precision at mAP@0.5 + + # Compute F1 (harmonic mean of precision and recall) + f1 = 2 * p * r / (p + r + eps) + names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data + names = {i: v for i, v in enumerate(names)} # to dict + if plot: + plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names) + plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1') + plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision') + plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall') + + i = f1.mean(0).argmax() # max F1 index + p, r, f1 = p[:, i], r[:, i], f1[:, i] + tp = (r * nt).round() # true positives + fp = (tp / (p + eps) - tp).round() # false positives + return tp, fp, p, r, f1, ap, unique_classes.astype('int32') + + +def compute_ap(recall, precision): + """ Compute the average precision, given the recall and precision curves + # Arguments + recall: The recall curve (list) + precision: The precision curve (list) + # Returns + Average precision, precision curve, recall curve + """ + + # Append sentinel values to beginning and end + mrec = np.concatenate(([0.0], recall, [1.0])) + mpre = np.concatenate(([1.0], precision, [0.0])) + + # Compute the precision envelope + mpre = np.flip(np.maximum.accumulate(np.flip(mpre))) + + # Integrate area under curve + method = 'interp' # methods: 'continuous', 'interp' + if method == 'interp': + x = np.linspace(0, 1, 101) # 101-point interp (COCO) + ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate + else: # 'continuous' + i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes + ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve + + return ap, mpre, mrec + + +class ConfusionMatrix: + # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix + def __init__(self, nc, conf=0.25, iou_thres=0.45): + self.matrix = np.zeros((nc + 1, nc + 1)) + self.nc = nc # number of classes + self.conf = conf + self.iou_thres = iou_thres + + def process_batch(self, detections, labels): + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + detections (Array[N, 6]), x1, y1, x2, y2, conf, class + labels (Array[M, 5]), class, x1, y1, x2, y2 + Returns: + None, updates confusion matrix accordingly + """ + detections = detections[detections[:, 4] > self.conf] + gt_classes = labels[:, 0].int() + detection_classes = detections[:, 5].int() + iou = box_iou(labels[:, 1:], detections[:, :4]) + + x = torch.where(iou > self.iou_thres) + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + else: + matches = np.zeros((0, 3)) + + n = matches.shape[0] > 0 + m0, m1, _ = matches.transpose().astype(np.int16) + for i, gc in enumerate(gt_classes): + j = m0 == i + if n and sum(j) == 1: + self.matrix[detection_classes[m1[j]], gc] += 1 # correct + else: + self.matrix[self.nc, gc] += 1 # background FP + + if n: + for i, dc in enumerate(detection_classes): + if not any(m1 == i): + self.matrix[dc, self.nc] += 1 # background FN + + def matrix(self): + return self.matrix + + def tp_fp(self): + tp = self.matrix.diagonal() # true positives + fp = self.matrix.sum(1) - tp # false positives + # fn = self.matrix.sum(0) - tp # false negatives (missed detections) + return tp[:-1], fp[:-1] # remove background class + + def plot(self, normalize=True, save_dir='', names=()): + try: + import seaborn as sn + + array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns + array[array < 0.005] = np.nan # don't annotate (would appear as 0.00) + + fig = plt.figure(figsize=(12, 9), tight_layout=True) + nc, nn = self.nc, len(names) # number of classes, names + sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size + labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels + with warnings.catch_warnings(): + warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered + sn.heatmap(array, annot=nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, vmin=0.0, + xticklabels=names + ['background FP'] if labels else "auto", + yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1)) + fig.axes[0].set_xlabel('True') + fig.axes[0].set_ylabel('Predicted') + fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250) + plt.close() + except Exception as e: + print(f'WARNING: ConfusionMatrix plot failure: {e}') + + def print(self): + for i in range(self.nc + 1): + print(' '.join(map(str, self.matrix[i]))) + + +def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7): + # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 + box2 = box2.T + + # Get the coordinates of bounding boxes + if x1y1x2y2: # x1, y1, x2, y2 = box1 + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] + else: # transform from xywh to xyxy + b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 + b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 + b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 + b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 + + # Intersection area + inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ + (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) + + # Union Area + w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps + w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps + union = w1 * h1 + w2 * h2 - inter + eps + + iou = inter / union + if CIoU or DIoU or GIoU: + cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width + ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height + if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 + c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared + rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center distance squared + if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 + v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) + with torch.no_grad(): + alpha = v / (v - iou + (1 + eps)) + return iou - (rho2 / c2 + v * alpha) # CIoU + return iou - rho2 / c2 # DIoU + c_area = cw * ch + eps # convex area + return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf + return iou # IoU + + +def box_iou(box1, box2): + # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py + """ + Return intersection-over-union (Jaccard index) of boxes. + Both sets of boxes are expected to be in (x1, y1, x2, y2) format. + Arguments: + box1 (Tensor[N, 4]) + box2 (Tensor[M, 4]) + Returns: + iou (Tensor[N, M]): the NxM matrix containing the pairwise + IoU values for every element in boxes1 and boxes2 + """ + + def box_area(box): + # box = 4xn + return (box[2] - box[0]) * (box[3] - box[1]) + + area1 = box_area(box1.T) + area2 = box_area(box2.T) + + # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2) + inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2) + return inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter) + + +def bbox_ioa(box1, box2, eps=1E-7): + """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2 + box1: np.array of shape(4) + box2: np.array of shape(nx4) + returns: np.array of shape(n) + """ + + box2 = box2.transpose() + + # Get the coordinates of bounding boxes + b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] + b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] + + # Intersection area + inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \ + (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0) + + # box2 area + box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps + + # Intersection over box2 area + return inter_area / box2_area + + +def wh_iou(wh1, wh2): + # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2 + wh1 = wh1[:, None] # [N,1,2] + wh2 = wh2[None] # [1,M,2] + inter = torch.min(wh1, wh2).prod(2) # [N,M] + return inter / (wh1.prod(2) + wh2.prod(2) - inter) # iou = inter / (area1 + area2 - inter) + + +# Plots ---------------------------------------------------------------------------------------------------------------- + +def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()): + # Precision-recall curve + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + py = np.stack(py, axis=1) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py.T): + ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision) + else: + ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision) + + ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean()) + ax.set_xlabel('Recall') + ax.set_ylabel('Precision') + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") + fig.savefig(Path(save_dir), dpi=250) + plt.close() + + +def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'): + # Metric-confidence curve + fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True) + + if 0 < len(names) < 21: # display per-class legend if < 21 classes + for i, y in enumerate(py): + ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric) + else: + ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric) + + y = py.mean(0) + ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}') + ax.set_xlabel(xlabel) + ax.set_ylabel(ylabel) + ax.set_xlim(0, 1) + ax.set_ylim(0, 1) + plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left") + fig.savefig(Path(save_dir), dpi=250) + plt.close() diff --git a/src/yolov5/utils/plots.py b/src/yolov5/utils/plots.py new file mode 100644 index 00000000..6c3f5bca --- /dev/null +++ b/src/yolov5/utils/plots.py @@ -0,0 +1,471 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Plotting utils +""" + +import math +import os +from copy import copy +from pathlib import Path + +import cv2 +import matplotlib +import matplotlib.pyplot as plt +import numpy as np +import pandas as pd +import seaborn as sn +import torch +from PIL import Image, ImageDraw, ImageFont + +from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords, + increment_path, is_ascii, is_chinese, try_except, xywh2xyxy, xyxy2xywh) +from utils.metrics import fitness + +# Settings +RANK = int(os.getenv('RANK', -1)) +matplotlib.rc('font', **{'size': 11}) +matplotlib.use('Agg') # for writing to files only + + +class Colors: + # Ultralytics color palette https://ultralytics.com/ + def __init__(self): + # hex = matplotlib.colors.TABLEAU_COLORS.values() + hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB', + '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7') + self.palette = [self.hex2rgb('#' + c) for c in hex] + self.n = len(self.palette) + + def __call__(self, i, bgr=False): + c = self.palette[int(i) % self.n] + return (c[2], c[1], c[0]) if bgr else c + + @staticmethod + def hex2rgb(h): # rgb order (PIL) + return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4)) + + +colors = Colors() # create instance for 'from utils.plots import colors' + + +def check_pil_font(font=FONT, size=10): + # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary + font = Path(font) + font = font if font.exists() else (CONFIG_DIR / font.name) + try: + return ImageFont.truetype(str(font) if font.exists() else font.name, size) + except Exception: # download if missing + check_font(font) + try: + return ImageFont.truetype(str(font), size) + except TypeError: + check_requirements('Pillow>=8.4.0') # known issue https://github.com/ultralytics/yolov5/issues/5374 + + +class Annotator: + if RANK in (-1, 0): + check_pil_font() # download TTF if necessary + + # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations + def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'): + assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.' + self.pil = pil or not is_ascii(example) or is_chinese(example) + if self.pil: # use PIL + self.im = im if isinstance(im, Image.Image) else Image.fromarray(im) + self.draw = ImageDraw.Draw(self.im) + self.font = check_pil_font(font='Arial.Unicode.ttf' if is_chinese(example) else font, + size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12)) + else: # use cv2 + self.im = im + self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2) # line width + + def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)): + # Add one xyxy box to image with label + if self.pil or not is_ascii(label): + self.draw.rectangle(box, width=self.lw, outline=color) # box + if label: + w, h = self.font.getsize(label) # text width, height + outside = box[1] - h >= 0 # label fits outside box + self.draw.rectangle((box[0], + box[1] - h if outside else box[1], + box[0] + w + 1, + box[1] + 1 if outside else box[1] + h + 1), fill=color) + # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls') # for PIL>8.0 + self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font) + else: # cv2 + p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3])) + cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA) + if label: + tf = max(self.lw - 1, 1) # font thickness + w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0] # text width, height + outside = p1[1] - h - 3 >= 0 # label fits outside box + p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3 + cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA) # filled + cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color, + thickness=tf, lineType=cv2.LINE_AA) + + def rectangle(self, xy, fill=None, outline=None, width=1): + # Add rectangle to image (PIL-only) + self.draw.rectangle(xy, fill, outline, width) + + def text(self, xy, text, txt_color=(255, 255, 255)): + # Add text to image (PIL-only) + w, h = self.font.getsize(text) # text width, height + self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font) + + def result(self): + # Return annotated image as array + return np.asarray(self.im) + + +def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')): + """ + x: Features to be visualized + module_type: Module type + stage: Module stage within model + n: Maximum number of feature maps to plot + save_dir: Directory to save results + """ + if 'Detect' not in module_type: + batch, channels, height, width = x.shape # batch, channels, height, width + if height > 1 and width > 1: + f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png" # filename + + blocks = torch.chunk(x[0].cpu(), channels, dim=0) # select batch index 0, block by channels + n = min(n, channels) # number of plots + fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols + ax = ax.ravel() + plt.subplots_adjust(wspace=0.05, hspace=0.05) + for i in range(n): + ax[i].imshow(blocks[i].squeeze()) # cmap='gray' + ax[i].axis('off') + + LOGGER.info(f'Saving {f}... ({n}/{channels})') + plt.savefig(f, dpi=300, bbox_inches='tight') + plt.close() + np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy()) # npy save + + +def hist2d(x, y, n=100): + # 2d histogram used in labels.png and evolve.png + xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n) + hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges)) + xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1) + yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1) + return np.log(hist[xidx, yidx]) + + +def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5): + from scipy.signal import butter, filtfilt + + # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy + def butter_lowpass(cutoff, fs, order): + nyq = 0.5 * fs + normal_cutoff = cutoff / nyq + return butter(order, normal_cutoff, btype='low', analog=False) + + b, a = butter_lowpass(cutoff, fs, order=order) + return filtfilt(b, a, data) # forward-backward filter + + +def output_to_target(output): + # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] + targets = [] + for i, o in enumerate(output): + for *box, conf, cls in o.cpu().numpy(): + targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) + return np.array(targets) + + +def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16): + # Plot image grid with labels + if isinstance(images, torch.Tensor): + images = images.cpu().float().numpy() + if isinstance(targets, torch.Tensor): + targets = targets.cpu().numpy() + if np.max(images[0]) <= 1: + images *= 255 # de-normalise (optional) + bs, _, h, w = images.shape # batch size, _, height, width + bs = min(bs, max_subplots) # limit plot images + ns = np.ceil(bs ** 0.5) # number of subplots (square) + + # Build Image + mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init + for i, im in enumerate(images): + if i == max_subplots: # if last batch has fewer images than we expect + break + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + im = im.transpose(1, 2, 0) + mosaic[y:y + h, x:x + w, :] = im + + # Resize (optional) + scale = max_size / ns / max(h, w) + if scale < 1: + h = math.ceil(scale * h) + w = math.ceil(scale * w) + mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h))) + + # Annotate + fs = int((h + w) * ns * 0.01) # font size + annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names) + for i in range(i + 1): + x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin + annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders + if paths: + annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames + if len(targets) > 0: + ti = targets[targets[:, 0] == i] # image targets + boxes = xywh2xyxy(ti[:, 2:6]).T + classes = ti[:, 1].astype('int') + labels = ti.shape[1] == 6 # labels if no conf column + conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred) + + if boxes.shape[1]: + if boxes.max() <= 1.01: # if normalized with tolerance 0.01 + boxes[[0, 2]] *= w # scale to pixels + boxes[[1, 3]] *= h + elif scale < 1: # absolute coords need scale if image scales + boxes *= scale + boxes[[0, 2]] += x + boxes[[1, 3]] += y + for j, box in enumerate(boxes.T.tolist()): + cls = classes[j] + color = colors(cls) + cls = names[cls] if names else cls + if labels or conf[j] > 0.25: # 0.25 conf thresh + label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}' + annotator.box_label(box, label, color=color) + annotator.im.save(fname) # save + + +def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''): + # Plot LR simulating training for full epochs + optimizer, scheduler = copy(optimizer), copy(scheduler) # do not modify originals + y = [] + for _ in range(epochs): + scheduler.step() + y.append(optimizer.param_groups[0]['lr']) + plt.plot(y, '.-', label='LR') + plt.xlabel('epoch') + plt.ylabel('LR') + plt.grid() + plt.xlim(0, epochs) + plt.ylim(0) + plt.savefig(Path(save_dir) / 'LR.png', dpi=200) + plt.close() + + +def plot_val_txt(): # from utils.plots import *; plot_val() + # Plot val.txt histograms + x = np.loadtxt('val.txt', dtype=np.float32) + box = xyxy2xywh(x[:, :4]) + cx, cy = box[:, 0], box[:, 1] + + fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) + ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) + ax.set_aspect('equal') + plt.savefig('hist2d.png', dpi=300) + + fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) + ax[0].hist(cx, bins=600) + ax[1].hist(cy, bins=600) + plt.savefig('hist1d.png', dpi=200) + + +def plot_targets_txt(): # from utils.plots import *; plot_targets_txt() + # Plot targets.txt histograms + x = np.loadtxt('targets.txt', dtype=np.float32).T + s = ['x targets', 'y targets', 'width targets', 'height targets'] + fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True) + ax = ax.ravel() + for i in range(4): + ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}') + ax[i].legend() + ax[i].set_title(s[i]) + plt.savefig('targets.jpg', dpi=200) + + +def plot_val_study(file='', dir='', x=None): # from utils.plots import *; plot_val_study() + # Plot file=study.txt generated by val.py (or plot all study*.txt in dir) + save_dir = Path(file).parent if file else Path(dir) + plot2 = False # plot additional results + if plot2: + ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel() + + fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True) + # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]: + for f in sorted(save_dir.glob('study*.txt')): + y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T + x = np.arange(y.shape[1]) if x is None else np.array(x) + if plot2: + s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)'] + for i in range(7): + ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8) + ax[i].set_title(s[i]) + + j = y[3].argmax() + 1 + ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8, + label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO')) + + ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5], + 'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet') + + ax2.grid(alpha=0.2) + ax2.set_yticks(np.arange(20, 60, 5)) + ax2.set_xlim(0, 57) + ax2.set_ylim(25, 55) + ax2.set_xlabel('GPU Speed (ms/img)') + ax2.set_ylabel('COCO AP val') + ax2.legend(loc='lower right') + f = save_dir / 'study.png' + print(f'Saving {f}...') + plt.savefig(f, dpi=300) + + +@try_except # known issue https://github.com/ultralytics/yolov5/issues/5395 +@Timeout(30) # known issue https://github.com/ultralytics/yolov5/issues/5611 +def plot_labels(labels, names=(), save_dir=Path('')): + # plot dataset labels + LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ") + c, b = labels[:, 0], labels[:, 1:].transpose() # classes, boxes + nc = int(c.max() + 1) # number of classes + x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height']) + + # seaborn correlogram + sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9)) + plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200) + plt.close() + + # matplotlib labels + matplotlib.use('svg') # faster + ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel() + y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8) + try: # color histogram bars by class + [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)] # known issue #3195 + except Exception: + pass + ax[0].set_ylabel('instances') + if 0 < len(names) < 30: + ax[0].set_xticks(range(len(names))) + ax[0].set_xticklabels(names, rotation=90, fontsize=10) + else: + ax[0].set_xlabel('classes') + sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9) + sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9) + + # rectangles + labels[:, 1:3] = 0.5 # center + labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000 + img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255) + for cls, *box in labels[:1000]: + ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls)) # plot + ax[1].imshow(img) + ax[1].axis('off') + + for a in [0, 1, 2, 3]: + for s in ['top', 'right', 'left', 'bottom']: + ax[a].spines[s].set_visible(False) + + plt.savefig(save_dir / 'labels.jpg', dpi=200) + matplotlib.use('Agg') + plt.close() + + +def plot_evolve(evolve_csv='path/to/evolve.csv'): # from utils.plots import *; plot_evolve() + # Plot evolve.csv hyp evolution results + evolve_csv = Path(evolve_csv) + data = pd.read_csv(evolve_csv) + keys = [x.strip() for x in data.columns] + x = data.values + f = fitness(x) + j = np.argmax(f) # max fitness index + plt.figure(figsize=(10, 12), tight_layout=True) + matplotlib.rc('font', **{'size': 8}) + print(f'Best results from row {j} of {evolve_csv}:') + for i, k in enumerate(keys[7:]): + v = x[:, 7 + i] + mu = v[j] # best single result + plt.subplot(6, 5, i + 1) + plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none') + plt.plot(mu, f.max(), 'k+', markersize=15) + plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9}) # limit to 40 characters + if i % 5 != 0: + plt.yticks([]) + print(f'{k:>15}: {mu:.3g}') + f = evolve_csv.with_suffix('.png') # filename + plt.savefig(f, dpi=200) + plt.close() + print(f'Saved {f}') + + +def plot_results(file='path/to/results.csv', dir=''): + # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv') + save_dir = Path(file).parent if file else Path(dir) + fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True) + ax = ax.ravel() + files = list(save_dir.glob('results*.csv')) + assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.' + for fi, f in enumerate(files): + try: + data = pd.read_csv(f) + s = [x.strip() for x in data.columns] + x = data.values[:, 0] + for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]): + y = data.values[:, j] + # y[y == 0] = np.nan # don't show zero values + ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8) + ax[i].set_title(s[j], fontsize=12) + # if j in [8, 9, 10]: # share train and val loss y axes + # ax[i].get_shared_y_axes().join(ax[i], ax[i - 5]) + except Exception as e: + LOGGER.info(f'Warning: Plotting error for {f}: {e}') + ax[1].legend() + fig.savefig(save_dir / 'results.png', dpi=200) + plt.close() + + +def profile_idetection(start=0, stop=0, labels=(), save_dir=''): + # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection() + ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel() + s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS'] + files = list(Path(save_dir).glob('frames*.txt')) + for fi, f in enumerate(files): + try: + results = np.loadtxt(f, ndmin=2).T[:, 90:-30] # clip first and last rows + n = results.shape[1] # number of rows + x = np.arange(start, min(stop, n) if stop else n) + results = results[:, x] + t = (results[0] - results[0].min()) # set t0=0s + results[0] = x + for i, a in enumerate(ax): + if i < len(results): + label = labels[fi] if len(labels) else f.stem.replace('frames_', '') + a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5) + a.set_title(s[i]) + a.set_xlabel('time (s)') + # if fi == len(files) - 1: + # a.set_ylim(bottom=0) + for side in ['top', 'right']: + a.spines[side].set_visible(False) + else: + a.remove() + except Exception as e: + print(f'Warning: Plotting error for {f}; {e}') + ax[1].legend() + plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200) + + +def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True): + # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop + xyxy = torch.tensor(xyxy).view(-1, 4) + b = xyxy2xywh(xyxy) # boxes + if square: + b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square + b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad + xyxy = xywh2xyxy(b).long() + clip_coords(xyxy, im.shape) + crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] + if save: + file.parent.mkdir(parents=True, exist_ok=True) # make directory + cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop) + return crop diff --git a/src/yolov5/utils/torch_utils.py b/src/yolov5/utils/torch_utils.py new file mode 100644 index 00000000..c5257c6e --- /dev/null +++ b/src/yolov5/utils/torch_utils.py @@ -0,0 +1,329 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +PyTorch utils +""" + +import datetime +import math +import os +import platform +import subprocess +import time +import warnings +from contextlib import contextmanager +from copy import deepcopy +from pathlib import Path + +import torch +import torch.distributed as dist +import torch.nn as nn +import torch.nn.functional as F + +from utils.general import LOGGER + +try: + import thop # for FLOPs computation +except ImportError: + thop = None + +# Suppress PyTorch warnings +warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling') + + +@contextmanager +def torch_distributed_zero_first(local_rank: int): + """ + Decorator to make all processes in distributed training wait for each local_master to do something. + """ + if local_rank not in [-1, 0]: + dist.barrier(device_ids=[local_rank]) + yield + if local_rank == 0: + dist.barrier(device_ids=[0]) + + +def date_modified(path=__file__): + # return human-readable file modification date, i.e. '2021-3-26' + t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime) + return f'{t.year}-{t.month}-{t.day}' + + +def git_describe(path=Path(__file__).parent): # path must be a directory + # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe + s = f'git -C {path} describe --tags --long --always' + try: + return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1] + except subprocess.CalledProcessError: + return '' # not a git repository + + +def device_count(): + # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Only works on Linux. + assert platform.system() == 'Linux', 'device_count() function only works on Linux' + try: + cmd = 'nvidia-smi -L | wc -l' + return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]) + except Exception: + return 0 + + +def select_device(device='', batch_size=0, newline=True): + # device = 'cpu' or '0' or '0,1,2,3' + s = f'YOLOv5 đ {git_describe() or date_modified()} torch {torch.__version__} ' # string + device = str(device).strip().lower().replace('cuda:', '') # to string, 'cuda:0' to '0' + cpu = device == 'cpu' + if cpu: + os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False + elif device: # non-cpu device requested + os.environ['CUDA_VISIBLE_DEVICES'] = device # set environment variable - must be before assert is_available() + assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \ + f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)" + + cuda = not cpu and torch.cuda.is_available() + if cuda: + devices = device.split(',') if device else '0' # range(torch.cuda.device_count()) # i.e. 0,1,6,7 + n = len(devices) # device count + if n > 1 and batch_size > 0: # check batch_size is divisible by device_count + assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}' + space = ' ' * (len(s) + 1) + for i, d in enumerate(devices): + p = torch.cuda.get_device_properties(i) + s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2:.0f}MiB)\n" # bytes to MB + else: + s += 'CPU\n' + + if not newline: + s = s.rstrip() + LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe + return torch.device('cuda:0' if cuda else 'cpu') + + +def time_sync(): + # pytorch-accurate time + if torch.cuda.is_available(): + torch.cuda.synchronize() + return time.time() + + +def profile(input, ops, n=10, device=None): + # YOLOv5 speed/memory/FLOPs profiler + # + # Usage: + # input = torch.randn(16, 3, 640, 640) + # m1 = lambda x: x * torch.sigmoid(x) + # m2 = nn.SiLU() + # profile(input, [m1, m2], n=100) # profile over 100 iterations + + results = [] + device = device or select_device() + print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" + f"{'input':>24s}{'output':>24s}") + + for x in input if isinstance(input, list) else [input]: + x = x.to(device) + x.requires_grad = True + for m in ops if isinstance(ops, list) else [ops]: + m = m.to(device) if hasattr(m, 'to') else m # device + m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m + tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward + try: + flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 # GFLOPs + except Exception: + flops = 0 + + try: + for _ in range(n): + t[0] = time_sync() + y = m(x) + t[1] = time_sync() + try: + _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() + t[2] = time_sync() + except Exception: # no backward method + # print(e) # for debug + t[2] = float('nan') + tf += (t[1] - t[0]) * 1000 / n # ms per op forward + tb += (t[2] - t[1]) * 1000 / n # ms per op backward + mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0 # (GB) + s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list' + s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list' + p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0 # parameters + print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}') + results.append([p, flops, mem, tf, tb, s_in, s_out]) + except Exception as e: + print(e) + results.append(None) + torch.cuda.empty_cache() + return results + + +def is_parallel(model): + # Returns True if model is of type DP or DDP + return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel) + + +def de_parallel(model): + # De-parallelize a model: returns single-GPU model if model is of type DP or DDP + return model.module if is_parallel(model) else model + + +def initialize_weights(model): + for m in model.modules(): + t = type(m) + if t is nn.Conv2d: + pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif t is nn.BatchNorm2d: + m.eps = 1e-3 + m.momentum = 0.03 + elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]: + m.inplace = True + + +def find_modules(model, mclass=nn.Conv2d): + # Finds layer indices matching module class 'mclass' + return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)] + + +def sparsity(model): + # Return global model sparsity + a, b = 0, 0 + for p in model.parameters(): + a += p.numel() + b += (p == 0).sum() + return b / a + + +def prune(model, amount=0.3): + # Prune model to requested global sparsity + import torch.nn.utils.prune as prune + print('Pruning model... ', end='') + for name, m in model.named_modules(): + if isinstance(m, nn.Conv2d): + prune.l1_unstructured(m, name='weight', amount=amount) # prune + prune.remove(m, 'weight') # make permanent + print(' %.3g global sparsity' % sparsity(model)) + + +def fuse_conv_and_bn(conv, bn): + # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/ + fusedconv = nn.Conv2d(conv.in_channels, + conv.out_channels, + kernel_size=conv.kernel_size, + stride=conv.stride, + padding=conv.padding, + groups=conv.groups, + bias=True).requires_grad_(False).to(conv.weight.device) + + # prepare filters + w_conv = conv.weight.clone().view(conv.out_channels, -1) + w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) + fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) + + # prepare spatial bias + b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias + b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) + fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) + + return fusedconv + + +def model_info(model, verbose=False, img_size=640): + # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320] + n_p = sum(x.numel() for x in model.parameters()) # number parameters + n_g = sum(x.numel() for x in model.parameters() if x.requires_grad) # number gradients + if verbose: + print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}") + for i, (name, p) in enumerate(model.named_parameters()): + name = name.replace('module_list.', '') + print('%5g %40s %9s %12g %20s %10.3g %10.3g' % + (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std())) + + try: # FLOPs + from thop import profile + stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32 + img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device) # input + flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2 # stride GFLOPs + img_size = img_size if isinstance(img_size, list) else [img_size, img_size] # expand if int/float + fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride) # 640x640 GFLOPs + except (ImportError, Exception): + fs = '' + + LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") + + +def scale_img(img, ratio=1.0, same_shape=False, gs=32): # img(16,3,256,416) + # scales img(bs,3,y,x) by ratio constrained to gs-multiple + if ratio == 1.0: + return img + else: + h, w = img.shape[2:] + s = (int(h * ratio), int(w * ratio)) # new size + img = F.interpolate(img, size=s, mode='bilinear', align_corners=False) # resize + if not same_shape: # pad/crop img + h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) + return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean + + +def copy_attr(a, b, include=(), exclude=()): + # Copy attributes from b to a, options to only include [...] and to exclude [...] + for k, v in b.__dict__.items(): + if (len(include) and k not in include) or k.startswith('_') or k in exclude: + continue + else: + setattr(a, k, v) + + +class EarlyStopping: + # YOLOv5 simple early stopper + def __init__(self, patience=30): + self.best_fitness = 0.0 # i.e. mAP + self.best_epoch = 0 + self.patience = patience or float('inf') # epochs to wait after fitness stops improving to stop + self.possible_stop = False # possible stop may occur next epoch + + def __call__(self, epoch, fitness): + if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training + self.best_epoch = epoch + self.best_fitness = fitness + delta = epoch - self.best_epoch # epochs without improvement + self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch + stop = delta >= self.patience # stop training if patience exceeded + if stop: + LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. ' + f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n' + f'To update EarlyStopping(patience={self.patience}) pass a new patience value, ' + f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.') + return stop + + +class ModelEMA: + """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models + Keeps a moving average of everything in the model state_dict (parameters and buffers) + For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage + """ + + def __init__(self, model, decay=0.9999, updates=0): + # Create EMA + self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA + # if next(model.parameters()).device.type != 'cpu': + # self.ema.half() # FP16 EMA + self.updates = updates # number of EMA updates + self.decay = lambda x: decay * (1 - math.exp(-x / 2000)) # decay exponential ramp (to help early epochs) + for p in self.ema.parameters(): + p.requires_grad_(False) + + def update(self, model): + # Update EMA parameters + with torch.no_grad(): + self.updates += 1 + d = self.decay(self.updates) + + msd = de_parallel(model).state_dict() # model state_dict + for k, v in self.ema.state_dict().items(): + if v.dtype.is_floating_point: + v *= d + v += (1 - d) * msd[k].detach() + + def update_attr(self, model, include=(), exclude=('process_group', 'reducer')): + # Update EMA attributes + copy_attr(self.ema, model, include, exclude) diff --git a/src/yolov5/val.py b/src/yolov5/val.py new file mode 100644 index 00000000..78abbda8 --- /dev/null +++ b/src/yolov5/val.py @@ -0,0 +1,383 @@ +# YOLOv5 đ by Ultralytics, GPL-3.0 license +""" +Validate a trained YOLOv5 model accuracy on a custom dataset + +Usage: + $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640 + +Usage - formats: + $ python path/to/val.py --weights yolov5s.pt # PyTorch + yolov5s.torchscript # TorchScript + yolov5s.onnx # ONNX Runtime or OpenCV DNN with --dnn + yolov5s.xml # OpenVINO + yolov5s.engine # TensorRT + yolov5s.mlmodel # CoreML (MacOS-only) + yolov5s_saved_model # TensorFlow SavedModel + yolov5s.pb # TensorFlow GraphDef + yolov5s.tflite # TensorFlow Lite + yolov5s_edgetpu.tflite # TensorFlow Edge TPU +""" + +import argparse +import json +import os +import sys +from pathlib import Path +from threading import Thread + +import numpy as np +import torch +from tqdm import tqdm + +FILE = Path(__file__).resolve() +ROOT = FILE.parents[0] # YOLOv5 root directory +if str(ROOT) not in sys.path: + sys.path.append(str(ROOT)) # add ROOT to PATH +ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative + +from models.common import DetectMultiBackend +from utils.callbacks import Callbacks +from utils.datasets import create_dataloader +from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml, + coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, + scale_coords, xywh2xyxy, xyxy2xywh) +from utils.metrics import ConfusionMatrix, ap_per_class +from utils.plots import output_to_target, plot_images, plot_val_study +from utils.torch_utils import select_device, time_sync + + +def save_one_txt(predn, save_conf, shape, file): + # Save one txt result + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def save_one_json(predn, jdict, path, class_map): + # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + image_id = int(path.stem) if path.stem.isnumeric() else path.stem + box = xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + jdict.append({'image_id': image_id, + 'category_id': class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + + +def process_batch(detections, labels, iouv): + """ + Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. + Arguments: + detections (Array[N, 6]), x1, y1, x2, y2, conf, class + labels (Array[M, 5]), class, x1, y1, x2, y2 + Returns: + correct (Array[N, 10]), for 10 IoU levels + """ + correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) + iou = box_iou(labels[:, 1:], detections[:, :4]) + x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match + if x[0].shape[0]: + matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou] + if x[0].shape[0] > 1: + matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 1], return_index=True)[1]] + # matches = matches[matches[:, 2].argsort()[::-1]] + matches = matches[np.unique(matches[:, 0], return_index=True)[1]] + matches = torch.Tensor(matches).to(iouv.device) + correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv + return correct + + +@torch.no_grad() +def run(data, + weights=None, # model.pt path(s) + batch_size=32, # batch size + imgsz=640, # inference size (pixels) + conf_thres=0.001, # confidence threshold + iou_thres=0.6, # NMS IoU threshold + task='val', # train, val, test, speed or study + device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu + workers=8, # max dataloader workers (per RANK in DDP mode) + single_cls=False, # treat as single-class dataset + augment=False, # augmented inference + verbose=False, # verbose output + save_txt=False, # save results to *.txt + save_hybrid=False, # save label+prediction hybrid results to *.txt + save_conf=False, # save confidences in --save-txt labels + save_json=False, # save a COCO-JSON results file + project=ROOT / 'runs/val', # save to project/name + name='exp', # save to project/name + exist_ok=False, # existing project/name ok, do not increment + half=True, # use FP16 half-precision inference + dnn=False, # use OpenCV DNN for ONNX inference + model=None, + dataloader=None, + save_dir=Path(''), + plots=True, + callbacks=Callbacks(), + compute_loss=None, + ): + # Initialize/load model and set device + training = model is not None + if training: # called by train.py + device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model + + half &= device.type != 'cpu' # half precision only supported on CUDA + model.half() if half else model.float() + else: # called directly + device = select_device(device, batch_size=batch_size) + + # Directories + save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run + (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir + + # Load model + model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) + stride, pt, jit, onnx, engine = model.stride, model.pt, model.jit, model.onnx, model.engine + imgsz = check_img_size(imgsz, s=stride) # check image size + half &= (pt or jit or onnx or engine) and device.type != 'cpu' # FP16 supported on limited backends with CUDA + if pt or jit: + model.model.half() if half else model.model.float() + elif engine: + batch_size = model.batch_size + else: + half = False + batch_size = 1 # export.py models default to batch-size 1 + device = torch.device('cpu') + LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends') + + # Data + data = check_dataset(data) # check + + # Configure + model.eval() + is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset + nc = 1 if single_cls else int(data['nc']) # number of classes + iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 + niou = iouv.numel() + + # Dataloader + if not training: + model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half) # warmup + pad = 0.0 if task in ('speed', 'benchmark') else 0.5 + rect = False if task == 'benchmark' else pt # square inference for benchmarks + task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images + dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect, + workers=workers, prefix=colorstr(f'{task}: '))[0] + + seen = 0 + confusion_matrix = ConfusionMatrix(nc=nc) + names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} + class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) + s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') + dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 + loss = torch.zeros(3, device=device) + jdict, stats, ap, ap_class = [], [], [], [] + pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar + for batch_i, (im, targets, paths, shapes) in enumerate(pbar): + t1 = time_sync() + if pt or jit or engine: + im = im.to(device, non_blocking=True) + targets = targets.to(device) + im = im.half() if half else im.float() # uint8 to fp16/32 + im /= 255 # 0 - 255 to 0.0 - 1.0 + nb, _, height, width = im.shape # batch size, channels, height, width + t2 = time_sync() + dt[0] += t2 - t1 + + # Inference + out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs + dt[1] += time_sync() - t2 + + # Loss + if compute_loss: + loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls + + # NMS + targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels + lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling + t3 = time_sync() + out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) + dt[2] += time_sync() - t3 + + # Metrics + for si, pred in enumerate(out): + labels = targets[targets[:, 0] == si, 1:] + nl = len(labels) + tcls = labels[:, 0].tolist() if nl else [] # target class + path, shape = Path(paths[si]), shapes[si][0] + seen += 1 + + if len(pred) == 0: + if nl: + stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) + continue + + # Predictions + if single_cls: + pred[:, 5] = 0 + predn = pred.clone() + scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred + + # Evaluate + if nl: + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + correct = process_batch(predn, labelsn, iouv) + if plots: + confusion_matrix.process_batch(predn, labelsn) + else: + correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) + stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) + + # Save/log + if save_txt: + save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) + if save_json: + save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary + callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) + + # Plot images + if plots and batch_i < 3: + f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels + Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start() + f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions + Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start() + + # Compute metrics + stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy + if len(stats) and stats[0].any(): + tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) + ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 + mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() + nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class + else: + nt = torch.zeros(1) + + # Print results + pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format + LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) + + # Print results per class + if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): + for i, c in enumerate(ap_class): + LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) + + # Print speeds + t = tuple(x / seen * 1E3 for x in dt) # speeds per image + if not training: + shape = (batch_size, 3, imgsz, imgsz) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) + + # Plots + if plots: + confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) + callbacks.run('on_val_end') + + # Save JSON + if save_json and len(jdict): + w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights + anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json + pred_json = str(save_dir / f"{w}_predictions.json") # predictions json + LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') + with open(pred_json, 'w') as f: + json.dump(jdict, f) + + try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb + check_requirements(['pycocotools']) + from pycocotools.coco import COCO + from pycocotools.cocoeval import COCOeval + + anno = COCO(anno_json) # init annotations api + pred = anno.loadRes(pred_json) # init predictions api + eval = COCOeval(anno, pred, 'bbox') + if is_coco: + eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate + eval.evaluate() + eval.accumulate() + eval.summarize() + map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) + except Exception as e: + LOGGER.info(f'pycocotools unable to run: {e}') + + # Return results + model.float() # for training + if not training: + s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' + LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") + maps = np.zeros(nc) + map + for i, c in enumerate(ap_class): + maps[c] = ap[i] + return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t + + +def parse_opt(): + parser = argparse.ArgumentParser() + parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') + parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)') + parser.add_argument('--batch-size', type=int, default=32, help='batch size') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') + parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') + parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') + parser.add_argument('--task', default='val', help='train, val, test, speed or study') + parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') + parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') + parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') + parser.add_argument('--augment', action='store_true', help='augmented inference') + parser.add_argument('--verbose', action='store_true', help='report mAP by class') + parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') + parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') + parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') + parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') + parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name') + parser.add_argument('--name', default='exp', help='save to project/name') + parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') + parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') + parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') + opt = parser.parse_args() + opt.data = check_yaml(opt.data) # check YAML + opt.save_json |= opt.data.endswith('coco.yaml') + opt.save_txt |= opt.save_hybrid + print_args(FILE.stem, opt) + return opt + + +def main(opt): + check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) + + if opt.task in ('train', 'val', 'test'): # run normally + if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 + LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.') + run(**vars(opt)) + + else: + weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] + opt.half = True # FP16 for fastest results + if opt.task == 'speed': # speed benchmarks + # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... + opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False + for opt.weights in weights: + run(**vars(opt), plots=False) + + elif opt.task == 'study': # speed vs mAP benchmarks + # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... + for opt.weights in weights: + f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to + x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis + for opt.imgsz in x: # img-size + LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') + r, _, t = run(**vars(opt), plots=False) + y.append(r + t) # results and times + np.savetxt(f, y, fmt='%10.4g') # save + os.system('zip -r study.zip study_*.txt') + plot_val_study(x=x) # plot + + +if __name__ == "__main__": + opt = parse_opt() + main(opt) -- GitLab