From 74df17090b6ef69eec6861138b1cee8949b21c69 Mon Sep 17 00:00:00 2001
From: Selim Lakhdar <selim.lakhdar@gmail.com>
Date: Mon, 21 Feb 2022 19:17:02 +0100
Subject: [PATCH] yolo

---
 src/yolov5/.dockerignore                      |  222 ++++
 src/yolov5/.gitattributes                     |    2 +
 src/yolov5/.github/FUNDING.yml                |    5 +
 .../.github/ISSUE_TEMPLATE/bug-report.yml     |   85 ++
 src/yolov5/.github/ISSUE_TEMPLATE/config.yml  |    8 +
 .../ISSUE_TEMPLATE/feature-request.yml        |   50 +
 .../.github/ISSUE_TEMPLATE/question.yml       |   33 +
 src/yolov5/.github/PULL_REQUEST_TEMPLATE.md   |    7 +
 src/yolov5/.github/dependabot.yml             |   23 +
 src/yolov5/.github/workflows/ci-testing.yml   |   93 ++
 .../.github/workflows/codeql-analysis.yml     |   54 +
 src/yolov5/.github/workflows/greetings.yml    |   59 +
 src/yolov5/.github/workflows/rebase.yml       |   21 +
 src/yolov5/.github/workflows/stale.yml        |   38 +
 src/yolov5/.gitignore                         |  256 ++++
 src/yolov5/.pre-commit-config.yaml            |   66 +
 src/yolov5/CONTRIBUTING.md                    |   94 ++
 src/yolov5/Dockerfile                         |   64 +
 src/yolov5/LICENSE                            |  674 ++++++++++
 src/yolov5/README.md                          |  304 +++++
 src/yolov5/data/Argoverse.yaml                |   67 +
 src/yolov5/data/GlobalWheat2020.yaml          |   53 +
 src/yolov5/data/Objects365.yaml               |  112 ++
 src/yolov5/data/SKU-110K.yaml                 |   52 +
 src/yolov5/data/VOC.yaml                      |   80 ++
 src/yolov5/data/VisDrone.yaml                 |   61 +
 src/yolov5/data/coco.yaml                     |   44 +
 src/yolov5/data/coco128.yaml                  |   30 +
 src/yolov5/data/hyps/hyp.finetune.yaml        |   39 +
 .../data/hyps/hyp.finetune_objects365.yaml    |   31 +
 src/yolov5/data/hyps/hyp.scratch-high.yaml    |   34 +
 src/yolov5/data/hyps/hyp.scratch-low.yaml     |   34 +
 src/yolov5/data/hyps/hyp.scratch-med.yaml     |   34 +
 src/yolov5/data/hyps/hyp.scratch.yaml         |   34 +
 src/yolov5/data/images/bus.jpg                |  Bin 0 -> 487438 bytes
 src/yolov5/data/images/zidane.jpg             |  Bin 0 -> 168949 bytes
 src/yolov5/data/scripts/download_weights.sh   |   20 +
 src/yolov5/data/scripts/get_coco.sh           |   27 +
 src/yolov5/data/scripts/get_coco128.sh        |   17 +
 src/yolov5/data/xView.yaml                    |  102 ++
 src/yolov5/detect.py                          |  257 ++++
 src/yolov5/export.py                          |  559 +++++++++
 src/yolov5/hubconf.py                         |  143 +++
 src/yolov5/models/__init__.py                 |    0
 src/yolov5/models/common.py                   |  677 ++++++++++
 src/yolov5/models/experimental.py             |  120 ++
 src/yolov5/models/hub/anchors.yaml            |   59 +
 src/yolov5/models/hub/yolov3-spp.yaml         |   51 +
 src/yolov5/models/hub/yolov3-tiny.yaml        |   41 +
 src/yolov5/models/hub/yolov3.yaml             |   51 +
 src/yolov5/models/hub/yolov5-bifpn.yaml       |   48 +
 src/yolov5/models/hub/yolov5-fpn.yaml         |   42 +
 src/yolov5/models/hub/yolov5-p2.yaml          |   54 +
 src/yolov5/models/hub/yolov5-p34.yaml         |   41 +
 src/yolov5/models/hub/yolov5-p6.yaml          |   56 +
 src/yolov5/models/hub/yolov5-p7.yaml          |   67 +
 src/yolov5/models/hub/yolov5-panet.yaml       |   48 +
 src/yolov5/models/hub/yolov5l6.yaml           |   60 +
 src/yolov5/models/hub/yolov5m6.yaml           |   60 +
 src/yolov5/models/hub/yolov5n6.yaml           |   60 +
 src/yolov5/models/hub/yolov5s-ghost.yaml      |   48 +
 .../models/hub/yolov5s-transformer.yaml       |   48 +
 src/yolov5/models/hub/yolov5s6.yaml           |   60 +
 src/yolov5/models/hub/yolov5x6.yaml           |   60 +
 src/yolov5/models/tf.py                       |  464 +++++++
 src/yolov5/models/yolo.py                     |  329 +++++
 src/yolov5/models/yolov5l.yaml                |   48 +
 src/yolov5/models/yolov5m.yaml                |   48 +
 src/yolov5/models/yolov5n.yaml                |   48 +
 src/yolov5/models/yolov5s.yaml                |   48 +
 src/yolov5/models/yolov5x.yaml                |   48 +
 src/yolov5/requirements.txt                   |   37 +
 src/yolov5/setup.cfg                          |   45 +
 src/yolov5/train.py                           |  643 ++++++++++
 src/yolov5/tutorial.ipynb                     | 1102 +++++++++++++++++
 src/yolov5/utils/__init__.py                  |   37 +
 src/yolov5/utils/activations.py               |  101 ++
 src/yolov5/utils/augmentations.py             |  277 +++++
 src/yolov5/utils/autoanchor.py                |  165 +++
 src/yolov5/utils/autobatch.py                 |   57 +
 src/yolov5/utils/aws/__init__.py              |    0
 src/yolov5/utils/aws/mime.sh                  |   26 +
 src/yolov5/utils/aws/resume.py                |   40 +
 src/yolov5/utils/aws/userdata.sh              |   27 +
 src/yolov5/utils/benchmarks.py                |   92 ++
 src/yolov5/utils/callbacks.py                 |   78 ++
 src/yolov5/utils/datasets.py                  | 1037 ++++++++++++++++
 src/yolov5/utils/downloads.py                 |  153 +++
 src/yolov5/utils/flask_rest_api/README.md     |   73 ++
 .../utils/flask_rest_api/example_request.py   |   13 +
 src/yolov5/utils/flask_rest_api/restapi.py    |   37 +
 src/yolov5/utils/general.py                   |  880 +++++++++++++
 src/yolov5/utils/google_app_engine/Dockerfile |   25 +
 .../additional_requirements.txt               |    4 +
 src/yolov5/utils/google_app_engine/app.yaml   |   14 +
 src/yolov5/utils/loggers/__init__.py          |  168 +++
 src/yolov5/utils/loggers/wandb/README.md      |  152 +++
 src/yolov5/utils/loggers/wandb/__init__.py    |    0
 src/yolov5/utils/loggers/wandb/log_dataset.py |   27 +
 src/yolov5/utils/loggers/wandb/sweep.py       |   41 +
 src/yolov5/utils/loggers/wandb/sweep.yaml     |  143 +++
 src/yolov5/utils/loggers/wandb/wandb_utils.py |  562 +++++++++
 src/yolov5/utils/loss.py                      |  222 ++++
 src/yolov5/utils/metrics.py                   |  342 +++++
 src/yolov5/utils/plots.py                     |  471 +++++++
 src/yolov5/utils/torch_utils.py               |  329 +++++
 src/yolov5/val.py                             |  383 ++++++
 107 files changed, 14575 insertions(+)
 create mode 100644 src/yolov5/.dockerignore
 create mode 100644 src/yolov5/.gitattributes
 create mode 100644 src/yolov5/.github/FUNDING.yml
 create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
 create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/config.yml
 create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
 create mode 100644 src/yolov5/.github/ISSUE_TEMPLATE/question.yml
 create mode 100644 src/yolov5/.github/PULL_REQUEST_TEMPLATE.md
 create mode 100644 src/yolov5/.github/dependabot.yml
 create mode 100644 src/yolov5/.github/workflows/ci-testing.yml
 create mode 100644 src/yolov5/.github/workflows/codeql-analysis.yml
 create mode 100644 src/yolov5/.github/workflows/greetings.yml
 create mode 100644 src/yolov5/.github/workflows/rebase.yml
 create mode 100644 src/yolov5/.github/workflows/stale.yml
 create mode 100755 src/yolov5/.gitignore
 create mode 100644 src/yolov5/.pre-commit-config.yaml
 create mode 100644 src/yolov5/CONTRIBUTING.md
 create mode 100644 src/yolov5/Dockerfile
 create mode 100644 src/yolov5/LICENSE
 create mode 100644 src/yolov5/README.md
 create mode 100644 src/yolov5/data/Argoverse.yaml
 create mode 100644 src/yolov5/data/GlobalWheat2020.yaml
 create mode 100644 src/yolov5/data/Objects365.yaml
 create mode 100644 src/yolov5/data/SKU-110K.yaml
 create mode 100644 src/yolov5/data/VOC.yaml
 create mode 100644 src/yolov5/data/VisDrone.yaml
 create mode 100644 src/yolov5/data/coco.yaml
 create mode 100644 src/yolov5/data/coco128.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.finetune.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.finetune_objects365.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.scratch-high.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.scratch-low.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.scratch-med.yaml
 create mode 100644 src/yolov5/data/hyps/hyp.scratch.yaml
 create mode 100644 src/yolov5/data/images/bus.jpg
 create mode 100644 src/yolov5/data/images/zidane.jpg
 create mode 100755 src/yolov5/data/scripts/download_weights.sh
 create mode 100755 src/yolov5/data/scripts/get_coco.sh
 create mode 100644 src/yolov5/data/scripts/get_coco128.sh
 create mode 100644 src/yolov5/data/xView.yaml
 create mode 100644 src/yolov5/detect.py
 create mode 100644 src/yolov5/export.py
 create mode 100644 src/yolov5/hubconf.py
 create mode 100644 src/yolov5/models/__init__.py
 create mode 100644 src/yolov5/models/common.py
 create mode 100644 src/yolov5/models/experimental.py
 create mode 100644 src/yolov5/models/hub/anchors.yaml
 create mode 100644 src/yolov5/models/hub/yolov3-spp.yaml
 create mode 100644 src/yolov5/models/hub/yolov3-tiny.yaml
 create mode 100644 src/yolov5/models/hub/yolov3.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-bifpn.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-fpn.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-p2.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-p34.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-p6.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-p7.yaml
 create mode 100644 src/yolov5/models/hub/yolov5-panet.yaml
 create mode 100644 src/yolov5/models/hub/yolov5l6.yaml
 create mode 100644 src/yolov5/models/hub/yolov5m6.yaml
 create mode 100644 src/yolov5/models/hub/yolov5n6.yaml
 create mode 100644 src/yolov5/models/hub/yolov5s-ghost.yaml
 create mode 100644 src/yolov5/models/hub/yolov5s-transformer.yaml
 create mode 100644 src/yolov5/models/hub/yolov5s6.yaml
 create mode 100644 src/yolov5/models/hub/yolov5x6.yaml
 create mode 100644 src/yolov5/models/tf.py
 create mode 100644 src/yolov5/models/yolo.py
 create mode 100644 src/yolov5/models/yolov5l.yaml
 create mode 100644 src/yolov5/models/yolov5m.yaml
 create mode 100644 src/yolov5/models/yolov5n.yaml
 create mode 100644 src/yolov5/models/yolov5s.yaml
 create mode 100644 src/yolov5/models/yolov5x.yaml
 create mode 100755 src/yolov5/requirements.txt
 create mode 100644 src/yolov5/setup.cfg
 create mode 100644 src/yolov5/train.py
 create mode 100644 src/yolov5/tutorial.ipynb
 create mode 100644 src/yolov5/utils/__init__.py
 create mode 100644 src/yolov5/utils/activations.py
 create mode 100644 src/yolov5/utils/augmentations.py
 create mode 100644 src/yolov5/utils/autoanchor.py
 create mode 100644 src/yolov5/utils/autobatch.py
 create mode 100644 src/yolov5/utils/aws/__init__.py
 create mode 100644 src/yolov5/utils/aws/mime.sh
 create mode 100644 src/yolov5/utils/aws/resume.py
 create mode 100644 src/yolov5/utils/aws/userdata.sh
 create mode 100644 src/yolov5/utils/benchmarks.py
 create mode 100644 src/yolov5/utils/callbacks.py
 create mode 100755 src/yolov5/utils/datasets.py
 create mode 100644 src/yolov5/utils/downloads.py
 create mode 100644 src/yolov5/utils/flask_rest_api/README.md
 create mode 100644 src/yolov5/utils/flask_rest_api/example_request.py
 create mode 100644 src/yolov5/utils/flask_rest_api/restapi.py
 create mode 100755 src/yolov5/utils/general.py
 create mode 100644 src/yolov5/utils/google_app_engine/Dockerfile
 create mode 100644 src/yolov5/utils/google_app_engine/additional_requirements.txt
 create mode 100644 src/yolov5/utils/google_app_engine/app.yaml
 create mode 100644 src/yolov5/utils/loggers/__init__.py
 create mode 100644 src/yolov5/utils/loggers/wandb/README.md
 create mode 100644 src/yolov5/utils/loggers/wandb/__init__.py
 create mode 100644 src/yolov5/utils/loggers/wandb/log_dataset.py
 create mode 100644 src/yolov5/utils/loggers/wandb/sweep.py
 create mode 100644 src/yolov5/utils/loggers/wandb/sweep.yaml
 create mode 100644 src/yolov5/utils/loggers/wandb/wandb_utils.py
 create mode 100644 src/yolov5/utils/loss.py
 create mode 100644 src/yolov5/utils/metrics.py
 create mode 100644 src/yolov5/utils/plots.py
 create mode 100644 src/yolov5/utils/torch_utils.py
 create mode 100644 src/yolov5/val.py

diff --git a/src/yolov5/.dockerignore b/src/yolov5/.dockerignore
new file mode 100644
index 00000000..af51ccc3
--- /dev/null
+++ b/src/yolov5/.dockerignore
@@ -0,0 +1,222 @@
+# Repo-specific DockerIgnore -------------------------------------------------------------------------------------------
+#.git
+.cache
+.idea
+runs
+output
+coco
+storage.googleapis.com
+
+data/samples/*
+**/results*.csv
+*.jpg
+
+# Neural Network weights -----------------------------------------------------------------------------------------------
+**/*.pt
+**/*.pth
+**/*.onnx
+**/*.engine
+**/*.mlmodel
+**/*.torchscript
+**/*.torchscript.pt
+**/*.tflite
+**/*.h5
+**/*.pb
+*_saved_model/
+*_web_model/
+*_openvino_model/
+
+# Below Copied From .gitignore -----------------------------------------------------------------------------------------
+# Below Copied From .gitignore -----------------------------------------------------------------------------------------
+
+
+# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+wandb/
+.installed.cfg
+*.egg
+
+# PyInstaller
+#  Usually these files are written by a python script from a template
+#  before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv*
+venv*/
+ENV*/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+
+# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
+
+# General
+.DS_Store
+.AppleDouble
+.LSOverride
+
+# Icon must end with two \r
+Icon
+Icon?
+
+# Thumbnails
+._*
+
+# Files that might appear in the root of a volume
+.DocumentRevisions-V100
+.fseventsd
+.Spotlight-V100
+.TemporaryItems
+.Trashes
+.VolumeIcon.icns
+.com.apple.timemachine.donotpresent
+
+# Directories potentially created on remote AFP share
+.AppleDB
+.AppleDesktop
+Network Trash Folder
+Temporary Items
+.apdisk
+
+
+# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
+# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
+# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
+
+# User-specific stuff:
+.idea/*
+.idea/**/workspace.xml
+.idea/**/tasks.xml
+.idea/dictionaries
+.html  # Bokeh Plots
+.pg  # TensorFlow Frozen Graphs
+.avi # videos
+
+# Sensitive or high-churn files:
+.idea/**/dataSources/
+.idea/**/dataSources.ids
+.idea/**/dataSources.local.xml
+.idea/**/sqlDataSources.xml
+.idea/**/dynamic.xml
+.idea/**/uiDesigner.xml
+
+# Gradle:
+.idea/**/gradle.xml
+.idea/**/libraries
+
+# CMake
+cmake-build-debug/
+cmake-build-release/
+
+# Mongo Explorer plugin:
+.idea/**/mongoSettings.xml
+
+## File-based project format:
+*.iws
+
+## Plugin-specific files:
+
+# IntelliJ
+out/
+
+# mpeltonen/sbt-idea plugin
+.idea_modules/
+
+# JIRA plugin
+atlassian-ide-plugin.xml
+
+# Cursive Clojure plugin
+.idea/replstate.xml
+
+# Crashlytics plugin (for Android Studio and IntelliJ)
+com_crashlytics_export_strings.xml
+crashlytics.properties
+crashlytics-build.properties
+fabric.properties
diff --git a/src/yolov5/.gitattributes b/src/yolov5/.gitattributes
new file mode 100644
index 00000000..dad4239e
--- /dev/null
+++ b/src/yolov5/.gitattributes
@@ -0,0 +1,2 @@
+# this drop notebooks from GitHub language stats
+*.ipynb linguist-vendored
diff --git a/src/yolov5/.github/FUNDING.yml b/src/yolov5/.github/FUNDING.yml
new file mode 100644
index 00000000..3da386f7
--- /dev/null
+++ b/src/yolov5/.github/FUNDING.yml
@@ -0,0 +1,5 @@
+# These are supported funding model platforms
+
+github: glenn-jocher
+patreon: ultralytics
+open_collective: ultralytics
diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml b/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
new file mode 100644
index 00000000..fcb64138
--- /dev/null
+++ b/src/yolov5/.github/ISSUE_TEMPLATE/bug-report.yml
@@ -0,0 +1,85 @@
+name: 🐛 Bug Report
+# title: " "
+description: Problems with YOLOv5
+labels: [bug, triage]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for submitting a YOLOv5 🐛 Bug Report!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar bug report already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar bug report.
+          required: true
+
+  - type: dropdown
+    attributes:
+      label: YOLOv5 Component
+      description: |
+        Please select the part of YOLOv5 where you found the bug.
+      multiple: true
+      options:
+        - "Training"
+        - "Validation"
+        - "Detection"
+        - "Export"
+        - "PyTorch Hub"
+        - "Multi-GPU"
+        - "Evolution"
+        - "Integrations"
+        - "Other"
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Bug
+      description: Provide console output with error messages and/or screenshots of the bug.
+      placeholder: |
+        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Environment
+      description: Please specify the software and hardware you used to produce the bug.
+      placeholder: |
+        - YOLO: YOLOv5 🚀 v6.0-67-g60e42e1 torch 1.9.0+cu111 CUDA:0 (A100-SXM4-40GB, 40536MiB)
+        - OS: Ubuntu 20.04
+        - Python: 3.9.0
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Minimal Reproducible Example
+      description: >
+        When asking a question, people will be better able to provide help if you provide code that they can easily understand and use to **reproduce** the problem.
+        This is referred to by community members as creating a [minimal reproducible example](https://stackoverflow.com/help/minimal-reproducible-example).
+      placeholder: |
+        ```
+        # Code to reproduce your issue here
+        ```
+    validations:
+      required: false
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
+
+  - type: checkboxes
+    attributes:
+      label: Are you willing to submit a PR?
+      description: >
+        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
+        See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
+      options:
+        - label: Yes I'd like to help by submitting a PR!
diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/config.yml b/src/yolov5/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 00000000..f388d7ba
--- /dev/null
+++ b/src/yolov5/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,8 @@
+blank_issues_enabled: true
+contact_links:
+  - name: Slack
+    url: https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg
+    about: Ask on Ultralytics Slack Forum
+  - name: Stack Overflow
+    url: https://stackoverflow.com/search?q=YOLOv5
+    about: Ask on Stack Overflow with 'YOLOv5' tag
diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml b/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
new file mode 100644
index 00000000..68ef9851
--- /dev/null
+++ b/src/yolov5/.github/ISSUE_TEMPLATE/feature-request.yml
@@ -0,0 +1,50 @@
+name: 🚀 Feature Request
+description: Suggest a YOLOv5 idea
+# title: " "
+labels: [enhancement]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for submitting a YOLOv5 🚀 Feature Request!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) to see if a similar feature request already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and found no similar feature requests.
+          required: true
+
+  - type: textarea
+    attributes:
+      label: Description
+      description: A short description of your feature.
+      placeholder: |
+        What new feature would you like to see in YOLOv5?
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Use case
+      description: |
+        Describe the use case of your feature request. It will help us understand and prioritize the feature request.
+      placeholder: |
+        How would this feature be used, and who would use it?
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
+
+  - type: checkboxes
+    attributes:
+      label: Are you willing to submit a PR?
+      description: >
+        (Optional) We encourage you to submit a [Pull Request](https://github.com/ultralytics/yolov5/pulls) (PR) to help improve YOLOv5 for everyone, especially if you have a good understanding of how to implement a fix or feature.
+        See the YOLOv5 [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) to get started.
+      options:
+        - label: Yes I'd like to help by submitting a PR!
diff --git a/src/yolov5/.github/ISSUE_TEMPLATE/question.yml b/src/yolov5/.github/ISSUE_TEMPLATE/question.yml
new file mode 100644
index 00000000..8e0993c6
--- /dev/null
+++ b/src/yolov5/.github/ISSUE_TEMPLATE/question.yml
@@ -0,0 +1,33 @@
+name: ❓ Question
+description: Ask a YOLOv5 question
+# title: " "
+labels: [question]
+body:
+  - type: markdown
+    attributes:
+      value: |
+        Thank you for asking a YOLOv5 ❓ Question!
+
+  - type: checkboxes
+    attributes:
+      label: Search before asking
+      description: >
+        Please search the [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) to see if a similar question already exists.
+      options:
+        - label: >
+            I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions.
+          required: true
+
+  - type: textarea
+    attributes:
+      label: Question
+      description: What is your question?
+      placeholder: |
+        💡 ProTip! Include as much information as possible (screenshots, logs, tracebacks etc.) to receive the most helpful response.
+    validations:
+      required: true
+
+  - type: textarea
+    attributes:
+      label: Additional
+      description: Anything else you would like to share?
diff --git a/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md b/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md
new file mode 100644
index 00000000..7a3e1b7d
--- /dev/null
+++ b/src/yolov5/.github/PULL_REQUEST_TEMPLATE.md
@@ -0,0 +1,7 @@
+Thank you for submitting a YOLOv5 🚀 Pull Request! We want to make contributing to YOLOv5 as easy and transparent as possible. A few tips to get you started:
+
+- Search existing YOLOv5 [PRs](https://github.com/ultralytics/yolov5/pull) to see if a similar PR already exists.
+- Link this PR to a YOLOv5 [issue](https://github.com/ultralytics/yolov5/issues) to help us understand what bug fix or feature is being implemented.
+- Provide before and after profiling/inference/training results to help us quantify the improvement your PR provides (if applicable).
+
+Please see our ✅ [Contributing Guide](https://github.com/ultralytics/yolov5/blob/master/CONTRIBUTING.md) for more details.
diff --git a/src/yolov5/.github/dependabot.yml b/src/yolov5/.github/dependabot.yml
new file mode 100644
index 00000000..c1b3d5d5
--- /dev/null
+++ b/src/yolov5/.github/dependabot.yml
@@ -0,0 +1,23 @@
+version: 2
+updates:
+  - package-ecosystem: pip
+    directory: "/"
+    schedule:
+      interval: weekly
+      time: "04:00"
+    open-pull-requests-limit: 10
+    reviewers:
+      - glenn-jocher
+    labels:
+      - dependencies
+
+  - package-ecosystem: github-actions
+    directory: "/"
+    schedule:
+      interval: weekly
+      time: "04:00"
+    open-pull-requests-limit: 5
+    reviewers:
+      - glenn-jocher
+    labels:
+      - dependencies
diff --git a/src/yolov5/.github/workflows/ci-testing.yml b/src/yolov5/.github/workflows/ci-testing.yml
new file mode 100644
index 00000000..5cf1613a
--- /dev/null
+++ b/src/yolov5/.github/workflows/ci-testing.yml
@@ -0,0 +1,93 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+name: CI CPU testing
+
+on: # https://help.github.com/en/actions/reference/events-that-trigger-workflows
+  push:
+    branches: [ master ]
+  pull_request:
+    # The branches below must be a subset of the branches above
+    branches: [ master ]
+  schedule:
+    - cron: '0 0 * * *'  # Runs at 00:00 UTC every day
+
+jobs:
+  cpu-tests:
+
+    runs-on: ${{ matrix.os }}
+    strategy:
+      fail-fast: false
+      matrix:
+        os: [ ubuntu-latest, macos-latest, windows-latest ]
+        python-version: [ 3.9 ]
+        model: [ 'yolov5n' ]  # models to test
+
+    # Timeout: https://stackoverflow.com/a/59076067/4521646
+    timeout-minutes: 60
+    steps:
+      - uses: actions/checkout@v2
+      - name: Set up Python ${{ matrix.python-version }}
+        uses: actions/setup-python@v2
+        with:
+          python-version: ${{ matrix.python-version }}
+
+      # Note: This uses an internal pip API and may not always work
+      # https://github.com/actions/cache/blob/master/examples.md#multiple-oss-in-a-workflow
+      - name: Get pip cache
+        id: pip-cache
+        run: |
+          python -c "from pip._internal.locations import USER_CACHE_DIR; print('::set-output name=dir::' + USER_CACHE_DIR)"
+
+      - name: Cache pip
+        uses: actions/cache@v2.1.7
+        with:
+          path: ${{ steps.pip-cache.outputs.dir }}
+          key: ${{ runner.os }}-${{ matrix.python-version }}-pip-${{ hashFiles('requirements.txt') }}
+          restore-keys: |
+            ${{ runner.os }}-${{ matrix.python-version }}-pip-
+
+      # Known Keras 2.7.0 issue: https://github.com/ultralytics/yolov5/pull/5486
+      - name: Install dependencies
+        run: |
+          python -m pip install --upgrade pip
+          pip install -qr requirements.txt -f https://download.pytorch.org/whl/cpu/torch_stable.html
+          pip install -q onnx tensorflow-cpu keras==2.6.0  # wandb  # extras
+          python --version
+          pip --version
+          pip list
+        shell: bash
+
+      # - name: W&B login
+      #   run: wandb login 345011b3fb26dc8337fd9b20e53857c1d403f2aa
+
+      # - name: Download data
+      #   run: |
+      #     curl -L -o tmp.zip https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
+      #     unzip -q tmp.zip -d ../datasets
+
+      - name: Tests workflow
+        run: |
+          # export PYTHONPATH="$PWD"  # to run '$ python *.py' files in subdirectories
+          d=cpu  # device
+          weights=runs/train/exp/weights/best.pt
+
+          # Train
+          python train.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --cfg ${{ matrix.model }}.yaml --epochs 1 --device $d
+          # Val
+          python val.py --img 64 --batch 32 --weights ${{ matrix.model }}.pt --device $d
+          python val.py --img 64 --batch 32 --weights $weights --device $d
+          # Detect
+          python detect.py --weights ${{ matrix.model }}.pt --device $d
+          python detect.py --weights $weights --device $d
+          python hubconf.py  # hub
+          # Export
+          python models/yolo.py --cfg ${{ matrix.model }}.yaml  # build PyTorch model
+          python models/tf.py --weights ${{ matrix.model }}.pt  # build TensorFlow model
+          python export.py --weights ${{ matrix.model }}.pt --img 64 --include torchscript onnx  # export
+          # Python
+          python - <<EOF
+          import torch
+          # model = torch.hub.load('ultralytics/yolov5', 'custom', path=$weights)
+          EOF
+
+        shell: bash
diff --git a/src/yolov5/.github/workflows/codeql-analysis.yml b/src/yolov5/.github/workflows/codeql-analysis.yml
new file mode 100644
index 00000000..67f51f0e
--- /dev/null
+++ b/src/yolov5/.github/workflows/codeql-analysis.yml
@@ -0,0 +1,54 @@
+# This action runs GitHub's industry-leading static analysis engine, CodeQL, against a repository's source code to find security vulnerabilities.
+# https://github.com/github/codeql-action
+
+name: "CodeQL"
+
+on:
+  schedule:
+    - cron: '0 0 1 * *'  # Runs at 00:00 UTC on the 1st of every month
+
+jobs:
+  analyze:
+    name: Analyze
+    runs-on: ubuntu-latest
+
+    strategy:
+      fail-fast: false
+      matrix:
+        language: ['python']
+        # CodeQL supports [ 'cpp', 'csharp', 'go', 'java', 'javascript', 'python' ]
+        # Learn more:
+        # https://docs.github.com/en/free-pro-team@latest/github/finding-security-vulnerabilities-and-errors-in-your-code/configuring-code-scanning#changing-the-languages-that-are-analyzed
+
+    steps:
+      - name: Checkout repository
+        uses: actions/checkout@v2
+
+      # Initializes the CodeQL tools for scanning.
+      - name: Initialize CodeQL
+        uses: github/codeql-action/init@v1
+        with:
+          languages: ${{ matrix.language }}
+          # If you wish to specify custom queries, you can do so here or in a config file.
+          # By default, queries listed here will override any specified in a config file.
+          # Prefix the list here with "+" to use these queries and those in the config file.
+          # queries: ./path/to/local/query, your-org/your-repo/queries@main
+
+      # Autobuild attempts to build any compiled languages  (C/C++, C#, or Java).
+      # If this step fails, then you should remove it and run the build manually (see below)
+      - name: Autobuild
+        uses: github/codeql-action/autobuild@v1
+
+      # â„šī¸ Command-line programs to run using the OS shell.
+      # 📚 https://git.io/JvXDl
+
+      # âœī¸ If the Autobuild fails above, remove it and uncomment the following three lines
+      #    and modify them (or add more) to build your code if your project
+      #    uses a compiled language
+
+      #- run: |
+      #   make bootstrap
+      #   make release
+
+      - name: Perform CodeQL Analysis
+        uses: github/codeql-action/analyze@v1
diff --git a/src/yolov5/.github/workflows/greetings.yml b/src/yolov5/.github/workflows/greetings.yml
new file mode 100644
index 00000000..58fbcbfa
--- /dev/null
+++ b/src/yolov5/.github/workflows/greetings.yml
@@ -0,0 +1,59 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+name: Greetings
+
+on: [pull_request_target, issues]
+
+jobs:
+  greeting:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/first-interaction@v1
+        with:
+          repo-token: ${{ secrets.GITHUB_TOKEN }}
+          pr-message: |
+            👋 Hello @${{ github.actor }}, thank you for submitting a YOLOv5 🚀 PR! To allow your work to be integrated as seamlessly as possible, we advise you to:
+            - ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name of your local branch:
+            ```bash
+            git remote add upstream https://github.com/ultralytics/yolov5.git
+            git fetch upstream
+            # git checkout feature  # <--- replace 'feature' with local branch name
+            git merge upstream/master
+            git push -u origin -f
+            ```
+            - ✅ Verify all Continuous Integration (CI) **checks are passing**.
+            - ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  -Bruce Lee
+
+          issue-message: |
+            👋 Hello @${{ github.actor }}, thank you for your interest in YOLOv5 🚀! Please visit our â­ī¸ [Tutorials](https://github.com/ultralytics/yolov5/wiki#tutorials) to get started, where you can find quickstart guides for simple tasks like [Custom Data Training](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) all the way to advanced concepts like [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607).
+
+            If this is a 🐛 Bug Report, please provide screenshots and **minimum viable code to reproduce your issue**, otherwise we can not help you.
+
+            If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online [W&B logging](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data#visualize) if available.
+
+            For business inquiries or professional support requests please visit https://ultralytics.com or email support@ultralytics.com.
+
+            ## Requirements
+
+            [**Python>=3.7.0**](https://www.python.org/) with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) installed including [**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). To get started:
+            ```bash
+            git clone https://github.com/ultralytics/yolov5  # clone
+            cd yolov5
+            pip install -r requirements.txt  # install
+            ```
+
+            ## Environments
+
+            YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
+
+            - **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+            - **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
+            - **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
+            - **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+
+
+            ## Status
+
+            <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
+
+            If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
diff --git a/src/yolov5/.github/workflows/rebase.yml b/src/yolov5/.github/workflows/rebase.yml
new file mode 100644
index 00000000..a4db1efb
--- /dev/null
+++ b/src/yolov5/.github/workflows/rebase.yml
@@ -0,0 +1,21 @@
+# https://github.com/marketplace/actions/automatic-rebase
+
+name: Automatic Rebase
+on:
+  issue_comment:
+    types: [created]
+jobs:
+  rebase:
+    name: Rebase
+    if: github.event.issue.pull_request != '' && contains(github.event.comment.body, '/rebase')
+    runs-on: ubuntu-latest
+    steps:
+      - name: Checkout the latest code
+        uses: actions/checkout@v2
+        with:
+          token: ${{ secrets.ACTIONS_TOKEN }}
+          fetch-depth: 0 # otherwise, you will fail to push refs to dest repo
+      - name: Automatic Rebase
+        uses: cirrus-actions/rebase@1.5
+        env:
+          GITHUB_TOKEN: ${{ secrets.ACTIONS_TOKEN }}
diff --git a/src/yolov5/.github/workflows/stale.yml b/src/yolov5/.github/workflows/stale.yml
new file mode 100644
index 00000000..7a83950c
--- /dev/null
+++ b/src/yolov5/.github/workflows/stale.yml
@@ -0,0 +1,38 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+name: Close stale issues
+on:
+  schedule:
+    - cron: '0 0 * * *'  # Runs at 00:00 UTC every day
+
+jobs:
+  stale:
+    runs-on: ubuntu-latest
+    steps:
+      - uses: actions/stale@v4
+        with:
+          repo-token: ${{ secrets.GITHUB_TOKEN }}
+          stale-issue-message: |
+            👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.
+
+            Access additional [YOLOv5](https://ultralytics.com/yolov5) 🚀 resources:
+            - **Wiki** – https://github.com/ultralytics/yolov5/wiki
+            - **Tutorials** – https://github.com/ultralytics/yolov5#tutorials
+            - **Docs** – https://docs.ultralytics.com
+
+            Access additional [Ultralytics](https://ultralytics.com) ⚡ resources:
+            - **Ultralytics HUB** – https://ultralytics.com/hub
+            - **Vision API** – https://ultralytics.com/yolov5
+            - **About Us** – https://ultralytics.com/about
+            - **Join Our Team** – https://ultralytics.com/work
+            - **Contact Us** – https://ultralytics.com/contact
+
+            Feel free to inform us of any other **issues** you discover or **feature requests** that come to mind in the future. Pull Requests (PRs) are also always welcomed!
+
+            Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!
+
+          stale-pr-message: 'This pull request has been automatically marked as stale because it has not had recent activity. It will be closed if no further activity occurs. Thank you for your contributions YOLOv5 🚀 and Vision AI ⭐.'
+          days-before-stale: 30
+          days-before-close: 5
+          exempt-issue-labels: 'documentation,tutorial,TODO'
+          operations-per-run: 100  # The maximum number of operations per run, used to control rate limiting.
diff --git a/src/yolov5/.gitignore b/src/yolov5/.gitignore
new file mode 100755
index 00000000..69a00843
--- /dev/null
+++ b/src/yolov5/.gitignore
@@ -0,0 +1,256 @@
+# Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
+*.jpg
+*.jpeg
+*.png
+*.bmp
+*.tif
+*.tiff
+*.heic
+*.JPG
+*.JPEG
+*.PNG
+*.BMP
+*.TIF
+*.TIFF
+*.HEIC
+*.mp4
+*.mov
+*.MOV
+*.avi
+*.data
+*.json
+*.cfg
+!setup.cfg
+!cfg/yolov3*.cfg
+
+storage.googleapis.com
+runs/*
+data/*
+data/images/*
+!data/*.yaml
+!data/hyps
+!data/scripts
+!data/images
+!data/images/zidane.jpg
+!data/images/bus.jpg
+!data/*.sh
+
+results*.csv
+
+# Datasets -------------------------------------------------------------------------------------------------------------
+coco/
+coco128/
+VOC/
+
+# MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
+*.m~
+*.mat
+!targets*.mat
+
+# Neural Network weights -----------------------------------------------------------------------------------------------
+*.weights
+*.pt
+*.pb
+*.onnx
+*.engine
+*.mlmodel
+*.torchscript
+*.tflite
+*.h5
+*_saved_model/
+*_web_model/
+*_openvino_model/
+darknet53.conv.74
+yolov3-tiny.conv.15
+
+# GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
+# Byte-compiled / optimized / DLL files
+__pycache__/
+*.py[cod]
+*$py.class
+
+# C extensions
+*.so
+
+# Distribution / packaging
+.Python
+env/
+build/
+develop-eggs/
+dist/
+downloads/
+eggs/
+.eggs/
+lib/
+lib64/
+parts/
+sdist/
+var/
+wheels/
+*.egg-info/
+/wandb/
+.installed.cfg
+*.egg
+
+
+# PyInstaller
+#  Usually these files are written by a python script from a template
+#  before PyInstaller builds the exe, so as to inject date/other infos into it.
+*.manifest
+*.spec
+
+# Installer logs
+pip-log.txt
+pip-delete-this-directory.txt
+
+# Unit test / coverage reports
+htmlcov/
+.tox/
+.coverage
+.coverage.*
+.cache
+nosetests.xml
+coverage.xml
+*.cover
+.hypothesis/
+
+# Translations
+*.mo
+*.pot
+
+# Django stuff:
+*.log
+local_settings.py
+
+# Flask stuff:
+instance/
+.webassets-cache
+
+# Scrapy stuff:
+.scrapy
+
+# Sphinx documentation
+docs/_build/
+
+# PyBuilder
+target/
+
+# Jupyter Notebook
+.ipynb_checkpoints
+
+# pyenv
+.python-version
+
+# celery beat schedule file
+celerybeat-schedule
+
+# SageMath parsed files
+*.sage.py
+
+# dotenv
+.env
+
+# virtualenv
+.venv*
+venv*/
+ENV*/
+
+# Spyder project settings
+.spyderproject
+.spyproject
+
+# Rope project settings
+.ropeproject
+
+# mkdocs documentation
+/site
+
+# mypy
+.mypy_cache/
+
+
+# https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
+
+# General
+.DS_Store
+.AppleDouble
+.LSOverride
+
+# Icon must end with two \r
+Icon
+Icon?
+
+# Thumbnails
+._*
+
+# Files that might appear in the root of a volume
+.DocumentRevisions-V100
+.fseventsd
+.Spotlight-V100
+.TemporaryItems
+.Trashes
+.VolumeIcon.icns
+.com.apple.timemachine.donotpresent
+
+# Directories potentially created on remote AFP share
+.AppleDB
+.AppleDesktop
+Network Trash Folder
+Temporary Items
+.apdisk
+
+
+# https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
+# Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
+# Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
+
+# User-specific stuff:
+.idea/*
+.idea/**/workspace.xml
+.idea/**/tasks.xml
+.idea/dictionaries
+.html  # Bokeh Plots
+.pg  # TensorFlow Frozen Graphs
+.avi # videos
+
+# Sensitive or high-churn files:
+.idea/**/dataSources/
+.idea/**/dataSources.ids
+.idea/**/dataSources.local.xml
+.idea/**/sqlDataSources.xml
+.idea/**/dynamic.xml
+.idea/**/uiDesigner.xml
+
+# Gradle:
+.idea/**/gradle.xml
+.idea/**/libraries
+
+# CMake
+cmake-build-debug/
+cmake-build-release/
+
+# Mongo Explorer plugin:
+.idea/**/mongoSettings.xml
+
+## File-based project format:
+*.iws
+
+## Plugin-specific files:
+
+# IntelliJ
+out/
+
+# mpeltonen/sbt-idea plugin
+.idea_modules/
+
+# JIRA plugin
+atlassian-ide-plugin.xml
+
+# Cursive Clojure plugin
+.idea/replstate.xml
+
+# Crashlytics plugin (for Android Studio and IntelliJ)
+com_crashlytics_export_strings.xml
+crashlytics.properties
+crashlytics-build.properties
+fabric.properties
diff --git a/src/yolov5/.pre-commit-config.yaml b/src/yolov5/.pre-commit-config.yaml
new file mode 100644
index 00000000..526a5609
--- /dev/null
+++ b/src/yolov5/.pre-commit-config.yaml
@@ -0,0 +1,66 @@
+# Define hooks for code formations
+# Will be applied on any updated commit files if a user has installed and linked commit hook
+
+default_language_version:
+  python: python3.8
+
+# Define bot property if installed via https://github.com/marketplace/pre-commit-ci
+ci:
+  autofix_prs: true
+  autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
+  autoupdate_schedule: quarterly
+  # submodules: true
+
+repos:
+  - repo: https://github.com/pre-commit/pre-commit-hooks
+    rev: v4.1.0
+    hooks:
+      - id: end-of-file-fixer
+      - id: trailing-whitespace
+      - id: check-case-conflict
+      - id: check-yaml
+      - id: check-toml
+      - id: pretty-format-json
+      - id: check-docstring-first
+
+  - repo: https://github.com/asottile/pyupgrade
+    rev: v2.31.0
+    hooks:
+      - id: pyupgrade
+        args: [--py36-plus]
+        name: Upgrade code
+
+  - repo: https://github.com/PyCQA/isort
+    rev: 5.10.1
+    hooks:
+      - id: isort
+        name: Sort imports
+
+  # TODO
+  #- repo: https://github.com/pre-commit/mirrors-yapf
+  #  rev: v0.31.0
+  #  hooks:
+  #    - id: yapf
+  #      name: formatting
+
+  # TODO
+  #- repo: https://github.com/executablebooks/mdformat
+  #  rev: 0.7.7
+  #  hooks:
+  #    - id: mdformat
+  #      additional_dependencies:
+  #        - mdformat-gfm
+  #        - mdformat-black
+  #        - mdformat_frontmatter
+
+  # TODO
+  #- repo: https://github.com/asottile/yesqa
+  #  rev: v1.2.3
+  #  hooks:
+  #    - id: yesqa
+
+  - repo: https://github.com/PyCQA/flake8
+    rev: 4.0.1
+    hooks:
+      - id: flake8
+        name: PEP8
diff --git a/src/yolov5/CONTRIBUTING.md b/src/yolov5/CONTRIBUTING.md
new file mode 100644
index 00000000..ebde03a5
--- /dev/null
+++ b/src/yolov5/CONTRIBUTING.md
@@ -0,0 +1,94 @@
+## Contributing to YOLOv5 🚀
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible, whether it's:
+
+- Reporting a bug
+- Discussing the current state of the code
+- Submitting a fix
+- Proposing a new feature
+- Becoming a maintainer
+
+YOLOv5 works so well due to our combined community effort, and for every small improvement you contribute you will be
+helping push the frontiers of what's possible in AI 😃!
+
+## Submitting a Pull Request (PR) đŸ› ī¸
+
+Submitting a PR is easy! This example shows how to submit a PR for updating `requirements.txt` in 4 steps:
+
+### 1. Select File to Update
+
+Select `requirements.txt` to update by clicking on it in GitHub.
+<p align="center"><img width="800" alt="PR_step1" src="https://user-images.githubusercontent.com/26833433/122260847-08be2600-ced4-11eb-828b-8287ace4136c.png"></p>
+
+### 2. Click 'Edit this file'
+
+Button is in top-right corner.
+<p align="center"><img width="800" alt="PR_step2" src="https://user-images.githubusercontent.com/26833433/122260844-06f46280-ced4-11eb-9eec-b8a24be519ca.png"></p>
+
+### 3. Make Changes
+
+Change `matplotlib` version from `3.2.2` to `3.3`.
+<p align="center"><img width="800" alt="PR_step3" src="https://user-images.githubusercontent.com/26833433/122260853-0a87e980-ced4-11eb-9fd2-3650fb6e0842.png"></p>
+
+### 4. Preview Changes and Submit PR
+
+Click on the **Preview changes** tab to verify your updates. At the bottom of the screen select 'Create a **new branch**
+for this commit', assign your branch a descriptive name such as `fix/matplotlib_version` and click the green **Propose
+changes** button. All done, your PR is now submitted to YOLOv5 for review and approval 😃!
+<p align="center"><img width="800" alt="PR_step4" src="https://user-images.githubusercontent.com/26833433/122260856-0b208000-ced4-11eb-8e8e-77b6151cbcc3.png"></p>
+
+### PR recommendations
+
+To allow your work to be integrated as seamlessly as possible, we advise you to:
+
+- ✅ Verify your PR is **up-to-date with upstream/master.** If your PR is behind upstream/master an
+  automatic [GitHub Actions](https://github.com/ultralytics/yolov5/blob/master/.github/workflows/rebase.yml) merge may
+  be attempted by writing /rebase in a new comment, or by running the following code, replacing 'feature' with the name
+  of your local branch:
+
+```bash
+git remote add upstream https://github.com/ultralytics/yolov5.git
+git fetch upstream
+# git checkout feature  # <--- replace 'feature' with local branch name
+git merge upstream/master
+git push -u origin -f
+```
+
+- ✅ Verify all Continuous Integration (CI) **checks are passing**.
+- ✅ Reduce changes to the absolute **minimum** required for your bug fix or feature addition. _"It is not daily increase
+  but daily decrease, hack away the unessential. The closer to the source, the less wastage there is."_  — Bruce Lee
+
+## Submitting a Bug Report 🐛
+
+If you spot a problem with YOLOv5 please submit a Bug Report!
+
+For us to start investigating a possible problem we need to be able to reproduce it ourselves first. We've created a few
+short guidelines below to help users provide what we need in order to get started.
+
+When asking a question, people will be better able to provide help if you provide **code** that they can easily
+understand and use to **reproduce** the problem. This is referred to by community members as creating
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example). Your code that reproduces
+the problem should be:
+
+* ✅ **Minimal** – Use as little code as possible that still produces the same problem
+* ✅ **Complete** – Provide **all** parts someone else needs to reproduce your problem in the question itself
+* ✅ **Reproducible** – Test the code you're about to provide to make sure it reproduces the problem
+
+In addition to the above requirements, for [Ultralytics](https://ultralytics.com/) to provide assistance your code
+should be:
+
+* ✅ **Current** – Verify that your code is up-to-date with current
+  GitHub [master](https://github.com/ultralytics/yolov5/tree/master), and if necessary `git pull` or `git clone` a new
+  copy to ensure your problem has not already been resolved by previous commits.
+* ✅ **Unmodified** – Your problem must be reproducible without any modifications to the codebase in this
+  repository. [Ultralytics](https://ultralytics.com/) does not provide support for custom code âš ī¸.
+
+If you believe your problem meets all of the above criteria, please close this issue and raise a new one using the 🐛 **
+Bug Report** [template](https://github.com/ultralytics/yolov5/issues/new/choose) and providing
+a [minimum reproducible example](https://stackoverflow.com/help/minimal-reproducible-example) to help us better
+understand and diagnose your problem.
+
+## License
+
+By contributing, you agree that your contributions will be licensed under
+the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/)
diff --git a/src/yolov5/Dockerfile b/src/yolov5/Dockerfile
new file mode 100644
index 00000000..489dd04c
--- /dev/null
+++ b/src/yolov5/Dockerfile
@@ -0,0 +1,64 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Start FROM Nvidia PyTorch image https://ngc.nvidia.com/catalog/containers/nvidia:pytorch
+FROM nvcr.io/nvidia/pytorch:21.10-py3
+
+# Install linux packages
+RUN apt update && apt install -y zip htop screen libgl1-mesa-glx
+
+# Install python dependencies
+COPY requirements.txt .
+RUN python -m pip install --upgrade pip
+RUN pip uninstall -y torch torchvision torchtext
+RUN pip install --no-cache -r requirements.txt albumentations wandb gsutil notebook \
+    torch==1.10.2+cu113 torchvision==0.11.3+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
+# RUN pip install --no-cache -U torch torchvision
+
+# Create working directory
+RUN mkdir -p /usr/src/app
+WORKDIR /usr/src/app
+
+# Copy contents
+COPY . /usr/src/app
+
+# Downloads to user config dir
+ADD https://ultralytics.com/assets/Arial.ttf /root/.config/Ultralytics/
+
+# Set environment variables
+# ENV HOME=/usr/src/app
+
+
+# Usage Examples -------------------------------------------------------------------------------------------------------
+
+# Build and Push
+# t=ultralytics/yolov5:latest && sudo docker build -t $t . && sudo docker push $t
+
+# Pull and Run
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
+
+# Pull and Run with local directory access
+# t=ultralytics/yolov5:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
+
+# Kill all
+# sudo docker kill $(sudo docker ps -q)
+
+# Kill all image-based
+# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/yolov5:latest)
+
+# Bash into running container
+# sudo docker exec -it 5a9b5863d93d bash
+
+# Bash into stopped container
+# id=$(sudo docker ps -qa) && sudo docker start $id && sudo docker exec -it $id bash
+
+# Clean up
+# docker system prune -a --volumes
+
+# Update Ubuntu drivers
+# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
+
+# DDP test
+# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
+
+# GCP VM from Image
+# docker.io/ultralytics/yolov5:latest
diff --git a/src/yolov5/LICENSE b/src/yolov5/LICENSE
new file mode 100644
index 00000000..92b370f0
--- /dev/null
+++ b/src/yolov5/LICENSE
@@ -0,0 +1,674 @@
+GNU GENERAL PUBLIC LICENSE
+                       Version 3, 29 June 2007
+
+ Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
+ Everyone is permitted to copy and distribute verbatim copies
+ of this license document, but changing it is not allowed.
+
+                            Preamble
+
+  The GNU General Public License is a free, copyleft license for
+software and other kinds of works.
+
+  The licenses for most software and other practical works are designed
+to take away your freedom to share and change the works.  By contrast,
+the GNU General Public License is intended to guarantee your freedom to
+share and change all versions of a program--to make sure it remains free
+software for all its users.  We, the Free Software Foundation, use the
+GNU General Public License for most of our software; it applies also to
+any other work released this way by its authors.  You can apply it to
+your programs, too.
+
+  When we speak of free software, we are referring to freedom, not
+price.  Our General Public Licenses are designed to make sure that you
+have the freedom to distribute copies of free software (and charge for
+them if you wish), that you receive source code or can get it if you
+want it, that you can change the software or use pieces of it in new
+free programs, and that you know you can do these things.
+
+  To protect your rights, we need to prevent others from denying you
+these rights or asking you to surrender the rights.  Therefore, you have
+certain responsibilities if you distribute copies of the software, or if
+you modify it: responsibilities to respect the freedom of others.
+
+  For example, if you distribute copies of such a program, whether
+gratis or for a fee, you must pass on to the recipients the same
+freedoms that you received.  You must make sure that they, too, receive
+or can get the source code.  And you must show them these terms so they
+know their rights.
+
+  Developers that use the GNU GPL protect your rights with two steps:
+(1) assert copyright on the software, and (2) offer you this License
+giving you legal permission to copy, distribute and/or modify it.
+
+  For the developers' and authors' protection, the GPL clearly explains
+that there is no warranty for this free software.  For both users' and
+authors' sake, the GPL requires that modified versions be marked as
+changed, so that their problems will not be attributed erroneously to
+authors of previous versions.
+
+  Some devices are designed to deny users access to install or run
+modified versions of the software inside them, although the manufacturer
+can do so.  This is fundamentally incompatible with the aim of
+protecting users' freedom to change the software.  The systematic
+pattern of such abuse occurs in the area of products for individuals to
+use, which is precisely where it is most unacceptable.  Therefore, we
+have designed this version of the GPL to prohibit the practice for those
+products.  If such problems arise substantially in other domains, we
+stand ready to extend this provision to those domains in future versions
+of the GPL, as needed to protect the freedom of users.
+
+  Finally, every program is threatened constantly by software patents.
+States should not allow patents to restrict development and use of
+software on general-purpose computers, but in those that do, we wish to
+avoid the special danger that patents applied to a free program could
+make it effectively proprietary.  To prevent this, the GPL assures that
+patents cannot be used to render the program non-free.
+
+  The precise terms and conditions for copying, distribution and
+modification follow.
+
+                       TERMS AND CONDITIONS
+
+  0. Definitions.
+
+  "This License" refers to version 3 of the GNU General Public License.
+
+  "Copyright" also means copyright-like laws that apply to other kinds of
+works, such as semiconductor masks.
+
+  "The Program" refers to any copyrightable work licensed under this
+License.  Each licensee is addressed as "you".  "Licensees" and
+"recipients" may be individuals or organizations.
+
+  To "modify" a work means to copy from or adapt all or part of the work
+in a fashion requiring copyright permission, other than the making of an
+exact copy.  The resulting work is called a "modified version" of the
+earlier work or a work "based on" the earlier work.
+
+  A "covered work" means either the unmodified Program or a work based
+on the Program.
+
+  To "propagate" a work means to do anything with it that, without
+permission, would make you directly or secondarily liable for
+infringement under applicable copyright law, except executing it on a
+computer or modifying a private copy.  Propagation includes copying,
+distribution (with or without modification), making available to the
+public, and in some countries other activities as well.
+
+  To "convey" a work means any kind of propagation that enables other
+parties to make or receive copies.  Mere interaction with a user through
+a computer network, with no transfer of a copy, is not conveying.
+
+  An interactive user interface displays "Appropriate Legal Notices"
+to the extent that it includes a convenient and prominently visible
+feature that (1) displays an appropriate copyright notice, and (2)
+tells the user that there is no warranty for the work (except to the
+extent that warranties are provided), that licensees may convey the
+work under this License, and how to view a copy of this License.  If
+the interface presents a list of user commands or options, such as a
+menu, a prominent item in the list meets this criterion.
+
+  1. Source Code.
+
+  The "source code" for a work means the preferred form of the work
+for making modifications to it.  "Object code" means any non-source
+form of a work.
+
+  A "Standard Interface" means an interface that either is an official
+standard defined by a recognized standards body, or, in the case of
+interfaces specified for a particular programming language, one that
+is widely used among developers working in that language.
+
+  The "System Libraries" of an executable work include anything, other
+than the work as a whole, that (a) is included in the normal form of
+packaging a Major Component, but which is not part of that Major
+Component, and (b) serves only to enable use of the work with that
+Major Component, or to implement a Standard Interface for which an
+implementation is available to the public in source code form.  A
+"Major Component", in this context, means a major essential component
+(kernel, window system, and so on) of the specific operating system
+(if any) on which the executable work runs, or a compiler used to
+produce the work, or an object code interpreter used to run it.
+
+  The "Corresponding Source" for a work in object code form means all
+the source code needed to generate, install, and (for an executable
+work) run the object code and to modify the work, including scripts to
+control those activities.  However, it does not include the work's
+System Libraries, or general-purpose tools or generally available free
+programs which are used unmodified in performing those activities but
+which are not part of the work.  For example, Corresponding Source
+includes interface definition files associated with source files for
+the work, and the source code for shared libraries and dynamically
+linked subprograms that the work is specifically designed to require,
+such as by intimate data communication or control flow between those
+subprograms and other parts of the work.
+
+  The Corresponding Source need not include anything that users
+can regenerate automatically from other parts of the Corresponding
+Source.
+
+  The Corresponding Source for a work in source code form is that
+same work.
+
+  2. Basic Permissions.
+
+  All rights granted under this License are granted for the term of
+copyright on the Program, and are irrevocable provided the stated
+conditions are met.  This License explicitly affirms your unlimited
+permission to run the unmodified Program.  The output from running a
+covered work is covered by this License only if the output, given its
+content, constitutes a covered work.  This License acknowledges your
+rights of fair use or other equivalent, as provided by copyright law.
+
+  You may make, run and propagate covered works that you do not
+convey, without conditions so long as your license otherwise remains
+in force.  You may convey covered works to others for the sole purpose
+of having them make modifications exclusively for you, or provide you
+with facilities for running those works, provided that you comply with
+the terms of this License in conveying all material for which you do
+not control copyright.  Those thus making or running the covered works
+for you must do so exclusively on your behalf, under your direction
+and control, on terms that prohibit them from making any copies of
+your copyrighted material outside their relationship with you.
+
+  Conveying under any other circumstances is permitted solely under
+the conditions stated below.  Sublicensing is not allowed; section 10
+makes it unnecessary.
+
+  3. Protecting Users' Legal Rights From Anti-Circumvention Law.
+
+  No covered work shall be deemed part of an effective technological
+measure under any applicable law fulfilling obligations under article
+11 of the WIPO copyright treaty adopted on 20 December 1996, or
+similar laws prohibiting or restricting circumvention of such
+measures.
+
+  When you convey a covered work, you waive any legal power to forbid
+circumvention of technological measures to the extent such circumvention
+is effected by exercising rights under this License with respect to
+the covered work, and you disclaim any intention to limit operation or
+modification of the work as a means of enforcing, against the work's
+users, your or third parties' legal rights to forbid circumvention of
+technological measures.
+
+  4. Conveying Verbatim Copies.
+
+  You may convey verbatim copies of the Program's source code as you
+receive it, in any medium, provided that you conspicuously and
+appropriately publish on each copy an appropriate copyright notice;
+keep intact all notices stating that this License and any
+non-permissive terms added in accord with section 7 apply to the code;
+keep intact all notices of the absence of any warranty; and give all
+recipients a copy of this License along with the Program.
+
+  You may charge any price or no price for each copy that you convey,
+and you may offer support or warranty protection for a fee.
+
+  5. Conveying Modified Source Versions.
+
+  You may convey a work based on the Program, or the modifications to
+produce it from the Program, in the form of source code under the
+terms of section 4, provided that you also meet all of these conditions:
+
+    a) The work must carry prominent notices stating that you modified
+    it, and giving a relevant date.
+
+    b) The work must carry prominent notices stating that it is
+    released under this License and any conditions added under section
+    7.  This requirement modifies the requirement in section 4 to
+    "keep intact all notices".
+
+    c) You must license the entire work, as a whole, under this
+    License to anyone who comes into possession of a copy.  This
+    License will therefore apply, along with any applicable section 7
+    additional terms, to the whole of the work, and all its parts,
+    regardless of how they are packaged.  This License gives no
+    permission to license the work in any other way, but it does not
+    invalidate such permission if you have separately received it.
+
+    d) If the work has interactive user interfaces, each must display
+    Appropriate Legal Notices; however, if the Program has interactive
+    interfaces that do not display Appropriate Legal Notices, your
+    work need not make them do so.
+
+  A compilation of a covered work with other separate and independent
+works, which are not by their nature extensions of the covered work,
+and which are not combined with it such as to form a larger program,
+in or on a volume of a storage or distribution medium, is called an
+"aggregate" if the compilation and its resulting copyright are not
+used to limit the access or legal rights of the compilation's users
+beyond what the individual works permit.  Inclusion of a covered work
+in an aggregate does not cause this License to apply to the other
+parts of the aggregate.
+
+  6. Conveying Non-Source Forms.
+
+  You may convey a covered work in object code form under the terms
+of sections 4 and 5, provided that you also convey the
+machine-readable Corresponding Source under the terms of this License,
+in one of these ways:
+
+    a) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by the
+    Corresponding Source fixed on a durable physical medium
+    customarily used for software interchange.
+
+    b) Convey the object code in, or embodied in, a physical product
+    (including a physical distribution medium), accompanied by a
+    written offer, valid for at least three years and valid for as
+    long as you offer spare parts or customer support for that product
+    model, to give anyone who possesses the object code either (1) a
+    copy of the Corresponding Source for all the software in the
+    product that is covered by this License, on a durable physical
+    medium customarily used for software interchange, for a price no
+    more than your reasonable cost of physically performing this
+    conveying of source, or (2) access to copy the
+    Corresponding Source from a network server at no charge.
+
+    c) Convey individual copies of the object code with a copy of the
+    written offer to provide the Corresponding Source.  This
+    alternative is allowed only occasionally and noncommercially, and
+    only if you received the object code with such an offer, in accord
+    with subsection 6b.
+
+    d) Convey the object code by offering access from a designated
+    place (gratis or for a charge), and offer equivalent access to the
+    Corresponding Source in the same way through the same place at no
+    further charge.  You need not require recipients to copy the
+    Corresponding Source along with the object code.  If the place to
+    copy the object code is a network server, the Corresponding Source
+    may be on a different server (operated by you or a third party)
+    that supports equivalent copying facilities, provided you maintain
+    clear directions next to the object code saying where to find the
+    Corresponding Source.  Regardless of what server hosts the
+    Corresponding Source, you remain obligated to ensure that it is
+    available for as long as needed to satisfy these requirements.
+
+    e) Convey the object code using peer-to-peer transmission, provided
+    you inform other peers where the object code and Corresponding
+    Source of the work are being offered to the general public at no
+    charge under subsection 6d.
+
+  A separable portion of the object code, whose source code is excluded
+from the Corresponding Source as a System Library, need not be
+included in conveying the object code work.
+
+  A "User Product" is either (1) a "consumer product", which means any
+tangible personal property which is normally used for personal, family,
+or household purposes, or (2) anything designed or sold for incorporation
+into a dwelling.  In determining whether a product is a consumer product,
+doubtful cases shall be resolved in favor of coverage.  For a particular
+product received by a particular user, "normally used" refers to a
+typical or common use of that class of product, regardless of the status
+of the particular user or of the way in which the particular user
+actually uses, or expects or is expected to use, the product.  A product
+is a consumer product regardless of whether the product has substantial
+commercial, industrial or non-consumer uses, unless such uses represent
+the only significant mode of use of the product.
+
+  "Installation Information" for a User Product means any methods,
+procedures, authorization keys, or other information required to install
+and execute modified versions of a covered work in that User Product from
+a modified version of its Corresponding Source.  The information must
+suffice to ensure that the continued functioning of the modified object
+code is in no case prevented or interfered with solely because
+modification has been made.
+
+  If you convey an object code work under this section in, or with, or
+specifically for use in, a User Product, and the conveying occurs as
+part of a transaction in which the right of possession and use of the
+User Product is transferred to the recipient in perpetuity or for a
+fixed term (regardless of how the transaction is characterized), the
+Corresponding Source conveyed under this section must be accompanied
+by the Installation Information.  But this requirement does not apply
+if neither you nor any third party retains the ability to install
+modified object code on the User Product (for example, the work has
+been installed in ROM).
+
+  The requirement to provide Installation Information does not include a
+requirement to continue to provide support service, warranty, or updates
+for a work that has been modified or installed by the recipient, or for
+the User Product in which it has been modified or installed.  Access to a
+network may be denied when the modification itself materially and
+adversely affects the operation of the network or violates the rules and
+protocols for communication across the network.
+
+  Corresponding Source conveyed, and Installation Information provided,
+in accord with this section must be in a format that is publicly
+documented (and with an implementation available to the public in
+source code form), and must require no special password or key for
+unpacking, reading or copying.
+
+  7. Additional Terms.
+
+  "Additional permissions" are terms that supplement the terms of this
+License by making exceptions from one or more of its conditions.
+Additional permissions that are applicable to the entire Program shall
+be treated as though they were included in this License, to the extent
+that they are valid under applicable law.  If additional permissions
+apply only to part of the Program, that part may be used separately
+under those permissions, but the entire Program remains governed by
+this License without regard to the additional permissions.
+
+  When you convey a copy of a covered work, you may at your option
+remove any additional permissions from that copy, or from any part of
+it.  (Additional permissions may be written to require their own
+removal in certain cases when you modify the work.)  You may place
+additional permissions on material, added by you to a covered work,
+for which you have or can give appropriate copyright permission.
+
+  Notwithstanding any other provision of this License, for material you
+add to a covered work, you may (if authorized by the copyright holders of
+that material) supplement the terms of this License with terms:
+
+    a) Disclaiming warranty or limiting liability differently from the
+    terms of sections 15 and 16 of this License; or
+
+    b) Requiring preservation of specified reasonable legal notices or
+    author attributions in that material or in the Appropriate Legal
+    Notices displayed by works containing it; or
+
+    c) Prohibiting misrepresentation of the origin of that material, or
+    requiring that modified versions of such material be marked in
+    reasonable ways as different from the original version; or
+
+    d) Limiting the use for publicity purposes of names of licensors or
+    authors of the material; or
+
+    e) Declining to grant rights under trademark law for use of some
+    trade names, trademarks, or service marks; or
+
+    f) Requiring indemnification of licensors and authors of that
+    material by anyone who conveys the material (or modified versions of
+    it) with contractual assumptions of liability to the recipient, for
+    any liability that these contractual assumptions directly impose on
+    those licensors and authors.
+
+  All other non-permissive additional terms are considered "further
+restrictions" within the meaning of section 10.  If the Program as you
+received it, or any part of it, contains a notice stating that it is
+governed by this License along with a term that is a further
+restriction, you may remove that term.  If a license document contains
+a further restriction but permits relicensing or conveying under this
+License, you may add to a covered work material governed by the terms
+of that license document, provided that the further restriction does
+not survive such relicensing or conveying.
+
+  If you add terms to a covered work in accord with this section, you
+must place, in the relevant source files, a statement of the
+additional terms that apply to those files, or a notice indicating
+where to find the applicable terms.
+
+  Additional terms, permissive or non-permissive, may be stated in the
+form of a separately written license, or stated as exceptions;
+the above requirements apply either way.
+
+  8. Termination.
+
+  You may not propagate or modify a covered work except as expressly
+provided under this License.  Any attempt otherwise to propagate or
+modify it is void, and will automatically terminate your rights under
+this License (including any patent licenses granted under the third
+paragraph of section 11).
+
+  However, if you cease all violation of this License, then your
+license from a particular copyright holder is reinstated (a)
+provisionally, unless and until the copyright holder explicitly and
+finally terminates your license, and (b) permanently, if the copyright
+holder fails to notify you of the violation by some reasonable means
+prior to 60 days after the cessation.
+
+  Moreover, your license from a particular copyright holder is
+reinstated permanently if the copyright holder notifies you of the
+violation by some reasonable means, this is the first time you have
+received notice of violation of this License (for any work) from that
+copyright holder, and you cure the violation prior to 30 days after
+your receipt of the notice.
+
+  Termination of your rights under this section does not terminate the
+licenses of parties who have received copies or rights from you under
+this License.  If your rights have been terminated and not permanently
+reinstated, you do not qualify to receive new licenses for the same
+material under section 10.
+
+  9. Acceptance Not Required for Having Copies.
+
+  You are not required to accept this License in order to receive or
+run a copy of the Program.  Ancillary propagation of a covered work
+occurring solely as a consequence of using peer-to-peer transmission
+to receive a copy likewise does not require acceptance.  However,
+nothing other than this License grants you permission to propagate or
+modify any covered work.  These actions infringe copyright if you do
+not accept this License.  Therefore, by modifying or propagating a
+covered work, you indicate your acceptance of this License to do so.
+
+  10. Automatic Licensing of Downstream Recipients.
+
+  Each time you convey a covered work, the recipient automatically
+receives a license from the original licensors, to run, modify and
+propagate that work, subject to this License.  You are not responsible
+for enforcing compliance by third parties with this License.
+
+  An "entity transaction" is a transaction transferring control of an
+organization, or substantially all assets of one, or subdividing an
+organization, or merging organizations.  If propagation of a covered
+work results from an entity transaction, each party to that
+transaction who receives a copy of the work also receives whatever
+licenses to the work the party's predecessor in interest had or could
+give under the previous paragraph, plus a right to possession of the
+Corresponding Source of the work from the predecessor in interest, if
+the predecessor has it or can get it with reasonable efforts.
+
+  You may not impose any further restrictions on the exercise of the
+rights granted or affirmed under this License.  For example, you may
+not impose a license fee, royalty, or other charge for exercise of
+rights granted under this License, and you may not initiate litigation
+(including a cross-claim or counterclaim in a lawsuit) alleging that
+any patent claim is infringed by making, using, selling, offering for
+sale, or importing the Program or any portion of it.
+
+  11. Patents.
+
+  A "contributor" is a copyright holder who authorizes use under this
+License of the Program or a work on which the Program is based.  The
+work thus licensed is called the contributor's "contributor version".
+
+  A contributor's "essential patent claims" are all patent claims
+owned or controlled by the contributor, whether already acquired or
+hereafter acquired, that would be infringed by some manner, permitted
+by this License, of making, using, or selling its contributor version,
+but do not include claims that would be infringed only as a
+consequence of further modification of the contributor version.  For
+purposes of this definition, "control" includes the right to grant
+patent sublicenses in a manner consistent with the requirements of
+this License.
+
+  Each contributor grants you a non-exclusive, worldwide, royalty-free
+patent license under the contributor's essential patent claims, to
+make, use, sell, offer for sale, import and otherwise run, modify and
+propagate the contents of its contributor version.
+
+  In the following three paragraphs, a "patent license" is any express
+agreement or commitment, however denominated, not to enforce a patent
+(such as an express permission to practice a patent or covenant not to
+sue for patent infringement).  To "grant" such a patent license to a
+party means to make such an agreement or commitment not to enforce a
+patent against the party.
+
+  If you convey a covered work, knowingly relying on a patent license,
+and the Corresponding Source of the work is not available for anyone
+to copy, free of charge and under the terms of this License, through a
+publicly available network server or other readily accessible means,
+then you must either (1) cause the Corresponding Source to be so
+available, or (2) arrange to deprive yourself of the benefit of the
+patent license for this particular work, or (3) arrange, in a manner
+consistent with the requirements of this License, to extend the patent
+license to downstream recipients.  "Knowingly relying" means you have
+actual knowledge that, but for the patent license, your conveying the
+covered work in a country, or your recipient's use of the covered work
+in a country, would infringe one or more identifiable patents in that
+country that you have reason to believe are valid.
+
+  If, pursuant to or in connection with a single transaction or
+arrangement, you convey, or propagate by procuring conveyance of, a
+covered work, and grant a patent license to some of the parties
+receiving the covered work authorizing them to use, propagate, modify
+or convey a specific copy of the covered work, then the patent license
+you grant is automatically extended to all recipients of the covered
+work and works based on it.
+
+  A patent license is "discriminatory" if it does not include within
+the scope of its coverage, prohibits the exercise of, or is
+conditioned on the non-exercise of one or more of the rights that are
+specifically granted under this License.  You may not convey a covered
+work if you are a party to an arrangement with a third party that is
+in the business of distributing software, under which you make payment
+to the third party based on the extent of your activity of conveying
+the work, and under which the third party grants, to any of the
+parties who would receive the covered work from you, a discriminatory
+patent license (a) in connection with copies of the covered work
+conveyed by you (or copies made from those copies), or (b) primarily
+for and in connection with specific products or compilations that
+contain the covered work, unless you entered into that arrangement,
+or that patent license was granted, prior to 28 March 2007.
+
+  Nothing in this License shall be construed as excluding or limiting
+any implied license or other defenses to infringement that may
+otherwise be available to you under applicable patent law.
+
+  12. No Surrender of Others' Freedom.
+
+  If conditions are imposed on you (whether by court order, agreement or
+otherwise) that contradict the conditions of this License, they do not
+excuse you from the conditions of this License.  If you cannot convey a
+covered work so as to satisfy simultaneously your obligations under this
+License and any other pertinent obligations, then as a consequence you may
+not convey it at all.  For example, if you agree to terms that obligate you
+to collect a royalty for further conveying from those to whom you convey
+the Program, the only way you could satisfy both those terms and this
+License would be to refrain entirely from conveying the Program.
+
+  13. Use with the GNU Affero General Public License.
+
+  Notwithstanding any other provision of this License, you have
+permission to link or combine any covered work with a work licensed
+under version 3 of the GNU Affero General Public License into a single
+combined work, and to convey the resulting work.  The terms of this
+License will continue to apply to the part which is the covered work,
+but the special requirements of the GNU Affero General Public License,
+section 13, concerning interaction through a network will apply to the
+combination as such.
+
+  14. Revised Versions of this License.
+
+  The Free Software Foundation may publish revised and/or new versions of
+the GNU General Public License from time to time.  Such new versions will
+be similar in spirit to the present version, but may differ in detail to
+address new problems or concerns.
+
+  Each version is given a distinguishing version number.  If the
+Program specifies that a certain numbered version of the GNU General
+Public License "or any later version" applies to it, you have the
+option of following the terms and conditions either of that numbered
+version or of any later version published by the Free Software
+Foundation.  If the Program does not specify a version number of the
+GNU General Public License, you may choose any version ever published
+by the Free Software Foundation.
+
+  If the Program specifies that a proxy can decide which future
+versions of the GNU General Public License can be used, that proxy's
+public statement of acceptance of a version permanently authorizes you
+to choose that version for the Program.
+
+  Later license versions may give you additional or different
+permissions.  However, no additional obligations are imposed on any
+author or copyright holder as a result of your choosing to follow a
+later version.
+
+  15. Disclaimer of Warranty.
+
+  THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
+APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
+HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
+OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
+THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
+IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
+ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
+
+  16. Limitation of Liability.
+
+  IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
+WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
+THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
+GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
+USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
+DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
+PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
+EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
+SUCH DAMAGES.
+
+  17. Interpretation of Sections 15 and 16.
+
+  If the disclaimer of warranty and limitation of liability provided
+above cannot be given local legal effect according to their terms,
+reviewing courts shall apply local law that most closely approximates
+an absolute waiver of all civil liability in connection with the
+Program, unless a warranty or assumption of liability accompanies a
+copy of the Program in return for a fee.
+
+                     END OF TERMS AND CONDITIONS
+
+            How to Apply These Terms to Your New Programs
+
+  If you develop a new program, and you want it to be of the greatest
+possible use to the public, the best way to achieve this is to make it
+free software which everyone can redistribute and change under these terms.
+
+  To do so, attach the following notices to the program.  It is safest
+to attach them to the start of each source file to most effectively
+state the exclusion of warranty; and each file should have at least
+the "copyright" line and a pointer to where the full notice is found.
+
+    <one line to give the program's name and a brief idea of what it does.>
+    Copyright (C) <year>  <name of author>
+
+    This program is free software: you can redistribute it and/or modify
+    it under the terms of the GNU General Public License as published by
+    the Free Software Foundation, either version 3 of the License, or
+    (at your option) any later version.
+
+    This program is distributed in the hope that it will be useful,
+    but WITHOUT ANY WARRANTY; without even the implied warranty of
+    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+    GNU General Public License for more details.
+
+    You should have received a copy of the GNU General Public License
+    along with this program.  If not, see <http://www.gnu.org/licenses/>.
+
+Also add information on how to contact you by electronic and paper mail.
+
+  If the program does terminal interaction, make it output a short
+notice like this when it starts in an interactive mode:
+
+    <program>  Copyright (C) <year>  <name of author>
+    This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
+    This is free software, and you are welcome to redistribute it
+    under certain conditions; type `show c' for details.
+
+The hypothetical commands `show w' and `show c' should show the appropriate
+parts of the General Public License.  Of course, your program's commands
+might be different; for a GUI interface, you would use an "about box".
+
+  You should also get your employer (if you work as a programmer) or school,
+if any, to sign a "copyright disclaimer" for the program, if necessary.
+For more information on this, and how to apply and follow the GNU GPL, see
+<http://www.gnu.org/licenses/>.
+
+  The GNU General Public License does not permit incorporating your program
+into proprietary programs.  If your program is a subroutine library, you
+may consider it more useful to permit linking proprietary applications with
+the library.  If this is what you want to do, use the GNU Lesser General
+Public License instead of this License.  But first, please read
+<http://www.gnu.org/philosophy/why-not-lgpl.html>.
diff --git a/src/yolov5/README.md b/src/yolov5/README.md
new file mode 100644
index 00000000..7bfea7c2
--- /dev/null
+++ b/src/yolov5/README.md
@@ -0,0 +1,304 @@
+<div align="center">
+<p>
+   <a align="left" href="https://ultralytics.com/yolov5" target="_blank">
+   <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a>
+</p>
+<br>
+<div>
+   <a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
+   <a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a>
+   <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+   <br>
+   <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
+   <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+   <a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
+</div>
+
+<br>
+<p>
+YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
+ open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
+</p>
+
+<div align="center">
+   <a href="https://github.com/ultralytics">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://www.linkedin.com/company/ultralytics">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://twitter.com/ultralytics">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://www.producthunt.com/@glenn_jocher">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://youtube.com/ultralytics">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://www.facebook.com/ultralytics">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
+   </a>
+   <img width="2%" />
+   <a href="https://www.instagram.com/ultralytics/">
+   <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
+   </a>
+</div>
+
+<!--
+<a align="center" href="https://ultralytics.com/yolov5" target="_blank">
+<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
+-->
+
+</div>
+
+## <div align="center">Documentation</div>
+
+See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
+
+## <div align="center">Quick Start Examples</div>
+
+<details open>
+<summary>Install</summary>
+
+Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a
+[**Python>=3.7.0**](https://www.python.org/) environment, including
+[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/).
+
+```bash
+git clone https://github.com/ultralytics/yolov5  # clone
+cd yolov5
+pip install -r requirements.txt  # install
+```
+
+</details>
+
+<details open>
+<summary>Inference</summary>
+
+Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
+. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
+YOLOv5 [release](https://github.com/ultralytics/yolov5/releases).
+
+```python
+import torch
+
+# Model
+model = torch.hub.load('ultralytics/yolov5', 'yolov5s')  # or yolov5m, yolov5l, yolov5x, custom
+
+# Images
+img = 'https://ultralytics.com/images/zidane.jpg'  # or file, Path, PIL, OpenCV, numpy, list
+
+# Inference
+results = model(img)
+
+# Results
+results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
+```
+
+</details>
+
+
+
+<details>
+<summary>Inference with detect.py</summary>
+
+`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
+the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+
+```bash
+python detect.py --source 0  # webcam
+                          img.jpg  # image
+                          vid.mp4  # video
+                          path/  # directory
+                          path/*.jpg  # glob
+                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+```
+
+</details>
+
+<details>
+<summary>Training</summary>
+
+The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
+results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
+and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
+YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
+1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the
+largest `--batch-size` possible, or pass `--batch-size -1` for
+YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+
+```bash
+python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
+                                       yolov5s                                64
+                                       yolov5m                                40
+                                       yolov5l                                24
+                                       yolov5x                                16
+```
+
+<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
+
+</details>
+
+<details open>
+<summary>Tutorials</summary>
+
+* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)&nbsp; 🚀 RECOMMENDED
+* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results)&nbsp; â˜˜ī¸
+  RECOMMENDED
+* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289)&nbsp; 🌟 NEW
+* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975)&nbsp; 🌟 NEW
+* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
+* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)&nbsp; ⭐ NEW
+* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀
+* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
+* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
+* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
+* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
+* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314)&nbsp; ⭐ NEW
+* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
+
+</details>
+
+## <div align="center">Environments</div>
+
+Get started in seconds with our verified environments. Click each icon below for details.
+
+<div align="center">
+    <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
+    </a>
+    <a href="https://www.kaggle.com/ultralytics/yolov5">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
+    </a>
+    <a href="https://hub.docker.com/r/ultralytics/yolov5">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
+    </a>
+    <a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
+    </a>
+    <a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
+    </a>
+</div>
+
+## <div align="center">Integrations</div>
+
+<div align="center">
+    <a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
+    </a>
+    <a href="https://roboflow.com/?ref=ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
+    </a>
+</div>
+
+|Weights and Biases|Roboflow ⭐ NEW|
+|:-:|:-:|
+|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) |
+
+
+<!-- ## <div align="center">Compete and Win</div>
+
+We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes!
+
+<p align="center">
+  <a href="https://github.com/ultralytics/yolov5/discussions/3213">
+  <img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a>
+</p> -->
+
+## <div align="center">Why YOLOv5</div>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136901921-abcfcd9d-f978-4942-9b97-0e3f202907df.png"></p>
+<details>
+  <summary>YOLOv5-P5 640 Figure (click to expand)</summary>
+
+<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/136763877-b174052b-c12f-48d2-8bc4-545e3853398e.png"></p>
+</details>
+<details>
+  <summary>Figure Notes (click to expand)</summary>
+
+* **COCO AP val** denotes mAP@0.5:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536.
+* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32.
+* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8.
+* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt`
+</details>
+
+### Pretrained Checkpoints
+
+[assets]: https://github.com/ultralytics/yolov5/releases
+
+[TTA]: https://github.com/ultralytics/yolov5/issues/303
+
+|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B)
+|---                    |---  |---    |---    |---    |---    |---    |---    |---
+|[YOLOv5n][assets]      |640  |28.4   |46.0   |**45** |**6.3**|**0.6**|**1.9**|**4.5**
+|[YOLOv5s][assets]      |640  |37.2   |56.0   |98     |6.4    |0.9    |7.2    |16.5
+|[YOLOv5m][assets]      |640  |45.2   |63.9   |224    |8.2    |1.7    |21.2   |49.0
+|[YOLOv5l][assets]      |640  |48.8   |67.2   |430    |10.1   |2.7    |46.5   |109.1
+|[YOLOv5x][assets]      |640  |50.7   |68.9   |766    |12.1   |4.8    |86.7   |205.7
+|                       |     |       |       |       |       |       |       |
+|[YOLOv5n6][assets]     |1280 |34.0   |50.7   |153    |8.1    |2.1    |3.2    |4.6
+|[YOLOv5s6][assets]     |1280 |44.5   |63.0   |385    |8.2    |3.6    |12.6   |16.8
+|[YOLOv5m6][assets]     |1280 |51.0   |69.0   |887    |11.1   |6.8    |35.7   |50.0
+|[YOLOv5l6][assets]     |1280 |53.6   |71.6   |1784   |15.8   |10.5   |76.7   |111.4
+|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |54.7<br>**55.4** |**72.4**<br>72.3 |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>-
+
+<details>
+  <summary>Table Notes (click to expand)</summary>
+
+* All checkpoints are trained to 300 epochs with default settings and hyperparameters.
+* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
+* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1`
+* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`
+
+</details>
+
+## <div align="center">Contribute</div>
+
+We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors!
+
+<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a>
+
+## <div align="center">Contact</div>
+
+For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or
+professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact).
+
+<br>
+
+<div align="center">
+    <a href="https://github.com/ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://www.linkedin.com/company/ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://twitter.com/ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://www.producthunt.com/@glenn_jocher">
+    <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://youtube.com/ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://www.facebook.com/ultralytics">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/>
+    </a>
+    <img width="3%" />
+    <a href="https://www.instagram.com/ultralytics/">
+        <img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/>
+    </a>
+</div>
diff --git a/src/yolov5/data/Argoverse.yaml b/src/yolov5/data/Argoverse.yaml
new file mode 100644
index 00000000..312791b3
--- /dev/null
+++ b/src/yolov5/data/Argoverse.yaml
@@ -0,0 +1,67 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
+# Example usage: python train.py --data Argoverse.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Argoverse  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Argoverse  # dataset root dir
+train: Argoverse-1.1/images/train/  # train images (relative to 'path') 39384 images
+val: Argoverse-1.1/images/val/  # val images (relative to 'path') 15062 images
+test: Argoverse-1.1/images/test/  # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
+
+# Classes
+nc: 8  # number of classes
+names: ['person',  'bicycle',  'car',  'motorcycle',  'bus',  'truck',  'traffic_light',  'stop_sign']  # class names
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def argoverse2yolo(set):
+      labels = {}
+      a = json.load(open(set, "rb"))
+      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
+          img_id = annot['image_id']
+          img_name = a['images'][img_id]['name']
+          img_label_name = img_name[:-3] + "txt"
+
+          cls = annot['category_id']  # instance class id
+          x_center, y_center, width, height = annot['bbox']
+          x_center = (x_center + width / 2) / 1920.0  # offset and scale
+          y_center = (y_center + height / 2) / 1200.0  # offset and scale
+          width /= 1920.0  # scale
+          height /= 1200.0  # scale
+
+          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
+          if not img_dir.exists():
+              img_dir.mkdir(parents=True, exist_ok=True)
+
+          k = str(img_dir / img_label_name)
+          if k not in labels:
+              labels[k] = []
+          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")
+
+      for k in labels:
+          with open(k, "w") as f:
+              f.writelines(labels[k])
+
+
+  # Download
+  dir = Path('../datasets/Argoverse')  # dataset root dir
+  urls = ['https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip']
+  download(urls, dir=dir, delete=False)
+
+  # Convert
+  annotations_dir = 'Argoverse-HD/annotations/'
+  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
+  for d in "train.json", "val.json":
+      argoverse2yolo(dir / annotations_dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/src/yolov5/data/GlobalWheat2020.yaml b/src/yolov5/data/GlobalWheat2020.yaml
new file mode 100644
index 00000000..869dace0
--- /dev/null
+++ b/src/yolov5/data/GlobalWheat2020.yaml
@@ -0,0 +1,53 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Global Wheat 2020 dataset http://www.global-wheat.com/ by University of Saskatchewan
+# Example usage: python train.py --data GlobalWheat2020.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── GlobalWheat2020  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/GlobalWheat2020  # dataset root dir
+train: # train images (relative to 'path') 3422 images
+  - images/arvalis_1
+  - images/arvalis_2
+  - images/arvalis_3
+  - images/ethz_1
+  - images/rres_1
+  - images/inrae_1
+  - images/usask_1
+val: # val images (relative to 'path') 748 images (WARNING: train set contains ethz_1)
+  - images/ethz_1
+test: # test images (optional) 1276 images
+  - images/utokyo_1
+  - images/utokyo_2
+  - images/nau_1
+  - images/uq_1
+
+# Classes
+nc: 1  # number of classes
+names: ['wheat_head']  # class names
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, Path
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
+  download(urls, dir=dir)
+
+  # Make Directories
+  for p in 'annotations', 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+
+  # Move
+  for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
+           'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
+      (dir / p).rename(dir / 'images' / p)  # move to /images
+      f = (dir / p).with_suffix('.json')  # json file
+      if f.exists():
+          f.rename((dir / 'annotations' / p).with_suffix('.json'))  # move to /annotations
diff --git a/src/yolov5/data/Objects365.yaml b/src/yolov5/data/Objects365.yaml
new file mode 100644
index 00000000..4c7cf3fd
--- /dev/null
+++ b/src/yolov5/data/Objects365.yaml
@@ -0,0 +1,112 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Objects365 dataset https://www.objects365.org/ by Megvii
+# Example usage: python train.py --data Objects365.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── Objects365  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/Objects365  # dataset root dir
+train: images/train  # train images (relative to 'path') 1742289 images
+val: images/val # val images (relative to 'path') 80000 images
+test:  # test images (optional)
+
+# Classes
+nc: 365  # number of classes
+names: ['Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
+        'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
+        'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
+        'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
+        'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
+        'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
+        'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
+        'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
+        'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
+        'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
+        'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
+        'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
+        'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
+        'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
+        'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
+        'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
+        'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
+        'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
+        'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
+        'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
+        'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
+        'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
+        'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
+        'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
+        'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
+        'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
+        'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
+        'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
+        'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
+        'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
+        'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
+        'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
+        'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
+        'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
+        'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
+        'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
+        'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
+        'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
+        'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
+        'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
+        'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis']
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from pycocotools.coco import COCO
+  from tqdm import tqdm
+
+  from utils.general import Path, download, np, xyxy2xywhn
+
+  # Make Directories
+  dir = Path(yaml['path'])  # dataset root dir
+  for p in 'images', 'labels':
+      (dir / p).mkdir(parents=True, exist_ok=True)
+      for q in 'train', 'val':
+          (dir / p / q).mkdir(parents=True, exist_ok=True)
+
+  # Train, Val Splits
+  for split, patches in [('train', 50 + 1), ('val', 43 + 1)]:
+      print(f"Processing {split} in {patches} patches ...")
+      images, labels = dir / 'images' / split, dir / 'labels' / split
+
+      # Download
+      url = f"https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/{split}/"
+      if split == 'train':
+          download([f'{url}zhiyuan_objv2_{split}.tar.gz'], dir=dir, delete=False)  # annotations json
+          download([f'{url}patch{i}.tar.gz' for i in range(patches)], dir=images, curl=True, delete=False, threads=8)
+      elif split == 'val':
+          download([f'{url}zhiyuan_objv2_{split}.json'], dir=dir, delete=False)  # annotations json
+          download([f'{url}images/v1/patch{i}.tar.gz' for i in range(15 + 1)], dir=images, curl=True, delete=False, threads=8)
+          download([f'{url}images/v2/patch{i}.tar.gz' for i in range(16, patches)], dir=images, curl=True, delete=False, threads=8)
+
+      # Move
+      for f in tqdm(images.rglob('*.jpg'), desc=f'Moving {split} images'):
+          f.rename(images / f.name)  # move to /images/{split}
+
+      # Labels
+      coco = COCO(dir / f'zhiyuan_objv2_{split}.json')
+      names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
+      for cid, cat in enumerate(names):
+          catIds = coco.getCatIds(catNms=[cat])
+          imgIds = coco.getImgIds(catIds=catIds)
+          for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
+              width, height = im["width"], im["height"]
+              path = Path(im["file_name"])  # image filename
+              try:
+                  with open(labels / path.with_suffix('.txt').name, 'a') as file:
+                      annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
+                      for a in coco.loadAnns(annIds):
+                          x, y, w, h = a['bbox']  # bounding box in xywh (xy top-left corner)
+                          xyxy = np.array([x, y, x + w, y + h])[None]  # pixels(1,4)
+                          x, y, w, h = xyxy2xywhn(xyxy, w=width, h=height, clip=True)[0]  # normalized and clipped
+                          file.write(f"{cid} {x:.5f} {y:.5f} {w:.5f} {h:.5f}\n")
+              except Exception as e:
+                  print(e)
diff --git a/src/yolov5/data/SKU-110K.yaml b/src/yolov5/data/SKU-110K.yaml
new file mode 100644
index 00000000..9481b7a0
--- /dev/null
+++ b/src/yolov5/data/SKU-110K.yaml
@@ -0,0 +1,52 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19 by Trax Retail
+# Example usage: python train.py --data SKU-110K.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── SKU-110K  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/SKU-110K  # dataset root dir
+train: train.txt  # train images (relative to 'path')  8219 images
+val: val.txt  # val images (relative to 'path')  588 images
+test: test.txt  # test images (optional)  2936 images
+
+# Classes
+nc: 1  # number of classes
+names: ['object']  # class names
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import shutil
+  from tqdm import tqdm
+  from utils.general import np, pd, Path, download, xyxy2xywh
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  parent = Path(dir.parent)  # download dir
+  urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
+  download(urls, dir=parent, delete=False)
+
+  # Rename directories
+  if dir.exists():
+      shutil.rmtree(dir)
+  (parent / 'SKU110K_fixed').rename(dir)  # rename dir
+  (dir / 'labels').mkdir(parents=True, exist_ok=True)  # create labels dir
+
+  # Convert labels
+  names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height'  # column names
+  for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
+      x = pd.read_csv(dir / 'annotations' / d, names=names).values  # annotations
+      images, unique_images = x[:, 0], np.unique(x[:, 0])
+      with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
+          f.writelines(f'./images/{s}\n' for s in unique_images)
+      for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
+          cls = 0  # single-class dataset
+          with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
+              for r in x[images == im]:
+                  w, h = r[6], r[7]  # image width, height
+                  xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0]  # instance
+                  f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n")  # write label
diff --git a/src/yolov5/data/VOC.yaml b/src/yolov5/data/VOC.yaml
new file mode 100644
index 00000000..975d5646
--- /dev/null
+++ b/src/yolov5/data/VOC.yaml
@@ -0,0 +1,80 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC by University of Oxford
+# Example usage: python train.py --data VOC.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VOC  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VOC
+train: # train images (relative to 'path')  16551 images
+  - images/train2012
+  - images/train2007
+  - images/val2012
+  - images/val2007
+val: # val images (relative to 'path')  4952 images
+  - images/test2007
+test: # test images (optional)
+  - images/test2007
+
+# Classes
+nc: 20  # number of classes
+names: ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
+        'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor']  # class names
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import xml.etree.ElementTree as ET
+
+  from tqdm import tqdm
+  from utils.general import download, Path
+
+
+  def convert_label(path, lb_path, year, image_id):
+      def convert_box(size, box):
+          dw, dh = 1. / size[0], 1. / size[1]
+          x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
+          return x * dw, y * dh, w * dw, h * dh
+
+      in_file = open(path / f'VOC{year}/Annotations/{image_id}.xml')
+      out_file = open(lb_path, 'w')
+      tree = ET.parse(in_file)
+      root = tree.getroot()
+      size = root.find('size')
+      w = int(size.find('width').text)
+      h = int(size.find('height').text)
+
+      for obj in root.iter('object'):
+          cls = obj.find('name').text
+          if cls in yaml['names'] and not int(obj.find('difficult').text) == 1:
+              xmlbox = obj.find('bndbox')
+              bb = convert_box((w, h), [float(xmlbox.find(x).text) for x in ('xmin', 'xmax', 'ymin', 'ymax')])
+              cls_id = yaml['names'].index(cls)  # class id
+              out_file.write(" ".join([str(a) for a in (cls_id, *bb)]) + '\n')
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [url + 'VOCtrainval_06-Nov-2007.zip',  # 446MB, 5012 images
+          url + 'VOCtest_06-Nov-2007.zip',  # 438MB, 4953 images
+          url + 'VOCtrainval_11-May-2012.zip']  # 1.95GB, 17126 images
+  download(urls, dir=dir / 'images', delete=False)
+
+  # Convert
+  path = dir / f'images/VOCdevkit'
+  for year, image_set in ('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test'):
+      imgs_path = dir / 'images' / f'{image_set}{year}'
+      lbs_path = dir / 'labels' / f'{image_set}{year}'
+      imgs_path.mkdir(exist_ok=True, parents=True)
+      lbs_path.mkdir(exist_ok=True, parents=True)
+
+      image_ids = open(path / f'VOC{year}/ImageSets/Main/{image_set}.txt').read().strip().split()
+      for id in tqdm(image_ids, desc=f'{image_set}{year}'):
+          f = path / f'VOC{year}/JPEGImages/{id}.jpg'  # old img path
+          lb_path = (lbs_path / f.name).with_suffix('.txt')  # new label path
+          f.rename(imgs_path / f.name)  # move image
+          convert_label(path, lb_path, year, id)  # convert labels to YOLO format
diff --git a/src/yolov5/data/VisDrone.yaml b/src/yolov5/data/VisDrone.yaml
new file mode 100644
index 00000000..83a5c7d5
--- /dev/null
+++ b/src/yolov5/data/VisDrone.yaml
@@ -0,0 +1,61 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset by Tianjin University
+# Example usage: python train.py --data VisDrone.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── VisDrone  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/VisDrone  # dataset root dir
+train: VisDrone2019-DET-train/images  # train images (relative to 'path')  6471 images
+val: VisDrone2019-DET-val/images  # val images (relative to 'path')  548 images
+test: VisDrone2019-DET-test-dev/images  # test images (optional)  1610 images
+
+# Classes
+nc: 10  # number of classes
+names: ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor']
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  from utils.general import download, os, Path
+
+  def visdrone2yolo(dir):
+      from PIL import Image
+      from tqdm import tqdm
+
+      def convert_box(size, box):
+          # Convert VisDrone box to YOLO xywh box
+          dw = 1. / size[0]
+          dh = 1. / size[1]
+          return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
+
+      (dir / 'labels').mkdir(parents=True, exist_ok=True)  # make labels directory
+      pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
+      for f in pbar:
+          img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
+          lines = []
+          with open(f, 'r') as file:  # read annotation.txt
+              for row in [x.split(',') for x in file.read().strip().splitlines()]:
+                  if row[4] == '0':  # VisDrone 'ignored regions' class 0
+                      continue
+                  cls = int(row[5]) - 1
+                  box = convert_box(img_size, tuple(map(int, row[:4])))
+                  lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
+                  with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
+                      fl.writelines(lines)  # write label.txt
+
+
+  # Download
+  dir = Path(yaml['path'])  # dataset root dir
+  urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
+          'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
+  download(urls, dir=dir)
+
+  # Convert
+  for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
+      visdrone2yolo(dir / d)  # convert VisDrone annotations to YOLO labels
diff --git a/src/yolov5/data/coco.yaml b/src/yolov5/data/coco.yaml
new file mode 100644
index 00000000..3ed7e48a
--- /dev/null
+++ b/src/yolov5/data/coco.yaml
@@ -0,0 +1,44 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# COCO 2017 dataset http://cocodataset.org by Microsoft
+# Example usage: python train.py --data coco.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco  # dataset root dir
+train: train2017.txt  # train images (relative to 'path') 118287 images
+val: val2017.txt  # val images (relative to 'path') 5000 images
+test: test-dev2017.txt  # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
+
+# Classes
+nc: 80  # number of classes
+names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+        'hair drier', 'toothbrush']  # class names
+
+
+# Download script/URL (optional)
+download: |
+  from utils.general import download, Path
+
+  # Download labels
+  segments = False  # segment or box labels
+  dir = Path(yaml['path'])  # dataset root dir
+  url = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/'
+  urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')]  # labels
+  download(urls, dir=dir.parent)
+
+  # Download data
+  urls = ['http://images.cocodataset.org/zips/train2017.zip',  # 19G, 118k images
+          'http://images.cocodataset.org/zips/val2017.zip',  # 1G, 5k images
+          'http://images.cocodataset.org/zips/test2017.zip']  # 7G, 41k images (optional)
+  download(urls, dir=dir / 'images', threads=3)
diff --git a/src/yolov5/data/coco128.yaml b/src/yolov5/data/coco128.yaml
new file mode 100644
index 00000000..d07c7044
--- /dev/null
+++ b/src/yolov5/data/coco128.yaml
@@ -0,0 +1,30 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
+# Example usage: python train.py --data coco128.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/coco128  # dataset root dir
+train: images/train2017  # train images (relative to 'path') 128 images
+val: images/train2017  # val images (relative to 'path') 128 images
+test:  # test images (optional)
+
+# Classes
+nc: 80  # number of classes
+names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
+        'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
+        'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
+        'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
+        'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
+        'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
+        'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
+        'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
+        'hair drier', 'toothbrush']  # class names
+
+
+# Download script/URL (optional)
+download: https://ultralytics.com/assets/coco128.zip
diff --git a/src/yolov5/data/hyps/hyp.finetune.yaml b/src/yolov5/data/hyps/hyp.finetune.yaml
new file mode 100644
index 00000000..b89d66ff
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.finetune.yaml
@@ -0,0 +1,39 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for VOC finetuning
+# python train.py --batch 64 --weights yolov5m.pt --data VOC.yaml --img 512 --epochs 50
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+# Hyperparameter Evolution Results
+# Generations: 306
+#                   P         R     mAP.5 mAP.5:.95       box       obj       cls
+# Metrics:        0.6     0.936     0.896     0.684    0.0115   0.00805   0.00146
+
+lr0: 0.0032
+lrf: 0.12
+momentum: 0.843
+weight_decay: 0.00036
+warmup_epochs: 2.0
+warmup_momentum: 0.5
+warmup_bias_lr: 0.05
+box: 0.0296
+cls: 0.243
+cls_pw: 0.631
+obj: 0.301
+obj_pw: 0.911
+iou_t: 0.2
+anchor_t: 2.91
+# anchors: 3.63
+fl_gamma: 0.0
+hsv_h: 0.0138
+hsv_s: 0.664
+hsv_v: 0.464
+degrees: 0.373
+translate: 0.245
+scale: 0.898
+shear: 0.602
+perspective: 0.0
+flipud: 0.00856
+fliplr: 0.5
+mosaic: 1.0
+mixup: 0.243
+copy_paste: 0.0
diff --git a/src/yolov5/data/hyps/hyp.finetune_objects365.yaml b/src/yolov5/data/hyps/hyp.finetune_objects365.yaml
new file mode 100644
index 00000000..073720a6
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.finetune_objects365.yaml
@@ -0,0 +1,31 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+lr0: 0.00258
+lrf: 0.17
+momentum: 0.779
+weight_decay: 0.00058
+warmup_epochs: 1.33
+warmup_momentum: 0.86
+warmup_bias_lr: 0.0711
+box: 0.0539
+cls: 0.299
+cls_pw: 0.825
+obj: 0.632
+obj_pw: 1.0
+iou_t: 0.2
+anchor_t: 3.44
+anchors: 3.2
+fl_gamma: 0.0
+hsv_h: 0.0188
+hsv_s: 0.704
+hsv_v: 0.36
+degrees: 0.0
+translate: 0.0902
+scale: 0.491
+shear: 0.0
+perspective: 0.0
+flipud: 0.0
+fliplr: 0.5
+mosaic: 1.0
+mixup: 0.0
+copy_paste: 0.0
diff --git a/src/yolov5/data/hyps/hyp.scratch-high.yaml b/src/yolov5/data/hyps/hyp.scratch-high.yaml
new file mode 100644
index 00000000..123cc840
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.scratch-high.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for high-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.3  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 0.7  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.9  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.1  # image mixup (probability)
+copy_paste: 0.1  # segment copy-paste (probability)
diff --git a/src/yolov5/data/hyps/hyp.scratch-low.yaml b/src/yolov5/data/hyps/hyp.scratch-low.yaml
new file mode 100644
index 00000000..b9ef1d55
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.scratch-low.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for low-augmentation COCO training from scratch
+# python train.py --batch 64 --cfg yolov5n6.yaml --weights '' --data coco.yaml --img 640 --epochs 300 --linear
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.01  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.5  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 1.0  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.5  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.0  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/src/yolov5/data/hyps/hyp.scratch-med.yaml b/src/yolov5/data/hyps/hyp.scratch-med.yaml
new file mode 100644
index 00000000..d6867d75
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.scratch-med.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for medium-augmentation COCO training from scratch
+# python train.py --batch 32 --cfg yolov5m6.yaml --weights '' --data coco.yaml --img 1280 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.3  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 0.7  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.9  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.1  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/src/yolov5/data/hyps/hyp.scratch.yaml b/src/yolov5/data/hyps/hyp.scratch.yaml
new file mode 100644
index 00000000..31f6d142
--- /dev/null
+++ b/src/yolov5/data/hyps/hyp.scratch.yaml
@@ -0,0 +1,34 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Hyperparameters for COCO training from scratch
+# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
+# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
+
+lr0: 0.01  # initial learning rate (SGD=1E-2, Adam=1E-3)
+lrf: 0.1  # final OneCycleLR learning rate (lr0 * lrf)
+momentum: 0.937  # SGD momentum/Adam beta1
+weight_decay: 0.0005  # optimizer weight decay 5e-4
+warmup_epochs: 3.0  # warmup epochs (fractions ok)
+warmup_momentum: 0.8  # warmup initial momentum
+warmup_bias_lr: 0.1  # warmup initial bias lr
+box: 0.05  # box loss gain
+cls: 0.5  # cls loss gain
+cls_pw: 1.0  # cls BCELoss positive_weight
+obj: 1.0  # obj loss gain (scale with pixels)
+obj_pw: 1.0  # obj BCELoss positive_weight
+iou_t: 0.20  # IoU training threshold
+anchor_t: 4.0  # anchor-multiple threshold
+# anchors: 3  # anchors per output layer (0 to ignore)
+fl_gamma: 0.0  # focal loss gamma (efficientDet default gamma=1.5)
+hsv_h: 0.015  # image HSV-Hue augmentation (fraction)
+hsv_s: 0.7  # image HSV-Saturation augmentation (fraction)
+hsv_v: 0.4  # image HSV-Value augmentation (fraction)
+degrees: 0.0  # image rotation (+/- deg)
+translate: 0.1  # image translation (+/- fraction)
+scale: 0.5  # image scale (+/- gain)
+shear: 0.0  # image shear (+/- deg)
+perspective: 0.0  # image perspective (+/- fraction), range 0-0.001
+flipud: 0.0  # image flip up-down (probability)
+fliplr: 0.5  # image flip left-right (probability)
+mosaic: 1.0  # image mosaic (probability)
+mixup: 0.0  # image mixup (probability)
+copy_paste: 0.0  # segment copy-paste (probability)
diff --git a/src/yolov5/data/images/bus.jpg b/src/yolov5/data/images/bus.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..b43e311165c785f000eb7493ff8fb662d06a3f83
GIT binary patch
literal 487438
zcmex=<NpH&0WUXCHwH#V1_loX4+e(+4>@XFD>Bm<7<_#hv=|r|I2d>s`5BlP7#P?X
z7#QX;3V_*M3=9lQ7=;*^85kHC85kKD7^N6k!E6SGb&S$*_BKWhs2U~)21Y}$UUmis
zhJB1iV73SY1H&;!Ck7UXUM2=cX9T-F6UJt^)u9Swv)eH+Ffce46y&5bWCmp9=cOt{
z1cQV;AZCDk!N6!}q-UsS!oXl;U}$M&U~FYzs9<PpWngAyY|OwQ-!u#6LZ*<Wxo~z&
zhZ4fI9qLfF00YAW1_qF;SqzMf3@0$dT+Wm-fd$U4n8*lG!^p(UFo}@?6he#)3`{+f
znBeA5nZyhipEHRC&R#N!9cmXV1H&XvC|iJmVG<Wy@0v*>U~v`(2Bs~OYCv|em@zOg
z?U^(Y>;@JKBV&e1lMw6$FgF_-7%X6dg&wok0%jPS#bS{-*i1%{uEh}dgHi&+5+<lP
zD4Lm(*sM^t2?N6tHYgjU#t7_A76t~kPfLtJrh!rmyU-F7Fk6*@fn5R=MUWU`0>w5D
z0|Nsqw%EZY#=z8H$iU#SkAd->Is?Pu`3#JHPZ$`KR1s!^>|<bL%jTNP(9X~YP8|xF
z{=p0kjK01M5)6zCoDjPixEPo~VaKG$z`$t2zzkwDWH2x=Co!<V)i5xy!r5CG*x>BV
z4D4_=BLfFG{+JmUm`^eAfZ0q849t%hc;RZ)8TjCA1_l8*n~^~f7B0-67)0RWTnyqc
zwgLl#B#h0#z#s)y&&I&OBEcY!B(4aymyv;iMUFukEY8Hhz@o;W3TA`yWfOxMjLpEz
zpbl5B$DjchX9R^~QbA5;afyL}zaSGs6+=72REA`RW~M3z4+b-aFa{k4amE7->ljWj
zG&2M-m@pJD#4;o>wlEhmR4^Daq%l}BBrtwpY-B8CSjCXQ5W`T%P{Gi}c!If-p@qSe
zA)6tIVH?9C#w&~pjF}An3^fds7$!2zVzgu~XPCm^#E`*|#qg5hHRFB8M8;YMKL&q>
zT!wUpwTw@hG8nWOG#KI;(im1UxHA1>bZ1<}5XlhD;Lc#okjGfdWW}J#pvDl+5YG_D
z5Y8mPq{ujdA%&rlVGctO10PcblOuyRgB-&ShNBGO47^P0O!AEV45bV+7<w2&8E!Df
zGFdX{GsrOPVYtkY$-v2|$E3|Ti=mXEp23E}hT#ok0FyU^FM|_99m7lpSB5S|J*EW4
zSq!-hg$w}<-V9buflO`;_6!yb^$dm#HVo~IDom3ZA2YNuEMi#2Fo&Um$$?3OA)g_R
zL4iSy!GvKsgEG@=#$OD@4AU5<Gn6w_F{Lo6G8i+2GJqn?j3I}?j<JYQlrfp1fuWos
zgkdV99%CwlAww|33x-^V%?t+^jF|2)TxZB;@MO?uaA8PfJjGDVP{MGM@h;N=#w`qX
z3^N&Y7_TvuFf=nXGfZdr&%njFn8B0bB10}?1w$r-F+(TgJjRC%#SGgS&M<sp*vjyg
z;WUFQLkGi3hE)uU8KM~$Ff3uX$&d#s^+8F3feD;4pg9LD0wI`qV5#K_BNH<VD;qmU
zXj)EUdU0r3VoqslWJzXjYH@O6PHJdsL4I<E0HZJi!=$MD2fs)PS<gDfAi%&OC@!n6
zt8ZZoF%MkmfS90M3Zh}y{{R24w-{Jb*Z=>osldQ+jrsroCprv_HTDb)4D#UGiGi^b
zL>rnLIvN|Bn(A5_o4D$l7#q3iI$5|F=vtaMyI8ooIyxDcSu!vbS{fMS!ORAg&bI{^
zn3Nb8a=tP!FnKXBFbFa*fJ;YET?g_z$UUHX4P07*OBF<&qmY!CoUM>jnwX=IoS2(h
zl&D~qo2!tfZv?7$82A~$r78oHAILsP9l*@M!2W{)QhzXogTz_D<t8%&1BU<uE2tg?
zV^CcSvXzm6fkT6V9j?ZJfd^a;FnNRY@`A-dYCISqwK7u(NL&yu9>5?DQ4bcEfQv^k
z$b!YW85lSc806vNIUwx}3=A637zdTvj0_9{pz=C}fdO9LgW3g*3=CY+3=9k@3|##;
z7#LU#85kHqp#%ywSm-H2%rU5DVAyHE!25}tfk9RbMkC63P?#@kV_*=@{Qr<kETg2P
zz)D{~uUIcJB|j-uFF8L~zap_f-%!s$pTWkyq98FjJGDe1DK$Ma&sORE?)^#%nJKnP
z;ikR@z6H*y8JQkcMXAA6ej&+K*~ykEO7?aNHWgMCxdpkYC5Z|ZxjA{oRu#5NV8gBQ
zimgDx`br95B_-LmN)f&R3eNdOsS2igCVB=+b_zB{DQQ+gE^bi0MJZ{vN>E3ZmzV36
z8|&p4rRy77T3YHG80i}s=@zA==@wV!l_XZ^<`pZ$OmImpPA<wUD9OyvQvjKmn3P{y
zVymPCHMSzR0B$T+zrz$3WaO9R7iZ+-P!5*{2N+0Gft7PnYGO&MOJYf?tr95Mbq$Pl
z4GcqI4I(`YBV&j{-~5!!v`U-`A&S7J<rjtI=jYfeLE2eL3UF(!K)S(7Qd4l-rf;WU
zqYny&AQv|f6CC=Wn6OhA1*0J_8UmvsFd71*Aut*OBQFFHO}x~+6kDZoC3`!D|8E&8
z0$}YP1!Fw}1`8)oUlvfil!3ushB1nPSz6UyhKYfJiGfLm$)17D(AdDt*jR?ij)4Qz
z;xRBbFqC03N9NeT6hX{_j3o&025+6D!1nuUBKHG^Cj0P^|BskVJe{561A_eBJbhfj
z17%Dqi3J5YAj@;}N{WKqofIM>qZHU5GO#nSGw?EqF(@P^7Z*4N1o(j3(=ZyuM&NJP
zAT9mNx*)SoNlk51trzgMm??bq;w#Z6ggUG&u9Vc`WCjL?KMV{EsmTRJB@7IVp!T_P
zc}W3?-NC@XAW{?&8O6ZBI0wW|hp;z**hvuf5fHm5B*>Y8f$;_d1A{_xMq&yB1LF?{
z1_qrZB=K}4Hq>5_qqto%iwklRD-{BaL0szMlGKV4kcrOu1(ija=@}&o;J%lFXI`?N
zj)IYap*aHsD9k}>7#KbWg2R$g><mJz`91@K?f(D&|L;bKdF^Ll*l5ncz_k-0reVRr
zAjr+YaAIdcVo@U4JkXdXQ(77W!>8p847`yH48j*ceVyVoV<WIUBaagU1M9v2|39lS
zFtAT%VE8-X|Nq~M{{R2Gn1O-$4g<r1y#EIn1UXnNn6;Q0l^B==8JPtc{~rN$SQ%Lv
z!2oO!sCNYIJ#%t#|3AX8Re*tsk(rr^g_)HVl(-pdL4%1bf~-P{hK_8)fr;!&g(60c
z6BlwQJ8e8D8g%i4ig8j=6DOCLxP+vXs+zinrk07RnYo3fm9vYho4bdnS8zyZSa?Ka
zRB}pcT6#uiR&hybS$RceRdY*gTYE=m*QCi)rcRqaW9F<yi<c~2wtU6PRhu?%*}84}
zj-9&>9X@jO*zpr5PhGlv<?6NTH*Vf~_~`MIr_Y|hc=_t%r_W!$e*6C8=P!`I7#Wzs
zz5)>tpTR~2p#BnMU}9uqVPR%r2l<PUshok4iCK_^Rnd@5$T5&Tu~1masF6d&Y2w0-
z2RW6EgFc8R6<y>KQ!#m{`Vr(cu+NC|SQA-3gL@3&uiFgH3?L6NGBPnTGBGnTF)_0+
zGcz-@u(E&vD;p~qut5Pk7;u09Cmj60&EO0&gNccWg^7uUlZ}-PE=M%u|6K+a2IK#?
z7<iZ&8JGl_1sUua{)&89`f$sg3EPg|KW1^lHv4Mg?&uv{F~>#E#NVAMdfdP8+8%RX
zMYZza`^{f}g|Ezfe!91;?BMaJe<5e4J}v$}OWS$tC7mx@q}M()+ws`!l8y7fpTXO|
ztPU?=OEH_iDMfCwmWRE8=>DjsspZcO?hVhlyS;0Y(pfXF$!+g1g!gJIJ$aKGZF}<8
zq)NV!uf4aF`xmo4zin!J_D+M5Z?=&h#~r5~FZ)*bztUP0a8$eI597%{)*&k;!^A$!
zpEA#0Dl?WjO42Ax$|Oj&>;7Su+k#=1GK$9x4CE#MW`{+qPcjyWeJnRe`2M`iPioR{
zu3J=myg0?^`HPA*>wma^(U^aB`&O~@ubEBM=l^;ZHYM>+xXHD<iKVVF`Z9dSR%TtC
zT-4*wK7VbDq4)OOtygAmJU(|@OkINEpO<mGQLfHbx6g0iHLY_$&-<u*W=gzq&)ilr
z*f}4&!*H;Df7Zr@?z`MnK14i_+rh>Dd3o$@n||r@nWa(*D^hQ&q`%&}T|e%1NJ*{J
zG3}YT>Qj^z6F5(tUmy2%E9>tgr{+yaH(zyR8FSt$hJuika%PEjo+ZCUwh1o(bxcA<
zj`92Yplc<IZ8xpaZ<3hc@m2J|ve_nyvmT_BoUlDwW%?!KS=)+7=WgfUIaPGyz`A_@
zc@;L!)j51Y4~`aCp0~DHcKq*$WxKg&<R1Rn+cS^N-SlL(RZZEirE|Zqzt8VzyfC>f
z{&eQ?Yr9t*G)?XbE=(^>k@H!yF5+=xxH8A-IUoD{og<XW?#S73yquM>cgDt!Iek@f
zmH(zr*>JtwJYs6LbWq$uX;yWM@9VgaL>*|4xV+SbJ@t+6$>-TB6X*ZsNZTe?&fi(s
zcX(;#`Xdpl*&6E}s`?lmyFGnlc$oa!d}nrXZDY=)r5C<SSFg72R++d>;IK+5(^8?E
zXX-1O%Po#e{8@dv<n^;$Ba<1=pE67QXRv);cJ0lQc{wWi%n~-GzpmTHF!|ni*`~kq
z`q3qa^?ojzx>(2ZMg25hmrHSrCa8ZFw9;-kP-}etb!6G*J9j*1&S3B>ym4*LyOn~|
z=UH0VO+E3US5|P%teq2A{Bggs<!qU+(3`z?H@W9cbl3Du4x3=T@wU;f#x0CTgRYpw
zH%t9nQ)(~tBkF42<Je8!9MdkGnjz!)tt{gSvrJx`HQ&}}0&%`8|G4bx+*fht?ZGcy
z_f+KlJdc)G)js{YZDB!#q)$)TlDSt>zRGG}Xj9v&tEg6ZO61AkCsjOF$uHZy-?vrm
z`R3+!Uv|qf>(vPs(j2TR$Crus`}^M9llyVH$5f%`ewR&W@ZYP}KEKJ!F6Qycy&=x$
zm&{xjb@I*9Z5~JB(+{vtskwR~`hZH3?y`!-_6L?fJ%8az_(FHvqpsQMe`|VFrv>Fb
zHu=xcCADwn(u4M$HukGCFU@GPxt%smZGv9Gr0AI;EAv`6&U*1?pK8XeyKAS;?^5da
zzj|kpZ|dh0LSf1pn{piPFD<NEd-mLfj*?HTx4lIQJyvhMx};!9Q)_*D;kWhPwe^8J
zE<d}Z|17&(lP^koN#DZ==83xt_-=eJjyuYy;{9X8_JyazwW|-#+gtz0p6$@KU&&q@
z&KIo9-O#M3{QIH%8P2#r;nON6AKImLbXnGPfm^Ce-Uw;0VCFnIb=!(E7Ey-(3<3}2
zcC6R9`cL`?+xMXM=<MKSccLo$MSj&>iZ-%Yz4b(w>m;>1dt^2oE3#a>H~nz=h2yD}
zACA4NH079Oncg1ME;iX?%@UhQw{}ms!II*7uE<})ZlAdMp|gL&zFv4ZFFwdx`JPEU
z_w5(oF4|4Bo-xa{HNr<PWOtG9bN!tif3kPWiC)-h(YkLHcjX$<=2aT!_lfsqAK%j7
zA*Wf<+TU#>ZQ1I7E6txjF6y46aI3<JiNd)hhVxcS=I30mUR>jSajWH;k`BF6j-@kZ
z_<w7iGVy0h^V6BLYA59;aOiO-JhpfppWO6ouWQL=_laS`-B%-C>eunVuoK@GZO`+%
zTq^eJnSAq!naUDfYWEGcsQh$EZLpp`=lbMqd9Jv7?=siE$<eR7aPrxCk^JT7)$Y7K
zb1hdueez*9$M5Sark(qDEdH(c>KE^2FEcJ=<mgE*(BkGPvOI75a@#(QiKVeNDy<76
zy>=>RXl`e=l-qhUT6f9UC<(1kuUGzTe{}xF;Ro-J#0xC%G~Lg8=VjHj$(Fx$->&J{
zJWbE1%Xj@v_0kt&vG)?6l$<NjuTSCU%G%_f{hxtT_eT5Ts4WNf@fEBx)rh>ZtjO%#
z;q6|3`#z>DvX%Pw>g17fu@@2+Tt_QUC>SVDJev4w9^=0&9hTE>UUHT0Y-vB8@Fek@
z;M=ZGuTw8Y>H5t`mfccjKjZx^`+uCTKkDugUYW7$-sZo{mpE(PJzAS5Wqmz^*+|*>
zX-u@CR#{EY!WnG`WWt}`?SGT_G3@gpp^8=3-ZR#kz4x}5n0__oK~C@5WUW=VJ#~tE
znpV$gj=#CRyG~YG^Aax;r;?%PzR1+{?JbNGBDqp$?iHz7Am^X;^FPC*d9xqB{_A(?
zcI3q^Z{1WBPsiSNx16AHfb~?~!FT5MUzhde$Med0ye&AAxH$UWq}}$t`hqtPe((;o
zdbW0D)Qw7u-rPN&i|@Uh%sG9+hQnnOHqWV-+R2i_H*<aDmHN!{LKXK9a~D3+XN|~y
zuuWm=mA#9$2b>i;lA8XGeQxvJcCUYn-`mOjQNI4=b+`9kv)`_LkIZ;VX0P88{n+-+
zd%KGqzgU@nhM(A{`JbUF>)+{k0e!VAB`-{(YvXm!s(4pEJnNS8oY(eSSCF~H^W@tb
zPOy9teHrj5D`-+_^7`uk42R`vefD`)FaMmqykge%;OnjX`}Nf>B~A-c>xi^E%*E$E
zU3pI<`<C9zAJ*qxGg;5@!cNY&+WlkM?3y&+ixJaxi%v0~2;E*i<Ho$jS~G2A!e6Q%
z+5bb8Z+rH_v;1v;d>{Gp$zJRT(VgG*<t1O?)>~I1U!5uIJve7Ov+f+hc%C1p|8f3j
z`0e>aJ}{sEMn$;K$2mL;Y|l-v{o7lqF=0;qf~@m`dJ9rFT9-Y({9?n;uVPnLUU^!(
z|KWM9eQZnDYTT96fB5l{Zk4mz?1#0k(`@@LIf~zLvq|+cFaCSz_^s{fQog7DP7Y2K
zS^Uf})+M?0_{vh52M_uVd|9vmqn-cg`<u_+Wb8A!Y!m(A-KD$JEY5c%&o%jUX5kcf
zg~&G%qBc53+uQ>u6vo<kK929G$|+9|ix+%($c0yQ>J!bpha7jG9%tHj_?^4Vlk)Y;
zme0LXwcDgp)IcEb*5W1eAC|S3+{>G!vUQ@zr+ue>guI@k^=Ic76(PgEIr5H|_R0O2
ze|Vdw>hhagxlR8*`IqK<WyzeUOMUm&-wZrncxmBf8{ZGyuABcI`DizF<%{nZPS{_H
zdN{+)?gPWEJ&h+VZpkTd{Jyc~#y@4x!j;Dt)>vOr-@Q#EratRrrpTIueLUV`e*F75
zzpS2T)TUSzw(R=C%dOM&IrTH!=l=D#`muR=<g0snP5&7jKct@Pw!e8xd}rIw<?TAB
zr$szXI;kPa*ffc)lI42&hqHU!D<ALBeWRAEE5*j4Kjof7UU24ZrBk8bWbfpbCb&6T
zYRA1Se{jBgR@=O^{g)K>-D^BEE!=QRv+Nn)Egz~L{JK6p@?M4Qvs|lp#jJmLY##0q
z>uGM@@y_1h`=jlB;=DH2hcB(zwr$<B4`&MnkLdU*iC_Eo^6jtZNBrOV%Dq2aXW0H*
zIk1Vn@0D4qavJ~pwRZ|W8b}5)Xw`*<COG^!cinsY#M~`&nNoLNeb{p<jj_IN(!}Sv
z*8T6NI#|?{GTS_<R@?t@t$Fm0reD%O*UdZ9*8ja>>Ky|I6#+*X!5+cua|BPnwiC&I
zq13H%RKjpyf&bKFOxtq=7EidzEVuR1(>>ZYT9cQ(o1fcXZu!_M;^tA)ytwBZDzYE0
zZ~YVgAnn>7%eqakiq7jy`xJBREYGwvr+1xur{tNtevk5ml!p1!wWr!?fAl``z3{bE
z>Ab~BIr_O_E`|qX3cWe{^QU#{cq~h(%h#CGRNZ{E>R#ug2piL6-f8`UeInL(104#^
zc_!^Va9VhBW7p5ekHULOyZd_uyq|ez=P%EkkY}XyS?BWp8ME(l^LDK&JLcvo-KTx(
zKtkb!<DS?2r-$u7@%^)m8`nA}yQAxJ#r=PjIIpP*`FOtL*z{b!&6O+8E?+Vs`c7<I
ztlPIct0zr9s&rDIEO0yT+*5`J4t#mvYRCSgF?YeMeTvr}MqB7UYE*4F5ix(ON9fat
za~#ELJiX^?i^FRqSKh1Gd~Dk+*L_nn9|_veEV$soI%U0z)|!i*Y|5El<|lV2P5!i5
z!+P~Q|86<?zw_V!W4Qgt>xbT?h-?FY-Mydgp0(P$<>F$4w(7{3j=5>K>fS4SoZz^A
z?ZY^u<&Eb*TzPf;PWkR_x4dghZf{?De$j(-vVX69%v<!`D!$%%%@6k9f&b3!ll?LI
zL;b^+@>%VFRISpFJX~4Pn6iChuCDHV=RKEljubyWJ#(J-3&~4HvF5S|SfBq|m~F7~
zTjq?_B`*pmzK=h8|Bd^~m%o<3J^La1P_x^{%kRF-E&KRYWLx9INVT2YXT8z6cy^z^
z*{z5>4eyT3l>FzoRs6T!#r(*Gq&;tb?)<7S>(BXPT=yf-?AvJjy!_L%vUrvLDF@Pu
zj`}SPzdD!yW(2>Hkpzz%Z^El3d!qf^E_t5yGj*FNVi0tsR7UF1l~RrFDK!t~$Mk<(
ze?nArm+cJmGfDTdCT5zwRZjV{Ttf1>{HgsmTWvGzAMV`4F5@#%{)f9w#O{=YB|j%+
zR@8Y&NLW7pDfPSlXw}<}OY3rj98|R%7QD^*`dInWe*XQL{~1JG3x7LQ<R6)3|I2Q9
z^24`j8hMMf)cUN~I{Wq>+VOMBmc#=G*;yX1T)+FlOf8EW;gf!Z%)cvE@T?*-NpqJ#
zS<$Bbt2aK_zg_<A+(+8?ZwVi_6Z_z{WZFNe-QK*~f!-N+@4bDaJXOwoN2$OTl?k^6
z@_1%X3S({fbL{FL*N1bHLv~*KIzx1R(AFIuGoRf!s8-G{$?~L4w?}Y-ar}z=oa=H+
z{xkIaGu+xJWSw1dSx`_kRQ$Wk13kk(@l#9Yv$waH=JH3jAE_!``m#1Xv}p4|k%slR
zo-h`jzES-#zB;;Fx_HH-%ipWMU-|sHB51WnaB0}~mw(pXJ%7^sZh-3p^$%^m1>eer
z-O^LJmN|XM%a|#@;JM9{gm1R{az372wx0d4t(c_znOWIF|Dql=d7IC=lb1NDaPqu)
zTYs&5yuRr_1AqUU?~nOAwuK${zy77xJIq`1ZAyy27N@rguUy$w>pdGABvKw+f3mz=
zBJ*2R%5*cKgFICwUTLAKMQeVt9zXr^Ty<aN`b#_Fjauf+sj|(#cl@DD`NZ(ksc)7|
z_ElSZ>)X$qGu(TfUVF_yyg$XarK0FcpZVizFOk+0=Nt}Ao>wh={pvnVv-^x0M-QmH
z{FZLpka3RjILl*O`$KyUAD`ZM-MLd$a975+#&QkTiF=MozVo-?yMMm=(XkyLx$QYs
zq!YGZdb4frPaDUnCm8sgndjZx`}+0jkl-%Qth(~P<JBI1`o4YrAu$!L+Y=*8=Grvf
z*Hm3}$KiHQ<Gg+IwmzRPx;1H^<rUp!L17mYTiqT{TFF%}c)G~*^_*JmO&`y`Q9n9;
z+Don7b~6(uikx_=J4L|agz8S_KEo@a^LvV3MwK6l%{#bIF6&(Pr-tYmN(Wxf`Rl*%
zeT+cslAGr{!n?cQ?GM`DyQi~GHA~E}Y39zY?$X_|ub<}U6;ypY|2TesoYqINsSnow
zP@TH=--?Bg?D(rIE^O$p*?z&7#lu{N>AV7i@Y^}pKYxA1Iqm(UEo%z}cz$i&G@;Vw
zywHS-FR$Y-oLirqUi+IhW1sXMq1lxt(jvEI`X#lzp5!}8l)jwxZfT&C_{6U@s%t$@
z)*F7m|2BMG#<cp4s`FMCmdkFP`trk)!ZU9_B|Q$@$dLE_Y{l`ni*C*Dw3Em*sIkBN
zPXFnSkG6|%IL+ux4Yu)N@l|HN$i0$#gN)3h-S>ZJq_^n&N&GF&&vmvSSLlA=hg(aJ
zz2xlwYsOKYDr^2Q+M+1DXW|^e&&%KDKJu4~jjECPkl(Uq+0LEy;*qxB7F_&!?fc1m
zj-rHFnvXKMU3!&QJ`9j)V&gwjD4H77?fLro)3mySQ!jcI<}W=z+fMt3-S>y`Z}OK$
z)<k6A4L(x*W8S~V0dwEntG@6#<9oi0{jQ$PYqEk1d&A7~XK0+${<`?_x4*&Pp8uVx
zx@lWq<(l<-oQqX18@s&BGMTSCB|+$T@#4yKhKZA#SZkDjS61x$^!d^L)*AbVFP?bU
zItOo$Oj9%4o;u-hh7$7`A<ihvm}SbT+*jMV>fZg>`DiV3$bW{W8Gi&n^saen`gU9E
zqqn{jC76^aICA9&m9r;F=UFI5FBJW$z24k!uG`irS^NJ?{d@e{XS=f9H-340`uaWp
zc5}~_*?}|HuKB~5)tw}yuNn0?Y`#(c?Pu@o{C$7>S;%I;nXNf3!|&bV{uR%Eh98aN
z-`iJzyZ^XVzyzIH<qb7DXWCgFJrBMX@qtr8ws~^bZ)IOysiNCc_u6ibpY>e4xa(8=
z)bk4#eARC;S}yaTYkh%~q|u#*ng1DH2OTXsUATpR>WK%xu3T>|D!$$I^SiWc#_@TN
z9%)=T#>v}u;QM-+A6q{%AN<FE=}nFE<F!fW4_^z5YMt#_zADB!n<pdPA>yR5)?-=U
zvU?hp&n_+dt+Qs5o`Y6FVNc<Y@B{zE{!aVPknZ1lPdQ)Y&X26)L08`8J?`Av8>Cpj
zLMg_>n8jSYE@z^X=ZP+(6`U%3+4oO`n#T#vt}@;J^_R?yR#o2}^WEw$$ZvN)s4wvE
zY`oyQI<A{Px*z%O_^@oP{kQ3DCDp5YB^)kzOMCy_Y~;M$L;2h@5A|uj3#K}E{nMzC
zE?ggxRVT5n>720czK)H|I{RNMS32#KW@IjA)#7|neBSHdmHhP&Kgj<PtorbxKy~S~
zi682US+_(A9$}kxIE(K<+WwwcInnN;cJi*rPMF+akSVaaDe?6`LqW3L*T1b6W^2wr
z^V6A9xp3+Czx+4ex7?RCjc=O2+5XU8^W*bauFm)Qs5Y~_bXiuF&cv)k5B45CdhFQd
z2Gu7;m052$xIAgKP+wX-y~REwzqwwtRMKQWYxcEIuf#TL-O1b@z2+;2WSi6J^rDUD
zC6yPXu=Hgg-^W_f9&+U$`@eJ7ChdFiMmV5Lre=4dxAmj$2}Xs_<o0`A{?Yqk`NQ<1
z_Wk=5>O144FWb1ReyFRvab@(<W0&;xw{6<|WOXhJn?&M`>$Or*Mf;BPT1}X1s<w8y
ze{{}&hBJRU|1&f-W#zA^@z`yzEwLnop-QK)`9)Rpk8kTI)=3^)bnNGqp6LMvZVtDP
z?~l2@@!xf;vbhiL%fF73zc_Wi?}q)8tSj_VswYj9n0TdflI4`QHk$gEyFTxgx^~=e
ze&FSj)0Rqqp9ETWI<uzrdj6DQyR~$;@MY8Uo!y0-?4&JE-+6uZ;I}`0Rv-I9?5YIs
z%hvv_)!y<UbW72zTdF&s_^x~T;^u>z?;LxQUtiiedCBP&F=x{k$GBHrJ1{e}Sh$6q
zb(`ny`=#Y}OqWYJY;qrRYoCxan|xHtCNlMv)IU}UW#z@i&0p7fx^7!jaYKjIy=&Q=
zlAZq=_H#c8|9Ef1^10i^(*OO8^#5e~Uf816$>VeXgyc`ApVJRjrc6FQ>$ZdYpW5gq
z>-3x@JlD6`o?Ei3=S*_gt%eT;1r_gOc1(R|{HvZ*JK|^6G3)(X|1Q|Z%y;+4x>tt+
z5^o*fS~SsEx}@ZQ&SJ^ulI!{|y5BPU5?~mA%=GD5>-pRKbA7#E$lO#pakS|aw}#CF
zuIr_}rjg1WxuI___k9g|XZr6PM{k>uwvgq6`rf!1`B&CSlqH^j7`yWKa;vbEX}5ak
z^aZ(SxXXO`bF||5Tj9j=+7Hfg%^uFGhdI3Tig$D}9{0a2VXJ+eYr@$HTzzb{*+=a&
zyMOnpf2;o}wm8#d+NC48UMIOlO8@?Po*7r%XYu-dbYj%Eu16U^^S_0DxVLt}y%^UO
z2TrK;cIM6wXHHsYHmTX><E&rdkC;|vPGpyq%bI^g>gV)ti9aSj`p+Pqbt&W5-^;Ns
z)80Hd)tch4AScMH=hvJ$UB9Z2Z#2BTDE0=gQd8CEiOuohr!$Pt&)X`t?CrM4%bfn6
zdeXnvB}MW-gZ;xOrke{kbjh&(^!GadY1tb#yQwU3zvlnH@R$2S$$qs5r)GpCah|ud
zc>6MLa?Y!bwR0Wp{xf(Tza%D*lpc_zVN|<2X}5R8+s8&WJfb_^pVR)SEFQak<?p{*
zWfyAOlK<Y$)rz)Ud*W`i&VuB%fo(GDt|)Fk8_^i2X)eGu=eg<g?M2Idr3xkfd~Gk2
z+*N&b#(_x2$Nw3wM_jPBIrVOL+2ns!VIAp0410Qt-$uJ9MO~Qm&DbP8@woHEw_XQC
zPksK+@M_82Ik$HmD>&+Bd~0s{GtWHLDZB@GKKq>X_H}L1n)7(x)H>bweRHmc_D0Cw
z;oDQTR$o`))<+>{JqHsBufwI%`Bs-RlEwJS`KBJvoR+EVv+nlnGs>?IJlj<p`J{wv
zC)eQ*YwlXz7I%{=wcWe>+K<fY7dMx`nd$syC6i%A`!wk}g}3{r9`;@1`1#iKsRq?+
ziuCw>(s}HyzRa!D*ybq`={kMKSB6=S>^DwaFpWXXEx|5#=fPuz=a*Jhbj>}NrD<Ax
zzEoTKy6U3rbjinmQ`~><_!s(YpSrJaj@su1r2;1=E$KM*%4QqOCw_Uos;=+5*P7a$
ze|Ed!DErxC+A}8mUrwK@Tgtf2dQy_Y10JJ!JI|ISyt;Q%X6nQIs^^^PD|HNVkI(qe
zQ1bZJmZN{SPr5Fo$-+?hD*LWUJyVVPHIt)TX1)5S`Iu|9Qb&sKD#KGNdOJ_N-ccN~
zet-IH?w4V*!bc2pCN!`f$S#YSIJrHHy?OrE_T^0b`qnviw|%gQikv6s|Hvlo*(b}j
z*E8jIoU45MKH{JHrK8_EbqeNe;yte3#BfsdSLdR-)BCv>Us(GlKkVJd#mwg13JwoS
z4&|l>zPvJT$>*4`{l8US_)NBM{c5!P;uOcC88Xd(3g?u+-n6R5zGwM+jr$k>GsHJ8
zF}AUpJA32L=gV&FsVWiJ$hwVZ-rj7-E#Je=T|Dn(%YJR&<SX`R{hd)Ig|of&tuq*A
zR|bXtbhF>H_WY$i=fgjgch=Y!T)VY*^N|B@wUxHy&fCFw;QYflJEgf%d0!Q-ud<aY
zZrLXp^T0>QVK+YuW3ZQZl!Z+bhkd{3;^Nd&PWz1B311odFYSE!PR?W2Egs<s%WW%d
zwIxn^zQ}lV?YZ?sSv}_B(t^X^=jAN7yZ!AygV$R<lNou5;U`$kW2&xeKDgZ}mO1rj
zP?zJ|X=!SE#l-t6%vvAFJ(?Twdd16o$09FFId*VZ$RGXlH#@@7bdQJEpCiS6GgnSD
z-*@EDguTD`uIA2MyNI{QS@gmDtf{_IpUo<J|IIJ0e9UcbY^G#%$B6OxY56HTzdSuD
zw<LVUjl}|XX^$7=2*%u<IyvUGdDN`^C#BYS*?!!)`9DJ~*9!rI$CtKEwO-Bj++)H~
zn^aYX=Q7XdX%*%(OgY)K*T9{n^!>FBEt?b`?>L)(c*hwJi{tBUSI=6a(=I9gpP|xr
zXV<6vEpFnBY5|WgOC%I&YkBNDR&(3p*4_CEvollM`~EX%ZS<=u+Pdyz<B8)BkA@a+
zY}$D+fA{>nt%p{foBgbLW0qF*qLy2^`*wYp>-c=i7iX18u0|;gOuji6_GG^@a4r`;
zpBY@S-Y3IUn_n<XE;?cD+9zVuKTZj9kjq}X_55?~!e77iCUfq-n)|4D!a9jxfA;Q|
zIz8)@*|x1+igQ;r@a>IWus)posKl+HON)QLD)!f2Y`-b($NER>kHj)@&sA_wTp_(<
zlBMgD>ta4V>kr=haFR1dZeE%D%Gcfx&)?b{vteVKeCIytD>>^E&d)AQ&9=STGx4}$
zz{it9o}Y{u%1i!eyB|N9UcN5YVPd758RuTkpaYE8Wh>7|eg6GdV@)QHj#D4A{)xkV
zXJ-5RX}`?;xHV*LV9cYH6P@Du+Aqx$|FQQ$d}kEvnpvTrPHfklw65&L65&rL_89Ga
z-Nah?pP|D<T6_1xm8a#rYL@gd$Qt(@c)qq^*MEj~`>kKHHT7im-iklX_Wt5MV@8gJ
z{GND2J~zj3cH7ryb@s{s@Q>M?oxQkv`NQa<h<j&NeqJeIcrMjF_>b3-C*eLn=C!&^
zx!RZU)KuZ!Rx9cCY$oP*F+FwXIJLO`{+T!Pe16u;HGfofcXR6W1WmHbxbcb6=EKeS
zr?Woy=DYmpPhKd^Ykl;Yb&7`Ix-Wk}9q-Ya@lN+?!oGux*WTyLzAs^-8N0{(;mNHp
zZir^@mAHMb!s4^txgOQ{Z_`gdnRDf^s9*h|Nr_r~+V{freoS}hJM>WOkd4=wO((Zo
z8!R!n#dzRJ+TQ60@7YW{@AU8J$7K^)KlyknMO;cP@Gn$QW-UC%r+w(%KedXqUyrg+
zOKj!NT-@>V!<}0`laKeT+SoY3?#_2+*^}#iKm2Ft(pmS#^~(EcVZGv7HEZ8p>~o&d
zUC6w@&g${fj8*5Xl`Su}Y_*&(vHwk{+TO&6tKZ7`@=3SU8*aI&ws~7us=}J0!@?Zh
z_KMMIe1_)=<2C-I{by*(`FG$ygX~uBj&=E4JWD;3($n{C?b3D9a6iKo`|{bbccyVg
z(Ptja501}>_z`{hzTno=YxRRJDen9vA~7v9PBXRlvYN+{9MQ`*rH|LgY1`U~zL>?f
zxO{0;rs2zrbuV06oxOI4Bz8ZY@#IPK?&bTkuN;0Rs<d;#n{$>Am8+FM>K~Q=;O5^h
zC%JKQ#E<aD+&_}H7Yp>eTw7y0=}->iuJaKM9t*i1=g;50&p*GjPP6`?ReeT3&x^-r
z_I_BlZL)&v&TC&z|7YOKb=+MoIUz36IEAs_BzdL8vHI1!Yx$(hX54>yZTi20fKT2m
zX>PYqoNkb5ysdjQa_6=9!{3tbJG5oHoMhwhnz8f!#wpBS?tWdLHeV<y{HXr^;I7JC
zyN-YA`t_;(eR4vVmT&r4-eTipvcfOwy<=zTTd`DCzc5*|w241$Hb*}+DDGQ+c<mnl
zMHS`|X0!A*3hrr(J-IwfDreedmz8~y>V0B9DNLMsi`RSoyKfWy;ko1WuQ&cF-hMHw
z^y>4Qx9)wq`FPstw}#g2Kj&RBFjnSS(*7)Ff;7wZbMuA&G5tGlFOr*bc`HBb>!_*c
z&gtq+<8?d!%tBN7?wU(l>C+jfy#1qn@9@XeFRRwSsJyyq`mXd(+gJQ(K4yMT&T7j)
z@vWCHm_6CMt@BA4YlZgH85bSTyWRaEwf|wh_{&9iAAMZ5<5%pttEtg*Z4b>6s>?Lj
zTA?iS?&SMx`zvj{|1+>m{-M7*BJ!0K@ACF7vYw3k{OzXE?|E(VkDpSwYr5vi{6`wQ
z_gX%G<lj;M!DD{+Ez`qUQS2RCGoR~hdVXY<*Q=LW>Wse6rUYm86-4p$dwty?<KDV;
z%AET3GY`k>to}Cje3L1^ctsrd(Qf}8QkSN(oJ^Lv9lr31SNFv8tdZ^Pv);c;yz=mZ
z_z~lmQaxgmH74ErR?YeE?1o7aKacWMDBB+~ey8=lt3HMQ7Qd_E-^B;NS$+BTywgT~
zz1!!72cLO+|7X|~bF^=_GT(6v=DwPs+mHB<^|$<9Q{(!mw))_PslTm`uAjZuO4Iqd
zwAvLV4^=0TFQ3i%iVS#b^`xze`gfZA^*37<vFq6J%{PuFyqWc_r(5*I4c8+qY_~WQ
zKkFyIKmIhLPXCJhQ8~?6=cBK#U)#R1yVgr&!foGbo-8M}9qs(mM|YRxEw;(EDS1+3
z{fJli@UFuZvmfQQ{#&13s$t~4?EY$-j_MX6Ck9(bpZ-I8)5AWhALN&aa!&tH?e?+t
z*b0f2+dd`j?d`J*^41AD{?4&f_Po!Fj}o3?q1l(VOurTXf$x^YokP8ni7&3z^e=ol
z|AX&tUHwDzx2rd<w<)g{nN?$$C2%v=D<bLBGiBLLp3jVpJ#{9XFc)q(8tBGbA6Hd+
zC|c!$97jx@g4Dl=`sDtGdigEqd*=!NnES|||MrV2y~!(%7MK2ASkY;GWZ~wghgQ9d
zNl7p}c+B{m`<LChk4|&nNZq|D_e8_odpji8pSJNi^6=H8g*G-j_ujTHDNnyxuuW`@
z#*Qn!bI*O!e551u*y30{*TX%YtCy}aKH~P~fnMc*hOeQFkG6iYxfz^s{JMQ>!9SH<
zUGGA#=vdzWH1`HG+kTT4z4NP|Zd>!wzb8(6_r*WDb}J;7G#2jRW31ty{W`w!Kf@ON
z<Nho!=S!GWSO5NEeCwq+r_}+L9Y%K#D{1Sb&e?V&vf;Sg)i2-wh&&JP({BtuY<lFw
zy@P9S?%lj*le^r#pg@JN!|SKTv=$sLI3e9&`g8V&npeA)AF%)7Vq=}0yZqqab*lTX
zF76FjKl{7xLy5aOOA?=?*+rE|=CQwu(VTYa*W#mRU%XrU$%ZG)s_@9M9<l8{_b&Wr
z$gmf_TXFwL)cVFRVH4j+a+>>mdnwUoyYg8|(a|dPQ=Uscv>)e}`4R89efFCVak>|$
zJ)N2!SoHL1vO<^8jw0!TW6tTnuj;>be`wG8!k+Js<wJS?!`sa#d#s=P%70q9w=s{g
z-LpH!ll-cZ_N+ei?N;o(l}pa9I<EVCrs_t)W06s6eMw<)jIqm{nDr$jwcIU#ubIu=
zawJhT`sVvz8GSXc4UZ>&oUmY(^}5^Dw>Dq=r}C$8Py0g|DU;n>4zGLFTg`jrsMx)D
zqhM=}C+^dX?w1$na579_SK6?LeeJf+htj!DjM^t<3ibp$i9NdhjQ4pv_xBA2j8FY#
zwV(ChW)J$XZskYc8eY~V6I8bSXSl_a>#3bzZkh4tyrQ3^D&wBJ3uOKrp0|CE_QSh%
zuYL99W*XlX+!A~9{8rJ$@za~zT-DzTFr@xI<+*<4!4whggvXZJ#o4$2oNs<4Q=9QP
zWvTY3mn+>LiMQ0KKeGPaZ9OwZ>gw4k#Sz+#GC|2_RLq`Q1n;(#`QRWSdhk!m2lo#D
z&K&hdrE_bS-#VUUbCj=Ubx06@f|11YOMA^8{!@#%X%oKvV@&49gv#<$OZwk++-Ov*
zJzSkUEBd@xMfS04*TiOBo2d0_T9a~aIk%D9QMN<J)CvzNoIJ<LFmaOhy@hT|>ex%4
z)m8SMd=a{P(&pUUrT-c1Umc(EC*;HZ&gUP~Ha_Cc=2Y9drSELYj0CNXO)5e6k2u<-
zF#qH_{qgOYaC^~GmELZ*=^5RVB3N7<7Eh{(DOtaKYrp6Z?U2js9$eZQVX9#&F-ha`
zgpLm{CHfp?b_V!MH$9p2?b)9GWBWO5+_N9Otcm4zEKan&<9A5YaiZv<zfThOr0?3C
z{CV9R)2K~T76+MaJKjG3iNSJK9pj>B<#q0Y>tej^k8#g5>%D(_;v^AK)=3X558mxP
zl4m#b(f)<+1z&~zihtAoFlE}k%EZ~eml8Bta*dybx8!o|RQcRz75@4A!@K<dg!nt7
z`c_xlPr0`1mgk1UJ9dam22{o_c);Xgx5M)Jm*~U$1@)6BdvEx-ZD~zs=8BuQBX2t@
z-`O%hZJMQ+gzj|1oxLu(jnfKSZ6;`+I%gbl(MvPt`wn)^DL<bE-i&+xe*N3Y57z1*
z{m-y@UgyL20<53%ZQLIwiQYbKJ?)#MfuphtgQr~cr=RkV^$%%0`f>il^&{nS+E?cv
z`ut<6?({?7+3x?=)7Ltdbjjf$>oFtor$z#naUl;%x5rCu{m;-NzxjUC!XK}*m*2|v
ze*9MM-npv}4bQ7C-Sgn~-IMuhKDjFKmZ{S2cTXx@=lqy|@bkgn{xxDh_OE_z7uq5<
z_1?T~8;>l#6rrn{xg_ae`*gLdCjz7kRAda-PdJ->`qk%Im)$R)_#4g0U+eb#{C|e+
z=N6jH{3w1{YQx4!kKWxszRUaO;TczpQZ|&f8yRU#K2s`rPt=*`18?2*KLHo>*Z*gD
zuzWttyEo~RZoI4$`&jz-&`K5?P17Z5YBD{>=ax);u3=C(F<$iF#qG29%$L|Fo9&;@
zvoUL)(X>|vOIuG%Yu~j_@!)@VVq!Aqv?uajzmr3*-jDpx(6pdJOSJRtl1)FdA8|HJ
z^*{S<uiNo=6Q`=$tnn~DnELwmXZN`H@I?!EwT6Ex%=qQ<)-rmR?fr-T%?~cu=iTp`
zFL)_E^D94lh1-S2o|;@?wSo7a>Lnj!G;3(iyyLES^Y^@K$r^SECuN=#{tQ1kpL^Nm
zt^BvbAC>GX`FPrP-rR@Xk&pSf-NLv}Zrjv6)qXGg#5>_vUMlsTx?`sOdCn>SS?2#D
z{&{?RVKRB+YS}Yw#Zo7#zT_C3v$v@;)!A+|@pE!x51;+q<bzK;ds^lm>YjFcru*5x
ztB?Kkp2tKw{Y;X7&3E<t%b(ZVYrL~_CEHeP>#b4RwS8`GvgWR|e%_5fJpz`;#0!}%
zPReHA%uCIEI%Purud7e@3ozY@iDWW2C{2FfGw<-Ny*3kX?XeAi<{J9W^QZB_f2tLe
zL-zh>XcEf0wK&RbW@+(<hRSW*XGdN#+Z^!XUbKMZgbB;lGZm&<Xvd%U<K$VBx$LyG
z#2K>*+fN_==zY-E!}9(0uj^lZfBdnU|A&&@+N?_)NB%Q#y?NW@*<&0N<<!+|@pI;E
zh9bZ0pO%-?f*-AjOXGT*p10V7`{ayyRfVtb?cb^@vS0qfzvxHL_O20M`Rn%wjyuOc
z)IU%uOHyRmbVY4~MeVC)*J5{bJox*c;nCZ3MTT)p<yNi#_@CjJ*wd8oZ6B8PPfJOZ
zKU=tB1LManbLQ`|lsH>C|G@0-h<}oQm@g+yt$Ft0?3H`|(&vB4I4f4o|2o&b>dR^G
zO#6q06_<WbaO+*P@X&LK>_^6zck?f;3W)o*x8I!e-NnF9fBg@hzx6(3UVgWoV)bnA
z?Ah)+XFixzR+KW;%T>iIupx{g?`I?X?d`$U5BBqAUK9Ay9W(E_^PcN^#d+7cMb9q1
z(U{z^X^)V}wl4e5cgdUwQ%^nGWS^nW{#s7w$4u3|bEaKzEnbl&>~FG8%p!3cugQ0z
zISfj@0c}ZDQ{&cXzo_rz{Gjfz>BG9-kNk(N?#Ss}*<<|hY{cub=^yv5==wNQPP^C4
zVW;8kLj@l;RH`0($G9%?^voPLYyCMgb2DzItzXug@$d2Hhq|syuWe;I&GYCMcgyFs
zPd_J2QCaAH>~TiL4W88rdBJmvyWZ{NjZ}T!XCu4xxXrcy47cQTF223F_KD$1sgu=A
zl@n#mZVD@2c+7a<gz1}=AH*NTckgj4(ZBil(b{?I*>+}D2<eMNZEGw{N#fS=E!W<1
zanq^#vNaQzT{~9f8@}uBj5?b?R@--N-E~PnPp>3<w)e}tJyvYXJ{~TTxE*`AG-tBQ
zL{24pYokrMcMcZLdUI;i*N!7@-P5)5>yDqjbm02pFyp{yp0<1aUq1d8`r$vr9}#}n
zJs<b?*eE~FRX%Q&*1qmlSXtRW{mVYVuQq0`);h90{8Eo+u9jWW#CgX8&R8&;zB&1y
zfmJb{^^f+&eWw4e&gV7lZ~w*Kv1PB-ldM^}Pun}*B+L%J`K>xrapUaYK0ZeeXn#{$
z@FCvx$J74|EI<GD>@ocK{XyQ+{EzdG{L|WTW#R15uFpQrvAeqccZh8-7w0tnt*m_K
zOiJj<;GG*B4^3Mi{^9)}q0QeMKD58t_%OfwKL3{$3D;}<|1)qbnI0VPDz{wd^vc-V
z$8Dw+8MakdERCF9Qg}l2GWVxGe>G#yw)QQ(mA3LOTkriXdAFr%{+7gzld^19$J(!-
z`K$lK`EQ5*PO#I8IPj12$JB>+y(-hUZ~AQ%@6P(@Zp@B0iMUHela)`ZpXfS}y5n_x
zoLYZjPHSpV@5E0hxXd5U<A0F-bJmaV{~1`m{GF@(cafdQkNg7#cMh|6t^JyPHtpiG
zX=M{jnDc9DmQ8(9vF5qLL7VCstP`C!O+0@yPI&td;}6Y`<&XOFyoleTw)4X=UGs=7
zJ1?0?`+D7v+}?KJW!QFcPO<4LU00mA_Oej<-6xi~2y4aw)_VOye)b26r^EGEs!J|c
zJu91g_VjxF=;imFzs}iiwmL{RNomUT^x|(5b5i?sC#|<UA^+y;iNil9?OFb;jQz{{
zqxtRf+v?xmUQ#1{VSlD<@`1Ad4B|HCE2EuF&n;eZ)4bJp?b;(Jd4wXCe!Y6=ReXjK
zyOB<T+k(CV-n!ejciYaNT`WIYIk`$mIyrgjojqokk2xGXmi@SJXR43!)7k#DbHDuw
zKPz|C>Qwej0j*ApytaJ>e^;e3f2;Xu<gu{rx5S4dD=c?9SjM^A9<9}va4UTJ<<EbH
zsWoSRN4Q=4&#?L1uFpo3b+65{S|RZ}sOp2=^8Tpjhu7b8tz7K3CH=_$jq?_Z{AUn+
zXR`CrEbE2KeGMb0Uf0|iB9M|4@q8r%^TG9dZOUeE*)ekmQ|Q?m$KTSKb>T;~*XC)4
zRj6&4>oa@mnckgl&RQ#P88*&o{$s(k@8yqH&R97+i_eSM<=(Kr$bOqE7uK(}X1e92
z7|l;pBkK8IM?763!#BVE$F--ATYH$Vl&*_ipKzzH_}6ul=}DQVo&R6_Yj!d9O56qI
zn1e<u7<4|E`1miZn6a)}e%dZ;x4lKje9h0WB+k0_Q04K>R6+C4>ylmP-Lh2cO1rVY
z!tjMi;dzO*x_0^7Z|U5NbX0e!nmCE^8~ciH>z~+oU7dd+@XpIGZ@s-6C*3Nx-OSUl
z`Jht&vJXq`KfcRe*t&R!%59HHjaL>k|4KJKpZVRq?Av=O%R{n@C0Y1xN<Q2Awzz6v
z>Ycz7YuL<{CKbN3eccqU<-OYM(Ux+*kfzF2&)*7qHneNss0!_twwNH^aaufi<2iff
ziNC@owAC1XE`J+z-$J&nYMr)g(23_kFVfgmrcTJUcxQNUwSc!&Tfe<V4D)Nhw(QIK
zBA=t&wN6T%aI%wr#_*WWmjC;zty{vLXw6u@P2%^uh13823OcmPbTVhqyR0M10n!U>
z|7|tB-Rd&2z~8I&V1=me&Eolw9xa)~-JG>#-Lt?yHlHjXZF%OVWp(G|p6rEOoX1#Z
zF#Nu@Y;MkllUnss%UmNXTAK7N{VWa~udmvfwIIvS@g#Ti<y-6dRo@Dhs=hNRHlH}%
z<I<CKg@2Z!UgFUq5sA!CUd~@$^>+Q^(DcxN(5}ZH*JVAkF520VFn{mFxM_xEmMe3L
z{zY3@{8REgFZ%4C>gIW`L$>tkY<4@ZcCX=Q_HOo`&;5t?rlowE8KhVIs@C>(_ns};
z(!SM?;yc#8-EyD5BI?kqf4_dcN@==xPhw%Q%B0hZp{}7{E!AJfN`_jVTht?Z^W=<E
zhRg13aeuh|F#iwT@WXGN?w!h)ud%ys@@#78^7%eHHt*fuJ0o@DKJV&jT=g$I)Gyoc
z@B1hHpW$G@{-pm5vTxh+Wt<npT5@ctXyW{`E$z6q+(Q;W%j2h>&-xc-WBXxkzR3-7
z?<*#E-M>2<?v_vs?3v)qx99PHhV?=B{uq3mI)_)`l77<)mD;JTr#{a~PWF5`C!uWp
zi>{4pYm@5rubun&CAFM;@$c>r_Q&jbUVm^ef50zt>z=aS*IcWgYCQY}N)w)cly9wG
zJOAi>`OIc<;iVTIcXu4~-{y9B{<;0<?v})wdtVWH`?%}Ui$AAzKGe?3pHXtp$<BX$
z)UV`+``@Pjj;fLSB>eFF5!)(>#RsD+-@7emlr59ksyf%{WB-JOvLb!j^P*q%z0sHZ
z^g7Dy%k?kr-w!5!{HD{mCev^2-L+3y>iooiUJt9&tFgZRmT&gjZOM5&<prCU)h#fP
z4~#!9et7;5UG=y252yP7h>DW}4RJ0OVt6l79;LIJUtW9RzRnx+-$aC8Xuqvztv{Hz
zKmBc1zW%X)93RzMM7?dktxa8dXo=u~h&1n}>c=NfybpRbul?e~ip%Wgb=CGe{`K`Y
z{Nt`z&Yzf@@noLw+`}%#?^Ye2|AV*k+}7U)KdMU0KD=A4J7>?7-yz&apKolc%yHkz
za{cM|M*9a#=5J^}lCke%=0|D&3rn?@xIVIYdQmOu>=rHEKZW8s-+~GczHnT>qlWXN
z*7>7mg0JFv_JrrIj<R5tI`m6>isj2si}!z8ueQyxdG_}O>z^)vn*6#T#^>IImGyJ~
zGo0xU|2uo1(u)fko0~3&#4hyQG}ZZo^>K}!e=gU1Uq#7neK@;q)3vwDwoEnhigCNR
z@#`@+Y1xmne%<2l{AYIg_Q@-D=ZpL7YX#lxgIX*9XfNCUWAT!T>28x9K9)7<uX)NK
zB3ygz-<O<ITn29(&sNO1$G<%NP0HoZ*MI%-&*nd(@0U`ev}=yf0zJMe`L*@|`@^;d
zJug(zPvCeT`)u)tpz7H-_4er2bu%O-w!M{934J5^=uS`JmDa$wG3H(SBr4v!U0i1x
zeL`v4y{i(Zu3cLF#_d3+M9mse$CK6->!($QDe>R$e1G})#aVk&Tpu1!y)>y(dUo&S
z3I6tbRQfNAE;+OQJICX-MPgO1XP0<?^Zpsd@u8zna60qC7t-@%uD+P{&+Nu&p2a&^
zAF1E}(f%^<O<#XT*@c{G3eqfJA8mUWbZPU(FXtb|=x%*_ch|J+>Q-inRBo#WbA&(1
z-k<esoBej3v#$@b-pN$R6LR}BqyKvfcg)q7o2Fd6Wz{=h;i!eX@}lXIfv*E@#l~tq
zdnR_Hz?^a7{PjxPAMR|Zdm`}o^UFBXl51@nYq_i3=6<Vgw0dGJV9zz{+&SaQq>!Fw
zKL5wzxe{AXD8HLG|J=G4fyS}78}=WVU2*c|tk248E?%ux?znF9bDinwm(g4{-<a(V
z%m3ST;A%<3%ICFD1JBhK-r8#&a5>4h?5S!}#ALlQ{~0QnBet7uR5B6jlVDnYZ`a<%
zyLW0uN1Up)vMh-;60s0A+Q5FxEGK-nGf$XcYih)mr=85Qmg_UGDyCj4+16WTXs`93
zVONjwkL$DVI9(K$U|FnJVf*pK@vT)wQA<)KZT+01XI*>lw`0@xK;<p|r+MDyE}ioG
z6PtFv%eJl;-SZ7+_)2*#c)0He@39B9*^aX$awaM=H!W?DZMRq@#h9U^xGA}PyDsPB
z-)kKH8pdqR$S%oPWxR3w)tcxe=Nqqt6x*LUKC@%96`2;FWMCX29`sVG_0RXHw^KA%
z+-b7ADI}fU#Gh|;r@?)rbN`WRlYeeI`B_8t7#qLLwW+r~lBEmEo=Y-Z`%*ad#rnG^
z7i9%3x9?P*ed&+k18!ckXZFIeS>k3t@2ptM^HL!B<ZY!T4bNp3vVVNG`bYmEtA8z*
zUe)t`wUvvmTpCtg{eAC-DXV(4I#n|l>-pE7;@=u^ZS5?7{`;#9luwpPNdBIY|1!#V
z!JbVUyDG!WmHAG;vyz*4MC$F~LNO)1%btt5cKV9#Ty)F0q_+InGs!%g*oAj9&loH`
zQ29WG&wnOMks5pPZuXTc6F%;nY;D@*wam@3-@eSn{@C)B@kOkz<;jnFt<21NCZ#+{
zblT>wFj?%_@$06d(>uSOlnZ_&YbSl*ghlC*!O!CbN5ewDKJuwf+q){p+w-NxmV%H|
zOZUW{_t|K6>5y!68#9a4;*}Lym!3HnnjKb@V3#O7{&kIXy<nzQRn(Dh`uQ^J6hqtM
z-rnInJdZ)WQ+v&}*@v%bT&gHb-B7vdvhLf>CsYdm_?qzCP`|SBPxghj?6wutb^bFr
zw=Lsa6MLsV_*|aJ>fZq$qVE_hr%2prvRC5G%a|VZZT7PMHv$_^3Mz(JcE8@<?)dt9
zc0|mN*+KJ@GQ3wEZu(a@xsdn7<IT>BO$CKF6jy)ywRBsz#paJ8X{S6ls}$}j%HybF
zXRWaOb-h-4d&#@xsB4?uxgW7@`&hbh`^RIwxoe(sZMd5Aa95DOWVqzPU%HicOFyVT
zlv~gA;+s_Jx9K_w+OxHPrZ+4&&vfdIZ+;UWhhPui)UUBqeu-_i)|*(!dt19`qk+zh
zuW=G}N_)+nKdhTIX=9(jpFc-`o?qv=-fzBfnY;38?x^Dr?R)JXOufIkZ{eeskA8h7
zvnADcbVV<j?kSdc(dp<CVQDuHuMIydx2vxYJeuJ9+bpUg`B+g!{lor_t^9nMtHo#J
zF5c1|v85|hcB*1WRCng%?t~y??oA(f>)kUS+~p74SXjv<s=}}5!diHrCE-EyWtH&h
zS^pU}^B<ahdv<Tots|LLEte#PejTYaKIUgOaeJF~<M+m2NqcV<964pR``4V9FPHcB
zAD7l|vfrxTZekr9?6B?PpV(~6*lQnSw#_dw@V~o#kAw8Q#aj2@JX?`9e@ola4~s))
zyZl)D@NNC!lL7&Hsh9OqE_Z5AJNicB!xx(;eU1_**53&G!T2~k+}BH9MCaP0M`~K%
zKE9u1qR#c^)Zt2tpG{4MM>8w-AG1^ZQU5S=>Gh|f4jjQ6%4cdGhM4HENp3uMC#=-y
z#n#_P%AE~1UyQ%(|N5Q1?jGsiUVrRAPF?q(f#<bYRP#EUBV8eBPF0#Q?d%d3T2@zX
zEkCkCF)YK-A}Df-jNn(vv(@$8`?za_KF)7lYuexYk8$g+>vLA@*}ZvdA9uf50?V8A
zQnzEaBv0bhdz_K_bM^7B{5SX?hAu0uZ~kZak*&4k%HhlvG27Oscrq~Cn6H|y!+BCs
zFR<~S;-x*EsUq**oIBdv9Bu#l*PA-Gx_kQ+F4cH`un*p`ePZ0Z=<bxhyxq$43N~xJ
zF=rCDt+Y`196#-z+>g11=?~OD#8jmmDl64D_R+mvWX7x+GF_p0j>YR+`|JNRWW?Vn
zK6Y)M(ACG+RkrN8^sM7_VfoV9b($T{J0#xfv7S11e)6=g9KHjy{^)(wKe)atP9!pa
z>wJ#vX}=5$F2vuC+_zksr=<SP=RyPJ-6jrv^S1ud=LtUS&i%D=@7(i~&t_i@{kzqq
z;@<8@^#a-3)@H7X^|syi;HAvk9cuS(-dgatK>OYw{i6C!YfWb=bbTvMl`+_}a-x88
zVTwk;>Tf4il2@2MvdUY%?8QC3Z0^V{zIh&AmY4O?N_I&cREn;VWcqVJ;N!9)?HhYs
zAMFhf*dn&+hq3>K^p+=gG9Nv<(|XISvTK#gLVkxQ3E_8w*S0Sf_0x8%`KJ8ZG;P(X
zsKt#xIzOCu`q;bn=-GEG*S*;OJ#f*^4cU=8&q~-cXW34?Q(eC<r?4?5cYfQ~x9ZMm
zmlJn2?hD->ac6==?Z>AJRlfY}=J|8iKY!^T?!~9q-}cb2DO@=H;BCo1XN~VAtX>Un
zoXWDFwC8@bTf98eoY`~QtK*?X{_jg>_MXXdmq-dMvwX8>e$|%`k-hp44@FhZ%d_W=
zTKsHQ_`903YvWA+nf#6v^W1SDf0}du9{${$lDr2Jk4HWKl53{<<>{8o{WI&!-iW@F
zPzh9%J{M3nEqR08oo&X)?md4U-h9A(SJI1pdfQLRYe}C-X+5A&d#%Rci^MVhs&#hU
zKdN5c3x4>sOl2|8zQo$DJ3`{BbqP$H8Fw>({<h*uEI;2`vn?4vkB42@l6msV+LY+d
zGL176MLb3A8!v7+&{yDb>UmGs!4I>uZrN?NTfF3Wq3KGEH@Y%2lWtEdNDPyC(C78%
z^o6gYU(7q}_<vk>*y6nKcxJ6h^Al^A4E`FG1jRJl^D<x73x3G!{doBB_Nb}HI}~?c
z)=#;@>8Vt4>Zb$4Y$l<F68y8D@K_bjy1V7k)iYU_GIL7u%h$QDS++hiDeq~f*u&K7
z5Kk2?=iaAW#te5)S{`3o^}JzE?cbHFU;Ya3I#MUse0cifpsr_{Jco`xpUUL*g6XHn
zWme0iH#=Sl2v~5|cs}Z$Z@Ts5lO5cxmX0Dz-HU`7KUDRkvp3IaKJ>a=%J=S*Z`U_%
z-6G_&;-XGcV1eZJ!!2np2`yqQ^K8u%!n?Z;tvq^seerDe8GduU-IKp5`+O|9r+$5p
z?IX~}*S$;6>=T=G%vxiCdvD2a>C}nK%Fe8npJ|XfEz;ojiF0nZ-r0yRs<1wO>-=GT
z{vVgVMb5hSI3jyn-{ZWpsQr^J%$Tiy_9xf=`!#*VM{A;&|JZ-{Kf{NXAMK7!*0ZyZ
zTvW>t^m<^Tx;DsThQa~EhfRXFRsI|ZZ<j52d0%Lc>_cnq=v<>;w;o+P_AZrY&99=&
zM;=f5T%>yv54(k|-e%lW`|!h;%tzYCmU7L?Uw`5^k6HT3Fq>Up?StxbYzu0*{Tt%+
zuHB2?T^-%MH|)hv;n*|D)!k0fr+TNkXB^IxX{+5+b6oWOe+D)?lONKLmcKo`^pE$4
zXUlD`?r*n~&Jx_@cQRGy)A<z&E*Z}zx~aO{6*_gwQMpdi&wjpjeV5b|aihCB{~2zn
zc|3NT_I7z@a=vj9?}?CAZ83|IS(plsmd}&?*xI%|pKtERa~kizRIY#fUVoyCra{v+
zf1^z0X}OKk$$}EPJ2xJ$dbsk?#-(lsd2cnf*Iml{Rr7m(c<Y&^YOhX4niv1N_;=RV
zdY+2SkNJ=COJ{uR&MaTKzU@h&PNwX`mdu%f7A)Js+)^!7@>rPTGt3@%9=CXG_w|S9
ze+HJ)EkE+t{PF(yZ0(2pN6f!l`StP`M&7>jQ|njn-b0IY&&>1E$(pchQ^%o|pE(OZ
z&8uI)zj;Xqmk^ubdD9=?g`fUAEcSBU=}+!g6IUNA3~Jt`)YIf&+|{^DmD}Kz)|;~8
zmSkz|2?k~J+^>YC9zPXbaJ&D~zPtkWsyT7bt*gy0oY`y6^+Entl)kX{ht<*BKZLB#
zUwtyUXj;)GlSWm8ebQOp%rezp?SB`>y{$R%v(vwD*2nX`+Y4Ua<J-GuSM9`usim4p
z71D|IaqMzi?@rT;`ttPV`ZJ-a?@nL%@&2)Y``6X=KNQ7gF8HzT*CShR*AMLN>(!^%
zOgs^HGI!~xr<^+b(!#l3Tr%>g`+lmxe!9wD_iL_qig-6f9tpNku3FOaME-l5<D>nn
z_TOgu^78%%FWF$nsn<ADKh$+5bSrBy>m0gdC>Py(#?MNA;mi0_`mKr|zRvG|bh*ZZ
zWt*G4(KCkKe+~$q=vLm+>LgUapnhxrriZMX?5A6-^DBM1cIy2Tzc)YJ-&&_o6Z4;;
zh1ut0^Vx^{c{Alic3s|bb@Q%i_uf6?=-pCuUS;B<lk)Qw8Ci<7a~#SOd#mQR*YQRD
zsDD)6t7~H{^KDy|?7X?AOSVnFJ~7sJpO~JMo6fqkpJlv0EmTMiSGoA%`s4KtHRY=+
zQkP$Q`{;_vU7>7SKj{<q{l&hQ7v1_<$Y^!U;F-E$!qkL0@^Q=FM}M4RXK;Q0L-DO!
zXPx@G=Gvo2o+k{oZfl;>V&mhhp0}s^`eOacThCQ_oV`wG*X@5&!@s!3;zNJm7k|N;
zs2^RI|1%_KEc%vxL-L;VQJ1v2mtvPL%y{>-VqwMfXXVTpH!pAayEw=0`r<zVR}ZV4
zt$q-p+tcyzu-WWV8)v=fNjB$Wet(Y9oql9K=MVjd-)29^7jtL*{zvDezWTLy4i=j?
zZpwUoY02-~VUh1o&Jf^J=HhppxA{@*omuA(+Bf`DZP-#S=KtugSSGj8w%4+rTpHT<
zGwhC(o-Gbra%D>X^)K~L%F={GS5}|<_Sa<N&$AE9jWcFlKC@bVX0l}BF{97!U(fkj
zoVQrN=s!c6ZP{bzYc-}1-zo=PH95Vu{78LLtI6s1t-Ti?2CL6gPJE`cB6s5i$K(?S
zPW*g*;8)LeJCTpJr}+(M9TK&WWI1ou^SCErf}<?|)>_x!Mit73|EYX<y1n;L@Jh!e
zw<@wDjE@(Zp1<iGbH{C^j9b9Mi*~W^Lc4Px6x~?wu6M+%*ENXiZF#sIyYAsrOEV5`
z-~2jn`Ir3P3@<m`tUGtl<noq@f9K2WYVTH`_R>r;`F3%Qv)d+RZR^L<T@!X#vOEaC
z_Mbse_v=~VZ($$A`X5HGX#HbcA#_iBuAAA6n#oZH6BoA}k!*~4kQ>AG$Lw!keO7Pr
z!{?3rbY7c<UB3S#?y~#dE04?WOt3MZ6mwLu<y^-_6Q`7!S9i-5d9J@c*Z%SK!|~nw
zIrk{@H+?lYbU5n6+Bx60XXNH3O%iO}rCH#$v*S(ao%Q`wW_{Rfu5qZiF8}$?-+e;n
zE9FCKj(!OKmbL4n_}k)#tbdoSfBIu)>57Wv*xmD<J?WOUx^w&P%a6|atSv!#pJdZ(
zKknXTEVJ*8o^A0z&d!Au(ht*H_Gi`e*VtWNv!&MF`$zX9jkj;sOtX00bj?=JP{ynC
zyE3bUmJHv6gywj!AIgV6JO2)>a1Y#KedM0tH4fzo=2=z=$_tbg%D=3iWS{I?^tC?S
z|5pFeDowHJ=5l5qpLFCYpF7?p-eS_VhC4aofmvZ+_Rsf5=d>SZT$!60@1fVJU%x0y
zSKRqaS433Ft$^4+{~5%~s;3{kp|bHmLz8Qb=H)vN{xcksez3*z@!yhPb?)mwCg0lc
z_wKOzT!Hh(mdaO(<7e!$YffBNe^B2}>W8=gwC8@?+dV#r?lRr2Ka2hLmO}ztx*oKv
z^A%3wJjl*cH#6=;*t<vip7KAhAAW9P`_uGV@n8OWu1Wp+N!lT2+QO0={qvVr_8-qJ
zisgQ&w|w<a&$6aRS9yxw9pG1!__JVg;|U3y>r3698dZgN{JSi!{7*z}%cRY`mv1$M
zOG*}Bwh5oyzT~RMuessAa`L}zDwZGEr}Od7b}QRCVc(x!>@00RrD}YxSSF>x&ARc=
zzqudZ<o@lKdVBKognvHT5A|=ny833Ha{QWACoL}DytCnv@0o^84-y#InG26^uiy12
zU)ip!@8*elrjO_Ex&Jro*Nf_vM?SAU{(Z$X?*$*GO(=4F5XKo@R1{kL@6r61u{<AF
zt)J#r_~*6Ctw}`^b;|!4*8BR-{G|N<(qG$)51lUgJ=lM0l`a2A8UFaHm+wrzU!G_2
zM51tWQ&GX`9Yt0jToWtU-7gD$_qRIIoydFif_b=*MbO0E36su$TKVbN1*^1O=2!Wa
zuQ|U$@sP*yBp%+yKinmrXfXV~{>e{m-rD&WOrC|$uJRY*{&c>uHD;di$#b^trdMws
zn^n3iT01o<hWT=zr~Q@d*2USj=eB05aePwF6x}WGME#X<|I!TK>gTW2eVUY&mY>z;
z$qBw1Fz31YI))dP$J}bZxq5CZ6*Cv+E>>B6x@h&k^Etn-b)As1H2iz){G(+nYgb7=
zILtri@rRXfn~tR=74MCgc*AwA=*HPRQ@0b3!p_}SwdY~b{KPEPIkAsDD&kyHZ>@6t
zUzX6RT*+E@zA0@q$=EED6vX`C^S{c~lN@<i3VY@mcsyIN?(QnX3thWdKA)0{$q77e
z`|7c-&n%5o`3XBB9_=pUpCshsCMmnQ!QqduYjUCa?IklOdK)~KN&oye>+PRHuTwV<
z%D&hZa{knw$7}Q3=D(km8sa_a$#%_eM^jT0cgys-%UTux3e&wecLt|WYvRpw_iBx@
zR}@{0lDv@KH&=V^m9(iRgTl)ySPC!gU6Z>ruORXERT<l3y=!d`pH^Xg_&9%>Gyie6
zeJOwUEuQcHpP?zJ?vlZ#ss9<e%Io;t949(Te6cwAZT;H2ixSRV+bGV?I%SH**Ha1C
z&-`cD{-EJM!$HmZOv|N4JM6?~Fe?9?k;9X#J}3Ro_3J+}-=}?9^xOMCgXhGDAHB2L
z^+SIy{&9Bm@7T>JJQF7$UmtvHd(I!{)i*Yqm>V6Px0Ew}SwTox>>kg8sPX{DqTuxo
z{`tqYTr!(HmE~9Q>-dY=e(jGhw*=Q5&rbdreslxNwrMZoj)XLA=i0=-kdLo^`lZfw
zTjB+7pDfuG+S~gi>(cI<?oY%el%IwC^kDdSJnGSPk3DxhG*<T{TUh*QE&Y`@m$xU}
zI^}cy#rXv`GUd<zGhB_SI92$qsLW=~tzP@pr@~%T{>~G-V0hx^^huR>q%Ds>{IcF*
z$A@)Ot{Ln-dw1c?23^@JX|@Y`J}R>M8NZFu><Zl+XmH1;^GDAI_QaRXH?FUUjd}Td
zl1z#Qmk5L57RKwh_T=p6mg@a1FMQatRwrcHD(xFjQa;FBQr2B}T-m~Gd-VZX_fsCS
zzmj%t{%|i=J~Ur2;-<9qr=sf<qb1hueDZc@vk+6^6$49IchNgBHzV&p^GFKKd6G~c
zxAmnx=a+uF(*b>I<%wEvS<f+O|FN|EZuj+aIK!g#Vzn+m!n(?r+)8V2u+P4K+x}rr
zKx75`qqhCLOZPEs*|obr*vXp7G-6$R{<@nY-_A43r&aL(<2L>s^TWus`B8fNANxl)
zd^)%})|q4;D&Uh7+ui2&y63orI&)*3<HPgqauU~6=IIMY9xb0L9eMqk>`9j5m-j8#
zPx+@=k$3uVoa$_k%lk|7wtEP2i`}YFVY<8V#IrqJAEw0Kw)_}yJV9u+)b{x6#lQLf
zPTHR#@t+}Ue$%b^W2<%b9v}XgRUCUDCw-b_tkk8l#{QY|r$SG?^XuKxdqAe~>--**
z*WUTf_tcvNo6TkxN%pJ1llpTQROH{ZvEL})F6TV=*RpMg)m4~Rcs9nb*r#86pSSdj
zgyrRR4Cj4*=Ej-H*<G|Wz3{hMd;NL0IrrYG)#X+A2hV()ytVmxK*W>n4xH<QdN=Lf
zeDFo~^ZyJCZNJ~xwD$#1u_^NNt6P3)UsDO!?4$?P<?B0+9Qobl`{wNHh$FMjYTtd0
z3aNajwtcqHu`>ayd)Be9uoSs#mfI&<EpzoK^ZBv^_LeW-WuKe(JR~TiZe}X$+~boo
z8C&+N+_rX}Q@?3>zJJ!+H?tl-=hnHzZqr=IQ>_2@tNgUbAI}yGu0F0moAYPmgZWi=
zF22u8-lg=MrG))P&-LE!Sl<U#tP`)Wzn^xGd%^Oyrlj7N-&JDjAAhYn_DR+%<J`@}
z64w}$l%B>L>mEiHtgfs}da~mQ<FV{KwHb-C6*n#Ur#>;xcIz(lps4PZKc)H>m0Cv%
zdB%!*@EDo(l)S#Q(UfDEtF}&Rf&JXFUk@(#*{rw}yLyfR@BMo_6DGJSL|2?q{J?fB
zcW?bJPv#FyyRMjCeU*Op#@@BZbGF^eUMSJ$ATHY&92cpTGj(QRySn7Fy;<4bE7quP
z-O1#%xcB4A2j6*?H?cc+Jx<+tIWM5aGL^mKuBW}jjen&tu7^#UI9K!cn$I)d&b`t1
z%Ik0K(O_@ymYq9v+xSi^FmH2UsY}|$ecL+M(k?U3Ebh}{#=f0*c8Z>l&Mw&cvFlEE
zvr78kU^YoN+1d?$+3Q4pPQ5sLYVVG~rdHiK^?F;^v^O4)dbGCmppCHU4S_w0oeUp8
zeR+Lv`<pzq30kc>Uhibe7GCc7xvr%C=E?fycMduHTsVQJ^!Jjm)6t8LEi$TmVDpzX
zWb=bf8@0HM=5ajfn`*n}tnL({6Lx8xR`t8In@T37o$@<YdZjq;RLS2gc88VEG+$oZ
z_N2owar=r_n#WX9xW8A2`OQjxZeg45Z*+e73HH0Y_}_kVRb1O$`nh4^amm;Bwm#Xa
zUzoM3!hPnZ+M2x!_<z5eT`27+ryMxvpKRr_1-W7~XWhyX&)s<-slE5G{rUOVcFm6d
z&mbBR#qDbzIM2GsAlXQ~U#?Z<-jX`ezUk@`+S^6fCKt{*R#m!I^H{+(zGJ5HW|P7V
zRVS|hn&unqdHLNorPKQ?W}QmSc^kAj+Q9OF?JmBlcQR((nU=fnn)#NUKCAt1n+mHW
zFbMg+&DUgJp)mP<gjwEM(>IrrdCjNH`1eLj{6B+}Zg@k`f(;VtHrIDIpW9e+{b+rx
zzqw%JV*SnE<y!tT2-T!7KmPQj+{990`%^*he9g)jKCze=?y)?0{@0tbb)OH{Ss6v&
z$+CLGn=72;a;lRjnbFHzcegj&o1Wfvj6uAWtPeX)GGa9TKHgV*Tt@KH&L@|*oYrpN
zarr^tJx{)873`CqJeJhubgGy7)gvx_b=iN0N|wJS{~3(WuACg4eK-B)#8<cS7CwA_
zMJG>jr{J*^PMMA;6Hmx%+RS6Ee1Ak%%Qo!Zy;ElcABTBYrtnVhJ-m98oDs+I4bS$)
zTwiu|UG6>C9TR%@o0M~kyg2A))~r<7#a}x~^ZWY<JC%JO<JRV;>&;yCDo$qCrxvAJ
zv0om^+*@|s&##(3VVmW_#~U6n#(O&V8I+pL%D!4Z@wrXcns}4g^DAu<6U{sA4yP7B
zz0b0zFHmM8`_BN+J!Tck?0+<Cq94R_>GrH%9<g?Du42^9Svq153ij*ARfQj)C;g-Q
zWBbFmN1TuDGiW|i6**D-pW3eIgT?2{r|-V3GSh-Zz;}gAaYMzcJ>|bWvu2sTG3!n&
zT^D_Cl~qhellHcT-O0((Gld?0Jbq?k`4g_M_mW#yb06}&bMT?I<Ex&0-iX(`dfzRr
zTp#QG?1o=%i@BDdsF^13E;ZjL^Snim`xMXmS^Q{zo4#pn-t*9p@~vNfp9q-RRgsjj
z%q{u&FBhH3wMECTuUMaO#Xe(x>ou#n3oe$bTvEA`UUR%Q-*#i=Y)PH%OlC228rZbA
zY`bo<U*L7{%g*l3q`#kQ=Qe8Zo@)1aa^Ics){eRRgg4F6d#_UCxVDD#hy2H)W7nOo
zeCh63)136^cy!nKsK%4Bf$IX-iHNb}8uRfh6vkCQp8rE-{$by&OWFI|C!Jh=F8S8}
z8&!L+&D*%rlF{U@L;TC7$1k$ES+MtCtc`y7Z_f4mIa`ZGKAAc17H}3Yo~p3kZ^pWP
z){<(M&Tc(c6wY#_^4Di?-r3id{k>`88zX9|9q})*&Y=FFu6>3*SKP@JFRJ>#t?_O9
zw8wwxZb^ys@4YKtY>JI`+xv5ygW;up1|QSkJpb)lk#{TC`Jce+-bmdE+OOn9u7pST
zvQ_jr=WhBL-Sg+$0sZftkM?gW-Ezg`QJ!vW)0f(#i&X0O%zRM(Wu5i$mk(yIxE%EH
zTX$wzLa_c!)jj2Xue{nmE$L03Vt@BZ5pS&=e^0jaW6ycMIn#u0JO7w@-KM_&;c4ZE
z`z5od-%@?^JY&PPYmdFB9;-_=jCJMNRLZ?W_<YUv?1%h9e+;*5HQTkky_CCC;-l%>
zFT0&f)XdoI*F_{;|EBnu|K{<B@_k>lyUnUkm|TsWF1FqH@XA|!e0Q(?YPu`&p-QLP
z@n!tHID`KTO<w=b&H8l0hJE=<vF++YZns#EEq>V9VR8DT=$h$beh2!PZ!_Ljp7o1I
zUFzYJwV@`z7oVT!8K!-=+@4eU<G%H!>)e-DBnOyX3-s989XIcOm9YhbOQ2|%8mFbs
z<1g!zKeBgBKUkG?zoO4q?~_Yev1;$7xz80HBh(|F<n&D5V(|91>DTn5@jsORGaT*a
zp1BTm%v9_=jVl{{)BUzwOO%xS8SgdiTAe@ZJa(Iu@9P`(xc*l7Q~RN?I#$~8;vQ!e
zSGW5-uMN1{Y&PnruTY)S*dMei#qxyZ>v-4J^DjcSZ(9BRKf^(rs+%c~%PnNR;{GUn
zyxtVJR!`Ja*T{`kja4k$_;Vh^pM`5@D>m3HX8R``V|x71d6qjHVx=;bJ-RECI1k?H
zt1AgUdCSkp_Q%0>TK^f2-<S9&EZxoD5taJBEwSubY`*KRrn?Ocg3o6x-ZrtIdK&wj
z!kE7Kk8`y{_WWmPX{tVcB{#J|bc<Pw+J)jnT1w5Y!gXw4-&@!<$$w_7oNLU!IdiY|
zU-({;TjRVa>aOXX_JEz!v^!MmcO6xmV4!_DQP!|&U(=rRht2A=HeG*L<NAo(+FN(K
zVj{=0Opelwg{K+!ym_$W)QWTLlBSzi*7#g9dF_$=N8?w=j)^U)riMZXtRJ7vzn6aD
z0pFhMOEZ@r-L<XZ`>rWw#>&c;n&s@X!fnljI3Hh_Jpam6ub}W720tPLiwZaAM*N)o
zh`;-*xAci;A9*&o=CeFho^oX3j`GkG32evm3@m;xXWYbF{jB-HYVY+8RoCAtrmu|J
z@ZsO~B^e(~k7TRp+bvQNcYHiih4pdc_0w*_pSM*g2p-ASf3Vke-^tp-T+7a%ed%F_
zJ0worz3{og@zKipT+z3d9^E&2MO@U)d*|~Di_>`z|D9Bs+y8E9MQ4hUf(pCBHj5Xm
zrT%QIcAU~r+gE$>vcJ?rzmTO%&)@d{p=k4M`JsA|XB*p3ZT0o{Zxi^bqb#s{#hoWR
z<qdxynS1l3y6IoGjLCVMcP3Q6vhBMZfBrwiAHmkVEl+;TTxPmUA}!bIL(Kcb+J^H~
zw+WVUDC@=V%t=VvU%f^0=EJ!Gea$lE3fDhx@5s8jH-7rRN&Odg)c-xF|Le}aU30G}
zG=;X;G@gGP;JJ=pbJ`=J8TN-y{8`0sTz-A$n%y@ab3B<}r~Oza@O`z>yv4=K_bhGJ
zn$uHeQ#bX~{kP6Katc2}AI;}{<#As2-o%wIUfb?ZT(eB~)F;En^AhX*Kb~9JxoFG1
z#7uYIzt8@?_`d!e|E>QFkHg#RWNTzUUcKM3)#K>tANk>3_wJmP3Gy{PyZWGrVW)&x
zrR)Z#C-WM@_fJe%8ZF3iG(Pm_oEfWD8D#zCyZr6$_KUjvA55RMZjPdmbMAr{f=+5`
zK`N2COxs>^8yl#<7v6nu|IGCa8BU*_KZdO|c6*;&y!_T=WronWdyj(qj2I87Us=Dk
z?)tx*{~2WW$yZGN=6q$3@`qcek4SAX|B$h=>|<v5hRjzR_88euEiUGAHa-9D+ZwTB
zp4@V7jLIMNA3i@~Tc%;^&mXb*?BZ9~IaQ_!AI~fEOZ?<=>a4Uy?Tmj0J7gHVh5x3y
z#XYXS?)>w*&7tb3kGo#{`^<8)qVdaIf4{4_^8=>bxpkDwD`59xNy(`((;|iY7?qjV
z8OFBFT=HY}L91mGKb(K~ZD;M$=m>wC?Q4^Ib9VY~TKncGSF54hnlMGJZ?QY>a6Z>B
zUCqnwv2Xi_yN6%y>Ytx)<f)V5CZ<&0tdlq~@^Ik+mXwlbd;c@IeZ2K**0HT0osX88
zh2NUCJ%2@<Z0M3bSB}lq_#}Ns?81zHmvuI(UCAs8Sf|v}<allR?)USJn-Aps`A5r3
z)FfTYDSaDezqy;cnlrI0f_;WqSX-pZr((Xyd9F_8Ja70sCEos0{O$beR`Lrw$q%`E
zE-qWV^vAY;|GXJar8b=px)4;Xy=o3i_EOE=?`GNsp3{CRFZ@UU!`tueU%b~kegCcY
zD>^#5JNxF^OR?I)y)&0YmwSA)n_YH_e^Q*ilJ7x|@Z0^xAJyAxG}Axw$9;T$G&6tk
z{wvR7`EE%h#v4W3+Fe!OQ5rVE#V4_8O^d<jg57T3>~Y~)-e<mk`Xe1MC;iG#>u+U0
zEFaZ(eJhVD;rNv{eKmJ<@k*<AefFEri)`muAV15Y)oG=K&I94Y;n#nOH|&wG{P>^Y
z@P58Mt_x2t_)+Y0)op&};uxd(TYOpf)%^6DCS-k>`_z$1N6fC-OfcA=b-s1le};|U
zTWt(K96nU#{jyH$;vdsxucelEoNg>HT$MGwaHejEhQ`W-ZYfcPcbRMtKRw;^_*>pb
z@y;60kGmiGzVF(~`Bi##_uIH1GaGbwpO|D?mcUjl@7Tlou)xCBWZA9U+#mDmggJR^
zrkd@2n*HtiKhEEbAJqLmJeki_r~Jb?q)p_~`z`+&1dk{PF1tJFc3g6j)h3x77PjCX
z=39G{zpeaXxiF(D{_y?oeVoDRdW|bz1jWAm_TA`4?Ro=7vE$pcl2s=gX-Lb=`QV*?
zuuk^Js(8-2llFo&(W?%AYhIpNKK&7Q^7M=+(KlwSpAjN{<H>^uGKKLA?6>I6UNl$!
z&@R6HGG&*tew~||vC<&Yqh!-O7eAvlCr<G%bE`aBG2`c5uiy0t>>Up{uJ)9D-n3}n
z$Mm;*Km305Zfec>h4qK_T?w-I&rrVouXWJo6otyvlYeiV<o`6W!N9N1<L?xkqFMTH
zEPuylTm8w+UY>bR=SRCqxO1k8#hjC$*2O=qn|aVuLT<l9-7%}@-=6o{*guSX8d&@A
zJ$K9vYqqf5m#Z3NG%at>t7L9`887lj@Z$UX|2WS6cF(j^pZk1Q^!$#Xvv$u|pKY5K
zmi|*Fz4-WvJ0YL=9v=L|6jADZD{%HjuUT<(E|ve@Z~Wy%c#)T9N&5YLraxvs+|Tx(
z;h>qFct!Uyjgq6g^4q7q=bo{+wCu{4H$67H4OUBAC!XZsd>g;~`vTK1pY+{|?#*QX
zvi^L0?>&hNU+r(2KYZR+%3+w!w)MmJQ@xx%CQ-}g1WUZ(&uiQ7pt@(S?5=kw|F~s8
z{+uq(s`37;{)KND%U7#>dh+6i<vZS*{|vu_@4Bb{w$B!}<I~gKk&`g#2t#?{^()se
z6!=N^F@Afrr~mPvDBI(Qv`_P<r8ilwTYJsCNA|QqTE=<C9S^>;gim&|`(?Fw;m7hf
zX*%IYe>H9l5Pu^isuNzFH__;bwgBTnnZk+3vfs%|F#NJwSO0X6{V$32bL`XQS#G_!
z_4a#5&R3WHLbof`Y*)xim&I(myY{97t6kf^Ngs<Em%5y?OD^X4&v5+pOPO`WC+$iy
z@9}QrU&ou$Du3^2iFv`A7YvW*8Ai5UbUc3c=YNK;D{szJtN(xbugv9Am!|t~f4%va
zduEc2*#|w2yFK&Vd5-^>F-PO&>sZ#QU-zy((7EJuRH&k0C66QHojE1JpZ?W^U;NL&
zyGQy%|B?Nyi#tu$TKNm!&ioXcHERu9^=fb4*2SLd9z{<!c0Lw$Pct(5ebYk5e7%qD
zhy6S5b49!C_;_!2a-r;>$u|#|r`z2<FBY99>$LKg`2zK4Jx}De{%QI6Wz{LqjLTWa
z-+jqiRvi6a_iM^cYwH=IPR|Wj==eQazC(fW{Pwja(*pl9q_6B{;M_5(YFgSW&sU!R
z8D8^gPyBG^<10I*Yo*>ZQu{7=%C6nOp<@5yV9Oe>jX$H@6L!cSDn45>YtFCon=_<W
zTv&Pj%x!*|c@q53BSO+cl6K8HS&}^cG{YoEWri=Z_47s7XDu)G)k;`oZrc}fUGd>b
z-w%_%WtRW!Fk0m(*!VrX@9+7&rPsdOC2d-re`>?=D@hyY9eNsm;ZmH7*K+yYPWA66
zhE2NDQFHXgoog=JnXK=w?cL{;KJP(rLYbDNIqL+rgJ0J;1*V;OuVay97iZ*}rIK|!
z<s|#%ZN}F&#s@{~&wcb+TtPm+>g57W?VK_RTl@2(fo{5)McP|~g{Ho$3b_>$eWmR&
z^ZLgj>q8$m=Q&EASX-;ZuRZHNH~&2~U-x&$fsY(BF7idQFu#vceK%#&{I{$*GKJ?Q
z*S-6&$w94ykMoZ4tv&BJC%wBC-WVBX+#@{a`=h;U$`2I=L~WMcCMl)2GeDx&&HkMB
zGx;AHt}8bDXJ~T!cQISeiJxy1|L>PYmcOoFF)tVJSJFxN(=e&}`sw>00=uXB|4?y%
z%P*LFbPLmydHiQpvMjzGt*vi8|4&Tw{+9h;rd8aDtY2~ZYF)-Z?KfM!cPG8paJzM6
z(vjzqw*MK<X|HUKnXst6w_pzwpFwTi)Xsd<Et@2+u@o)rKV$1(H+TQJtnl59l56vH
zy$s|JPrm-j`udm2&3FE!E&aLG>a=c<_7Wp20dbYLipQ@!crM>sW@US(*t4v|F=cx~
z*%#|JtAA~KroWw4p>)qQXUDm3FBX*A)-NsH$9yGMuQd9%watu$n+y8xnDp+*vv=(K
zTOF=v#(m@DPdUG0bs3#oZ!%+ClG=ofj+_=_bMv@+{y)R2ty_I{T~FUxoTuZjknrV&
z?JDaT`=Ub=_P<t=Eo|`jvwF63_S(4Y*tn-Q$8*=cD6ctv@OWPH&+y5UbyNChJjk@G
zny;MLdUvPx-i^l>%0J&)ef_{riI=;U^f=xw=qf&Vej2~Of7FNF)i+WZ?tI))P_=%a
zf7Y+*4^qS?XUtkAQnTIjN56(Z_LZYSTg}d2Tp7CCZrYD}rhDEx3b~w;=NCTzb^X}<
zEg|0dk6X4oeww|~x$rnoOWBw8yX<6dca*koOZ;?FQl-weKI%vRw~0J<$~LR^YwnrM
zer08^|EIhCAJ)$}qJ39RU(EgQq<<Oz`s^P}H2bXn#&v<Ww)W~*zh3&tybWC8v9O*e
z{7v}b?23H-cXE!qPxi>jIo>Oq;P~KUeD8mT4<0`M84mNl$Xdg9H~$E8^Bn%Sn)S<{
z#&446x}Wp?$ydSU|5~zbmbH}hJHOeqYF&g@(7#uI`p^Go=$8}v@V#lDeQbuE<TkNu
zMed@<r!2_j)yhka|K|Ae<>jrx5fZn19yFidTQ+~olcfB9@#{-Y>~r0^rn)8d`iw?P
z?GwkUyB?LCzHPZs;Bc|bB%y+x42}O@9$bIU_{!pr6^qtPPJi)(?XJf5n?jN9jnA1+
z%4$2^^`GN4Z*NxV#b-V-EZp-JPn=NimC$?1EpDde-|XjFA+hJ(xQ^{H@cAL}Guoza
z>-CITC53-3n?0(YpLKXs<OR1+td{S;{tLYvb*OCferZ33*Ku-c>zymgtt94|`Zkov
z)Rh)#M*e3g?_s|1eU(}KPMufW;=$YhWWAjyx#!rsif?aYbhhlCRW31oy+oXE@MM7n
ziF3X(@cBl5I?~v9Qu1inp4xX46>b?=zB9bFWvRANsw}@_0Sl`{g2*|3<#$h>?Fq{;
z`4&E<E#l|T@cZ+O<8GGB&Yk6SM3__ZyY}(;s*hhgRr=rLEk1L5UTyu_YKxmHmn;kZ
z`Ws*C-Eh#o;(&yX<YWn(B95aK<ww_dS?M2|&-b6<Q0k+So%1f8d&Kc{5^JO?cd0_7
z1Iw}plFf3(jdwoAJ65c^b}E+d+0ApF2Q7}VU7qjt=M3mjxr$@<t@AgVcl;@o-7`JO
z`mP|0N4Vwepf(1^BKB~W=Uc09vT|Hs$>qO#<JtZ-FAtuScc{q!*8M~9(Zp_j;pm&2
zKO|pKo^*Zk?UL>d{~7LwzQ6Ft`9pa7;tkoWpX{0(5dMjE@{(7{{nE1)H!z%#1#K0p
z{q0>59Usi!Su(Svd#XzA6{&khb-69tN0pTYs@^8QkB|9d|D!weLFK#IhrWkbX~(nb
zB}P2!3iS*Bn^Uy#Sj8>J*Jo?@B_Gf;{}z<_bG~)^Bai*Pwa4E-Ykl;ef#X%tv1{L7
ztUneObL_C)8Mb<+?1h)UTr6A~by}EH<j9`o3W8tG)_GUhf1CHwcZUBqv;OtBTP50F
z-Sf8elqojdZB;z4zPNvB^|8sn9e+dzwd$*UIJbI9%-a)_y?1Zh)iCE<(6!I?kC*LJ
z7C$tz*ZOyt_sRbZGv5cE`*1nz*~afnwrx82$-+Kv@2lN93)mQB<~-j2G~PJlKZD#J
z>!OLbZvHr>oo@f>d{pOK1NRTlN&<g$a(rJO*M79lblM?XH(s;Tk=rIq%=g(DIi-J<
z@p}8H533Rl1<F?XuAgixRnb*+%j4CO8Rsi`7$zLD+`I3yo7S0&hOs+;wz>K5E#Unq
zeAqCia@X6n&*nZo7P9$ROrDO!r<srYeXct$uh@NP*KPhcwo$hp-k&I0(0A{kG~0%@
zU$ahHOHFT0$l0Ngd(PdfO?pY=pGOseJ3jX?o;MA9A10(fQ6r>&m+}0V(iQ6y<2Tu^
zNip`^X5hwWbBwF<SK97G=^0*OW?PPD*Q(t(!}eLC>_0=5^PcavXG;Q2!X*+IS(0yr
z>(&-Z%Wf=K@a3Dx@5~7I-DQTC*|vXk<MUtnA~)yk;^@PMr#Yi1zT7_X&*~Ywwr5wK
zUMwUr@qC`8=$7q%yJQzmo_1Php1*(8^LOicCb7u!`KDd;@_HJ5)kw+M%<;rgcb3RD
zV}ldDMs<tSp3Qr}!s;jS{DpSjIo4V`<=%7UZ0gq&CDv6|FZWSj_~@VhrQG!;g++C4
zy;Jx8{m<Yv<z;r|!}KnueHkrQ?N18sJKx$hH&6GPaHL<ua_+Az{~4^7FL!?OpJ8#I
zsFIe&117_+w}-D@DC*s6@q4d)bUnx66_v{#vhJBQLq#qrB~P*G<X)qDuj3>ay||?l
z?pbq7>6Vq=vs$&vlA8xDEbphQWL3UeE39ejxPI%q2jL%1ALQWQcIC0`hZ*Z<CT|X(
zuxqDJ1BdL<YOOVoKb&}2=zF)<PWwlDy87gYyhYJ(7uFZ9KAvB2->hI!#I;LK?lwE@
zd#ml+O816GZt?sYow4?Pa=h-FOA!zI{8~IFo!^kJu6+7_f7Q=t5v|j^lng(A>p1oG
zL|X4A!<SQ&W8VZEH<CRQZtFCU<B!(9ol$n5uS)I`nAYv|pP}PxzsTVlQ^`mBFTP!T
zZ(r!8`MTF_1eMxap0775Fn%8w_%PdE=;buQ7hw_mHqClx9#T1R;!hhszXL~vJQ(=?
zgs+c?eHG;r|50^Eg+z~_^rpQ34Aq$o{}ir9zs-O1nKwM>(p&xYYLhJHJvp*JL!;t9
zL)5&O{rdUy?Y_KByWsa#*yS|Sy)!o6xgR#iHJ$tPK4{0~ubF%&?)w;TJ><pzo+XV{
zCs?6*cS%Zdq?w#ZyIb|{yYX>5u9+N*IJzkIj^8tJ>Fw<;TWU5J*f|&;JYTV9o$|#}
zjjy~?-$O2)lQ8J2crSV|!7b>YWvs(-*E!*#tFv}3?|NJOcllCp9m|sbpv~3Eg?$rE
zUZnTwd~jZ@$8TMD@Y~C@De6m7zrQHBa`2q>qQFOU-A>&;f9bR%@0(Q<TVoFjFj(Xi
z-l;QvE-x|pXr1wg_CJdExHfN`bwlJc%e4tHCM^aGDtV`tynXOq`*lF(Jf$D&AAXOH
zbw5<KXIGBm1iLx9rK^*E?>MsUlJwMoy|?6Svv+L$IOW%p3*Eg^8L5*swq3T-G#0fu
zKUG;}507xe5hjbXC5K9t-t{c?(tTB<v@5*X#9!$A!+4>6ix=%V=yl_!@xf0#Iz1b9
zpUe}HtJ&)I;IHwcsP%6q{?@Na{Alg^AY0ZvXn(lUvwyyZI#0tATPxph`Kf!e|9kw&
z<O7fQ*3J6y_#pEm9j;yHTcX|ycgzY>n&7d=h_zVec0`H7gWuQZRyaTG>wMV#R`0XJ
zmRh#xYx4}3Eu2u<%2vK(;v6@#o|UXs4Ml$1w-2Y4Y99NLYgV~+L&)tLf7brk`=5bj
z%15b+!ms}s7_xq?^jAC+_;UM%S7PhuOi~knB)wH$U(WZSdY_SRUHy;q-#CBV{qU$>
z>E)KUUUpKR`pUa5sst4jO2z1&U2~izrF-dd(Z9wOuMfzJ*#s8sl5hGdxyMrYh}S&_
z##x+;^DJ*T>&#SnY{5LwV|~nr^26Tq`KNaKUcI_ZVD7V`r+06&ImJw~w_{XaUmW+3
zxy!JiclQ4EUyGZz1-ri9Y(IgY|Bu|?1%G(gn$9tFe0bbodSvO%+`4m#K|48ZclmKh
z?>v~q9>*y9)&J1_8*ZN;ZCPLYsK0Ah(y=#E5qk`Cc`hIGcN02sFPh2X8I#pKKf}LP
zKjI(ycPL${e`s(e$K>Sut}V$qnFS}>72f23DRT;6$7#27y~W4l2kqOe<~J|9P!szg
z<KMab`GHN*^=6k|Y3~froTS;M?S7@5sc1<FOZciE-GUn1#ZUd&|KQFc%UYJN;dWVn
zC+%bUqxg5mm%nbu58Rrzvbu83(j8aQuBP_RbK8D*!;(T*5zp_pt;Og4RND9N!@uoJ
zx6dgQ8cjYJJn>k?AMMY}o_{Of-}P4Yhx}uGp^B)Cr~PlO!nQq**bs4}-}F+Y>y_Et
zo*bK(wX8z5Dm?wsPx}o2rh6h+YVseh?v+3OOK+n5{2E>6%<ZS8k_#iIz6)}fJP^t`
zzmBy=Epys=LG!SnJ@boS6wK%fXji&eX7^^twS|Tf-yY6LR`_Q7dhV_(ZxtKoMT*w!
zi&o!ev3^dC`s4S#R>xWk*Hj#S=-yRhp>zH0l(^fjB|Z@+CI%ggTz1RxMKYiD0-NyJ
zxBp$K=ddZ-c=X}fdjCl;@BgzsdM5SU<t84#Acxwn>kXf(F4TRpb&Z=deb>45kIHsd
zuX`EJD{d71sgW}%)bYf535)Y;`)B#z^!vF-{I_SuJ-rWa_qMHE(_5GAEo->Xvt#Fs
zj-Y4nQZv@Pecb76(^oEI(5o_Ys{a@D6+a%k<@&w59}v6yVOiL*a!uzG-@pB5kos3#
zCs>pDk^P{&SX9NW3$CkP24)Gzd5XO9x^p7^+!ww%8yGZo=gvHK@o3%Bhj-28v*u5K
zRTD2{n_O@FOZ%gJgMP`;t9JS|iC4~d{)yRUUgyk`dby;7cTdB?B~d%`H4N<c?kc)&
zF8OnAlHg(aPvIXX@#@;Bv;4Xv7m}Hs&pu7Xvgc=@sKVoC2c@eLo}2zk{;2<tEA;Vv
zv0LYt{;~MbyT4UwSMQ@~&t#oExwSvM{-&=G_2-m_9^Z$`Al|yF3ZZk-w_oNwZ<M=v
z$>K^rOMY<UmFLz~wc6iwY<EUQ$<Kbguu@$%C$VDMyAN4G(UDP}Iz~$hYbP;X62Ie_
z#I@{=x<w9uaM$Y^(}(q9ajrI2v700kRDJem_DOe$I;!-xSMxl!_H#UN+@@-NU!7cb
zoQmhUxhu?Os;t?c(Pwd}vuS03$}Q0o@0)IWKI!_@_QSd`H#@&@#S(L)NV9~JwAM!~
zPdhD?S&IK%uexd1e(W%BXxNll27i<n{<wVfpF!L8(5nv&Z!X-O@s;&=>D9e^7aGmv
zI&?4V*b*M`2@FRVmdyHoo~iDF)V;L}Bu(pCGI!1Ef8c%phsV2jo#NuFrdLgveX6;-
zUnh3rlfN^W^ISijd=Sq1ck#pht!7sDTS_b3Hp=Z?;*p=Hn`9}}a6jep<DIv<Rd}9w
zTFXob&pfqVPIRf->{Zb>;=NhIy+w8_`W`uT>1Q6#r2Xdtr!NfQaC>B6b-h;G)B4Me
zFA006)V^DO^*_Vb{YQJtAJ;XS>=)d+!)@!@({|gJ?|pNvlVw`?_ktLAk#e!6i*C*?
z5504Hx?J1jZ&@GiZBG8U{o&T5Pd9#gTk?BLC38Nf`J|h{n~V7N2;F~o{a|PHqkf5O
z@i?82O|w_;UcKKa`e~PhQsv|(2G=fz1sbf%f!k$zk4*kH{h)q(ob=T{`3vsE`!CND
zJNb-zx3!y**pZ;AkrTOg6qTKjUN!Of+W5^+`kvd#-RN598U5An{)h1HI*r4>E&n8c
zIAbNd_uZ6x^7|^@y-N@2RIJFGDrFj)tQoUWaMI2P`I3*nW*^_Rz5D**`}|+yg>K)z
z_3Bghw_Me|Th0~=o!C|TQu%C3=ZpzP_Z1kP@H`OyDgAgo&x<;N4{e(lzNj<3UL(9T
z>s#^5kC_{e+}ab>bLqgF+`4l==L)&F1wJ`9Y4WEd<{Q|zHh<gr<K`oM{tD)!`&4Eh
zj#|ulKkCZcweR+wToa*n`%c7xQfu+du!|~_+&(?!d0swk({Z_PnhzgqR!8|yeP4g#
zcaE-~%Vc|p`oy%h+ut7ln3|{}u;KC+TcwKB5T?-RyIx<H`5vD;f47guai707?GIH?
zZvW5FWb*G~)!VlRCvm^5Q<*Wr{kzTS*)tBDda~_%&NK@y{#3~|_BXY^^?YbQAm3-F
z@#F4quNSlSx7(OLert8vchl8p&A*-4W_#`2k$EZf@|m|>$}s|$t#l$4(wC;zaD1G8
zc>j+g{bT<b*k4+0ZHbz@ZuaAu=Vr<tVaiyrcjqkcB*pOi8y}WvIX&K<^(VXY)2(^8
zN|pBBz7+o1``+(){~0>JTX20WnUcSDN!_kLVVke6wPUW)z0krQwtIH`2Nz=_iMQ9k
zhns!2*&Q>1>1WDYmdUr(_8r-wwMn#d-+Nj9_3_8{Wqtf(_N%?wPRu#m$YWAP_hDAA
z4VEE|OIfO#H#c9nezEw@ox_G<9SybapVpt=c;~Fj?vwxAuUsgPl4>;IyL?je*}mGp
zE7#vT{2=w{DbX;g)>UoA4HBIOo^RtGiY@B-&98oMU)|r;>xA^1gnTtqL$2m5QRQS|
z+*2h}TX?i6aM{nR=eC`ny+65Q?fpk#OZ88r`WkE&DSFIn#FMhS^juY4==b#QCeyWx
z`Z)J=6n|ac|DPcxWKzA@EAwD6{l9a!JU^RcUo%s33jd!HR{O&fEPg#cHi>2X<xiF3
z8z0n}zTa)zmwDIk%<FGIEBw7$=K03#NZ8#dUotWBUQX?K``!|{!2ehN_1LNY;1B)5
z|3TPk=Z|3RdoO>PKHX9##<7xTn^c7ocem%mjh%Ad1`lR8?4IgzzkxC9V{P!!e-@Ya
z$lc;^s8N<Zx6y8MetFut4u$BsUY1GyDdF~+u5EY!yp%taap#c4u62jBZ~jyLQUB=t
zQGUUfQarPgws(JNnH_Rb@9lcUO}n=@EV_MK^vpyZy^V3k)9lkDWjO?Q<(*uAX1`2L
zz{h<HW#-9$Z0}mThPP+)t6RtBFNs@oYs&Wv(>G1ho+&!LNOez+*|}v!GCz+O^3*pJ
zP3>CiCOReD=-%($xzB&h-{Q1%>b$-6tL1&O>v{H6KB!i|Qd+B;qs#MFd}jW}wO3Ex
z5jQl}V)6?S?h))ewCB?=%dKmJjvsD&{9RlwWs-79qS*cEwr<{BzxyAq?=(4U{$T0-
zrW%F3ufFDoKm44&={1wcZ`~yw`pVlp%og2sRj><8x~MskN$p~Dyy&Z2-?|^Y@2onv
zcEOEXH*VjKj=I&qvE93T;&xx1jjoEid=HZO#h%|d<&ng(e%UEw|21AqRK=F^etG|&
zfv-x$kT2^})P$o;{!TIzJk}-t?q_nw@rQj`Pn%*T?*=Yq4OhtH;gCBbwfMPi*WS0U
zMS29pnJrZs`?TY@4<{Ez^t4HwSfA+hOV<3-k<+$ckDuFgEaK1Z)Si_R-`ymCJ=)bR
znOEj6eSn+6C^@Hp1q;`6*#}b}Pg%g~c#wH%Ml{E|Jv)|$DQtV-c<gfD*OnD_EvIVv
z?wD>oaZuKH>gt^iZr20f&XJq<^~9R;Z)LA}^q<*PZMR_m_-xndqLdcysX;dmzIVx-
z^DgDPV2tg|9>szK58D+AufO!WbaU;@q#42!e_czF@|!nl<}GF6=PJj}w9Nm($+YJ7
z{b<HdyV=g!CC++t_~Q4;#w%@g`ubjFoZY?p0gv$Hn38pgo3xyotOW0EU$55`J>!|y
z-3m)diFHXY-|8*;l+qS@;((#i{68fRKF77`$y_u%{O;nJyPQ{#oHFNYs7|+7KfC_H
z;ty-j{}J;4)}F?ae)vg$%$gPMuaDLS*5;;ui`{ryb@#f0w9ezN80Gs4<L&<4JH71A
ze};pG|4br0F5Wq8x^zhptKyV3(*xMTel?#k{aPnsoi6hJR{Sq-8$X@$1E;Uq{|d72
zILmte_6;oqu4wCax%qxyZ@mf^wx7sg!Sdz(@mK6?YyBU^w>}U35dFGNYNMyBk>9En
zmTcxekN-~MWT~^ce&+qd-uiz+8Gp=IMW0MBFlXy4O)2?%e+IL5gIhR@Oc94I$N4W)
zc|x?b=TCT~VXAy2_nP<GxRTya9mUFzS0<G`{_vmS_4QSMEPKU+_U?@7xOB}!;PWKO
z#x(n`M*k1T5ARg_V7K+r>(#9;mzQO*x!*HPE|hru-azub&yVurecuCg&fFGYxl>(y
ze&cz&KVgwQ@7>Dm>g~Jx_?G^b%@)tL4wsp4q`#cy*R{I!V*TYSJRBX4Ims-PeDHbq
ztLj-7+SzU$FizOAQOLvc^=;8ljvueyUEW)oQEDWiwy<QSf`oNgSZLVs9KNkjQ%aty
zoApn8P_<|Ciun`2RCay#VRLZV@b2XCd&hTuS-<u_L)z=9)19u)62A1#u<h}`$mU<a
zub&8$TDf~;<O8kH{T&+^t9a(5+ub#e&-=spp>E}(jO`O+ZuzI_>nRzYEa+LS_u}*3
zXbFWc5|6vy9rG-Tdj9fC=H}P`85rK>hPf~>DBJBVysW<Abv(zv%R<io88~nB=lO(B
zS3UWkVcqKO^6^=}H$S{}Qf_Iv=rJLW$M)JXhR0>9etlhk{y)Plr&nS>78Xi1&v>uS
zw|A#P<M|EiXRp{b&s_Yhj?!26FXjIkSUMB=-?%TCBf`7x_1h-H16O2=e@vY9x9dl!
zX7yT!^nOkDe|FiQxc_kmdDR`3lSn_HyCU27_}`W^`AhpF>xAwY`L7VZe#)oTT<W%7
z?;QWNCm-j?T72vJ)8Fx*Au~4Z+xc%@R~HHi@=wj<>SME+dhqeevjH1-b-k0<3tH#!
zFedL`DgRsJV$Qz{zb>};z2Ub0Qzn^fa*dj1O`*S+OPKy_7dZZR(el-Q&R^Vg^WQt|
zld^w;kFD8oSooNQWRrWpe1mnp*QGu+bJep~S{N^7OmaPc)y({L%+W0;@`B4*zMs?f
z%}+6InebR$()8ok#N?ZP&x5uL`F=VnyXSF3&CXfk@*gBcdj2yUSY35JU^~OsBjy5+
zWu|;)w}0yr|1(@$a!W;z|Foj|sZrat*2(D^9%pIpKeT7oh22((ths#8E(bL|D-@l2
z$&mfsJFfd3Ia0ScO){V5TG-T2j!6mbUU7^2_-B#D33mJr{#Da1I5NH2;?}W9EmERq
zQo}ss=AYp#Q|CRK<es;E(xMGE<*SVDJe7FDeBCt4ZMT53$x~1HPZyp4Gw8@)oAKg|
zsG8t@Wi_J{h41(t{<?PMyW--De|&BF7rPvnWHY$&{&?1d6i1yyj}@lI?vyRyd>t#c
z*g7ur(5--zPX)qzzC1{2j&Kw0Gu${?r|7_j_~&u+%wo>UTnM}HuqHU2=UecBr)3)@
zZ9%gx`(^7NY}~cH)x`fseawfnwX1KruKh9Tx3jOhUpmvPr@5vUdU|pu=e&-K<ejNt
zV7}k=cgpogGkm4pxvk_lnfuR#Kal?;CVoh2d3T-GAB)R5NxDoguM3<yGy75atVgE4
z&kM8<Ch_t66dtQP+<5ilmfJ7i*WQ}vR-V85)Zdcd=byFzwtII-S@!7;jx{pVtsC-l
z@9jPCZ|cV7KNkJ=*)_35dUvmp#V*|?mmC^4p43s&TJn51^UL^{`EA|y9q+b8Ygbq9
zJ6~|^w2pCy^Az1_j0d=O1o`=&vcAr^@`w9jBM+6#w4hHWUMW2$sS_rI7zFMp@UY&=
ztnhf&zpl1y$xMs+-C+-Jb^i#pU%zMJ!}?p%kJDQu<1WWaZSi6dcvYx+CNaEE%3dp>
z@WM>~ecAW^*#EBk<G<kw`>m4b@NFqaHr|f$YuWJPl$uau|GOuDv!AWbZ>tL1U9}-2
zKiiP&%rZ@m;O#16k_r6#vd_LxzVIe}lJv}_8%rlFwpp#T>_K6xiiqXGgR;d@J08Az
z@u=9Fc}8GZ%YOOK_F*ObKQzTAiOd(voW9MXhF{m^h5JRBiC=F1xV|Yvew+TAm-Q8<
ztMdii7u_u>SAFyBy!>6k69?qXtG=&4vR2>wcTHW4)f90HmTB#Lb-{nUB>iPMWq*gJ
zMgNuUx#X%oQ(9=Zn^nT<gvSdd4?f<SY%{H8%f^eX=L$EJt=sad-e(@q-}N@3kE#Rg
zWNZAre@nDo@A6*pezD}wjS6#P+v8fN?Y5rZZD(>VNj&_!Rn2w5w<SBa_Z$hl*sQ(6
z?dAmcW&BI)bq#8wKBi7vQL3$5^w@XDy|eqoe;XzpSFc)sQr+^{Q;YR0>Nx&gh!^|g
z{P?Z#q4KIJQd8TOmy0f(`7mN#vGS*XsXIMxXPjVMZ1?>7^Wr>#rKg^sn!E4w3!{H}
zJ<C?QZvGV&e|!Its+z8S1|R;-UAcSX$xW4O?|fHhIKy~;oA!(T=J{LF+y9x}SDiL}
zNqlB*PJhi=lZl(mCmoXQIN5e*y@q;GW7nU_AL3@}cl>Fqjug^ttnHtY9`lx6zT(NJ
zrMr6Mrv8%uZCnxT^Fg?+@vt{*@0+}cKWCrC9#mA{sLWWT{ki9|%0jN7m0o5Uf4SLv
z=gbO9zjw*gAjh@jrv2xu&i@%)?bkZpnzk~x)zH!6Kf|)38Mj|=bL{_9wPDNMH0{=j
zhu?GE_B_AU?$<wt{|vhis-*3U6ZyUP>f|u%&YB=$&sM!@9^&QF)64kyKPo2nSDo2%
zE$mlP&J)kd2ik1vAJ|P#--+QUS&`cQH0iG6*K?UV>nAzyEA@1bpXq4xOKyME&cug_
zj*BnsyIRyP<l=Dr^3sxBp@;uACaXU?{q;XX(GH2P+!293zFIQ%r`1*J@9R$d6&{^f
ztTJKA1)n}k>lB}KWtl0;@>45ztXR@FD`ontwu3E;)z@FRR=P#VJ?|59!wJXlqMPkr
z=ANIKKk+|<&mDtr4_Zy7I<9gFIoK`!^Pj=$IM3fltGr$vyRg+G$AzmRVygeXi)U;0
z7G@VFYda;MV0qZiWqkf}-_)-r;)1?fKXW7)ii|8}zOEO%zU4FPy07XiZ*PBn*&p>w
zE@erd$;?Odv|PNat-AxCZVBg}7RM*AmA!Q9{-gt%U;emX+f=$&=T7Ezf#Zi)y^FnT
zu6V~PI9FVwXE96T(W*;}=I9ihTO4HdWUtdvwveW(FDp!c=JxeJKf@-L;gNXo{EWrx
zFU+~d?bGDe7j}%3ZN=+y`H#vw0_p<H8LCn}l>cPUiZE4Aj(9Z7mg&*Cdm*Xv`Z9vI
zcFx?g+TgTG%k~^iWt*>WFD>1;pO?vc{=NnO)bA}X7fM*4H}h>w@FA72W)ahqm4mkA
zn%(>=YjI+d%hK=7pY_-(Z0n=8*`z+w%|1LaQ|fhZ*fEd&SK^LM*Ziy}EmyVgQt^$h
z_Q+`&Ce>?Fo84}*FZbIr?Zc*9ZqbZPJ>@U#*9t7P*q33=d(}72<NSpM`P?r*WbBe%
zvu#=clW5Ye9lU)z(~Rx>mjy4EyBhScCNaNaR)6Cjf4k0tBhs^Ly{?*iTh8E%et%FW
zrGfpF#p^!b(haWp3P#KCY4^?5$OtVrX-M9`v?|1~^zpTSyXH*Qyj*o-{^5ARI>pQ&
zk9(RIO;-PyxlMYna*)|4G1-V)_mA@(vK30VT<?1QpVp5sfA;w7IHTWrGg-_wo#vT*
z;If;!rr^ZVyk058-)nl+FMQHI@g*WpH-}+UTF|>sd>&6{%(GqjPvvra)Q2~_%9aWl
zZJKbfSTf;2ljLFzk8dhH-`1D2&+;@`F5I+_PdDS-{fGCD^z*;|wn44^k$3iu$Z0yd
zhrAW1CnohBn0DYxg0$`Hm$qK#KE;YXd+vAD=7i`GB{c?CmJ%UN6^ny+=gl>+y8gUI
zo^7A>t8EjaD<->d*<YRWv-o_z$fW*9@_TM=nj=@F$~*DemM!~RjemrS#kb#6y}CtQ
zNKz&;&U4#?$&;TuS53cY`F6L~4F=&mwY)O7`L@ix`0UC-ukW2-&ow@LeKz^1{Ozbu
zTbeAMIOpa~T(#rQDwRxu%B9=B9A013l;tm4WBDWgQEt&~pQ}NhQb&cJbaus>1Z|!u
z$dr;UVX4q2@yft0`#_EH<GbaDZ>^E)?`eJ&F3>6bHeAfX?3z}D$*h=9V(b}~W(yt9
zGuxETx_<0F-`{Q3>v<0AZIs;Z^w@9Sy~wp4_9kif9!2Cu&kNCUX(({ZzTBtOaw#x#
zj`7k^@8k>b>v$>-zFl{`^-s87YL|!2MxBn|DlA(nC!dqFJfYCUZ~C|_e)Aox_=c1Z
z<(>cJU(C8X_2}l?rxZ8!oKQ@?#W2^~?C%ciGg;1`=Y4&(OaHCp2m6psv%No-t((O&
zc}Iuiy4$`>PNfD^IG1c>FR<k4sdYSB<=ZxKq5m?+WiN!*K4=n1uD4y5>Sh^NzEOD{
z=lSJ+npX}lUlVaP@@Vz(r-6Ta>yuA@@ih5skUh)wvsFjr*Y4Hxl@o3RIH?@uVZ0-y
z+<Y$k^XkXb{|Ik;9N4+X_=A4b?T5a4^=4P@EZ99EHb&@rl8RB(o{5`Td6;F_ESFRk
z{mb$vblY_kXPFC`->c^K^mGVu9C`mtrd>$$#q1*QWQlW?>lHs<KRlO7`n7embwtgg
z1v&+ZA;OoldJ6l!j#;+WSnsvW$_&%mwbj@EsrK>z3>*J596!&RrN4aL)YKI-rmLUY
zJ?YdVH)hM|>Kl(+o|K8}Fdnz{t&H!e@%-)Z$M}-4`;X@3+5hA&-zeF6nR8ocQr+Jx
zf+w@s|89AICH(7*ecV?|q^oDFiF0?Hd*OVivZ7ysP{1jxBCGJO?0*uMOEn^uF06U0
zAG=+$<fCq5?%PR6mC{<z$4r{>?}M%O)k7b*x@TPL%Kr7Uj(v7;`^%-jw<rHh`B2}#
zCV%2PU6)-ergnP1&HpI%`)5U}&o8FBsh1;b0<OK?Dyg))Lig=#F4lWL`D~YZ9Qx02
z-=XUI`{_siGu$}-E&fL@%dYuH;`uXPuH3ZG_1$FNvqvsAe)?&?%|2;|TbS}R6}{ql
z#qox(;y<|WXUi75m>thrYWY^up?-68mOz$9O#jd9+|?@PF(r)ph7&JKp1=5T$7$|W
z<^7K;B=&S|F26W`rtimK$7!w`ryaANDQzLv^Ufpq9Jl&^hN$gNw|x-rm@cQVx%bbF
zZ>@W_D+q8X$R6NnzPvB{+CJ6#gO>jpvhv#}=|0I{cK0mLe$7euo*({fv_VqP=6=Su
zO3vp=cUGwHv--36@qY%knz|37EtwzX5B}5Xy3w9G$7NUVI^)mGX0uh#WcPnNHTm|!
z^@|QYzp!dj%jNy|DveLRnQ!Cy$M?7W&8%IwUSE1;zHsdwlfbjvqBAZQw|F!JbT+YF
zQNBJo*8K2)2F8p!`Hwng|1|pU@k(qyYx3=+PI2YG;A1w+8Y(AleiyvQ;>N|cC!cKc
z58DgWUD^~~QT5#CcZ}}uquDd19w}Kcc~{D85`Ez;*gU~4d(%ZbHGe7Tdf_a?H8Tz^
zDeGevwVAWngH!h3d(qeR8NSw@)-qo<%?jMTe7D`zEg#E!{y2)<=c!R$mHB<wLW8?6
ze{H?{{9Cd&kG5W<zOa1i72TM{oAu7y>E4UTzvpJWkLmS>EGxI2kFr4>$f$mi!?NAy
zW!HpF`<zwPa#8p1)=dl3X5D+csPRUO_#`&rhub_>?6-WePkHCZkV(;*R=W2VGOhcz
z<4D#Fxm8aD`}Q=(mbd;>%8KWyiOerua{tbc;(+aw&ulF^v2)@v$*C$r?k65hS~Ab@
z*4E`6%T-fCUW7z1zER_FpZ}lIkJAsozxnuJ_38f%vbQUYYSXlP^^V>9&)~bO@k#5_
zS@-V!(K=YQG1gt?<H2oihKt<}{?L9C&s<}>{*Tk&rZ4wze)hU(BmJoQ_UqR_x4gb&
zzt!~pTj}o4#f90aOV{r5OtPy~ob>F~C)Tau_tn_4AMAB^zr4=W^Q-T&Yro9*?GnFs
z=``=DxVXEzw_|lCcr5W3Y5X%yLa<Ysx%K$1`J1;N=Wp82Xd}M#$K;1^uI~~*Dr@xa
z-Mi0$R}#&|qW*}7^B1a3UlHq|I>Vv--=jw!hi{)-6uU`rlBHd;?IAxAp~K77&&)sf
zsl2{!fA6naF?M0`pwDHO?oX_Kz~5(|5iNh){h|4rwfaX7uX-s^vFgEVDZ4)2V^bHu
zvhooR*Ud~d{d~SqNBimN>^8$gtJXhtS+nBhU%%t)Og4$mQ<M)fOJV#W_0Ow5f!8|p
z`u_a$95un$)OupF&F^V_WSLbXaWhq=+w95&%_Diw-nshpo|{-XSHAz1N7nX9&oT|T
z{<O<Al&n8h<I<CvlzG|v&E1!~ckh2vJD=y|mBniJ<3Cxy$WP4t?p5~OLZ!a7a{62G
zhr9nXNd8fga_iZb)4$@DrKHT7)RV_T+v*lDztUc?>3Yr2Los>>ELgsrtvvr$f3;`g
zhiUh`U6U2BuJzzlKIU;#&m-g9JFAaBt{-sPRAkqCaM{db|IWloUbC@(TpRt{?Z_?u
zH!m)q;pvh5^XBc($i5K1A94-J^B3DGh;_U?Fz4Owo)v#wYmWcctGIqtPWj`$^~vi_
zTsknT%2WDXy6>ZaCCXN93Oq%g=l9lHKCZ0!ylmw^=^eM_-9%qG#l1aewf6Jfxl51q
z$b7ysYmKVy0r_5|NB%Q6Uf%vZ@|oND{|s@v=3G3oGUor)zgPb*H+8Q3ZEfCOr&`gM
z%YIC1b!C<4mA>f$@v*i$O80tf`EkuNsmYROy5Mc!8D?hOt!(>rul?ixvF+DwzmI%t
zvsYxA&Ds)Id-v~|!aMiw@f_5g{yV_9cG<mW56q5CH#*jG%%G+5wVmJ(&h<6AoA-Z=
zKaw4pc4=$Jx-a|rGJfrymG$ix@0JN}-*@Z2otvw>Y{sJ5E211Wu`-FtY_4t3e$3Bs
z__x8)hxG#PnGdsjgN{nwIuPM0<aC+U{>8Q<l7HIVw4WdQRH@%Mca`>!vVECvR8}M=
zpINtGe){8uzkNlsZNL6o``7sM?IU%{AFdys&z)7La`l~_-rAC<pYy^Zxhp@V=oq~D
znOvzlajIg!1mEEdw%H%fJ6%cm@OIheM<&i|?yy%cZS6iZ$x`}=kJEb@Rv`g%R))l?
zpWAy<`;YxIyj&;gb~1l)Mz83<g~A%ClRk!ci?~d<nK7|t`Ho`gQqeEhRzJ*_d2ydN
z;bZT%_Oe@LNqzS+7TX2COX}e6`I*IW?D_4>J(G;T7H`pveD~FsKl6Q7(XZ7n)q^)*
z+Io|x;KX`swQJUUrUmRTkux{2c;9Dztt(3)HhRT2A*CZvgq7ajv309Fcs|H-_2nPc
zaUbHA7ccm+QN`E)dy!B4juM{PhR3Hd9(pkE$<xiDPqqu)Hd)oM!a`~Da#M|!u6Lzk
z_x812bLCmZam-3?>&|>b_Xm90EgQ?Hy<IlZYywyD!MCxYTiz?@O#W~*pR3$>cDmnn
zo(-JhjGZU$zP+}KTXWxq-B&)&)1J7cP4c_sl==Ft=l!ztZr2nx><EzfvQ~yKE_=4P
zpLk*LAB#WPc8Bh);5S#<E_Y~hT1eCFKJK(tFSB(j+rm$#so$t7^b*{%#{9#!+}FL?
ze<vHCa4>xEZe4QL*>sU>OCIjjsu%pambc7wx@UGqjN6&RldQv%*|%Sub}iB<Fw{}D
z!E#-X_oX9=*QUF<tgX+~KAl=@;$z=po%^6lxc}0g@NaK+*1G@W-2AcP^!GpAOhv{M
z^c9|bj60vTU3k7(@TA3Rd(yw1iMRj9`Sjxy&;IFt+b1ypJA1_aSNN45+0tnr>Vp0=
zTuQ096aMe1e#C!<mmYr#|IXA+YCbSo@`Cp>Z~IV|)TIi~?M}xl{JSwdQ2+Q{wrdvC
z&rah^oqFJOip#`>MV=O12DWWh;kWBIZ=J=@Fri`cvt29C|IYn$wyyHu)$jAO|E@{8
zbT26Ev`>%0>kYfC1)E>?{Q4LAJB-QymRH>J=MgjRnb}DF_S(7O?@ZPiWj(K~diuN`
zhy@oMU%!xpalPn|K;grcD{SVQq%kmkeLm0d`0~BApC9>i{4uO={^d4%RrZ<{xk{5*
zI}-mKn0=0o-{HudKFf32Ph|BER<XCMP5RGpxN1^X*`@<7liW^8MkF*isPq}%mhTsR
zd0M>2<WbFZ5l0=JzubbwnF;3U`hx5-#eY^mv=>a>6S^jO@81*e=gge7?}_J)mtnjU
zI5P_0A6(y6I^)lM;jGDh_Ltsq9C$95U00Jl>wateUi*nZ?{oYqwH1Gr|3ms%_&kZ-
zX4luKZkVj1@oMo(<;}(C_@Bpbp1+Cx$l7T4AN8w#)KxsbS`ztQIpe{^lRe5umNv;h
zIL~L;AU$u{e!i!jDa{<WJryRg@Bg~~Qv8kXsC`>MxNXeWKQEN!pjO}NBlukMpUm@*
zzpkg1x5u5IE5G9D*Zg;zzltCJlo|YE(X(8^H19(36Y7dfB!8cZkaJ)7x^K_*XZCN|
zEhj(vx9*hZ?G-x?JpbXSP-heVQoZT<uJ%BKhc!DN>&PTFYH&X2tJ|yn+4=Fk`#)l4
z&9Zp#%I`tx<NWJuYql#tz4GD5>AzR?P3ryaKlqg0{LS~nQ2Z%dY~aT`)32x{&p)?6
zc%O*(zE?l_|9pu1&+zv8)9ZhPCnjzG+fgTPqmbln-6<{kbk@5hf1Bsm_WRih7*y|d
z`Ti;R)7{t|5=&LiZ#lj6-&yW5_k;0UzP>wu%Rj=WPhng9pQh#V>!Vga+&y7e)v9d|
zdy+5T7S(@im@9kyt@0{wO$95rJ;~2Bc@qA`P1zM=cF!T=oYCT*<XihyA8Adj=$iH~
z{pb9}sTaR1zv!EFD=l&{ht&i=TWzmGOI0_I*B8Qk1VvNT7p&Dc-Pn9C`|&HUPqs61
zG9nHuOy_tme{NSroW<kApV;cP9{f2r<Bi+xSuac;b*z$J=T`eSyIH7jm3wh=O27Io
z8Nsc7b}eCd3TJf7d^)v*eFGP3u~^lW&3?J3-k#e2wClyfD}n1;a;#dPZ@(-0)JuPM
zaCmX;=E8iLoZ^iIzClyPEPGn!HrD?w@vfP;?t<~lkSAxBOK;rWf8grzV(WR+Rmzt8
zct#f7t~|bSol#|@C&$kwJIjMCa&x5a@2<@KGA$(caZ;ac!#c^<yL&z<3nb;PF}%Lq
z^lj3tFpCwtm)&e$dz^R6T9p8epY6Z)UYu9)swMof_#aWFSC5@OzHeNxt!&EO8Q(f@
zOyWATDP`yLBo=kH{h6leTB6R$1u{~9K)aL=-F+oc@%}*J+AZJ3&M%9xUSjRRC(EE>
ztZA=laja_AuX*g@$5ehBpFQ`uO3YsV-0J*w740FnRwPY&^sdl2k?o$-^Bdm+EY%mT
zm$<rC>bIY_!!cF<-I*sW4@$m19>2C)`PDr6c^YrmFUl_MFSENS?e;2WQqhm&mnSi-
zE7Ilm-0wE++zW5Hx_Fh<wT=q&vcJ!<Q*?d3^Fyd|apRBJMUKmB+}b3ra@VKdF-W*+
zUuD3?zh7-@p8AJ-DdE}O>34n_PF9lhD_X-T?>OsajqRej+K)u6j_C1lFF!AkZqruo
zc8uLZp>&;h)Q4w_beHV$UCYusqv5cEp$Zd!O!?Zq`%T@|uPSRETyaz8>i32}qK`Pl
zUPX6HO3z(XQPa*M$5DE#-s{tSu?n9Ts?%NfOfxOs|6N?IVw2@dwE{M)@Qe33>^Le;
zKQ`~#@}Gg}haSVHyB7BqXK^GoiQ3y-GCgu({j`~qjNQctY_1pn4*hq^>OaGqmwc0c
zo$oZ+TlqEMRj^;ZMYQMk0=KDh9#6v<CVZ6LAz@*`zG+&rmuaZV*L359z6VbpcmBNd
z-PZ`UE?ZCC_eyiD3?~Wo_kW-A`1%~at#9Qw-J5b<UdBdh5j&^arp9}=x82MIudm}^
z_<lU<)7v0Z@o9pLJ!^LUT3fsEw`$~`e>Oi{H{Cz=c~5Z7CGXSu-1!9ym@E$5K3Dyu
z^x0mUWAQsDeX5^qR~1pQ#wY5o{guC~e@OB^nWgiq=a~1*X^|3>xD6TJxXPY)SY<c$
zn|#wdsmoE@FP7?m@jmNz?_=`z*-z4^`115h1fQQF81dHTfxL5E>TjjUWpf{{-dk0A
zFtVl4@Hm@#rl)-0{S)CA<m4|txLU*i(6{bQ|JL;#da_S#HZxoEq_22TdbZAawyRUi
zZ2Pc-`c=nQS7ZmeY${1TkghKAq(pSp{ERuvr`_%@o@dzjWlgoW#pC+B32kXA{7(M<
zUaxX=9`rde+}^#8w?<`F)VwFcX;W`)&e(RU>Rm!T&y}!k8z*u16h?DzP2SqR;;``U
z<?+v>mb38QIQVF%)*~6;hpa_gx9EI)>c${beYIuZy!$zt^Y-?y&2Y?`7xyIjgng@R
zVw0!&{+MLDtxrN%&A#$_S?`kFGj4CuI&NJ!@pW+I{iK_ZW+m>QCcX2~#(5TZx%gxH
zwyFd^jd)OCX?Jz1>bh3XjIy$qEStp>_^#ZYH`i|J>G(TQnju2IQf3~vw_g9qC$(+O
zQup0v=eU{$<>Rz_uSywPNB4z#FxG8-b*)OR&*S*Lbk6lhv+a_%@7wNaI7z*AvCdx3
zQ$m*ZZ?4atT$?TBwqd%!q`qLC1q&7a9DaFU^lrsIiDkX!b#IzP3a^;w{9-;^C;BJ!
zN56XO{*3o>hacvaM8-tF-p*}wu;AmVH48)71$WJx@vu?i_~UOf=F?A$SGc}eS21&+
zZeYwM`vj${w?4h|E|FCDbL4~7@5^5^^zR)CohTtJ$=qjuer;Vwh5fgl>(6E!{wQ^~
zCN$wen&msz&5Jcol+3dDboMgiNx62leJvO4GwPd+a@vm73s*R$u^855P22zdjPJ8A
z=Re3<U0>gMVq?g>3A;Yo{F0n2ne{aJRj=8zw>b#`H-5Ug)qA~q`;{qp+UxVC55wXG
zOCp8y+xFxx$PPT#+Ed<fO}Lf$DVOREZ@C%lrZ2aP|GGC>rYQTL{LW8HVh`n7h3xK^
zYgy-D`@y&7oi@M8-xph|0#=Isy&3bO#=Xj~y{LJ$`}V$@tF6iw3oY0-=gp0sGU@$Z
zkKdQx=Qy3m@_keEJ4LUv!pkk$Sstu&zqWq;#5(VnMMujFk575^T)y#a(QRk<GgTsf
zJV|j3iIGxA&re@|=7mw&gF2h^7uu8hW1=Hk%-N?%D3t!`&0e-<d$x!}p3$zJUm8DW
z|4iDp-1VKyD&^f<dR?b@**A*RIjziE6L#{zd4(tcL^j@GI<nm7+xJzot{$1-(&#Sv
zv(2iBx8zd$o}TC7-V(oZKikb0Y58>XUumV@Gv~%Ra#JU#i!>dxR1SXn*pj*N>z9{Z
z*S2Nc$-6!Eh5fOuM?96aGB@pgvu5LwS4AGm^D>(cm+iVYGw;`wK<~W1$e@r&aYcWN
z0(X0_%hM#5HJ|=+&bI$`tlj*K<&F`;i{AYW7kw6b^kzos<wfrbwpW$jo4@3E^@5oR
zju!5HlCsJQJu*ipi&YhG_~_SkIsAf3c1PWLYxm~;Z(fS5?kiH+Vs@^e@cZV=drK!r
ztJKN=w$eO5d(Y#W8?-D=%f6~!R&S)O6*)C3@5_^m{@k3ID#cankMVb8%6yw>d-}9a
zUZ+UVQKg-!$KHSG5c2r;O{wh37t^T=YJ!`iJN3V=Oi0YzxTf>TS(X!_Yzz|9%#?R?
zI@ngMyX~_rZExgr#;(<jx0(MlT#wUV85tFkRes&<IKRq%p8^ic_@{BLHlOxP-}A2c
zJfr`@m$#O8w`?<hWu@Blz2FJkgvy{*t9#lNWlzX0XmBg4Sg&WbZ00JjX{$OuX{xwO
zuSik&d|04x-r=>C`&Q)HZ%Mi$(e&vl_XD<r^7kYxzMajl&wrJ4Ao{M$^og1*oRcgM
zO}xyMI{C}d{IBnyyXZ)7-*uL^@_ovNNzuPGQa82v>wiC*+UIfd@Vf^O_#eH!@ku+Z
zp6iEAW_kHMmWV~yl(y%q9lGXmO6>MjUS`>iOXj2=4E%AOdv)ZkiW4SQYbG7$-gF|d
zWrp&dhTOlmI+c%AYHw!W8^7UF;^j9f8!x78+p#n3q<2RU&q{XQ=eL>F9#lM2Vpyy3
zOyqrD{+?6o*rMkg{rmoyub7A2w})Y`(pr@-E!{UwLMd4;#lq8O8{;OnFGUtw?q1h&
zjSoFllX}*l$$Mmz@s<fWp10XoOcEB^`Sr;><EUR&uZ3>w_N{z)f9oA%&WVfmY}=7q
zQ+waEMQB3hlVi~`#Yd}jc5Odw`nhCoVB+R|y;fO*d-Np}8xAgWP2f*wpY^^^*LFYi
z%!hNz?W})H{~-J=?Z?qXnL52oYfFXpxXs!k_G^}8v?7=7Dcxg__}J9XSxNm=Keqpa
z_x{EtO}%~c{^bkKs&tA>dKuMwbV^2qUZ~Djm%W>{3_pve$n~C=U-v7%;g6!qTG1xg
zvfW|+CR@UJL?*Fa3*fs@mHzYEm3ti9E}L9tn<!K5$+E=xbdtZM^1{b`U+=b`e|_<L
zqS?N5-56HOKc4bu`H%GfP>Vl$pD%Xn`4-cg`u`cq&P>cQ3v#s7ZmNHjxOnT;eU}d?
zpY#vnSNM~;wnq5J%Ljj>9tSobT3MH~ztUz`$%JgP2Mbi*x960%d@^ETcy~bZXnoYJ
z{|s$=T$i5CW$V?McG6_Nq4o3$Mh3wWwy(DSXE^*e_-LE|5AU%1;jwFlb^jQ~Jhl5K
z=I*E@^NAzp_w|bpD<17BSv6()*BhT-r<golRc1dSw*L66Us(c?73+ig4izl)F}$VQ
zdx^0@{N&uA7{2)ik}u=_KD6hnXn&+PY5BwW)<3C_Vx8i5on2^j)6DME@sfK!%JXK<
zY?OJnfBEh8H&-91stJ5m)!v-D)tEu3c8=waPVXKDr5$?WeLEQHww`)@pKYJSy}uoi
zKk6esq)d}c+wo!V`5QA&^Y2uVj7Ymx8FX=jOwWTyds~n7g@ruMe|=GA{*8^l{hmMh
z&+w-Fx7fdHR_Vv%S^q?Q{Lj$D-}XgUI3jxXlYLimYM!?yOl5ZG-SgR4P<wH1l0{IZ
z0@uGz7x&XTo01Dp-m(1tC;Ne{xclD)Tl589+!Oqe-(Qk1D(m5K+~=e0#ErXi*BHDu
z;T3R{O0j<zW4w#?xapN!|1Q+a+VDQ|bw0Sy?uY9dpIJV3Ip3>zuSm7-QZs*|bL?JP
z!hA#5u>5yz>!&{Q&!2H6G&Or^uHC=o7oHllN!gu~_1`}22Frcvyr6oikM_4>Bke?@
zEmYoIT^lX)pW(dajt9*r*Bg9De|z}1UB#leU!wPx=`sg9a7Sbpo?UilMedQhXK$5i
z-Ui(`Xd(GBR{prYNJah;d7d@Fo>vy^>H8hL-O$Epv73{tc9Ud8-=4BRuODkY4P9to
zrM{o*<?l7Ce=BAk4*a-nz0$D_$^Nk?mW44J^VD40s3O2-*uWkbAM@kn-L1ST`u^M0
z9KNuGAGhD6+j?*I<K9B`K)K%zOwAJvHO^U0u#^$LzTs?b{i9<QUu9)B{EYg_{(RP}
zCQq5K|7`irz3poIB6H1hUd)Gj|9^WkV$VwUEALnnd;j^LuEos%ul>Ec|A%bJe}>IB
z<J)dMTfQzU&f1$d=)t~~EZ?U8n!EMHj<i1M<$aMn8&^&~?J4`1LvfN>=&k+6|8Cby
z*h#*K)4fn*on4<-6ZnYtR_fh3>qVE|j=8m}yK~VdmhJ*+!80O_k|pJbEk&=?U6J3C
z-~7k+@1$9J6GeOGiC#8Yn;t6m=#lECJ>q7YGsFHfWX@CTlkQwTahuNu&%H72HI{D2
z_x_z$;@^KucmMJCTsIG9%v1Tua%<hjb+4?~O%L#Rd*+hQ{ft?n8#gvNUAq)5>Gsok
zBiA4Mk7oX1U6a;#)NE|eoqP4`<#W&9h-iCRd4B)5pa1pp&OeG9F4ibNJnJ4l%h=}n
z1VizB!5RLlhqWrZS`YGWd8XVv`RRgl+SlyFvO5=MPkb$|TWx!6HS3XZ?PQ(8wM!(l
zl6R-`vK>v53Y{2TEkB({Jg@%HU-bvikH43#h>reI{a7~msM+*+rPJ2^Dw}3<LYKv1
zav|$xEzhUcDh7+0)!uAYb5Py-pCM~K%PV^>*&59cy?N_RYsEa&uWVU)>E4Y9jfr}>
zPtAjr4sF|<n`+!~TAPU>%({Jj|Iwf$w<i5|Pdai`FLdXdI^#XL(Fe3jb(JFYzMS6i
z_Q92RE(T|dleM-S%M`j%Dg1NtwA%)PJJ|V!Ch@vwe{g=JU86exvBI{VjE`?;9-RFB
zp0lC<7M5dXY%KD#3yzgN+L!h5`yUbigS)~Sm;bT)(Q4NJaK7AJC*9zvd`|A#FiyE|
z5!0+a|6N!wdT@vE?U_$Iyk5yJxhb__qTS9PzQ3LSaDGT{*`r<kFkk-YBkh-ZxhDS^
z1Yhz!54>vfbXw$+CjJeXZ)K`gekM&~Y3<CPuXC{T;cB-E8I@;OuY_LP_UCumg=fqA
zS4`^N_3P!|QX6;w-JW^#B&K$`I85C(cjdg9ISJ{nV?_ct8BZxN`?vMoJl&7Wd;SU5
zIBehbLw2cb^r3x*SJ&mfTbI8kPvKH-g7f}2MbW1|w9Gx2pi*&HRAkk^&xY4aKQ8_!
zGQX*GKL3yCN51dcAFR%vSn|!#bk8B{i85ZNd5<mFbnHxOx?D7?^?5GmMCoSUV<MrM
zfh*Qb+Eu;$W!~|Wj|KUsf4!(Vn!d_>g5yN*WSf$;(e5ez#k@y1@3!0e-EH&giujlf
zm;My4d~t0;Y(-gg#nWlW1N+=}^gdQHRX3a&dgIu|HM>(vbj;@Ox)=Q0FLOTkAJa!O
zYOEjL<@$Vh`p3w%hmBTbYxkRODr>quMUPK4W?fxaU}M~|z#}GwxyLk@O{)63KY5y|
z-j$$xe|O2--QJV2MD($QY53cVQ72|QKIxnHHA>d)_*paFV)0qQ_0wXV-<~tiRkt`_
zleBVA^b)SqbC)a2^l9IHUA*Y`;x$)P+%Kmp<UMY_BRBJp_N<vFHhA25(kJns;p?i;
z=bzm$@;t^?uk|!f-C8oD@w~{#z`Zj=LZ>$B+i$*IY$!cD<CgJti*M`2|896!^Pk~|
z`ut;&1w|#L4@ytnQL{?h>t;DI^loFSghI8{NBvvp%H=n>AJg{VJ6E%yxaZw2ALf@w
zYvbFyZf>>r{Lk=G$i_~i{2*lgt6qKj^#2T9LXwQX-#kfQR&$7d`PRCqx{KkH@6_F@
zQ|e3Jf66Y3|C`-WL0Q`ykFU@AtN(-FNdNHdpaXM`&;R}M#$V$<t3Ta;Y>|EbcKlJV
z<_hl(t3*n|wrq=Ie^mds^tT<myS-aoZEURam+~X?+3F<XY7F*Fj=Ye&j<-i_qQj*3
zsV$ot&dm9<oV{te>CcTHl@IO{`Vii|;IfT!%C^EgnUhYN>m2Q$w;-=vb>ntxH$Uxf
z?(rL@y?!`vEr$euL5D$ouan^Q6&A;r);ZT?Hx)kKzwOMAE?L7w&7OHF<^Mu0s^;&W
zdVcPs*R@W$c@<~(EL`*DNbuE%PpWe5+bZA2i)FLAcbJOE+FiFZey?3O^;>U;>xRor
zj1v;iTUg$zw?BPvpUG7=8|RuMjQ^%vetQ-szqWdg-rtvh`p;CjR$rB0{z_?GfZzm<
z*YnoSn;-R;;cr)D;)i!T*7x?V=v`3$pTXV9US{(AtRE~7oFru4zI=ag-@m_IKQ5M*
z$s1&Ul{oPFiN62gz15Lx_7`3JCC3^UX7Bq?eq(IFN=r7Q!}}P&NdCJ1?EdlHd;c>?
z<gc63;QMB#eCPq2FE8Vl+KGhp{R))0#Z@Zre{R3QKMSw_3?H_C)!oas*x>m#c8Ndi
zduyg{vDs%3|K?@o{44wa2=7wg{I_GDY}-q{`6{n$S*{E1V86qBwr*C9`~;QhPd?Qw
zdH?TjU2^?F`!vJ4BlmgM?si|y`h1;OB*XcK@k{<Qa6FUGxFS;eY4U#t=d~XSH@n|V
zEw6~m{T4s*Q~mK=x6A%NuC8@1E>zlj^iYnol($^X5{aMFm9IC)oSph?_Hz!OZIe#l
zkT<(C|8&(PTf=~V7t6&B{#5MW;nA(-wRWew_Ev^}q5X^R>77^?W&8A;vtSSN!N0cJ
zAKrYuEg1Npp(=j1z28A=C%f)XwhAg|IK(DzU|ypubD)l8aotn_v(A=T4-Ri%e@khS
zob747`_~pGsq|DXZL4lRaeis^mOWQ=E=FB?d7y`9b;^_QvwrCtdaWbYsW88p7keT9
z=aUyt_zyh)vX&z^t#?Ckrp=shYbJiH4Hk-zJg8T_C3}AUY{|b_S9_NP%HQ!U%wu>d
zbAJ23pGBvCh0hIJdv3+nD|b4ZVs)}l8`z(?9-0;6Wpr3U|C8wP+ppLx_iWq8clwGi
z*YkhBeD|N)uC%Kw^V&mYPs#dDm4lCOwtrn$c2>W5&AgC^nj;d&vzDki9cVI_bARX@
zqtJh*Vp&i9&i(%xT&JxFinV*>YH(hnaGt~)`^gEH`<^T-HxJijZ+kFjo4IK4SC#A5
zWnrFf&kis!SQkc#7dz`U@@}cO<ZEd>!C>b3_|nd~aS?@kZ!FYdI9mQlebpDsg{*0*
z*=(va&O|>~UjE_Het!E08^4!N{Bin#P*n8kLg^cK-d98?Yy7?WWD=wNb<y9YE2DfC
zE}hu;)6V&eP1m3J{|rr=E0T}eDO~-dx+<fp=K8c-WpgceR)|-282auE{47xTN8z!|
z^;;jby=8XJcdOX>s_x*9`P~Aqw+E#7=q2c0KGR|)GylEI%~j>)vs~ZIf2p0Ry<Wn8
zcj4R5J^knQS|8dlbIX%SvP)_XUio~?<Dl%0uj}kiU4A?HWLk*T##<{Dt*gJiy|llm
z*Yx6ijyv1at&?TkUW*mRM#m&f<v6XiL1qH8@d{b~yOQg|JwEa`ZSA~u-t~H}o|;qW
z!_SX11vfeJv@F&<q0m#huIai@^Wpyt;tCtLH{5d7n{50u;or;t8O;T<=6vmae|JCr
zvHZdMmQriYXFKHbJf|++v)xnV$>i%#@~q`5zOOrRao?m1C$DZ>b8FJ^*e$6$w?@oN
zR&q_?P;6J6-os=qaG>k)p6bF!y+y~&cW=p_xj5nWm8T~T9-7A5d8~qcUiOR)KQy*+
z>Hje-yVmd}I{Nf%*AxF4mO1vg{H?mK`^flX@xg6A=U1Pul6c!$Dxv$_r|;AUot)ZF
zH%-^dh}14BxN~To@+>o(<x!Q3uD&gI`Z)KJ@UzCA6ISWVDqjC*xW0Z%eR6KutNfmN
z-jd3jVwbMR?3iY-K*4R=z1k!53lFe&{phSoeZ(78c42Er?sgluVBH-R2U8M1&A2%u
zeSe(xoBEqVN9R9gZ**gqnsatS@qY%L=e$4bw!VLK`J3P0`A=&4tX5ad^5TE1{rAPc
zsr%F4Yh8YL<kW8WUoksa9>}av;QDr#^WO0X&zi;F-&?op%~H3A(|1mu<S*a;Fy8o&
zTrvCMkes>QMQ5)t_KE-bC;FwYbH(4~58pSh^>d1S9n>Sgt7fN~t@W4lIpI$t-`amG
z+jH^PvAFwIW^1?BhH+olN}9mr$gbgV-p|N5_Sp2*=Zz~bA9`h-lknj2CsV)Eo|kV$
zE>)CBnPBnQHha;wOS%uWW!&4I6u*vVjw-lye5W6O^{mUUzFl;c_B7}(D}2VZ|9t<o
ztvYkpg=;wfUdaAa>SRW~a<9{V$zztUyUtZh$J?LZ(aBwUXK{92GTWY4tDfgt^?Zrw
z*?1(`&F=0i@5spLl&$T{ybM3ZcuO94%YFPQp?+@3wd=;5qJ=WMKY1tT-<3Pke`!zG
zFXL@I+j*7-C&)C1C!P#`f86${!*@f4GvCfw{62B8t=3wqCj45(&%OiodpMrI?g=x<
zpY>wpn~a<O`rl@W%kVs?6P;SovuS1rd$v&B%(c5qjbl_kto!0rbn-J#<DGu5=lb6z
zy8GrHtukJ5C-AiB+Vl3iFQ@OjqR^1HqipgrOPMFtwc0;s{#|dU{-fFL@8*5FS$5)A
z#eLI1<}DZ4wUuMNLgO_y_oOwOl00q*9C+Af9saHPW8Sx4*B{#Vyx(J4kn`1I3$N$f
zb<8vV>~!7yGk;I**|p8Pw@3Z6FXg`}{pjB8rK(q|Dy~cm<=-d0;$582*Q7iyla@)I
zxo7-5Ppa)t|FEg#vDVhC+?4(C7ykTb=wErRWU<$jHMjSl_;8-@-<5iClapq9@3yTL
zN_4st%{uW)(R~ws0p9l;9$(t~-1F~N(`erIzz?sFEM63S@8@3*l}8zmEY-I?{%ZPp
zdB;EDyBX!1GH%_Q`b~R=LC<>W!y4AkLN%LCMQ5H+wh8B6^~2W2dU;f~(fLB&wU>7-
zu-_kh`s5vlJBwwl>k`7>yz7%%b}|0?!k<1HB700*-v6zfzx1Bm-<@^xF~?M|i@iGL
zvx2iQ<I@wFdKtN_9{HH6FYAjx$iGef@UQaBJ)Vz3FF&o|d35RN+lW%jg!Pgqz8qYC
zcxrKFQSO$#PM6;Hc?8{#c#yta-l4X_WV+d|)@@g=Z26}0DY8%@-pT5d)yGR4S5FA2
zYLo8xxaH~TFe~{>*IVoJ^rf>5_J0%ad3asXe=qN++wtrFa2E*meEI$Jc-5Dk^;zDv
zX&nBYdsLU+@s!uLn{Rt`vds6NJ`H_Emao68e>zQH_D8q>{I?&nf+O#^Fs(hJlUT#o
z*isS1@Rj}EzKegS+9}s~e(XQua<TNS>(^}8jq{##Ithi@E-=s#pK!*~CgJnRvo*&G
z50xmh2TzUo)w8<mY1pPk>t@>*n!LX)cHQIhg3TZEI<DulWcAzbJuE51*l>y6E$I0^
zj`M2!nt!N&Jbh@sxa;d5VYmJ>_*qqU7w++xV>!EM-9ef5o|PwamtP2fZuBGQ{?Xix
z3dU|5pG;V%%zI^hLP5oOuV0J5rGNPHPvDA;v&Gan&&hs?jSWjU``FbNTFAcs{N}L!
zQi+|xVRoOnJEm-z_WZ@)JyoApIUT$AerKvK_vag{+2ZW)t<810XS-<jjioKj-#5sV
z*k0K#di-V7)Fa3BPqL&We_6LXcz4?6`6|6PCFFLPem1(eq+BKMM@;137H8pwTsw}r
z`S}-QMXxo@Jw8J?L*+rqpVjt<zAO3athrI(!C=8-@w(^twI?5<4eWf<ln<WqIr%GH
zerd&wUA-aYwo(D#1G`n6+k%f-uAA%|@%Zx0@Hsox|NT6sHFZmZ@0sN+&xJH{s#9`J
zcTG&Y<S~Kyq`kiE-q&rRlg)Z^+&Ln*eE(@={V!>StBAHu%L;o930rM1mQT88EK)5L
z-pT!Z8<M_#j`aq{EB_fv{xf*>6}4<`eSWQGVynOAoyK`L{uah%o3+YJxO2*IYeeHg
zl@-jQuYMUETiq(5E4<Eb@rQNp-u-U{PYPQ5Ju;{@usFUp^W3AUJ!<RT)cjo)aqc1?
zTj-Q&$Mf3zmqyJKzb(O#z<+8lbI=9VNs^b0iWn1*v+vXH-{Bd?dw@sod1KrXRY~o|
zljknxH9D?+r9SFe?w;cxT@D(s-@H2AMo!{M@%8!7qn=f-Ok-ebz9MJ*&*baI?An6(
z$&)v%6Q8qQ{?ww9ix;KVugtH#Qls6I@Mrz0&u@zCy<X&)TCZh0Rh+TY^MJ5hmzjm+
z!^if@rM4kgJ+8_+KIt#Kv}EQj?y}VP$DhX(Ena(Z(VBU^B45r*yX~23>dk9+-M?h&
zozsbun~M%>PRmZ~m{WR~js5c8s@lER)~r(S4SSt^eB<HcxdjUzzgN^|nfc{pe$92;
z1q*V;Zuyk5%&D3)>vmVs8b2e(laF@RZSCmUGU2J$ob7Hkzqa>md0QxT?zs0A9U<fC
zmCrZsN;_s3@!V7Qdv&LS-PKodqI<i;FaNt+zVyz^a}Cq_3T0X&EA35qm2!_OynDWk
z-Rn{M9v-DFaXg<EC43L^%>PsB8@Q)QveetVV0Kg`gU(F%Cw=C6((CtDRm417^y6`H
z-#R|sjPpS|u59^R?|nt*i*1tqTka`_N1wip*Zd@H?f2{nlhGZyLwg@x_n94ZIX8E^
zvq8Vsh4XU3S`1u{=dbP4=%`qB>Kw1*R>`F^c3YXAI$m;drAiL3)=a}b`)etDjH0Xd
zX@30HWxr+3SL+!^Jm>4(dgS7K-LmaP+|hGY8a`FOYWtXN4&S;QX0yjH-a1a_E3f^-
z^27H9V_wgi-tlF(NBZx;ZGTT27`|nG8m`VN@#kP!<Kzop*Z7)$%em}2S)Qe0+I#Q5
zH%503@6Iw({~)kDk;RPf#mVCgeOn*hGVl4P8S^7Q=<*-;<&o!g@7~;Zq~k@+($tKP
zw(D;R7-$)-<&aRHr+v4E@#B2otE}f5S7csxtT+*Q?NUYl)Vcr*!Kw2n*#%r!Ea#_v
zYiY;f(6XTT%ClOgNn32neSh$NG_$_^NH+cOJeiM9{`)ka?%M46+~A3U&om#m+akLf
z4$Ld4Tt7M2J}v&{`NQ}0K8pAK34Rdk?K?Z7xM<_cb+?jkT0Jp7y7eLdj^w_=z8UMU
zoM-!!@FQYcy6diwvTJ*P@&%pyJL}l<#_b(>EqPUC>}wrAvInw%%l`QEN$_#|sSECF
z_89F~yXSa8__)IJy(Mc*r#{we+2eD$@b<FygY_HBrhn*n-giy6PBbg{Ro}KUw_nwr
za&Et!^Nbg<akdJTA5{N+hQaikdbghBR$e7FOQx^<abG{^zcI{aoBXIY?S_ZsY~Myd
z^Mco!s?j=bPK`|>g?FyswbPxse~U>G|EYZ8&kB$Bxouf*cD}SGYVOy|g4Y|n&VDLB
zasKBYtuJTv6oWXPl&yKpQ~z94JhrFQ{{QvA(mxKbsEGcy_v62P`?>z9W^CUlaIqwf
zQ}^!Kl@Whdhi$pGE<c@%B|PlfrxpXhHfNK@*)zf%?^mQhwmp7u;ra@`)4p4OR6ba(
z?R|Pa|I*W14%?>Z%U<1jiDOd6pO?w}TWoR`>^t^z%GR3R{|qeu87_V4m;0lBwZ{LW
z_2G{d@evy?ezh$=yz9(lSG|QxZ#yz%yS7Ctr%ZlZF6>`vQZ8t%GF?f)>&T2J|1AE*
ze{6r-{b+Y=bijqB&AuPrz1EHLWjUJrpMf*<?2gv8XK$vptlgud(iP%!u!LKu{dDZ|
zpK8mPrg~j9xK#I~X6oF3)&Ciy=dW|(R9SoZ-M{^7IoJGW$XRWx9Wwv$KB3EMSD$Yc
zzpgLV%X~M>Y}VRYV#cxOF6nM5d(#)Xc7|lcCYhDD7Qgr_{#dT_fq%QX{Z_uE^|o8W
zuVrU1HGMnVaYdH-_tRTmMy*}D$#3lw=}hI;WgH)mn?3rtx~FF6$JIwbS1Ej0?DeDk
zp?GuHN1g3V*W&qKY#02`uy{?b%v#$s-@3LnafsP|Hkr=4O<R-Q!cP6+TIIL%x%)e9
zJRi$4U5?yv<%{?2-Fr3aGcv_aF28f)l1rz^p+^sX$`$*U3c2b$I4->)G~)8LzVNnI
z)w8lZ>elmKK6u~#PwU6$-;S=2^W|zpK2+9odp`W#&HXz2#2@{&8M~G()LL1z>bk(4
zh@&RXCo>m5fAV>!!u*Tx`|LNcH~lGmI9ERMhvh2!!~LC64+UeRcb~7@c<(0ro|Ai8
z<8qap9=VmbPSp$Z*LX5T`^VQuoWc*~4@LKj|F93cyyd*mkLe-P!<xgkT}U&Jid~hZ
zcFkJX{QS&!Lbs*!n(iDcPdGB;)ULnzAGbe#e?->UvH6(P{Eo-|yxFrvtp2Tibe^|%
z)A1v->^pNN*lvBcIK5@_e7~s+I1Bdq3EnJt^SHF;UVhZtsy$N@*8DPGeCuuYe((Cj
zoX1@rYuCq5{A_=)|MukLa?C$`*ZfF+7`Jo1M9IpqU!FDImGx`lUmZAh>az1w>zG>y
z4d*I<Qk{69)1lLR-Q)Wz_QHEuAK0`0$@<8*^kKI?r`LM3*$-xGzYX_@(6^cKq}_kp
z?rEw!rd6g0dlz&|q<XYZOH0})Ke<Nx!TejxL;fzZF<tlL+OgY#AKBJQTq>0ptLS#P
zwm#~;ckFdz$MR*qEN-{%NoOyQxO+`dXO)X)o}B3PZ`}{r+v?=A<cvQy#nvCPf0Ugs
ze>>`SMfQ;>x%uVGOz%`Bd6<0N-By{#U(b|Q9qT6I@wCtA+)dT~GtYihNqBX=wOji=
zzuvv}Kf~%zmwflv&NF;y-<A7;`;mRS4ey8Atr^N2_w1Y<@zHGKlBLV$+D)(h{HCk=
zd-q#m-Af#|gT&Ttx~<Y}q<erjzP?7`NB`sbw~Qa&{kQOAa@57VFRy3cb-V1icl&*t
zph$O4<-k3&9!bO<aMjwdeVU5c=VccHrpN9#IlHi;KkmaHd9HU`UYhoA-1A*1jw5AH
zo0#P1*nHh9hgh1w_bDBEf6{_o_mv#mjvuBE{W)%AWIwpgDXFjfcz$qS_}21m6P;q*
zbpn|rgJ&jk98hLWFmH-Vo#waZaXiZ;uj{qB)wiE*x&5r_wd?awHs9SZec8|VvYT&m
zUdzb|XU?QfJXd*NTddsjYjTvg)=3RjQ4g616aQ=setmN3jf%yAm;RVr-Fvwq_T04T
z63k~?Wm+aLIQQk?IktMQBfFX|MK^r5jI>mcdC<S$%leC&t6!Zvs+v7J=#|nf*@H7y
zK9)QmcjsE}wH?nau4`_Yw{A(}e}<Zgp<6lkolJeEe`dj-`|rM<Sg&%$CRC;DW%jCL
z*Iqm?pZ`56)KYur$wN=dRrsr3l~itV3tF90^(JcDRGYfE8+YvGm6Mk*uliVj>w|XP
zq4^R~susR-YRcDh4+;NS{p^0n{q6JLG=IoC^y~StdA3`2_j^yX$nWdTFJ4>Q=Gmt#
z?z`O8DtcP})S7ES#~UXVM*U~lqW+fmL-(=z4gN=7Y`Gg2ac=L!A1arp2X5GR+4YpS
zl9fpI>5721;5qM(SzW(T;1(S>E!A($gG*a>)fdiVtL^IbQCT!^d;h;F{q6s_w-i=z
zT@xz&y}*6JNp<DV>rdx*d~(%)yZTXNqmp5<&<2@LN?Y0Or@3i=dH&$;-({;md^@G9
z_e{F&w@uAqC9k5>yBDZT{Hy)x^0Dthp1<=dHl1l`$?90@9>8^5>Eqj%_nG!b9CC~M
z&#>^LY3U~WWE+=H+Ye9Q+Ir1=et^B9<l}_*=htO_%Kp~6)hfN~d86uQr&~Qe3Dd%I
z{>@x}Wxmk8$Xh=|;!o>Ll+aI;ZnXAu>I<JU$>E^opVgm)AMbtETlz6MaOb5b!KQD!
z{EMYFZ<?;s`_!N7#w`ws6QXURaYF9r3XA_UBu?=+-m3R)SDf@SU2e_S7YctA$IE4l
zSv6i=zy6}R)Aw+R8{C4O(U)JxC%ueL{&(Iu;elI0mGJg2>nAO{rrPv3=Fq}vkDlc9
zye(sMo-^^~?LXRgAMRdmKk?^z_DkXOPk%MExo>vAu86(9{@T7jf4iQ9Tq;e~ooc>%
zs`~y3&95p%Kk<IsomjbQwszR(wd+(`%i|79qy#x6oN2HNx4gUK`HJ<M>r=}v>-=Zf
zrgV9&XNIY~<}^-EmKFwqP0hzGPi?ncA1xbricjY+KflP5{>%PcCstRVtLW}OzO*i)
zCTVxepYSWYo9hcaj(?AAP``g`zwaK&TG^u~J<7EuuGF0F`?u5dXY|LY1UubVUU&N6
za&PVr-20zlY0aIhQ_r*asQ>P`y~}>J{tc$s{TtH{JG|Y~D`XVC%yZ&N``)@qHF7gd
zk1g>0&oIry@N3ndgZ~+tYGU5~?bs*oKKGa{ui)$}Yu4?*wBK!?P|TjH)(>&TO!7zU
zL0bzpOt>hYKJDxp6X7@em7kvPzkXW&*xW4j--{fK|1&VeEjR6aI8#y3RcaF3r6Z+*
z|3sZ1-@Ur#KZA7X?(D{$Eejiz|4yh5DKm2ZlyfY6&dOu;Tz`~p{a=gPAJsqe*O_Nh
zi~J;8t=!2@Oa0924LwCZy}!e+Y-!q>TXj;<U|UFWlVxyU^J^EY7Hfn53>9Bx{xi(W
ze!86ba;V^)qxBry!g6|g_`XWL^5y0X{di;jinA%4imqHsp0EG;D|qhW1ZD$e8@aE?
zPfU9rRBpB6{hH<dZ*`g{Pcpo3dO6y5&bJd6HDvuSn?5r<TF}*b{__c2?VwXn4jS}Z
zNWQ#1IdWIl(_>+_ntH0P5mP%PWNlYPywBTrDfhXWOF~6~MBUb2o;Qc*Et;b;^<BB!
zfr5I+YpYCli=XSe6l=$NG42z`Wt)Np%bj2CSan|MSb^#kCQEspF8lWj>gT%TpWWZ4
zG`D!0k4(wQ<d-q;Z{K=m-d@muhDEOOc@t~NwZ&;YE6*1PMdrRs6t<Z#m0kOp@)387
z-=~h$Ki>L*{cTC!>|?W1kM4RSaP#3znTbsm$C>YcUcXs=XP3mRk~!TO7d{-8Onm)i
zec%4f-%}_3I#<)6y78yP1mg)t?Cb2;*2?p`U7f%9FTc6b^j$TvD}E?@d=#Cr``VU>
zcN3UgUJHiFd~%tXxa;e=>}R$055pVl<SMQosya8H`#j&;wYP7@+>Y5lQ!va@Ay4vP
z%*wdpS$}1Il&t;F!0~m>&fm8`)HX}~jDJ+qwQGIb^PD7k0f)DjwVWr<t4hAM-}7|g
zRMAjY_2g$CEh<h~>H2roXZN%JFg`ecOK;oE2f6ldl;ZhgV?E{mUKGj`3~=A^XK~w!
z7uHF8``$lDZ`zZ*{LPQ#$9vU-J}YzOuIoEFbz4(NLsi~`nwj5L)IV4#Rbp6o$%^%j
z7PCBm?2#W2-bT-eb$EGa@{j9B<Fr0}I=s+x&1%_~91}Dd+Y0|(tDZ9_{6*nWub1mi
z{M?!N*g|{0e@xx+`=VcNoZ2@#TWjUR2fIS=9uHW*;osEH?Qa7=l-0N1=lNs4qN0Oi
zYi)GUPF?;PJwf+aTzwxJ?bJKk$i9s6%i8|7`J(&OGow7FyIo(uR!m*6r7uyZUPJz%
zMyb3H*E9Rf`w|tKAH}zt?Damn{Xau)t(JR4^ocID{4F{Bdya`)+~WEeJH^m^wZy(>
z!iTo9o75%T$?rbqvF&iu8l#ELjdTB0eZIi&m;HtPn_1_Q9~&Rs^DN)DD_!MlA?r!?
zd6mku{`}dU$=;)KQdv-3wnMdD^8Inyy&%<kh5s42ryt@oVhOr`^8CteJMGW!tyN2u
zziaROsF3T%t^D&}-QOQS%-t#faN*^LId{6}-t((Vkl-tv=cu%A(x$Cf7XFC*@IJs}
z+flyF)y(_;Isd%WBdSnTc$)c5_EY($Te(m7x9M(8xIOQA-=1}6WaQTscm2-x**yQB
zNPbiLXPyqz-^XsAWbHlj*rvp`sQUVon^)=!&CXx_5HC}|uI*gwietS-cMOx~-rG}h
zwER)xX05uIl;kh#MK4IcQ&S4NwV<ftoaMTA$1-%MPA{}}53^LiGyi$~jHJco#V;Of
zXOzol{%3GyklCOz=dY&HzF>{VT7K+ni`G_ca#=fn>QCld%Qx?7%yW=bDL%PQ^VG2`
zud>Q7cre`AlX5+HnaAy<$6R9m*F~Rih>vcy?yrx38M}qgY>``i>&7n<>-Dznp8KKJ
zclPdUy>)R{!;XC`V=s7|mu;2ZDmdv+m*S4rWC_a$VFuX?gUapo{-pCC<zC-?&-ml_
z)^}?cU;g6XaZ9b){AN&wUJ$R>qk}5OG0sY<$LB?gxuzJhopX9?zwkf9*7&3EyXraq
zss5<C|8W1|*Yy$^=HI^Ouig`MJ|{QIQZ)C^;#}#~#tYLD4hV?|&Ux@_`|bMl`^<mL
zKlbfiQ&INJ`}SR{=--z)S@ZOA7L>c+ekQnM?h(5Khs&(Eeg+@BFOk0g`r57e(lz!U
zeb;OczEycSBe>V=V%#&<j4NwrA1(Ur7Tyv4oQLy4`nP+M6<SwRdA$6ty{M9WX131u
z(loJYQ!a;HjKAA;)8y`~T<fplcD;X>|FK^1(w^my=gOPx9(h}GUDdkW?|JD+)=ttp
zw3El(^7*Cx^YUA-%Q5}1|M2eB>%&&QTg<|~MU~|wsR}+f+>o&9j8opZ=#1x*&-Q24
zXZ~mCisSw0|7Q2&s~@E999)s{PvYvI-`cCayS=;XzZ5C)OxI}Gn3Ct1KSTDo>7Pw6
z_Dj_%zUW!Ml6{s&aDw;ggyg4QO*|4$^d(ike_vm$c_8@P*2S%t#G`b#xj&UWwbp-<
zMa$2v_lqx-Jeha=nD^s+fvjIGN7v1I6v)%b7&>8|a>irb78X`^g;s{Xtq%&;HLv_p
z@@m#0-M5=P3ypjY6SebaIY}G7u}f|;KE`Rwn*X2S(5XxBb>z+_x5o6ade${0*xR?q
zdmWsbe94A$>5s7Yr#;g`i|#Zq<sUf7y!**t?Jr!MpS9=9YZY~s*_D1YYkc_D>r-Zq
z-MJ*)Pq**Zoay{~-|)I_<DE(VYb!qgC_h!N@0Px;BSo|+oQqNBVP)VCzGl%cd*8R^
zoLP6RCuUCLeT6xE?(yrZKJ6`c-L++3rh%EpKRND%&%eSiUR<$H<UHG!c+)5Srd^l*
z_{&(e{3|wUp2_swdgJ#gdf9LNZ!CAXmb*{uVCixlUxv$hs&h7{{GFDx`cw1OKNsdO
zA2@IN$#svB|GMKWH5(iL7VntkZtti4CH-6c=1I?wZZ8is65aG+jUY2~QOJ1-9<Rqd
z9+t|J`}SP#pL_OioX36Lrx80&{LQ(zM&;5U&cf<^#$EHQ%e1A^^==n1^&kIvePNB-
z=6#n-Pxtd>g<Xz{&DvGEZF#n~Tg^%#-jhb{FZY(Ob9{Y{pKa%UcJCEgRbICuS9E8w
zo_tb!ulPs!g(%tf8>P9zI%d%sIea2drUidapJ#lbZ2ig2okhX!FDumUtf^ks61vD!
zByorO>!|YbuH0Ly(w&yCUvQeXFS--m5oGfF45z}!^H~@7ZJm}KtR(t#a|3_Wk6Dwx
zZ?$dRc;QD?#gog5(_}s|%OBhQT3yI3LVmVP_~akCH<L@%CpI?T+AHlpOQj=a&YUOn
zvpyP|zc=gqV|?NAO>L*t{`d2P54@ZcI^Qtm_s)O_;U8R0mTpxaT)iYcPyD*x^Q=_t
zNRMdOB!eBt^R}FxeORe7n6>cVg>&{&P2N*nf3`39^J?-LnMqnd=Qg}DiBzs$yj|<W
z{(CCPwv8v&M7~e#t9(04!EAHtoq~eGIcqa3s!S(+ylu0H&$jbrM6gMk^z_8tXLJv~
zJbARd{`8VF`tOa+9=$u~o-CCo`LoL+aq^pj!Z_)bwx7Mfg|@l5N_*b^<1oSfdf(K$
zS>N7V+;vdyro^8$7V8h5@3=4Vbw2aIi*>e_zr>dPI#luX_KG>TPAmFFM!#bUFn63}
z9PfE}ruEU!Zv46a%JTia(w3$6sk+Mh{{D_W@L5nnQKaUe2eXC!srAy4b=RM>WX#>X
zN3O7U=cE0KChKpBJwFmPb?x)sXY-Ft7dv&~_C4;CI_nk$-JYGaNGGrOp6kiS>W%R}
z74hHZd^pf&T^(D0B&yh@Z2h+uvs*pM%9jKp`imG%Up?9pFY52IuK2j+f-gJ2*GOhs
zN<5eOc0TLkyjyo7J=M(L1|1N-Q+#b-;)VLm6<;NzZr#fjj<t)Npi^WvzwAgo|75eL
z?6N1B_EsH!G_7}q)5okRv-Qi36>mLK+12v2C^G8q+>ZF~MU}^yO&^7we(mn*@_u<&
z%hv9ludTu-i*@Gm#4t+DU#P6M<;ny`CwH6q`Cgy3^<^sfL$1^veR#Hx^P$Iw)mk%_
zl>2VnHMPL3QSp{hk^kw2iglANhxciEc`Ys1^LyOHXH^^{YGBm;ed4aX<DNM_x3<V`
zYoE~P&sfI)mut7Sx9E<Yea@$qR|Hwhd|k)vaz*M%?Ha!D?>X*wRfO)y{b$gO`F%Zd
z`Ku4N_e`I}J~1h*XyRh)Z3p~B!&T<lYAL%<ci-_Ya{qx#Z=5s|w>kL#;qK}#nV&SN
zV)E07PsNunTz(swS2DX&q-GsALsie@qn0yodrZ5g=dG+Sy0m%a#TNmGW#V(14Axy#
ze0}2Q#+YwgAKWz$`|w3LYl3t6^H29m5`XZy*(DTIJeF9u*`?KOe*1$(ZvKys-@bBf
z#_0-w|DejxhaTVAd9+|x&DpshrcQilXZWKuS@+Tnw@-iPsd7x*{PUyU1M?)wBNLe%
znXR>-%@?f^_)-61w#&z~oeLfx-tgM0q-@vn8_C)6R+@cBd8VD&u<z}UBNKK!@7?qK
z{n`@U<DH8dr@Zy)Um2JEtp3(9fja)|%NjRocC*?o`MXSq`Erx3RrvPC<6$jRLgvoi
zcs8mhW!<^zZ}A_>TTRv`2YhsIFSU4o^lVQcLs!EhaUD*LD&b>X>o`om)OXyi-?Akl
z;<5SZ{|pOe{h0nur0pHA_fdnGjrn@FZl}HEp1^Zy@`NIHo1%KgzPg*&n>;I*dOQ%?
z-uZ(^=6adt?{Aim_x8KAg+^SE_o>a?m+;PhYM9GifrN@Bh9~F!XPEw<A#RI-{r?NU
ztRLkc&ljn?CMV<1TA_ZZYJS_5+efCy3%*mVPLT^%+BZ8>^h@Qmd){V`zBtZs6Ovdu
z_3q{KdHd7-MNh7cd|6oI;IT(?NoJvY=EMDbH*~j6$z5>9JHPbXjK}-_-bsu;?WyP%
zz<H-9;BWOq{XY2*t$$Rm*vV&XzURI&yL{v6!WI5c{N|_jnF`)sb%L8o?M&~4(0>7b
z;-WXR>?OCp7x<yX8}Pb5<45b_`-iqwb#4_nX*VtT(~_>pWNyJpY|oS)S1XI0|H%J%
z>#VSaXZ@yHyZu{xf8GA;*`<HiUf2_~{qf)WSpM@JTldC&ek?oxfIXKh>$0ASOD@IT
z$~>PalJw1Ic45+b<2#3S@2twZ%Cuy6;Dp8ryW?d|^~L@jpU3zyre5F=XW_E!s%>kR
zMZbKxAamRLT-~W(kA0iO9qXGkPkZNMak*qIkFXe<iK2J+@BO=Se`-DJ>w2-R`5pTd
zKfL~N?|IObeAUYjYpZJY9(iZ0393H5dTZ5;oV$xAxwW!nosxc<^kDn*_U8Jm_-?D`
zM|7nhZSOZ-n|<UT>!xdQ*AJE5v*{DtxKlT=SoYh-r7>;_Q^fnyyWOWr`eX|m?{V$A
zIBnOC)uGR7I%C(Lta(#$qib52cl{4W`6IK>_u0$*F<kWT{5`JgU;H~K$H!&P>RY-l
zORBVQdKLG{&2P6wIZxjcvduj(=h!Vt`7?ZCsjcVVy3PLZpW(nYdG0Uuq7_}w9Y3zU
zH+!|+?97#~c1?b{IofVPSK3Ca<UhM|r(Wq6oFvgQuV_t?pXcfD&o7r`&u2`$zD51-
zoP1O3-Mi}rGp%(0ZuZ=MZ2m26nMtu(R<$>GHT&%84%%&~e5mf+g);{>yM$=fyU*YB
z{F~imnT`K0>=V3FW4*>=)5W#xY<wTF?X@~o*_+EYzhc*t!Yz|x_k40M*w$^t$@O+t
z=|Ohk;3Jlo=Zc?}xbIrMKW^La$x(BDWOZ8afBoy{gdfk3)bU@gPhVjt`KKs1IQ06L
z*PSNOUq8G(du;iVm*35|sV>~QBYT1B%%soVho5L`z5P^kVR35Z{=@o>|BNq`{M9}d
zCEL2be~b2O3!Q7PqPuq{RL{&adu4RO+w|(3g4=5@=_qGa_LLdCvie(n;2z%(<%eg>
zzpeez_~eI}_3G2oulK4)T{$*?LBv^Q=e(NTJD;9%R9Uq-ddJU8`FB0#j)$&aWXBy-
zclJJSo&3Fu?GN`}o!@0A`{UK=;H!D1x?CQ4LY}6UQkCjga&t}}R-9~@&|T!y^Qu{1
zw`OjPXiSRAhFjXZfA5OFy7u1uCnc`O7hkWgOTQd7zttpP^z5n{+p9I6yi2OGTv?W7
zODgVa%$16sVt8-+wCn6ftVN8T96x8K{EU9IU%0~fk$%&bw^p~0SE*Qq>}s*ka20A#
zzL4@ZJ)lxjwy^7$`M0tkTkcERaQ$ZxwNrm7wZG*{^!+zCwtDPwPt!5Yc>hFA^a#I1
z%0|tDTXyzWGWV`xu+e|Z{`j=L#E&+8zRX{#t@HmVeU81M`fZL!*SEVVa-N?yZZl{x
zV@Q*kyF`;|ubuGW#|0NlUhh7B-fhp?_4l{+yj^U4>SEmf>t8SYeEgO-RVn(Eh#7a@
zxguM3(b%Pviehg+wQpFxU7TBI)w%^e$@8wBzIW!(-5%fVr&azlw7-t8<cz)XV)91$
z4%JDYU3YBUI<avg*J>um;GR^ECxSQnvOn)WdVkaXgXabQBws3x@2pDtar&Q-<+gi{
zYd7DE5)TdF+%j?B8Lt*;{^?U~8u*I8{XKn}Z&LcsqIW7h{@;r#|1_>EJ`yH&{?UDo
zS6p@}`|J{A4+j5dc=c#6NBC6Tgj-)Mo=v&BWL=%@i+fBTwm0m5(Dk1|vc~-3YL{&r
zJ@@3TW{`CJ=9^cY!NG2GTt-9WtHjy5^Z%|&O^T>LXuD58;+V~D>w4ZJ^SpT6Hm>Z*
z<@{bClAveUr~S$JXt>z4{U6-*d-|<e!uNc9rK!%axnj~64arxY55ixbe;Zrhe}nn4
zlZzwo!=eYzd*t=mm2dB@n|%0c{I`~r{|vL1|C>-VFP;Be^!j)8FWn#Nzlr>i{V--e
zuT7xZ@`rD&1E%GRW-UIuV{4atK;Mc+iFHpH9oSilPo6wmGig@olm86cTlO(s($9NS
zQhx1*bVjP8lgo<G<g|MiKY!+3!gz!0FZ<uF2NP=aKKd95iP=lMdO2^7VQ<IZ;;)bP
zaea9D`jz~LAWpg1rNNPVZq;``<yu@;YamgZ{a)kB<dxww-}KL1S)NwcSa;c~yuVKJ
z-|1Q3kKE^|nD#zkwpUxNOXjUBVb{afDCXbm{dko1KyBB-=(7sKr)K@R`J*-W5l89m
z=JjiPZZ){Lo83#@#r#xLYxkb72VPEcusARI_^bZ6=jB`fw${W=6q0)EwntrNZmaBU
z<vX9_r~YRU-Q$#BXYgaPllM$L#Y;;%l=iS0bbb418L05c!F$fUyZm0qnS;JWr?(#s
z@aDU1v-{vajmvx7lT#~~-@5P2Q}okfn#Ik=-ohranE7SQlIxkTmY6h$R9lv6M?7tP
zHucetvh6e6t>?C<Ok8pB3G?oa&%3_nx0MUY^WHr6ljWZ81i!}z)g|A#X&-q$>(S+7
zQB%(?XY#w`c2QVB_xFY)tDAPJd}4h5MdmMCps(AKD}f*Pm`b><^*C7e*H`_5>9s2@
zyHXd&xz#MY%dGRd!M)<<Ijf$J$CuXj{?<9DqP@md%P2iWIg>^3fUUnW^SyokA6?tJ
z&9*OUwJy!x|7LOCw>7JJMNe~_C>F3ckGNT`z4GVG;-0_Bzilhzov*ChnrkH+AL8cg
z<dMKxZuh%(mE+Hr+c9nj9#^$1)EwING00Ec?%LeR8-KY!u$=Qs=WP$`gU@$*()R29
z)4H4d$n;N_rTFz8euX(_)n$J1KmS=9|J!u?5#9QS=cYcA7x;1LRjt=M^K_+qmpmlg
zH9I2~A6jRgd&gl)vW3L@cALtzugv9zx31L=-Q4D>v;JvdG0%D~?`L^QJ~^A-TAm9L
z?mM<e>xSper58R}ERwkrzVdI<e};p$>lRP`rtu?HDVcYXa?M`Lsps>n{>uIE*N|HJ
zDt!&Z*Z&L|;Sc7&S^YaaE1uns<q!K0`^pdRBd<#zzh->vg?N<i)1G_Dk!|x5OZ0A?
zvrhl?{p98|384}zPaLhAmKneG`=R$uziQ9-?z4-0eUIUikjACzzv<pH-z=zn67g90
zUZnKujKe#*)_h`!Xl0qin%&Ye$#;I_bo)EO{+o>LY>zL$Q<HREZ*oB2y^M8H=AN8>
zT^v7WFck48$6RZ-y*86GUv-`1i{w&e`<Tyh#UJ~>P5lx0h`)3D^n0uy*Uc>CTlLb0
z<9gu{8JmodHRW>AvX7@eW+}3;Tx<5Doo#{cse`$d&l*3w3T<PvRK0BR>)C$Za|T!A
zl$OmZwm<XNo89!y<Ml4pb9-;N3mI9pN#yXcU%$64xikID#%)~Rjz>NCVq5Q%t?^Fk
z+OzX#o<Es*K>0fF&U&wRxkA#5&L&qJetNev(e3f8d6Da<ty}Xp`9h1Ypy->9OAfD|
z$S_`({JMI#YRobBz-t>juI2juPRuQBZhq=@(eTU9*vPv5rat<noO8n-oqDIxB5*=^
zs^>fVvM2u;9&df_$Md$?YIXGDt<39lLXSA4>dck+7kYNt;%w=<PpSR+nO7hEXSi^M
z=eldkqxbfyB{SPIZdm?jIPSTomv55loz-nBeGmSXyi}ZJd1m*%7@n$Y8J`uMR9N|a
z<hGVR4|QSfdpEzgBxviAyM6D^H`yvkMtVd{N!<Nxr|Y(+Yax@uc)Y&Y+OE<_n^rBh
zZBBzEhfP@Rl71$B+wY<hlJ8?n7gtLhz2WN=ZPpa+d0YC*f-gUJypC7=cV(B4_@<0w
z<~P4-m!+~6Pt{o5?>u$=@>0&gTkZ`_UMa=%XUt<*KYf4Z-*{h-Ej!*xr(U_%+xm@b
z$IJJ#zWpeZe=GK>e&O?H!rucwx3_<pFLOAbZSlj`&ELvxlq}8}IiA{a`}&3JXYX%m
zTe$w^FTVcLMMvTyzUE$<)cWm_rNkt5Klk`U`_BKUtQ5W9o^wr7v}>INlM&w|52bzK
zKR(W^QMxX9+I_`(%NG(}JO8lOH8;lZckj3DXZX9@l>4s#<Gkj|mHN|_f7CtsJXQYn
zg6Hxv*AM-Ael(u%)hwA=CKJx`p1%Dvi%*t2_m*AaiRV|s@5XPR-2WpkO89}-%7-uQ
zVkXYNA1%Zw)AQx^<<INXAF21)r}d^EHg}Ks;lHF)jQ6Bz>$la*&n#f5n5I1~=j*|P
z3fEsm)OjyeeyVP^_}zTjAO1)F$$$7ZRd?M=ZS`|1(gOS5tg~QV`1s?R{?2=bAFgeE
z@Ns$ObT-c=Qze+CR~$$x@|3mRHS1ffyWbDyM{m_`JwLEdZqH>Ew@>dB_UxY?5GU$2
z<LNYsGzm-gV!MauimxBDQ?KwoJWIZ{?)K7K9V%@ZS3SxS+btB@@*My2mIwCQ=gglu
zd8NANogYrVYabUIsyZ~R*0Viu{y#(XecRRV{BL}Fneb!#Lld|2a|??l51c%F`;NBx
za)xL7gm&oI1Rdm5O?tYEFS2s|=K7S()cBq{(TV(b=RNI^k>QT+nRmnVtHjmcGppno
zd)MZaO5851ciqqVSo5KEwzl)<w|Wuj(?Ax*?R$RVt!N$F4=s%oMrsR9W_$khoRrxY
zEz{FCr+j_)Ki;V1hjaHWJL7Z7t<}%+7-Qh%fAw=~%NM>1I{BgeVA!kqR?~OR+)&XI
z<I&xG*}7k$Z?5(yKZPs{%WZXAr(0j`|9WA6etyQ$d$-Q2Kj+DP>U@4jZrh&kVIT8m
zr#{NGQOen>@%*>dIX$^kZkrEpjGb4N7x23GsDF~-yuzJ{D{d{wxMjd`E_#{guORPL
z=ktwyQ?=Q&d&*3IhRCijsa2U|Ha+0O-?>||zE4=;%4Ku>M%|1Wsadk_UfJu7G#^?|
z-_m{k^Q!N&_FS&0yOlkSN9Fd^Iyd8(GvQHQF&;`=Kb?Lut>dkI4F89<uL4{?FTVQa
z`t}`iQM(Ln3l7YwW4XTYhPdHkJ+Gg6j$faIpBBjcHRqmce_(%v*|z|Pmn!07(=NFx
ziv`J?dM(VfK$OAE((<|J%t!wjZZ&_4{SmV4_M`A4{%kKcYi&!~c}1Zu`Lacu<=pcZ
zm}81gy}B~}-Q~K@xh5YcwA4PE_;u=S!_Mgv=hap^E9<0wKJfZ&{Iq+9{~4OL*B$sL
zDD0m2=&p0@B!$Aiy-Tu$4y#N4y?f<TbhP}szdPU0`l)<0{zJTeyO`jcAJHG~2k%ci
z@VRtv61Ry${~obJwjT2e50=XOef7PdhI!Vt9~%4T&7a$&l|G|%%len=pVT|+E_)gE
zM&0S!)p^H$NN0XH%0JoS)04yXoHvfoyPN%dK1bbodA_%%x%$WB*-g_nY`K=_^Q$Ca
z(aD@h(V3A#f{Dh-JhwehJn3mF{&Vlg@qgTBf5&HCKlc3Lv#AgJxt%3h?JuZaRdWlo
zNVL84apl{dTaRC9Khf{J{~=ia_WQ?i7e6vTI^VIh)Bfq)J=cC^tyGrZZ56t=`}o0Q
zqV1Bw6Fk;m-{Ie|`r*n`7B^OJ+g6=XX>sPaxY)ks>Y~?k>)gK{{q0dv|7hOK-)1$=
zJAZVqQCnYG`jGpq*^x7>Tl&J!SsXpmJl&{a!I|ex<vfq}&-0i6cY6L-@q_gZb@G2#
z)+9eTy}G{LPJ5a}$$NpQtX;8xmn{0wnDu7k-P20CCx0ec^F?btlxFy+@ni9kUE4cN
zg;!MUd;2wd&pUDRH{Z82JdvMPy=|7O<Qs{U>o2#zdH!&%^&|T?-~Tgkv|fF?Zmvl2
zl+Ss}l}fG3^R%yo_F3HBE-Bl!O3hoyQ&Mf;Y0g7iKGa-Q)>XOu<<jv(&tg2oh3%p?
zexH8oKZ8oK@sI89dv=(auid*zJmuO<$*=dt!uJQyTD?9d(~5Q8<Z8L;rKQ=coK;r*
z%6}hZFoW4}vv$pa=TBJ*iZ9O({;}{w{X_dV-xp>^UGFlT8-HY0-{NZ3Jz`PrH%)e1
zdN@6NZhW-7l&6x>+l5o_uDAlf!H45-J;j^rlwOn>|1tSsw({X#j=%F_rH_<}$Eo$b
zy4lcs^vw5igHw@wvNls&mUOM%+2;5~x#fAkoosCOzV@kK&v|RTJM$pr<NU+V!zTS_
z2%PPi^7}u-EwN7rR=<gzocLT;;+os44X+Gr?=`Q!73X}crc-G~!pA=<6HkhMeg2m9
z;eUqKdVxKu>__;U=83i+sFS(=rPuDAuDs8@chT0>?Hxa#-PDhA?=t(zK4DFAPxI#Y
zQh(lm^lvdSyOy7`enFR~Zc57MSth(QekD%PlyA3KH%p>?$+ka!IetdEx71zP`m56)
zNqlv`bz#OGra8U8J(VY3mwEho{qFjN>U!hgkC80(C)f_Q*}j|o^Fdwc&&>}H%<@~2
zuw~*Q4kKlw-EKx}7z2(oe6x5Rzij>nlc3tw$1dgC@4i$r!^o=Uy0LKc8}_}4vkqDb
z{o6H<b=KL;D*Kc3x5Wu&=$cHr(0C%}@y^@FU&ftg?Y#WH#5T)K!E=$$iohFYcl23G
zj`=UQKmRP3J;-cV*6m|Qtd3NCQ~2_I{jzmQGlN}Qc$P#7wMd>kcEkVQ+4xC?JmH)C
z&-`uHuDbE1mhZ3nB&F0GIgXOBJAPFYxBT1sa?*c>^xD>?g^V|rJd~X9`@_Ngb1VKc
zv|o`f_%nG<V^7`Q*V!REirGZIYt^-cKff_IHRXJrR9+SD+P!O1&PwfS3(Z-<W8mg~
zSLNSS!+nkZQ$<crylwGUf;p~s@m-%);p&XxUmny=y%K%eGU?3iDc_V$pCx6!UU|`P
zdGgL}Wd#y?b#wa9tuwh(`gm{A$31pY^L6+<e-`a&e%p0p+gz7~&Xj}a`O1Hl=gj;1
z@SMh*o@qy?O^ul|ui~|*wCquLf3GSQ?a9skhn9$a*gVsc{YF=S!*?rP=BK+RZ*yS&
ze73m5XtNuiLph6F^D|p*fA_fxdooj!0@hhdC_J~VDp@6PRNK{f0guYm^QRmw?iBtC
zU-qA&Sy=p|@r3Ilr#{?{KD9CNyRo^eV_TAc0)x8kuInGoKYrY*-&?<Rdw)&rhxz_{
zKk~#We6;;?tK^rA(cP1U!e^g4n<QN@p0R{$nfdP}MxQ6g-`swb>DoNTkG^j<PBF-s
zH957-;<w74&+)DCoAxyqe^~s@?b4&a^Y!%Wx4iq~q_fApbct4PNv3z&{<Q6Fk1Qso
zG@MbI<gn(3&Y7j0kH5<E8S?W>ZGD*bCF<?{FLv5pn|>rMloBqB{(Jnf+S14GyW{xx
z{%2@$kH50jR_)!{WZmSIw`b@rjC6bP=ft~*(T#iSQuLcnpPHn7v84Z&^CPxd4}4{p
z{$OtVxk%xOoY&@+Ctfi1gundH@b>+(itCT+5B0a~Vn15C^U6P+)vvkpHt#WdrS3U#
z`kS)vpH;e<&(BxSoRWWQjab5Jh5TdrB7e+&^gk@AG|gq~2tS}^sdP|ANY;Fz<%2mB
ze<baXJ^e9cW5C}hLD}xNpFXL}osn{5me7BO^c8RamfM~E@cpfJ=9-_mkE+eKgt4?I
zTt0MeMp~y&#wAI!Ne7*bH?U_-a#+82pX85;`;=;2uh@y#XkA@5J^a#};E2k%&TBHW
z9&k*2)ct&(r>bOUg4+b%qZhM3wjYpBzqUto#S3$Td(kncD>ipNn`M|Ub)fU#f}br*
z4#v(ol@zpUw@XXG{HnMgcK$pS`G>8hH`ys3d?+tsHn%o=WyN;CtLtwEUJZJ??`H0j
zy{%21Z*t#Wy8q_7)fC|sJIVtKckuRpzWI!8PU@RQKU3c4t@c}fAvNOEl?8j3y<hp4
z;YaYdx*wYt|B?Q%|H$3A{2!h*w(DPPx*K_Z`JLnKSDo8uovU1Cs4<tLa)M8y{+72B
z%um%Ulb5Wx?Ej;8$q$B?v){TNiax(QmbIypX=kRF-QOk8j3jiH$QyHc-r(Q+@1XpL
zp!|k;Qh%EkeDFU$zjK?N{KvHAYhJBTy!QTKt=*|xmNqZ)TAwWxxpvIcZ1t_9BGC?K
zcl0(r`D^%b{$u;b{VC`9j(!M!w7y;VxVX64^jm+ot<RQ--17T(XYk2+mmViC`4)6o
zIX}elsR7rDhzE84vy)Z_td^*@UM}|jqG!p^FBg8V(JQUExq80YAMML~JQrt_2fY%!
z>vny+eD=Jnos)DeVyr7OC8s(s$y*wodCXIWDSOwInn<?kk6162#;d)$;c`k!_r)`}
zgN*l#LPbL-OghCEp;vh{YU|c3f65>0Gyi!0fOlGR;j$k)OS^OHjvqC?d*jB9*tRZR
zi-RTsl}p#Fd`{24xL0|CNxmR^@A~#@_t-!BtzTDR9ohHqQ}$k^XBDLpYxZo;U-2^g
zNqkiFVV2%+-P|h|6iwH7@^hp1dda{~5__Ho`K_&v{j$Gy|9bCR&s~aF)#pZ>`Y>&E
z!7aty5aTUDyPlZ@m^B|0ud9+<zP8jk>Z0<^-1LI=I?YwbZn|+5n2Q!HVenwT(|F~&
z{X<=;Lx=sloh~d9pZL7UQ$jU`|3oUgZWCYSbM<-IhxXWiWPenC<a}?`@;0RpDZ9ek
zzWg<Fix+sc(!}Vz$tI;E(>56R9DBXv=bQ=QDm?3|md4GV)?eH28QPs0U;H*#a#E~P
z(itPA{yE?Iiho|~-SzI0$&uufvz1@1{a1Be@!@F;rAzO+x5X-l>8z==HJ;eFByE>>
znBmJ?)hg#_rX(%=a6q80;osI%``7PzzwBLS>61#E+*|?WJi)r%C(qWL{T;2@{NQ?r
zYC&k^nj(Ma?io}1+P9m2x%=wwvTf6gSSqJ7vZPi>%36M3&-8ccm)!WH_c^}WGW&Iy
zK0Ud0lA$J7i>sC8X^otkRfWf&UfWgh?rP}oh4w8!-+$AXerDfCt&O@ux1+Qylvye#
zr7$e0y~kGMc%HpEJ|f%b?yXn9O2k=2C%v`VQ=*=o{GVZcynfw@dBPv%+qUi(l1<ZO
zijBT`m}Rp^YfR^oTdTL;&{~n_ZSGegYj@=1@#a5~i+c5sNcArI+jl#9vVZoB)UJws
zS4E73nmp!SnN!5?WF?e+=ji%-83o6(o<~I|wRSx2N}uuX`Nwr}ve9qF10(e~1%7TS
zQ%KSHb2jdC(mVE_f3)*5HqYH{>;M1aU)3LpAGp0f=1AH8G4Fh&a+PJ%>HMX4Z@bDE
z9yuuI`A+g)gkqTDtYWqchQ~NeUsl<_iTtP@^P&8Y+CITa_x_!VeAckaBUZU$dB#ks
z*GY#Jf()N42yU~muv|ZXkL1V2kEVBT(e|FL%m3T_;H;$=F0b9=Ta>)f`zf1czE6Pd
z%AGUyrrq#Jm?z>P=)ra1z1*u?f4<wZZ>{xr`?ziM^4OQNdN*ax3SE15@1CluM>cPH
zTPk|$_Hm8Khn<aEJ-+R7lT4c0to)yW&sjV&WJ;Fxx2^k6fBIyf7%?+5t-skmJO5_+
zqc{7v$W8ohUlZ|R&B_Pa6?vxnh0}g{bIS`x9hjfi?jL=_u_Q9`&*^rDLLMgVshn0_
zKhA$^_;LCX|7~W+Js-p0{AXAml@Z7Kq2u4#%O-!L-gz&({yuFUw`Sg#-6s}r-(D+p
z%B)9vW_b4d2?DzXXMdOf$0hpPH2&Z1{Tw>)OJ2Vhyb=9!*VV%n-~D%AW%4dvbU5$5
zZtL#+inVK(?eeI*qBMzFCsV0K@tD1?ol2$@d#g?4!ao)t?l*2-D;)G`$z_vD)7zPg
zE(KlsqI~Z^L%REl)wkdG+HC!M;vP58<DS|$W77pIiyq#+cj~Y3tKTQz-qg3<vFha2
zrpcH0pZ@ZyX8lL)hxTt?X4!atSbcDx;pUx}OnLP_CSEnM$o(q$RbL=NB8*%6%H`xH
zi-moeYF(V~IC3YZ9-qZ&d;ZPs-xfdSf1CK@_rq-4@VLF(F0ax3@;jctqDkAs<o0S&
zmgD(<XG|A+b}2eKdUnCSAgd!XCq76ni`V>P{FrU)stWm|*JiQa{Wf#SkL!LPp7?9b
zyY92U=|J?~O&l%r6B?Jd2X5>7<f*s+($zEbJad?OcK>JC^q-->KC`y^V4UXVI@uq6
z)w)WTgST$UO*<BA?YF(}*!|k0TP}59t4yAi<a%(DTF?7T7Wd*@J2};>z3g$OrnOSH
zKm6NjvC`|@@z?Ul){FjUIOy`9A$_jc<45kt|1(JSI^8}Tbo`O@4{_IhJF*1}m7)|k
z_I>lzEv<}8&F<IZm~i{4N7x-PdxanKKLj72r=R%1*WY2&hqkRtUoJGwEq30{WO?`9
zk}HW@ujo9i&U}+HD|=_2&NJU@AK9j?S`lgd+K%h*%Kceq_5At&SbbbK^FIUU(YtSF
z*QaGy#jWXIo>f(P_T-jH@>|?4MSGTQuFTUHx?-cTz#}aGp80FhJ-hr5OY=+DxL?^K
zeeB1~`iyx>A9c5geVAOh>c-3Y2_chQC!es+nRLTDe_zBA|NWL}g`d4U)xDO8DTxKw
zY~OY7)b%Lc_0RtF&A1#`bNa)D2X<^P_VHb}WBuX(Ex-Rr)w+qRUha~co4+!?Vv=#i
zt<_OR^X)umg{16`jO_Ng|N82Ovo|W|Eq)-qpRdN_KSOKfWAE3sMjYR~RbO;vh9*pO
zc2#y2+Pv;TctMWDx$**|y1Cctv*bH(9Y45M?AEjUP9NSM)jYaw{>senMSJEa3rBM=
z-WOa@?##UHSmeyMKfGru>?;20Z~AE7zQw<%YL?EdOSiZ7+za+k%U}EO)8lE+ONys&
z@4B&j@t!7^oJBjiv~QoaXj&$>U8~<{+g$1LSL<Kb?)z5$P}qCgwfOb5+kXFh{Omu2
zR7TbP2AlBO2lqv9oaDXRGh0RDw34WOk!w!V#T^I3j$1xw@A^D@t+$)-u9>PGa{RMJ
zx|ZKAySsmFUGE>q4?Sjaq94xO7kt`gk?=dNIoo#5`s!_xmlAU}?QrsXp3*OwW;lnn
zEO5u4iM7A&|AbsNm6i6roD(0i^V*v9eIZ*Izx|#0&1b=L9ubiQM@!zG6sZ>v?-?%a
zshJ$J`OVpT8+SewpBxqI=DYTY@xq5wV~gJ(%Vs|sw#hkrc?`#l8Sj-Wk1NK!N&dp{
z`B&&&_cQaZE}kb^V6<B$z{B<+kA?CMn`^3fw=TI=6VTzrGEadeWf?=_<xGk7d#Add
zE}rT3=1<zSKdKM@n*ZZ?`*HSRvulQ)sky6u+{#!y-<W0E`S_W+OZ-hXhIhENMifcp
z{XR15uif8GZ*xuhf2e&wwpZPuQL*jvL4DCZf_hh7J4M_&#J4dpaQ!*@(Pwkie};o<
zb%qmFcBkzBc*QQxG3fjw=>^6+gy;N{x&HF_+ld<fH<%yylpn6@XT2lF-#BrDjM+WQ
z<5_>L+f%Nk`ks!jTK{iC&9Y?nuW8f2+kaX7!TLe{Tfv9&4U=BibN-25Sh2|ZZ}E{|
zt!D&oy4;$zc#(^0r)c@68B^FN%g9VS&n_39w4bj|{@=|i{v*-v1@1(>xV3Qq?p=F7
zif}La+gCj8##;lIiL!HD{F?0#-8WaiWheZ@?83i`yK<yLCPzqoy)Sa4H&fgB>3pTD
z*YoZqH#xp@b9^u{q(0xD`!)NKef$?qSGQb!Jm2$r-eU0$NA-?1dGk51I`;I+292Y$
z6D8MQu)My#u<OU<Km9X{VwPW?zuo<aJafhLZ${VuGdyJe$To5Hnp?Uj6Emw>4lLN7
ztae{>#(RaidrA+O{&aoxUXVBVaeeof4<Qn)^S*}h%)WPxT`|7*ftdCrcIV^kU+#a~
zotXNF|K{SOA75A1HovmcYd6_;>6Rly#y96JDW1DhEG>H{d~nbDQ}|(j!+IOTO#2SO
zo@uwHd=FeOVcOKFdufh)=D*iqNoFWv?lO8MP~rCe>c94Lg{7Xgae>|omwxyZ9o;K-
z`OPJEx7{=S?@1i1ux^i=DYx(I=X(>^zWSB6xO(;N-G*IGt0M9wjLa%e9Q-BoPxQ?`
z{#oG{bEMQx>t5OScy;>gSH*Fn_1}K`hJD<++BjEvGkeRiYo|`h{J9r#;GE&DeUo)I
z&2_!=<DG2p>(HNd%NO4JvE1#-^9wGwvZKyR-x8Z=X>>bzO6ubr?dKUUj&7(7p7neF
zx3I}RTd(YKtbW+*n$Nj^;<L=MQ!!K6Cn~UZvdFnPs(f94jyt+v?X}N5%_zx$RZ2Zi
zrwAQkJIK6Vxj!%a&HkJ7F1>f#e)ahTXT@nx(|Q+`%rf3()4a>5Ky*h!!C{F5Yd4lm
zR|>Q{)f!v-_|5*Cse=0?GTt<-@D7Wa^Sn65^ZJ}`$Jf?X{diSqeoSA`x<ERp)V998
ze*5K5>v#WWNZI}S=0Dz-yfuQV){Ta3oLjur?udOqx&C~-*ee0~u7AoB3HDo6PO1om
za`ztIZ)=d<=5^=wuR9-qEd9^0S^mQFH_r{_`SvHLp8R|1b)HdG{gGK8i@zSO3;lNg
z?KYkD{}~ec`>vHwbT_I$#J|!@^ojw$fLm{aO`aR$l&>r);m^z8ynU=|cKy))joW%n
zif69N{kmR1Md+kZ>t#Kq!>76eB{u8xxu2f)f)nJ{T<Jys88#e0uJlCjJ#$v`<YQ&a
z*sovOwEV;I3%_c({~k5HseHpe!*k2(`yJcs1h3>Q*m3zk!{hrWXEM8Nn4NLKt;3Ol
z)#C92hQjy`dA1tv-*$iW{!aR%b}PO;r)_EBx5tI$d{3{;WWDlw>O3{i*a;dTtbG^k
z?QhxNlB-Vpv9mh2*nCP<#?-Q}MY)SD*e~t3-k;jb?edZR&Dn?1wO+S0W7eKor55lz
z{_W&HhZP=tj_(g&t!1jMc6Z8uhDiBELG3n~-=F?xP<}AKdB1#}WkvpxIPL2-jM<OQ
zrn_CS30zcB?YZgdAJ@v1TQ;|LDIL3XD0%m^l4+6VHD{RA7#KHg{dN7rf`2#VSpKfo
z-N#)M_M>;%kK2bnRiu56H~!C%ax}e0PibFt%2rn6837(UruNTxAbUV=Kii$7=57C!
zeq3c^^zW|cXDV#{w502z!}0w2Dz(M&OE<qd^Pgec9_hBb_n3A{?={Q%D98Uha@8ZQ
zKd+}5MjiXD{budzucilFSKs|=cevK+-o3PNmi0yKRoioGb1q9fZP$9-eBsIC7umDA
zo}bxiBz{AJr@8<2ooi3bHP-&V_&Hs<@9WQ=N7Wyv_O15cJ9X{zKBZSSoqUm<hglVP
zgzv34onoY6?3}N)Xwjb!3v(tIl_%TQzUDhs5yrM7?BrAl`4c@!TOV0p$+NGQKec1Y
zR_g`tdUptk_GfAKy36k_mtUw7d@0+++1TR&6X%_U?bjFlE1lA~_Tf~UL**0CFOa)(
z-ssM)y<0EOUH;+3mp`wo*h*7M`V|a+etghV#u8SuFXzN%K6YlVyPsbkRoc7v43nz7
z_Bw~)%d*-hY)T*ZvLA{HKKsblN!CpD`T3o*EW)22wAroa@ctNE<<aUXD~ezAafWQX
zZ@bLdP1SIl=Q$&z+QN9Hx@%IkTZA*KCbOw&*lc+6FoJPT@;XP$Us5+O?$27^`0Lox
z;$;=(N555ly*sIW_vVY{udW-2vn-#<+vN9pH@hT*jMUHINAKU}f3Saizs2Of$RD#S
z`Rhz3+g@F`YrfZ&waUL;cl4j_FS+*0XvxFt_L{Hb-6y7suDo6<6L)v!!Jeb8N3*gj
zst?@1B^HnsReI^z=LNNEIBt2`<OTnFw6FT_lDAv`GyDk4Gbzt_()7#rX$tqn)R>h2
z3|n8v?fmfiarz<Muv6!~FV@5^iH$ufb>zd^C((x&DmI2GJdxvgQ?V}i(G~l=ACYVC
zI4yD!ir$fU>OaG}*AtIhu3vN5sc_ZKiO+qP3qSL}ZTINqKjW7MulO!`?2|oV$<D2O
zd&7(RsGqkViLK0Co_Xz_{B++4m0epkZ5o#bRRpZvc#z@Y?gY85Z|t}6zA63_aB*GW
z{%aL}HxCyXNuPdFr~GC0eVKJqk-Rfh-dsM^cz=0d{GtbMPiwC`ek^RVmuBUBIoI_^
zA8NABG2ra!TW*&=&Cx=x-SUs+n*056#+&zEPQIwK=J9qRmMOdT6^L%WEc5Q=ysNM6
z`4;tkkMFy?ze4Uqid;o+aYNySM?25o+9&OpBcP?I#ALSO1iy0n^6d{}Ey|`=EbGc$
z6?5I*bnD8{nsnuTOcE3HE+2gA$h_g0#h=3X<htW8uFn_WV^_fGq4)IpI<ZTSx7!xK
zj2Fx@nmu3qWX_qL9O8X^-b|JUA2U3de`>$Oe}-gj&D=VZA89Y!zRmX8J7Yyc!LnNp
zqV4IDlEEj=Km8)nt7-ksPTpYA)4s*37w2D;Kg2TEMmRC;hil(m+5Y(13C!!&m#cjK
zTi1HY##8E#;)it;t)4FHuL)xA6Z-gF&+vSJzb(7h&;EzY_FT7O-C)sW$TfH8$-@i`
z>RrF|E<V`ygY{v0#pykI^V3sVrl!pcc(CCF!+M#o7VqPye`K}G(Yg3*UbMEKxn;M!
z;Jw&Wxoc1OMLce({<?lbeUAKXZO^|`N_3f{uYQUAy8L>cUar9LLfI__dki`4tKO_T
zUT}^{@qtkGi&)b~v+6BX?r$+*shS@X{?z@C7{BYk%YSEl(HC}MI=$$}v>Q8)-}7Ew
z`L>TgM=bb9(mw094I$adD=)5DFKKQ6Qtn!I=UgkHxwaQSm-qZ<c(Aoz^6Oetll5#B
z)rW6cv~Jfvp>OJD|NX;F_cw;~7d+Z$@p1hhk^c<ePJgUDc=K^|ubCQal&qO_wZ;d3
zh1@PrhvV|EH}NZ6e|~lAv%EXWWp6fok+5X`Aj*39={XT`TZZTB3tz@x`k^Oy`i1wM
z#qzWEKQDf4AaQH!%i^oE>#gg;Y^{&(7yqa7$K7bYZ1(hBrws3{UJ)B}Pg$t?c)88S
z=N1RKEWfM^_uaRD(-hMw^HYpIozAi8nUj*@B2t&M)45n_pM^x?fj8{&|Mq6yx)XC?
zO*oJ7{MkM0iVWjj{aQ3%iY70cs-c@xD*t-I2U$1C?@Vv!eDJh?^3QZ(-iuWNJ?rdZ
zN`CRLe;FZg+J^6?I%AtB`_%J0--j)#QDSlkunX+ztC#!Qb8VNb+n;hzb%SX<3=(!b
z{xfi0=zFbw^7#6d$AA91Zq0joP45#!9{~rJ!rQNZT-|RO=8&Su@WP*ce(<@hD67QS
z+J)24KZ`wa_}!+r2kmEkf8TsO>(}cC>yO3;AC%{wcTnBzSMAd?(NFG#E=V{f=6mWu
zYl?4=biqM(#s<@mf6vZ+`{vZHB5x~JNsXoZk}t^US(lvm`j!4L{BXU%D|!B{5v4mO
zox5st^T>1~ccHi3bDG{5mGktZt2dr4xxSn;$g5g@#<PlbJ|TbSJ>OQ7b8T&n^TXA;
zX|K$teY^Hb;Ct{{^%FfFF0CSOL+?0?S)ONJZ~ADOc53-*r(H*{giSp0W7?~tLlz-_
zf2wG#I~c;Vk?Xk3gX@A1*LPISZEwlnBf0u^_iE|afjnw~yQ1CFJy|A-$!vP?Hpt=}
zBXie{3vc>+RQ7Dv`4D|CZ&L@4B>OG?X)+ThL}!=CFyHyQ)R}Lk^Q8Qh&mOJ*U9~FE
zKD$)^ruQSm59aNAJRe9GR?D87p04waSE1{X<QYd9trG`h1e^Grli%}A{i*ucoBM}N
z;@XH;9Em%-zCE)H>`+zdyesQxWF+Zf@%Y~UMdz9SUAf10Rn6D@=m-6F{fDWY$;B$$
z@|1oG?s+UF(XA2W(#&jQD0BVu!N=Ms_4h=sf1Tf~dT;THm^reiXXd3&erkIq@27uZ
zbG+unN7<)B6(gf=%dNBOHJRLO(|J?z>do!%K0WB4U?d@u_~n(o)Zgg8Ev6igyN}I^
zXkiz4nHO(g8RZ!o{z1z>?(0vhBj?xoGCx<+IM04j;y=UuYx_g&6D<r2A4|^o+U?!5
zxm3Zk;PCCfy1lP`F8*iO9P?2m{@YrU-SsnnJzsp&?Uu{+&MkJwxL<Mg6=lDg>+JvU
z?3FLGSKN^OCm$mCxpDiOr+psBJS`sgFvgo?7U|US@2R-zy(CEF@zW>57pi_;zx>Z|
z=Pd2p+<xY_Uwl~A^ND+n>Xg2jC(hOdAE`>5{n<Y1blT6WeUA@sK3vevtia>{vTy(2
ztjkwQZUo6WO4!dWsFT{gySF<w+QiY};QKG8x9+?$yyJ9nazo|wm+@1s=Z0MP<+9G~
z(%HqjTWWU5pW3>pm@RbwubaywSu-|B6o~g!hvc|DW8Sz<>+0=X<BZkHu6mrI=MxY9
z$&TWjxwh!|ob7&hdcv(@TDV_m-7%Ngl5V%W|J07<!l8E0y+xi*keaJ{W1Uf@<+?oW
z1uJ(icpar_w5zhK>dUiDCO)rCs(UY;VDr2^|46vC?1zcZCb@<sy#1WK&bs;9mM?9&
zmp1)pC@J|Bu8=-a_Zwr+zT&T@_x>}qOq?=rx%|h;!Q0}S?-@?|vdL+l{FR$GHfo7P
z+r8=Y_xJi&@lUcM{(zk3wKxA69`avZzGXfa&#si`=LHXM{UqQioqIy^G~=8U;rKoE
zTWY@))SZhLQc1Jl{bAm^v;P?y)?dE2fA;>HaUmD~#ICDo4=_3@H~Hb|+t*@GYMW0<
zJ`v}rvcf`A?n&wTt2Ne3&$g|4e^p-nh~K4d+v|_*rrXW_9r`2L<5HenWNuPfU#49;
z>+=cg9!@^>=Ah*AKOrB=kJWNNyt`)Bmk)7gD-Gt(Wpa7yeqz6tQVRpyfwcGYd}~74
zJHMW&$zA#5vg<Ch?~`ANhhIFY@b?LCVX4mPPp9`<7$vi7&uiLSd}RMt^W$stj;^hV
zF*%zjuYM}#K<=qNOMd26(+(W?X?XI4+J4uF$h#Uhe%{*Pr`~q+rJT-3^P~K4q)(iR
zx#Q6J<e}e#H-ZJnE%?rU=DlJ2`i*|Wb$RyXKi)p9_V2E0oBUAPTQ}bK^82UP)*Za0
z)|uCI$Cv-+@%ITD5AGeb>=cq%I?X&@C;z9o&yOv)@{cTh{QEE4<G1q3zhw$;`Sh&R
zei(SzvgZlU9GNGLmuLMpeiYyQc2D?%=s)onbW2ZHr*wUNw|M{7O;$Pm39Cg8-Eu8@
z6XZYRxbbmguji+Ox>$>!8@HsghP&qe`7PMqt|Ofvf8iJVF?;qs>A!7X-RHN@>~Ebl
z|L}dujDOZ2Ro~1K|0X`WazTV|Zh_i-&sm&vQ+nSPK3OFxJInSQhrGt`{G(R?85;kY
zF7Mu-F*hQ!?fQXj8#!zIO{dH%Z~O9kt$mPVF^`n(?e*XG&0TgtZR4J%Q*Pm<y^AWI
zm1XQ_x0AbD@$2)W@FpAE58JB!IkP8rezo@X_uJYR{rdFm(n%Tj-ad&GO4@Mf<Dq^D
zw;1i`z56%+XV|>|=>0A^z7OyF{d;QyAKve%I)B91-{;c0J;rNZHeEaBx@&UooN1lh
zOQ*;uPnh&FOXsv`@6$<TT<!<c__S8F{(T#}YwOy1*Yx$y=vumQT>bd`kLd9S`5pQ4
z$HeTp^VZrZFMMt6y!1uztBuEb&jd@VM7(*@WvQ>5ynC0&-8V;Aoz66wXP#F0745yL
z`C)jEjrGTTzYF<aYGv0ZUS5||zonFOVbiB?PxI2Y{SLWSaLXiH?0V<2&d@m`suCOR
z8EbU@PW-3z$8gKX@VAx^=d$}<t*QL*{n*AEuV%S-tY3UN&*WsjZdCN{(;5$^J>vCE
z$i6A46zS0yahmD882b%-mi-Tw-{-ZF{&4?rJhy#DZMNG-yDi_o%_`fdw@`MI|MDBB
zRNMWeOH6m{*mLF0C5?Y~YeoD;{EJz-PK!)t`O)*b<-^zcW>WLseey4xH>=dMW_n6V
z^{Q2&rS2ErK6=j_`)d0=^^d%LOO&?Fd%EVq<#)PEw<jGwE#TkQInV7*s4TZ)8IRy5
zne-aH_>O5(toM7CZR|Sjx@WJmZFkI}<9<7LmvKt`oE8=qF`Gs4_kzji<z#=`{)mqF
zc&@wj@%q*}w)rtze^futT=SKC_RMm(3sKQWRm66!os;=|;oi>2JB8h~q7TF_cK8>e
z|MhtH9?pk1bKm?^du_h$W9F`wUEPr{qoQ1^&E~Gi>{c;4@LFZ#xm8^?yPL$%GUxPh
zu&7V&JM0=BcQR7r=3QH*ZQ0BI`mb%%<H}S|ef~?<_3D#4*-P*CT{IE=yX>C*W~Cho
zXWlGy<Z_hMv9yr1U^m^lB)e?;uezyu(a*O|7Ghenyi&Pby}9`~OXKCW75^Cycl=ZT
zQ!;mt^arPJ+WhjjUK+iYQk%QxRHN=<O~v-$J#B_6dKd3RANtRbD%7mwyT53c#Oq~0
z!qq!cf21$CU*o)Q-<29yk;(rVGVW(_%M{<ecPGYVx{;AXXP$EA-C1ngLpzS05*5%8
zeU`AXC?ez3zPDQ!eg1iSdGM7($vbDYZnfR@$jwe~yU*VnoXS^Z?_UW&W52ET?7P_?
zieA0<pZak6*$s>nZ<$H2+fZ;Sq|fTXbGfZwHl2M|ad0M|SCrP{%Z2MF)o1_By7iyo
zp~$Y*C9753etU%`)cHs^F`jrk&-2UrYM$vv{~3g=*Z!25{^sPWEa5+PJFnRUuB*@R
z)je}jZGPUeSC8)9y2PHob9UyPl{)ixcdAI=f0lB0%i3zY?#u_AM;BH29sbSv$C~#{
z)zm9*t{dD}5;3@Q;CJsXR~e%flL}SZt0vrz5U@-C!MotcvfBY4-Me&BryYy6)JgW4
zdSv^HOQ(Nt3Y9#?(d~Astl?+!3HFOe;`#rWmnT2em%0~|vCZnswe`u5q-V-5y|hj$
zeMj_(wd(>78~JWspsmE<-5xW+x$K!lc+k=}l~Y&jy==>WL{9I@7T?%Cb{Arl53+3I
zEm}8S;HHhgvdtwAmpUKU&5C!{iN9+v?)e+I@ZW{`8>dZQ6!~(W&X4Lxzu$)4<9M`Z
z=hj`@415c^#3Gf>UYf6aN6cr1wa0_-<M##snf;0Uap6*i9oO#dn?9yZT;W=9>*>`q
z;pI{-1r8@mF5Q^nV_<u=vtm)3hJ|FoMRVn&i$Cmd+Ir%8)P+64$?3@zEZ@F8K0IBR
zW6|Vi9)GU%teG9sxVIuFr64Q4Yl>;p?=LqVtPB(Sar6JBkMUCSw{IU8H@8}TXs+Jn
zhdlMEZ6f=wywgv)w*EnjiO<KQ+AGD)UaGy{*4`BvZOHC>wEb#S`{Dl#EI;&*?MkVa
zUVb_6-P8Uz&wl-9h~h1*wcRN8<kriJDuPBy6-$J-6#O(2JviH#{nLL2?mxNR#|@&~
zKYWk6yr(q%;d?IcN7~OPRqxhy-IASQb9Be%?fc|YGkE4Dx$yq@tm?+-e}?^;{#*Tz
z^AFVv?9p72E&h+M>D2d=TdQa9-ZJfRz|O8TZ7y!tqM$R&zGYYZ`^k7Xmv{a%$p<Ra
zH%&E_F7Xckx&5=fU(400^Ok?{e|TQ(;Dh&_y5dJ}=StcnuJg@(czb2q73O<!w_;V+
z7nw?*u3oukQpXuNVfpE8k&lYEUaedAcVT@>yjaC--+dpBAIgog7yOZ?zp0|jTXBWt
zd$EGnAn%IYM;&Xzjx6xZ<$F0{!_=5HrJv^i5x)Ik`x{&H#`R}*<*k2|FY#h?=JO-l
zrIu|^yDnvW=aTU9h&yqS-hXFjY+Cb7GE98p)9oRB50{jN*e|H({wMrGp2J4{@$LH7
z`2uT0b$id>__C6B+wSGku^ZzhzH(f<#(rS#vhA&tVvmV-^O?;!{`6;Cq}x2D(8-(f
zu3h`?eeQJpt799E+`k(?ZGL<5r~QZTZ+O=K_`cYU8iyadA4RX_J~~fxmUQ)6-5Tu`
zx7|y)Pac^*Yt81n-i0QU>i+#qHay{A%{2A)*X0NEf2iop6Zqk}@`v%!UwiNWQP-~)
zTQ0kO%KjT4VodTix^6r&+p#P5-Lu?Ht;#Zb4BH>e-{KFrX2beezCDg(-}WmyTje*M
zmAyW<TBl0%iQn4i(MPR3l$$Cg7ln8>B=m^nv1Tv-VgB*-k$nnVtkU`)$?E?TvK2Y0
zHgUzPf>m#3aXdY;_PI~w!V0I}Wu`Md(+qcNE#`^8_Tqf#nI&8ApZj+G*)Ca&S=n!1
z=KH@sVV}a!lyRRkzsB=J@G+^l$!ju<V|2f_ug?$r?Qu0q`&ov*oTKPw_itNgF_f=a
zxMX57gC>Xn^7^zNs}J25dYkvhpvLvFJ$J=Q*Q1BdW>=bioLBx^=oR;>=u>Oknv;&p
z6g(9(i+t>Mtgy!V<KYMA+rRFYxL;HDaoyB~_wL2Hu6vc8x9!-mjD>xo)BLx`G3{zP
zxznRh;)+V%#>vtJw$}cCSJarAA8h|I`@?+Siq!f3`}bd1cwzA*m)|zU8z<a3Ds@UJ
zQct>w(_qGl2`Y`*Cl@;Hjr0-~deWW0sQhbfxc7IP@8Q$pmc@71n1Ap;B4@v^>({;4
zhr_j39?hDz`B3w3H`5-KZqe>dyH52n`-ujr`yS;o`@7%t_P+!1;&nnb9$P=Ue(x&n
z7kwpcqIUX7VB`(G#Y?t+J~8>_wrhnxNmpbimt5*RDfaDQ*~TL0g7W(UU;TULiCvLD
zKA-=qJZHuAL%Swi{&zvyW!|+Xx1H;@udgr8`vw|M=il_K;^~A<+Ed-;*}jy2<Ne$D
z$3m0tx9N}8_^!RF6tlGT?6k!xz00$zik)+1!u;!QxX!a={p4<_ci~y-T`8l!Kc+e^
zuUCYJ`>uUA>yQ2VBR3zZpRVve@t5Jle};~KT7RrRysELea&q>O>D{(>za9~L_*SWU
zTIO2a)Y}?qe5s!vP1wvJI$;_I<7?B@kE$y^JX@N+<o17tq#yp_-oLqD7d?9TR_}4?
zB<o&VmEJ|=Ix$<cP8(^~6dd@MAN6|w)^**#Jx~2-5HdY$eMBm3IqUJcD>7IAUA+9&
zNuGjecbT;b->x0p?l-;OcGU@$KG*PLqWgU=AD<9;_>q2>oW{N_mrc95^EY_rCL7HA
z7TRR{U5($&;>=`MIiK_s?Ab<hc7OaNxs=C^TUfQd-}Lv|+_l$pO>SMUQY#CXe=Ggi
z{jKqb?}i_mXEgs<`K}pP`?jx$bFa9~5)>Wpy2)+(L?g#QmWf;Z?7md!h^~HeH(h^e
z(*4XCo;%GaZ!Y7zd$cYmeVyf(XZt<(>DEYG+NXHSzkb1wnd|dv{8#bj>Mgx<QOD3@
z+orcp4&IIVTFa+-2zNNT9cO;1-&N0Dll@`Zv1`wd^ye0)SFhx@u3l~FGjTWLvtu4w
zYv$!RoS5sz%zJxk!{79_AIsXbCM|igcS+8yS6_U#`iHLkb0qVco#FNW3=jI`#op97
z77Lp$@A#ViV1lpCzl7~qLf<`_arfA|ja&XDI<<J6-g<MATY`O=otAogjrDKlieJYc
zg+93+RX6{^iv?HLEo;(Loh0$tb(VXRfl_jVrwgOMW7nSr*Gu*byuSazFTZP_?1hE%
z180X^t;x>LPR|!UtL^nqao4Sl$0gFsk}o=_Tz~ie$bW{L+{fy-?EfPi|LAfJ`|jC6
zALTYLxRY`1R_w2XY1_B26*|$m{LYqp(W{FkK9|WGMhF?k?@cs*V<#`~w@%H=@cGJh
zC#ySa`X?VxTyCQ?rL?U7S-r}ChRx>3_w!e{KYk)!r@wdWEbaTkuZuWy7w+zoNSt&#
z$?wIpls2=7D{pw5CPmI@ob@gK_Uy;?&0qI-&f~tc<@S!Is28`+lyg0uF*9%8{f<)&
zo*oa9l_uD1Y`P;DzqWqU_CG@3kJWE{|CaZGeqY!<l}mQUv5~%|g_X;G_*p#J`Qh2t
z(wt))Uqfg8v!1e@<I~C=o!nwfmbyMZH~+r-yV`{R=Iw8je`v4xBl_e1q8nMa`1`h`
ziGRE0v*BRz!uz)kJoFNFPr4VKUEOctqL>-UWpMHyNAT$*cAAMFZceqTsH*vx9X9LI
zuiV`7sG4s!J#vwnL3Nki|JEP0pYDHKagR0ooBEH;A(OJrBTEWJ*G%&1xSzFKQ-(2q
zj?mjf+n8l|KF|8ob7jp}U*iYUo9_p1%eeOPt9M5lk4j`>b(`U)9Zws1C%J{lH2Aaa
zE&g`lV_NTr_hBE?59YUo$LU@&;nueNGB^0}JnbEu_wBr_|5mkP`IfeCcTB>k1t}d@
z2{Kx;z?kh^!1^=a|5<!g+xT!U|G`<)78jN-dtvCOtNUDGiBgTnzc{;B&l?u-Fy6WT
z@@CEDgX;2I-v6kNe^ys~)N(7I=f&>p`A6mQAMS3<UL3hG^_HGW;pcQ2G1dOSch+3L
z-hW&Ex9^{FjpUDq59Jvvf>b{GUhmRbztuXrK=^!0%dsUVMOqfHcurM$_-)>!eR?03
zbnS|rwAjq<x_0W^`+4k+JLd2w9)BDk_d<Tl`Xg$8m;aNmalQV2UHbM9kM?Ni9J}Vy
zbnD^FG!H$MGaXCkswn=Na%*>S+@&cG<AVBK{xc{af7p4cH)>V>*8cvQ^u;%RWL-M#
z`H{WdG*&on(;m6xEQ9lTox&;Gr!9<<EIJh;P*rov&!BGB-}!G!G?rY=+atg7c(usp
z&dAPQj>#tiLK3$>Ej*FR8=qNszg}dI?#J2R>b6|3QCt-jcR%CTySe()lJ6HJPfBgb
z<+$i65vdYZ*d(19$H`}V-{tT8KWh6}u5Gm!`XTgJU!iqb@7virDbYDis~oJG84o5|
zr+3}{9b|V(&+B^r7rUzuuNw#cK0nhwZOcZ`XnL)a(wn^R9!DPMiFr<MU=J#&dMvsA
zEWf1Bq(1@I9hCps&$qSUJAdV$<$ng7f79yDU5>q5cf6i|Po#-BSN=M^gz#yGGDS0F
zKU_?_yKRDBdF~S#o}zl4Kd#j*_XSO_HAQ^dHRbjd5AFo9S2K7Fj!T}D)n0YIc>nxo
zHQPmYR&y)=68<}RtG@n$`b|ePo-^qSK9{LKJ?F=-p72}uw>3p&?cZ?z*lg?974N3`
zbKI-U)XEFgsOa%y|32}<DR;#NrTymn)9ocPcgaoutyxi2GI9By?bnxtJG2Jat~p_I
zaEDP_^1<6%=1-A5qWPEi?<&)~TIavH{g`*_%*Wdfx5TIKO5>P0>DgTemB;I9vsNCy
z>we`a|M!y1pKOJ{&4|v`e{3>s;_)X@ho)sqxs+*yZT0x3#&Iyf;<)3beP(|<w*0o0
z{+9G%>fV;kr+2?)F+H>1`fc{ft`(J>IgAHbK4`zae=9s7I=@%%WUWqiDeG*F(B8+#
zr?5TV$(``4ZGFf7<loCT|DA24IrFVbNL%S`r4zjqOAXG?=qV~bVV(Uk=A~VYOZeyY
ze|P+qXI4My_jmt^pVN<D&idtl?7ZAe*K=$0OFvdWyyPmnNATS?L)A6MD|ObK2o_w&
z__ITOr+od+k0J5f|1LeaYqOM91=~l}h6Dc@GCtdHO=eiK$ajhHgE<Rst=^Je7XEO)
z#QohhX&=Ad`F1E%`Z0flBd12{k*L~k`LB&dp3;qvd4FENV?JvO`?tHBXMNJ{sJYJ+
zJ4Yh2|Kw^X$G_)iALRYAX0!V5t^e5nGb}lBpXc5CXSGu+5@#m&J#ON-`$MkY>xFPY
zPs7PmU*vYI)Bl})_<O~t^^ZC~pE_|b^3M{k>?K>a3pc9HUUTB`dqqC0{|uWa{<{8r
zYJBmnt>;eNi`hPl&CbbgPulit5nVi=KlLB(dh*u$$eK+(3Gz>UvQI9WTwozn@~ghL
za&oQTsp8Ct_lu@>u{iH2XI~+^a{DHwLkIh1E5EPHll3y5AkX72yQ=r-l{XL9%hW8E
zo4+<jE!FJo?O3Nz+KJEg`0h2YkbAzjCi&y^hv%DY;ve7VtN49nR*rf3uGA}wj=hRl
zJaz4?h;7rI9!yo=XLbGR_Hc_WKcyv)6~=`=`kkS^Nnllz(%(mIwg)YLrIfAD=Ikt(
z`l$HSq{8%ue<$kXFYU4Yc>3|arHL{Haj_NWz1to|v`<TQT<~%;!-2v^l}+~kd!Bq>
z&-^1%#QV2N#F7l9l#ltn(chEPb=TkJy{~6^Kz?fV@;4XPzBIR&-e={RUM$it-}B|M
z(&E)3p&#DOSh9g-0`uba{(F{`vV=dmekA`^c*F<)H}@ZA{u91`GuClU#q?uZ-&Jk?
zGpP2hH$5~Z$Z56JsU_2b$|g3Rty_Hf%c@7|K>~MI)W1|e{aDLsj>z+i`>*^;e-M8t
zpXv2H)gOxszqw|ne9ZjZ*<~3r|IKbmK9{Zsyq}B<`y!st`nfv(L;N9M`$zmoZm3*Q
zy!<XN$0T#jnxlu^S;AR-pG!w1riM=P*Ys&fR(bO2roCc?@#AOf_;&m=zM8+}-_0w%
zf1a5o%518gCt+?=AR6;X!NSRawcsA>N4@4nuXY{3^-g)K@C*-i<#N8`4VJHL|7L&T
zvNX-`3ZC*y|Iqy>6{dwH%Rel>_)p`<y<5K@t*Huc{kr?7ZpmA=W5*t8FEOfLw*0(e
z=er~8pBilvSlz-}7iSzHr}bm?Z-<y4Gq=Qx+HSofZkF>XturiMO?l&Yll->dr;J1k
zUs#Afnl)`}X7$JQ!Fx7L@LO-X#_NUO{b?4T&nI!d$i7umsFL|OBFgA^UU&Wb{|ved
zU)4wb$})ViC2HT?J^gB{!gjqYEUx%{>=)b0Ouo6x_MY5brm4Gmy5i%5Ih~?q0&_kp
zK2~1OUi^4^|JU8KUq{DF+&;hLxRtvKr|!<#XS6sEozDBDp<u3ciu3KP1DB(`d-I)p
zdJn%9?<qW~{N~5)pFO`X*IB&UUe(vU<nOMq=_mJu{%m)Rh-FW_eC5gS>rOqg8Lr2x
zXU47yD!=iwIBfIweBnF3`IXsvFRuKw%jipB&P!G)YRO^jkF(YOviMu1RE@l7jc|S5
zMT>aeSm~9?r3va4bIT0b+m3TBpI{;PpJCdp1<~il?%j*2d7?gJxqZn5qvH8~`>wva
z<=4G5JGjE{c3`V)`jwI$eHYkI>wG-+xIpsoVu8ZfajiL8b4}L&jriFUW_jtTliA+$
zuXaCN+qPD|J+bd^xx|BQtWCS#g~py?PQJZDCj7FT_4O~>_HDD=HZIljOw;q9GC_7h
z-6ub*R?CCR8`huf?~{{gKfHhQ=ZeV>pKO=ozH)5&;#)_{7vAyDbBcR4A<}ED_{=9e
z49_^+Y0o^&c(nTYTh{!?@7wD)T(L9xk@_h6^NNhqGSjZz+SvBpKSA%7xe!}}AGiCC
zrp-KN#uF#ho1ZI?xe*!pe)*&Ri=XcJzZaV=_cC!^Mb-s>-LCUleFyJXwKMNLKFyE)
zVZ2EFLHD;?*30}mw$HHd&@)T5OV_T4xGGNVzws`)j9H=7>2TMRI^&AjkLDk$Z<}@f
zNHzCret~VBS$Sz2r(N?lo1z);FXZC6hYlyTcwFWrD_gEt`|<p-z2yBG?vHb~_msT2
z?*H%j4)2pX`gNBsbSD3t5q-y*p<d^~1eKEv4@%ZgKJjTgkFVCp@-5RJTzvgZ^vX)F
z*|Gf3eFLYx(zw#R<<DP{$Mft3FD>4+dz)U_t|lYH^Uu#${S~|XkK+%+hj+7i?hDnp
zRxi8l(OvMLA@S0rhl+i%OC+Cnd2bfT`JgKJc$ty*+xgu8j^5wAb#Cwaj<qIpqocN_
zde0PyIhn6=?cIXTWDn(zcaH6!PEAxeHC1=p{)*!t>%{tx&A<CE{lwE5QCl8nD1Y$P
z(SMixc|qgdSkJo~w>`dIXZHBxy48p7@q9GzS^jB{akAb*tpt;>EWH#93&!N_pH<HL
zKUAM{{cGWe{%_TPr~I+nHhrGd2esZx6|Y{og)5@e78V_xuH;;37TI_Ca8*M1OaGRw
zd$m2c^&NL=)8=T(3(V!%?!b7=pu6YEuj|Lt>~s#zdb-$ke|Y|9+ZRu_E?ch|ed3?O
zpWxp%HGUuR+uqouKYq<UpFgu|&b-jQ?-u75@&xTW`#Z^KN#dzv+=em<auueh<0{NO
zF1%U0RkrBUms_tKmuxB7nlY*3I>Vkchw>G7>`EU`Ja77!zy4sz!mC@j>zQNXUw*eb
z-}Yu}u77aj+Q8)k-h~W3x9;%nP7a+GK21|{YMIa+5$XMkf4m>ccgJs)+x&1X`+<1^
zSKileUh{1G)~;KYYM)zr*1b~+jR+Mvwo2lJGRwmmLfWr>6n8%ES}1k(t;qY@k}$hu
zlZBnV?tZg#e%5*Z5zJbZ`$kW16L;RE;(4}>@BcHrezx6YZq$W4EgLVtdGmc`>}k12
z6({a^oX^|(YvPB;|2R(m4*Rin((7Z>qxhR2Omt5A^y1##g$EAVuAQ}|Zm(Y9<;n47
zKcxS0Z2XXY*eodPKZEd}*tOZ)#Ww6|yY1H}Yj({oRHf#Ke;HfVql9dkdihin<-EFl
z-}(o2>b!dLXSA(P-o85jyhxqmN0$i+MlS6QtM=&K>)P>r-j7#W?<PJtFZg43Kv%?@
z^;?rqyLF0eS|$H2a=TXYcAt{<FV(+w|LwC+(Qlr=DZJ0d{loQxW@1st<|hl?&K5rw
z>-6vLlO3Jj$4g5td9B@g;-}%k0|y@Mm)v8%KK4bhquTs+XIb~;?>NjpM_A^Gh=t$2
ztCi-GmyZWcjS|@8ck7q_XPYzERp*Ii2~WKpZZoAu@?&`0m)*VfN5q&;S%>KSOV@8c
zpjiFa&wg(8zwQSwY77@2t^78{ZD!Kc041%TE!ykPDyHd3@CdM92$y}lzVlYw>W6>R
zxK}?e&UmpZF*|piIm2S16z0!z4stiwbsvove(*s@>|4~o*<wqRbyt~BIkPP2w!sl?
zCP`6uo5u6D+F3tVO`el{CnTs>?YC^`^^O`x-l^wy7G3t1-6Z)gB`Idn6U{W0=L{PH
zzsjzDayRIiajwn$648mB$_;#;kM_-N@^7yfs?l6tvHH!DTX72}uKjb(S-AILglN**
z11FT5_&6Tzu|D!oc>ARq`xUPWPa1gSE~zmHvMN0xe|~RSqD*q#bDLF`CjI>F^0%X!
z_r<w(yj8blNuFOEzrudwlyKvWIIUS%g#S%nzVcWV$5V@6OulvTnMDh)mX?>Ytcf_y
zJk_FKW`0ukSLbisd$aR7f6RM0WwY7JjQO$Co^J5Ja9u5ZEqig-ocZ7OBtQL^{(61$
zlO6S(v9^b0baZyy?%|P}`sMzS9S=5M&w21ub(XKDYPx1)!$&1GPwNi$_gp`U>P51}
zr9_X2y$IuYoL0Lh!N9ii`ThPw`)>T0Y$ATopx?)h^{q*?Ym&5mmFwet#k!a0*H``7
z-<7jrze(NN$;ZDh?dOm4lK$)Inz+3r$mru2cKM}cFBJ|e&hlMSB%{;3{DS%Gm}T>y
zs;**Kz|+U>^&%*CRn4BNI?<oLUUSa;x|Qv`dee>)rx!^%4R*OF|7@?<y6AcCQXE@Y
z@>R)*x)}LOJ38{eeK@{;ecshfbp_ep-OH8syxQ_r@3_C}*ERVwmwcM?pP^Q=^4Htr
zufx~A%Uzcv{pQkfvzWif!d~}Tm>xb@Su~x&U6UbQ`MT&v*=z6oB)+Lju1WQGcxsig
z=Rkvf;N=%uXNsmY^ET9GYiVy$NLQ9?TO)m<Y|1&?e_OO_4~LXVxgL9=K5@sX$C6*p
z77Kd>=^OmIx;lEk9#iOanQJlo(`PB|?zfcJWM7*bG=J9`m(uk4HIbVxmELdNr+;DV
z^GVXuf5kp=F732A7O|vb_0*W&Bg_+wj9<t1@00mE;my|hV$MryY_Gb$F=FODb3M$$
zF<(Pl%j~hton;SREo@|$F#YxP<6^Ja<Oj!lN;KZ3G_L=Wz1vY~U6ip=W%c#t+H<=8
zto)FEV87gt<lN)!f09e{OS#!LP0?P^`MoGcyk?!XK1<_{r2Rn;#5EGNEcWLAlGmSa
z`gXz6ji2Sa>XUP${xdxKw(vvEE?2&l$*RY1b~DQEj#~5SXI#p|jnZ2j!^_?-w|Ol3
zpkA~-VSmSbwl}Tk7P2jU_<Yha>!nUdi_R?U(f*c}GAZKV&j~#Zjx5cy{;JJB^q*m?
z`!V@j!Xe!c<~Of1ee3LZS+VQavm?{CZ{ITET))iuqK`-O-YT8`Ji9g1Iftt(<%68z
zkHa7B13su!nIBne_Mai_!`Cg}J{(<fOXc}*yO@5XbCz8#ItGhE(<Yit72M}qyH)1U
zrp#p(KlbQY?!8uL8S_Wy$7+^~H>1y8zdUvF*}l&?iIYtEeon|as4&OinDNB;wey+&
z=~Ng$j6b|Pp8em|IME9=sUJQ+>OK8(HQQpFZQo{z?P{~o)o=ZfJ~KBiRUlqx!Y-?h
zCqG?^W@i378_%&P_2YKmkNY+*zFAT9^^bg_?bo~K)~sBfEfjrHFkatt-;NTulN~eH
za*6Sr_<h0Z-Ov1^@}lz(&S$6-&AQL=ZrOa_tM9%}E>B&xCVblUX%k}(U3z(I>a;6e
z)s-pI%R6Uy6}?dDUtlb?`S||TTfb*sUi{*V#ab=H@+#wZy}=L5-+cU_9&^#g{bA}y
z-Fvgy=9d=pE?Zfe$uq69@Ofv+&1c=k9xqE}PUJ6``1VQb<BHS?Oy{59<M|P}{!ihD
znp^MR{4QPb@}J^`hx3nEy~)-IH=9+~nz8P1(8PspnUT{1H{De|b?){>!>u>#Ql}r-
zZZD-%qTlttdeKX%)^~H$m)<y-n)Ax!b+q?NMVBp??>!2yXvuqIaaf>xt3bZ>>(~A5
zx9&IZldCcLD1OA3{fO0)S#c|K3m?ATYZdL?JL~Qvm!@ym!gVu}sv8yKwO)m9ah^~v
z*!XkLhRFwZ?7AxR$~^tYi(mG!dX+OGO}<9Yd;Fh)<;joy5BqL=T(^_lx_0g=&xdQn
z9WL6qF5LR}d{+*C=h9jKuGOlY_HB!pdvKP<(_0s}uF~>28ePn9|0DCa=?~p4z2XP|
z$y}WG`<NYnlW+R5m1<L~t=(7Iv_5Oy$}&|>y7uCh-_N!w?&R@4J?o=>OZlzm2hJMR
zi$q4>$~?Wi`=yDj*3UTKnD`SPZ`?Lrx^>y_pZSKuF4F~-k26^ta<ndqzsi5J{^)iq
z{WqUKD!YEX-}JV|^ijTO*0;dS>aX_O?A9dj?)Ja(J}mOC*sbX3bn}A9$=}lE#zr}-
zyx;oxdE8Xjv*CAVUyina{dMCP3BSm&z{$I9R{LMG&scx+`Xm0Xt^GH%BO7Z>KeF9A
z^IFQiBlYvMOC=Rj*~`Qx-i&!WIV5{wq3Dbq-QTC37b!RNc=bNMDE5c>x4a))<vJg&
z_UB(Wb#+CW_gdqiog1X;r<XHM%v+>j<Sle!nUnlkPZ6)4<b#=#-~TgY$F~%}j8nV%
zr}p7_;p1!mSY0yhF5Puah3C5x_imOw9`nkKPO8jS;}pJqXf4y?V=@A#<Cs6pf3&@?
z#`)pf@}vJ5nAexe3LpK&?UQhM+2y#$o?Y1-H$#&?uf3)j_D-~NQoi{ad(B(BCEZV@
zO(`@rl)JQeQ`gftuir1PFJCs@_KcmR>#j*xzSTGFito1L%U1X2uU>omjv@cb-BA&z
z%ViRkCo2CtE1=aDKFM;4g=J7fE`$7n(wlpjS5=fd%|9G<W_ncX>btjMGC%d+PZRXw
zDRz0lkUZ6c!Tg-8^r{E_6Zi4P{+J)Rt4sUnjM%deXB)0KxcFwJLG&HAiD%!Ky*N7U
z?)RgblMAQlG@rS@z2FP`_0m}9Bm3kozumJ|**AY?sjrt~e!8NOMeV1Zt}ebU8zv_k
z8!ehVG2XU$rPn&e%RTEZ)lJ`Z{kkvzf`jLTzAyS_`|sadztx3Bz1z<=CacSQe}8-O
z^@;J8bysGEe*MpI;PqRtbC0aM1J`7htu2;LK3%Tn5M}doUqtMwl-nEL=Cw2J%?|p}
z_~0!2Z>3MUarYv({^XsbZFMqjV@!MT#-3G?%tr*TpY!P2+;Jyg=8yhwmp`SOCqLf0
zzwyiIMzj47ZIx~uTy*F5v0fEzh2oV5RTPt^pL9O6UB|Ov^`sW5Z_<UcHeLHJrz|gV
z+<D255|jM4DBJ73Hi7kdIhT%#hg{XsW7~8;)pHiN>Xyx0xqd&Hu`P9ygRDWQ2eaM#
zkKPCO30<#ashA)7p=_^x*E^kD@!wXT{kym$#Df|;ryYBC?^{H^+GpKEweupBN+&3b
z9%kZyW>WQT_s8Q$<v%P;`Y5*f!CvvBzmk+I;@-vEc|X@S+2mfXF}1nz>D&v>>Qn68
zwC?NHN`JIJexLK7@GCR1{|u6G@56Rnf3xLxyyl%4-PgA@HJ3$iIdpbb$=td#uhU{q
zik$9!<7ZpidL+1K+0(LbvHQ<_tlO<NZ?E6+M`ja$+gE&hciH8_*66chxxxWkc8W*Y
ztt`#EuA84V?R&S~!h9R9>tfqGi?a)tYoEFH<haSIjVDAmzTIb8V|aP(;>&MJthrAp
z1j-a2Uw7Ya(xM*iReG~dEo?XuaE8Hx<?DL!ACo@@d;BO}c=AK(^0s$}AHLnQ>A>Wp
z`8rl*OIN!5s|mZl*)_lB(?O9>4%dS;grdDxPfxfydC|XX^2|CV+1}c=X4g-)NnEsl
zH2H$`(@=(DwKXyy?=~dgVUF$Vjq3hha%cLo<8wQXuGs7U|MDX{{y%CzVt)t!cz$G;
z{qgvYS;yOL_)Xko<pdM8%vOGjlzQg5*dsUY(nSTqy;mmQaXK~o#!RzgF@KJJO#T+}
z!TrtI-*K52Ykam{wp0BP9B^sfl8eHTm!5=Q(b0>XB;CqcZetJ={gyj(W%M(l=$b$+
z4~O6B->&bqTK;DDx*D4wGnc&hW!||}ULbSYE!*#{YwXTfXZ*^&!e(5Uy+nO#*+fp8
z(>vy+&7E9zd%*<7`m<;2_#5Pz>#TnyM_k;${cC^Atg@A<iK|{&HPx>6n(gb+6C|B$
z6;>O|y60Wmw(XxDwcRs5ca3rN&+WWnTfOYAW~$d(z5KlYPVHW=TelZ}Nq;k6zp+03
z{w<@^-oO1j-l^{i@vhF7zLQxM+B@}#|1;IrM>jYU_h*JFO0PZ9cK?h<u)5Lpch?X1
z-<CW0wO*nk|IvhPA9~+zeY)k__gxD&@7ijXV$-`MHtw+O(J32Tg4~64HcK>Ah`ALM
z|A=0eE!DR9WB>8^t>OpY%X+TxOkN%D`f&c6$%}5q9?i}aFpqk(t878}(dE*bQzN1l
zox3jGwf3;rDO>eN*WX4iuJNjG+qJy6PX2bqELqml^?a|si$%Fq-F?@THj8a`&}6^M
ziJQ}ek9FF18D@S+iQJY~vVPLpPgXNdt@STkyL7sL$os$QE3bPkeO!C~LVeHV8tEUm
zKiv9$B%XcCTm6uKH-GEC?Y(k+`$XM4ZBO?++5Ay%u5$F*RBn&6nJm-ZSgo$i^OQ3c
zUAFY0KXc}MiG7y$v!c`wue|X>IQo88@Urf_Z=css+m*IB+bBL>wEb*G&%8u)uH=jl
z;c~o>@^9^bQ2p=Bhm82GcTao_neZY$^U{|Jo!-6E<}OlO@;;IE?9w^kwhMZvvT#;x
zxbLt1@;cwDrPuXpnvdR^x2sP0W&9TR{yMpr`}i)bnfK;L*{@61i?f&i48FbPSKh)@
z?YP^KQLl=%?zl<{oaeO9p5iCwELT!dWOw#h`L>nc_ut>XY_{D}o8r3H_dnZx|EPbY
z{m1hMXZaugeSi4pR_)yS6VcMu7t<?CS2@bWl}N3fdgb|VJC3&jEt3Q;&irwYrDN&7
z&>zk#{$03uIQiq@hk7&D{V2P|dPVBit@FO}H#bIT?a9(TySmcI<)oxxwBMOaQ$C9>
zk5o+jJiVnp)3*B9J)IArsZN24d6CzT{5rRERqTs-;#U+e?XgeS;TI`47dn!xB%R%z
zdG*<zjXK|*&rH&;D_j3+`GL~^3~g>d5+B?5+iwXe)Nk05oBL(0*rf-)h5FwnnO^bQ
z7<H#TW14qlhhy6IbILs?zKo~z_0+X1qA$0|?5z9G5Px<?b;!j_8S)Z)<UgE#$hZC@
zTRdk)_aX7?_e6K>{cuM4^xnutlkP6+yZ1Ng?}_Q>dsZ!}R@_$Lea52fyZ;UK<Fjh-
zbuNvq@x5ZBy)xnz`|qk}*&0nV_k^mhisFoV_cHF0^s(yBNV{v3G*pusQuOM4|F-PU
z$d}I2x7%pexyJY5dztL-8!D1LuBhz!DBiZU`n-{M&#mJ+@wdYGl(&7J8Ey7)k9Ao3
zyvPaF=MP!$^?tOzdr$hK^&R^Zu6@zxnr78AJ^Zm>)9u4y261A0Jft4oG?mEZnP|Fa
zZI$}=j)i3*w@%FC%UZR=pVN26&6V2OwOhVKt^K-n=3T$3|MXw~`nT0q|7acWkNpqp
z8E)11{g}VLBJbC`W0#%>?b!3-%JpgCyQWQC_KM5fzdU1OW|~V^#J+3aKDx#E8ytMP
zxrP7lQakb28-A#+TQu)?@a3<X^D>rio%crm&CPtNY@=V7JT7r6<X%{kYdA5^;09}l
z-Rt~Ck$<E<<kYj<ST6WseZWq3`>v0I*Wa(xS={e*<;&`}(!kWzZ}TnU;<uiu&xnZ7
z=}ToS+mcc?E9Ac59{1n+%MY&S$q4%uu`iIVzm{#G?iBOz0;}5P0>`?o6t@fgoZ!iC
z9bKTTSLYadB>1S4#j>q?XNAS=HF@!VzxRvTTkkLR@_hTZKK^Qd_dm`*4nI=!*GAty
zue$f&^3`!mmR({lT%mhJI8pEL!iuZ!a<AE2RZi_br0&`|voY#7`|&FOCL6~O-|oGB
zWFx%4RXXzWvF?iPK~5KLzY?xbJO13=YWd{y#WO=}A~>$yzPo*z#m~zR%=$kXAK7Jl
zZ+@A{3B80XvwbhD-`YL9V{!kR305)O={*N+uB~ZsN)1wI?XWkV+%J2%K6`K4e}+eU
z<OF}rU18fJCmpH(_$sqETX!Yz9P9VG_X8$H`re#&waHm`m#@N(z?~NlupE9WG|wzz
zj<MhQ*qr<G?oXdS%Y1Eg^%pyVzde8QAIjg%J`|^Z<)3}VuW2*$ALMt`sZ9GEQ<1lD
z>-MJDxXMQp6DD2Ucair@vAa&N&c+RHr#3L`_*?bk=VNO@^NuAy3fIJE+9}UFcI{Iv
zZ%*E#>4Ce2+)dX^xUYJ2O7`=HYZt8y(s+NLG@fQ+pYxwVzQX;{`u45!+i$IJ%q`8<
z%|7_++-|YCt7BBx-u*jw)>QfQmIZwkvFU#w-SuVcdE{`aQod*Z*3c<c`fqlAERXtd
zzvIzIwplf7rQDK>CY=x5w5M^cPxrQh?@rkPC&EncO5QTt^@ORu@WdvK=QqA;?YWpg
z+xOb_==JfT*WGIFCH9tNSn6JipZR5b&({A8GXJjaQ@&E8{bBy0fY^%qW8XDPA6f5J
z_S&)SN}lOyZuau%-Am`)^LCvRxkl(ttW8!*uOeTH;IzM5KZ+mJ^VHp`XMOVF`cYrK
z`-jW_8GUHkHhtSZncaO~OSC6#JXpQ-=BsZ8+J8=UTz2#6(NjuloieTd@#}A?{~4Ov
zUhL=JV_5u<`>b^E)~)@)TlfEF?OU%pckZ>-sVaHXg_bZ$s<gS@-NzYuXyYxGiw*4W
z^xr)F?O&n)c>a;hI=dJDOs<)%b=(@Ue#wWg&o=6an@!v9`9yv4@>`}`n<JeCxc5eO
z)=m;Po){M|_MuIi>2g=*(dE_ev!hRM`yDA)7eC|D`f{<Yc6|RCnwtMJ92Bg{f8fvk
z`k(dRX@C4z)ws@gy7=gdjsN1T{TVwyvTX9;nQk?==b)Ue-@SrE57eISxHb8$(TRB;
z|Ekwcd$8*?^O|p;j-|APXt&2UEV~xRp)h&km8$E%1T*Eg%w6AW<G<`bLsmuH>%;SG
zKCtdvT>4P+Yk8mY`rA#(dpC8x=+v|6WLD0bWGQ+%_lnmuHtkRSZ(Dzh)gQF8&v`8>
zr*<iKpVXh+kBoi4PQ7-W>_0i;%95@NYp+PP&WYH1CET~s=Jx4qPq7b6guGc2r*eM(
zp?`FaubvNEI=kBaBhzk`#?7r~ezs$JLq^i#w;6WfKj$B2>-gZBnBTJ^dgly2x1#+I
z1Mc06^?sxgmLWNHZE8UG)=%au?Hg>fwT^|xZ`@^LZs=NQ(D&&6nTU6c!P_b>1*}`C
z_3&b(Gpm*a+lkfN!yB>-D-+MOUHxYCIL}-|aVJaoSDEBW%X0ru_AEy(7p}F~Z-2sH
z$Wvxkjlgm4qnbOKr7!0(o#6bri?3;Ku*;9bAC(Uu^0d)^Y@2lP#vHAza-GG^*DO;~
zY=k(p+*hpEzW&~3t&w1X>;!+tqy|F<3x&rDG86lFBX(U8U99#*TV3Hf`_o@iVKEcq
z(rpSwHIEi~F1}qS|0nXt`Xzt3cU&s@&miC}*8Na1;hR+W<os`iYD=pwc%9y+sG%TM
z{QKO#rhO&5ujQNi##R45_Mf4DX3Mz+iOicG7syP!EOAb2?V4xz9ky=zbVjbo?UMc(
z<_2#?1p#T6r^RzhCDu&I*ZRVm!1jn~Ql*8(^V?t6JI}lqX8kd;HLCYe?r!-V@l1ad
z7gsdh{ucDnZz=DZPcJ8C2R7PnDcUJ`Q0K$j2@j_nd%4r`j>y~tY)@(*|IYdm@yGM;
zgguoHkIeE|^4oUG>8E#2=k8DayK8EBXUtT^{!=Gj&k<VA5Pmp*^U-_fS?kUQ$?z_Z
ziV=RDSloYU-@6|#S8b|0H_v98^F+DnGRObjym#C3FKg+;HH*dSHcpFmoBhfCLj2aa
z8Q<#kFK=0ElqnVQrDJW)&Ha~_uqIV3PBThAtDfig$$Z|9lk3mw-;npYvd8wf;*Ye;
zQ4yEiroBGlvQ6x%@LL_OO>G5dA|s}qV7FjqR{yg7+mtJbvmaG;&gq?Y?Fi3Td&_@2
z*Pr*lnI2a0pCP@Ur&;caq1R333CCXL{9CqP?rc_6MMwFpKTGPmTf&z6U-<F-=zLK<
z8|L4RKW@p(oJ`neK3}9pQzh@ZFQYT--rdF>&-xQxw%<s}H<{pg=<VU~7jvg~?eUra
zA;{PK@Jg9<-|hqAZk9GbrhfR<w5KQOmWqm%QsZtG!<>)JAJu!lc>7jAj_=fYcPm8f
zKZ96}vK31zbHOFu&O2+?ELV_Q+<d~iVg0^`JB|O{n6}+;PW@5AlEXH&e}iQHGbp+x
zYt@~#&OUMdp|nwf(d69t^*`qqJFbgydzxmKFrjer#N!*!X5Biu{Em<P1%;FL)d^we
z<5n@Q*WY~g)S*SeO}!0{EK+Z-JwNrcJbg}2^_TT$RtHUvnjgttTD-s8z;l~&A>)6B
zq;w7U-)ka5HpJdNS@<om<gS&skp1HW!7=;hua31{v}Ok1ViqAz`KdYXE9P%1V3?q1
zyZP3hm6tPTN6w8Ay6bkh+TjVG2e0I>uZh92cebn&i!guud);#RdAFV=DV6%$Jb66v
z$CcF<o6DRmj)lzkI_Y#~rS|mayBpjBIF%F%yz-dkeXfhI;n=?^PjA@{pEo(1=QhYK
z_#Cxes@YrUgn!I++v>W_FU<peUN=fAD=YWM2gZI`ywIr3F7@xM^lj~r(~q6hUF@Lt
zv2Xg$2@Ib3{4d*8`uxv${+d)h>rctwMPIoq>(k;noO4)=)I0vftXq&g_1dy9b%}F@
zKOgN6{m+ngU*LuN<MLzAKP%s4?>4zMao?+B$`^73PpTv{9J_h&vCQ>H^N*dEdbv;S
z2m6Dy;SST!Z`}P+y=S=&*MzXg5!0%Rr|K|dEaBm>P<WD3RG;x6%G7SBdftTn|Cr8q
zp4U1W5LkQvRe?R<AN7acKfc<(&9xGnn{PHfa6>~vM_;hq&R_G_7TgoLkYgGf9RBY@
zrAOn#8><d5cuguOyzuehS@#F=okB18YqL!|ro_Z{vR&7D{50a*!zn2bnEUoz^Kbj(
z$=18-Rngt!il67{?u(P)T~%SJJaJz3*OftYmrVR5Fr{SQannK(&yUf8AO3E;EPv}^
z_nDlT;x&al=@!b*PD=dE-g51a>Z*)7oxY2CLJ_x)JqkEDmupRsM(Pb_=G`_$>`|X(
z&BM0s`LTD!tDoAO`<vW!8{Cd`H}^blIsZED`lEiq7r&-=Px98Du~hzMdDd;dy0nRA
zE8p?Qua9~)-Dpz(q(2?`&W$^_T>WYr?&q!P6Mg1YkE-FD64xXThDl2~C4=}XUdH@q
z=-!eqoU!ejbL_szMbp9!k3Y9=IK{7EA@lZSY}xFUx1zIldB@#RVyT|Qy@7#QXvMFZ
zJN)anrvHh$mYY{HS5G?fQowcAlfBKUTn6XmzLu==^fTE0b>-Zw!jjoLKl?4VnN+dp
zMf3+Bn`t=-GS62&ZjAf<(Ei??3eUwXGuD53e&E4`>4Ngd8RVvZ&VBN5Pvk1s!wZ`e
zY#ok0J8nO<mifVL<;u#Xj>Y1$MT#Q5x*iz4pY(|3fqc6C^}SV}!j|>7pPl{dsY>0i
zf0v}1-G3WLI`A94u9JE$J3VHz`q%Xye;0jSq5iiucgw{6XZLOAxg>jA{On!@w&Rl4
zjq4fzF1{K5Eq~L-%%x7h-nZLd-FD6Lny%+__BnGtUTDa^vOhD}_Wc{(%<SZ%Z$8gX
z+T6G*yD$1rvJjh(`DME~*PqYaVqY-1HvC!t<qg7Fn_|zK{$1y><L|thoK<UNUX~a1
zlxn?MwSe);yu!cQC;l^J$hY2;xbjEyQNHB;Xp`;RcJW+#=B_Iwu_%A1<WJ}3J~s~A
z*H`yviCua0ckUloy=k4L1<I}L^VO%xNY9wMT{P^uZCwEW){wso)F<gT)S2xyoR(=4
zeIQJEo|kA6=Pi$*;tA#g7C{Bt4~%L;ULKn}?{od{%r8G)#PR-=Q+;@!|Hg~?AABU=
zl<b(KvHXL{_en=qA3j~s7Cy1f!0+??c(1?qm;P8Mav#)PwZ`w%DyEO$MVQ#El4ba=
z{ydnu`sFqI558uVh6?QmPG>7Cq~BJbq^#w{R2TMeujR@0SM_<LUq&rDZoBPCNWMA$
zrychgk6mJvl$|~C-kx_VN3L{Fnf<%?FK>Z}xK3rY;;j7ECm*J)UiG8QeAneXDbGCJ
z<b%`1b2gvN+5hQcWT!s+y_33fo`&0(X4DJV$(=5^WfJvlUV4CM>$>E=fC?3fC#eN@
zPfb1XPTSjm({_P{b;&=cPWUAlyCyK=%tXmW?t(nW_l9<Tz9Pob{EoM#XS4NdldAcl
z*~v<WkC=zQa&Mh*&*|XQWoe(@Hh%fcq2^Pfq*^1#DY|=6=C7qK^E0!zPs^MdR>{FR
zm1Uxg*K$rFp|S=487jLC)z(z5HfFeg@c88$p__Fg9p_AaS6dZ&`Hbp^FRBlx{q=pe
zbEg)U8Mh42<Ck&SAEO`LZ?6-nvAp`H^0E4Fvzbc|MZF7%_*uA9@MjO3-&Gy%1R-_>
zsaIQNgWnkF{5<U{nHqfVk&(On(z^H>zwJLhethix(f{zZe`hY1ROBV>{m<aHW5=#(
z-=x!`H*)kU_A2y+yY@Cr^U<(dwy$6F(6K$&jW@lj+%c<9D&m*;x5rmh{BPtRn;7G9
zTIX6-($g8aY|*<5_zL*zw*I;Pa+1kgoePI9PAfaK&FJ{f$IO!JugCY>Y5utV(f%Lj
zf&UB=d&<|kY_C(eyrniMSK4=D6Sv6rU3;2Rojyx<Py4h$aYkpb&hnm`tv|y{KTLkS
zbba&sJ>hC|vt@gNqHl@uIZNiNdRH9smQJqwDUy5ec>Ma;HNuS{8$S15KX(1x=?i~8
zcV+Fo-o4%V%(|Myhrj<C2Vb6g_{3`!t|fAjRT~~RwC_A_w{`PJw``3+xyhw#qAeSB
zlsPRD7RJfGIe8+%Tc6S6c$nnDb<-cGzj^+V`(b_S8XMoox>|>1?Y!?R#J>D~>{-%p
z_IGJr5rTWR9#s7<SM@3Tbe-Owp!lWtmMUzTa$Ae{q{>akh<9qt6AV1!IMuh--YIx}
z%js`k&E=qo%46Qqi(jv2efewp5r6K;ig~AQuFcI)@_y2}ZNh2|z15$Tn74YctZMML
zkYzi6w4Wm~b3dz%{|b)JS}#B4CNWxCFq`rp>=&<yKlG37!}9j6)tmFpmM%NC%`HML
zbZ%m=x5Pf@IhyPXENl&9*B`eRtjPQRV1CD!UcFzpUcK{H{m<au<!UT&N#j35`1hX&
zWwp;Pd$#J+(xvBil|0U#KXaCH-mdGN=YQ=fw@g;??kQF8oBFH#w?uuW^MmyQ&iTUA
z|J~}1XMPr>E0EHBzUt3~4<_bf_Y|*4ebbyc>(O2DGj9FU_OwsjEj@*gf93jX>u+-X
zlHXLZ=$T8Z@sEi&Dq~i?ZPL--AbH~3x;+=SdM@s>Nd3EHb^Ox(#_vThm`d0vnysxb
zu(`0xEcbB21cv<crr-IG+zs*ms2?t5KV5e1+_}5TWE!5!2VMQ}ZM%HOS8a*KLaw5V
zPfL5K)WwP(a|mU4F7x?6!>ixSk9wbO_&9Aj_nB$WJQhsl))qL<-m}8C;rNB?Pv<17
zZCG{pKf{^7+RB+%f7VajoVf1R7H+`_Y%xvzGS{Xa+aSd%Xcw)#tUA0Wa_^OgX{~Sb
zxcPU>oRIj-sBk?pYu2LMni;W7-yZJx)!f|mXIsF=ulc@x@9qazw-|h$s`BLXy)8;t
z-YExkxId05-OVv~R@nP1Uyf$ChaX&{cDiT%&KuG3n+=%P@#eXfc<^3cT3FU2@MNCD
zfwedEnAJR)Uq)Ko$qKVNUEOp_c9W6u`K%54%J&>?8l+#(dj4pROm+Ek$(jSsJmw7Y
z37Hy-G4Iws3r;KS5vY$kH!tE*@0`CE&$$}idj3~%a^IZ(r!oIFuT<@uTU_zr)P`k`
z8mIb+t2D&4%9N|{X)oHMFEY`f%p$&9%5C+d_*Oaf58wJLt_k1I+~g{H;Es>Zo82jl
zUfaTDJAPe%zHjCO`&;RUH)>_vQ{HwpbpBKC>A~}s=c#v>|8remlHWONf6o?vp^Ey$
z;sUqt-*dOQ_PV;7b+PJ>X=cA8ji;UoT*kGiDMm)Ga{ZjeAFm&^HILr(;Y-!sb(`V@
zZ8m!5T)Q3rEUZ=KfbbNHga;alC*r5=4|}lUZ#=KXmG{5o)#p2&+frFA$6ol+`q9(<
zJ$rH=%(e4eFMi~fcIK{ob9i3oUFe<Ulb4%2H|UkbE(vuZ_pLLMXT7kKt-El2njPy^
zlhtS411>+>H}!q6>*Y6#CmjwnGg2~~xS-ARQgn@Bn68Z0Vm@ys??08lZGU_|U?+Lm
zK2yFUPJaLH3x5JjKA%yrUbw62#Z)70&7Y4V+22oA&agL-5qv)V`z-OJ{Osq~XPE7p
z6BXaSr1f3yme;Grwp?EORWiop!@;7D`M+Z(O88G}-Sm5&k)_=^VZrt_%QdWT-uyLB
zWXhtS(YD<W>wERT)<%7Ql(u!n%P>314}FvVS!d==y&ll)e^a;j`9u+|wI$OVXE;jR
zPc7=YZ+<G^@{jxK2k+kwe)zoQkMIM2v6s0Y>;11Zd|1}JaclK^fvDJMSMHa=ucwu5
z6O*c2$?bC4Zg#nVzwv3gva_4R&&6pq9|(-9m>u@v$Ij@pL8mfx7hK!&B-<nD=RD1~
zNtv9<avr=>9oUjAb+X^YH`@z-`Tf3O*84X<KeT&X{_=Z%r+AdvcE0(=l{(jxLtUfI
zCS4EQIql+tn><>aU3XhnZ%?20@n`$l^_|OGr)=zdslV&m^?%$-i~aO(y{XyzaQ@BJ
z$EMe_EVVPZm~W%I%8|pn^XqBvUbQFwEDNKR-f_H3+}>w&bZJDy(-<w|1i5zCzcb(L
zDg5mcQFmr@d@u9iY4ejN`Fcg>z03Rhdt$Ci)2CC~&ELE$WiMWBaGm(T!P7>mRG$AI
zd)=jY;Xirb?%7|l34JV^#j@jq$;++wLWfuC%`McKc;}wm@z5)(hBI{+OjKmucmBEY
zOwqfc+PBu)r~hXV{c+xJ=Z7uZo1P!56T2>!tEjSjoB8FJO`7q)ZP&eFUe(I@_VFz9
zBt}oRYe8S1x*PR;%v-a(;`GB!7vt_${bx96^WswTB=6*hUq85aez6zHxMeeI@4nR!
zwPl?y-i~kfFRYpF&o%qI#xcvM^RBswotK!HEOBpV*y=jjAJad)ez<PQe+F(l)3}P$
z0UxrmPe0DJKU^jCa!uU3>adMBYfD$0Oe|4M$&{#_J5AE=xBBc(?mv|e{xjUNejtCu
zo1e|T#WdFVNL5e4-4_?6GfK4&7KGeCFd_P|+H%p4z2avK`>oI3df0wa={o<q*Kx8R
zqbst%HU3?^<-Jsv*{y$TOP9R5Ubf9lZ2zsO+TP8}Z<K5_5i^^xb;-q}`6WF^AI6*T
zZeBI{ZIY(u(Q4PyP2TlC*lx_Q;-5A7+F$>d<?$cm-^?uht$h36wfSr%{}}`$;wrYd
zK8?6@SY}`C=0kaJ!#KoL3WCfHCYjH;DcNn1Z@7p3;r!#V?oof|nx60bzKg$SkMDzQ
zS&yUZZ@d)NVLSBdfp+DzO=r0lN4raWz7^dh{#2_cqT~D-c{V%Ex(oZ|>(l0nANnU^
zHsQrB@lLU_%c5&PvRF-Y$Vu4Ia{G?%zWF?!N}dI+PYM#l?ke<Dw)fhn?eDRAe#BS*
z;qjyTQo8+zs=c$lb8SqvxBFjR+jE_B#ojwczWMpAw_8uuZcOc67NPj}a?R_X*Ob+J
zHKRqfRqwBU`}*g6Z=Pd$+|xtqrd3!!V%>hE!bbPeUGCUe=VPyz9bS2Q#a**mJ-ss*
zY;S2byzOtgr=WJ0gXpGHjW%!J9e-(m%ly&vH?^4`r2Y48uIGLc%--#B)nu=){(I&u
zt4@#H`R>~`CF@kR-<o}5o}rSfgyPL>rg!7}<F|^x$^3BtXrS%0%^!tc2VPy5v*mRx
z_mSe4A0un0$(qdHm}z#cD#T2H{Zm|uT+o))b}y$z@*P{h&&Kh?z02QDfABxJzD0hk
zc+Vc)r4{Fo-IJa6{&#xd&aM4{^Fy|jb!ncFPwzNrw>a;5fKAWG&3h8VRNZgvD`Qva
z<#E5J8S?DerNF12KTW>A{xz3xtA~0mfBN4UUvkZ3xBpnY>QB)Jo?pwBJ~+1h-{s3`
zUFUqgJ+rgZqs6vuFP88)y?%Px*?mF`95<zBpQ%%;aDFhq;Y)7tBfZUqg$pYtN6+`$
zbv<v7=~6d+y}YoK$q`fT#ki&P7=)y#CJX8bS6^rTP=9E@m`&-&V~@Y}{fK<DH~Ep-
z-iIA37i&UmcBwv{dvxEz!l&-l%X#A>!|uK0-4a;ICj8X%sr$2?xh+-4kJmH(Sbbza
z&!57F7GHPoO_OimcFXkX<vlBT@BGT$nC9s=SATkC$wn=sncTj5UxPT6S^c_0l{I3^
z{kQ#Ru$z8YdE3;G`zHOzd&M8VoBcSyYr2&9p?uzoWv_#;d^x>dpy&3{Wyj0EDJ*+-
zOLf{awYH=)%Uq|q)zAK(@i6;^K4VS!-$gZyqU$z3;;zm5&*1lA;qGnQFO=Pl^Gy`-
z+OWs$;-N{0+A1V|u1F1=m9eRDUy+Uc<KxHX=08-tytTe#AH&tRHL<m|+0_rrcWtZg
zp3Oa5V~Mm<yPb24f4=^7-E}Eb7pojIUs>|CUc4sqNAHLK3^A7`2Yz_^y{ELkbJpqC
zR@-LgR+i>2vW{9K_A+O8>MYZ2lTv9FgQJCt_J@x2?_WAKWUfYtZ|?p2*Pm_7mu$CL
z{jKrux;nl;ZXZLhO<Y!CcReoG|77%Cw}1D(9S+-2VRNHrl5?)kgmbTC4B{2HYi&_T
zialxGQX~6eb<~Gt)7QL`<K4e|-n&bjOXi)9*s*cj#3#Lx^SHw|%w78^sc6EMOA^<)
zVo%(u)qbSjVN<=hruL(Mf8Ia-TUq-gHeN~=|0eZ!?;NYpIYKVmwN1}#v)s}5vvo7K
zzFv$_N?W|<zl={`@^AlV_+~oaW6M1M*7-c;HX6r&+pb%)=2M9Lm+C-E0q6e=Hjn-@
zOv`S48~06|U*fWtL4Exn!^2TQ`@a9%>;M1CkNdIRkHwp61eZs@{Kp;7^~2fqx>Em<
zIKhuR^K=DnyR)c1+d272+aZpm%hxoOcFpt9-E(7kXrcDZU^)8_mmlaKvTyBF@Awn?
zNT2^@xK!`at>+q7O;lU@kb6hk+^74z&z4=S^ANgcuqcu#=9x#zj_q6rUw<|Kmj0pr
zEpO#--<SLBJ}&RfllR|$?a7C4-OGQhdiu3mTH?#@OtE_(-{zKDM?N-Nu`kNEkY%!n
z!PBS5!q2GuDE}yaKu++7|3hEti27bR=?i;uSN&*u?f>CVSiy^J=2AMHxs@y9vaWOH
zGWBmg{Vg(K+T+u;zaKiQIH-TB|28!)&LjBJ-%Ho7Z`*6Wxo+2++FMO|m&((RS=Ar*
z7mKa9ec)I5G3kD8|A+q>#IqNdEl<uaUu!nAw9uw7^Yu#c=<MT@&k4HbKaFk++<Ga!
z$I$;yeMi*%xAknT3o`2T`wz^syj*&tZ>hwF37l$I6`C%wT;aWY!Q8z3<2(It3DZs~
zavAU>IX{cz+yCKy|Nh*)-f{mKT5d;w6kD91Uii3QG-H}niEmcvZnc}Dt!s{jZuxDy
zW3G_qg(Vwp9L`<(*?01Zyy$<1-2V(s^F>PPB{KGN)Jaz?ciVG8Z_%!6(!V_xyR4M<
z7MYgr@4akGfy^<L?US685AEr0Ri4)C6Q<;6*yVL!_jmc$t@|GrZxT_Od+%v}&wPpc
z)blJA`A7FD{W!d8uK1Db6SC^$`)+-Ao~gEDzTe!GOZtnZ3jNg8T{^RD^PSx7QyKq0
z>}}fK{c@ho-^KqK(pSFin^^zouD<`ZynNGq!ORIa)?S<W@b>H1GamK5_uYPDTc+-2
z%TG@$mnPcmxBL{z^?4t|kL4@9*T=^HyC!x`>deO<p3@y_rLH}XY(6qgYL9q;XJ+j;
zlU=)Z=?e(mJF@X0lS%Y!L$?Ptr62BpTkv;teTKYvMX=Y$^?mv^x{F?Q7O%Sh`j^^d
z<$JEnUrs!lTe>3ZIP>473ufl%9_d~tZ+hz3M~lDj-dA%r%-Q>kf9n0%lB$wgv)lgG
zC7)NF^!jeM^2gB+%a88o@9+L+@p8YwAIVjj_Pk-29=+2Q4&S~p`{}M}8FeRB_ipml
zU32{rTZ3zco=_(DVa~e>#pf&ZAN#iV{n32*zGYgST=QW$DLL6Ix;3^BfBbQ-U9Hx>
z_U@gth0ooWISSujy6ULOg|;^JndLeKN1q4_{Q3Q({h>Zr-8p%2{;nG4%%wk`AC&4j
z8mPX1+GGDK%RejbXf@4<inj}EE1#s+=NVz$`_>>m)jqN!P~XnxhjaLkw-0pX4+j2t
z?HZjOFZ?6j|6+bg>sIgX+l9;Tzqt6a_^g$0nT)IHnfD?S?;Lw8Fr7ntv3zr{hIZDv
z?Roc$-u%8_x2sR;q<l%;;kCcL{+Rt;y2tiI_JiqtU*_{>O*d4Z{LuTa)w@e!TZ&bm
z-%6EQb1ak5qjOtD&cmF^jH+wz=$C#h{?_~P{&C&p<5uiP`x)+JY?m{=D(_p%?3t-!
zs@)OG9slfi*tQLq-aETRm;~O9mQ2l&pJjCXb-&z;eHI_(4`s*S;(C89eEp-l#fQSn
z>trs~1X`K@QI<MB;iJjwN5KUvR(Ke=T5b8XBiN|@WZ=)qAN1XS+<#=>^G|+m>1zGH
zIKk_SL-rfIGPjzt^lQFV<=HuxDs^*BCPk_q2^ZL-md<zP)G@Cgl8;|rUmvu^GN0T1
z)T>*W%kJ7$?Vh{kcK60#7pwm>aD=zosD3znFkWhp{NLHjD>i*GUAO*`gvoD<#opG%
zGTUC7{(W?sZKF=$(XtOJDKT0*dY9h#@tgZdz34vP8nz2xy03hAGf(luxm^vJx2`qn
ztgpCr@}|;_b@NosH|+7+<gI;VRnFp`B}<dfo#8bO`(gWW`oo<2%>NlO*7F~H)a_a0
zvWtgzt>5)u!3Sk{b;J$Up8V|;<tuHv_Q;wx@9arOW-3abe`Nla{kPp8m%rWrY$}@n
ziB9WZ7WpD-@7cS1_jf+svwyPRg*7$KhQCFZ&DAM#)ZKb=nr7fV_IYaQVbf24dYt(A
z$_9y?)cn-I*QtxE>{W06Gkd-Bwx(V5oBs^!Umd?^wf%^GkNuY8O(paDnXX-W_Wf|3
zg2BsK-e+cCx^=1kp8u+jb-EAsdFWjgPIkNCXnf+?!*8pv?r)o?|99qkUHyGh|1OE&
zTKoJ+Z_%p{S+mOaCW|iJBII8^!_1FMrR?KoP8H3Wci8UhUFD2d`FGl0z)tOt;)iF8
z7yog{){XjiNjB`*E7`m!OSWx`T4LB~TD^RW`7&)CkB)uWVs2Aq51aXx%-<3=^*;m4
z(;qA451+po{#d=Ugumlf?YEX&ynQ>_whB1s+CDMg;90oJG3VK}3i%SL8ntI)yQVH_
zKRL;gYrUVcT33A7O23$mzXPs$mv7$s>t$^%Z<rpJ)#elS4;IXqU1KL(WBH@~QNP5G
zZ1)TQOkPI0Zd+!O&FlA{A>_mNP8-8@$9B0`9kDcwy`ehE$kQhJlHgOLJl#okMwji(
zYt(*B{a_sN;p@DGxs~~k^m*?@+>g|~65#jZTceD%o2RGXG3lO_Z{xSu^N2q<e^mZ9
z`?34tdl;APTlhGh?~m!_8oPTkS9{W;?Rg#T7K-0mAgI_LuyJqek?#fFZAULe$az;P
zOV>}^FJ7bgL-s@RxB3s~dulAj`aeE@c)u$*b;IV5Em1Mw!Y_I+<H()uKi_{>U*wwg
zYZve6s#s_)v9t45c6ow_{Kg-#-OIH~K78)(_4u@V^{r3cc~&n|)3bM<jJtky9$S9o
zsoBq?qVAV}t=Hcv_@CjRwoT~LKZYMIKlUHF-xBrw$Y1{BLeW3UK1u2%ZU1oZ_RWQT
z*B(6&-rsTSaG~t&oed@{#aXPaJFeDE`n%wt(U0hFRv(`3oqlkA>)ItTuY3y^A72&k
z+U=g5slJ0>_U#s3-lJEnuT?xu*ZN>FvF*}<e;NNy{AbvDwf)V`2lpj@@E?_v*!i*Q
z$9eB&@2;m?f6ukLcgf<U-afDBShbfCP3pdrG(vmL@-q3~iXZyV&?>+A_#YAbZ_%?K
z#y8tkug(bnw(E>R=C1axT%`#9&PSWNGT*#;TX*sKj-6X7nb!Ec`=E14pn2k#JK@v4
zBzGNow9?#l%k16dm)$PaO5eKm`bmvnc$8_uyz|_qXQs_tuK!!=Kf}R<KeivP`|SMq
zpW$t9ZsuCO#cazLo)zm(xGsJ<(oshIR*7%YTOGs0vUjc*9M}8GsA9O!iK#C1?@s%C
zSyMZMn(7~_zs)P=+C+Z1e(av&hx;9WtXD_f@#egw_a)ZqoaTJ@dGdOpLJso2(_&9N
zv-tL8Ls|Xl^L_T5HMt+GAHDDR$MoaXYu|a_ou?*FdhRj*?X+U??M)9=w(an3@>tqd
zvBX`YC$u9aEJ*vzyzHIpmt1+5@S<<M;)K>0R+U|z>dX!GQorV~x82M-qEjRKZnF2A
zm#P|Dc9~rNIbU~1VVc=o{*@<hd9T0Mp6U3=L$QNnLX6R|E(WgEa%L+eWRf>9ls#I1
z*K7Z6LHDNpFD~)16>%^B&k(h9>)s|!-L*4S!#ix2w6e%PUgw-Jp=#oBr4>;>mLJ-5
zPkQB6j>Q=dwWU4IEbL71vkS72{m!@d^;iBCC%0YvP+IhB)0CwmH?RI^N+`K<zwO9}
zf{Jr8g+Gh?v$kuitZ-&1er5Ha;p=Mgx6|Sj`XsizUXd24lk-$E<(Bd8VvU3X!|N}@
z=2>@$%$%~3rFr6ng8I0r?N^^Hn(RJ5oY&%*;gsC{FN%L<c$Az@VB<PIr}UWT>p!oy
z?wM?RV7tz5Ij5tMo6H5z+1gKyIx@}dg3b!2lTw?eCe#Jbk@@~BMBuni@zIjipDJ6J
z=TGgk466P8J3Mx4YLVwT_qX{6PAs&O|2xZ+eb+8eW#2f}K1;8|3fY=Z?NTZZrzbpr
zpR7HBll|@dTXFG%r+*v$_-D`Uoy~gl(m~!z;j@DNTb!S%DVHQf6i5hfUw7?gJo_Js
zf`5X4XRA5(ZhqzRyyxAe^;UJJ-<}`$bxuE^FFBLX{ACJb&(qc;EIj4stiq-|{JrJo
zuYZg$Szpw8{&tKzRi_$#H@33aOK0u(7FChcZOoE)LL+yjtMKhST37w=RMfSNnZK=n
z)Y(RzRhao`hg?k2&)ZygP8sjc>hr5OF8a0nc=pFf{5_wKC#v2FJeZ#=Y@@YqQGmpr
zlst9q9qCUkR2qu->;nJJSev73$N3^W+^Rd;F#3j+rNElJx|;@E5epyixm})kZ@<b}
z&80!R>(A`}_V`PV%<bi%;|o41ua3&H-{Rh>BP%QA-z6uR^x5rV(_&|7C+kF+Y5mqA
zlLXoow3+IzUHYn>{&&;cJw_ML>BS%TylG>Tzk2$&DXAOHZ1(gd^xizlyx(3n_C-|K
z){nm<x9{7!ZQs@{KbAhMRE{(|BjmW?2=lTB#V2I?{j+}OvG3UScT>sTm!~U?zN}ZD
zuxsi*|7Z0w*Yy$>pPK&N-bF&fRQ>h8^y|O;+b?NHvYg$|vVH?Yeblubm*1(DOtR#9
zA9#%O?WN6$vqBn#&Q3oU{&DTgygc4rwKKZ}42tXn<7bDic)#-NMz15ga+gfI?D1LS
z3y;;TYu$eXxhL+J=lOy+aO3VB#)%ua_|N}mSRa+TA(Wf<x!uiQ;X3nn%|4!-cF8ly
z;>`1c!h^rcmi&(0`=l_&>ByRud;R50zPyZF=Hq^yWqt9VRc3k%7!Mq?cw=~LQ=ns#
z_U>jG>4-$<iLZ~ZO*=EYWM#yh&1zXwuO9hX5_~}2{$Ysgm$j+IGIJE-r@y?nd*$T|
zhw@i``2Obc!+gFU*^l=hd;M1K5_e_(p2+2g)u-|lPL|Fz+wQYG<B8<D)FO_9<!P4b
zIseMC<N0lr?sMD8RYZrdzIpahZHHutJ7=QW%8GRn$2vG~%Q#Ow5L5E<m*<D7h{=z)
zA9J1EbWiW{DZv9jx9D2$zdY;D(~sh9rTgVy*z@i&UK~05N`L6J_v?~{I1W4QI&=KJ
zA@ei#b(QC=WUjxyqi(f7V!HOWiT@ccNq(HUMB(MV*!#~a^AF_nyqr+uI_uEMt^+k5
zE1BO_b~>{7Ieb3N%Gk}oz&xqe@OVTG!?m@05+AL|d)o9$+t=^hJ!37ccJq%jLly*_
zV|Zfr%;LD@x$KwgoBlH}*x9|d7k+llWJb=^lKVn2wYzRT%Xl=^b?Y8y4UXLV+Q)km
ziw`P%egD<J?LUL)+J7oPHoIN=!ri@7=W8!t<RykpqOKd$?ta>S#=xC>{?giKO8eAA
zWfou6KU+85uGVRC)E9fzHGk}R?n{{FG8&4oeNw$O@r1<YMMdi(+zj}*-rk+(zQ3^e
z!E0apN5K)drd1a%*?Z>9J7?`ByS-MmD6=bkI(%Pk>(_ej8pjXvN4@|0AHT)=t+Oa)
z`)-4~PAAIDlzBK$y-jyoFuBQ5)clXith~jKFBa`fT6yuEqB56dW$5&sFZ=dpzjzo|
zw0-%D%E`+n9;(o~b?g13Wv$Dy1iHIDT@NOHvKL(DdE@Xi%VP{r`eqz7JyjF+VcE=w
z`-L~%6m5w$xwPtGKw;afRgS-JC^yf~`pVyG)nX<uQWD+0$;<8X<i?3-bQmR%Ka9)&
zI6HRB)jf_+Ugnx)%S<w9XzNM5P~cW6^L_2hZLgPX+ju_E^>VpgvUmCZkG4Oy#-8~o
zyQlGL^wsJ6_qkPtU$*Cax8`!}C9#)hQsQ1RifASr$r8JL@W6x0>e=dj2HDTNQ@ZK}
z;(sobteKvm5^z^=ha~$lBU`Iy``SNDYh3#JlOx-59^stHKJj`fLaQa$>po0j_|H%&
zv%0FuU14I}p1F@E+gTfh9}fbp(#*<UU?&pcJYm&7#SfppGE0|MCsn?@{pEGs!jHeg
z{cm);J47e$ynJO{MeeSqiN|C9nSLsN>%RQeuj7Yut+>5cCd%KwWx>^^U|(G=qkUwh
z0;}ZVW$Zi)=AM%D-%)o}N^S3>^EaA3FPmgfb8Gr_ab{?u&WY^@%MIs<o_b>SAZ3H(
zg9&xg#tWAE8RnPmH>sOE{q*;h6aQWO{!G4k*4asOZ$I7Yux6<r?-$Es4(F^N%<BKv
zKF>P;=KW(u3_JSW_F4u{oV&)~XI}BGjrG|#zTOpoV0-75$-L4__g_x1oOmk#el1hN
zjKvd}&NlpTFz~zokZt|jaNWDx-`sp;)@gGxt@%XlQsFFLt>emh6PA^=sY~)z>7Q+k
zpZ;{p<Zoit=l?TIwA(GdB<;`sGmmPl%SGxpu+E#C;xNgc_0XnO1qa^v9(cT1Zl=wo
z+U&32efD&Hf2*0dx>aF%(2{8iHOpnbJfHP1|0{oE)z;^4mfhbXw|VWW?YGKiE|0!-
z<E2%}l4wDhXZ%{PR6d8a6u0FrSjScs{&xSH+aHt<%xBmmZQgDt>ROwez53j)sYl9#
z{;mt#IZfi~+_Q(+!nhWQ9(W>W?A`OhMASS;cz5x%X_tP*#-FG(Q_5Yj<7UKf<x>L7
zr;9OrowBqky#8g~sbdz`PxBaw)XjXf=iAw>OtY6wQ$Mb-h1Fl~#gD(*JG-7Ga;@p=
zIgpT3#AbZ(XKP)2n3>(2n@L?qz8^ProtykKBt*Bs+vJ!g-y`Ggynp)Yz1Ei7Xzae(
zle{xEvH#MdDYMFy$~MX^=`0sosKQV@p`h^V`gt{_ix20jZ76y<n=Rv}bY_rZ!JTjC
z?9XN2TefFw0+Uz&d^h=jyFTi7pDyO>TodaM$9pUGLgeMljGGCQpT!=WGVylN#Q4am
zk7UxOo>!Lkc01p0r*dC){~uxD!@Ft}SgzREKFns6N}jsA+M;HwE!*4Qj&J9DjJbc5
zx8C`ZefoRtL!AXBzw-qv%7U(IbDh}4TXlhdo>;=g9sLb{51Vf@xPR<-oqX8-gKs>0
zg;RBBcVzSrt2?K5^f`CmHf}wkSYZ)x^SJcpILY6ke^Nj4tzGiN`C;lNSK0j?Ur&4b
zo<6kRq}_X}p0d!ET&YRX3pu!REzj0{JvhTXs%MpZYEb;bpX&uY-L^!>^5p-}n76dB
z{=@!5*NVKKo|f;_OUV$O&$0Q|`3-Y=@^Y9PJdVf6X@B;A9Jh3N%+2|#soqZ-Z{C0U
z>7EdWPrYD5ZN+h~--o}Q`xrL=5r4}(-qLMMPff+5+fLVgbJ@Nlz~M0~<ITS3^RgfC
zcS+5u(wUqkz;kCdd$&59K?=`|g2D!8x#DBm?|$Y+abNkl)AN*2_b0peA7rNW+8_R1
zsK_tc@>$10W)-)`gdKH-O%DsNJYT0h|L^iIcg?;@pACAaGU*dP-yTh4o=x4oPAsqI
zot{&A-1JgK*)s{7{0ILT_-{me%9PELeLP(?l4<)*k)C&V4+j3Ru$1X~QlI%Y>hf>n
z$Sr*?pC4Z;`Ec?1vykb*@w4S-1pky@n&>s}?tg{{vz)HQUk`rpmpk~1&imzUr#`(>
zRJ}f3LfC_;;q)Bd8<H=N)-C^cv}~T*N4@4pbG>})zA5IeInEPsOd&P?OGHXqzLC1#
zeGAE?0*3GFPuYrTidDR8c=%rB$@kM5$Cpc-kFWdsoBKDTe=dK^*3+3rXG_-^o|hH6
zc9%V_@}Sas!=|Tu`_*;V+)Fn3w()EIVM{yXisr+!*6dThZnE>%>G)ljbwzVzBo(*K
zOzt`LvQXl4<c_2j;ul@Zr~hY=tuuHvpHCHZ5(#g_jXTR`ntnaoHgl!7>Y<~lDkrxI
z>+a~hc}*>0>E(6C_jb&0tU4*r|5Y|9F7i*}y8RE?HkxGBGs-`Y+23gsap~V7|3|J*
zpZqA*ea$?7zwOo|PriPw`t!JJrMjPB*1u2gFC%@gdYXK5-<T!8W$*IVI(gTR`j5g|
zSHJjWvLV{*(^=NNpB=w#TBJHnJ2GXCVS1=yvW5CQ%k^HD?d<>PUY5FcJ#KHe%e+s%
z(=KLt+RaFtEWPbWUXW^;7U!)VKcnjKQ}SC?kN%NoRoHZKd3MFqT^DmA7ay$gEzcIp
zIiYO5@uW<xw)P|c#vIfB4tusQ{UUL%qBcxE^1Ue|Uq5XUyTQxy$;us5j!it#)BMa~
zIZMxjNBh(){lu1tEG;e9-81#qygM7WD!tuz{8e1%`WL_6&W?K-yyivm)(11y{m+R1
z%`UnhzELqbUEw)<5l^jMO!)Kt4Rt(!ls}}u_5RPm8Q%2AK6P>I!H40MygiysXH~EM
z^tTFiusPYZm{B=(!|{0)zw^|~LJJQnU*21@FR{7RQkA{r>iKy7sNmiw{hnQchCjtL
z?e7*XVSeK%zc%C8MZPoqbv^bxQlDp6E{Qao{AuFx70I!_dp4<X%PiQ)WmIqfVZHgy
z*=Fm?0z7)`g0J7`e;y^c@7;rNW!A$h8H?B#%3OW1{$FnIIotNCtln>I7jND<qF2&A
z+t6g%v5dJkH#R;~d#YTOBDkYe^1SKK?%$68F4znFll_tS=t_-ac52xq_nZ|UBo@!Q
z)4T4h^-QIE<;&--SaWJm-varIORuW8=^L5ygsaQ+&G-8A`tO=L`5MO`tqWe>WB6ge
zeDAf@MrYL)uZxf0x^-8Z*6Ey$je3tu-W^eL3luV*BfI3UUZ4}-l2G4%V@XSupZxP4
z{9R<n{z`n8{-OPHw(~pRehJIm@_J_O+w~<ozVbTyuz9F%^UO=0bip8FIqTDo^{3d(
zu3x+_^R=Jfy*@WJeOXjw=4z4Rm$!~hEi5=&wCTu)Ud=qcwGXPNwP$;A3Z7XOCX`Yf
z&secK;6wd^^&IjH_bcXmU8#xHK9Ilcl1|=2gQdIMf14h?^7Mky#0j?pZ_e0vU~ymi
zk&78sX|1awE1rj3`Eu9mRHEGU#WB8x#ipBLC2m=Uu6wGHtl8P*vO<RS=k=c2D@Ch9
zZmsq`9cy*-=g&I#LyrnSFOQz*9agvUkICQlb<ExmR(!3$<sD=tT+#IE#ch6`7i(9$
za(1ycx)fx(g>DX%y3Kuc9;e)^v`MayjI<y8XJGho`C;4Qk5xZvLN<M1{r%D|ztf~U
zU+V4UEwf)QVvdcd-QuLDvg1nbx1(wON;>)Sv!9$=xN!ZPT$}7QKmIcWcOSYn$81-O
znON(Zq(}zu%4W8C!36<l6?ROW70EKmB6w<V0mItache8;a&OZ!v5oiIkQ*GdYhvB~
zZ{bHi++GnoZTp#@sRz{}u8AHK+@!VPrmBr?W=KoC$@c62_@5N+2{+l<f3cpqM&|EK
z`|MusNAo-DWc;f?JU=lZvV!;B)7@9UOy80%vF`02d%Xppy;*y%3GOysI_o$~QS>g6
z@*`dIO@6#S6c)cZ{Lp!ZKfxd4=012YcJIgGLxPeze=?VyEwyj^x|c6x*JS@~Z8uxO
zj|X~s3F^FjuEQ28IJ-u^>Id_0{~wEw*jZlM<M~)$_*J=_!qIK*%QB=gXQ^D;(w*Vb
zTVrz9ieruXWwBeDYgzZ6T0Z-kSMp4o?a95rqyK3Buz#fAbTKQQLHY>i!@t(Po34~*
ztes}DM%@2W%1-%@x?6XZ1e?f}UFBMGq$_b|EQ9IMXtQ3O9D}cOr@T$g{u%dIf7z@z
z`7<6VJj}A5lYihpgV3Lx5A_FRg%8K`)a1-k-QQ>O+M>plMajDRKf@-6C8riHk*nQ$
z<Y3e6711Tr-u)<eTvRpv5U<zchtt2A?fkIOq&C>+L*D!qugc1T8^5uNU6fRcZk#B5
z^Voyw5-~+<{!Fqrs|jE8S|G#BPP{pEf3y2M4spM2^Q1HK>duNW+1}Y8=BOcEzD50X
zrcpr7(b77eD+wRnmM_<vzoPz-`O5Rm5$8*nt(m5Dj%j}SE~ZB(R&U*Vktusd#4ca8
zuQLp5_?NA3@7lewSL@uL_Dk~2b{g6H1^+WVl>RaG!~4Tgu2U|aEv{efnavWFbnEr6
zBf6Q(ek}I#$e;J@sm`9ModO)UB-Ll1xyyFU-|_EaJGPptkN$_H=Q<zzXYi4|W6>2G
z-_(`aRogpU{Js~)MNLZEy5*;w#**EiRCKxAIUQ9G?_TwEpW27x2lKoCGf3`JJoxZG
zgGg4`t=4&KS4U<(kKfz={X@i!dwR3~E=<y$rm4KOGw+fmkKogT5s??S8~%;|`26Vo
zM)|Gshvrs4ShwxEoz$g$a#>ZYVk#yd*)?bS<X2^8ejjf-f6GvvRFbxHdv#}WpFxwP
z*wr9cBi0{%s%zh5U0&%{rFZMqt-znJKUr5M2FdT;WpA?Oto*Tffi3av_8c{)D}Kly
zlvDUoTf3as-e>Es;B~LBpRYJw_{e&(>dusD(x%bfvl9*59$lT$qT}}dra$W+>mSP>
z{AcL3`nL9?@$q{0ywcdBbLS&2Chgx6X`?mm*V!-gZ*II98FilZ>Ar>aT<1Q|-aRug
z<(Bd^*KqC+&$d5YtN(4$)i3qJKfI$RAKoXkb$8$OLsD<#WOPgaZq3Zm5Bv7+$f=D>
z3S(R@7;l*r?X9|{F8s8D{+IV}o`1Oiu>MVN>XIMZAM4KBx`IPrZ{PJb(OX+rUJDQC
zd#OKDcUi@MhKhOBUK<oM7a!EMnJjem^vuV$dqwLzOEz9@J$Op@Q;lkVPgLC2!Vi7N
zkIYm1aBr<>PgKT7oonAd+%=K9v%sdR^zYPFZLRv8;cXF%*-DE)b6j(XKCJX1Zr423
z58?;nyJsz3y1%`KIkB+h*WTBwZ&WlN-u^a!wX<Hi`?uZMt~;uYOD4~5^YoY|@NrH1
zmLHRUXZ*WXC-NivQGe_1V9yWy?a!tMUskU6)YVJhxZ}pOZ?kHT?(!{O=5M3dYw{s>
zwY%2Oi4)%V)+~N-R&&XZ`K#|bKIFCcy{J|lw*S)G_4`hJ6NqDylztP=pZjf_5!>#`
z*>`vSOxdoLt)u4~f8$i}+@;!O+wR-HUTFH{&dy-FTOap6Z{5fKN9R(F_HzHfogZeM
zj<y&4WA@8$L)sPfiSL!>zUe)>_39$M+4&aY%Wi!$R627rKuUl1x+^u+rK??Q7d(1=
zde>!>iW=|bQ7>-IUAHKYf5yobQLkq0R-3PNhvS|3!F=f>dXgM7FW8ybiTpbimEUP%
zEt~h)z3H;wwKpnKQ{OH6^m4jHtIq_TUA4<6OmbE^`)$UvUD^e9B{NJ?R(^b2|JdjL
z=JN-%=Xc19?6F<XoIE?8=Ve)b;y3nL=N|kFpMD{B?~#v@ol^0eC6fEkeRiG^ujF{N
z`>?mTc*}})_qv}ipSUzWWBU6NpTC;BE-e2jeq^n5$ki=xjSpLuw;r8%G57hbU%DoT
z^=CiX6L4qG$y}3<UO{f#f2t(hF3Y=P&-rBY-?e*0S69qC{qR3S&zCK+!6B0_9sBIx
zXQ_AZ*}IZ0+qXCSYwJurs=~>1*kt1l!QM9C1(v^)kJt;@>HcRp=w>JSBl_|6x4z46
zy!gldBlF>pud>F6X8CR@-1_(I9&NK(z6ZFrP4LWX{m*boJv}6;TZT2hKJ-HpKjYmW
zN}s>2_@P_5@Rgie*E`*)`;M)C-McEA50%GO8oA`=@zf=1-79w9ImPH>+_~_$WkN*@
z-s;85Ub=KFYt_n>Z#JhNJb!cdQGKhtjE&)=_}lRj`|I0og-uK>UH6|M^=OH{-X2qv
z>)xp=?s?~=2J=o^bgyQmws#?in-Pn0bzSlw@5}o$?*>1z?=ZDztw{ON?6&jDx~Chi
zs&D$RC+L3Eo--Hjoap*?P%cGVS))mSJHc&!N!{!ky&w4>zJI&^QNGir{Gny3y?9O1
z_78_DCLQ)|HF<07bH$|OYTl&kTs`mZ%hfhUQT$q(vWq)@dQLczdj8z6_&3rYuOF>S
z-QHEB{Gt5lt!a~2x=arXFN}8ydUP+9Uu5;Z7iQO;B=Q&@d@_!Y^;`2w``-BzUn&*W
zo?rO?>Ys@p*w#Mc=dTDpHa$-BL+biA(*=1cm-I}HP2X+LxfRmQaVb~tv2Io(gO+p7
z#iP0Tb}#>2c)<EM;)meJ<m2~w>_nq7f0;MFDS6LSvFp}v|7#_+-Vw82{bx8PeDlb}
zJBOFMn<%DSN!=l|cgN(@a%s;dh27k{NBPiwq4i(vg){8A^-IrlM4mRhlE3C%P3A(i
z$q#pDuG<jrdO3B%-@aGh&loK+H_V+B<~s3Fa#LN!$Nvlm{RKTg9zSX|{q5Z4KMq;1
zjXEpsH|t)m(CLVarAs~L>ldyRu$kS|nD%MWq|7;PiKU6t{$<be{JN_5s;B$1UrST=
z^UuFC@!OZzJKUYWoAKY+{4L|hylL_*b!vYsKeji2T`TOh#W(5Nw`}g;&bp_L%B-(b
zo%cxC^4@pp+(WZl_?S|(uRp)ux=(O_qiKHkJmC-g-M0__Gx(6aZ(;Gn`ND@~d-rW!
zel+c()2zJZg?Z|I*;}?(hM&o9iOzU@X!XV^75^Cy<agF{?NR-0m0j@1|H>c7#jm5-
z)>c2x&drb6v~8#NPNgoB%Uj;6pN-h+yy8x*?8TYM)0o9)-0ZT~;aB{-+|Ii0=6snN
z_J=p>G#%MHOW*fSQ+w^P_j1XG?P6k4$)|arlx@6yWX-oX+l@S*zTL+aVX-4fscT=b
z)``zDdU}g`<FfSga<6W!wYDy)(ysh+TI$K9N&of>i^Ru8WKOde*SU4?lf1mmE%Ww&
zhs$zJB@^x%&iZu8Qt0kwKTov`;h>BQmO9Egr<VNX{q6h1|Ka_P{b}`l8HTSqS7rZa
z;Cpm+E9aNL_D6P=E!Wtkom-x|^mb;Qi_<ONhM0E^%A1b8Q<xU?+upJ!{-avG;E%M+
zN96=RiXQ)VZF+X$!|b(U&)${yyM6dOcS3tf*>rR7@_d`%RY!6iGA`t#_uh?V-}mo?
zobul#Tlr-&<At|$-?a|A{D*OA)~;;F^_E*NJ-PH%Vp(;E>Q1pu?`Bx9z2lVdY0Jdc
z@Q9gHYU{5)^!yz)X;b+9+W!pfm;W&ymVT{L^HIESORoKqvimZniWxS6*(Ja7W+pHM
zC+8bi=9?Z~rGHB(_LKIXGohhZowjLz`TX$vTW0g_{|rfDKSUqNw`Q;U@%-V|vlA}q
z>+JC^eE9low(FIzotJ&v{r(;Ay&tgg(lq90QFqj5Z0t}8jbyj)uhaa|ye`Aev@5qd
z)~dgIORsK8<nvuyw@lUh@|ek;Vc(QvHMcj+jMP`^@ohSD*`~SR@2bCDe|SGgACMQ_
zGGF$G6I+*s-LY@?L{heFR{K+FZq>GM#op`F<!@~{{M1!+&Er#jnTKWXrTOcn_V&q5
zUU~ZL(yQ+;N7wvkh`rkCw7AIEtQyqN{GoBa+dkub(=_|d^8F^(wmj!m-)?VSnwh+R
z=Vhh7`px%mR?PPfRQb=4w&n97(-W;cIqbg{t@%3jw_U~lhtvAi+w27Y=v-2rcKNW?
z+&fjWfA`O>*dEomCw$+mcdsrkHaIC9b;gB5=DgH0vuSg$dq0xzv9bKEQxpATaqb7L
zL*BOjNABrgvhkEXw>)9puCz6iMXt>Dy|QlRqP|N>av6_WeNvz9*ec|7QSJUE>zRK{
zKMEhdC-r0FhuQ9)U$f_W*-K<!$}-OUw#xgaYGc>iH+fE`k6!-Vx~-^Y(=mg$J2sm?
z|M}0JlXJNruT$Cf_0PATdcE=0<#K=LXZDg6ryqQM-ccjG_{FYo`)ik0>^t|&HgdtX
zo!hon&#s8l*6u#OWs*hG6cah$JKbuhXC!wry_2`UCTI6|X`Sewf)DzK{oAdcH`G`^
zl1)A;e!5(Adgr31_s(6~+$F~MXFdq5*zSC`V&QGci4%;xW`rj``OmOrds`iEMfNv_
zD|QBdxOVT^a^Y>xy=(V9vpdu`O*?+nYRSg?FTaOP=v2C)?h@@1$+J*&`m#Si_jT9S
z|7YNMJ8kNU+nM|LKQd=se(@{hR@+paUAh-`Z0!zc&OO6zd#HAr?=nG=r)L&uoJ>1^
zD$yWosz&n5-LEeH%&(m{f7(9RLq=8J$w%z-^KULcP``P5*B<dl^V{lpc6@j?`O#gk
z$6nX>XfJy0bnn=$de!pd`F2+-OMd^(d^}C!N%zU{jwOrK<n<ftF4S+7Z`l+5VcYX>
z6(7Tv+a5jM{_f3}6OS(3yHuMen{@4n&BR;L4wvkf?^2h~jx=OSZQWrm(7Jxz{+#^I
zUE2@NDDiK!->Tm5hySDYL95=yKbnpomR_{=n(kN2$g5kcvsY_8s?JFN`7NiJ^$Eu@
zJAt3~yZ$qz#!7$l>Zq80=)MSF_k(<%*H-37_=Qg|k2t*|Yg(Pq#q~*7-mZDpcKLL#
zUh98`cX?-wPAyIT{AX*-@%ZAlW1&wLb}SA&<{vWY^=;R(U%6@bPCb3};bO>@<=21R
z|MfNfLH-{R?a0gZY4e$C6n=#NHv4h;XkFRF2Xno6-9xJHZ}u!)@MF?1>)jeckNqoJ
zw&^L&W7~G%)3?f;*$&4K)${F1{>b+Eu$lXzsFLeZGljRVy%R3<h<kP66Nk1lj9G>`
zW*VudkGNg;?T!zuKN$I+A&uAn;q~Ly`){3o_`YMyeDNBSA5Yi6-luq>RG)w1x6mo~
zX6EInho;MCbf&xWM074zz2dfUsyycp_v7=dKB%5O_~GoAUr~1xd?ut>Jkv7ReI-GN
z-A&ncb7TDVIh@lIUq2OD?iX{ZYTMP><-7OYwto4^-sEiI<km>Hx9-VN@=O)YUOQ@~
zgD$_%S-!2s_@E8r&Cqu4ZDwgXUji097rmbGpFzk@yT<NA*ya!G56@G)T9V5gv1`-r
zD_^!vi<Vfr^RoPz%@g+p+88^Wk(8CQG~8mCaY$q3!~C8)`wt<TPcE_D+}(QTP=!$N
zj^ep@EKbVK;d?CkeCoBdO&^zST$R1+l83&jdgScW6AvkC#05(Bd1!Ioo%4B~_S-N|
zv$uh2`-2~6B&@ucdttKA$?l*_Tb$Kqt1ewSrA%X;tXJ)vH7yUCxSl^d_h!ZM!aiT^
z+gBz>FbD4FIr-GHrBcL<&v0Y$0rfsM<GAG?PU&<1@IJCF>fh3Ay(Qls&ScCuGI95u
zcbzvY6rM|}OV4I!7kynOXLRLD_wTj#2g(fHAHM!^=uYPO<g_!Jm>6e?XDns>v%&e(
zYQ=+x=4>ra+ECQ8J~^`BNuk)RX?y*9ZJg6rW<`l~>g>x~v|!41#~n?{H_psp^?IA<
zR`pmxX7V%h6FLvJ^?v29W=oZe$*B3-o+r?BdR~#O=W!nGH}(QGnisB|UjD;L`{bM3
zs=lZAEkhf_f|fM+9d7(Q_l%o|Y}Sv@-#jkfK78$0+vG<TPp0nl_;*T1s9@EagejE~
z%!^&;H2G(JdGSa@Z2980Q(Bi}*2+uWIbB|9?Dt)4^V#_Z4oR#LatmetGl>6|tvsN<
zeQ`y##}&QAscRR`lhpHinw%`rv#OO>nt4awv3Cx~eUfK=>vjI-`!T-Ngyo~|sT=pB
z76_d!wx8!e&F)7RGsAXkx4LBGiP!t4{Ab|*;eCAb&08<bHr(xXd*#}9>X1b2y-cq6
z9txdep6X=|9va;CA6CkQT{V_4U94?zAZ$uVQlHv!ziYEBj((Of=u(}rF_n*zMeV`S
zwkigWKdXaoAKtb9=8-b7rjqhZ`>ItvDat)843iFTe7>~aNq&?3AL)a?6KhJc?WO*d
zRNJ@8$?v%JbnAxiQF}g4;{5bwN34(H^{LgJk5g?-WLN)^`@#O7frafqLsRA-$-aA^
zkN<L8{n0+O&8WZdk@aEOISrF;<eD9bzGc<(Kr-|;Lu#kwdd|nUCU4q#w&7u=W^q{A
zAOFXTALh6Hv&@d?`zKwo`rxc-oq09NG8;3c%vQZkwEcVUTGw0WPWdygK1+OFN^iUu
zp*6w(&aLMy{~0pR_s{3iw^9A@-1X9;9amy?pG|uf>m-@`q%E|(&pUn7<ke~y4kfK=
zu@Vc~`S1BZsXr2b=ltW(xb}<xkUYbW{KH~pS;|ei<~~~+0~t?nx9G4{zP>)|`wE-j
zrwUEx96OE)F!t0M27mo|>(274&isCy8TCxR-rhfMtA5<-?DdX1k&11Po_TMQ%C+|1
zv2T-c$Dd2dlPnHPoK9)K+5h0&e}-v$UO!~2iThxF@UOY+NAZT5{Osyf)dNcMJlQ#X
zKW8O4{+3jJ|DQpqp{h9kMSt$2(@T_3?<`<nyxr^m){mk88M1e>|KZ(#Y+u+mZ%(z{
zyZ_bIrEiq^Cb;$G{pbG~82&Su_v$-++<N>-Z1Rz+@9n0mCDzweE_f|yws2`&)a3N^
zq-~Qt?v-$EQ9c&AiH%wFeZ0fXiuDIS*WIwPT@|xv{ts7uUFRcDl>JrjlrtHeI*=#m
za%BB7i}&#_H2xV)6_`EqJ5TZc`Ojy4+%NHC^26ypGMW1{FMj#`HF)Zz=nN^3+rK~V
zR@8dDLgBYepQd-)-c5!6OZRivwOoG0vHXwy@qdherbXG$Y|JhDVR0*R;_-hr{PMl|
z%fB_B(4F;2?UliYInQ6M)BZJm!;kb2@kb7Bc`xxp`0(dD2M(rwE;(JG5@fEjvL$|+
zt74l~O5c_3{~0#Lzo}e3_xgOkFDVwUS@JpM{dKSH^A>z~*1LME;H$$u8h>}#ANUt1
z`hJ0K!L^UO7ESW<2)FpP@?YuVXLpu#d~!I@@3gl6O8A%V+TR>?$F{#JtB8sYEpQb3
z{@uf%I#=)Tmvv768UAq||E+P)GTZdp8s_r8A9nngJZ|k-`J=Gg-&248KgR2F`iE>U
z$Ls%4|9pDKbbG_|F#@%<n}ci*pXNUkVrG0N{N3O0e}uk2uzfuJ(x2dUx8)8_yA=4J
zVbPWAysQ2*9MrJUE|jiM{^Kx{&yV%ooVDloPdED4v@@RJ@uF}3&-$hwwNU@IpRG>j
zo_9fF>CH(D%rZ}A9qF7G9jUwS{274{?r~Lhp}%!k|7SR;WD{v6|E6B<We{J1`o<mI
zU&E_DosIv;srlQ<S(;Zq?!(*XGWol9w%gsP;P{(0oijOckG*1j-b2+@EB4EOvY(sZ
z6jj!o`tkf@(Zg<`>;6P0*`=k0F}rUnla82RZoJ*`T;UuB_5;7%cGiB_e{?=qjrjv!
zYrm%Rp;t^L)H*M=PnY?1X5z*cWv!+aOL(5}XdJEglT!a9IQiR=5B0q@@sF~zeT4(s
zk5tXwwup7xYGH#<xr$pA)?7T^{Ch&xW4W&%u6Nl#XxqPi>9UOv^aULsRO+XHIJeR`
zrnc|bDHpNg`&(Zd{QZ%ZQ1*e{()5=&f1=jI*XDuNCi^+I{+h>@9yT?qY`N+8#fSe1
zSIj?H&tWI`C-+D5(#XTPa;=Ya(}Q-Z`rVY{=1`5jVR`(+oaFsgf6o2z|Ifgx^J9PV
zN9VYYTc5X>{AUpId~|I4%r!di&Q7>|w#Pf;5NDJo&+X&!ChH^w=lkDTFZZ9}pxJ+h
z+_(A<>W`e~jQV48UFpi6=yfr7T%X)JYWBPG7As$wP1pV1Jx$W{48kSWpH}?O!1Dg@
zzJ1cCtE*R3FdxnMWRmmb#ilbUp}IG7V;x)%^(0^0_e-d`bxF+=gHKcD?wT`i@5g2D
zzs<d3XZ+((txTrbKKT#J+aF|Ss)_eLyOkv#o);8xz=`jX1mpavRZ>5UqW6l{#1@yb
z?r{=ca>{%q*CDrw6}JwQ%l7+xSK9BlKm9+$&FshittI{4Rr)=DY}dY=E~kF!VMf}%
z%lQiWN+#z*OfD>YJdHWy_kzX-!+5n<_3VF=?rGFIz4!j)GOfvW`-NSKMhP1Z29)a=
z@XLOV4xW=>`QXWHPkG}S(=FTMyQI9%uzZ-A#uTEUE+}N4f6G13pvdD_pZ24B?aQ1W
zvCTWC(&c%pEO)u|26vwiRsUjFzql)WAZmH*pJ>tZQzZ?TtP+hi7fZd>QvCDD^%*~Q
zAC|hdvFf{cV^qved#lOQ6a@GRDqnY9GOe##GH;sUJg%(SF}voAMZEkTlx_aoa5A%T
z?iay{FArLNeH-ugM}I^0>Xv)=_e9T?n7~$KzcqK$;mcXQH=phKSI=_)U~&BnmCy=_
zWSRHcJx@L!cxRpPXz%QY>s#CwuRi>3wy|a3Yfr<xxX`|Z97&u{YG$6ZmaAAF`6#Gu
z`SHgFXCJ@x-}uY_x5JsWAFlhKm$?2#?HB8n1<Ie_zK?gPiJh17cfyusGb7`?Un}fX
zSoL#PQ?l*P^KxGw?3ewL{nr1$w6K6Z6Hm;#H(61O@uB`B3+v{plqv!3n|9W7qyI^!
zyR=<d;<`0g%{<-rhy1OA6^ABSzMoVbej;si_d=1~^XnUy{axfM@b9v(<qz-jT(+;D
zwyss&{#f$v>Ray*zP|it*8bn&(Z|`}EPwozd*^NUy($}I_zigK?DnpD|JH7M|A(UD
zrH4f>>n&VtA+%dTC2QIlgV2cQ1rosrU--KJ4mzw<cRJ2^+xE^GC(~7g5*uz!x}!f+
zK}Ghckw+Y-O=0}B)ZUee{~3<|XE-rGHdZgPs($9t3U|lLi~ln;<^L#mo5#9q>+TC%
zN-|Oy+CINq+stIZ_;b$R?5{@NVtTHtI(kx;8QzfLzYzXZZ}OwLcK5%DUC4c#`!2oh
z+V#U?jSo7`NM8GOyX<PeZbLZB#Gc2K<JZp5H5cBKu_LsIuh#wRdh3o%&vQZb=j|`N
zI{j2sF7&3*ElK4*i<#v;Z@){vkL8XzbXil2Be3zSXsi6G18oP6zYbb$sPIIH&vE_4
z)vmVwVMZ@XTqilru4>-h?7TZ=l3%6il$1#lQy4rYL{pbb7x_PraGGT@d6RaQ*dezw
zEe7f~4TbR*|1RxXyT9E|_{ZcUMsEUB7rinv-gt|_JCpOIh3xAW-OF<yFwePuynegw
z8uR;``j3Rnw%2brWsfn|yfeX=e}|*O1S3lx3xy`f@1IsI595k9+i!gGn0ea8&)46!
zC|tBpjy2;x#>TO}My1PpzRs%H+lB`jrb;+ZetBa3310Vay;t^W{z?9@Wy6aL8MEU0
zSJ{5uv+<<vX^R${)c*`um!AskWYDxcZX+1KcK-JE_AP6<znNd&(%m+3vip@9Yo21Z
zOm)}KLF_4$-0s92JF_#Xh>t(&Pr&@c{~366O>Gr**tT6*v@6!Y%=(`4r1w&rtU9|z
zAN*;SWROYz#eaC)w0N~$=i(RsOcz_J<CA;im;bl*AD<u27k&|?-u{PkO;px(fmiv3
zg`z9(f2;7xS-MmqQDQgamWR9M6l6b`-@~TsA9Y11ajN3kwUhQtvJ442ce_*BB6dl7
z*O&hcf|+r=7xfi(f3Ur_yf9bOW0r1`cCksy#8ap9oCMD=dr+zJMK1jDOOtHtxmn-C
zw~Md(&yeP?Tzy!jOC&k_XYPc$oVN+?wpHPGFZ@$CkCwM*+x6Yv&qO<>#`U5e$Ib1B
zKQ%O42BkI#lo#1Oc$a;=J}Woi@ZY7&g#R<hn^`&WaWZi4?%ddTUQMy5e7(<w{QT4(
z8<oy=B{Vy4<MN)G5Eu4Oc80Qc6Z7-NqZRpYHFc(M{xQ>Q!>4e^Mv0XNIZZZA-fi(x
z|MdNJ6|d*XnNM39@Yycl!)cH7jz3G|Dvd1FJNfPXeTuZdW`EPZy6D6AmUrut1UmD+
zc6z3%mnrwDNV_?GQ=jw6w=TLOkEQR@u|$<3ukS*72VPxLRBbD3oO)jJmG)QTZ#oyY
z*b7vMX|n8ow&Ci!YoVUZ2|GQ7i&o|c^j>%{Z^w!=Pb;kD{NjE094dOV|HLot2hWz5
zE~`6#UZy<AyRdX+_Vm>zE7lYju88&FWX`ai(eqV(xug5BU#0Kc_a|hZ<$8K8a!sA=
z!Mq#N%vvvBPH>vs6uR-s=g56R*Vb&YznP^keAc4x7B{ck>zd|_W51{KcqjMGnWuf@
zpFzg94|QkDf4MNKwmm*vRl3;hjkwUke6f%Q$Ga1(y8is`yd8JyKf}5HOP^vx{hjCi
zU1Y!I$&boKne!ayW$tl*xTU1GfjMn)zM^GK%}yVl&*yyeY650Gsmc4{HZ4nb;dRsM
zWdRR89G9M#tda8wR*)%I2oL^PWRaKp;p&_V^Y2y6_lgm7lixLU={d&pa&c8<Yw9JJ
zO*MZj`Qd@D(CpTYA4Ohjt4RhXZFT<45G_4Nh+Xn+ykzUV&gdoo86@WIxz@g@qBwNR
zj=w8RU(1`!)ZL@F#O&-Erq1>6XZ*Qw%kzen%-6@w@hO>W(hfZ-JMryU_TzrW4z<6_
zZ8F|{JSie4@!?cHOYYroy^&o{9#7mMQ+@r$H$z{^p!s(1-_7~p9`&>5rK-vF)St>%
z4_>L6HEW${sPxJpqk6d=YhPE|m+W}u@Z3J?nH=ZU{nb-tgbc5(KUrb&R&=W*vz0Tq
zSEzXL+^(|?)*G1_%1s}smM5>BZE#O)_Nj^O?2^aj_FVm;zGW`=(bLV>Z|&3lk@-9O
z57Up$k8bO?{o;MLc-fEc5bNAErn!3WPK8fQ&Wtjx6gU={?3VnQr*Yz}-)j1I99BI^
zbvJ#HR3N(H)04Gg^Jf~Ylw5sq((Ciq71@E_4)c<uPY9nm=`;0l!I$#^_FjMXeH1^O
ze~UZfN8{?7KctUro256~YWajtPR~4*X=Z)?TVvXEm=u+a#Glyw?!V|S`s%w>c<Z{a
zD;ECtDciWGuVKOyeR~at<{uN-i?km^&+n?!|7hMZvqtmb){kuSP3KIy@65R~^I@OP
znpKPLNrpK;t^52`N0P5x&p7T|!1Gg2rr)caar#YN#UIP7@4u`UJjvN~J$7rX+a<&5
zviG_-w_IL#bH-t7uLGv1c$Yr)^z;)?RBg}xsD5;oQH5Bp)ayf=URh23`q;RlPqyr#
z?!0riDqA>axs=UMJ$2-m{1)j}HQ)1XfkGU1s*%}sydUT7e5C7qxH!Y$)sk0XLU9_6
z37ck~ndmoBlWVn7^Xb+DFIY?eGjQz@{Ahi69>0H&ox~-*_qw@xXRd$dNUFB{@-*ag
zb7$z|DJRO0pR$_soJCXg*BtGgs%AB5O1f`%E`1o^E>x5K@oL}7#V^i%$odf3@jfmi
zcj?w%!KsO28;*;Z8~KzSm*|}?#IQsx$$dfQ;v;g(8$Q+_(yfo%^J(6{b0*ujZn0Xr
zr~H@h<3kr5bgsVB{deW!-#OlCCx!Epjm|Ly-^ti+C-PzXL0`^)A{Fid`*MRLuBz_4
zwrs!Iq?g*tYs_Zl?!OtHb5T-q*`$Odc3%D|D-NtTf3W>OLyP+PkE+|I=cbn~t(|ly
zW0KBy&4M@aZ$8~#HM@4v#mgmn<r0#QC%Vkgjx$+(I{bFxan^;e;y2BzNUG<3{g3a*
z?b_^z+b(XoeR@C3kBx!PYuWz2@Y;NHOMs10R+)LvO|ehfo;-)#`K4_<w&az{3;w(O
zkN3m*H(&lU2z=Sk`9u83uCr6j+K>DT?UC~D$jg<BesM1%a!KR5WjbrWFWOVDpWv1$
z`DfmLhKJXWMLfD}<CVN;<K;h|GRIwgy&~7<JPFxR;gQ2A?KYXmSL@hQdA*QrjK7r+
z{%7DU$#08O*?G;5=k@msF&zuSc22Tbw`Av}hb-I8ded_zF}ymF94XmZa#NvHf7_m%
zTr0u#GOqreIe)f`>IkoRpZu&|;1AzL8&$Ej59K?`%EE5#>##doke=S49hu)*c3!0}
zCG}2{%^~C6>g=Kq_p_C1e4Xod==0HEvEP=iyczw{N@m(dxApl;UwqKAx_kDilG`W8
zg6@o@nHNlgXU=na9l!dX@elKl;>WC>O?>=b=8UPW{E_l--MZU}`^snR32e%JEN~)4
zda57?w}$ohlu340KNvrrI{q!p&a(fIlz8Ws*syoMp4qzPD(1eE^A!$leKYIQyGw7p
zB|dHCXgy%y{H@inC9`a`c6Djty?Zhj%6Ehu_;fb%&d2w{e@d_YQ>$V7=(qCW>%#KY
zKl}rBbEhXOXKW7(zn|6S-B_wR*(<e4U_}H|(BqV(jO(X8`2|1jf4IGUk5!HQ!}sl0
zu}AMUKlbJJ`{<R;;90!t?!l^0?bE(E#c2epg-ue;4E(UXX!Vo%>-T5HcUrMNe{=uA
ze7+w-y2+m1ewS`#ci05yW{P*o@usDShnWXQs07@(ec)4GQ>2pTxA}T*Y3J&+F4kl|
z%8vDR-~Hiy$C{Ga`b;KeyUH5#SGwojYCZGJegD4g+d4(!buJ5BPZ2XP5E3w-sol@o
z_^kO!*w%lamrHW&R^Rx`|HH<0HL4%{y?z8g%KmHZe?|9ZPQpjQJ0^dvOm`TnOfOsg
z*_)x|XAkq5h5J5>>V-eIm%jJo`nQ6Q`rZ3vD)Quov+I<v<kWA`|Jp0`>v+KBMLYL-
zoZa)-=zK!=)*^<Uzt>teCaqSfN<Ws*T@!z`l%M(TkMbkG%;tRStX%H<Fn>eEG>a!4
z$8A2G_;vWe<wMPdLAlRsQoJP{o4@Yc_-OwRRleO~{f}hr;>BM{nXPBoG287&b<Qpk
ztL*4gDwF=b_L*dDarn;pZElwiOy`jEsJWmL_%w0Dq=l8&`kvQcd+EjL_@d6`$MnbS
z{rNhJuGlGLeV;B6*FD>N$~E<^mvhy&ZEcX5JySIPZP=$pg4#lFb|?Rw(NJh-{^Q;8
zBldh-eA!*=?GNoTos+#f<9oK){8ZgLD+?}d*)FKfDZ%NJRK(NKYTjoY@B2sQ@6tN;
zAKSyOnEJQd8MPle^<C@Qt+|(ORc?>Vy*W23=%Yl)-c6OpOI#;sPva_BWAmRO{)3D>
z^ZrcNAG`CHx+XrT(5t^#de+~kHtN{NwU3*!H?nS<a&b#f3Y$WJrcdhj2hU%As90rp
z(=Y3++TWVJ)zQHxj<{-j>DTh_wG;l&aL~yn`mt>hKUa;;kJQ?a!9i9oR=r2Bw<h)3
zMBKW$X0mVjw;f?-9u3MRlU8k%Y!RGOd|&cUik<1pX;$~U7F}IBO;^b_*zLo!&V<cz
z&ZhTNuISnHnl6dB<XT-e&3h%MYmd<c?pYuIGu#q>IR6O0i032!Tl*i*@0on;R(w~<
z@7w!@egu2g2K#UM7&l?frI+6rqBx#RanDzFH<;uZUG+?~<FvwhyC0Ju>i3kzsa}8j
zQN<wQN4`tj!9|-doGBMucE~#-RB?;Kmfl=87rk{UJHn+?gm~B0cqA76+OuiV+k0p4
zegAA#Sh1>0Y~J!Uf7t)7+Q;!j_z`>SpTtML*?|}8q_gKqZt^YmxwJ;-YwM0^^Lh7<
zoe#SF*7eRdf0fUYi*|HOyAolLF^!{J?y<{{-iPZ&Jy+I<Ua6D2mnEKl`0b<I;6rhm
z|IS`1xhs9xY<fYjOXl`4GqYby|6KAcRk>#9#BlFC_mPuw?6Yg6|4!VxzPpb3-;odL
zeI?!Z+tcGWT~}`p>)hh~y1Lfrk^T0mZE4xlcg;Jo%RR@Z*f8Qu;qn<O@{6kcwkLo5
zeymRGqxhTGvim!AO{_agcy+Qauo!QfZ+hsq`pq~;<2xr!?)iMwWK*-4oaeaq;}(se
zNmDt#`+j|yH!rtl;`Ql?d-wHw%Zq3JXAm=8y<fKCKf}X?mrLaZ{}^1}cXsi8v*|_m
ze8Q#nWJ|@z?ol{jto7FLmWr?F=JWeB6*yb_H~q-{?eXu>Kbaq;3o5FEeps%&dFMvv
zwr!to_e*45+ZTM4Yq9&cinmWZ$|m;f#!fZdV#ut1uRgQZ`&;*q`HyO=kCj~)tdaO=
zI=|z~dT!t11-g5;7~JrFTA#XY(e?1+GfEq-{JWf+rxfxjb!y876Na;KuOG?Zn*5K;
z@x$WyeLtcfp7<wlc6mkCqgbtL-uF3UeTy#K+}UI{&%<<D=TohQ-ELmSDJvDaUbIZz
zd*c4Gw>jHyzRT`B@>^`N{%8CD*M2PjHsfRboA`(N;+ew#PHy+kesDM0=yjD}*V^nw
z5wX*%BU3gsy^>Ti+aBnmI`h<)Q=4Xdf6x+F{Ahl!o$0~y<^Rsrv-}BM9{1{3?b5AJ
zuT;ryiTWbGUF;(3=6|>MOg}O0+9!^iEe*ax3sQs@H#Jl|o4)do;Pk_{RJZqht(E!{
zcj8yewOL|Yb2&C&S^D=*)2)L`=UuWcpBq$j=U`9oe+Fgq8N&Yrv+L!&S9I&ktnd8e
zs{19obUAlr@>RCE`7CxRU7LRHOUZC)(r$RmbHi}qp*H!h)IC@B9xcyXAAR?q`mJXX
zJg)4&e^~rlEoskV6QBRl*z58?(TdLprf>VFeR(T~;-30#Yp*S5y|Z1uic_uP!oiMH
z$MZgQB)@1_5%o=5U-<5i;KyOxe>+u3AJ>}oye)nEWs@z}l5Q7PO@FzmHZUn7?B2~Y
zGdemZschd7t}S+Vl3e!V?}znye*}BR_k{UA+%J?-wQ;)Vyj%Zn2kzM3`iy7xfjx$6
zwtJbYqzG)7=jA0X`l-EXPwblbi2n?Sv@=)mb5_L1?T|8C{7Czv@~!B~doh=s3l4Mg
zq)ai|sc<weW%g9};BDIaHScHU{byKR=N6Kx=|0z%Z}B7bqx;1w?jH%;6@Qdh+vDT1
z#mh4`Rpfh3`ngu_)S<IWlVz_2-_pr5^>)v^CVjhqi@-W>&IrBx=|9*%W<NUL_GNCm
z_utu1_kZ}$(5?SvZQ|G2E8gnn>8vriac6enviF%w`IM42`714!bW?VcoVYLVO0JFR
z!XN!UAI#foR{vBp)VW@8BPQ<ly%Q}*&Mv#N#o#|fhNH>EQ@Oqy`p@=gYaG^Czt~Q;
zLi@;nhRt*TGqnD*p7C~F;<co`yDlpKyRf<X=lV5y)6RzFT6sL_PZ9Q5ZDTCPmEyEU
zl`H#cag43St>)e-rN6gwntknj`0bv|NB4fy-TP&-r4GF`4|q8-vr1$|r|sXncYBXd
zUw-?rw7bBZ!__+TGk4xPoxM>kehTmW_4b^0ray`g$BS*z7tfCWFeU5Sti8{cW>+qW
zIlL?@&Uf!0BhSCPO05gF8*y*vTK2%QR7hZjS&se8IH~<VdLPBNS55xo{n2&n(SN=5
z)oha&yxbRicI*7P)vAC0T;G>jzsdR8sTAciyv52Mq5e~D{7w9!{$cfzc!@o>YqIPN
zFPTQ47q0P$<`=lTY;M(~Tz#iaR|KVQefGKhWP8Y#E7#6Fdzc@USeUNt`n!M1iVvHk
z;%-)p=bHR1*}iPni!HyuEVfuyW&TGb`H_Enjp3T88qpsUA8OxqkC=DW#&u~-=A^yz
z);|1kvd`90zGl_#cgnrrx7F-!pK>bx<b>8||M+U6er*1*KB)h|J*6M1>5u9~?!1s{
zTev*tRn?PUxhpqZ?Z1^X>9yFe?rn=E+)>>b^g3_Dnl?{yLB+L?^jq#(e`xR4TX)&#
z!d1P+6<bcf=5DUm`BgBX<68E~S(?iO7H6jCo^wCbJtsW)!}a6;86@`cR_wd}NNsY~
z_w8anZQcc+<hQ!>-)-&8JjN%|a5HeL<Ad<c6AElUeGTHCziRK>x^>^*e-bII`y7=1
z)ctM!Z|%BE?;my61m}OWkN(k~b!&Gfe|C8}>)o{{FD3BjuW<cVnX^{!?PB9fjkg(_
zRemoCOQ}74e}B?zUhnAZi+<GpcBz;h`6FkSS+B_Axais4v(F2@&b2zsceAu|{g>a7
z4|<)Vqu1`{+;g=}K~!aZegBbt+S@O^$uaHU<|?~tzSgbEO&ex%=rNsH(Y>P~KJlPJ
z${em2Ho}kiCGJ&hySaxkzvkAj)w<iim9E&a`$%&#N9*>P>Ix4g?37!)wyt$<YSEFW
z=h+ucch9%qov&|XaQW%nYsV}9Gq864@co@o6ZCh2$?f%x;#F#^A4+qS>IQw)S)VpL
zYTM;Cc>?~Xd*?LHyml*4XS;8HfsC`wwzru|T9*G@>-2xz|2FeSdvzxNvA^y|=4o{M
zZJF%9eWLn~G_$iCw(j<}xh$Nob~IUP?iz=rC5`>>UO#;Q#`Sl4MR!ELlyhS8gZyog
zrxV^*7Jp;=Eqg_q<)ZEq`^<@95eGgqvy|CPp66b^95gLcpI)nEvFykB$01V}G8<%0
zo8Y#J%`VXP!Nh)<^wTWY=E*-5H9DhpIIL;vw#@8x-}8TMv}_d*J7=_g;=khQQqz0n
z9qsrpCtX`(61+mz`L~_>wCv=H<WIAnF223RFUc-)vh+>AYdQ=}@w}%$3Lm|v(0}M3
zleyKk#l|Au8oB%K+c_R)%+HqgKkolE{oejdM(4k2{%2_NtB}{UKfKys(tAQ==}xsP
zkJ8w!dpC=2d)@qRJ=4Cq7wqhQ1V7w2Z5RK6^UM(yd6x{gnQYjy?egOQb{VI}jX$ox
zoU+lhyho?<y++H{$^Z6!{vq{4_&)>7jQ<QxEB;h$>iW-cct2a|!c67X=)GBobcJrq
z{5f}P>d_^?trDl*-C*}3&-mBw5BLA^uKl}e{UY!G4E_7eK8PQ_ohhTtp?1ae<(vji
zu8rIhR~!Dxn>pTZJX-H(9xrRB|6|dE)78Zy99ArMl_$U4`77M@@qCGj??>kGd{|N^
zwN3o{E#9+F%F7OABu?^p*HWbN@>{2p`>hifcku7wUCttPE3~k;xHz(sr6448e`~$>
z`CnK5Jo+K~pMmXq-GMp|kFWmSb@m_a`+9Dt2;8*Y)}KD-xu)uxwAY#6=X^ZAwr+Zb
z^FL0<{|qe6AL{1w%@#j6S33L?`)Re!s>hb=?-t)V@soe?wcYVdu~`#eY;<1Xmb>(%
zE~moJ9KXmSPKk4c&0SxsB_qtDC&qQHEG@78HKV#}Vp-3uFPA^rtp6uF^FISi{gwFB
zyMFLLl;C_^Bc>!K|3Tw~?cVJ6AC3PRSgQUrGzC`7K0MtlPT)uAa@Q3ncDl5E`*n4u
z<LNd2GA~?OYA;UUd~B=z+B!&HCT)-Q<LSq2vmcgi%wGO-!|gNEf2CYHy4QJ+`NTVi
zR;0!oMjTY()iW^OYxOzk<>#;L9c#_shfMyOesKH#56<g<sO)byxqbCV>x28E8RgQ>
zkxS&%ua(EHPA~9ywySowAM>=I1+^7x_up*(X7jhNKDjpOHK^YC-dcBZt^YoYueC|9
zeB(p5Z>wGY=0aS|(}nF?oE}YV%DR(7OYe6^{oA|Z{F*GIE!T~=Mc(dXcV#FLtzxhc
zZT-){xo+9&^OmywUe_d8MOUubSgNu!UG4hH?~XrOb+4?|nJlJ0sW@ueKQrOP=I32M
zn!P^G^188ePuKZ>yV;fhGsuLk_q}9#pX-!i;iJ1|O7(lDr?bCOuvoiylDoNb){9^B
z?jLO_IIeKrG5t{y+k^iMGuO|5WB*XBF8O2Kq*w0W*G>O<`+Dt?%v&-~D&y2H&XNCB
zsr{c}q0%)YkC}&ezAcMWx_5BuzD2t=O!w>Y8_s5aeYDbV=EK`=F}Jg=N*1p_SuSor
zn`?ITWz!#Pd8(?9TTT4WptG#^Kf@O>)A?FAo=njT`ndgwxyL;V>Bi&N_SAb`fB!Ys
z(XHa{InC?$_&@5cFMT>Y^5eWy{;#yRU;M*ZyU0x{LWTF>$uL>Ft(Uo8ab4p$y!3qb
z^rPh;xAm`!_e=S#lxz6CG*~QcyXA|zu#&GYV;MhA$^ESS&+=dBlc*l^;0mvAXB~Ap
z``+1Ec``HiAN3SH=d;;eQG-KvU;C^F-<H;f8QHbOOY+pdKXZBZv56~xdN6M*@~wGv
zJv_sJ|6z!p{(6CTP6h6JO+!na{+*9Kzhe5a3C|1aYJ2Vf32*IhEnusj^;7d}^@~16
z`?YSRXC0cnh5by0ji+(yEx%F!VMD@1gENeFbN9Y{{rI%N^4x=WU-lILx_(suQLdw<
z%KRf&cpv@V^RT<F<j#o*)7<mh7yoG5_+`c?`}0}*`Hxf-|2`gPZ}r3apD_2ih36l7
z-Ltt8Qgod83jgyik%I~G#b4O?I}O_pPVP_s&+uyP3Olu&!>Wg?9#|fKk^Q;ikK^t*
z&%c^UKYGihnfUXa?APjN3fB7F^}n?A$CU59+dOaXow@nXC#{f=dXrZ+%3g{-dH?&y
zV~77U$OWIRD|G*8<y3ULQTDLlU*5R(M{Cc-zdBtlbGcL~D$D!e>4o2?EnHS(wLkyM
zTXxSG+k;hmH~(j_czveE_k;7d<d3DT$0k2|-@Z@cO76Rhi)W@@T3c6|*krDgb-3@r
zlTx;QbsK){H$9UO^Y`fkx%u-&m)WUR&aatYBmZx!U5WncYq9?QU+@1=dj3b)-g(BI
z?0HN(=DS~woc`8(Rs3NaNeflAz66i{#hNmD5+#;DsvqgU5&h4=^5KX4Z>OyLyf*3|
z-uqlhygcvx>AhEdX7yg!5#qget<Je}ogxFn4`vgOJI1e*7x+^!Jx;poo4aaBck7N6
z9S^h5Q=6XKZeUhv|F`q{lk(&5`7350mKQ6H&HB1*lJ)OpJGSnsb6L!FySzkK&Pnh(
zgWT84(=Sa;waN?Ibm3Ldq^wX=yQ6#m&i&8uVCFru4|nG-Kf>P{pR}`g;<H+%U+?ZI
z+vv!~nR;$otY8pVczJ?0`;q?)8<zhO7C(MZy8BSt>!VeoQ;ZIqWQsnYC%RyQ*UZn4
ziyR6#Sw7!eT_N|>#_^%Y`^Mi7?Du)~ztZ}1E3@aR_4WC0-c2{WENNk1<Xdx2{P_M4
zUhi+*e&pA7OT7J`Zq}?U@521T*{8KL{eEX&ddPTu`oR*0$J>46vZwyo{GWj(Z{v^U
zAGSySD1OM_BPUmK^|4|5p3QU3p1DqVqVje^+2a-KV?Xixgih_8lFRaF&)3O`SEfuU
zyPE$m-T8R<_GAAt>nDD)Tl$}Y#pUmUHFfMS=X2LcuB!+SpY9*4>+|vc$(&7po1Ssb
zZQ7&GdQC}0s8U&7()6{}`9H$l-}YZxl9~HQZF_T}<)%GbrzA`&GS(9Q8NTbbcdZzY
z(4M+iN9(7ST&pwxcx`6?o4;YNbgF#*Gn_U(+4*pnXq~?K{`$#g3uir2-0c7KpU<BM
zKiWT-KiYrr_YR$ZnlHj<3E$PssJkwAWCH)*O%7g$vImmf3ykB6bD7K@#0c!LJYj!r
z|APLThabJ~`sy#I-nu8d=2zd`@?86OdSz!NW{OxD@bU36^I0{Yt60DOt3Ou_-$%B@
zkL+zG)pwrT<+g6L`Td6F`uXq&s+#ucL8s5w?f<~{^~k?-cRpM{`LF-a`KKa>j2KUx
z{Gx6uGs9J-C*kp*kMUPr@4wmoTd|^d`<)7D*WSH}EeGm93F{U{P5&eO`<wN(aP9@C
zGvby1iU;oM;V+Q95k5Qk@T-@<C&hPedUT85({=ssKj)vtz3tu>-k%(=S9kqZ$*ul3
zS07ia1pQ~oxR|#{`#(c$h?{No_PzCy+wXtymcQ8_tY)k9K4y#hyN>tCljZ%*#Qv2&
z*e`1TpfjFjpVklczz??XyG&24`6|)m(a$?)k2V`iV!(5yt%nQx)aFL)j5@h)U&{Fo
zgH8V7-|G+0KY9P{--q4zh3d|?AKc~WSiU0rmW$Y<NHcA#Q!zYW58R&I;30GUso3n_
z3N^X2<1Uuu)?{9LyUO3TMabFu4$I8kXFHifwYhVYgqAiwn0S3@eZqeRvHE2Do5%fr
ztginM{m3Y;qR*Zy>w-UX=f5NCP4{Gl^lL^eba?7<nz?6ApY{u0=YO2PL6;YQ3|qSR
zN1MOUkNv*0J*M2fbyR2D=QYAMY3ApDS?D<=8F{jQTz_##Rj7eQ{OXh0W&i#&{78Pb
zd5x)!Z)kXQ^u|A4ul8@?f6G(jyyQnMUu$uFT}sB{rbp2=(xINILS7#pJmeGMJ#2eC
z@KL?g{*?2#>|RI7vCTiUIrgqZQbqFR9&`B@-_|}ouPjm!oij<pl5t<+F-!S-_dEYH
zJeYld)AX)Ao=YnBAC8wct<`$%?%naQ>(QZG87a|AUF%KFmKBI3tPHaCEe_lN!K<Dp
zzQ(cr__q17CDxOs8AVhEz2s+>crsO0f2ZDw`!lYT9Am9jleQ_CZnNDced-~5?mv=$
za&Kiu&7FT#){Xl_O6%J%yFF&A1<Q2ZOSu`;+a$fTV*l~G=4Urvd$-8t^OM=`9UG5-
z=#>5`_3y#^{STV{Gcf)se$?xKY@Yg$)h4t07KL_4+Ri?}#2{L;vgs6i@V_me{F(O1
zKbrqX+RCOlyOh1*pU%q{*NvTxy8r5&Fk})5h`RTt>bXKewbbq3MYA$OKK*!m_UHV=
z@@-q9JKpFd&e)tg!AiiBd$OX%lgBo~^LDJi^8Ti~OZPuf-A(b<MzQ{N=lbe`_m%rK
z^mVac`IP;wJ?uY2bM*eKdj7Zdd=>qNr7rXq?(i*5y<Bb`C+S}IHYh{>gUf%0+tVM~
zx8!c&s4>i5buw%7#$4;bt<#G=-aO8j_)sO~>n*#fbA2Ao^*;7Y!lw1|idV~j%<q`h
zH&d?lH-r0<%u9k=6-m(xwM;t7XUq%m<T?Lx{){#m!RD@Ci@#0#kb1iAeE$Ppp+^<0
zD?WUiGs$|*CIjzok4-7NBFiU5Th9?w;j4P?|9JhIogcFwv>*8P!~CPS)2<6!SIhG1
zs%+is(BnQ$`P77?DsE5m-BQ1w7kw2kSHc?}^kL=J4Lv(&$9(v4g5@dO!mQ`peOFYj
zpZUn^RnVgAp7EdlGc?u4g||*gR;egI{<6kZzN1d==1U!C`)=J!L8qQP(ooMmekz4o
zQF?`zr^GRX;y><d?rneD_(0a~nA)ecTXc&eJ$V@VDs`_sc%!)CqJl+&xN;%Og8Y~t
z8z27uX_NcFCFOvfQl<1$TVemb3B_NPcAiako@t-)o<GY|XwSBN;#URsUEovQyIK2u
zT*r-Hvwr5NMyxnmUsm6H-l<?x)!h2SvSq&m{w}doj?Oacm0i1ZS#u`OyX4d<OM*Q(
zxZd2bE3`LS`FP&VU%NO;ZoIQO)+o4tPjmj|r8O@<d^#6dr&@98$!Z3@EgS9>a9qCd
z&u06>xX({x?!@LfoH1;gYfzhg=xn06$=i!{9`6qCFM0D|N5&kjvs%JEf{GT8H{^8P
zZ2KIrHAqi2^Sb2eMLdGXKeVplj?R>4J@)L&e+Ij$3suC61vs^D^e122!_J*ozG{}d
z`42_)58IFb4f`Csz32F&?hcjBbDP;b*XEw_<^RZYQtG|)92ujpufNW|>#nlfkKNY1
zF19ev^HDuR%#XwVJ1#Ap{N{3-XKtQ_F6$8;DM<&rJ_hAoldP{7KDg^svHGyUtLY!P
ztFNXty_4JLd&E6w<K#CF9(<3HYYDG2{O#ekq$=ZIw9FT&=FL_ty9{r7bGo1YIDwJb
z?oa<2!8ne43>Uua^}2q<Y}eFdCf{~uT#DQ?mES_+KZ8lu%%72yC-w*)XWIKuyZ(#2
ziok*SE7#j>W&0dI@5r4ujaOs$6`Y#H6teJK!3~B@k1dYI#cLjXk>1&FxBTh+!!v6v
zKU_aPEndJzzHmik9Phd9E1&ND?3=~AcglLx*EYdS9s5f9desgj-+Inc#(pR&_CUSZ
z>n82B!68oGjzY=~hnyq@1p}4OD<|=GtudSDTh-d$Skf<ABOfn#I<wa||9xWkX{|Tn
z#>NaBl6(s*j)lt<PmDYIVe^CeZFzr;#TGxZb$fVrp^<NL%BoF9Y@weX&r3-DEUh?)
z!OM+PdNz0bvfy>IHdU?VpSfyQsy@ej?jPX?F3gR4tM@+cxzLRz#m6Qd=3?Kz+dP6J
zHPV4i#leB$-O*~#D_>>nUY(A<_;&4=wcZ|+s#~w>&dN;RJ<UC=G5JWG@5VkcMYlHw
zCsiYQUS!y_$;Y@CHCYtY?C8!*;McNbR$%V=IQeCKP=)`4NiPd@&u~9!D3)#s@J{BP
zd`I|-{Cd%|9jhf?om-=-ZgEqd_xyv;k7ip(n4S$vtld`qbXUdmX>PM3*%Ce-X_Gj|
zz^$Z{c;d`V>+Dzjt@HV7^7T9Sm_NABc2i!!f6dFxwKvbIp4}r}o@7?CqwSQj@y|;~
zE<Ad4FU<1*-x@O(_6w!!o3;tOOfpURtfF4!wr7RSUk<ygkHzZwb+^oy$t-Vr`DJ&t
z_tL_8L63L3964Jydc8Wa)c@=xj&q#sqK_YaDESyrIQ8qB;%kSBVq;$Ylm3(VgR%I-
z@#9izI~Sa<RNE)Sy`SgRv@-L_-sRuIK5gZWHF0Grj55<p-0^vy^^_Ys!(75-#1F?e
z%-^iuXlI@w#ryZ^*{yARADUcScqMQBtXMBgAxqJ>s`Kp4w7a+L?LM`;^~lCE5yHw$
z9{V59Z}fa5FMsDh!y)@bm9^gzN~_!ES^reqoEEZwk9%TH-naGdZKnKvcW|pC^E~aC
z3x6a(Fdwlx-}_JC=AF!0_RVk9D%AE|em?JP$x-d1?c!}O3uX5#Nps`oJEj`jd0I}q
zX|<EgmUq`(|E1e+S?!-%J%9FonbPd|&N$(ZV!J;q|0l$}_DB9dx9(0=&o}vN-s{b|
zaWFHV@22jPElyF-ELl3{YdTK+^h5q&yzGzu<6*PH4{>hk&VQ?G9Ju=$=sLwXlk2;6
z^wwMxzqIblO~Y)}^)q*UlWzEUVmqVTrG+#89sU#a@qPb#8wH#A^%XS-ALR?Yxl-eq
zTAr0S*}FgRli5$>O0)M$(YGIlc`mkI%(?&Bv;AiOG%F@OK73zhi}iax-(|OYy`A=K
zzmjq#q(gaYrAMVI$B6^SH|SLRJ<|#JaOC>V$<MY*&66wi{u%pQH~;hgd+EW9fhVub
zzVv)={Xu*C6#tHYYM0-wS+hl6Fe*0tgWB}PUc06)K5BL6_Uzl*%OakBX1t<v@zKPZ
z8_(`;o$H~qH9G#o^`qx+8b7Y@-s5#oAXoo*IM1h(4}Vu{TjrEh2C`3F?#g;{ueimQ
zjESjDnhg4iLM{@mKcyeMYkk1-;o3^|wh5WxRXNvpEsBb`Ydd?(v<(K)&-&N`4L#*+
zd>-uKIj}J7<oZkeH;cced<=gZ|8RG$@R3h9oFCuk%J5vD$sT>>(T@2?#GN=3gJmXJ
z$Hm%kZ+evQUjAJ2Vb3kCPtIk9KA&>+?!A>|rV$aBm%poznxp#s&C-YOJM5VMGqikv
zY%}q+&99?(3^?;bLzhH|dU#h`ES_}DW9B@CvqFc>L>~q1nScI2Lzg|zpUe-Fk4mW@
zzR#O+o$b8C)~oW)+pddQUi)a8**~+;w(I2P>^sW6%Pi!a7Jh5Fk^R2@W|3_2fhg1Y
zhuQmdtB-Atd-W~cyejpJ*{!=vkIwNd=eafi+su&ZzFooveG^(UBNtUHntP!5%Acga
zQ}*P3oc?IbN7=O6x=Y9X!}spEk|t&PM~!o4>gFw5KZ#z?n0`j}QISvT;v56f)6<jE
zTaN5s6Y||kx1K-v)RD_QFZQ{wJ<t0i{bTe|@%@{=_x)#hxO(x<4~r_g-S%AkqrW<H
z+F}0<o311ao>JV^nws4x^P*+p_M2ub6Bn<ZaP^(|wt0FxnjeWD-_L%2T}Ad`vE;W^
zzUy}D?*02@_9WJMVFvD292@#xDzB_~n0o*B)d|<T{{;Ndeo)K)E$8F@&bNy%9^LgL
z?D-L~TYc@zUzG)!p7z{!FZ$$}`$;nd_j%9w7u~V{+MBeT@C7w;e;5B#s+fF4{zLyC
z|1H}${wROsE!4lV+oMFnWQK}!&bAMk&%9?(NUMwR`Xs`?b6dgk3&%9BFV_j<)RkME
zYf=_hf9cA*(+bN21J|l=`&XCr$NZyDyvWoo_dB<hPtLTOy4$qprHY`hNuA%5+7C|q
z61r2m`l1VYC2H41%n!Ko&nBv3@}XVtJ9O)GmUo!$(930AHox-W^)1`BUA}hD;}-Ya
zsEZ0MqC(!!j81BAUUdAk+w9eL{~3Zlh)sVit9Qv>`lVHR<7w5N_o{o$gWOleIBH}^
z&*;gXE&POa%3{Ti)AC#k@06=Qiht8kr}@YBVvXX1)3duDu74GDdPP)J^viH@s|Q;n
zQkh<cChcj<S8~gaaG5sA_1|Q1ZD~2pG~O*!&E9SCUb_3&yuUU)4<%Jq*6yFb@LY}i
z5Brba-xmLvzB1axZ1SIQs~of5r3QVM!}qrR;+QA>J0s3a&3ngU&vZeL*^}<x|K4Jd
z6Kj9Oj(hutCf@2ppI(%olv;aiwqE;!sJ(L*B)+|MFIZ;67T+m`yOb5By_yVc-uwKR
z`RL>x?~jwe_5TQcZ0mn?o<Vn{9P5YBr(dQ;<!+mrzSwl>-!8Y*KFRwbms596iHyAM
z^zkH<r|2zjk(T98;=Am)>u$#Be>7YC=)6?L?IV-3rIuc~UjB(U=n4DIxo0MuzgymA
z7u)$$+4bM66$j+j6n6=J*Sgvx<?WgA)xEiQil*t?q`Tkj|6l(XoN`%jN$f?BQz1{w
z#bShyIX;#@w>zG(Ci2Jj56dI_13rZ9u3d7^mFHSv%<U74Di+R9pDPmNF-g?3W(kjh
z`zgboaNb3Kl>aW)voU<cFO?Z5bNyWZLy3j+BX-O>SK4(<dU|PBbjuFc(#~0CY`#66
zO(_}2)wK`*)7ySk!8<lEFttcB&H0nrJ2$J=#}Wq*ep}r6ufK9#tXIUIO`Fy&Tpf7H
z``_Jb{~6ToPyAbYc)q8e^!Zipdgng8Yo6CV?;P*jkG0cZO<(y-_2GX8!MY3cw=O-p
z`^TequaEqb_^|Zun(y-@w(Z*yJ$uHPnbRKUZqYZ%FOXQX-OKIJ*{7BH)7CFB>2H@4
zpZ;*`^+We%URRYho38J8XEOUeXRMCl+O>P1c$Yu-wK3YWT6g1)Pmhc}6+F7;TSm^2
zZ`vpHV{y!n@O4KY%k$;Tdb@bqwNIQW6%S?|%Hi%%t2ni5$*Kk7PLdIt!4sRmFI|4f
zpRFePhu?m|FB<bBcYS2Jka_XPqW=t$^SxsgrGA_)R$DE)jeBkDY7>L#bN?Aq`&1`|
zrIqQ}i_X&veZ0Cn&i(k0)enzs%9?oOq3J^P<=^AJeg0IhY=5|F{n7h3vmYP*&+sO<
z`0-p*`-j49r;qFt|LAk^#@Q^L^-M7~OZ-KaWv-j#JHd&G<8GXj+k>sI_p|@;6hG1}
zt$n}qpWw!i+qxf2-W<Ad``+K0S48ZmCKp%o)H(i^?eaB=O9>a;eNx5xQjGZedH)&G
z<C|{9cW#wUe(c^lu~eS>Zr1c$d{fH{XFlAsWrP0mqu)w|d?h2LRA-1ykoa`Wa;A7{
zZT|<mOScb-M}3>U_(z^UUzX5wkGAN{urJcKL27NkUd1|DD$mMLo5H$jCP(QGK9z`r
z(iT59>m9wiWVyuMoZt6<{o87<xG*&C`3wF7?{BOQ{-}SXUf}gU#t*GqueX<WTkA$2
z{BZBCO;n40((aa%BFElDw^e$dmeGnzo2S(GJHG9m9s3XIqvG*f!aHn?m%rwGQ1NW@
zybBps73R~ud3yJ~lF0w&@M2}bA?q3M1!t;$nqpJU7x^f^>wWEqtjphOu5OK98}D{G
z?Amqzt6QaegPy&U4pPdVkvb_fGf#Au(nXUc{@hwCr<Dfy#2NivVdDroX6n#<(LchE
zq+`{ORGIb4O<!sHu&JWdx@F?wSYOdYi+9JkC<!$^*nEuhoKaml?}49-``?MqjxyhL
z+1K>i?|0MMu4-TU?Q`JT*STERtovE{1=UvlvRkMlwrZ2hwugLAcTG$#e(tI>Nu_$x
z?^U6j%z5UpZ7(wF-cil}VZF?i8so>cd7rBHIz9Kix^(BnXA|G$=q@Xt6sGs4W@qDR
zV<A854_e=w>bQP1ADyRv>5rmV>(bl2P7jqT*RtN7?J8HSv%r1oDTOqK4J-}D@fRzr
zT6t_Tx31lKd42qmpDzQZEU(!7YJO`xXZ}9Ldt2YFxh}R#clXp;5oJF&?fB0yEwFNC
zK>eOK9Pv&S>o4ACuQ*VnezAUo9dCx2oK))pp>th%`s$CRm+h>v-uQlUzXNN?MH~Hv
z72%FsJ{)TnY&&*LwTa`qn4&;}Seok0*{cmzCV8r@ubriOOnm+N{|s?kRz~qJJ)hUg
z%5ihXtm9pEiWRMAW^G$vP<%Dn+VMZbzQRARr%pcHY5i^&Te_{!^1{Exag%aYZ$8V_
znsHJkfx-5N=#d}oNB{AB*t=uLN4E8uS<5^YNk0wpnS5S!i)Vx9ozG`QybLG3TTqmF
zY|GLm;&)2!FZ8n&O^jWj^{eootNM-UilIeS#j!pcMT@2TLLU4RUAQQ7*{8n&Md8o>
zHGeg2zZNZT*S4&2!D^9S;TDPWE8o>yedX5WaAM?cve$Z3WB$;!&tP_id|&n@-91Ld
zt#Nye<DRH5Ti)F<_i0(>zuBo;0-+Y7w<8@6q^@4I?ZfqHY#)Dx-u_{-m)UFQwXdCG
z_b#1No0TcOXc5okuW#6kkJ^<K+m_kPf24mT*ZN_5+w6$lj;2p;_MN+J@j2zI?UBr@
z=P&SitUt52I_8><@0ys3=J=WG^7CfbY}#IYgYkk^pQt-SVeI@P`7*EU1#3d>JM}}3
z%h{}s;Cv*(_%rzL<L`66Csi}{u^zMgS{^jDuRl52_WbD`b)lhswXg0RwQuRKIydo3
ziOsb>=gf$<B#!5M)BG0bxyyTP`_xqVGW7oQ7nVzwUlmT>I4^&zba6*o>d}nIAID?1
z*qihmUgvml#jI1|4o6DAt_sS0-_vI|<!;=wJo6i0&Wb;}wlMYg%9zF%mFqrTe)Rh6
zCo@L%#=fney>D1p*UvSxSl-xX9j<?EtNzXS;`j3Gf1D;oPJJ|Cxw3@CuP>%wueaCf
zXH6^XWHFyqcw^_kCD)&_w|?!O9VRoe>)TuVqnC~gz0ddaO^n(+@vIf6wfvF^HPQ24
ziFXHhtP^ro=v40A&V0T6^yHscW2=wtlXttcm80agy;|9{b0va_HHVlF{a_Kb;91h#
z#Bt)$KF+Nl-%NX~*zsuVx;<6b_lfT@w2Qkr>7nEE8K1JbxkSR9-v&SGXWu85E64iH
zZEF3u;!yi-c5<hs4t(SP^ql3~?Y@X@oVSX59tckoVLYe(xc)~(&X1{ShxRMmwNLb@
zsX5>F`O1Zm7e`C&c24te4>DA{_0<0E4(I<23tc1M=6-lF_f-DkKZ%Jy3bdb^eY~CA
z$?8y3_4?d@hHFhJiza@}eksql&NBM-j1&L9aNIw6G;M#&9#+f0_cm^r|Ngf5m*jZ;
z`5lJ+dlgLuf3)lk^4eEs=X&8+${(8#d)EG*TXd!Q!j_`-|4#X)->K2tl>D!E)s20%
zDJB0h<E_k(2;Et;<4=~@k6xt$m4w<|fs!|0rEBG9&v&#x__}ldmG}t5FXGyN9aiOk
z$d8eKwPb64VKM*L#5e{!jXR3}8KRrtMos(^z4Lb44tt-gpO0_2%2{qZ=a0n4>>gJp
zkNO+4l>f|IP~R+P+fjeQC{6Bm^iScqfcYXzED|-J@Bh!RZoT_QuT<;B^Vx53O;!Bl
zzw?Ftht+#B1<rqqz3`u5o1gm&-Y`3Xk19qp;?AW`P@lPBG21N(J*Nqr3={aQ(sp+I
zGk6s!xb5kW@Aj9rKK$`<or_5AF2}w{?*AF2>Mk$Xnbx`9MsZbkS@4g%U!04&gPXF|
z(%dA(4Yx!}%62n<75)7FaCUY6E&c~vr%vx$EO__cjU$)&)@QH0HEsKxo=;q-*7RAN
zIAQu_O1$*@<v-6YEZ~<_uc>pnp80TnpIM>F$BI>7w#^VeH+9*q-;okEH@PCx%lPb;
zEix*cH0h4Yk_V5IAM3Zq@m<{#EA`xQZ_m$ZMO#vM=Jj|S{545?@9e|nUEWqQ{DJY|
znQ<l`)=gh=fBCnt*`-E4Ns}sbuk2Z6mvOV>Sadee9G*F|Zq`dzuw~wR_S|**k&aat
zk6ltpSZQy-*coPdP~kyON`ZE0{7kbml}~GxYTWf&i;SH9P4)dU^Fqo>(Qi*~?LU;g
zaHdI`pViTl{|qOuuGW29#~;&sh}Z4@-<yer{~7u<maI~ATeCi`e}ckRL*6y^UUL^6
zP!|1ab5Ht5WWnu(eS5mq`;G3Y{rPsnerjlb`#!ea*12C#JhE-sc4_^ykR5BIVtGY=
z&(r;I=~=Au@n5ljlvz`?Ct3WwIGz3T`s&$_d{#V7xg$|3xvH$5Ys=~E7y3D0S998|
z6#e)6SX~h3?-N@0R)0A5>s6%s<<zE!b;%vidZr!oxFtD#^2^tO+Uu719^C7>_MgU<
z^me<w*$cM+*s+{(>487lt-F8NKRR)D@%C-T3<XkVVZmRX$e-alJo{mL@7kZaW{>6H
zEX;p8D|3rpRM^IMW%iOP+Y3$1b=EEKyL$iSeOdLLu4k`F@Cf(^zsY{$_94G>t=s8t
z?iTyEF8>)GhTitPlIvk~>~-^9kAF$i4edjlU)7cWyS(k5@`vkhMc4nB_fc}u)%^KE
zTW5Tl>}<&L)^1f%k5!Z9gPz}QjY?TnGT|IW{0hGfc<i0y&VGzOaP7X}9!az5rOl=3
zv%B5wD^mhLYuNSeWU1xP`ZT{?O7!_3<&8I6brR&F>kn`;{BsFk+H>U4dX-C?y^eio
z4#?cJ`c}dx<Iq`mjlXMOO#Sfpxxdb}l3gMXKDF)nm+R$!=5bPt#jPV;x5BO@#@zN*
zD*qYL|2pX8V&AzdmQ+1kdywVg0#7!EMVW>xw_dsXq5g=z;E(Vlv+7nBuekGfn)D3c
zBX!wtCkecMrp)tj>I4DD2VH-|wtt*{xW4^AgShyi4F{jS*mZ~7rY`^7#u#zK`5NYm
zp10QR?Q~*4<6Gx^@8$lCZ511PU%5ZizO_%UV%58R)|d0N^;~8pZrzo3{?DelLH8cB
z-`3Q>X7zZQl+C$lDZj<D0^MKbAF=2Ach+9CWJd{q=RBFqrN6z)bVZ_C=ah3w+Q=?)
zD0{xoFy1P=e&g{!!q<=dXV`i5pUlfd=hZ7aQ(D-arzR+uGOT=29X=(aURd?&mL2)e
zb39(yod4d={#A7Ae+JG~b5j2^c)h5wG7e9lDYf<Shr2@A^FR3hXZWGMyeltZcP-bm
zYu=eW6D3Nyr`~w#HH~pe;@l;Db9pPjt^Loy(*3t>YivwKv(J^%)!GXgw+V5tSjwdI
z`_v<k=-$JoFE0K#W+rLWwVS`ENiQtU*7(xKN>{cu6EAF*38~urY{`FyCZoD@VYB8f
zTwRfUd{*z?V@s91_2;wh>E5N$;(4g!9Mg*Tk+<6a2rjzj5P$f-fbJ6Z1+z}{{Pj9l
zKeaYhyf21#wfgI@hadmmv48c%zFF$&+QU=SSO2;HbFRU8!|d`O$`4oH|DoJ}RJ-Co
z!=ungu~M%$+);0t|EKV1!S(+PA3XDKSsneD{&#BG;yvZ9{@1@xTw6CUswVJiQtE#O
z&&0kNHsS8#$9Qw(r+stm|F*jK!&15VGxt<9?T=Xg$zDdk{=v-ptzy&uRMf=i*DJld
zxrzPimFv^*{AW05_n#qiKVQY9=ONoalr75r%F16fQOU#R$FZYRa?(zg9NPc8t2X=l
zuk(-7I~E;?-t^<&H~!D-rrmygY|Z@Fvy5!Z`d`MJZ+Wyn?duow7>_T{mhG4SY(M*M
z^0&|*XO~C$ifw$Tn`Gd4>TlQMIln~W{v8RQS5f~k{fK|-ckbmc?+NX-$~`2ybBoK4
z4Z$Z;YG2CzeR0^*#$0jptbfaseta*Uf6rC8F8SBBz3Y#6TUzYc9#ei;{<YV1-cz$L
z{*(XUx1vy1{NttlfA{8JoPT23-rsgFtCYI!Syhinm2|0^T`%0GFe@xmwZ~-5Ggmi@
zNKT%^Kiq5mdH-nc-ZW8B(6wP<g@W9YFVC-Ut&eqoG{1SP;?wwu#eEN(Havf&74hDV
zFKhL#_wE~$=On&O%>O%W_sfUb!I#~?cU5j<TYlUx{6B-xe}*Ui&!0co|K|PrAMbwZ
ze6h8CC&9C^Uncp=#K!o_4EYW5y;67Mp19}T>)kT{(*CeNRyB&b>=PgEc>8w3e+Cwf
zjdcxNuXe2COx>zw_Uhcd`5*Fx9&ud$Ua;j-T-D}}=8vww>0kfD+^_PTVPUq!fms$#
zbIQ+gCr`e%->god#<JF6msY0(3qu9(9KjRE45~iIUrYVlI&W#ZYVR+d38%O=ZFtZe
zKi^*HKSP2(-;Ybbs^9a!j!(Sj8IihOXw~G~MZ4x->Q9WCywx`Rk;rE)(??fp<(JKG
zTk$WoCij7_{J~i@x6*rZ-W{3#Y2xy3?$hzpN*orS=YN*hxV_a<gF|JZ4xi0-ufMD8
ztZTIARK!30+Se^}tM{_&D%rRrclVxhY81NmvgP8EiCU?Xxwtl}-kkDie`I~8{}1)@
zx2z9WXRP1it9Ad#wy3IotdqK%1RGD+&fK$;Q}Ts*Pea}Q^Yf4CGi3kr{d?u3*S7F)
z`pPlR)~0(;{d9C-Z>?QEp~&5N2kVn>muub!_X~SznYXR@HT{9nkA42__so9${_yCP
z#Gc@Xr>k$zKF=LFW!jS{_Z1yWwwpywx^vWS)&*wKD+VW@uVD?+OrD}4FHoWGw&};?
z6}SJme|XlNU%EJ>C~nc6*w~vl@7#80DV&hFbr)B9oB6I#p(X21g>DuT*;={3txmJX
z|3~<v+4trDm|c5cqxpz8#5Y&__B}7|!wP>N=HwY^-u)yg<|9`;FI)aW#E;bckK+Cp
z>}+00E&b2XuA8Se?Nu%Bg5R}U&s;0I9c?2R^N9E14fed~(=6-muHC(ud16hl|Ai0f
zy_3qS<@7&1J{YyMy(xdIE!%C*l<(%de%-pW#eDiLpGL<vNhaT?hax*Cc`UjsX+7g%
z_Vs-V+4k%<%!v=rcggWwdRIDM=EjZN5gAslPmfG1Uc+;iQz^PTlgVw>dy%3Q(x(d!
z7bfog@Sow)^#ki0t(HFTvf<9pfBZM^+#kE?^=oI(Ra~=Hxy$2O*_N*4XWgySPt3aZ
zq*8CkuFk_MSp_!kAEh7kcjoBo*l8TNwesTPN&Y|F-<R2)5fTi&u_nzjQ8A^->Gr0+
zkU1N_|63{PsV??*SNPSkx_HwYk7iG5&WrwTbNXAW)qjRJzdv3${cvU9bemtb+qO(t
z`ej$ow)eH%Z1LO9iWG4^I<wJ><F2&cg)=STz8^M+e3;(yPwT~gsXD{%{enjy*$SPH
zir&6w&$emj9z8u7x+~hfQ(sQCB~3CVLNxwt$&_Ove||r%?~l{@G4t_kf8ifZht9ow
z@04iTqI5O2PuDV4=qT?+otpdlt)DqU6y}~Xm-;R*|4M59q3Ziwf5I>Q(O-IxU;0O7
z>2J2VdMx>w&n#=bB7|aYpHh*wJG)I{Nt3-HXYAE|`g&6`H9Ymw*1rC1GfOb$(n`sk
zFYYhdyXx$+rH&u2bv`tY?SlTB$D6ioxb~l6t6pH<mnqxKUz@&tbKUHi$DgHP9#4Mu
zaX)QI5UPusrLC*~c;4&>y7@<pv;Q*)?eQ+(@6sJ&<e6(6H`6XPLMbwFgV_BHP33*p
z1w=T`w#yq=lz-dtG5w&1p8DTeZ~EIy*D^``XLzW3b&Z~0-HG~bdWRho3t5^hq9m8M
zSx)fhS#wrr;>wI@k<<LQ7C-hsrfo0qC-RE^vgwc7TgqQcIehrm(<>8IV|4rE>ho1)
zzDm&s6J?JC9g*{Ba%-+?{B+f#SkSkA(~_z4e&4(Ix-7ah>$UUU$|HG`?_c<4-(k<a
zPxFt(kA?Lg79Xsty?pbBbNJ;;k3+Ao3lG`3UA!VAEy?WWk$=esH?w)Vu5E1AfA73u
z>yo;|R!_ILeyQiHDf#%k<LTxf(^D&U#UATi?ElEt>eeUg*6lkdN2fGpF4{aPq@&}p
z*}GHbCw{ZbdHy!7iP$mk_#??HrO|(xkK9w)bY;Ds=?U4{-b|IMm3r4$c`n?K_BH&}
zQ4wYPpJ7+QzKrz?_lW*yU{$%iC;hif#J^MftTy;&KDw~J<gK#zr7d&a1NMG2+r8qH
zLWSPDg<Tmbdv;H}e15LtB(wBST{i9gd~0)_P2VwTcJGum)3$G0x%+0`+fTN8bh-3q
zt?Vev&))u%@8j~rYn{J^e_&g<<orkT!*xm@k1c;Bxz)Nh+oL*GI^v>VThgX!+;3SI
z?AkI-dUblH(yquehf7q;SN(hcDfq}PpLyyZ<rY5jb-L|nF4cNwyOB8Gnz(Si+wC(C
zo_tbu{ffN2P3pt>>~W_b<hRV@zGP$jV87sxV%P20OCr{$dUw}`yX@K%y`=Av$HRGt
z9;#1pU9qs;_&>wSxz72=&x)=8Q2yrPe}?R{k3@IhvUxD^mQknS=T@Bq6X!gbz+0;q
zJ>6-I?cS)YPoKi$+{Nq-S9AWh@Xt5@=l=h~pZg!!|H%0NPJUr0ckQj6!izfjk6~*o
z^JT1j4@Yfn-8!YcezxuzfwS6iZPH8!q*(3Eo-;H2)5@M_aCJ}W<GIm~>N^)~+;+uu
z_UZ2DTQ9#&-n1oBU1ewAE&WLnoBWjHmQ0>A$@`D<L+f~EXWnD;3*{E%C!Z`~k?<=>
znozu*eR0X;RUeO5emYS;>CfaVzpj6u&z3q<<V9`0TG!JR+r$5seYx<*xIcMrqG9l<
z;tZ?eWnca4r@QSo-DP|Dz_0JOmFGK^Whw<u)iXF|lRU5T#$DSDRnPXF{yXQNT6|_5
z!^imt^abNzP5USE(Po<Ytez^{P3Magw$2O>6ch;ZH+pokW~xiUk-SvKE9sw4A2Of(
zV%Ob$yAF!o(_|@<ta}-0=N=zaHs|p+<G5SbEkCNw&$@o`M&{?!GP%~fTU=)R6!uqi
z+_6e|^W-L{=B|HozuXIajAA}XwuwfGZr$#e`my%A|JBWZIe%Fe20yyTeI(^(^Rt!C
zcY~^SM}4S$H!J(1^7rls?8oyvxBX{ey#J8Bt;T%mkB01d2D6Xs6KVI^G40ZIudUOp
zJKvXlYmzn;37l<ibf>a!HS>m=69){w?r)J7_`|!jCg|cn&5T`fyY?A<P+Ph@b60x%
zb-&EDm%c~r?Ys5vTxICdRR>;+ZasA3fUBM8L&F$Btv?3)S@-E>$xG&adA+`8`lX6y
zr%jteu72rM-h654h5R?SIFy^7G3KcyId46Z^0s1Tz@)RE-qvXR*!kGM)#_dEgZSou
znpaBpGySpKwQKkF(&*^u6-%y|WGGeSP7eF<_<djW=Cl{RS$c~nc}L2h^sW>VlRqzX
z`c>ePyRwRA_p9$_U;q01-hYNJO^vh5ciArlt;iDl!}`(q&_CmATh=q&$qbJ3wpzDd
zcJH3a>lP+fOL>(tr%L~w6c*{sA+jcwani%XLfs#2Z~F@*7u-wIIL!Wpsn+rQ&)2c?
zt@WAr+XZU8W`C>sVBRS8I(plN-1H-}%qG^C^G=(ayCV9i`Mcz8o$*l<6LxlSJek_G
z>P>(BOquR@_nLJ7#yZIlpFK8a{1e{$p?TR%*_QI$BE2uKOEZ^bZ~7N$zVWb<$5K6&
zJIj+Twbt0|V|iSWdUa{Tam}bDw|nN^3impBKQ(o^<Kqu}>-YNnSRZiNq<Y%tbvbW4
z1HaFb_}+M>h@E+V*6-`ze1F(iK3r^mq_^lsbnUv^CpY%I<KN_Dek$A|;6P#pkE6=h
z=U3{u|DC(fZxfrEc6yOPP{N)$vAmx-&t%-T`EW+1f9}ELgqF#BJrBgM{F9$9*8gbr
zTs{TSoNF3=77Q&s_g9C%lkhqI+GK9T(WTYeUq64bG>FKH{C#_#?MLIIybsnhX2mIO
zs}Oo7;_<fkq@&=Dnb$0u*{9u&$V>b*Gx_d!XQtwKt%~1|k00%h7x<xl*iPcoyQNll
z7yGV^$&4yJdZfU=+$1|ua!Mx)mol%)({rIJ;Yq8OT)#1E>+`le-FxSwew&{0<4c?w
zlxib*${?XarN}mGQN^lL(uLW}jy)7%<rLz$z{<eDCX&F|!0s5=#w^Zd^lXadUjL}2
zb{R!$ZO)(1<$tjJc=g%xkZW7BW&L9|?%ZBoocSm=^Ne}1r|Q<HTQ40sYjj}R{+9v<
zpM?A^R<oqE@@D)<{-$zu(Z{v(kNjtlu2>iGm3#Zf{nxhqcKR+hIX?5c*mbdqw`VsA
zX?yq-vvG2H8}BLFys|^P_MqL~6@HvuBK@`}b?SY%j?a4>JpFIV@#gtc9sV;&eM>zu
zV`r@6iu>-V7oJB%91mVP>wQVDg3psl{?~TrGsQ+mXUS(?UE-n4!}gLR@KeuMyJvf1
z7w8yk>Q(g~ndcfZkN0_T&-~!?ud<IWZ{55*?at|xx~`Z18AR>)UVKdY9ls@L@l>Zv
z+n-8pwadSi{lK@KySma+{`09*F?D$Y;m=*HYM(y-S@t6OXML;V$_#O_Q<w7if+y`z
z_|Fjau1{%F&8Bo-A0fLxd;V_xClYB8Eo&UQhu!99z!8i840SR8rhZ=jR`9nEf0sRf
z%7^;HuPwJ!A2#xR_R4Fz*rlA`t98mg9oG!CH{g1#BW}a>bLQiuJ;jm62i_F9R$a*q
zPM29(^jdV~<LS)b8m5IE@AzXXV1M^QzVv?vr>m{bxex1ab;nIOzVOF<&$*iqZ2z!l
z6JPDQ74>tgCSLt=mg)K1S+kaOO6Y{Py<t38_-Aw6<=@)>uFPk()2Y$Ey7j(XgzwT<
z0<X-s&GNY=x4=}I`-JWtE#GH94Hx80P<3TdX?)Ccn_F(zjvgD8g{N14HSV>#)IIl$
z`?)at&E;=TuQw2=nC`b#ZqtvtYl{6p<d*oq$llQXP5$o=Q&HXj4BYOA%_Ltwdm(tn
z{fcYp`RDNwFX}}eO$^UwxcOXN^re}-u*iygZugTT{ip6eX7>9;&nxrn`Ft<;fAEXH
zZT0P8o~isT@xumAg}X#QSf9B0zTIjO|MJsuGui(LFMs@YkH_hck9{Wve($a@QWmsp
zbX&HD{p#vB+4?e3cif~bIqX`BV{O-W1|C24)8b`Bi0`zI#<%@<)=&KKW&Vcxx89lD
zyylPfTjcy7X76W-75uR#>QnU>rS->u%hX*qJHmZmzC!4y;ko;~S=(;@aa(I<uN+@s
z-!U_s>p#P_1>3IvdAwu0-PHb#F5aTnCBG+re7pZm{ckU?B{%91@veH#koG$Ka_677
z>kgcM9L@es`|rvExz`8fWOw*IJA71s_lM}Ydh%CSzu(XPqapg-2Hy+wcCKG%BAa#T
z+r_epI~dPp&su9Tcj8H%T#vnhKU)4XY_fmLzx?U^hwIioDBpDDOZL+L49DNCz5Qjy
zvcL2HncPq-<!AZPcRS<dH;Hxj(blVb{xR*ZO5S;EXAu8dpM3E?hvQ3=CcjJldi=(}
zN>lmvI*ZGUvEGi?)^=F@{Wfu>`s;5=_E8_tckMH+Z;t2s6Z&{}uif|1otI5^&+af;
zon6^`_szzIw^<C0v`u>axf|yscl}#<IcN$Gdrq~G{aT+{OAh>fRNJXGckY@@o-F^+
z;y+(<|1&&TJzrptb*AY2ej8!g-M81BjEgYM)|tv6+^M_lz<K|ytxM_;Cht);z2F<|
zc4?8@^PH+9tJSO@_$Le4cXRz`aO8gRCHwvKfQ{Sc$p3sPWd5&Z>(Q+Fymfr9yH2nD
z;qAJI_lkdFu3G*36=yZv46FX-y!&_Qu;;yy`}g+$6#h|iss6#5`7EVd!=g2f93{73
z+49rPJ#kmX=bz!Fpj~vHc6{+iB-eb6=qqf^*4!_D_pWJuyq)sjp8pKV{1Te}!Zm6i
zdSB%6&s=;frT>s&oc#LwgKG5;X4t8m|F-`?J=>0)=V`M=V%_YY&bwC_?Y6}A>mKFn
zQ`aB=)BmjK{68-74|*?V%>7ysQ)X4u|LaIh*rmEV{~4H4l+RxI%F$>cy=C<W_bY2u
zl0UA$@9X`KBmX}G%gn2S)9jnAV%y$K%2~d9+qp{nSI=aBt~a`3|KPs-57pAon<IZX
zhhOe4`K`8h#WD5^k~8X(=9}oRJ^AfN*q8lx|1+@sDckmUi+%d;NrHO<Cd~U+yY^1}
znhE{aw!XE`I)C$dSnjs{0)K3|nR~ZKP2Iav{Q~D)qwFuwUjO4g{hy(!<hZn6<BA`*
zz3)z{nJ?h0$^P1C=O5#^$VdD?%;tX!zp~Wmg}rE<!pof!%x|YnW_(d!$@tQ9$M$zq
zRwuq+Twngj@}tRq`G3Nd-6C<O7gF`i^{21A<vH<k@1*(Hw(0EC{ox+)pJ77Y{$=MU
z&cA!l>Hcrq>Z9NPNGpDLqY*3o_;|OGabtDj@^k#ZZwuK>eB1R&U%39@da1Xsr(f7-
zdEoI6*Y9l$CiEZi4t?`(-Hd84%|G?c{~46-$m#XHQZx}Sw32_+7n=A>NbAy%zW)sW
zB6ikP$^2)~`Y<>AA8*l*{|r1!UfdV|qiXfI(Y&2Uci!<T@ng1zKd#Ta|DWODmiZq7
zY-MNe(f%lY(0F-b_i3HS%W8J?e_7Qly*8yO?)Z}b4ECSw4$7%t72#Pezsy(u!?Y~r
z_lx-tTt9SO{)40c5AAnttN+ejR}uH0A@jf|8~@dg6Thf3n08l#cJ}>eXu9_!%~E;8
zmbRB=U$%VAc_-QKQ+b(*{ej)Qsc%X*Wxp4Gx^?HoUo17*MeTe`<YwB0ZJYl1^k(bZ
zr;ez6^cI#+?`?lkkp1aN-NFA1AL9BMJe6PG<NL_cu<p{eTg#@`aLtp*-CN!Iq?~(4
zsf5MB$`6zOai=d?x&K<7RK+q*hFe0q*1mK3#93#*`7lTL)!v^+U891WpT0h`?@Qge
zANh}TZuMlZvVL;!=54<_{~4s(-2O9Ma4q5dD1Y+ze}?nF()O$6+S&ZOai8DBySjS)
z&F4oauHEBy-}vRMsR#3x*#ENe5Mg^$o_;0e`kYts+s_}HE2a^A<UVVSYqnO8&-=x%
zJ7f<$X%!3lnS5i~uUVP_bN2~HJk+vpmEZ39QS0Qfm<hGL*8jv*C(9m6;@`Rc(C7aQ
ztj52knb-c{dUjA;df!FezdN5_K6mL#-In)1s{S(^;LhH^IeUZdN_C0YxC1+sS7;XG
z_CNjcXl2m!Pn(h()~YXw{Jmnnz}x-LHy*!kx|IKjb=l9B``7l1mF)kassHBnnhhc1
z8=L=lo6R-1o6+^Lw|rLp+ruA}zR2r+59;~$pTTjO|21J%;Z0?mfA=hJUNvu{ef+{7
zoqaBcnXg>^{88M#%IEv<JK;~h&VO6`K`S(Ta@>yA{>(S}kB{%Xn`b{aKdSDUJd@tO
z_dPj_)c;jWDoXr1(Z%Yndt9n$?;QWDv*SB|{H%HZbk?=*M>((Cx*mU3+OPj*et$ie
z>74r1io@<R<|L>7-C^@vT=WKi=Pa)EGx_!=oj$JgPE78u+|uLGyq9AGe;JA&la0DR
zyZUAF^B*aRf3v;rKfd0XdrmlL%KUG0=0BhH=jE1<x9%3^SLf^ho~&H2X1Z;k^8NzJ
zfDN{0a}U2hF7h*Qa!<AV!o}YjuPr^Wdxz)Fmnwz(|FtYzdg-6uOR*x!2bW8(l$TDN
znY-92(jxd1>)Ri4Uw_^yeSL>5_krA<kH3Q1JJx;tWO>4tH)rWHpND+MU!MH2_2KFX
zVy_S1@?KqEc4y(Ai^nwmkMOs>+cE#JnB{+lWkq+~|12^6xiR^%_is1GPUXF&+x}UU
z`Olrh{5G`o&dI>e@4*$bAL<@At|&Qv+c3`iKf`8it{E|Zg!VFcC$2bp|9g4C_J8dh
z>)Y7-LgZ4FzphOB_`rFms;K$4qgJ;3yOKZLKj{6aiTkYEo$0ZUQd*Cle{`^?e@3Y!
zi%h~}OYX=0ZT}hgYJ49=pXbb!Q<z$JHC=T@=38mzqPc5l-0f#)mw0=$CYJw5h>gvR
zbzR3F>3L*4W0vKxSh#$Ln{2S%+zWQ1F*kn{v2D1PtN*NXl67m3ja+1bXw1x}-t}rB
zRWeoA-RcDYxTf&tr(N#<mGbfAe})A+*U#MYzGKs!wfAQ098Z0^W}_kR!~^&2m3FS%
z?((CtRJX-=cT=RJ&F6Xl8P=wrz7Z6(@A-QF50@XAF8_5`?X%p4-SsaNuI0>=`4~H2
z+)P}<{rkd+^|P+oPCv5O?M_=;rSRY5%0I(n6F)9LGC^>A(4LsWe#`$1)7}I>P4e>&
zo^NpfNPVsJO4$zOpI6+n7v7llRl2@EPRqt@xyg*j-&^eewJh6u{juNLvfJyT?iIdN
z-NOIpvWdo)%(tmGK3>_eN1<kU|61>FzZ?Ike_fx^|ERR}{GZy)sFaq{yXg|=|9%o%
zzr43bys)|W;a`*I>#j_)|I6kTwBN~g$>co~9|>kn=RA4hkH=b(YtI}{D!-1qU|Qe$
z`R{)Qez%tY4Cl31PXEu~r0W~@BT(@_!-UXF^*bx)|K&1vnsV)M>EwIrlbs(~wyW;=
zzE+~f-Tq!!aNMe0@dr;{mkV3UUG2@?f7O-yp?<3o)9KO`dR2Ar*#7xw#a1rJlMR1R
z`NU3r*NNojFKbWdOL*<CR!Dyx>r%(|BT=7w^_`>t{;sh9#eKQ|@Ooz94jZS2GNWjp
z{l7S~rgu%c9`Izze};!M?dE^vdL+s!(O{dsZR3xFE2A|+cc#h*|1&-JQl7&`eZ_G@
zIjt>jfu9~&JimYDR^gYkc`xM|*M8;h-S$sq<3vYhLAz(lFaKJu(MndnDs^b8>Y|AY
zD?d*ASK$*JGmWL><f_7&z$=N3`CEQB^%%>{j#jsIf2O_uN`0DSlz_?Gi2V1@+>gKT
zt+e<d`cd3#@4hXDu7%th8n2CtP92sAa%5>Lo}hVoJ^Q7DLA_?{mQ;oHeq0|mDUff;
z>4N47GCcp1S)?BBGyQk|Kf~tzZ<81MF8SkoDYTSxVaDPsxig$=CF&OVEdJho+3=L4
ze__nj{fGWD$ahA#XKr1r8vT7^deI!g@2^*1u3`VECeHoMfBE}I68{;FuU`0DQ@>KK
zUS-kGg~~s@|1&hT)E_k1XZG(@Rn0w>4?p{l>|^shGi}!#gQV>8luv(F@AK@}zHHe$
zn?+_$_``FXO^<vp$lTR!5SheX+{u(bpHJjn%oK?Pz6VwFEZ2Yeu<66`4wVm=U*0p@
z)b{DrH)Y<VdmgHKDit<OT6iK=d0lb*$>o1UzyIS5wm)>bdVc?Z2IkylJ3o}2-F)K+
z_t~WuVcJqXHP_DExN%(7Eo9Eyb31B^mo9e>m(Sle`Oklb2lJbw+}ljvx9#WC-KX(G
z|ERxxuiw<2Yro&}txPX^`K|Kpv%Zjd=B=MjscBE^(KA%Ke#~4-^@`Qiwz-cz^m5+5
zd)Bk>XUe2xfkVYxW^$<Hs=wDOZtkmF`%$&O#U!7jqeie;_4WPQS(##QR(Z5C?LPc;
zRjcMRv6I1{dv~adKK=FmNagzn{cbzl_FOvpDn9PU7LLhxO?N~Fc$PKWryJF*XnuZU
z#{|LV*n;C%TT(S%*T43E{jB0<pJep?yCrs$|IV~it~<A%X=}gWAH5$dKfI6qxUTnc
ztyQ-6^vkA#xs^G(X=zQ5eY!rV@D^>CPM+l5)@P}dz@U(u&-i2K(wje|L$3T`d}wR-
z?)tG?*EXhYjNH0(>y_(eg%NiYXW2TJeO5VDGgJ3+P0orlTv`j(O^@BT`@%o@J2g>1
zte5<VI~L6^;JqSNa^9s!p3kp_M(J;ky5lMP_tGt`4NmsOT&#+90qhfA)XV05-RtcC
zQUB<Ao)@#GT#C3CVYhb4?UT#0neHWOd0dV?tTLUgWOla8(Zxqnueav(+v~3kTe5e{
z^po%FrvGPX=bEahm1VZ^LQTq!kMYg_r0)DtyRQG$TH}wa+WcyrpxNbZzup}^sP-vy
z?W3L39^I9?fBHtmv7{Sslo_ROmcI3Vp#Em<vX}J&CCrOo+o?=VF^}?_sCvhLd42kZ
zE<xEhYm|3XUsjHZS-on>Gu0HsRc7xeZ}sQ;6Mbcm^zuKPlRctigOBd&-TQ3vs%+ju
z?mgE&E?Ur(`9w)W#Yo#H>16G1Ms?A5@sj&frR!VcEH6#@(e(Pr*%h}di(giC9lNgP
zB6vjiado_wy7k<eMI8%z_-9Nr+01b$Z?4wVob_strXOFr_1^v3ciXqMZ8&&k`hMTs
zWc5eKkI3^@Y(DnS_`~rx*Ha&sefYP1`K>J9`p2nlmm{y_iM-$2?0fc<Gwa^Zt`a-9
za6MfdHnYj_P6hw1_(%2~>+Ce6f6RIx(&YU*L-$=t^TQ66OSxNCPMJMPw{^<G$2+&|
ztpD*dOz4i0^2UG_E5G+2(!aUg`A7Z3z|xQ6ZtX{AExl7!w>&v@wRic_wq4uj&dhl-
zi*1&qZj?uGk!QYgitMS68ysi;XW(i6ZF%@n>GdtQeWPOKK6$s#yI1R#J$2ized;H=
zt~h>+2;=Bkb~jwwsU_{S-s5F#Yc-Y!9-k)o`rgUxzm>Be-E|jR@-_CC{5&%|&a3-$
zGV82=?EMfQ)%MY3cDJRTNxjG`?!VhouPxK~{4?A*IWW*-QuXRBGkf%2otIg=v;E3{
z2EP3%k~Xd%emi|+@0jl#>-5`i>yBOgkN)c2ZMk%0y+Vd(vE&`U;No1Hl*gu@j=vTE
zaQ$#S-#&fMWi_T<;a48b)p@)2l4xU4vP{{&(6vXFcHi;3B&@u;?(GuSQ}eRF>OZ{x
zM^O5~^X`B08F4xv*^g#xbN>zY+q!$_HrI>a4x4<`ndD}3bDEE`Vc;IN$Ilp^?d6)h
zSY^qp$dU`67Hb~Qxby$wzp#?K?mpMH>@=0Nlzcm<bsne0W`~#_<vF}B{C{nKFu9@N
z@VxA>AJr=}qEhUPuN*VU?w;Pn)VEgK!rwqKj)SFM&TLNd+QKTng)1uR{+8+*^jou<
z8NKrq+>tV|zEh%9zMmz0?~mvsaq=0wSIp`&uK2ykTk~#lUq;x~DXS%BO#0nv5!3wi
z!%dZ>{R=+(%$Gk9u`{jGC)S7M{(H@@?X$kT_!soz{H{|!W@~+P*6;J3;~8}3!CJp%
z_b&fle|^=@<Ew0>L$2tRhDSz=z2vjm;y*R{z~lb7C-Z!(|F(6n{?TQt?s;*_$rVNd
zGbC>vR<C4N=JI=XK5njW<(+-(=C{5W{YcY{_nnp^VZ9_f;hfWP<Ht4=L{oC|ZT`OL
z`YZf{_rdL4`-sb1x-)vdn@<-!YQ3)9LWf&RZb2@)#FKed*Pq3E>6xG29An4)+b*j-
zXzF#BpE>jA_4_M-y}$5&yW})iopX{)&3!f9tls<#nVtDHY*P8P=Nn({dfsNA+8cjl
z+kH-@OZ%>>o;`c!p4`4UckdjpO#YViA^LUUkzV6C?nxhybX>~Ui8K1oQ2k;)&!5U4
z!M}Z?essM$SHJ1yulqL>cWva_82{4TOwIb(tZ!#l8o4|R`<(Y}?|zO+o+8bnAD1`T
z$^9w#c=7tzevxi_&WwFFSM^PP`=-b2l!~1?ZDnGW*sJHKHg!(QKCwvfmRIs`n-dpP
zVziG=`&;zm`O+GlD>kAJ@}=rd?^C*9`tXsj{TnOK3wnx;NxQa8i<Zo(IjemlbKUaD
zl#C_woOOB?GhG@B>}Re>3k_9msaiJozQ6T;+uRp*ru`+$yXQva+}^(Qiw*OU_$}&(
z{M+^!T-am3{KvH1<VXH3y<h)LUY8Z-aWV3h@KGLfIe}EJxJT#S#oxQ>wOzP!W`yX(
zQ04WP@3;PE*!=w1`YtK`j{N@&8519#=Xnul))l>aKTk!p&wRh?>eIIsvkTs8--~hU
zIym=?w2Gm}(ZzFpi}o|tr{}l-XAu3TUJ?9l`Bj(c*X!giN_%!iHci=4k$!f~ddU-!
zZzgzhPX3#{S>ANUqU5ivNtsh}Px!~L4U3*|@yNlDV~%F~{qDuhUVE-9>(s|rxi91e
zZ9*TMHPRJ7sK#r=A)@rt>_vRzl`V}wZ9R{x&wBFJ)6`xt{`{IBUC+FCuU>BCt<tV@
zu4?kddIjx-=v8`GAB#%%q?`U?(K4A*r6dw`Q^MJAs}D<j)ux1)l(MzPLeJ+-`P#aK
zrGIK|ZFZI4(`6Go5>EcC4)M+NZVB*~Yhd#H#kckD%@?yOdsD8cE0_P-+>w|3HTl!}
zXZ~9~)fRpWR$bOD<goauu2`I#`o^g{|1<1!SY5HJ;O5;)kJY|eY+MwdP`l7(s{K)Q
z`DMmoYqxZ>&$xYTQjCZ7zEFm*3}wG&-H5oceP#jo#5+Pq=KCMonr!^j#bsY$p0~OB
z$G1Pq)~k!ox-zYEwp&xwoWEapXO_Lp&urD5#Af{C$*fadXBT(G_$+C&5xg$9e{STg
zr|(M{r|B4p2-vsC`OEE@Rr~jiujJiNatA&)Ubg&VH}$;N?tM!?t(Ngyo||23cjDBV
zH5Ca4(ii0GtDfX37*6wKldMqabNsUI+D#Wuy@h7XMM~`JY8}3<3wmaD@_f{<Gi-`W
zPu+YTwq)LN;nhE?{jWyYUP!!b?PtX9H`VL5&t;Qpj*?nAj<>qH2O}PKIw>`I%V;%N
zCV75Une|$w%gtIq$UpJqn$@eVr>cnL^xb&=X?>Q&*X70*>297G#h?6jc=suV%Nj;)
zle5^jiBT_NSO40yn3vx>_9eR={-Ct+*@j)yb!AdFzA%oRaOB|H>-Q41Vson1rhnAB
zUl2Au<I8!|S62D`k0%+dHhg>K`cZMSaxYE}|I1sWwp=UawP8)TA)0&e%^6wsi}KaC
ze%!tDGgCh<JMR23V`sgaGZ^D}ZvObk@z3*_;f8l^tmVJrkML?0Eb`uBQ&8Uc=d7xq
z{z~EHsT;qybw2JmteO6}!Nc-T_N(~zI!l(E&qhX;?7zaF)=hl0LUm$I=i{1RR`V~L
zeyKlvUo2+Li*IlIiVP}js%x{kwoJb9e5JRy{0hU0HXpH`Yt7j?6OXGjyqzG#`J$kp
zUOC=2BTjW%wn=5X#rs(|V=IgIOww*#ZQOLt_Ly#F%u{WLR~e^wnANU6^!AU_#;4sW
zRo9&}A8Gtr%~My>nZ8Qag|Db$h1+KS;<&OJFNOopUw0kab?uN@=)Ne1Zxh$J@P%Ay
zj_O!{e?8}ahL+y4r!!<qmaBL86-mhazA)k9yZ;Qg1;17CEnDM$hPR^qkBT2#ar4)e
z!AJTQ$iDt{Q8n3B{KB`(<##>oy)yU7a;}$_Q<*N^t;fIfU#P-I<;ioplqPY<7vFIG
z#`f&F$k+Wod>-pH`j5;>*zo*H+ES|*HPaG*6uO?d_k1O<3!mt&08>lz1mQ2|O`oPm
z$(IQJy0Gio<+*n*h}lNGGMB&iH?uup=D&|Dzq>y3|L~aepF#X_Snv@)_j@wsA{<{L
z_2Zl*zdflAYhC(h+UaM<Lel?yTd(`?uJpdN=dZ&OuTS*5R_GwN$#nL%fXHpn=j0{+
z%~HFzj-SW#_-~i%vzK=$O0w?wdNxw(iSDrn_VWL>nn>Mv{Vv*fkNnHB31{qY_kt!v
zL{GnxWBZZ3hH2OFwvyEg4zr)#xUJ4!;;c!w2EY1JKU0et{8g4S<YL#?ownZ;-=%E$
zWAelH*8IjNKX19tPXEuK$n{~p;D3gLdix*Dtka!-_9Od&e5N})pBTT`cDvEmLxG9^
z(!LYEPIu2St~~P5T(LE1rRrvr<xvIY-5Y;?E(9IA^`D_BYDP`BebX=2rst|T%Cj!k
zYotbfKAZfHqxC-n%dxB5XV<f2Nfl0>{EfFdeA_Wwo89xYzbf2ue;u?~dk*ti`)s{u
z`(xHtf8M`${)EZ(2iff(%!`(i)wPLCkyh7!<o)xQ|JH-kKfQb#SGx8;!@<4r8}n8z
z|E+$^&g63Ezo&Pn{Ac(TnD+Be_IKg@y`EBu`?5qM;~sq6y1gj<^W1gy2e;a9{<c_g
zy2p>RkABDQ75ws_f#1(w_E$yn`zCv?!_EJA_g*Lo`)p(R@pLec-OF7UO}-xZBA;yb
zC;ZEtB!vdc<+_{AEmv1`O6@teI&A-g{U`pV=>KPUaDV+Rr9&_7RM>xOZ8Cka+HUH~
zl`oIg^u~s-|7|+k{Exu<e_X5y2fw`U`=$G6g>=aAwb3&D#pMN-zvPeYUlEw}B=5wt
zrDBsbSOmW=`6zU=H!U=1+x(*c49Y)a_x@*Sa{bS6F!GDVjf(n5{B2u<*yZw87V=+~
zE1PNm&&L08i2cKR@gJgOh3+^de&|~i^5JpV)+syQ&i$3T@sE+=>-ejk+vb$muT^Ld
z4xE~He6y5d++D^rp;r_C%=Z7S{GZ`q>KBVUcWW#!mgdN;*t%n5o$db1Yk&Oe`Kvu^
z#}D8C46K<K4j*0phiT_th3B=qqXgI&2)_Cxf7$Np-*Uz^=}(R7@4H<2z4hqx=N7id
zvT7H48`dW6UqACtLHxo046M=@!|OKxw#uIP;6DRXj2HjkpPyfMUHNDJ@7g~R-+!uq
z=huWvt@ycTHE)s=!|O)5sp_9i|E`|>HZ!_doBs#He+I6~Yo!Zr1Uda)r}13N;z#WY
z<sUOI+h_Cl2Z{bRKlnE7;G8#iSMoZYblP$2jLWYi8Li3JB^CI-emmCr+v$(k<xBkh
zukCcUZ{B-PA!D6x{sm6y<?mfLwlp8tdQ#l;q42M#+V&NT-cHf(+i#$@`p$jVs-^jF
zb<=pS*f?(f`E28=+jY-c56gP5v6uhB{^`wshOPVG+)q2i`1r3<%%q*+a~+g_AM*%i
z_-1+`(|&9Fo1ZHdOgewOO1jVL{-Gtp7X;35{Bf=K6pxenQN7}6X+CdeIP*G{Ev@^%
zsF)tkif7)R&YNBS?fT*Qd@*egreDtWRQ}kvGGuz--=gMw`tScUG}Osw#>?!Je3cmO
z_fc<p;XJm}Cn`Z>6Bpjpq%VzAd#!!Ca_^&gYQIX7vcLQe`rElbv0p&;*6~CBygUCh
zr293<|0&TeEWiK3PyUDcx&`-=|L9)My}#^ryp<U9YmwE#=YI2<zA()Vzf)tH`KaQF
zyv_{U0}1sL*WTFUtXI%D<G1Ge<?8<#nj-5C1gG5m5%%lA_Uc-{zaGEp{;txfe=se6
zlj%Nbw<|V*%cuTcrknJ<|M&Y+{mk@LCc%fdezf0NKlAg`eLJlgBqJT)cU|s}QGTlD
z_<eoee}?vi8ihW8W0#NLyLC_4N`13r|7R=yb?s{YAL<sDZ%d^gxtlwAlivjI<NNQb
zO<uKI$|=O^{D<_G!>iA#aqSmf%eTCQ^Y7DIPVqO|kGe&e&L1!KaR2jdlau|I)RL(1
zH`R|$XHUuXK5FPMG_UNYMv}dl($43BYlEy5-&mckvwu=^@!RPK#?OTKx4M;D?>NYH
zf5Q5`{co-=QQbe8_or@8>H`0lT~FWrXGp!hY3Z7+8r-EnA1c)K#=I7^+n8K@*fdr7
zQQGyqM%BKo#TB!jiLr8q$#Pg&u8;qi|K{b#L&wr$<vq4uS<K$v_B2_gezzjqp6rMp
z#=l)7HI)yV2S1+tG{)inG^t%8m%}r*``u@mesBMo{pLs33$CgxiuZFf>^I!;H=A`&
zcJZ^yv&Q*0PbSYwvFH7hDK@SBh#dFFDdP8!>E`I>C7!cy-FK<a{i^$=J+C7!?kQjH
zHSNL=<)dr=KAY}!vwzviC5xs;6;x$tURtS|e^u^YP0Hq5QL(2SCk1@mdCW7T<DlhN
zH|7s(UjFerxcx|E{apsGPZ=iX#p5%V-SQO<-BNA&-RREEv%-u@rIJA$k0)74o!+x;
z-xm3oojU1%x2FC}2(K|L%r0(QCKPb#_(duGqqTX5KAB{9a;<mOoqxDFKB~g~xKw%9
zmX#%ILzQ=L-_^Nr9_JJ*Uzz6YW3MVw6Az01^v++iCgJDj=%byIlb;1VEMSxDE}oOZ
zQ#d)^?T_J)*2TAdg}hfpwLjKM^ZC#4BJ{fJrAZ~vDrfAm-oB;p#lMLC4_3|JaQu%E
z|M6J&!*cAK8*QW?r}~B;{?+rkQ%7n0#C;bt)L!fh_7MC$>Eo7k)<)&e$w%dwF8!1K
zW42-M_53yZU%Ri*aWrk_T()hN`K^^@jYZv?g^r!w8D}IT_}%?``+o*j&cCy^tiNsl
z&FT6c;l-wVk9TZ|m>+%NW@PNYt9dgk*!Y~z3#8c8zFodz{iDMHAFdy{&Chl7&E>gE
zb_zwC&*)R>P+)n-!@w2VtUO1%$ZF+!)oW8NtIfVxi?Vh$t<JArzy6Q#1B=J;vUlUM
zrBnn@KGK$$_R2Uje^=y#?V8U-B<z*uE@|x9c!$mEui?rca`|2M>|6Q!<T(4iKAu~-
zNINp?^X-GP^^MGh?wl{`OYD4~*cSLquPB&r<NI5DrSB%LxtVq8>_f@Yc>dFwDckxU
zUf6SLji=xaZY8(6pjB(<ajGyemTg@5$LFJ7w|HY}=GPZJ>$RhrKAbL8IknMf<u=1D
z^OAVi$(PUAuetiDZ^)cfzWJBq+F5lrdA$qV`Mh4p#MeCPgMP!-=(Efr8!nWVROhmt
z_uTP0Pj@TF56`4+6Z@y;mR#gij4nG>(|WmDc7J*e`$zFNH$U!v7~WnZ`!W5n)%=DU
z$477LYK;yb|KwY^D&p*ljBn4LRdc59+-#Wn!B@uZo@2hTk4mw!(``A&=@0Zf<;DN-
zKC<Vl@%qvIP<yvV$=RUG5u2~BNpacDDfWVKThNP(n_N})MQI=F@wl`6{q^fn_mAth
z&KI)D|0w)u{UL2%@$e6My%}qiKE}6im0Z6*?vdm3SD$a+@y-eRrmnT(qSJ0kPSr^z
z+MjQp%lmLK=EJUcbHC=DjEt{-Req}H#YyjlAHy~;`6F~~k9g+86HBL`-nwh*m*w-M
zkMg~FX8B}e#xz5j^9@3egk;Rj=ZHmJ{&@eb;fLvm=Wl*{Y-`~v&)iknMV<>Y&Az=C
z-SX&_<k>Z!Y&So>XAxy{QbtJSU<c=(rmagKME(<r`62W<^aJmb@6)nN3t8H}X)l|z
zLp7z(;)%XWhUh+zhktLLykWV1+Lr$eJx1n7L9@qk3iGbJ|CpL6H*<xrUT69eUn_@;
z2Ti9g+2q=*#;?XAbTVHg+{lPY&9mI&ez2QRMZ{5E`7h^ce3G8L-x-uI^Kzd2g|GP{
ze?mUW_Rfj2>tEr$s9)%o>CwA~ciGI^y0>TAC+nzJ=9A7$QkdYX_oJs*(=|bQ`M<Nj
z%(f@8ZGPN;bN^APwyot-XII2J@=a2j_sT&kGx@W+P;Mo+(R=9)Zk1<iOjo{&=ilP^
z=q&#c?Uk>EWAC4s7<*E7>D|RQjCZwH%AUP`>k6yjNy&^S?y3ip3~zca|5JYDNv^k(
zox-$Z4`$}x$(q&0*7?&(RL@K=q`CD$iA>m+0)y_$C+p)YpKRAV{{PZH_vz02F1<a|
zD{TCnb>r(}3@6v^KM>FHPp#s1bWerWnJpKeIXrXiP>6dI(Ze6ppCk1q-}J80um22Z
zFMV0D=CNL6a{08>mNM5$iQSABte^JRWxrnEUi4$W_lKDmuieu%RZCP}x<|?KnF?R}
zl+^hWKf@Ir-p=!XcgOR~g46p}YgO3TEH_*GUS;v;tNW++uYah&u&>lzmh0y<J%O&w
zd%QbeuAAQFeeIXb^p-ES(FeC}mkL{)FT3{Ml8M|m7EC|e=hnG>S>b^j_YDFkNUO+Y
zzkJ{F?bq`5hyNK`R{M3G%HF6`_R+asrSL%FJV((hlPVh?DGJZ%Zq04;JyNr^|H1y&
zs_k7i{>vlody37N{^_{r=DQ~*oGjJZbetvZ+r(3W>-5ql1#CDpGd-t)kGGchkv)6-
zzw`22*w)&v@0e7$c;Z9(AMU<W))s4@>|8$SRJ~pV+rs2>z8_LCCoVN9YpJN(w-ifF
zULAVHQ!nlAq|1A!Py9RkQF%v2&1Ri{rw?6uwp!!U_UbKb({8`J{-sC0-H!3&^rk=D
znUC)GSd~qFcsGH!?DNBCyVI5GQ(f1*EV2pK+gzP%bvno7<V3};+iwcILT!HX98KZ;
z^1fkD_~ZOr&fy;x|5y{_`uMy+R+#bKbJwb+Ts}!fzU!IxZDl&kM3&61$30pfQhaKr
ze^7rEe&lS}`vdZ#sz2V<h(0QOBrkD%WySQPAKdHHvw6SXDZcNhHd}VfCLM8ezRmHT
z<wa6=Cob;J;k(3t?fnn+^n>yuQGeWiH2!w{@h8LZPL{al(wAlT1UuL6F`D3Hb93F6
z-D#6@7rmUz()-NLBVo7u39C(=P7!U3^X`_sxOQ#ZtnBM&{uzZ-J}p`MQ+`#P<cDK(
zAHEg3ez?l%P1{X|q{1DOPo^C+dQ+Kvx6}0In}CHP35-1<Vjn%ZnALfXtF7HM!KkWi
z{f_29FYV-g;Ww6rOr97Kr|^-j@u98Z)_UQ4hZA%7%+K7oQ!85cSw5BJcX%S({Bon2
zVd^(5?}$9^uWQ<GZJ*oge{etl9_QsXsn_>ZF3gx!+Sb1!GiqDs%2%^$XUB7H^G&wh
zGQIf7#+c|kY8>i9#}$LPS=Y_t^$JTXm0eu?YCmI5=!fM;-WI)f{BSFFb>xBRJf9Cg
zUDI_*qQi0LY^@t7Qe_N|*Hqui{Fqr-yF5VS@)z$U{?q@i%xSQAv9~t+=k34!^$%9e
z-}J2CymL?GTIWaI)iZV8HbvabsOno<v@UY_Jf~|L_5?cZ=rhSw@qM$-;n0&`-@EM}
zY>^Y)Jnfl%`+o+uJ=v?aNcmpd_bKaA<}N2$qqEnnXYbdGo|#wX@<z0M>V6wm(~5Q3
zx8`+UnXx;s?n<ohx0z9qPl7ytANkntz;NLB)|5M0n_M}%?(0}Gt7kCpW8YtVZU5Z)
z(*GF_Cf8?k|JWya>xcHk>CHBv1$ZUPzp;K>xGMg&YmlR~&U68H)(%%~1&h18R~&P#
z3H=@ZpW&eEe})H(;`#q6{AfNX_5P@KuBMIo^4s@gx3_%h_Le9v6+Wd9wzun3(Tf$!
z3rhbpL|Clzl1R7ISgHM=;o$aXS*vv~{;jUve#ChBFDr?Q6-*lE803DK9{Mr+=r8lO
zwP(+Fe|>FhW%{)D?GppWub*YJ|2+Fs{=2H~@_oTG)9p+?)_0m#sxesZ`N+27;^h9H
z-?z=W#rV3lhxui^cE#dH%QmjO>ydVOOQZFl^TrXbI!hk^ShC~u%pJ$o_TKog)%#WD
z)QYBgdv?u#arTk^4-NG<x({A=>i%*4xc=a^%Z?L1x~@KGv#Qq2A?Eq5J>o~=KSY2w
zE%x>9eN$6gxNb|b!b>T$<uxtOSvZ64xK4ccXn#}U<M*<v^XKYqv|7~UQz+W$)HsK=
zH>9fX@U49<*S@Tbe{}xPe+K3(p)+r*X6Xd;zTw`pJz#p-lcycJC(mhTe)y8<rR5*~
zOXferZN2hB_pgf|?f;>-{7wC$o&OGec;B;i{fyp6r!F0>`1-r{j-KtlnBU>O+50~f
zs2_Z>c3!RV!}N}2jch)fUqyv@SRPbeJk7D^tEI*Ir~TiaUx^O*yW~$aN8pxhp@~<%
zZr{eN^7;0kM?0sQ&lCDl%wxW7+UJ>H%4P~Zw7GHUZkwh?fWv12!xVMJ7$(O9>(`$6
zVb-Q5G~f7=?%(6Bvp(v)@UnY#b?JWwmVYa3O#d^mzTW?_{no-Ci63%JC+9w$dE%oO
zOH$aU$NEohcz>VY*!Qn_)`d;~8Jf=5<nO!o{L&gb_M2OuZZ??4_L24ejNML?JpP?#
zcwq2*$=CG<_y176;`lXQDn^S(M=Gg*<&GJB{(fTnj(nJMDYm9~*VenOQ{M?&{M<OB
zKltnM{|r(4gpC50#+58uf2x1gp`_ZS7H1c~UoY{W;b7)J^NJ$r<VW+HXW7jZz0J~c
zr=sbDPTvt$F1J}lo(T+JE!GtujsFmRzN?OLQ&+uIjphZD9q%|j?ma(Z-X+-{z;M~~
zL2*2LP57lXUuESF{kr;uQ}^f;W7GXJPc5#Q(6p+8JyS&{C1uX_Q}t3gZ*1a!TUD4J
zwNvN*yLk00L*I(~1wS`M#JuyLF-gow)ZyE~lh3Ac9$NEQTvmE}{AZ)1*QexNwohGW
z|6sGcbV{{%#y_qb9{K(6SgM}BfA1OlM|jzTnmwOm_U--8z`E?m+(n)`amqim^Rsl*
zyKd#~`g3qn<hB`)6~8>3mhj5mmScVI7O_eBd_U^m3IE&W;bHNLC-774h9d3b`}86r
z>kqkBN`|uOMtjb-NjYhF>&X1yX{&4*n6@qK=(p<E|5`1v>(k~*=`UH^|A;NJ4Z8W2
z`+RfM^$DAF)Vy=uIK`{exu<vXJ?@)v{_C;X|F~;EWWJNS_xs_yy)rB6O2u~-Pd&db
zCj3#-kM$ute^jn>H(8px{hG?<g%y3*T;@GFy8mjVXos6DpXGVcPwRRU6Q-|E<ViSk
z>C}Ss;@qH+Iu*X!;#>QEw^x)&y!7<kns@yCvl{1Me!1N9FU$YQXZ|)nv-qtY-$xyl
zIdyNp9Dn|wfoamNSo?q6p1<`@ok+0LyWDAU{^s}GKM6bXtPA5$u`LO^9k`><fNRY<
z2Ajt`u34@tbc$@7J&s-TG&<dPBta(Oi%n0sYn=E(u}hO>j8C0aU$*?4^uzZ*bkh(1
zj`05$-@hj~tGjtqw5;z3{+dN67|z!2{qX)D7vp1n`5#%gkKSYZ`1IKF<#&!gcULLr
ziP2!0sG{d`aZ^LN_Av<oH|-yJA3~D+`6{|J&Ty*kn<@Lsq@DL)dnsp1$0WYzePJj5
zsRmhxznuT3`@viDLsiQgYYKmR{E$2D_u)T7$JUffx}~r0ns6SNXDS%aHg(TK)jdm$
zP6dXaW(&O|Fzd<M$r?v@?7s1G`3x_=Gyi7R$^U0K7+4eg(dpJ(JKi7r;w9pu4nOOz
z_Vi$#S?;#UTg6f79*4rt7e$Qgx7%?4cBs1+wY+uN^{u_GYu4qM{O)yncTX&OgU}`Q
zSso9{`|j*%6==OD==r`c`}ux`8nX}bhq^gx6d%mB(>1$wVn&l2JBy5P<1x=yRdb$9
zj^*$9r+HAUab=C!huv-}ySL1{^{(Rhy}QEvsvckMU;EeZ{`=~AWv%H>`S{#dz483@
z2mNcZS0CiPa_dV}_URqmxlY+`Q>RL-pLyu$r=2nk95TIUukH0a{*O!cqg3shS?gw6
z9ADzYSAVzapUOXtEaN{3Kjc3&KW0A?&tECEY+>@+o2LuwIV<$f_TJt9%XLeUBTrV>
zB_pe&&lYWFh>g~&S?s&>!?Ss!{H=csjs7!Su9f2Ce11iAUFL(}ACjSl1wFIogn#{H
zzkj#<?dOlISCn=8&8WYw_Al$}m8iOV`^;11@@6jIe!*-1$=-T~ZE?nzOm;?oS<g}7
zrS^8S_cR5E^Xeyecl=|xzC2_87L}@uo3#(#^Pdrx_-!)l>BKLu<<{Kzqa_xr9Y6cC
z;^PnBZ-21gWAUFMf4zuSqgi)W;oZ2vKcAyM{JS4D;rJ~R3;*AnH~nXLv-OYG!QX)|
zItwEH*a-D;8dN+!x-D+6koC$C{$snN^>4jD^sP00`;YonPA3?T)C=2$|7@M4$^Nj}
zWy4nGMfKOeJ_|aMIQypjovF*;eoyg;?&WFzcl5x&m9cSie-~C%{rI!X=kSdfMf+9P
zKfGT2?{1xZ-@~NYhyJN;ZuxY{`6GY8j$gUadv*G(61MtR{?0kC`ups|_kuN^mqbHn
zCT+d8rTW1eOOCeJUhL`{b;N(4(b~5%aP{Z<_(K0z_pkr4{Cm~;cT$GSzt5h#nD^aG
zwtpC1Hh-Ib6Ti5a`N#hZ2a<E@{NoQP*B^BFr~I-lLiywQqZzzA67FSH*yV^mZS>S#
zobz~rf>6c!6?HQI?!<4ET_Ux-{g3CP)wNNdU9UXfSlwCjy7cqIL;ktSI@uE8)s@M5
z;!k<}?ipmiwoq^Qc=Ma?gAJ3qrq0>>Uc1bH=O>xuW0GZ_&A+~B=^lHTxo`XD*#0;F
zZhzbQBh!*wW%@+nzb_>IGrUl_cBg*J_d_qIcmEXs`yxgDw{E@St@yVuKYn6Aa@>7J
zvclG8p82)gnRZ*t|Imm(Ch_sxTYb0bH<RYtPdT>VeeIXrM;W^vo#MZJ|GA_t*ZC#u
zq0iTXrqsW^|7qvnRQ<Q|A5I?NT~$|jg8yH0(E7LhAC7z~T@f<>Jv+!A?QQWN0{J`q
zb&~S=GUK8x!b;~o^<Zi6<FK`QY<eQg{zH(jzstw4#SiU8E7l*D%Dp$++S$f@SJ-OK
z-lo+FC;8_}H?84Fv3Pz(Fn<2W_O_YlTvqNm#%1$;>#XXi-}c5|<OCkinQm7cnd+|R
z9rtqW``kyn<*&2uKYqS#(?0v{xrYBP3;sE<w!_Y}f~!vPy3W3RRrSH~C+6(`5X8^n
z@M?Ozpq-TE<aaYob=@v2|GOO}H}|jByZQeaSS3HK>0y1|^H0QR-cp+s#$S)TO<sSM
zSl=;~>vZYQ`kCMEhc4dwpJDxue|y3o^|vjvfAQ<+l$l@V*?(LcUEdMqGe`C7#`B3f
z^?yR^)vD~@K7VjG>-C#m=^g)M<M*?yUEY(Ek~lxz<!IHs`M<rgqBcD`bo%i2_I0^7
z{!30Czi?v9e}>A7_3;(8Uh_STe@*B=W*}x4dnEtgo38qaYa?o+wO4T5ZunyQXV<}x
zkB?27plc(iZ+R@|Yp+)D`~^Ejx90zL`s2E#U{j67N1<euE#^@*4fXeT-}yJC+G_qO
z=L5%=^uPRNFM6)`GgI}K)yYRM9V;^8UuM6w-f-K0hOOz{3#`>Xg!k&6_|GseV^ja1
z)`F|c_HRq?*m8c>XV;HU7s&i)IAQk9r~dw?D?7F7)xUlh`e3{CZ|(ChCu~v<OPE@G
zJgs=kU-`=Q&*AKUM3~;4W&1r}^7ezrLYY?c+^>Jvjb-isBjW34UNJqoakl-(ugl`x
zfBu|y_^Zj!l<l4MH#fbjckg`c`{d7^>Z?;e?%-}uJMp~9F#bI2{y!q+em%L9k8AW;
z`%47>XXrns9e4d7SNP%yi~kAlRdTA||0Mla$kDrRoDbMPbN?bW&n7`!<sJLV7p_tM
za=X)Ye_nrZbow6=yXuZ<k8U5SviZ2*?MSts#VeU`-{jwQF=uZ2I=jyK&#>vvze&MU
zrYG4gwCk;pSN^X4PdG$-T3-G6y%F8V&&|nWslNVLZT|1lJ9i!=drh`I(r5oIIkt5D
z+nKdy9ve1HsNY!dpW#8KrgNJ8iV*u)`A5vjP3#hnX3HPRR}pw)x&Bl~efI00_0Ra3
z>#tic{u{Pc@$VXu{x53<kN@7z@SnkCwcq?AIle_N>efWn1Z`&xy<(nq$G=l5r=5qb
z)++qTqq?j2<odgN^<HwmTi0VhVRhlZtM_=qn4+tXeEZ4&?~KM)^UbOc({|Olzvlm=
zBdej1An8|mQ2tcMKII!cm2>&+=12Y6(En}42ZtP^xOMd}XU%_dHR<)Y-9L(#WL}EP
zD!!+>$KF!TQDyRh(4YH0%P?5a$`iP`*)s7}nSJQxM{2$5ClzGAs7w3{t&*4h5fyr*
zt8rH{^Q?b$e>DFyuqOO4PklHy{#d-c$?Eld8Mgu|qXRBWc^~UiWoTAitoM`8?~c>a
z&KJw}9oYPL<v*cUW)ogXm900w`EIf2qRh3aZBCOkN_C}~0wz=j6={hi>h>;eTFY84
z{ME50@S$V{x1`++$<@xWAF{V`yU$4}JX#kQ{qNFzo|K>U+eCyf8-j|T=zxD0;`wGX
znx1g0V%}5#W{Z`k?un9Bx{uCZPTl)qO7qi-%9T@Xj5SV46#o1EpCN9)S?)iZA7b%S
zvadDEf4MAwChU#8)E|{oQnp!_|NUps|8eEFyup*{5%U*uFMCl`DB=7i|KDB@6JP69
zEC0NHa5}#Go_y)wYa6rbCaeFr_I3Hu?t;T_eyve|Y4xAsW5`stuRdYhUi^;9*v33}
z`RA3>y*E2gSpIqa)HQZm@sk#5KP`N#HUD+&wfP^lLvku7Dfice{FdYj_W1sQK|*Bf
zp_g{1+xLV<Pr2n^YAJfvbyb9q(Il>Rwk;YL7On7HdBgSJrclw~e?qzvGLlz<o+ez}
z+E8`1@=}rg#Z%4iw9V=TGrqlwd>+SEv4+!5A;WNzlmo|OmU(q^f&=msZ@h?jt#x1N
znETIP!E05oO4V-fST*Cpx~jiL*%Rf3O6(r)XX5qRFZjpqt~dXwKKC1ze$%3R<J1qd
zM%Fr-dR4#vIXPvT_2$2C=D!S0`gp&6sdddEJ|iQm-?f>KkITvCxg7trG)>I%t+W5u
zy^r3zZ!P|JhwDGXnJ~@|$7Zx_u?k({@}HsTlHjj5XR8E0u5b7Mv+XahmrdfsPsY#t
zPh73(D1TRZcUwDex8$3*li1YP6e`KtdaXDcQO&kPI(?fbo0W~>_Rmr8|1&()x!~{l
zpTXJtKLcl2^M3~0<4-cZ%wKrL&U{u}q3ycg|I1mSV>SO7&U;%(|2!VEZS!yY8o7@m
zx#Ar*oD1W$AD7Qwc6(Cci6;s+Qs3i$cx`dM6n|;TkHsF$*5{uFyu80~NtWrB{-&DR
z{|qcI{`UN-T$mN5d;RcUW2f1n-KVDgXYgpudDk8!;nB>}<oUDlef(+rxBLGyu$=pG
z_&)>7=jrhu?;kebbk$BK`<Cyu$@OdF+-)W~CYLasO)nJPd8l&=^Tx#)&nGHNU!0o#
zyFFhtvqkh^esavSt?aFPf|tft)JJV=dw1xcTHB**55+uEdyh%VN(h{C56GUhEYdIP
zm|1$LO|t*@S?gaX|2e&nrzY%&Y2K~$!<l<rbJ^CedR@+RNhOlm+ooZLlfVLIP2UCS
z@69ewzW#alk$7=C-XDt({Ca-lt-ek0qwc+4pR&2XZ1U!|Si8i?TVi+RwmUI*IPWf;
z@H2NCYp=-aW2frZ`Tx-R{zvHY;r|SqWS8vUs{ZEW!yC&!Y%!0|+V7#zm%UdhHBp7l
zEJgPTXVaSr+u!vu^YC2%`1`kOMf;I|Mjy?#epEl2E4%dUn;YI4jxIs(jxO%cU<~Cp
zmOFE%iYNSX@DaC6N9pT_RjV%6y}mimc6Iy>*A>y3`?z-s-iT3|q&~N0iaDF_pH0Un
z?ckD_#;h)@op=6`?cTLZ!ZyX<I&pE)%6ikfBsSygd!v6ueoQ|&PyEN@#edvB&To8c
zQ@kMa=*2zut7E;U={>soX!~zxouZk^ZE2Ccdpe(-TfOlEpZn^}s{2Q~=bGJn_WD@(
zTb+r@mfJ6HInuH*z_Zu2k!$Af1;UMuv(5|0UY@S)-WtyswEFo{ZTbI~f1G#w&(M_d
z@8T`~j@!Z4xBQk=bO{!{d#-c6W~R)B39~CoelPD%;QnlEw8Jt!KfnE(^p7bydTKj<
zG(Wg27C$x2dw0IT%d>JGe81P5IIMB{wEBSVmB#qp`#&`O$=-f(ZOMNIzSpyQ=Uj-s
zbNu<yvd@!sc5k*jsh1i)$;s_&{oUIWXNVN>rEIg`x~?<5=vR7=DX-Jx+8x`)zi~@>
zO2t-w=XrEj#pCWnrn@W|4m=Ut9FBMDNgY02`eXizM>WysUahZNe`nHP{=@!4btf)V
za39$<zspYaPvnop$I)xE7&ETPseP>7HgDUji<M~+<+s<Lm06e~xF=P*STQEqGEVhx
zdwuTR<j4GN`_%t1@BQGnb#3?e-M`b@OXrFurq=4jxlB(?*`JxRS%b6fW>6$!8Bc+D
z{(Ir<`CDSDykoMfR_xsKIbSw++2t#@XDpq@wzbQB(hakuo-;iMrx<covYXC-_@9A$
ze%C#v_Ji{!_DC;$C8c_8hR<f-)U@gKIpUH*rv>vhTT~Js+Uu;6jFDrrm?wVNGwRwG
zJEO?0o~P$6Tl?<b^3U~;;v3|}{%BV(t?>UgX~*S1q92)k<~?`Vvh|~JX1Um}t$WWb
z$(+9X@s3Hae%-sqskUcF_Vvui6aH*ca`UZQQDOe={@>>R3<>ue>qLIoew02sE5=Uo
z!k62nSH9G9-m+V%74I!Sx6tI`4P_O#XJMIpPR`_6`sa{m&HNerv;CX?asAl4`emH<
zNB=hdPMc)eb^XhtvjdMyXL06cmwnvwUFf7r;hx0gN_DsY3{l(~taG^j`Pb+C&D7fy
zUR$?m_mY1K^D4ei3Z1GH_>9Fy?SZ4#{-g7j&-zr9#~1Q(Q_Q_L``7+@`!{ChvphlH
zy!s$}@%jgk{Mn+|H~(P#aOrWt1nUL6Kk6+OU6Y=vTonDX>Fasrsna6*A5XA1vQw`=
zm~a1Jp`6u}TQBx$ZvL=D=Wx=Ge6OvWYvdmq$Ny)@^f-`i8L#uC^tkBH++~^5r+?EF
zo0@U_^duLB1m4>x&*v?8_oq0#z2T34d8yErY`JIWb>}sFJ@BXM*}mueQxX?nIJPZ2
z@I}ARkJjH2b(iOhE}8cJQTP#k;cV6G&pp4cekd}#s37;zEbaVtiVR<r_BcCk-`0Ix
z>gv%&w*~VH^BJby<5;M3jD1>?q=4l~?zw0DD$kp~x@CXJx_kE5{@`6nXH`76h7?Io
zFE6S}mo*OmC;fx}@Z?uky-#n=wBKU7*X<EgpZmLoX^jlW*scXmsC<3p+UF95`C3;V
zRZP3J+rD7`gNaQ4K7Z5su}n{8@?X7kiaR~;cy8aBc;cMD!sjpRSwE&+za`gib6rtw
zw)@}tdjd_bOgQ;mvGS|Nx2Y2v_r@G~8qZuHd0_pe{vRsO+idI~-oGjT$U5Vf*59e`
zPR%^65fZT`v`a+ynK8qUpatvv_zcgV-Ou-*AuYaVpYadbwLhc}*701`-{Wro=IFz>
z(*E1Jt|i)h|9&Y>a)D37(uMW<XZ|zHOZ``5&h_WL@e#Ms*`MS4+BdsxeVA5LTl(;=
zcfiN+H;NCMh1Xoll+QY>uW&FqUs2+l=*RN6Tjr^M^zXJ)etoNS^Qs@yj|xW~i|4Z0
zYo6LES;wK7azu{(oZ;*EEA5^3DgL+A-T$tv<NvWc?8BaIaWX#=KRk}yIWM|>OT*uF
z5^Iw`T{D}Qsv|PFHKy>&tRMA<=6`VC-*<m&+Vlr^^L)!)E}6W|_rFr=sB`SqyF{Dd
zBh%R;auW;p-g7$qeZR)JHz~}gr=(qZ7-c-&_2<d`pUl?kMG0;G6kq-`=AZAII-ZJC
z51Y=Hre`#kHL4t5DEqCs-*2a=-{%Kgw}=aSuFSqR$-`{X(Y*4_b9x#)4?MoLf1Q4J
z{Rbyq<A?T*dotI*winhd<#j(iPk84?*0p=L%}D6WTs!m1LG75>)vIy?%C+*Jzk5*p
zvHXwF`G1^0KZt)@_2c#<evX=i*<tf8-FMr+cXQjJ{EaJiG%gaHKFK0aK5NdOnOr}A
zc1nnT4}2_Tyj<(9`1BJ$L#JQqSu3`tPQv`)eSYt>4+jgYmG}5C*hR?n{b$f)k2~I9
z_4{zp5Bs$HTbCcQo)Xy+ezCjlKny42%ihB*W#7(=eocSl_}ik!?8naEZWZ1S%lmqk
z-TL+I9{1f%+Qwh?r509%<ZEx~>0v7Sb0GX{p#0(Z8_ti`ALAGKcg{}YM|}3;ABzus
z^Q`^5TDB$7Q~KtK{=9A99pCFQwR7$;pC)OvWWtf~&Y6Wly%Dzc56=g+aXOmbu9knk
z@OO2_HY@hGfsd`Ti(7pw4>g}ZrTg~AocU#I`n#SAANrLU+^|pR;)KS_#Zhces{TAy
zH+>oZA$W4y{jKhuad!heRlgpYl;b-iVdFAR1~z;3xclW>E5CP`=sF*hVq0;mvOll$
z;cn~gpE-Xn+}L$Wj9K!uu+oQ$W0jBgXFm8faVqE4eRKLhZu}(U%vtO->+Z=qsrj+>
z2X(%@ZoB*^e}%^R*?Kec=ACJJ<$t|^Y2UODE@$eD&sGW^`ng@t_&V3c$NOV=!n^7Z
znktCx=d+2l_$d{eWO&zsGvn+J#(jIwKisVQ{b==Lh3B~sk2}w|<dC)BwR~%x=^T@f
zrMLcVvv)hazgbxRaoS$F#{Uc)a@}@UwqJRd)?oNgP<PLI$^Q)dF4oVjnfg2V{NJe`
zw%PM;YM7AyZM&epgHU#K(<y%+b{_YKao2yxMxL&I$j^B9;P<t8Z_{`$vso(h_Iy3%
z;b*IT%szj$r^1K0-l`n|-@BPVes3xC-fr*PZvS3t&!l^|CV&3xaYkf{>WkXUhs!&D
zq#qVr^ZMEQj@HMjLJ|j$uQ;q);eL#_&i;po-rA&7KkHOCZ=W!geNEYQ4dd(5X^Hoj
zi{7c=51#k@&^(46+XDYh&CPogJx%cMEW5e?KCQHTdu`AD$8RS|&yCBj`MK?%+9g%h
z;`4Jww?x|QDfH*&zrW-^!}^M6v$J^rGepaYufC}^|HHQTf!o}t2^O2JELv6NF1KP+
z0$=l!W1PP}&ibkDl<Mn$UdKRX!n~h<AH1mkdeU<JmYRU?`X90*%#uvRow73x!WXzF
zHOS33=qdd9<@~WYuI)Sa>}s-{>FmG5U0NVz!Vc*&g`ameGb{}B7CykXKl#JA%#cZW
z$B%xLHP<TZviZ*t6#wOS!(E@gdUexx@+|w)^SkZ0xc6K>D9>$@-5d7t&$ij8rIok4
zzf?W4{7IJ$Pt$#4{vGQo)?bUi@%$gh)sOm*L;u(d*x7OZF?@Ks)8@w;rngttEh^rT
z7akL(DDkv$I{Uk0hxV`d&(L^(^Ynx7Z{9x?Hjn2=@zUs*QMD`1PZh9UQd9J4ck0s#
z^SpQJ_^Vv(U$a<k{mP52&717i?UVNZP|k1MC&H~S`zIq}kN+c!CU2RdbtShg1D=-%
zoG{kus`Az^oZ|5-{AT=zK>ubt@sIQ0*nebp*uG7_d`af=_$^#U@AYQbJeGS?u<7tK
zmjlIHJ0#XG*q?F#*7pbN-&}mK`O*EZUss|+H>c`82uRtrtM20M=w)$kUk}`3^Hkva
z=e<9-|A%(}(fhZG9zA~epW*P)*@yNC>{64|eK14!?W1YOe}$eB>Xz=wYto-AU*#SY
zw#VZ7T+iS0jW708O0775^*mGkLANco=?}zPN_CySMc)@Ro0*%tdJhN7v3ECFjAneF
zdi#0q{pV)l$xKUU^i;I%{_Xk4^+(TthMODqf0LW88TwmywLw|f1D(qs&i;G#)<5>p
z{yBe(kH(pPXxpsU`TXy!X!Q*Lo690YDsw^}UYMFV=kvY2n;)Kk>-*9DFt_O0&j;7s
z;+!hQ4eI*b;z)ifqIHMQT;Se=(seT)JoqPG+_g2bb}s+se~K|Rjvwy7`TQWhZNA{1
z%asdX*D0E%ZdBsdOzGLBb6`S!?ZyU+Q=*zXjoi=I=gg^JBkP{^-M)9e+#dChvk(50
z?RV<?cI~(K-aXmf)i-$ZCd9ZbNj#Ww-)O}N9uJ8V$9OAvgw`__EGe=3IweCRW8(R+
zHA~(rXIRagI$_Ek^K_Y#b5?y><#U_a9H+jYR~&NhlS-e);+P4=`~Oa|;`wK?x|q{%
z-=4o#{A<<bel;@p@K@Po#_(j4g}hfooHuvN4!MMImgZxHw@qbRzP(f3KIL)I6XDzP
zkI#mu1s&Wq`Q(3wuUE8c88`b?pHM6Pt@Sgr!Q<E+xgzWT3|3bzzMpjHtDdf2-RT16
zoT)L#URgesEePCrp^4+1^)=RYXCE$6&y!YlP@j05rSV@qSF&14qyd|8Q>~TMxqvs~
zJ1=>!y%!rVeJQ1KneU{tHf@<QQ*ZCs{CU6Z$@5=-b3gQ3ShynY?5aD)m9xH0UGO?*
z?u0upFW%bm>*qAziC5&;)`aV9T(oAprH@>wo9FlE{m<hQY7}>EvNCTiU8roi|Ke9(
zbBPzb_}1HG-g&H9)BdvSZ}$P6q{T<RDE+%M=|98C=)e3Y{uCUv`lH`jcFktf?<MPh
z#QaJUZjp{&u&$4z<ae*?^6dF~pEN~Xcq}FvA1uu~>VHqx@Y0Ue)&CjvTqid-@!Rs|
z*Jmt!a<)J;u+K;&p|<dK{EO-(Uo!qP*knEmo#VT@_SvnB2j||d{W&4~as91-Vq5+$
zG|lzoQ@)y8^4FDX-fA62ez~1JU;k#mIjffPnfbZpgX^d2x7DuMcF*X;ysdIieVq@V
z<h1RMICt{rqxfU{XaAdQAsVc`Ffw2A_J0PZ?*9x=0{`lMNjQFLUV6vE`Y!SR3<py7
z|5U44_;+<l@4pQVe2gd0FHa7=9=k_9W13(6ZCh=dW5?fpGW^f*YGG0@)0{HP@9Q6(
zxa9HgMsHX*@2c1hsS{70bGP~W_3J8ev8cG^856R?0%DF7c}!C&;J?uPbxFd}6M;J>
zU#S1OI!J}1OMK$%+kd{V722qkn{(Dz{Gr(F6&dFr<=P*d7=PoS&IFqeFSU!gPKzW(
z3b}WwaRiAAZAdbhZ-1Ai!!*7{tSWTN_gU@DL05GP)GABzRh87@6)JnKJq-AHf7j2B
zzb_2`eh8^MRew;qCNg*Ny&BJpU%Ov?xocRmn>Xo^XXmHMC#F?LJ}r%(xxZY+!{1(y
z&2ZN5!~eKk7af08e^dKdmCdZKt<NU@ox099!}++;?b}%sJ=7+6F&dgQ_PKxj`$oXG
z^8NJrp(|e<n;h6bxBpqxz38(_XB-n{wh5kSU6jEby_)gUG^g2)x9-R;Z{m2Rt#tdC
zopE!=9_O_O|1-pFt#vcJe95|%d1;k@kI(T3*PFI#dy4i=Tv@T)eS%PV<@L`uUJER{
zH^<#%Np*3YGG|Wy?A0=J>f5jFwULqXo#&>v<jUIOOK<D6YC^Uo>FmjTw8A@C(Z+R+
z#(`gP{D*eG75~=vcZtabw%H$rk9M&;>g`|cdwl!slCPhaK8ib?Y`SmOztGc1l@9$8
zm}E3zIZJWd!RMdW-|ZLtcUFGWvdtgOzg6$}@V#Y0`{8(jypqQ&m(IC$Bl~o2xXY{x
z?mH*DCC=XtjI=v%KgaKCDVK+F$2WtzUuK7_F2}vLw_meAXa8-XYj=(={}cAnb^95v
ziKQ}oZJ&1q6~B)z{C9W%cFr36qxS{8$^~jpl$6U<y}ul_Z|9GXzm@)-+rQau<A=P@
zN3C-2cW#+4{`yiycGT_Fu{UN$hwj`y+jDQ9ho|Azxs!LF<Vh5J{Oq%YDBFJ1{TZ_Q
zhvoV9>Hm0rxK8lW^9x)0d0$6Oo133pS@V6<qL-U(SK4RqzVZIs^p^ATGYVE49p5?C
zS)y0VR9q+gLFvh`zCE|+JG=fa`*+L8N@u=MzPiHm@3;Khp0Lk<bbs+Yd#N|k|F~Fx
zhv>xBK3lmUE02v~--m16DmnGHB6J?8e^A;t=Z7nJeZS>CwIAW$KWZ1&lw980-?3|t
zmU69j=$46MFBjiSY&zt6=0v+PU(NM{2jdvN<lkoh=5S$8=x_UbHSRxBANm>}zGwfV
z;F-SY%PP_36ZsbBY}7tkn9mbwl%_j<+H#&}`bKy6SMc4-aBG>b<F{4oV!v_vq4WP4
zSQ&o&Hd$R*zVMIL&VHHW#Sc!G1%LW380&n{)^6X;wX)vd-v5}NSj@G*sZQ+N_OODO
z=Kl;FbI(+K4xV5$H%X`Fz~jqZKb)dl%$jOeh8+xJ*K!YVly#J8(yABrc&*zyA%J(^
z>`dw86=^*u9Dn6A?MiNF*|PCqu+ger^Q$xGZ=c_hxK)4sAIlH6M|$icb#lLUGr#`y
zvue-$GuKl8GrZkcxaLj#568D}ZmYc8@X@_v%?+9V45fN1kM|j$_xkfIx>GSwT-Dw2
z@_L()5BE;XTzsSIk=P?VZ{PiEE1z!g4{_P7)xYwW=fnNC?T^e8zoN9`KSN8=e}?eQ
z`}@+oBWv>4NBy1qAme-P4v*!P&N_>=l{6$J&Kbv7{$c;|^<(>Ez3%dL748q`p1yJG
zltOjqKE-%fiRl@|GVz(0Qj9jO<~`o9Q|8?X`L1b&rte#o_q(Wh`zD`CvUV;{c_REK
zWvj&Z_18gbc*Kv!D#i2N|HFOdBkP~w^Q&II@nby_%=+6U`QNNVkL#?D-APYQymb1-
zsjxZj!N#jOKIgxxotnG8CaCMC-PH&Ef~&t2W<IvH%Srz|uWruFKiQAg-zt8T|8{o$
z`pjGMZ~iX$vD<6wMxp-<nRe^zAKrCM-;uk||K^!Qt|i`k?7r~Cwpp<4_uAvRx|iMm
zNJ{OpnvT8g<$tWJug|XtKFt4!`|M}tZxMZ|`9W10cFXrKcz$WGR;8Yl(euKcr)B<a
z-Rkk@`QO<#+P`D&{MhvVsQs3*&d1qj88%G1?tfA7!<z|r?|7ZNEPWzxox*<x*Z!v|
z0;eQSPwdwz{x!u;DZABWQ^r2?7Oe+seyPn@eB6_CJ^UDZPIA|qCm+pQxBO=ieEE-K
z*PbTc@PIbYoHhMIXL<Ks)OOkNbDHfbnf~27i+g&$l$966MY~s~J@Qy88Fo<epz=b7
zuM+FLcG_z0UYhT`$i_KRwL<^+pYtMnek@#ld(N7F8e5t7%oEr#UB1PtXXhX7nOF9i
z{n&M}{iaRms#|K7+5PRm-ZaQB(R=bw^vkR1ZYM2Fr>?HJ?D*l_;w3Mu-YuFIZuR!&
z#><Z<o|@e~wez{5`;G0>rT6itnl_)*v^|?R-|OEO{@HKpY%BggYF+lDHDOI?`QPOS
z;<UC&9#_}t-y*lerf=%y=(-DbM$HUAULWe;-H>OJTX*@(q#G0CK0dOScsY;v!{7T|
zd%{;Po4f4Bv9uk#c1&0j=*Gc1xAOqA&8&-;Y$B7_#@vs1Db;k>cj-CZ^~zmNXIYM!
zPH|WGCuX?If_>EnTaGnLCphoC^rJ0o*Yf3GpHv)?-xA-w@X&mT8k?EB{(Y<UyZ@iT
zEh@Zr`Jd8{CQEtdssBhfE1a)?L|5|p<+IzJe}z{kKhiMOe6O3c-00-;^WU;tpFf#?
z+S6=KkNm_dA19u(y855NX2)$M#q-}M`hOOk{P63g`1U_Si;ooE3iwn1K=jLhhQ41@
zXRyDm<KJQb<>e#qN_)9v`PM4C-jDB(Oy^m2@4WAn^?yEG&*^_UJ?i1Y?U!ZU=ceb}
z{Mu&x=i1iXFY9@}PWIWPz_&JE{IhmseNs`*yNu1Va%<$P|1-4NHD1_fU-9Y=+rQI0
z9O|F<Ezef?V`y4+Zt8E38fU|2+OfXj%Y|JYf0=Uqcwt5yS5fGeY9aT)ZxuiOFg#j2
zpZACE`9F<oetzlTf7<nYTDbVGKaqiFSMJ}?zm@;3@<$0xl~-O2&pCJh%v-bLKSNf&
z?8yp~*Vesm&mJ}^X{?>)ZtdnL;y$_Y<m06^x&IkB&NrmE&f?X&vbrSWbMx({wOz{#
zAM&$^1<fj2sNOWmYx(lc*KIas)=n#NH(h*<{f_T%-#@|W5wm#XpFLr}tY$y|UA9sF
zt>Q;9%TI^yy2tNX@(eP2`iOfz$B)#Cj<`dI|5e_Pb#uR*vsm<;|AV{sXVSJ_`FcC~
z?~BsCZpQDwr;9kNuKOppUnq5EqSf&a?k^PnE~(QvAiAtgNM?e~i6rNV=PgT*Z?rg{
zb$Z|5O{RCb>eVAB9TI!_S<PMUrK0@W8h-U=y{8QeKBo5sB+ILJn%c4F?=`LyjkQsK
zWOAVS_&qb9!v744znA}KxbQt~Yo(d?F5_vb&2N9mFSvGpyYBp{-?}@$oYyIw`_#?f
z|7Yg4neu-`<PUhNPc2-Pv2a&$naK0~Ve6Zs56f9hb)WuG`&gmq1NpZcX^$^|zji)i
z`+o+$eQI&XpXeWxmpat)oFSv=>wkuIx1zr+d|I)u(|)GDY~!oCd71OK$G4cuNNa9+
z-BA2**_-W-lTX~eP*lsBcf0QPKCYcf%JUBPFSrsg{|a;bgyRpkA93U9{@8ys#o(CA
zr9YZ_wx50}=3f_`U;W!I_9%1gtNViaPyIx;UT^=S^H`_AxK~Ba|6$OkJJDr@e>yAn
z@V)$3|D^7A=6{B*+gdADeQ*|O_}=%)?5|<0j{KH;-G&D?O)lSZar=+(2XEpx<;^TQ
z7V^<{>OtOVMitSAHwo4L*&XrmSJ<k$)53>8-Kv=E6Yo@`y==Y3vHG%$pWjFSXGpsq
z%X3eg<=4OT_qyBPN-nimI`!D@%<`X7H~nu3`_!;*+NpkH{g3Mptn1F+vvm!*v?qP(
z?G67FAD+1K__E=>rOB`CH=DoJxn{J!eV=B=w$GckPf7dm_TGUTKg%nnc9|JpS;xQB
z{ab0?vHGZkad+;|{3{gwr}h%}+i9mh8CXpc|C8<Wr}V>{`YP>({}~wM|Af{H?-$%>
z`|tLA#yZVc^O!$g@3`%9ZI3<cvemrTCfnY>nWr=DmB_S=OP`)SlUz9Oo@cYpgm=9Y
z8aG}rt!A0OJ^yWeKGWgc$ER0Dr0ac~##8b5Uv0bBU;f5F>c`WsERW_65`0pY6~6EK
zzRvmV$Nnj&&J>LZI_ebkJlxN0`=g70Cq)0r{E`1iR_pnpe|nAUOZK{{ZQH$VM{`Zl
zQH@(CUY|&CJSh6FUj9QI|Bd5^?{ADhCizGG!L+as$GhH64*zhaU+G<R{gzcR(NoSn
z%Dp)?wnJX~_$1HuyG{CkXr#aGOkBy9FR6Rz_|}=J8#X4mRsP<v-s1cEdH)$6?7J_p
zC-LL*hxP~8citC#-uCoMuit+LPtUb)uUSgTdi#qXQhwS$L-NgpZ!fQ}t&Z`2ke5CA
z;r=a!Ld`vKd)D5M)}0d`wrid{PsRBuX){_I4r?ygf974X{^Gtf|ME=kmYqMePuP2|
zu~+up<RCt!os#$3?V?uPS<}j|dtCjBVDz<H-@DhYUA%q!zIhst16DOXs9C_n_?_MH
zX!MW5Y}r!>lOI{?@rYM==;g|(PP((%z)`1&|7*(P=8fJAj`o@-zI8{R=XK1L5wKe#
zD5CXd!)2xiJUqPZ%$N3ypDDJgsJvBnedqVn2CZh7C;q?kH@*8{*geC`_77#Q)Tn)k
zxV84{7xOTwC%&9}cL~OHxOAQQv14-O??!QEty9l-@ryaH&6HEQvVO~d2L6h+wEa6b
zUwbz1&<{`UI}uTu(GibR5;l4z3)*CudHhVf75(hlx;OizPA`tD@Q?oCxn|jv>7GSl
z(F#eE9tnLsZc{m7!m0fhg_kST`FumKn#A9HfAH77wGU7JF<gD~cuMT7)UNVvNkIyi
zZW~+oJW5!yLS}J~jLerCckkXi+Up#@`(plWUk{tyykEV);yZ=zoRwixD>ZwQ@=&pq
zah^fl%h)v%ljH6`(C@S=KVtB!t#A7V)vZ?wJf?5^bX!na$@>#0!@UJ|cVADvBUyZK
zo&DiBwI6{GvMayrRSw=AyyBkyJH4LG7PBOj+(KAV1y;nQbDiJK-ozgN@O@_-<Mln^
zsSj`GrmF6rmllzG$78+vq++!LuZ#qk=g3{vjVbiIHNXF#^_BHs3e}bhaoY6iWhSd`
zFqS>~xJquu<Lg(#KVJVG_ap4=AMYhEI~6<c=ATwJVlVG-mEiJM`QR`4XZ5e&e;4}p
z&HwN^eoxZ96f4%x3I`7++uqV(mpB)FCH%<!jphgT^VeP2FSO63M&io#H!mN(Z~Of6
zqR-Czyq8|Fd3!EWFgvL<&o$w<2fOqxp2B3q)7-!R-Cx&kW~6o2_|tONAI=}O9v_}w
zFSw>ex?_)C-op*^L%5}GA73dQXg}eYr;zX2ye8j6#&RMn3w}iXc0VZp!7sndeE*jJ
z42Rb@%ooYm{o=W&a_P<2nkK1t*Xrsk%?eQWoOaXZN9*oR<w&njyHj!=)NRe!zd7dD
z{y)NxAKpJ)8+Ie|)vxdUCAHCkeL)*%=<4UIZBF<k>9j!X!U>~?j>k_$Jlf0st>dFy
zW95Ga*6_b`Y-%5xc9!gQx>X$^rL@SHwfE}N2CWN!c6&^3<Lr@hWD)#O{HSVc?JMi-
z{|wCUtP)v8u57>lA$m@Kv;Bif@f*Vr`9^&|c3;XSwe(Rwliw_-%<^fMrHf79{=Kqo
zO~2aw{Hk8=6P+?{mIs4(oH$TqC-rx4eNun({f)o=*fl>CoA`85=B&4C|6cjzUv%Ak
zT2$kwWkuJ878&+#o6xn&-SNQs_5UPZ@0VI{pFY1ko@bwW=Jjo1aXeSPMAq1gzMGeG
z^76xvGKbG}If@v?xOlaB&OXC3cg5)*x$FP9^HW9NA6n1<N>^d#JJYkteuX<DrtT7m
z(XfcPGrwGxlX-2$kC<C~J_ZJ_tp4)(^>-<+>3g=k|Ead${=o0_e;nTvmplGe@->l)
ziu}9#Xn&zZh{x$uy5Z7g63f!um{o*(iu<O%|0Vy{`{DkMe<u0uv!34Vs&U%7aaZTs
zK>3=owj(izey<lwN&S4K?#;Qn9HEA<AO17koPYF|`kT$a`F|wUcPrJJiGH-$)8*Fs
zq%AvoX78d??Ku-47fMf^>9ry~m1Fnng&)-4%>B@PsD5is{g&&8)=SnO@~$jgZ8vev
zL6#3EMK`|^b6p(!O)W`2Y2i)n)=xJj)EL$ao38(N;mQ0zw&zY6_9W`nPn`Hc`rE7x
ze;2;rdcJkm#9g~T<~2Uljd?Yl>5_G|zkYC&S)0VZ)9QMSY#+as`UrmBcyj&ue$gMt
z1GfF0YM(AIocU?S(f%Xq8)mw!*uBWe{?vmtc_+LI);#qyGAIatasQ@boxsh1_vJ;_
z*74jqx#Goi|J=oH-?e^vF1)nV_`tG9*6FILJ#$)*No#q${OGV_=Z^mjP1zOFVRM(b
zf4G0tGxmvE?h0q0=xm0M^E_ErusnY^=d*-X-0z=t9$$YZ*Tqh*pEdF8zR3^wZ?3y-
zzx960gYBX9f<HpnS%mi(igB#ovtquDp=41lqfGb{_CEst!IA$NvU8=Fn6|BcczU7I
z$)_{ReR=YXS{GaIbMm{Ul0N6z{sNQL(vqO_dxcC~49?iNe)!MumVsaQbl&z(KAY_g
z4{{i{{rY5U&ussoYkKCx{|vX+AJ`_er}3Vo&dn4ZHnCFyZf2)us1{G+IA2#B@9Y>g
z=fU*(kL!;;pZ2iAT<`RM2G9Qt4F&ZZ_ui_||MvT$&V!r$H}}M=HlzyW@v<#dvA;Vp
zd|}{08Nnu_>|fJ<r2jUk@%S+RkBIm2`Yp1*BKmoL^!u2JEll5DJyCh-KL49n7nVpr
zDyS;6_RoK+cggs}^M72*t9^D0zlj&fj}aAY65YCevI2Ym3fqd~$!F_>H`FBln40^a
zfpv2GgL$hT@%q*n7C(HkKJn7id4(yHPO|h|;+WyJyW7PtLU6|%(SO=Ue_vj%nQ_bQ
zT&~re-P!vm+n?wD$K{_{EB`k1k@wEPqkFDT@8%Zpn%4I!r9k3|(2f9ymlF@1O{`FQ
z_1)vcyq&q#+>=-Q@OpL7h%YMh?845<S4WN?zqD`Ze}<-6nHMYSAFtc+$(dz-(nq~z
zDUqQm9gl;jJaRCbw0tq!v2f*{S)b}V<0P)`F<hK+ZP(l8my@^L3ca}9K!SauVqa*+
zg)cqF4lEDcEHiKGU*!W=LVZ@Png2<CUZI}q<ztt+{-ytvPpdy@UBmu3|3_$?GPB2w
z$?LsNH|$-rD0cB2A>$kK+V&bhRBx_{+b@!*(sw95=L}a*YUhmS`;3p9{$l>k@bX)j
zJlBy|^J2>XDPECQt^2gLtFOq4=Rd>O*9(70Km0!Vk?xhZO&dD5&oe64X^@+@Xg|;K
z$LpiE{^`G1U|L_y{Hgofv=8Pz3YTkSxicrVM2a*NREG3cJpXvy^hx~o`-kJDd_UA3
z51sBm(QW>kW2$+4VGm`67ykR)^>@zSRev;#i<ec{JrodiYjQF?tr;P@v3X9PzmHs{
zX!GyjAAYBg*l&Kfv#^Nq)7#wq#f+gFbT_;!s5pP(=J}<?Pb;2FUHKjJ^7#2#Q}^_r
zy5Ihf|6@%(Z=G~@*sYRdtlKVMIl*x3=EALR>horvJij-&ruc(+Po8c~eEzZ<K6&Ed
z7iTC+JdHb{E%WWk=lFH=L_e5r>;AC%;rq69hc^>%x;HFHS+Qlp(~5r|B-T%`&+PAu
z=gs}kkf9s>KqheZ4pZrl$sv2T&N%YHq|kMCcBWFoX#)-OZ3Q!L?YArYs}?IYqsOaP
zw0!;D;-f3Ox>}c1e1Eh4w_uI;kBtu>W`1N<`>=1m>E}DHGp_%3s<>sTG;v{Pw~oe}
zkTsWAp5wbQLp1B(n*R(B=E;BXm2atIx+s0<pZJHVQ`=_N=j(2c^%t1-FmI_t?t8n7
z8b&4`&vdq*zoWB&)ndKee}<;&Ka!WW-se61cy8J4H?wqiX&)6fwpp{fLFB}p&B>B!
z>i2f#-&X#|9sZ&FTX^I?`HD2NtEJICPS>gmxMg<>w?sbwx#7)ihhFB>(|+&He)nu~
zTXT<{TES7T&HJ6VUD-P0k2cTiDzU3;o4Xs88I(0VCK%c>ZBUr}GQK5#+x|ad?T6>{
zm#q9Ee{<F?dy%+FNx4-XcfWK<%XG*V=slHxv+0QSPKB<Y`ycDS4PRS#&CY1&p1-SV
zT=O6D^PW}M?a!Y1=}t%LXGZI-+DCikUKood3UEq1Fi0|v=l^#@s{CNSXy)V4AKvSu
z@7%oca&@ZQ>}6BEGv?V_yw5J<3Tf5Y+3Uu~osz(BRq^flNz;Xs*Zb*RNPm9(2!Gdn
z!TlNX9hr~%yJp=zwtnTSprbt3r~61AvR=Wp&}ord%hP1n5ZSUOPrKAdx~5-j<378T
z-^o><#`9RZC&(yW?ssu$$?9dz0c~&Fe{I@Sv$xJkUis6y)sH4^sk6IQ$*Qt{S3&K(
zpvPYl<K0CwKD)aVc`csu=DP*UJXhX^9X4NN`zjvyf6{(k-&QtHV_vNJ(Kr=fyX<Vv
zx~ut1V{aV!R=j_jV9L&I@p_hwK@9BA64({OXZ|tzkzc*iH~-PxAe~za`GpM5&pK71
zlJIAz43k|>Rq3zk0hh#otN$+4bKEKJ%X&u0iphCJ$vl-%>BZ+>Jh7?F5n$E2-9GPY
z&9YLh*Qa{s*0LU3ZTqFHY#Q5xpS`(>3|qH4Rl9Pe3ob9%-CyK+wpi)cOQYFS+}Pe(
z{R+Dos<_xmnw=};`K)KNBxd$2vpoM(FZHg)O0KrjdbUBFUrNf3z==J{J@Oy^ZCx}y
zWf{Y*yZ(tUkJYa&?i2`M5-74z_)z<wfopGOuIjN^wue3Q{*<4W_;q<oPWs!_JNKfm
zh2G(mJaOpXR^!;)jVD#if4+=(wMl!%<%TN8zt+LCS<mFTv&;7{74%-YW!biL=k%H+
zAtQnChT@*jFYM>~<qMTOF7uD6s&6g+eI{Xb^6kEgwNo1uZXKQYL88F@RBipjr5dHO
zX1feicBC+J&$}Uc{&Lr^+YhEKX1#t`)+)P|E!X;JRo`4j=4TOGdF5^gB>2aeOv|fg
za(I>fWM)pjvRsMRJFDIW+t`Z_oH%CrZT;f^4C&oZ<{zA=?Y;an+w9d9!GR5>x4v&T
z-{o@t$MJ%$%9mf)Z~pLE@@vg|&Zz$kdD`#G{`${+T(kLgq?umR)l+lUzE00S@|(*n
zcd@M2lcF6t>vMW8KiqPgOa47i|3aDImT31ghG*-SU0HUg)c$nWmPuL1j?FB)-BG;d
z+j`}{TU41Jnm5=4>QtYRI=6huiTYie9rUhWSNU0MCH3V+^1;_J%inskM6G|*zS85>
zTD9&+bLBo3H#yx~9I^3y&O6f|-}`RXZ-01d{m+>Ae?HS+)m{Hmd%T)Ybt&7IIjQo0
zrtUwh{P~#WwTPCEqUAfDO$tv9?pwCwui48tMgih}k1fvc|M@yLC;5Df;d2Yy>>o^l
z8UGm^kKUht&v4qC%GDQq<ORRVxBq8|TJ<yMZ2y0T@THbl4n2zbV)MKFKZETmhri1I
z8JcqM`>v?FAbyW0dZn&=myPlxUNL*kuFWwgMa;#Hdi-o&9c>u9r}>1^{_wB5`j7RG
z|7W<#X5HU&eR{x;{^%cx>t9s;U3$q?q<fXo@j}tl&O&dTm2aI;QDEG&>;mKSpF2M2
z_t<!U_|I@us=RNHWVPDt)tTj-<*DVIOc82M1+O9m59loQ&^mFZhifDIdwa?M3<rJf
ztbc4iuxokqTa$XOAN9c>S+`89TDN=g%iP=*vCc*!Qv-gU*|7Qf^fN6yZ@D~DKWkl_
zZ+pqM#!m0b&)EIzUw?2v_9$C7{ej=Q7lnVPKUymuH^sp6=9<jwvz%6aJeJZV^ZWCK
zu3zsT*1z$5_@ANcK1Ydu=RT>O(;Vv`tSx=d>^o7s>&x%y+c#-hDqVYWTqC=nK#DEk
zz{c}OcGYeDR?n6FPkPgK|IHO`x<-}}lca=~#;twBW>eVvaIwP2jpsNLjJH2H-)}Fo
zPa<<-Mfw3djs2H$a-LN#+}3_VqhIyN^xQ@j|J{F;!l$t5FdH&IvCiH%Rnyvy=kx2N
zl`G>szG>&*Ja_+}NdKY!z6)wgzv+v-4imfeXOX1Xt?NG5zP4|<oR_;!&QN@o?t-a#
zN@sc|dooWA$+6%0(vENENArG@`HVm0kN&gE=lW3{_mRK7<UVhG&cdCSYkVKPF5iFo
z;boP1ip$+)uW)RNK69<(+Bqp>Wv13T(e6jzkD7frRbiA{_2b3Ij0r!=wDryZ%GsJ-
zy%t?DNr6da!ilbrcN)JfIBZuax!&QU_*?If-ADf!U)oduh&Sx^+h4p#-`-tQwoPo>
zv_<a&J0I-ZJ?$Pxa^Ius6?4{HIwQ0F!`tU(AHM$j&oKX)$i^>=>(dv0mD~Jb^$|Jk
z9}9Co%s*ByXyaeM<i&pm!7ugvZ+1?)Rk<cQ;KI{+x84^D9h6&|TeN<e^|IV%Hg1U|
zhDU!)KT3Q2@c-@hL-^Z@t9;8J?-h>Sd$qLl?baP{u1C##b>{riSJS4qa%`ORh<oOu
zNt(xQJavm%v`IXFo=%;`k6*W5epS8Va@}00qUurhOoiTe>N`Gc&b#zZZOWfZ{&GyG
zwNsym1}a*d_5CRP=zfo#_A4=|^<BxA-qvqkw4?3PdAAL|X2<xqp37S|PrD?OW74A>
zPwPE>=N`y0FoYOv4tkpH|N4a1GXwiY^_+EAZ~6EAF<kcJ_2K$W_q(_9Y6te}>#Se9
z#>U>JSnbV{jaGM=+`_foIF$RcgTLi}yneL5M}GVC?tiMU<0P)yFfO|J!`koidy}<g
zD&pY`cm2Kzp9|Py8I<oKxSO@R$umj(!|ez1Z_obr{&!YN=AOil$Td;2a+N*zZ{9jP
z|Mpvja+TAno7P<L=04$(&J--Duzi~B%-JvJvj5`>Uw@<S{63oxW^0$dwrW3ezC$=}
z@9{31-=-V3_LYild(FF}-b#N{WbZ_m2|v?<Vzx!z+o{?%xw_`OQ(vO@B+tC7`{j51
z`TOJGiVEfUAMKB7y&uNz*z)1&xz#JYmpZJG3_JU*I4@aYf>O!hBaDZRo!TK?7!%$-
z^Zt=ypZ!H1YiHWuHT(GZk5={6E@?OKiX+)V4@F8C-9+6J7#R2+gDTERJpSl<c8-0~
zS%qyebLQW5>N@hD;lSp&yV4~#GCo&kXFQ%`Iay+Dua-#l*M~*>?d@*9y|<u?!S7LF
z^e@w8c`bK%ciQ}7{8zDdNncc{-0`&)Nt*sGHoh`hu?H^YP2oFq??1z-sqMBd<thIe
z=3LKTRxz!<{iFNi8Ts@5W_u)-%id8Ja`-5-TAfAwJfnx=<}FQ2nvea^io99lo|qGI
zy7=MR*rc%MB^QoOFYI5Jd$uS}=fjnKc9#<_-~0GB=bEGSDxNK^b?;RY66CBtpU*lp
zC-l16@#K}M#oz9KbNsv3<o<2H%q^!+EWTtDoz``|EdJBMx5t?tUHH!+lsr?B<)rW=
zzJSHsU%Aa+6!}uD@Z~n{jz_Y;Hrht^uY4VU%D#2Ynm?kvvnpI{n<F-z=Gk!Kq>&Gs
z%|opTk9__!NLW6X)&6SzVErGF;$u;!bFA!->DvDjiU@xCyL4sW{Q#~V3@3WG-7CJX
zJ0s$kaIC(xTwZiWamb-!?Sp^%_tk0K^j=<*_9OIB0@v}sD_3M1ZFsru*U`I-zfN*6
zR9%<-`1zQf^#`||tJk-GwceeP@F8#Ux~Ri~@j9_DcD3&Io_pfR&uyP2?sDD=NnyBi
zz4+n%Th-sfeym^SzU+SXwSdY=ZvPpQuPbMp3mrMQIQ4Ub(~Ad2RvsP}3fC`es?dIT
zzwfd4&NW}&=JKxj=Jnus5%1P(Hb2U>&5~y`p9w1XA-%aVII4SA&6-^j^V1$ZmtHdK
zPqh2_`7&SiWp8B93i`nxHs7y3?4s#Mk%A?D%l>hz?A<u!=fs^qS&H;7IPJ)vA;V;u
zu}}TSPUlyj?sw1Df1A%9fB2arqvrC8CX=Q|s&)|yI!|xP)V$z~JzBATv!0#oi}1((
z(Qj2%rNZ8CWOMt^;C@%IanBx^bxFx`^*cOXWOLMr{K%H=|K?IBx2^9^^v#<cQ)5G-
zU!F_Z+`(}8$@Zcs#XsyzMGZbp-g~;wZtj#++5PALY_W^Z7yIM2v-&(wY^-C&cYz;=
z4yT@7qA#)g;xkX3ZnX<*q;7Uhl~(+rpt&ll{79|y;eYD;KbFl2T=VtxeYW^}Zpv;#
zhu0t3m274ByG=7tCb^025{I&U!u&QnF01L^PG@%M{kvLR{j7b8`7M2=PkO4qf85oH
zS1wcDnsVz8&yUd5{Oru^#m8mB3No*4RH!uTFzKB2=#Ub(?CD%%@gBMMb?%~bUYt7_
zzr$J5?brJFeQ$owcKEUXqj})vxXWIfw(h^W<l@)YE8afZF1Y1ZU;FC6Z4Wf=H>Gs6
zx!A_bOel<7z4A}g#vMOQ*^lY7c=9by*17g%%d3l1o1%|wpJBD~lz*N~d+@QZmIrLA
zT-y)+XJE{<Q;ZjSSvKkR-Q&7{F3xzD8tQiCsposM1-T1+O|lgw9v)PdG*y|;S;KGN
zxK+MgH&^Lp)Ryh$;u({TJXN+&p51x-OpK_$;`x)kix~@8{Wq*wpB8*HaB|%H_`|FI
ztSOvO<FYHZ^wFMeE*tzsVk&Z*o}cYG&i5lt-NG)X%h88Nd!bD8w2J6sy&vUHAD*^-
z!qJ=>=OxSbXR$q6d}3-?b!6i?2hV_ZnRj=mJ_uj&pWzVe!?tVo+h>V=p7l>Q@YsKb
zN#3_BeD{>|?Re%W$M`~G)kc;TCYkp9Hl~a394=kz^6~Gad#|otEPtxIXz$dtxk(c2
zJg>}}{EkY8Gi_Yyw0PPtvDcTj@7nsGq2WJ6;I^o(^BNyUuRMC-N}frz+Oz_`>l1Ff
zgwJ_C%`jnJ!A<swak;B1Zaq63amh~cm6@ubNpHyd=~KlurcL|RlBRp-TgmB?RF#74
z>u>+)F1`6G+-j1t{8p8Xdvc29Zr-t3z?1$waq{G2eulFieYxMVi*N4oOevG?*RM~T
zrE+QSns6g`g$UK{)xlXF4n9hn5<GK%9@Hsd)tXURJO6cXmgvi4f9_xF|GJTNe&2lO
z9hYiUm%cFae0Egj#DvYP*%42-`kM)y-g!)K`$mfc?yo%7)qDR~`pA9zg%az%hFf!;
zgLhrYz2~7KFd;{O+NJo(d3F&?K3CY6@>kvSZ_{S&>*k%ef0b+H0*}|3)xX<kM0u?0
zPdm6+>!OiT?-NOLhTEH1Eov+_T;94nUhsC@nP$JM`dcFuK0VgrTeKj?DgM2P?o5#n
z2RF`XY?eE=XmkFr%l|lojs*A3zaIaCO}=HH%FDu=8T%wJz0qG+)XUOx`rFKf9$VQi
zckj;S)d&yzWG=0ItSIY#>p$&`e>#`fnQ}*4PpQ~aU0Y_sCi`s5PT?HR9)1%Wo}Rfg
z)~iUx+CQxS#<n~45ifJ}&MiB(?7os(q}VwvJJ#z-?AfeSHyJqHk|)%>;(X<ob-vk7
z>SY|~m3jXeJon6;s>3%st7k!_*!`?|Z^ae<JX4#UB*UZB^JG%i%Al2E>o-nQTdOv^
z??1x_pY=RH{xckwGyNFf@_x&TwCVqZe1(2}_S@N&GU>u$>034@4tnTn8Yu*Ce{xg7
z+Vh#{kM|EmdsXK6@)&1jE_JtAX7Rw-v$8m0>60Wen>*1aiP6v0Ja+v2k=|;@@iI>E
zW9jxT6I;gxeYeA}l!k8ZV~q$bwf0#1tVu!od&Z@s-zHx-+W0_UwA7C4=G}_)qxF2H
z(J%7<Xg-SW-o0bX?(V>Uy}G|`u1C&Hx%2v4+vmhXt6gsXoUNR9sWoJa%c-T@w|><h
ztna($cD-+(ens%Zy7i*%-8%2fc+Gs%GLt;c6x@uCxqUm<X7-Y>Gi=YyO9TAQ9xVzN
zeO|}%W4CyljWt{UN4M(VdmaCHugSQd^V`}}N+s&k%V~8rD;A2|XKxK<e`fg1e`er~
z&>x3C7)O45-d<z+;lrIf_m;kI+q$3a)vnV=_deQw<;#yG^GT~Fem1%G!l}9UjgeDR
z_Og%b-@JSzFKV|_Y~rIOo3>otYQ5LbI#O3IB5_(p4vW!LVZEPk-|5s`ncg5)8KC#Z
zR`a*ZtuCo=g3G1%#{Fkd-uk2VWAvf<f?qke>}8Wak=B~er?)8L@LcPF+1|TD4{tnU
z9$+-5K{8U-Gwf{D&W)an4bMwVbiBLe*Lr2S7P+=P{Ri(e=hw)7w6rNrUUfjnWuE%P
zH_DBd%m1j%>fN^d--ex%+vjN(l>K>>{N3x%z28p-EM7NXUjH!E_td?A&s8IXi?`bL
zNgtk7c`<4K#x2{tXRpp~3HxO3rqbpkQlOG<uW{<JWm*s$=h3n<b8+*a=+!T$Pgr|k
zdhv<Qj-GS|&o&GFtA+Dx!g8N=nx4IU$31zMb$8^Y44Y@tGknq-DtnH!>722!@VmjZ
zTD?{O%iq#`os#bIK88b<y?;(UDH4(B(ERTCWK!|1%`HnFOL}Hq+P_lB(<{*LrFp(z
zdo|m<hyPwazP8nM_WHo)_i<If^j7C)^R*{0J7_w0&;H%%`=*(N#2)2*dh@(Zllu$S
z@~G6a+ZrF9p6h;OpWEc+FDLG~<X>1KC9(E`cxCF;^CwoHD>ppw{?@u*GtXJc_ul^y
zcAoEcww&GvzR9UuO?}f3&(pZ<&BOjFGBIP{?lgP-ou(h`de^CUm`LjjL<>HBW%e;v
zLzZDC^Tc1*uD|vF9eShgg8kOg`A2$rZ`$ZDIG?`k#cP9G=Tk*bZ9RH2$Xq$r*!r!_
z&ulS=gi|)#5174O^m0;#?&r;pd-q<N@a6B_-ZRrae*E`H^H26K{ugg&tY4c{@K>t)
z_qzQdb@E?2PTSuo*!t`EO#8XBey=GHu#9dH|FPp}wf!HF%l`SI{}~RNZ#ge=`%T|t
zuPb|OjeI_G_Bg%rG}##`y1(Oi$?1u0k`J1jY^;)M4um{tj*qS>+0uPH{)2bCoO{K*
zl3n5L@83@-;5xbJtmvN{P8K$QZLNX=*LuevtDC;<vFzCHvHiQ+e+K8D*AJ~Z82CuW
z_CLcc@QB8<d8Z$~(SIDBy}!Nil~mtk-AjkF%~t8Y%~Ka#WvqMdxL8MO!a=qVrzK<m
zGuVBMOI}x#^JD$e?C@DJzd|n9Zu#VLan;?aPCX$jGzEj$47fhNJX%{U{^stZ$aP!y
zsvr5KvTMo&lOpeBS>`LVRooukvR<M3+sa$&l+?Y5yG9Z@lb02-Pd&ci&ONv76S+IX
z0%WYb8Y9dV8ax!_7RY7)*?4BIrQg>_OJCJjC20mvxxMlK)xSDY_7k%jvi_O$E}rf)
zy>@+j{`dML+l<;|Ztgv#W87rkD!uu0%Er6#VV)mPA830Lxh76wo6%J6{fBowQn+U%
zUVo#E$+&rvLDlth%OBRix%f@{#@4s`2lQ8G+_Knvg=e4K7EeXrFn258D<3<AJRaW`
z>3X?^z4V_<@zTXLf*<Z4Tddx`#aI8JZ>8v#@HA`b$hAv9rO$HCS9WIEDAE_fQ=!n~
zAuql8)7PMKE49gXjeCAP{V+vy-sd9*w^|%x?mCv{gz&%Te0!OB<9X5JS@v6wzqz{f
zq}<9C6`v2Ue!5}8s(TLC`P>);k1RQ>()&G7FmlF(Rh$apN9wo4zjglL{>^jV{e$vi
z2d<c|eOX%ka6fxRbC}d7w`-R;o+OlNxUTWn>bP?51?NeQvb^;t@ACiSQvB^!<MMau
z7hm>=-xjZ`vAM8yc5S-%rmg?(?Yq9D>07MPr{{iG)aQqOp1QQ_**%d6A=T|?*7T^c
z`j%cg=ok3Rqw{J{x!v@?o8<#PEI+)n<h-DA=Jj9O<}MT2uv1(1TK-pln`0N#3nyu$
zGPz1}74duhdH#3aK7)$M56k=isZ|_4>>>4^;qZS3&Oh#tJh)e;M)!&bUV694(yjNn
z;-=8+{RjF_zrWf1c>PiTTgKnkHy@ubS~~kbgGl!DOxCO4mag)-ZY~|O_Cl}Zjy{!%
z4iQNakNi5i;}_g#NN7Jge@l5^4b#LeYuDEBe%#{xy}G5hV58?2p4BOpHIG$z3cEi1
zSj@`t@TuhPwf1L@UJshI^H=Ndkbf8BIR9?=C;X@UdJVt$tv|+#Z~fqL<@vVhSmWgI
z9pXz4+JwDfpR2v@S?4r|MXnRCPU)ZePy5Hb-w*E}h`$;ANWbyvZ{6>0CHDnxM|ewV
zc+B>`rhBF^&q3BfUaNmfi|*DPEJg8~)@;n)zq$Ucb~01tZyUv>ubxiz*6OzPKco9;
zLVdSo%<~;j(l404m#nBhyno~MH*X);CVgYJZ?nl=e^SNq;pZR;Q;Yn^`D$ss#~$(t
z&fJ!F>>5K#UCM`f=ll$MuipLl`u6+VC%!6+E{e53b^P_x?QfYM&%ZVMALsqY{(bgh
zY%}I5ZoT-&o%hHzv41`RhnL>Fb)HLf$E@lGLCXnS&MiHdqkcEe{2$lLT)Vv=<PSu(
z=p2dpaqnP?C(qg$@3vH^vVY&RF4En)>+8#FyUt7fXE^Av|G^A9p%4G|rra~Jv;Gi%
z#PaJ~_oM8-*=xPuJPzs-oyIZg()HriTdMsh7sVOxJkyeJeOATfe_Vfm^WS@Ui*4qA
z2CmD&ACI-KdM)OBctUJsq`T~_=vxPKWv&ZmO*h`;wd#hhjFE>xgG18kxHNIr-rll@
zzFY1;t^V?FjYg5S>fL|dpRRoGzjgUg@Q>r)tbT-l=zH~2hre@C(so8EkB5D~gZwrB
zIe806r>qj;5pFx?`7Qot_<?&WKf)j7cg693lqs?avlrT;wt07TS)X*rzO%Wx`|en~
z`6O=Q=)A*xtf(-4uKo7sZ#f^!hCg`U_)qmmu<O55%^sIsk4~N2@}D82!uQ@{k!dSV
zZQHP<Nb}f%*;l5XddtB4dHRw4KeXQe5z&6ke{AE2c8AMbw5|F1E86a#sJ4#oRNuLy
zL!-?yW!Dw8u7JxM-Q649V%TpjWVE_|a@C{U)J4}nT)AfSy)tI%p1=MV*SFYn<k=_9
z<v%XJmH#-ea>!*>d(r2+TJuyG^-OAA<4)#@skXgx5B+>|l9~1FjDS7Oan>J~KbY72
zke};^_CL;(AL@@>lT*L;Py5HJ*GCJo#JwgQUVh76Wb%>K-^6!S+8lG}lwM`Mu)P0i
z=hb>i`%M1Z-T%1cKmKQUsIpJw$J9qZuDkBscO`M&asRCwnohlX?6>Dr(@e#Uec@u0
z6}Ucb5<2}^%#!=(=0~={-=^=}b9vpmn&_3c@4TEAka;cm_C0@|Ytzh*{^^cT>%0_^
z;QM})#Z5tGqZN!DcGs9&wXCX6o&8$<PbxR@k+DVain;D}yK<lIPcQ!c_@n*--t<H9
z+s)hlGi1pNWNma$Uy~vKq4RXIQH<Ngle|lh9DC*Y?(!+a%?hqPD=Zb>pA-3)@I(5W
z_TNtXg!-<3l0W{g{!@5qcG$(z8)|0Xr|+_zx+m=O=A$+}O8YY>Cboqo9q7@T(~}bZ
zDRNDX=#TzK@tflRI9*+OrElRg5vw_8E3MsT%ii2~;nJz(yH7twJpESAEWNA#&F}Km
zWyf<9>%YaWIevP3&my_v13`<|+pn!MsYnX+`)c~v?(?k3dve!m*Z!P;CHyVpe+E9+
z`Qab)kL}Ly4wJgxyLDxLskd?Rnmch(>z1p(56&qo3tGJB?3SsM!leCTJI<z8<bS*K
zceb4l=%~p*j31{zl>K^d^U~OgG-=MjlAUXwXFl4pr;J<nQlt#)EW`azW1f05ajbvl
zcl&|p-qX{r=C51QuihYTd0y7>;P?0O3;#20oPTh)KHt9!b)p~VcAYMmCMR*dWy6-9
zOC4`>9y=UlyBfs(go$&4P)P3#>+pxa4F5h^TDJeeWOwtHzc=da_4Sn>*#FSF`)_&S
z$HlQ%=lkxs`1b4FwC_<{x9^@LY`AUOm(!h#n_fLXHOXuWo2P;2osbPI*ZV5wd++{e
zyKeg8`{#A;c^&G0?r}+^OJkE@x!A4l`BU8(-muncmj1T-V{+w)dH3?D``q2!Wtl1I
zv(Np#_3-A+ePznb#i=_aO}~Y0{cT&p?7C_D&PyiM(bdaJd%Q&)QzS!K(k*{|zP3N@
z;hj<&waB=xs1-}<YUiGQE%D1JR@!dE-xeF=+{HC4mvVEG1pclLy!K2&rQx)UV1eiP
z?Y6bM!WaEJn=jvCD*awKx*>7@<;A=GjJKTlWGQz;vHf9m{Ko5T>vQWkGkT|%w#5r>
z7Pw(yesR&f!Z|t5|7f@UXJ{&o*|ze-@*wjEv-iqH<~(O#5vj6chvQdH4f(+M^FMa&
zxxC)q{_6Z?iSu<7_Uw0F_jjR5bZpxD15&P!-t~ocO2`?`T)W}s>tmksUeD_@^qF7%
z5}R&1Blnv4#5>VmKNw_=y<+~xZd6bu6Ta<F`K3EGP9N%KYdt<WN#*vJdHgS|!mhvN
zf5a`Tb?&xXhxYl^F*Di<4!TU+<l$}`@mAW+s9x*y3(vb%^ZJw@x<AQ(%lq3U{zvq;
zx*xgge$<6udS99y5Ery2eakfM?4VanY(EbxvOH+)+pGPt{b=KokEzQ$_Sor3M4yl^
zY`wDCI6v)7qhor~(V6|0I{v}&3*@(6@A+f@C|)k|hp>CPS)K6oz%Jhz5&JGys`!0e
z-M{x~Wt#aL`J(>}oa<XnZ)a~Q%e6C|;5l*fi8$-;>u*_DR%@(`I(z5mnUc_1+uFYc
z{#O5Y=Rd>d^xpa;<`4D{+q+BdDnGK>pf+17?v+&vC;yDXLYrLO4@O=a|1+!(*m<Y;
zLfU?*{|uS(H-aBcKa?+Z<B!|NWvz0H7u<=RVRHM1zV23)o>eAi3kzlUOxn8JhcVD(
zzou$3pGuAWiTfY?@^1wnzQ1|>k=wCquMc00bgk<9)wiBU>Df1zM(@e{9CwDua9lDH
zNtb*dzu7GQL*)K;Df7-Jm-Fnz+}BkU2laXTI>n3JpPs3^R4%6RZO-CJMy=d6YYUIF
zZ<o7g%ys3?`{MI+Jx)zmvS+rlcoFt}pU$<dvv0~u9rn1a+M_3ux_pxQXEuJuP>*BQ
z-&W1?KM-+j`ig^(EuKyD?yk4GWN&b6kx=2znN}w!H?_B(I9Gf;|KqiD*L=&56+|eC
z)!!)WU`%>)`*_78!@VbUJG%ZHnN+DhZ;ReP>x#O!>ve0KKHZMb4Eq?ZyLH!laVL)j
zGnW{N-sX_e@bhPx<j7DNajR%b$fAC(-bZh?*$ZDhK550Cni=*T2iLp)yKt%0Q*HL~
z#7XZe!}7PbrWM(2{d<4Pezj|?5!=iQ8yjamOsiO@mpbdJ&5FA>r@AYK%oC}4P#7!U
z6@A`2(t~SL^sPxZ{wZ_B|DC*I{i4NUE4OUl{`Kd)HTU=QyI%g2y*x@@?Rw-cW(kST
z?L2~)d%nr;*Ltz&$4vD(xy!CCnX}EIFFI4&^7+)qYJ0K|y8B$-<C$5y#!>a?j?XqH
z9wtmOnv!6)Ikk9>T*cdX*9vQg3;S-DR-BcYu<mr}PR1GUC$QyC+!3yl>S)0rGw1Q-
zrIK-c#oq61PJQlCTd?k5_Mg5o|4y+@28OQ=nyup$+r+?sndL$Cw^hfFe@l2HwI}!Q
zom-ne-{_xGv!rfs_J#8;`!~njyA}18Q~llz&X~D(zS;bB(`@(pDB0tfn<sK`&P=Y2
zUrw`~PTs-1-!V|e)q2k6BTM(h-z!*reA|+ab8FLf7jgZavEukb^@->G=6zlNpMjh0
z;9KSG*?Uc8wtXyoYBW<^x@I}c&l>sJ1=5WN&heI;-)H?3T>MC4i@%U>{^HZd3b(B)
zyV^Yd97(#+7Q2aw@8R5qn{FIDuDI@xpqW(F+136tKD}x)ck2=SzKy}SuiYl^b=TD-
zjqQ24UVTQKx4eJ-?w(k2+~euet0tRnNbq<G_OJTS(CTwf@AA*Wb(xkj#asKo{P`HK
z`=jqjl#Z~g*1o?V4eow^W@O;?m0>jle~sXc>&t#5dwe)DtHeH|^=YL+bmi^y1v}o}
zpZsNAXJT#{=!_MX>%wt!wX*Vl&D&5Do^nHbO~%b2e$~Q>UraCdck~?o=Nu)hDeaN=
z_KsXttzqM@Pf>RL53)Vd#itc+c5^<)k>sBDocH{S6{U?2cE41bciX)+Rx+}D{VBt%
zGR&Wwe}>B|P1zY$x9vYeQ-RK{$uG`*y8g)Y-t<zrg^ROysjj&wbL_+Ur<;CF+}arA
zF8O8Me};$md;V0sU3I%6^vhbWOW6_YzD`Wpm$Eu_={@JV>#S2}pBAvvY3+EdTHm$L
zv%YQOkEv?^8CuHZzZ^?T>8$W=Udi%dLCMJn1(v4YmcMa-5Us7>HKE3=Kj%`#Y1fZ@
zt>ya4N}t{KOmr$|KGVo>%&78w)|brCKB>U9;+y^7rN^3k3;SLUzxLv<N~LgxgTaCX
z9=^HOfvxriqDLysBl86-lD)4t&lLK0>fXbMuSyY9kJX-gm%XDmx=;JB*Wyr%W8SOm
zPrZqg3RrF7nKgIcBNv5wueBeISg+cr@ptWtS)pQfOGIi*Vq3wj)JMKMs@J`_@>_!I
z^%h<Ae?s}(Kh7V#E?*q=Vcyo1!aI8yum5LoSU>5bGS}-T61xKbdD`!ezwn!%d!s)8
zkqWEczgzbGXDI(_FS=*B&x)UA^9;YfjIHY~-FM}%#%Y(^6<=Qet6y4qu6tE|=F1Q9
z7Pp@t*;Ic&i?>Y5_F$w8<Kg1V>;E&ve_sE&YpM2K<G-3Mci)x%Zanq7@NCE|ca~g+
zcZ${t(=3=(8W>N!a**|8S}K(H#;xw<n!7F=yHr&sr22g9>8oF--97P(RjPGfmCHQw
z4^ztWls~T8`u^_J+!E{V*{-DzTgrpuqP8ANe|J`P*RjJBC!Q_%)!W|@^l-A<j;2pM
zb2shrXBK=Fuw}-7hJC%I6ISQwJ-2-FFEqtS>y3{_oV`@x%JhZ8HOJ>p|M+%8zS6B*
z1>p<ltYoPcdHnIbX=8o%N1<15rL;W?9zWOCP$)d+ovVCVVtt08N&9-{1@_n09@?$?
z<T3l4Z);yZno|1IO=$7irRV2<l|J8bEB9j8WA~|t)Ev7aW*FF{v$n^dsS1nPr}S~g
zA@7I3pSqq%5-^sV^Wlh0ecabCcKh?6p4eo_d+rc>eEjKqoBo_w?9fnrqiWvOmqEw$
zqIb+G%`|yid{oya^^v!`e9lEv*~X$!1s#T8&)07kT`*tJ^r^n&#jWf;J&M1zSLc3z
zE~$K9cJ*DJR0AaynXj_v*T%Go8;XTK=xM4hKVg4uYv_Zo1%LdqHf)NTr<?ycHm@N1
zx7zO}yRW->nyfzDSl4v?Xw_`LMbF)@a5y(VJ+|Pv{M#M!>+80@3M)Im<MBF&gD>aD
zl>f>4<@o!&qQHs2Q$;4v`w@8ldY4x~_Cu4Fx$Dk3=?lc4&&|`_a{F3Q#7SwFl}{V)
z>z_$E{4Q{JPp-Y@*LB}+9jX_9_5D}R_E~;yll(3zT-$1$&3o#N2lJUEes<ZauWRQT
zAGoJ=^@?}u@)Mz(m<_o2>|2Dd^gB+DvYOtowN}`>`ft)R?R3NG9--aVat9tf5PmtS
zcC}uG^2%b17X?=Ty4U=04$75361MDCsa%qvO0lbs?|0R<j3|$#y}xa84sSfnw1`(f
zK&?=u^5+KrXPTzfOeIE2tV*6d7gtCGe46-7z*_uO;ng;On=5frm!HlG);uTt^{jS$
zkjR?q<p+0HytmW&QFrXYo2GBiqAhE^?nV3O_WXJ`CA_u5`shAAf4&IY&suk8SG2r3
zVKF)B{o|g*&6oC;A6)j@<Kwi}HEw0IW5W(T+&f8o#oV9Y9o({K@A^>sc7D&+zj80_
zAD@oA^7fe9#ixgBO$zIun8vS<dVTo8&dbj}{dEso*U@+TSe@o%)tQF3OA`LM+b^rS
zzVJtyd{@-Eg}KW!uH{zNS20K5ym@QScOgy2?Hr5weiyjg@W&KntN+$Jbe75T1>@_V
zq1x{SW7XFF?Oh)0Gf~=NYSYGmQ;{=P22?UMHWXRNq>FfSExsHS8fjMRE#CCc`ej)1
z+kb2yg{Gg#y(PEEU2b85GV?Zn(-T>8Mn75~xaK+se>nTCS8C$E=(TE}&d8J=Su0X;
zetpif9j9}xo<#m<$mLXP6@PksR$y_D5JS%7c}J4(Z#Dnz_1I<B^<zwBJ3i?#+3uNa
zeeCgKrllJ=87B58U)ytQN6VH;wmvqo-))UU{;u6x%ei>xhvVJPw{M@y%yDjUweYdK
z9I26)WxiNQu3PW<ch4TTYi5_tk7TdlnBZ!YyXMaHm`MvSNO~&zNw$ACDn6RZ8}GQQ
z$@;{?S<fpOLzhW7xxHH$G5-ip)vU)gkqdv+A2Dn8tQOhn$+dr~lA`w0uhvt_zF8hC
zVy)1Z=Dv02OR}GL*m=K=fA{}0oVj*E^CS1EBCEAd7OJgRcIg*XV7iy7V8O5~c+R7B
z?*AEB1%Lb!d!yf{=dnFd$?yt?vEuPx3yyAjGJlsl^Q@oS<3H@1nW?(^<l@`zvS)lH
zT-$_Vla&Gw1Wsiz=l#B^Fs5wggZ@^tZ?0RbEiPX36mbzUXcRqnNJ2C5)8oFyTLstq
zm)$gK`87W!rv9Ltea39hKkI+^<zKwg{OO*fh9yITXHP@rmp`kMJ^nK^_0(Oud_tn)
z(KDA5ERt`d*ZXbz&oDjf2bVo#h081b<i#(yJ<{&{vm&gbX>OmnqL6^${5T_i(}W7;
zL$ge;>`Hw%IaOKDeAkg4$0y9Y=T!AMn&vGjdsct_%&zk2rQh{G*?YbH&+uUJ{w)fz
z_dm?^iC)GXDNs=OpTTZPb97n#hama>%dXo084e|#e$soq@bbsTE5#XxuQ=DAN%_#;
z+QVJ2E$q~8@j?OjdG>prb07cu)%4bjefe#A$=7V`E=I>3YFsqSG~!v$bA{FG{f}+j
zva|N4{hlq0Z`K}v$y5I!=s!cZLB_{y@p&d2xeE?BZ8DoyUV0~T&%zCQoG&WAuL|4$
zA;i8rYRj2@;vdcCu3D2I{z+-Wl+PDhUCv#;BHYt=^^?WlrS=&uO}hKct|kR6Ett-A
zdxIahwsP@p%VP{LsviDW{OJ5q`%c4KFX{zsTq{@KTC(8SbS1V=GyBXJMoet3jb>kX
z;?crg-EZypl(m0azf-<c|Bp!bx7Gx%*eHYiXzsM*e?NuDpWFVW{)a~STkf^-(HRrG
zmz^%GR&rWV@?%O`kU;8@JvB$lEY_dZ{HiuJx#zHuKUZbA?)T8A;o7^I8KZBMFUy>#
z@5>*w<?80Mtw+pNKe3-?X}mo@KwR$8rf*yGPoFtalJGUN_V^2_`h$UXHg}x&ESoG{
zF7&dwd7k^p;wwe`d#(I`Xt^K1ofM{B%l9y(aYyDl<G1}=SDvk_s&TsP*Z5KX$S-M)
zPiwyJb!7-*yHedY&8BDanY`Wp3)eZY?3$!>gjGj?kKy_LOS|S~>aBk-zPUg3yZlnn
zy7;^wSF;XD&$eYu$$1;UVTXEt40E0F?TJS-*8dT`{y0Z#Q+-NCirm>mvwE5M!k7O{
ze;)tv{n+;l6;|&L-%7usFgqwyd7^$!&a<}C&!^XHx^r6koRme#BDXaw%*{_ltXyw?
z)yDW?%ARS}t8KOZ_#D>E=JW`uFG&sQKOj?eEnhNBce$Fnmwv_i9e-;!|7U1AT$7k7
zs8{04!Bh|tc}Ku{p4f-&Pqa(xA8e49)_v@`^uw{vr`B5SX4j?N-oKaMI(PA%k6+fG
z`Ona9$MA!5MWpHcj*`DzCwmXhd}qp5TDE;+MMUsaxnRxn_f_Ns!h0&358Pv^4SRLl
zebe?X@5p_@DLw_hB6$U87B*N<XU~*3_@dlnzcuB))@1%<|DS=sW%d7vH9tDLTjKWN
zDq*8Z9KTJ^S^a0Ih<*HNwL$&CbUSU2hwQB-mKAq*xEC${&)~IxZJpB#Io==cOR`_C
zsn~w_KSO@@4xvvsnPXLVFXNmhua~>g?pmnzb%iI3Cie7e*Xkd<)!s2Zc=v_3$y;@f
zuGPI4@pjv$2@I|U6%Rh$nRj*5G0%IKss!Jxyme0F@7t~a8JbSl1VrChv%bb~LDb^s
z-#@LrKFPp{vvj8g`-1PUqon>b{1G#M%+|<Kbnl0=bLotlzD3XT9d4f3X~`nfWMmlM
z94}m>`mk2~=;q8@WplQ9Ts&;K-SeG_$C6nJpWOQ1aJt<6wDQzK70qLY=?~wC$;qep
zdta=vU!f5`Rr$KfY2UCrJbhBqEAD){^FV+<ZqK!R;lQP)=1H|vwQo<A-zr}JA-cYM
z5t~$f^B0S!%Izh)3zmHO$$RMe%U%1VfBa|o&%ny^<MMC!qhkFZ<HL95DzQhhO<W$W
zI&DrYr?$4kq}}HZE6devVsP5DYQx!@_oW}T181gmJw6!EJukI@>)?m?ZcP^FD%HYR
zyZRmWl&kIGkJ+>P(jQlo)iPxt?)~|A+f`1n`x)aj7W*=tPpjr=oREm&x;Hn|-|Zd$
zB)czyuch`M)#d(e_w12I-k+mgZqk8{_qR;!pD%e{`QCnq`mMR^>l7<y{kuJ5{knuJ
z$;adMex1AZ+P>SXUh2=GZ96V3-R7O^ck$+F4dJ7jKN%A^4Bl$JvU*;S?;KxV!4{pJ
z@kgJ>-0h$Bde#i-yqR)l^P&xlla-C^&#kFDw{+^hgsSUr=dnDtZ7V&!-6ZNy@L&Gp
zH8}@=*UUV<CT0GE>#wTcZmwMUtlXySFZU18hrj(h<2RRg*Ga}OnpE{z^|nmhz_Vso
z+ia6+uL+JkM^Xfv<L8?x&J=n4=hyWY;ctBFMZ|Ain_F<h|BLpt{|u$-Hx>Ug?33vF
z_vGA%iASE6uG~9o`~Bsw>IG6n@ABN6GwtQSsDJIBx)=S4-2Sok+|+e{oUT3EyJyFx
zwNhW#-!(sI65z0bA$n@(f<x;nq($^B*GpgBVjJWe^vs(#J3zo>UGk?jTiN;(leZ_j
z-U^rH`rz)T{cZDu?|+0Ie>?f(a^b2!Vjq`HUXfAHW5fQKH|dhB*XK7~+p@lQP3K<f
zker$SbXRcx_nv8|RdPQsKK60@i#_u{<gu82GTk@#<Muf364j*mH?=ko*}04iEaV#a
zv;H%vZ>*fF@^{YFTlSYTKD=K2`)IBI|7*YbkI9SvXUKTZQX_r+pI*iE$bHl9d(XPX
zy3M?-F84^$c@gWw{!8vKtvWwJzQE$K=#TE-@&6ePX8*Iyn6<h_{Ri{<*vO?vXJ_6z
zwz)WW>E2r>e)CUWeD~(9o0WE6YbM&97n!M2sbuE#_3QPw4?h<DXL!i|#`e+eZ0VP3
z^@8^@cNrahZm6w$^-k)Oo<E1o`!sG|m{Vl+Z2z>keCH3})BG_z(Qb2U**4?-(|LQB
z7~PFImGt;@pLIrh{VqPg3+!HBjaC%|?@eE1IytZR(zX8#jkkYn{<d)A2f2QQi-&El
z>#IDAl-YdVcw?qYrF_k#6KA|VwWpOAPfPMNeKMctKSSpI{(lBPjy{~5{_yMiTc+Ky
zVK?6>1o=!CSG=NP_=V>T-{py|ygN^=P^sNA|ARMwPyJT*V|!IH^u=3Ca`P(Q=Hzaz
zNb&BtvNECRYOG$$#0`EnE6zJq$<#aAZ%%*X`hfrD??cxv*D!uq6eB&mr2MM0quugC
z=>@5k@|7hqhIT$$D_SOq?fw`!ZCjJ&LZ{RB>?QWG)E%_5{X20_=z^?$w);0&o$s9Y
z=;E53d(n$idAII9kuvQy$E4iPqBc8{EY$xd3&x%NI8S<iyU>s7qxPFZ!Y5XoJMEb(
z9CFR;<!67>WgAXr+c;f&5bHAWL&P)Ni)-3>pQZG#t<U=TwO9Yq@urfwZpR+6O0jpY
zTk`qgB&BuIer={ot}%H$KhCqW%ktKoewZm(x_Y+92GMi#RvhlhnPd6q$FJ+{adH={
zZ_Cvw?Oq;eG2bZjKLcBx_5EoZCVl#M=#tODLK$=6+eej3BA$m%W0_?TKI6%~mai<2
zZP_ONmQp>psB~`9Gtph8oGLp*r+(|v(3Ppa!FS;F(b}W63Nw%HYGAuid{BMIzt~lh
z>qFe~8Lg8KPknjl)8UWur*=Gc;=HTe`K)x=ySe={>`ecNU*5;}hi&_nk}2Ev?lQaR
z*Ig{UYx=$&Gd8H++03uQQ+VN5$rt^b-_G$yKiJ-A`g58_-dgj!5^pai^;9-RvY+m0
zV3A;$^F{R4e}?U0Gq&B|yk<J*OtlT0FX(Qv(u`PC^E*#S@c0VRr}spP7yM8^{B2fB
zM1)C79|PyD^96kio|I~xKfit*Z^1L6nq6{za%<+As$ZSIc>ag5-1N|k{~6Nz+xCh7
zyRfryoyl1aYsJ7Poq9<jx7byi(*k!0w^-N+)CfO%-)tlNTfOeoJk=lfKU_PiQxjcZ
z{<nQ$?6PM&qW=c@tFFI0+xp4I&C|RWMI<hpDl*~7tZ()|bowU$-TZO-!}>$n9!D-Y
z<}P-dpdgns>D{NtJu(j}+v0T{WTq$I+UNeCp=no5%(iVmD$5_*^2J+w|46wuE$ib0
z)oTm#AI}b+Z}WuHq0gXF&W){zHFe^po;%69>&yHSV~-xwE<XHt>-E$hst?xMA7M&q
zJM4KgLp@n}3%~J+OYhQ>j%9KiCVw^$K3jQh`h&aL;rpkDUYnV?akFz_xwiaN#g4q(
zyBkDg{@K31XXCp<ZTZq4=?4stKfUv#`p`c4?YrY2eNNx<x#K~p&VPpa*LLpB_WZo=
z;g8fDX4M_t0oUfM@V;@5itMwz+iw*(Pf(eMW7=-5tNqqbZoWy43!nP@!spkyX5Zs>
z&p%qVM?QVlZzk@V;@ose`}B?{{PS5(>M!X#WyD~5QN8U^!VFi{#^WD8zF@!npW%93
z(=TI_M&q4JUNNZrE4_T@N9LyW63Q9Oa`U~86>obkJa4;AVvWhCIjd^^ZsN;+yZ>hL
zq05<d`dhAhZ!p^@`qA}7!0Jz}@hU5G@~r!$=d>PR+EZoEFDYV^eYmjsnC;ox{NL6Q
zvorQ&mMaVGs&C%v;y6$Iyy0`XnMt1CU&mCe{Oq`RGrN7op93HHTU37dKW@8f_U^;g
zpWFLNdn0=7UNqQT?0Ix8e~N*Gz{$@tt0&E0c<Wv(=cH>F7l(ab7r@ufUL^dpPkX}E
z5)J*Y2lETL&ddA@F*<fi%Dnf`>eb8#gZMa1Z)aWe{c!tu6n|@}TjdttpdV_}i<R>X
zPVcq9uuOf2q=Dh@*Hi6{p8O4qkNxYnYWl>-j}p&!wDjHo=D6)jULAkzlI_7Ai~5f!
zDo1iLq+ETb*<_WPEbq1bx5^LK8vX2#ewP^Th5u0zQc2yso9QaUlfQ3_1?N>I?OuN~
z>inDg?8~<cw%*NEY2d5ewQpDIACKiVVppFvAO2^vXEM*}wQ=r}Z#!lN7=B}Ta{X!O
z-Nn(@zuLPr*Iev+ll1TMKh0+UA9o+hYMo&&t-7!$d6WK}hMj)`9+WFz2ygm#+iKm$
z2mNhU^2bXb?y+3Ky}Dw4>$Lh!F^Agxp45FXkXsPG@W*?ne93>;<_TUe<!ryPCXACa
ziE-wU%Nu^_IUKFr{zvqE@Yc)!8B%8IdTUMl$lAK?s=}nDyBTjV_$E$Xs^g;cYxBip
zY70en*De1XpI=$fCHCs!yOaRuvx;{<?R<Lo#@F<m&2n#QvqC0vacnR8Q(O4YHhWf6
zrplD2T7RbPxwC8Ec-g%;d8~HFv;7HPx8-fs&%8Nb`NMEYRA=ejv`{A3ZEYfU^O85_
z?OVv|xjwRGQ^hgE?}gWU>O`|2?m5ZczW&U9W19<K|1+dY%TLSv_4)m_2?G8n>gBXw
z7|iFg*%K2q+vA0uX4Jc#R|J|=c6`|Lu6WMWt_+Xkmu*)+i0}M0^;qlU)z>#QS^oJg
z9ocn)TcD;TuA%3-%x|9X7v)E#^M9<$O+NPC{@|`_?18P>I`#Hhe{TJFtTLhE-Oa@Z
z#HDmQPp9xm-1+*)erdX^e&(r46aBOG%1@>x?mokyX`$#^8mFlC{P3-kSDZ?>R8D;D
zed=T%^=!`u^;<tIZ&iGkJifJ7_R(H`|BXNLAH=4eQtk7eZR@L^V1Lba-%6#0c1x2d
zx?f<7n-uu$X|2E8;<6z334hG0J8I&SRi-)pRo3&}v*KJIi~kj-<&Eb9FWatu^S;%p
zX4dg`X`jov-0|+ydQ&T|E_-pXk>$^ga}Ebz6vkzKXgU^K{;0qGOYQN$Y9ANgS<?1%
z?X%z$PvorXd#l(F{T0jHW1bgOyfgQ4A<qIUYonD<3(v7jyff04Nmb>l*>01Q^WHS*
z_@bDY_}&Z4Zp6Qv)9@rAp-JNL$G3jDiVx$roiBTEYKEe$h2*PK234Odm%pl$-=p~C
zN}f`Kz$UG=`;Pb-I5qt>ygmPA$l5LXybC<l_omn6B}%H8Rf~qI2!4HewBqc`l_!JB
zqhx!x>=WDgv32U(bF;RIO*HbD_Q@xj{nRPz(@K*BpJ|&kXEI7obd*^0*Kv#MmYrKB
zz0F&ew6US%R8QyLSuSauz32X@8E-8rFyNcIsKVIcTH>zFoBIQ|cGg#@cfYxppt<#f
z#6EeOPKI;u=P*<yW&Jw3<=R=fnfXry*3LKQF|hB}5}zYKqpGKmU*=;=%(|wY?K?l@
z_tdDbdNph7k*XM8rGtjSeU_!c$NhHv`5f>0$Nq=qquu9uBTr2`J-7L9vOtl$E$8E3
zU)GhW?%aOWl>7Gd?P;GEvI=(OSZxdweA>yqr7g*WrGee_yZXV^E7sfa=PMgTJkHk<
zD2UE{&hYj4&!g2p-sCK1nPmMsaq_aoy8TS`H!mNxi0)L~x+!9lhlb4dfZ|D3AFuo?
z&G-2st#tQ@zSG+Y0`~%c_ilN6sG-2fsGx`~`^`$dFKOE+g><=c&q-jO@AK>T6|?K!
zCW&{Mnorze^Q-<h^+|n3XjROk3a-q%GVHB?7#CHfJ5Tm+VOF_e<a3HK`9f8qd;Xcv
zG4^j(uh4I`&(d$(b>{ZW+&`hqZdo<3i(jr!Gjn{!uq&yy{rOw*O@al&KbTg_9lmn?
z)PIIs=O5^Iiv81^(Gl)&ea%;M^+m@M>qT#>Oa9~79F?f$Rde!P)s3ve?l8NTKa!X9
z^Zu|qd`MiVa?*>ATfsXY8)aTHo&EfNiMn0eUMCAinNWSvjG&6*N9+4*tczy+R`1^W
z&B2Og=auEVJL>Q6oN}#oO?TsY(SJ)n^eNwZT2Zy~J;(k(Q{|s6mr1-T^H|)qWTpLI
z%}FyDU&c-T(05VoN9W>O`!!2-rmeAR(o>iwSG(!a4*wv_b(0TPwN%A-Z^?C?ow5B&
z&XXkjU7MHH`&{2V^U}8)SzGF7>DInneBiY9E{j>A({E0yFZTJPeW6D0mv2v%?di#?
z9cGgR%qD#>?A-BOX65VH7_&v!75#N?+BY!&yq^D2+pGU@yo62m!v_m}*LRk-hRQNY
z|Gew|U=91jnCtIu);XTAUt2$Ys;b6r<G&u0eD9X(D4$sQS%~BH`#-NNmr90B$h%d%
zrSQc2IbT*PJB2qkzx`Lg)b{bI2@WUO8-HE%^0H+=b@OJlZ_cz89~UPcIQ9~>%jdrG
z+FZw#FFtgf+z_UGt&)F#;r4!?aCMF@@6w(I2M2ro!(G?(^OCt<9Zoo5!}xykmB(8X
z0`Ej;?UUZyyI{xmJ)Pg4)XsnNc9J!}VZeWeuP-Ow`{Ad4=VO+#e5Fs>?f&I*X_j_7
z*15T7-Z*J3R+jtb$S2Qp{_Co*-J4o3Q`DiaB<#lbcxuqi*H@Z2Y&mQlO@8XHoU=SV
z`O>1RcG9oR-Y<V8eAijJPi4{}OBo?+i6?pOH<)icTYjmezU|sIrK2^DB4>&>F1?f&
z7U%h3&JKyMC(c&R+}7k7mvQ0Px}#J5KQt9Fe3M=6cj%H~qqGcjUv2f5wJRU~oVxCk
z;hd@GLoR%gZ{B4c<5|4wZkFDu1=<l-Ey^krcl0f9ej8@0UElm&Z<EgT6C#3}Ze2`b
zdA#pC_n*DCug|2mihdWfky>r6VeR;5^)id<tlP%VKH2JB4*3ziJi5~G#dPufN%wNk
zte9#4Ze;@d1K$kKk8#r6&Z!T3^)CCJRM-7|$Y1`@s?OW?W^aCn_vP|_nml=)t>@~%
zn?GmTO#B(vHOpaX@>_q_e>bD*=04nA&->%`!{hCLLQ8Y}Zog#MGRyT`h)v*akDkZN
zzG}~V#c}e&uD{FwalGP7yZVo@BF-)Gv+*fz`Ew_pe_lU*&6g8zxBM>Mkgq#~eaf%x
z-z(p+FOOeqt8_(qcO^?h?gO#VoF}DE<m#GsD!25TKH4w-FXighj4JtK{&IhGfAl}}
z&gN&XF}rNTU&wRT<hoU6&}a22C!d%pbT@bu6jcTuE%1D>SL)U!?)7}0g*rh!9@pc7
zll&HEb_OtRUtwvzxw(nqUf;ju<+XjUoIdu<T`uc!%zgh_*9ZK<p4leb3MVK}6XV~_
zx5k2p!*22Vy1&_1ma=n1JenhYQL0LB?(!S%Cf9j)s05kJdHj^C*0}4`kIU<i@*m3=
zb<GkD-70TcIB{ZmKJWEB`={G~nl88{St(~NdB$6jD|w30Qh&>PMuq1L+#koKek^(t
z^~a6Znr+9t<KC5p^J1co=iU4H_r#N5T(>0pytm1n%ClMV`l~K?)W@`$scSR8g;nJU
z-d4IB!zT7&I{VXdp0hI}N<UrKsZ`qV$A0M#ch8RnTd%5G^<KYu_^6U%gtPLl8Be<M
zVm(t2Gf0%)a?OqX@jl?g+dcF6KiW-;JG<0;S4r0+^S~`?U++kG>^NXI@8)`*k0J%9
zSHAqUZknw5o>L+Zw|&^8#~*iWM|%I1%f08L`XqJFuQlcGj^}@}weNJmkK#p{LTV1a
z+}_>3T}g$VD$!+jC3_g3rCU5^p7mkA<m<q7w>!4He3N_k@G4JfB|SGIPKoz{ng8rR
zicOWwRQ8^*m|<thW0k((^>Gy|w!D{*xw*r0&GnPDr-G}EW$$|4op9H<`LAzfsk+*`
z^KO#@Z+v~vcye`2M%aIbo1YFO?9f$mEi6h(z5U5UFx2zd$9a3cFweQ3pSbAN)5*W1
zLUvZ%*6Z>NleG3`3+#VBF)sbVUU!!rpG|u0Jd^qu-bsm@t#RI<V^GAP!rb8Tc;mWf
z`T_?RzcO&y?sBB}_Yq^xO+8C;jm)Ck4);6Ro~@WM?ati37pGUg?0i_L!k=A{yY^AS
z&FG2`N91-U_k6c|wy)}g_sjLQX46+iyXgli*Ld~sGIzbHRS;5otMV0}Yt`;Q9$jH(
z8=^gTGwfOS@h$g#jy17;)~tWBpWBPSxV3Ee<J~*A%;fnlwebGal{XH&jY$z=;BCHs
zndMoJuDRNy<6$)`O-kkTwB@$xe>v(F&~ap0bhcYvLclbOP=(Kta@yAtx-?9r)w;O7
zV>WoS9X1v`vzcL4?8iU8bIO=@>|U!M@gaN3v|#t&H=eYGx`lI{+Z`Lhe9qnZ#&?Ug
zvgMEFR4r>LiG0%>Gp)z;n26qyV|N&*sW2E%?s``;??kKh>P>7Zsa%!n6DodPU0v(A
zF!71qwV%`Tiwy51|7W;*Yo|qNXqUbIob;dRe;%70-IqQwis8l`KCk}_bAm&b@P*kb
z-4EHbXQJH0Pak=ghB`G^K4)$|9vpZ#Yqwj{gy}L(l?T~>J_$D#3G}#Ey!stW-<;&-
z{vTIsYb}1G;i2%nKWe(4tL(YWk7nl<hwhuCF;mEMmdockD_tgN&%gVC`J{?a^>y3&
zLY`|y2c<Vw3O<%D;NV+YWIV6(SGb!^l)kCAJ$qKB%(Pj(Q`_DgYkOoFYj^&+!}}A;
zr(|lcJ@3nkb&JmRJtA)2k#ec&7*CgDg~*hkwR3WPs^=~(;Nx7Qb$+^=#cpH&$Clae
zd#bi~TzjA*r?%x%>5jXbr}jPf+;W0}`C7yhi+4wUJ=@{&(COf^nV}qar#|`M=67$8
z)Jr>+%oE8U)H~L4L|4ye%e+;jJ|o5YOZDm3o@|d8i`b`e9$#AcS)=KC?X4;Iw=9(P
zd}UR_{?)|K>xJwt$vSCq&Ro+;%u0uKZf}<hSh8lZ+;Ig4%XQPFV+B+`$Gz`LRnmBz
zuJ!a>k=M^0v*SGmddnyFe2%MK>RD=fZrN<{q?l>Uc^*cKJpBE`EKa_>5Mut(UpPPE
zOvQ<VuV1*vU%fN;o$|%^rSkk7xnK7BoqER>Q+fHQ(T?dm3RyZ9B*-wR9(?8TX8Szd
z4^O9rZM!G4XV1KAC!bETSii6}#%3wE?1gD8b{G6Sx%({D_8dOHBX&_lce|`z{^h-a
zO|LTaE@iHr<>B^zN|RL+yW@>3{_LVV=X!4GkG^W!JvYvD>lMA^EnVU_rOq(x1fKl7
zeY%vkN7<&H2M?IP7tVT;^XBP}KHJ*GGZpz%^HsERGft>ypE|YXrmTn=ulu4Oi-OCV
z{xkTQYv`(Mb$YK@aVv(|q^3c|rbni6eq!*gA2TZI{rj#RcH1^9Oy_>q&du&~7BX}1
zox1Ho^V}u%QD=j*U6NMCKQh@<{>az+5!<?dT33?Aj=jiDG76k$AUY#meVx(bhAN(L
z`(?M|UTl9;GS^8-QcBo#^QPu!JO)AGw%;ZnJfBk>^Zwh~JCnAaYFg718T`ZXfpAZC
zo!!^ESDyp7m+jm)^V#IKbgh*qm?td1yxjlX){vb^i!^<0BW~aI51ZJv=aWvt8|H#n
z)^bmN&6!mDy8ol>)z7cLg@<qU2+-*L?zyAp#Q_<)x+DX?iUXp{SG<bP+%@fe&`h6m
z&)jvKo@}>#Eb&LX@A}uZBGI}n(*tx5pBFmR7V=sCIm6qSNp&9|6kqRpbvU^EqRiXP
zOPU_;JH0ddd*a3|$(G05CC@v)ytVJj2foeO>`iu3ucC^)nk;Obm*3&MU2JphS5LXa
zdV8(hJ;_4zLiuc0Kk}B2%uQvL@bF-6ob!CW&&R$cf3siPvwJ4g@xKhbv1O8X@}ti(
zZxwEd#J`m8a0vCg^v%o2JLO4p57%G$LvO-2oiBL%HMjO-_E$UWBR=+9PZkQsivD{x
z^Sf>DC9SqFR)7CP`>y?+qGxyYG51+1rI4&B*C&y(&RS1vD_La1pFf*e6nAINlhvR2
zZR?lTp8u^7uM#g~W1mssy)x=b-~By3pZ_!TeOdoSpWpne<+5Mq-?QrH?$}Y3Ch}z7
zTmAjcUzLx<e+cgH+sFU$+QNt2?;CH$?O*!RSVb&q>H3bmx65}nI7@d%u{WjkZZ~9g
zo;V>Q*<wAz?0?)h7e#wryFP#OvGvc6dF`M4Xti5^!Gkwxjh-=IR2`K!tY5nLhw+Es
zksq!teq393{>ZF*%d?kBw_Yk)sk7Gg&$o*rV&A@-yNb%Wcc{HoapftB;QFJ`{f}Gq
z!?a7LTd&urt_{+D(cs<EeJtEp>eL<!w@-c{W)8MT>nGlcoOa>xvl(5yH{FW7^Cs1v
z|2n^YvwFDx!qE2`u76+3|G)lc|9^(21%G0<{AXx6{qR4-A#KjUEx#+`kBToWs5!oq
zKQr;dXZfk$rdi5YXR<f(KYD&NzU$WfgZ&aWvf{Z*E!S?%Oq{tc&g{Ua^aQ8$_q<Q?
z4k%k!K5qW1{`T?5?+>>h`_FKz@lWoDe)lV1Y=tg6T->s{IyO?J@1^gQVoupdQ{IJ6
zTym#j&f{k<T<b#qI9*k_T9a98bM6xB#N?o#zgI10zQN>MbwkUj^zJXQS49sO&AReU
zSNz+FzsvU6KB|rv`B8jaYToqvRHHl5cOrI0pB7npq9irwVB`CF+1&1b*Y3|+EA&?3
z!}}xa#cnM)<St@$_1F5lKg09qe|LXjRU9YythHm^)ss$a?poC{&)3UHy|NMKx%i{&
z-n$5qwYNlD@9?e)HQwv*voc2B!LRE2>aP*!$~->b&2-b9f8qJz{kOvXfBasWdCgAp
z${)|wng3Wn<a{%}|6|#kd#}R7gYUBK$~Rp$&t+Sg&v9l0mw%!XYyUIw{R#UKpZn-+
z+O62SD|=TTI3xJynCs7Pe^#GkSCIS95cMPan@{5(`w!P2`5xVOQ0j%*nMqDX?QbW?
zdTx<DZj&HaIBy2ip34VP?H?+A<f{wi&KGJtF8K36VVurO*Uze($}F@G`jw@>`u(Tw
zhhwh%Y`sk!@9z2RpXc<SL2Ir0ThR}BPyCl3U+<DSO}s+jsL^KTPZQYAOpt9j?^hT<
zYweScGb?6tES~e&@<FYpiLTJ&_>cSB7G7q%eY&^WV^cug>)K7<B+51(JfM0&g~`pE
zH7DUnhHKVQ9+T*ezb${)SDZia>-gdIf)&c%S07r<`q5_Xm^XXVbN@}D(+s@&1b8N2
z*6!OA)_-_EV^*Ek<vp?wvwhT3FCWP%Fn9Sba9rz?MUEl&{G97g#owNOd{XaE{=-M}
zcU@8a*tfs9Jmp}^#HDB7-&h<x!CZOq&OSeuRowcr_C^1MVlw_oT&od(q%T;zBJ-E)
z)1`M0Zfab&F3Mt^@{C1J?ZuN$Z|9KwICs_AhPrYSKf`eAg`(1~cFTAEXE^9lr(F?z
zVE$I~u6>3_g2H~}?b4f=sq$_u*N^Vd(CwES-3yxE7<lWxd6L+~;Ln)-Ve+?qANg7z
zoxl11$UM<YrrEk#--EL~5+m}IXSq+yezC}t@0!KW`_I(p{ms5+|6t?(E$^G_Z2#n3
z-O}IMX}iB&XWi0k?^|9e&&n<PbkEw{*uCM@w=jdFT+AmvKM7~N^7ym(x4g@5OXWMn
zqN<iXE?@nlavjGl&OY6&Ywii|_BvV5=N<04ta{ku;a&IrKV^2#`MFUbcJ0sk>$jT=
z|B!#Q{Fr=CokCmoY3<s&)2<hDI<&T%Th+F1og#3kZ2sLXM^^7RrFJdtVEFOy2lv^t
zr1*N=_7`p6we?GH<%&D&9;oe}Ju@=2TeL@To60#M(-0ZPc$puwzuo*1`G~)>|IvR2
z(M+r6h{*e|#Am5ZOi(%%`%0WIZFkzNlyF{2HL(ZB)Fu{q3m9$n|DjpmsQd2Tapw<u
zD{WRCk>7Uz)}ftp`~2s*+ZN6VGbz|QCnWbm#Pai&#$WPIyKWDUWRSEtXZ7)AZ0pu3
z5<2dFjQ<(zzW!8S`JdsS=boBr8@w0)kayoKZa6)B*0)#h^Z2Yd7O;P2+O?j&?&AFq
z0rFk5RBnAg+{^4!A^4x6MCVIuvYOoo`K*0u*6z-mc`u}Vj5^O8r1kmovs7<ROKaz_
zx&@Aj?6aS;{AVbstq#8w&sMT~M~&!5y;l<R3qHJPNUT0vu==m|&#OOXe~kafrM%!j
zLweRdy}cjV+jZAJiHORMHM3ZoJSkjj;?^r+lMYNuka1JLXJD|r!1P*;?T?)wlU_ei
ze=GG*=VRK|`oiSYhjTS+ZofS2s{3rMiC<{QVz)C3jm%bRxm6r3zILd3<x1V$pY!_U
z^;a#q>|4`+TYIhUTbsz)hc;;J=q%QZIB@JjWs;TD;@_?{K0g9eW#lBU*Z40!uKVuq
z1lzaU=X`S2vNCblS99X7bDPXMb0&`UPuD&6nt$ZJoWj4W{~3Jyp2vK8Y|fLWxX^kw
zlkbh6Ne2&pU0?k1Y>WD%zV_l}?n0_l*IYUgDCj4dUMeBGY3}NGnJE(^OI}%)x}QF`
zIpRdH_s+j&|IU9i|K<MXecq=Sy~TxG6{$hd<%;UlxJ~yYt*PWzp7!gx?W^?%{N*yO
zmLK}-_UOG=r*6VW*-sv)+<$qUuUR|O_@;BNa=vxtx$GT3g41^SAJQn9A)+C^D~WH9
zbgi0zhup!9{m1r2{+)07TJj%j+)FX_nzfHszs_#j^EUm8%c;;dXSUYKEafL&@z%+9
z=N`%}o&IzFvc&7}Cw;Oy-&McWwY|MQ+gA8MnVrP;sgv%R8=EXFd!)V6om=qn(|=!U
zHvVT|P5<$7WyRwMeytCq=jz?NcR%QQuAa?{r^!lx=W#AQX0!3INwmK*!>{YgkA2fl
zACceQyXV4u)7*r<Oa6`qn`W84zqu?<`?URorQt3$rXPa#t7K1hDn7;)8DsG;$KLC5
zd(u6<S<}DneErNIaM|t~f2MCcedhUkTO%vEuWOT}e|z!#*>CPs^1A1m?&OK3ZI87Z
z{9i|h_4mdJA9LpU_V&g<``)@e=O@|ze)#e3^1E&YWhQx*51tsD&G^yuh;8f4kb)IA
z^ZxP{$VpyHyqve}^Jzw%gpw0KqwQB%KH9c5`{~Z0-2V)nT>U2=_j`T&5WdOgPtf<-
zwv!)q-v7w$xveL){-MmZxBc5*<UHZ>zapglS^4n^^&?U?pLnKSc(cJ@X62mX_wh^q
zY3-2eKjO_9TGo~ubYq@T`OPNw2g;9M#?PHElVkJxJfE-T&v@5n_WqfRCp{?s@}Ggr
zpy=<X{a<%Jyfkh9_2MU|TNAY=zpy-E+gg2X;Y$BCf7CwouGty!cD?EB)Wmb#r!x!t
ztp7aQ6Cb{%BBe2gfhQrQcuwj0y;bk#GXG~dG-K<`;O=^X7!B?7MlU~_v0p!R{$bpj
z#o`v*?|e;r&z^kCjwyOw|HtHmv%b$*6CHCopp-Qzd&S$^A8#ucU-*6fLR9YlMjP2h
zS#t6pTZ(IUT|HCgFA%#hdBVbAxu<t`=NZ*K_&G&*V!UFF>6LX0KC1OrtDi`?YVuqn
zZ=t?o&F2FLWWLE}zmu2y!+6P5UOanN>)X~h-wm_Oo7~$zxrJ&Lt2uBzGh_I2@OIyv
zq<!`FM|b#XJ@*T5SQ@2&YxRwfw#kq351-`|-Mi<*E3d`U-6}kXuk<t($IPkU^87GI
zW7G9RZFc_|G`7k9buF(KuH%1UrQW7{W|HKjhjSSx%zexy&C=Jtes4{So$QZlzYkmQ
z-hKEv-zCVS!H~&DXobbGM-}I4D^{I~<vLls`*qUBou(Sz-?P2zWBnH||GTn=?W0ls
zAybuxPYdVWXXu;DxOC&+<$rVyK1UyBm|{^-cP@15j>AlgmG((Tb2Q``x!V@TGM!BP
zmYtE4Ytxw=yXoXJYsrXhMUD?0UNHReH2q%kBcJ!r{%*UxO-<c}|Mm;Nuq{5mi@)dV
z&#nFZH}v{h!ag4Qpcy22b@TowTn3KEeSTlRD$n*$`)0;JVJp?IGxyv!7AkK&=D(8V
ztL^Fs{G7SjyLW51rQH{EmjC8>thS1;>iXq*EMnIUtWJwPnxoBNWO3YY#`kqPd7-}k
zH?}TV9iBDa%5L+OfBHYF{rfE5mMrF+tj_erGWl42`(=saqI&HgvppugiVVBaw94(I
zgy`X(bZd8o&v6{v0!$iaOqo-vW!&%cXm_sCz3bWYH611FOA252X`emz)Fd-FSJ!7n
z(v+vk*W-_DyR}OBNE!2l$ij2(m#^*f`f<OSD{G(T<_2TaqkEpRS)a|me1CF$ctzYf
zWhH~26d9SGTC0DekLHV;>~{Pp%+nZ@T^*KSc;cY*e})CuyBh<ZXMVMfKBf23-n~va
z+vxRtnVQ`7z4yY_mo9x(_`D(Lx8r5CJNu5F{(M>C`<feistm>NWAge}s{Wh%z<X-G
z!M#7mA8L>EUY!-OaL>lt<MLl#EO@qCyX3@y^<TChS`)nX@D5M=C*JQaf3ZJbFIlio
z#=E=w-TeC^{~3Z~^PZ#}T(#N1I!9$s_e3G_p!z*?`k#gcdNP=M?R=uLadw$xn8Y8B
z^_McY)&~A`jmzynH~-efgp2<fvi&=*b=~OwI<cT-PC{(t?U;YdoO~-y#09N#!h`Ns
z*gt<AclUQzW`OxyZnKR>sbBl~Gpr`&wchg%&bw<h|4UA}+P<=F7pK|J(~OmQQ2W6B
zk>StqpS?#UM7?FBCjT~?^n14Zuf~aw|L$XJ&41Pse_!O>HjCpPCm!#3IVW^_7{iH%
zxeK<-$XOLstdYny<+%KG=ZW)9h9`g3?Z323Th=&g?leIyu>_~4C3EJ@+cV!MX-~T6
z=4+wVa{n0~{%2^ZvfH|FeaG9H#H?-l_36thH)Tp))UK|Resk^plbdI{K21&7QRb%1
zc+RaV*89Qs)-BfByWi#?4>Q|%E9-NHu<?suzdF8pSM+?kxv%7%s>iWU%NO-6+vl?9
zgW1|u&MP?IrwP8|<(SFb&?_U;;h{X^q{_rQlVh)SKfL|d?9lU|o%?2e%HDbQ%xit?
zid!?DzgzTx-)Hijt7~+Wr9Wr?t(3NLsg~QbkLO3##zy)6l1qh6^_#w4wW&6n$9Xm)
zp8bbyh)$fzrKgV@zwyS@?N9j6@HL!!S>)}z?<SwUxqajD$M@FpTDEIBYQOgl_Wt#s
zp&{kf(JxjfZ7d(2j<on_H|Le%_uNv0dY+sA8N7tuFPgpSK5~u2T9|F|&pA<PJByci
z?m2aLLv2;nl@A%8?wox3iPPeZ=W)}R)e9$QFS0uE$9#czYrR<J%dgw6oU<29Z~h@w
zRN;L{S0mCUcR7Dz;u`byOWR*ZOxq_naZVd+!<*Xb;#k)8t&jTUvmEa{tz>?AZ`)Eg
z-xuCfw{F~;{^9w->po@`@4aM;c-yv4u>P{)Xt`DXq4$i3=D(~L*s?UKg4y@F^!m&G
zk6*`F-E_=8rS-Qk;M{Az7&&+Q=l>bj$L4d3uTJ<V81-r1sd)lFibb^4ezY$YV0ivp
zKbBc}`Jco88UB_sRYX7R{kAZFX=IJd<$I65WjtsUcKygLHYq(~vE;vV%+nKWjjvp9
z^e^bXQ^23~@Q*J~)S_*(i=HPx@L;a}z+uf{`P1J`;z{VC7NxI$?N79Z@3Omm<sbX4
z%<!;pxsP6`PJ11ArR0Qiu5et>>B=Q5Cw*ezZRA$rXq_S4#D2=RX70nc!T#dk1vA5)
zUfpvvY)X_qrq=WK8n*)9!s|Su4T*CEIF$CZN12O7t%=%FUao6(&u&3V=4`b`9)Bi1
z`Kp@yGvq4+<2;MWURUFe2Q}4+D6cs9a=U_H;|;!St#z7_*0a>bH*I{$yE=B_(<Psj
z(p$q5|GHLw?|c7F^`i`Lp|*8x6YFW=Ny?J~jE+2cAZK~D^!m25xwWdR4YgYO{1b}j
zFEfmbe*E&%{g}(|HW^$y*HUsI(((EF?>kJ7`>lGm@uG#QwDSGbk4tY{c>DNjlK3|B
zj!i#>1h~8w=e@YSN^XBi<15~@msZo7Gizq`Y?I1cDdRGA>-C&jziyaW6pI8$Z~My9
zS~|6G@|-5uqJ6?UH(f1}e^Xii_>owq;=!j=o-0)UX1+YjHN@sg;qCs<vpy|<ciMRy
zxAXP9J%tNmcm6x|Vfx{Wa0WrU_L}ADD|Ac)IL<3K9yP1JeVh5&*$4dXlUAy5>TaoC
z_IQ2Z>N(6;(nX)RDJ|AM{xV>Rno6NusOL$B34FE%l`Dd?y=NWs-uNwSZtjOZ@A@sT
z_VIpbb}O4&yeu}+$iVMm-A{%&B{9kBU9W`??`PAIFumVgqnmbugXz+tXG#SgckD0E
zUipr-#yNLQwwPhg<#(~-Wp9_f^ZE7Q`RCWM=jK0Vtd)$-icBmycXIkXckMY(K2?A2
z(>^;-uKdo6UXM5ZtMyFfTV^HC)zfA75)wM~>d{-XIZV#NWg=qi4VB8vvX9oO|Co2+
z&OyH3hw(h7yN<2Q$zPMdu36~t8J8*XO7q|6%C8N)w8#5lt#|Oo%kP#)yk+~o^RD@{
zl&J>6?0?t!pK*}2zP_O%{m88NE~#rryrn!dIpgo1+&TA}Lf0!Jr|s+(kLS%Wom6)$
z=9*bpRm{(4_L8r^?Q+?E|3g!S*CTF8F~!o{rT2dt{OpPq?8<V<(~@{Fq3m-5;~HM?
zWB;UfU77t`{Xm^Sleue(=a$<iBN*pDmg>r5Df#JUDRccz{hOt~6<^nH`Ok3ZKSO^#
z@0vBY9tUi^RAadIh0A;`%dOGcvwt4ZR7#xsE>S;Mo4IM-Vj02sDgU%T%-hX=<7>1v
z=T~pWoqJ}t)Ni>ZRF_g@sP#*x$x%8cZHLi4okNc{R`iIPzrR=*6#uAeQhj&a%5Gt=
zz}}nB%l=thR+(h~W3i2t%l`6zs^!f({P{m-e*OL{X#J5$1>fff?{OCR-Q@pf`#o+!
z`tNAwiSs;HN9}Ll5`LNYT+h?Ivse6Pl{DvEJocnLAZFPIyP)NgvJ&O1<9L1qKCYLl
z=zD%ZPG;jYU$<A09Ffc%ldQR`XTMxp9-6RXqr;CJ0Y7njgY^rh=?QkvndK?7A?QUn
z`y-!^wfC8SFiu%l@JsgNAIoc2-(Chfe{}N<e7EFB^@k_NB^c-YsQTD{{?ONJ)?d~e
zneWfNl#{RE?mCU(Rf^Nn=FR3>1&)#j*%v+*y^^Jwxm?Fi{L&Ng@H6*PFS#r|QOcmD
z8S^gmq;g*6xx%AXz4wkyd1dydYJSU~$_F=XoHJMa=s)yJZPEqpj=uI(-QG#No;KU=
z_AWcCnWp;Wvr)yv0?&mX-48SSTzP!e<R{Cu%?dda9!}kPK>CUy7vss7Hwt6kZO^S=
zR*~(seb>fW7bog<mIW>IR4*v&J*?6iQ)l{3<C=+W+@<?ITXt<xxOuR+kmurw*NjZA
zH76&m*Pg@>_Ir2L=dMqyd{?TKxS88|TzhsUuTG@KeE+T~_BY@CiCwniY5nzAX64r&
zH*W7(mVC}?PWt4S+^v5%^m!z)E9BZGK6t#rZqLX2xAw9hHH^xZ=gfV0S)n>ZXP=_H
zj?xn66MHU1{8=H}82fF9!h~|BDz1-zlkS?F4SICwRLPE3|NA^D2OldJHSqf%Utje_
zbE$4*t7p-hl9!JvzGSLx?mx6o=vvD<j>$)M8NIr$*?P;Rn0rQ$#W_X}#^-ZBH_rNJ
z+gEm5zhR%Wd-Hz=oj*!5zde83{&ihk<f2r!j%}ap3jEwz9?L%td|nVTVWaZXV-D}<
z+5X#lQT+7Amet0qnjeWwbJ_k!`#(e5CZ;8cdld7Y&-c9^Tl@Jx!}XeYLB&s>|1)st
zAMU;V?TsA&mb=>}??f&s{q}m!=bmt_Rk0oc(K38XewVxs{27#|5!$ur<HYX{Zzo4?
zl{7Ee_n0-#zj)`Sk7wT=J$*bCRMzD<J(m->JVPV!vmtvKgUoYL+x16QCiOo1&(Pxh
z@at|DmX7v=vmz@EZb!Hs6ARU{tDi3!Co<XpM=e{c+19@^&8Gg{y5g0ScXqbs6M==g
zf(ieUJ%yClT{?B{xlC@*k9E0|<3H~GR&v{P>RVlgh=(qne`ZwN3z!glK3sX4y2Z-n
z7AvE)j_&k29x-3uCNgEB-PDKgIitMH^FRI3UzA%je@d%ay`FgUq?<NPR-t#@zjgkY
zZj$xLo?j_NP3gnArXH)$$L8PoJ?qncq0H@3zDKt%eR_1y?YE0|u-)C>Dy;XR?`X(O
z@x?3IGasuI$NUV~aqlMYl@bZN{|pbKw#-{IJ<Qv!y7m6?_r1GnTi5<Q{qozlUp;Z9
zOAa5NCm%YIjnQ!P%N)K-ZtnSBPfO?DVt*XAcj4V1@kgZI=qFdoPb?IPvTMzV<z&y8
zb=|kA<b`ElNPbPY{-b)SAE%H0vhC}9Wb5U<I#$bG>y)`*Yiq&khCq>xS_@LU1+3(D
zK9&q+^N`n9R+eS;YP!4D?X~UX3$G;(W~cRBZnmyDQ{Z&G$<a;X=gfA6CXte7dsjcG
z+i=~E`A4JZ<Gj9OuMbJJWcM&!dL_P1Xv33vK_%?l*d61ooh_z%Ej-K+(ev$H@#UZ4
z8*0QqvYpPC`B5k?_PN6CeIRSQQmlI5<#oy0=QtQn_&xAnW_kY7hqdvkGZSC!o810y
zO254A;<p=0S8T05=KaC$Kf{NuFDBg*ebUJ!)3?`R{kr<}`-1-&4jF!oKU~$aPC25~
zIy}$1vTMmdEsymb|77D-&rQ#8u%7D1T{w4*d)$omYwF~F<R7V1`dByh;eQ6sn`c+N
zy4BJxJ9q7-{8^QD-vp~4=RLFJTE%S`%F_R(pV=yFcBt&sx$kcs|G9qF#g%V=E?9Rt
z%zN+ojr$)gl;6_-R`<8ozYBJ}`+rzJ((bO6d+vQ@Uain0iFaF8AI_~isedc6<o@TS
zXOay)rJEKsA7p<a%l(i0=Wp8^8Pm$F+7GN3zJ14;rSPQK+``3wdu2n|qU+5fo_q@V
zDEGzfcJHa>3U$%-2h;cG#NW&h__)4(i$6!a|D*R3Kdhu*Yj3$Moi~%``u!B+gQg!;
zQw{D!S)J0o=3~e9ux<Twqu1X$e$2N$Guc%oP<vxS*Cv4la~e1&Ok($|T>sg)Z&O#r
znOl3S!V2?VuG{Xp|Jd_il?Se7T|BwrN}*v^mRaU%)79G_CjY<iuX_K3b^jSy_89)Q
zu0QBd<Nx9N!!KrG|Kxquop)W{zxmyzPq#9bZ$3X$WMA^W>nS-pjS|UIL$&-Li+6CD
zZ7+HKr+8mgz1H73{~4MNRvbHgeE)|4dBGp6eaw6&zqln)c6nLfGo|Eh73bm%#0wbM
zm@N*7{y6(+M#{fCyKfn93vy%M@cd8q3!|4Nw^PzMBTd#6msc`QJ#L}S5Wee2M1_0Q
z)*V-C+}Ew^tzm3siio{CExbqDr%h7Kq^9o8lRS&NcajgO_AZH0mg8ekzy2rtrm22Q
z)!aRkB}}<X+N|rhd3_SMbKR}eW^NraEj>g<tI1vRb=(%INoDD?OBdM(?N9fWJ9PY8
z)W>Zb({-ks9sBHgaq--R1~Zj@8%+84wma84<w2f`KvDLye!kb4>1(sf*PCQ*eq|WB
z?~@4cNo6+XNkwPaFYm3L{UF-(!heQjjl>o$@6|s}K1p*sm$Ye1*9kW^OQ#d(_{^E-
z6(0EWb^hU~FW;tbn^o~S<%+4Gj)eByW!IH2vsV6kFwbKByj+#X&vKiWth!oj|FD0_
z-JGC{PbWRmo<HUI*6zZu2kf6ujNSj{tB&}5SsUfVRFzFJ?&~6Bj&m(wbK8_yWvRn(
z==MgHF9Ckl;e8RY^|>#m?Yd-S6?<e7Z;$^yi(hg@b@Qga`OmOfw)brR@xSs%T>qWX
zG5H%F$lq{0#j5m_b_1ir_E{(YGccXsu`~YW?m6GK?2J70@A|B_?LGSx|LDw;?o^qT
z^nLfC-o<alPby8Q+Q4RKWO?v~U-q}lhxgfj5S#nZUgSsjqx<dl4-G%;o18VtZeq)Q
zlei!u5sw#(JkkQSo?hl*KeHrlKmR|~41M*t;ve207BIVEl52hV+Y!N&lV_&be5(8L
z`o{CuzjuDnf4IHvpU#g}j~}XcE|``pe<Zx{<@J*+y*$hAJ-u^Ad76z$`l%phJ&yA%
z0@_bM?=Et)bG=kFWper>^S7BF)jfV}{iu9I&g{dx&fJH&{3o_-xU^-qOQ77`<q<9$
z4su4EJ2tT{Qzg}AbIxfNo|?-K=2Y$3&u9AkJ+D&t<+`^rXYNI~Z0|Z_(mH#>s>^b0
ze*O%ze(V3^vV8E@{BZrY`#m<A52`uVmRQSXAHEgayM{|hJAx_lwu;2#Ny!s;PxAbF
zH0nP?Q{5ld%lk9qyXPtX2!AB&^xS!)cfDZNci~7C{{rW1F>fJ-87A3#L;jp;XDHbD
zB)8?rj)yXtYjYRAO0}$$+m|fA?&Pug(fO&X-(M`VH~d=9yuR@(uUPS_leLA#RTED*
zO$}PHa64PknS#3DIeZVej$fz|T>oS9k)W6NWVe|cZ$7KNSw<)8?6GeQ4~j1^`6m>{
zm;Glr=vF82NAHL3@01tuY;_W~i%xr8(k;pEp1J;=>Yn;-cO;ih3fJB7WR(+>QVYAh
z8t3^V_oeJ~e%wB&VPp8<tnZiA`KHgNWd2@zD{boRbD2KT(R_Y|2cG;{a6OK1Yp84S
z?V0yKr>~s<bZ2SKv3#aE87gaQzlHBxA3eY9Mg3;>1F_s*AHFU8?eNEW&jshjhrX3r
zsXm$KJ@;I%+HwQ2Rck_+xsH67une5UTYLJ0_>p+7FD2V9>`${7GX45&#wV}q23sb^
z`7%E+>CL;a^htEND7T95(>8V$p8jX=kHndM+_rY<EzjZ={;O{Ptgbs>|NEt2%)3Lo
zpPqP7<el7jS#;{d{ysVT4|cm#AL%pS^G_^YUVnVgMN7}cGHd~_Pq0fUluEoavRwUi
ztJbm46YsaIZa-`nm37@d^H2Qm$Uh!Uzuvt*eqY$Mo-gy4>({IO-(sp-z8^VLq?|eF
z&T+w$4yy~T`Z&2>PZ#}N`<uC@;BV{xT>HkeAN;>9yznKv`}9hsjV)W3Ogveyk&x8&
zb?T{e%Mzj_XI}G|(Ny4(^-t+f_2aqKkL=dlEnRn3W&8C>wnw%LS*isq-aC3ydQ<cy
zPwW1eIa1%`dH*DTG(VWj@3H-Z>yxDNo7SAkk&aJxZFD=qUS?4B&-D2-N$0}AC2uai
zc<`}c%F?&f+P@~&{%2rO_))y}PvRB*I+2=)_CwpF^w!*J-PZZYL0?ay>v>5~l;`B!
ziZ@F?i@ZBOC2{|mB$<Cjb+`6!n0_q(rhWYEqjJ__)8nM~M$Z*H9JY04nfHpQn|IG$
z<ml9w%$Q@;rebi;xNGgl<bPbRAD_SV{qQ`g>ou_t?;1ONG;etvUGbGy!$W1pxt04o
z`K}zCaEyCF44Z30_N9Hg|1Qeu{#|LurQfI+es!|<Y_EMg0wV7jeml}|Udz1VNbk<;
zDvAeB94)@^Naj%2uQ~U3+}nQt+M{D1ma(m=+bWu=Qv3X)`(wMs5A)m0>-ax>t}MSE
z_4Vn>xsG>P3^EHAubMbP^$ypQK9P@~llItu6Zmj$<-`9BH+MUHC|fS4m!oHrT{+R8
z@sfA5rcAm5U-9`<7NX4`yMwlD+P&Fr`uAJQ);~Jy8p1zk>6~rX&bUh`dNUOM_&n?T
z`<r#z86|V&LZp+fn8u!+_xz2|W4rmr>94YnoLR82^?TSS8yWkLTi?{kKD5pA7pS{Y
zr*Pd#Csp4xgpo7xU$fC|wv)2aY5redyZ;gScg^CD@xuzGlY&{-&6yWSR;UEjvrgbY
zw(<}2Myvj}@{d$^+}XTlp6Z<E>%v1Br+;7<UHG4Y)xPMLdFzs%1dlYkJ*^(+zr4I`
zdiZes`z`<KC)=L6c1m9P6W=*AagE25_B8g#*Z<p^eWYvGj<mN5%pa6CuQ_NgSefv=
z=)w1IM>9_e>cyV?y~fdQhs}S6`B{H+7eAh<-chQUSjv*ne@|!Tc_-294eZx;%k#Wa
zd${&exWY=U!+rj)2cP#<$rS&*KC#Ak>e_cEFQ*9k&*5NSf5*N*>h(Uk*xK!(+ne9D
zO|+1mt=wnv&b5|LZvH!wiH{$xit?5B@vkf|f847e`jfq5y&@l<XYZEV^QZJ3FEf6B
zv?ltuL#B9f<d4)x>`yK)5A3syypvG!^>N?Sult+7K3?_e+xDQ|)|%LgCF#p9m$O;%
zq=v}Z|N8n+UVhDzc8?3mtqzHzcU)`jFa3D^cGjntet~P{U+;V#*t+EXg&*a|17tOG
z74+6ChP|A}ar@+-*BAE4*Xn*hXzO*)_eexV+p&i?_;+m=3oq!iIDb|`;#Ky^n&h%l
z$<|+=XL9NPUg%~&E&KLA;g><L<XLP=Ixlh0WhzteN&8g6c>eF!^+k)HPO1FnE4S8S
zx$mbrPnUNpU&>uF?|ezGfYJKX+jS-GaGqDTczb!Bar};10aN#QuF8Dle%_>4GWPJZ
z;<>vk&lOMXUs@+#pBk$-(|)S-qz_&T1yZ{=860H3QgZxZ{5Aap(f=84ia$8oT;uh3
zVV?e0e^HMOGfJ$(yn}PhTy9^BpMNf|wOqtfURyu-^PO~wV}^y-i?2P5usr2CfBJm!
zeR4l$hkfY(c6Hv=V%v2yOQas9^fYvxIyw2m_A?GY9Tg_d2|sx0kK~WZk29Blh;QCw
zx%&JnZ#|XHlGg`LZR|JB?pJ@B7I<hQ%k!Q&>A$x9IQgG})$vEX?!Ea7{+M0l@2J_)
zR9Qa#x2)(DEmuu}`o;T8f2I`ApOMlWANR-N@17dvl{KE1P4wALFOR+xvmiIz`|7%-
z`}Z)cGj}#!6?^DZ^Lxp=JQar(Esvi}oq6TM`MGZ2uKfBF=PR}0>E3nq^W8iCNIuf%
z$`+53@6cIi@_V=W?PAs|L5?~s4TVNND?ZK<D0sD8!j?mA>e@{z_hJ?_S<CU&evW_H
z{3zm&`QsCpA3MDelR7qa?X7Kp-5opgm$f?Qw5o6Y`(WqR9b8YB#%m|WFdW!s-yi=&
z)Ba8BZ{rH4^Fcp0{x*Cicv_@f$o6mVmY>_V99})OjepMJsVW@IxvsYYS`W>?Xi<J-
zR>Z2;{82V*U(9>C|H6+qj~icIUhwMD+)MT{HO8~!1y)!j8#NeD?0F(rFMn#^^dDtK
zpZFeHGS6d=KajRB`BI*X)zvkdTJOjP>lmJUc=G$BebYZkb9^=G+3g@*Jg0f`<xisD
zDrarY*!=lb@st%7o3Hj{HOxtWdcxv_%-3I~>&`p6_NLu2{O)0Q=lS(n&qZy{&$9V=
zTyE-(jA`#xq6-@g*z+vEh(3Gv>F;f$(>wPrN?%ivla#S-+1m$9e*SeHFJH!)e*AUi
zR>flf`T1v6SIXV&bN<h8G<<JGkjyD%=7Pub{xkH;`(>ZE&v>h&`mML@_NI&H<qTg0
z?)nveG~wCa?V4Xjt`}ebC-2F7|8RfXuI2~UFQT5!;CL_B|44gD|9TtMTYrt?HuKbc
zFn$?t|3|fQ|HG&X2DZDhZHpi4+V&TGpY$?nPL}Pq>FXCg>`AxP{>%G8U*PHCDM?=o
zi{gJ8*RTAe|9Bsp!6U1w%HI}?|A_vgqyF1zYp(e7=NncTE<C?Aw$p2lZr!ofU+l$0
zroO9*{+*Y3TD<oU@4CeT*Y}Bf+xhd9oc_IHlhr4d2X&#J&hFjqWn|bN^?UZWGZ&Za
z`_O;bxBj$ruKbZ*CB1iSri+;u>R(PQe#2Xn%Hq1O{E6I*$M%1-{xjI^aXVD4^Ie=}
z%k%vA*T33dSkJfmcT78{`JajLMcZF^=O=NncAQZ8cxhL*cV?K!5&QZAhUP6PbNKuW
z&tKYfv24BUU)w6as~2Bx54_d(d2yte<Cga4lJ9K)Gn_a5sHdA(yU1<t*P~a@o;H2r
zDRW1AmEOgjc0nF2O-Fh*$_Sr$9k%9O>b8zU#|6FTzA|iMzHA>;^75$K>a=OoIUa@1
zII-}b|HHfA9qk_UFZDCIS^RXL%c`<X2FLD{oU0D=R9~r=y>j~B*-{F#&iV8^aeP1i
zpknpL^CewzsS14y-DOJbz3yK&nHRc*Wx*T!mFs5N8j4SiVS8oO_~mS_gjvC<MLy3=
zPF@O9Q7JsQ?!4co-lsbJ)^+n+BbzSWGu(bU$Zo361V;&G3Aw2^z4=Anomt+M?~-+x
zML?$T;2(RhS<gIN_M4dt&f#BMIQcY}(7|)opN~I{DBoUGxxn36?_u-g^ILPZI+de}
zXIIV5z5Bvb%JjLy+XL@vS1VNtF0SNeU^jjKtM&Aj*->d0vcJPkD|(G*s?7aWs=oiz
zI;|U1vlp*3*lits*E2bG_lM%fzW)s8yB^+4-?dA<%>BcE2Cs9`CB1yHGrl~RwLh1!
zX=l%!pBCpV4_dswQgXJiHqYNJ^VG!fSibc;_xo9XStHV$;$-V6|NQnx(e>+Fj0NRF
z9S@xR@}I#ro9&wO?(CW+A7B0mUaq}*)5JGbYtIDzH2xwKedMQ2x_0xICo<Q2YupQ;
z-iS?*-ItZnAG^kWn)c4C%6n!VJA5MfKZ9IH@13WS?Vs0MeQfQ0@!{C-_TQ6MoU~~;
z*d7yBQQs>oJbl-@*bjGKWZVkP*S*s2e234l|JdHh^@_VM`|Y~pA)oTfD$iD4wz>TK
zdZrIoAI+G1okv2OXTG1k;NR@)Ho7IsyEv8Fw(auQdgx(cxV@m_7{BQ}v$@O8YJ^^R
z;d8;NE$l?jmnVhS=5?(9>~`ZF$K#imc6R2hNuGM`R?u!vj#Ga8HbT5A#;*+59eVZl
z_}LRSCErYsl@u>t?Q#CjiO0&eMb>gxH9A8-7&reDZO>g5dt|A4hXL~sONBXg_JP5&
zRoB(e@w6}BR{im<W4V=dbg6Zxd`0ra`NzLJT2tG1FHG=E*Mn^g+VecWtO}Ew+wC|l
zK|)66@qE9!DYK4u=GxdVx}UvMXts9bx<JP#GX!=V-{+=1D}2h&<SV=Ch3q%k|4_6)
zr2U_Px$fwtKap2@I*UK@N6in~#;^8aR^GhT%Wur+&v-6idqQs0<a_&7|1&(;aDVgt
zuKG0oTRAnZA8d}@KJcGGq~@>NEkP+0v#KlcX3I17YuwUfjJ^?)+L=AcBP76n+5N^S
zyXFtZ-`s!1KUgclT`jBb@nKs(#~ZOHw{AaHU-ww^^-1+>dz$}ob^o@z{qK_eM)95+
z^W?1b>o%rBKNh>*Y}DL)$#LdGH-)$2VfRWm&wuCPT0eb`<fFSa`W>d5qt1Vqm^EqH
z<(Ja8`2XGcUKbwgzixF)(6Yr><xjW2G5@Xc@524<>|I~^c`HO-ev6a7c&0GB>fc(C
z$&MMH)MturDRevaJ-kSf{|URpL_w8F8X4F8Uz|Q@|G_uDL4MQxgX=ryDSzk@&fceg
zrABs5X7B2ItR2VmRhO()5i9#x_wJ@zYP?}%W(rs1lY}nz(Eki9r!U&c{X1X(!Ka>~
z;{B2EfQ((K-`j2<xBC0{^xHoDw;Jab7uswx{5|2osqV?2j&&_&V2m%zkXmwIuuej6
z{py#OGM68b3i-@!`JdssGw;*gGm__&2y@)6xhkVQX~6`evX9ZnW!_8A2|1jo_VS_T
z)hC-S&z~0c+4k<+YF(kNm#en=vn>>t)b;;-bkmR7OI}CWE?c=IqwL$o*ytq}Cl{J5
z6pA>kcQj%3#5qs;s%EXt{-_>*N!je5T-T+;PjBzz2tRYaOwV1Xevjkv1migC2U8|p
zK4_&n^}(l<cHb?%SH6`riZ&jv=?V9oQ1r_7=i{#b41QNRimi>GFAt7o&zf~@{pwiV
zZyQTh&%9W|sgkp)&m!(X$%ACmb6Mu!w}(w~Eww(k<Cf@>q#5UZgu<EU8Fp<i6pGOd
zzPx-JyUAtN726~H$|e~3JMpW`KYVFdh|rDas{`*HYi~E@%&%kp<8Wz8o3DPrhu%N6
zj=aUS)yq#6&$IIkm-xDlPvVZt0wDtng(t;d&)NH2uU?pC6;jW?Pw8cuSI?&($-hIa
z`u5+bnmYFq6QA*x6NO)Gu5&(o{X4hZZPS&f+R}Fq^(9L_?08{(KC7^GU2<5}w1-`m
z$%4kMQ|D*3X{{=5uuDFm@_Ze`ihK9|-Fmp@-J{fLN}-D%Jb1n=Wd50ys?eJyI|9TU
z&QugEm*Ly<?LULmxve_|eJ(kjYDt!MWZ?I!u&I-u%JtVrI^WstR%WulAvY5re_ml<
z`<&}H{xfXc{-*ws{B7l<v;H%*zxfk1kGJ1>)0TaGm0zOwCckZal(}%CV&An#cMm%x
zh2<^^a+#^fBy?ZadzG(_{<o!(<?F<mGsDi``&l^o>+7%Um;Yx-mcR9%;mG`r(~oMO
z@7gDDnQwJ*d8+IR|E+5m_Me(^YK`RDbyKG{@3NZ0&bu?x<KUBH$5t;@b$|52H{zu0
zj=b8B_J4$=<F{?yb#<$5^wFxla~IisiixO*y5(Ko!E`Srb?ZzihtTpKrUS`ZYaG_K
z>HkpK-le-P|I2UFA8XPcaWCKa;akUypw(K(pZS)mF@}Yo$ZN^V`uXquKd#Fkqdx4~
z*SzK=&%T6={|pZ;_BW}0_RJJb+H&zxXK1IrlGX}#2F9bs+xLG6elHW}taARr?~_sP
zpE)N#V%vY3flV^#s(H-<J^s^M7{9w|KTGwO+n(O8|5kR<rQiEc&i8Wv&%jc6MP=je
z*+E-=tX{IEz}F~C>S%vk&?$96W4G_z%zF<zq;kr%DewQ@<;bjK&$eZ*pKrYLhO1p1
zy>Hi;Yc*~P@o7AvQhKcLgskz=y4k*<>)d~=l<z#=6MS&nq*vah-?nAn7p-XermXk&
z=A^rOcBBN{`I*j9RbbeE`mdg@-m!DsJ{}VfO1Z7tU8U5@=qz`jj%n|kZEZ@LyUu;T
z@nwU^>lLP*<+Wyih0GV1ZhsiQ%{f`!Zt*tju-?9vmC0+Oe{8$&zpZ4`Ec1-B+kQKp
zKJYp4yLP^^j^w`NNd|>6zv4Otb=F=uRe9o=<H2(tU%$VPP4;~x`BvC%vcavpE|XWJ
z^4V-M&pRc&A))v1ipOPq*_YD;&zes+JwBsZy7LahfhV7T@LXT@M{?u#kL*Ww&*zFf
zq%{4=JgMtnEUtQ+Ma8N;dmyGVd0KWrk;OR!!?@%X2l*zi?zMZaT_|Aa-4|Xp$@t~Z
zve$73e;aKHli%{bL0|8_;j*1PLVD&YaR*JO9aDH%|M>O9cedGC5;KD)t!7W#D!u&d
zV!L%elxxj99&OolIoU4vN=CBe?_)j|e~oGz)VC)8yC}cqdB>N0?yUXX`{eHIo4)Y0
z%&fYF#d1N<Bb_|WF70Y~xjauYJ4GReadumYn%2`ghM25>d>`7TSA70EsaESA$2t|8
zT#v<{(qcZJew)I){%pL_pQx)zANdw4GN(^@cRT#u+~W;akJnk1d^ub9^YMC_u%4Gs
zMN+f!w1T$Z+FcemD|X%TC-<0s)VBWpR~Tn=RoR>)Hd8uZKepuU`r;?+H^smD?q6A|
z#w|GMt^@-ELt%q>t9+@O2oHmHt;v!Uo_%Q?{~6}}_-lCl()O?1p<BE3HH$p$&D<H1
zxA_&%KeY2@UTUOd(9Ii64%Y2<Uw<&4QMV2JEAYY7zB>5-#Xrvf8JZrxw3<5o?cPk=
z@9lbfbiUu?xu`Byu6o+&xal9&3pRywTb5m5;z{V+x&GjP20@pNufu(oOiNc`m1{_t
zJpbJORsBCKK0lOi-edjI`oZ<1_c^l6Cok``QC{V&I&W#lweo3imt`5SdM--KUGjHh
zTliD!A|npdKN~7~owCh2KJn~Y_@eMa$$tjE`=>9QGOW91^YP~5#WshWCVwk=dS-fb
z#DjOj7KV@KS$ws>wAbGE<M$4!SI2$Zq;s^_@WqK1mq<v6#LE2pp_6xNao^4-5Be=U
zmQQ*lk?g#8N$e`SBu^U#2FvFX2hL}G@wGl!r?g>zbIerb>gY_NN12L~ESY|$S8H<J
z)N8G;SjBhn%JnOWA(g6UDvB;H{<i;!RE?eV-${1DN8W_Ip7!Z=`{Ym3TXxLcc%QN1
z!20Gt@@u1Q+vcin(H1>6XFKcXQ<6f$LMPb&7S}Gf^|wjeAG|;JKLcOX59NpR558w|
z6l~1dBP?<2=D`O}OHxvJ-Z6YX_{Uyx4=?Mp#moE>+F6g@<SAHC*(2zAl7(^NB<<%}
zw_e@0{+DxGXHsb1pR@h#a+-T~Y@F{{@z5?<XCqs1@22D)CXU1XhfTjsKhS-9cfWK+
z<HLaIVsU&QnY9*A)z`~SjQCXFGP59j<$?9xYn69>=-ZjSa^wA+=clJ$m_Ic_pz^C5
z*X`Bs{cj%n_9VMb+f#SZv|I0ew{4D8D^TgnK7B*<&|{S~Z6@dUE3fA({(EHo-o7=j
zdJ<#3q-{NGDzmE})&I~4_)*QZ?zHu9YmIMn@+N6}^E~MhV7z<6^1%8#=Wi_cu~Yi^
z##K)*=cD>8_06fCk24a}c_w*m(y;0CnzwxC`os3juX|V4A9OdZ7qQ-4J2~#kQ@I3%
zoUM1+|9+m~o>yVH{{H$K!M?G|N2YzYQ1Mkgx@e!_^k~<d>Jt0jn(0E-8$HY1`2?d1
zf6nif-)c8EQT(mqBk$_#nTLNo_KfsQo8)3}^ZZJNH%F!y?&aQSGs(Z|>-`^!@A`{#
ze+T|?Y5P&Xw4ZZ!`yrN8^IJVdtG02TX1wx1c;cK{pX_h#_T9Pv$KH>^M+3Z+1%5oa
zqj;Q0X~UMwP5nQF&3~lr+w`BI$@J*b8~?7xOV)U$M*8lXn4NdA=c(eh40+uN>}Sdo
zn%vk`q^@hteW9;i*S_R&)#XqApR&K&tJXhQAZOeDi2d#FkL;0~k`Dh9O55Dra6oN#
zF7LLBFFTbAU(WfyzNPevuWS0`kS@>lNhgI?@^6$qcfsSy&STd9WS+16Xx`1=_s{6;
z;~5gqW3KC$3Pe2SuCDr|_~buB;ZcWO3H?Fy9qw(Mk~2Nv%=yo$#V;qnZvJ_F$#s>a
z^Wp4a!fP$o^?!H~biu|ndtF7`Wyg=UTaUO{&3M|O_m%&;^roe?Gn$XHcl}lTq4}SI
z<;+Dpg%{U;J^gz4aBhM5n)O@fG@rP`)L?x1>7Tzg^B=BnT0H&8E%&yPjwe_2^i&)+
ze%|Mne9Wyv%eI1f@`3d)&L5~_y;39pph7&T$z_tncfS|wl6!dS1tfkJHx*xJ-lzRJ
zPy12Smr2W=!gl_8&i>)9)a6n`!Cmf8?EC5;%-Y9(q2&CgOuoq*LM^5_?U3Gi@VVWd
zd3&xOmecy%loma?IK5CMH98~UVViYv-{A}YM1Ole>c6G`t^WE}_e%?}<*8^Y-n0pv
zuQG|_$sF0epSS#KjE|{1eSfq0;q~ILW=-$?6TSXs{EdtY%hs|8#NR%(J*q<Md|{s3
z)14Yirg9Y&6rX24aC%3#*y8fw_jb?a4_QdQTKLIc<)8F_hJ#Z3Ob>sU^!}0P{BD!g
z+;7c}ZjC;x_Ue|yhX}VdxBq-83siRF&e1+;amQ+Ujp>Jf8y~ziK2(%d_I9Ctm;RR5
z*6C9?=KZ_5+_Pl^LtRQjPi$G+p~+qU85~a5G5kCCPxD9Ne+G{7#**E-MyDe#^X~b4
z-{3!k$CjD(m8zRpE9kvCB5JR`UG$I4pM;P6$93)haWOtT-}q1U-=)icOc%a>#LMq<
z^-bNW-eqo+IP`L(yi2Bes8^S#%rAC(Gk<qZbKJ4$nKrSWhk}DL<DEa>`OLB+=-G0y
zX=m-`moG0~{&(Y_;3YrYkHz!k=%#rW+n!t3TWt9E#`ddUIig-hd|}w7cDYZQSs~p%
zzDBg~yUUO0C9xh-=DqLo4$9YXY`O8N;=I<O{g(S5tYpaA#k;Io?Xc<7sk;tq{ywR5
z?B@-6-&cz*zI<JOp}sk4+3H9BH|INEi(*b)arfn|4;8c7Pfb{VldU?z=wsZpL`fY{
zwO`xn(wz(|I-|GlU%%(a_ir)tjvtYiTDQk{>6yH>?{nYhg$4g-&`sXEJ1p%#L!<b4
z+j_3E{~4OPUw*e!nSW@X^!=?1+e4>T*RSZ4Ui_b7QODzJ)4z#b5IR)-*X}G&K&Djb
z)Gb<mZ&xdKmdQ-2IL4^1wwL|ek`4Vw?#tSUE-9$Hn7f8Ypzh7JoCUugvtQntIB6?S
zNz{wke<WX|6+LVEDc==VF)_%=@VmeK+{|s)SSExk&nf=%n%&X!SZ~_oCnu76EdMiP
zC!A-#e`$M9j^hd0kN+92t-rc-=cj8i`_frI?sMCEspNE1rFSR${<C5Ze+rM5*t46e
z%#Odj=#I^?T@4B4XHK8AdA#G8VbAw9`F#eGd&JYr&TgIbNv_u1?N#CR<qt#a*gT*A
zIPBBI5OAi);>~i~e{)~I*zoFyOU2a3zaPKS=erjfnH{LQxn1zbq-XI{p7dM2i)5O3
zTvd(#^_J!n>-@j<Tw1&Aa*p>IT_4}Ng*#qdUMM&7^~9L7$99^vKi<8U%Y!B3dsx&e
z59xx_2eW3o)ry*@Z_CQREtcMY_*X{5Cg#eDqq{_ZE=(|fdGh(zN}Ek{BO-4-7mYr&
zxXVubqkn7C<r2pg&c)C9w{%=#?Bhv!F8RvqpXe)lX1zR>ANe1Z-MbarCMK@v`J$b;
zI?DK;x1rLa>4&VQo<9^D9(i@q+_+=Uy(Xzo<XXM<c8sD$0>8u3TF3JXt?x6vb-47W
zK3hs4?L*!g|Gyh2oy+;p@ObLm@cNy3Ra?%@kqy`QWVnylyLGqtOm3SX&4U(PfsKE(
z_su_UwQcny>D!%KE$6+JIb?2q>S3}ZBe$IKZF#M(52tOto}CV!ej-q$@uoNb46Df}
zRh~a%UueVUS}Mo$!EN#CibIjh?|f38&Q)H@zWhSpzpLkGIl2~mCtrPdv-;c||DYeW
z=0~jW*1w&{khxy(y5P?_vIjfTV{iM%9WN`s&>UYE8C!Qjs=Rwkz0i;KetWiV-z0dF
z`Q>(_+cAeOY{<PB<CZwJTqadw*E^Z_!SU<kH}t=`{h*%xkHp14(YA}uuFNw0d3jHl
zx$=|VRfY$c7yK<gTbuj%J@b#Mip9IDBj&JLpI)JE@yegQ@n`sh$oU=lul0Hq)@<4N
z*L>=abjgQ{!`5ugSoxoU<?N5}->&~|&6m4;MCyBwsYi`@YW`EL_@83$t_!J2WnMdG
zT{`dKi97FvG|oA5eD9g}{2!O%e+HHb*J}iq{5b79?OtwNZNA^MjM64<+tW@<*7)4+
zJ9g(_u$K1<#gjJIxBq82XlGMXBm2?*H?vb4qfGnx+DUIpd&8f7dKCD%_?)N2*?Q-H
z+8h2ew9fx<?~`xknN86?ZDNykx5_u4l=Yewk@L#v@0;XI-MYu8AIZs8RBD*bk=j1@
zUgv*?ng5KYIlg_rCV%;vgiV$_Mn!IgJ<ZqGOMa7BzwnQK@i%{g8Bgx4db)XnhlS<i
z^$%x#vHzjbe_;0fo0q?x{CNKGjJYmm|CF!nnJRHxB71qU+{Fn@YfkpawNw>8yQP&L
z)|K=1{Hw(>;a_!DS4RY`zN=QR9)9q*<dvm=*3NsHTb$P;BT(S@YyPL~i#E1}A{#f)
zYk&HBg8hm0>YbwD3yv>jDE<06Zt}xcp<An*Z?Ba5TmAgcqn*XG!WP`JdBbyktIzlO
z>^iwdUTd3{PqLEv^{alKw)D4Y+j_UiD!n~^Zo82F->=ez*Z<DC`C;lR+gm$>KUJ04
zEvWB*8vO6#uaeJyEI01xZ<=n{bZ<dh-2VQT@tm&PJG<;A8F}9M{JyzdjlV6dd+xsQ
zBS8k%$15L}%g2ask^CO@>z#@2IosEd>l-io|7YN^@6Oem{p50KJ^MYiN{+mDTeaDr
z{AZ{>>-gjPEwl6z#T!NS&hO*z%e$}ob5qr;{&e6!EuDWhzg#YF%XiDoc)9*i(0>LK
zZ=n@`_(iP*`saKxS;#4`>vH1d=lPfRm)SFx3O=ge+VyijV~wTN*X<wAT%0`r;jRly
za%zq9_#eje++Nf_wc_Br;`r)+7cU$y{cZm0ve&}>n{C_|-aS5{qI%1o4eEWBLX1B?
zAFbiecx$v+fBXLHUtY!^`DgHOuARc#^8MQX8BPZNJ^0|6YUsmPyd_2PKaKx07zdf&
zaa8`#us-_Q#r79_*%_W+-tm3SZ|=w#Z7Z3o`NwCy|59yHprSmnfB7TrPd{DX)y;XD
z#B1)F$rrzzC3)dDbsPTrL%UC`^}RAbXWzl8=e*0+uguz<C#c|jcZ%@D^Oj#;`&G|i
z%D-dyGihOPte@8Pe5YGZq6HS`pZfn~_<7>-m21AoHs(sbvxw=b+5dcRu<*&!^lvjh
z1@HVf^V{0R*4oOFL6h%F2WJ^Xt^0ehKi~h<rrR-n36B}g`i$TI6FnB6r6FAO#dcTe
z+q1=&vh;RZKKSzWkM_J}TDPSy9a?+yT5S9w#$NZ}a~1agc0J2`x7f&Np7DiQ$Ev5N
z1s!iZu}ar|wn>lQqa7??e-+0}I$~C)n%kQ;LDFmenF6c2`njf$WsMI={#ng`R_9Nt
zLRI=&k31LeXZ<q-drBTW{$Mw?x!k<(*py$TH~YVP&gto^{ASw8Hgjd|{$w`>+3)3V
zV^f!2+_Aa$=gGj`1@A9^T9KI6_eRXVy65*L<H;|IqRvfR;ql_)iln`j3<<T>|4e14
zwby+3yFg9YLcPFx<KKJjAJ0d9(XNho|NiZp?IOY_l+PJA)$1>HlsPY*qi*rgT|(k@
zzt@hdWt-S$84BJ#5q3<lOhefs!2bO6h+AuS#aHBgvfTGd>D2LgEO~4E>zXH3CtP<f
zF9`d1@W2B@<@?v~i*9@<E4nBAQAUmG(|5H|(x*cM@7_9B=JVzJnWkkzSB*1PFFya|
z!_@a}UOH`@iBqO~zU?TPus%SVp~<?rYqLz>6XlYVmh1c<>UX|<dRcdk>C?0gR}wo<
zs_XJhVh9U8|Gm8U?fj@W@7AhZez$Dn4$BIaj2nF|E04KV%PqcfZECRZ-8*6436)O$
zvll#GRv&+As#|>DozNi9obP8Nd?&7ZRM`LdM!3nvEs}ND95#um7ao`1TlG2KsqTzC
z^W<-nf1FPJV0Zawn4Ivn(hrIk)vvyNI_uE4zvcUHq|ajGPgi-d|HbDS%X*ivsfVU@
z*Pj<#{{3OU<NfW+FFe1rF8WUPubR~>e)uJ3ufBa^x>V`8f`mPdE!!sdG@mhEQpCrv
zec{V`dxO@@fH?)9p3e3=yL!nlvt8?+r^$KG)Xb?n9AAHs{XfHlC1IaVev6eqI6YaV
zt^3HE-TfOT`#OI)A^Oq%t>JIRx~uk^?c102f9w39`n-Khu1{@a=?*#Wx4O%A`D>`(
z){Q;lGX2*4Ob_mTg3LmU|Gw3y*Y`-pzvcbFeBi#^mc(uRQW<7ar<NInu6qzZ(c?{+
z?}7fTufEZ47xy?WzE_ccWLiO%RoYVS+i{V1-8LO8WNFSms*}UD%RoiIwSJC;{xWvK
z2Zo;xKbw(N6fij`FsNs;-?_6VSFbL0zx<yeCHPWc`jh27c9!N{`ycfG<NLczsd)Li
ziHm+{ANkePX1(^h(^Zp~UnS-|E(^?E>Mn6Uu<LKhw0oDsW<{$VnRdPL(Ko|$OY4=^
z#`o_ke{*`_AJZS9ADjPi24+@Td^mnYp0}bu=0~;ak*?3GeT%qW?F!m0mZ@?n|5;na
z%?o+kcDK}hd^~maYyKZ<^N;_m&&<Cu{bBhr+06Zq^40oz`!>yvl+q3M{LkRBuXk!^
zs!~M6gd_8^Kgt=M(m2iW@dj_^s!xUWcUOyQ)fcxc`g+N8UHd}G-8biR{JY5Pccngc
z{mtlaq91NXtf|v}HBaV3DMxt2J-H8e7rl~dVP#`>E!ftXt0h0>*c%ChQ}b_I<_Vvj
z_2tjT)=ADUL^SOu$b^5+{;l}OW#iu^{~5C8-()_P{(Zxb_yhkLg!XJY{4VB3)?**t
zub&P*_$3&>!Tv*l{4KWI-(vsv*eU)=zO#CT<5KVC86VB+>sMzrzX=oQsjtd(OuiTz
z*~uVeyUzAujn~-%NnVNl*_NJL@0DtM+5hrM{4TU=Iop%-pYLonx0>4$wQPFH{`8%_
z=`F1`D);xqG+%zI+!J~@b@h2A%bj7eo9vnAuaEgB_vN>&)qVF%4==9umUz3c@1D{9
z&*xMkuG<=wtvI>XI&kav?Ur9{>O}wT3%(es%il9+cADwAx$E6`xy~|)6KS4Q<gPwX
z+p^^MWA>?q3Q25LldrE=+f}`jXX3+M>9!VYs%Oqj`eu9lWz->a!zued{by)M+}>-G
z&ygVY_<)_(wv*c1)vj3{SNUMfW_%%S!`EExz>B7pCh}r0uUq*o&R5u;t^L|_&AUbE
zHw2}wRXm;<x#z?;rkQq039_%}$9=ee`1SG+eOpsyxOUB3yXbY;sWV4d#ic@Txyu=E
z5jtZ0@jCad{k!F5>n_J{-uk^ar%t+J*1JRBkKJ0{)ZX)W(<FuOzDxC{%5DGFQWnJj
z$H(NxDTdqMk8wyyuD2KM`c`~V_C}5J6n*6%Rv+3A^2=8&cl_Ai@g?Fp^FgW7X)8;Y
z`(~G2pUzodH!F8f*n}lIZ;q8Eo%x;Y+S_c9$9{SL2VeV}$sT`K?$51f{G<G1@58sb
zdwA_uZ2U1TW!u#p<-U8ayS8oHHtF9j)@sW<QwbNr%_q6GZ1B&!q|><A{@T^!Z!>>e
z)cAgQ-&to~!~3Ig;o1q8P2NWRj@`avyU@1IhrRhxJFZBlJdJ$l`7Sv~RyymhWRhIk
zaiPrr3|smSoaO%3{PF$4UiM?V^4p($VDH{z{3ti~-^IN3dec{#K3kWtJ=4=O@~iX>
zg&i(JUK8(3T4X*kRc6z1&t;RWm7AB%z4*tYCh3RuWBrz2-<HMu@2%%J`zW{C`C{p{
ztvlQOuk>|SoA6EhE^c`I*;y_Hp_PZHMM|)7ow0FT_jbxeYyEpSLMAM?zx$t|`quuX
z^*^+x_tc5}xcx2Yf(>u+nk8~7KdK+!4L=-E5q7KM!Ij{!=ICq5SM=8_1YFXwzbSmM
zJX8Bk@6q$&lQItdlRWt0cFCo<sMpgae_KcOZ*>*kKH+|q(5W2?GM~ch7oOAJ%-`u}
zKJob@gFl;g*<~4NINP2%p7f!}gW-35pl`;d0JG0G<kwao|D!$A#Ih{&yOqx~F=3s}
z(RsUi`rOnfKfT4FqOJIRPS?Y&{OwWy8E&ZWzpVFm-Lh_Do3PJICQW@_ekaLOzT!d3
z7n$o$E9H8gl%(vEk%<c0+InxPNo&|SVZA$i5d!S$cY1z@TZ$eDYD;mGwmkTL{^|b=
zSED{>Nm*xHa=5m+`&)s^?6YjT3ntZ<1s83z_<elhJgcA|#)o!2@7{VkmjBSVa;cU}
zR(0=qm_jzNKU2{-VZn2pS>c2B#_A0<$2_;a6~19|zUlkohfXzNQcnzHPBY(gUv_Nw
zJGld18@vm5rm%*3KfRvMeXLw2e6nxRt{@JRPEYHiv)j|m4O9|0zr22L-?m*pj6W7X
zIySRtvDbfw79(G-123-y+Qg@}MZ0yLxp-{iZu>bZf$GX96Ml#MeN-|3R{Ftxf*;Nw
zt+n?1QMhDjYwP>=Ez&R6>LwrYHGR5Ul8;e!URc06>q*foO`kmcD08VW=f!%*W15Q(
zeBssl&k%j}L3D*wqVkFa&!3%^$2_0*f9U%+_4Rdm0X_Gl{w%9b^`}34TkX_#R-qx<
zRYvUB+|@g|o8DY9+U)ho*xJlnCeeNNk2G)7eVL{edV<L{Hf3)Vwe~#8n;KEv#D1!(
z^m%uk+P3W<o;7AZ(&w)<pDwsL&N!Nr`?yNPRNZ@bKQXd;2JAe?$UbY=#GrY5xfadp
z{Ib8(^mVM}*YoU4dM2HG#2Z-l_Thq!SJovR$aAYXyQjWfZtLg$oh38Z&h%aG&LU8J
z{P}U^d;6CEXno-89(rw0ba|qQ*Ddu9Q}1nIK`AMFc4V?-9Gs$W)b=#mf}!+mMcH<p
zAUA~>eU1Uk*DFts_kL6xb@|M~jur1EFE4xi^3?w5dDC0>hgZf%g@n$@x)SvDdHvG<
zSzj~#Y9_4IJ+fxvv4tD=&iS*-T&DEobLJ+0nfCdNKkjzsMD~1cuFnRo1G;F(^F!YJ
z$XRcX59y61E4S_!shIY#WUbjH*3Wu*dh0x0`V5W+R;X;Av{EK<?#<+|#P46^Kje%5
z5%KqIG})HV$egoCe|Geg`4e)V=S}bVc)Q>0&(FsX?oRw}`hjciT+jTi{r@lhx&NP`
z>D~|R=nX%jKa?LiviIz|*?+e#>g-u-CBD1qdVtGk*_r#xww>8=;NXcD+COJ}jFi8n
zsb{>)<nHbX9w(G1$6uTOM|AzeSwGspsc-wyx%F8+|BuCfvplC+8f?6;aw~h?v)Bb}
zJKP>Tn7|(O&(|hgMriGlW`-%LNfzw$tV<<L-zI9h@vfMuxifIL#ckWL$4(!4m+j_i
zpLfn>uDH5fQtD)j<8BNe<1Rk57drlUy-a2u*T&0_wrt(EgOOq4vx$0o2m2zoZ@YW@
z=C>)Sx5ODzdgk-~w!OB{V#}6*OB<}2jTWe15K~CMkgoD&{fhl5?^*8p|Bn12edy;M
zy;51DfFtrd(wo905;zh>r?W6|d|MxDvf`Bg!efta+vn_muwvGQ`mS4{i+6n563-WX
zTWMam6nDE#;iu;d<jdzr{ptR|wpb*}SY>e*CzEE*^J41+{f(06<CD+U_5Ei!=v(@6
zRZZ&kgcR#HYj_yu2)N&T7{<QSGH2eM>ra=ry}KI5Yxy&9&k2SXPs>)<GFr$-eN?pA
zTP>BKVXn5P+fM!Jv|pBMTa*k=S?U#WCm0@JD6_l!`t|!8hohT=uRi;Cfp?pAub6bx
zD$jcD0Ev`y7mi-(DQ-A&{a96#vE(e~ZAqP*)ma4A6nV<>@mBl4xnE{u|9Iur-EA`>
zqWyE!W{D&@v`%|$^L*;$Yz>+3l1qalEavqko_bNac*_sr)puXlZ<*gy`cppp=dLq5
z54<j3W%XoE`kIzn_o{!h_oqliahh~Gul~7f>E*e5indLUd{<$?{DQS!+kVrQ>p>OG
zLDx-%Y<{1<?eR{wNVNCp5u<(lG1ikRZU1Kf>i#>sRKmvaVXb}G{+UTl$1X=)SvGM;
zz{Z10dC!-z%z1tz{B)t!_30-*Wtg6u`6KaT`w_Q){Iai&4K@CmZ3{TQ?sRVule@pG
z_U*=Nd(;1M&V2mvVLfNv)q1&Po(;EtL<dX~Jy(#Fe!Fk(P4~F_UO&1YuiL5Ge~@43
z&RON-h1HK%2d(a(Us5q=n-RxB=F5`nm;Gl*Tr2cB@IOOS&7Z^%=jJPRJwLkb{*8}T
zy=Q0dbw8cFz3AN`w<A40*W)7F0uNf2m;LEaW{>{6DEQ5~x|ko*57(_<Uz74-{-M7n
z$9A<$%zX85^G43*w?UgH7;m#USa#qXyR2(n|DT}$3{ANem)$;W?LW%jSoLSt=eX7P
zVsG4!Rx#SbzGPdsWYX)&4Vw(}+HC}?^f~L!-1^VZXrH~}Pi^{&*)P_9HO~9C@zy4r
ziF+4bo@bhGxv6a1)1Un37}j6W&aFQdC-q}~;)B0wFHQ7$UrLp3-BNT`Xu-V4yu#Xk
zArq2ISQexlOo$MS7d<}npFVfo{0*1Pe*b4!Qn&vhKhM*heSCXfWe1vGPt7&?y7Nct
zhx~(a#<6LKAK8=(FWD#cF?8S50;e_kLiY|_*!ej?`@<6r#tr<B<Ja$(-(&wc*ZSe|
z&Klu|EAzKX>*hP|j$HHa!o{dNhK?4Ii|=j=&lL1}Qt-e$K)ds!{^7O!&hp~><X<Y8
zT>ZLxcD!(A=hV)WUE3p;MjTXV+~rYJc)f7_W)s=!L-$4Y@Ghy?@0GIa^4DyObxBFf
zmvqiawn_NlzP7G<ZrZ2y7FWHl{by+Z&tUx3X13yTFQLVnrS^UA1%5;ynI32GJGO16
z>SCYY+m5_BlD@C1r}@0)>p4>YcGo}X+RtM8zIz|rmLJvs893t>KkOIf-~LKYbo#07
z^DbTcWc*Co%3ow(PO%TSO<uu~NfHI@&z~Rt&v4WH;l9a_epj#Oi?E8#5|-Dx#ktI*
zS!PRLQV;_}%7zm`bz8svXE>05OZ>oomao;3Hj=CEytr;B)MjbFHUG)>ZCjf>!mC{p
zGsDU{%l;fWy0P)6=UT&=Egu6~VoIWKegAVlS^u==!=G1D)3x7Co&29c|IEkzH$Q)S
z{-2?#`NjUN?|b!Z!b=~?rn_yp`Yt%~vcl!4N5`%{*!5dyx9c7@?R?#dvr^sqjCRk_
zkh%Qje8+qyo63*3-pLD8tUo%>{$pA5qgdB18l}oARpD)qX6B`s{VF~3^y$1y9vA8t
zF>G+(DrvUibiMa~2G0C_BLA+&3zyn=++(_6vR3}6!O0|>)N<b4nU_zOnrIg2@?`k*
zZCcqEKFRf9=Qo~d3HwhkKk}aE#t-{{T+1K-XW+`*Zs;%mZQ15kJ|`Z2zaM+Jca59j
z)8k5R6F+V>JZ}1Fj-=b3&wHG|`ArJEYx@4v-g|TFgAaX_7WA7JDLcD*`M11vYxC~P
zXIsk~*B=ZjmDS4c+$Z<p?&f#iE55wfH9n!s`nc!&lSvluvcEbXFpkQMXZv#UoM`;v
zTSu=|*c<Mc6bIU#{!sqy{nh6m@!w8&`0)1GW7)0enmGb0!#daAJ!UO1o#n~bvvp5i
zid9Yh&v0;Ou1SPk_3C^MufPB{>pYud!RI9o_e}2dt$RN2^3#J4AN|%p@h{`x>3M5r
zy*q!t{>JK<jTioDzMduf>$K|kuCRNb>=p`LI+!Q2xyrJ#fuWRn{pq-`A7zuLe_Q(@
zg=fC)w#losQ~omu2(6M|=M+Bi-w}B}oAQ-^GB4Rwu8ugKw(XbeyXhvzp7OJPf7h7G
zpu&Hz`Tj!N>MHxAlIz;vx@XsOZ91R$@bu~i_RxHbwi7Q5+|_o@wQv@?V?XhqyKmSX
zeZA+8+ZH~|^*$W6_FVs}!%xohtXt|~@w4ya_S@M^`>swe|K=?t{c>@;vc0v2O4Wac
zU#oZhXK0#qcHIy8$7kE7<~8|RWK1(SwOI3+FGoVmRE9RgDKgI&NIVEXA@I`b+}6cW
zKib_cty?$g!x<$(r_cM}#VpP<)Mh=++<PQlcJ<eoRZT|%TBC2h`0*!A|K{1F+Vd8F
zRLa&D{$cp#ELZ5R9l}lz#i#wf&2;?V&$E@s4|DemSJ)plyL_Ix?#)hRdGj+p;&RI^
z9$(sJ&;G~m$Ig|nKW3Uqv3_0c^;@cbv+=6AJx-fei~Zc#Q~f#KrAFw7^JD&weTtV9
zeyq0tqdcwcYv|kDwYQ%A3V3n5eAQ|d!?xpR4$k<hwd47nrf(*9#8y1|b}`rYMdkft
zj`FSl6kMJLSw3%aQ;q%?xpdi_jd~vPg)J>5@@Cp^wDlP)%8yt*>wNUS!=O{w<mcJ5
zd-p6ZvOc4H<I>7kBI`muUVoNr+PnXe{Xu@F8-Jo>i-R|8opPMpbWe}agR`AXOV(?$
z>&j1I2oRSzXTVx?Pf5ye^P}oop7RruJ~tn$h;%NTIH$~VotMazg<`vu&m4bjUvbIK
z`|oPq`EHkO;+Ndfv)^jUt?R^lWbR36r*-1n0-gxo5WLa#lm9{OFUPeN(|voIzV8$K
z$fMCbDdMIi!>{=ok6*^;{=0tJ^Ka{_=%3Z|yjk~kO#Ch-so0k$d))O;_M`rr=lzBM
zgkOG>=aFo?ZzZ?jm7lX>Up<)oKCb7|H(&3S6`Wi1XP!LFyJgnQE;IX=fg5ETROU3e
zKd4_@`}ae!<HdJt7JQUF?6PrcUzm}=?zsiWEnoK}%kr<SQGW1qjZ&_4*p-KqDw02`
z?Cer<KFg6(ndFnuHj!Ct;t3Uj>g!*N*VP}i`p=N0-(%1G;G_KE-Ns8}D%QJAd+fI9
za(<p`&oWVQCXZykQ$nGsx;q|Bd#qCU(Wd^0h(W+of5B?6UrS3rUzJ}~k$qV7<GZy!
z*5R$|W?x@F`Rz}+{|pc8d*j*aME{6io_@?u<I<NOts8bt^3+QXX#AJEusl!4i0uNW
z$^)*S#>eeHg#Kr^Ip44CweLmUt!tAazAI#`6_Rjf-u`UbGnbg+pQY>P{b$J7|3l6H
z;QO1$A1rVGr|`#e+9O`Q*Ws6s?a!~2-Fol(JazBL#2p!RS0$pixoB+WxMO)|?ZNd&
z_jk?b*m65wxN`o73Ab6xe+s2m9E*9r=n3y(=4bN#ra!Oqeh7=~pR!TzQjqVyX@5-r
zoWEThr+s$Al*jHjHMUHT{%2L^{w4Rr^?zK33u+W2><lv&T`SoU?x`aj(ss+4+1Oph
z$WvNq_jT5;<_2a4kLTZxe+&K3(A;jHvcE@8aQ?%*r4R3hd+nceDbsga_p{gQUb47s
znRu>&X~mB7vrZgo-s;C^-+%sQ@;}b2OaEP*&$4xY$M(;Aq}Fa*b1jN>?~2y7?^L(;
z#vT@ypK-R(F84Z1u7ZHM)Gz06g?~GPA5MQOzW9&vg*_pr_R_Jp>$6_(nm3d8?wonN
zmvTENJ(HfPn(=vM?2(sw$y&>9ctmF;PyZz&&yl+JoZzZ=bLabiwz=bGZ+NU)y>rPF
zm36c7-*11q_>-L`sKBYo`r!Z8{o~;y`=$3-o1R^IWY+Wfy3>}Xf3u$Ey->#EfTZ-Z
zn^Jo^7&Yh5SovsQ^o5`Mwx5sP_*?iuyx)(%*_(dcet0tZM=5*n)*Dg2;YXsnU(09j
z?(Ds}Y342Ij3v9L-h3z8AhhuS>w$#$_u=XfR~(#mzC2(-LRFhGvux$dciG?8sDu=J
zY*8(h75)@e*Z%2SB`Z&A#M0cj{|uFH!^|%3T{yMRX(PLBUp3F?qgCn6i{cWMHzZi`
zT$hyL%~f`(NKy6pqHM|D^YKo2^}~~#I}O!1wEX>y3}43XoRZ%@ec`8)cwN`zTYKb<
zxZ4~mEi8XYy{ogi`FHb!KbPDXKB>3)Sr<>fywCl4%=A_VzL52nEc5<cU-HLibM$|P
zrm7<;pJg0B)bHWE{p)l5JV(`z=FfIrMtl6H+6k`meAqAlGSG8V<(9efp^}n6O>FCq
zRT{qE_H^U?sNYSebX=RPuOF=Ebv?T$&U&W5`org4OcUqHiEiHQBe(NEgR9zp$2Ccw
z4?L3;n|m5;f3AP~e(}=$Z#ALXU%UTE{pEjZza&p`*9@z>SFS%6|J57eU7fVXbhW|b
zuWNs2^YD1z+wypGt6Slv{flCL%b%OFqTH_b$M>bD_20aH^xA3m%ylN5A1oE3UtO4%
zzrfvceX|L#k=XXg8HpX|4Ci0k@4rt!;<*07elbPKWAjv*?^(}~sMq>)^YYS&h1@-*
z^3O&8^gdpyvbo~Qwh#ReZvEwd6VJ3t|Bbt6?ab331M63=mTEj_e2(KkgVNR<Cl~%1
zPHpe}>=k3aOg}9lEI9R?#jARmYrfAmb<b2uXy_}KYbZVWvg=Rm>4m@k%zP=;wmwJ3
zmH7+v%S$_}?}jkhG)eNae7yhXvyZ;)x2?GkzkIs%?u+}=jfqd2wekZZi~9^G_ATMt
zdLnv@`1kD>w%!rDpBUNqGGawp$6Jkdna%Te&q)cld38HzMUcNs@9(u9$ypl$3g<1j
z#_~^b>e_1>%ZufVL_VM2Vf*pk>L1zudp`DetodV}c0Ya62cy+HG8wd5f9YEsnt!~%
z>eZg=4}G5x-IJVu<ie}MyS0-l7ETllGYi&cd6AMPp^_pvrz+fLqxMY4-DdeZ(*D!j
z8SQqLJ#qUaCdtC{<hkvCh7(J~Kb>m4^JKk)U;Ux!PSxH&bGGzWy<Gd|UX5hYj?N_y
zcHS}Uo4xsf%$0uz7m`05TW@0J`rvBL%<|i@N1WaDWmcq~$`AV)!F*iuShm>Kjf)O@
zW`t(Hbmlji^SCc-`mLB4qXkL+DqY|HGYHq{epn*MfANp&!?Q`czk083-81QK%%a0H
zC-bd1SoYr2YF%+p*T?@1(#zX*YEmmxAH4i`b=lD^u8OLM6LRwkjN6vF1x&ioad~o?
z$GYh&twpEgp1Av_{_w4J$E))SRIL41%GB9MJ=0zH(0j+NH~rdG;>X+q3{IR+a8Qt2
zw0H8O=PiE>9|opYKg{0x>8onGce2KmpUx9aa_^a)kW4;kBczqO*n8)4?J%D+m!56?
z&1Cn_&+!kR#UHK1cO9jLmdMRzE#4=+cgtkY+tNLYr`kHo9&=n9=@NA8T)Q$0Q<3r4
z^I2#2#-6z&xnz3Mwd(38=agreAK$dW)>bQeg;VT#35JGucFl!<R;df#y}6ye?83dD
z-<Mw5sCy^;_QC8KK~4_0+n(}ozvt}txW%%E*T3qO^r45bjt>%23NPQ<^`D_d>Pi*+
zv3RcdJAaQ|FFC<itG90Pw)_J+$L+2jePwR+^Tl-a^3$!hY{v8Mgw;eHxbStiZte_s
zzPaU@HRo;|5Zip*&aXoL)p^@pSBsV}Hf!sZsfm;7cQcQZ+s-rpX1KXj)uhV*3{JDW
z6X*PAxNcV%dvBw4?D@=9OddP7_ISR2c6i49dF>V~f3w&8=wGNh{VnTbevZu=x{u~Y
z_oOGq+&^t4WbuzP;6bVAi}L#nHVONLcI>|VBzoiWSWVRh6-|HFh;qdjGwytR;ylZf
zu+1y~9PvD+yZCvt(YzP|jz4x&ZOl2fa{J%&Jdu$z{8zE|_x$#Ffwd>uy~^$HwLZ?N
ztxN1bKI?eD>qpVG_b2PkEts^PXPLT+7|UY@xy33~-&Rc5cL?@RI=Uix&&reMmv8^N
zmfv>jcbBS!k1-eH^^#h>HW{A!WZ>~drP$wDN$B<o_7$(}_2z^X^`4!wcIV%n^#{53
z)UzKs|3iK2{=?C?4^6k@yjJSVcu$6X+qNBrD>8qxF|bKzuQ*iT7A$FV{l)qN^0$QD
ze(YWOWAVej-JAV>G=KQ^`M33vUxo^v(q_Kv7BjUa{i<8cce^{&QPEi<KIfuG^H10R
z3{9eS*M6lRn18G7_k;SrcayFk{?8zquzkz+c}~h*vQ=j$Chz&eTPxC^y|Y95ag$x-
zf%W(1|Ik?fCiP?YBl(Uk_P4FS>F%BE_~YRN>GUoBn@tK%ug~~tWH(dU`}a&0x07w!
z6B4HD3QNp6T*&@2`muWZjU0Qaqz@85t2L71w=50(qZM>@Wqsl4S^8^gZ)UBp-*qTy
z=SsKq%lo&BA6nmWU$Bn-<YW1U^RoMo%D0O<AKk}2&-KpokPTg~lP<ZQxXZRMQ{`H*
zp4*e@O%hD@qV*3Z@87omP|Dv$c1nMwJ}BGGe3;);HoabOkKxi-L*a~j3bW2Wy>7yO
z@6PU=?A?x1Zz}@Nhno67%>N@(oc*BEz0p3qzRjvd&fxOh#2s>S^KPAbem<1ve#XVp
znQzzSEL9N`=uAEId4k3IL-TKGKdwI%FI0D>{6E7M_BZv*e@uS(b<eMvA9;JEdZyWD
zUEbQcbkd_&(dL_`Ju=x|DYNUSvE|<<7cDZlmey^4sNOVl^XZQ@_D3Y@B0Sao78Op~
zRdYJMx;QHEV!r8e!=qhi7E5Y6{^{RV|De&%;_ABnS@&DzdG(e!E`M3a_A&aVvG5Mh
zRqJNf7Vf<9ply<+imU;5RblUc2G+Fy3{9;ObvNoIa{p*P;B`{{5&Ix}d$;SHU2CfL
zEmo3HyXtIs*zMH${3JGG&PunBRyltj{qX%*eng&iPq=wcjryn9(~Do-viqWT|73gk
z=1J$mJB}?;cH1=FHI!LPScA{~Yvq3i7S_K#{~6NvCV#WPvOg<dyh7UR<Mhs&;B{G6
zylbL*_pZ74@|N4wl3mq~*|L{@3hJ!sFSWZW<YDGIP4LL#UuEmtB{&M5ALY1It}4=S
zEb;qXJbksV>eISkMS(}Fy=uCj)k*$H{>S<8KLcm`AED;s_8)@&+8+(JTm0Z{)~Bm~
zOtyXKPP=S!ddHi0PqTZM)o-1aHcLUm`6+Af1WTj7{olU-?XXX)zfu3d|L|F<<ByKW
zS^T*9$hzgq*S+$-X8#!ywq3}}nR_W?L0IKOmz@HOd~Mc!XT6`3DIpjBwY2g#TMgfj
z^55G3F34}(emKo4y|E^{%v7V~bR<Kp6mOn%#=Et-{<<RGx?46MSmQrMg`>f(WATQ+
zTlXiQzp4Bv{LTDF{x`di&a!X)Blz$<Uq(>OkDy;-TQ={y@b1mR8SdrzawleqHYly$
zF!9<$xrnE+OWJ;4o#8z@eBqJ}1=;8SN&IK9>J^=TWY*PbjSEjR-+wi$N6L1U$pN=p
zy;oN9gdKC`5&eE*nFF&)=5)=*^DpAxw*O}P@%|gr-^Fk3m})YwY<XLD=SAU<DHTnJ
z&b_l{-^{BLE?2bs^b_vv7D2C1_ET(5NEgkVX85<b?q>Yf>4(<;P`!V!p07swgZ+Wr
z@}u{}Kb&v99eY{Nq}NdO!@vH&Egxq*xw3AOW!l!#1a)(6kv`6Qj?x`}&HgjAHs`PT
zQ*_Zz<oxp6=d;)SaC;xu_9{SS>O}pVh0|^)>+z)ci}aq8Y<j}G;M&w;PxFcwO%kjk
zORm=+_-FYi|F?bJsd*fKo9tL?f-bz9?e=4P?IY>6(#OoMuP+upU$pJIer2ZW+H2=G
z|DCz-+_eU`bsu&-Y-wHn@%^J+|E}AaT>T?l`rE0Z{>Zd{N|O&)ski*G(<`z5t5)lD
z+^2V~PVU>q70J~*Z{|s+8m2xqs(G>M)z*KF^SSJlYi$1Rx8twye{}zdKF=-p)MYh+
zlf0v)4{fiDeb-uFn3-CvY^3#f<r9yk7VOCry3UDM*F2X$GXGZbBmTEDAKJIYOa0?q
zH}S*cgY%TG=+ziL{#oi_%3QnR_!9s8wB*gqXE$d)p7%zQ^Vo}NHt!PWmG)-d^ZKT>
zPCQ(;|B-yee}<-_f49x<DQ?+%&5osF(e<Ex*K)T+*j-(A@Y%`Lw!33)J5AcM)cfyT
z$!ibnZ$4%?c6rId#d513*8foc&+tb?{fL$76sh_Hxp{_V{bqAB3&mz;Y;vBo*&;LV
zlC?YIrl991COJG&+JA=q`{V@`iy!mtf0((Izb8(<{qXcE|Nf}+zJ1({1=FK+syeq`
zUf;=cTk6%VfOqYz5fd9Dtgau+myLY!&u-q$T$}qG6|dbcOg5N)cUk;gDNmo~Gm^7U
zT~WKO&gc<#tFYPMWaR}h;hFQ#pZ_Cl{Z07q%$maACKZz(%fG$*;b@KTN448WXI*XY
zNdH(PUbSy+?%%m4W!Jua(x~oyqAhmF<Fog>J8MpaTwn9=*!_+AZ!&+oWc+8?qB6_A
zxo4K``(FJLey)43rcD?7HEm*g?y_4}f4kpiO&2?8s+lM0&2V0zS6*YG`<s?)QTto}
z8P>$eNjBZ{^?DtAd24jVy0q$y)On9xw``Zox#+IFXmganxs4|d%a=SBeQd{dWl!mc
z{6q1=|1@giw{6(Cf8WQc`&Jk1N;zx0VAHOC?=6u+o<W)t9YrbWu1OEi8MxLn7j74S
z_GNR;d2V-MyZTH%mt}9Jn?wcn`*m)4o2$F>#i1T4-}&>4{++bnl>g@CZ?-?`KR*9<
zt+BuSHP`!L?!NwYKej!)bx=<)f7Um9<*-Sw%x>i?wpF+8iY~vq<@WL^v!{mbjsAA+
zNBoEIN6+6}U05UhgZaa6@5#sROFiz>XS{psW!SHhF!6~8W;I;VUpL9%+qQ4lc0Zkw
zTQ<?zMeuHu`L+KHTh2{hP*eV)|JeQ;?>@PHUiPCzeWsPf<xr_5f~WfyR8Dhfd%&dq
zH2$Xlx9LCXKivM7^ta=m&Y#GAO~<Yuy%si4G}bLV;_ch_U-kL@l#M*zernsXIl8E*
z;L{2VNs}F1>x_-g7*y;j&HU}3UtMfnbWU$g$*t@Dez$UjT7oi_fA)YbBdI@V_Rp^F
zz^(o5ru|*}Z{9lA|0v(?*7cZ+HBYxrd&Cks>)IpBL#KI9bXTjDui2<<k+@~SkM$4s
zt$k8a9&}0cE>rB1c9sWiJsNWV8OrxBe;9w`_#c_lhp+GR|7SR8nQPMP_5AR!)YTRL
z89e44I(g)Iz-}SWf={#Erui-k5wf{%E#zW$T7%U&FaGiKZ&}kHJbnCXmip1z_5#sI
zm5(aDu9Mx>^e8*$&uW=nu5XgKS1|Ib^zvTadsBXQ&*aAV7k%Qw=N)%`u?yR(D%CxG
z<*TUt&aH3l0@dc%+pzl8Mb2TKAHc`|NbB0t^u<3ez0!3)`fbs#jNApAJ<TO<IA$$X
z?8!NBNb|r6^((X9|4ILC{o_Bwf&S&MrSz6BsyKZ3p6aGtXP2vAUM}C#9I&Y`t#N6e
z_KGtTVw{ak%(t0Kr*GQ9CdpkhX`k!UEpf7q_7Byz&G&Y-j*1K}VZMK^`Aon3dr`Zq
zT?NxNvY*+K-d6G6@uG>W*2O*M`3BS81wLOmWp-(&vuGw?(azLEk5wLg(B6Dy>wUo=
z@()?oKiH}0FEGcQ+s4!SaJGhicc}Jcr4x*WTX*J6aAVDQrF1*^L+Z7?%kCa6Oce5X
z_Uz7@6D#%@uRD9wy123Dn{0N|hmei;v#jd6MYo<kQfB0pI9FDT<I#MbO{exoHm$oL
zE^k)k$~Q%BlA38u?8O^Dnva?9>WQ<O6rMKiefZ`{HN8uZTnjjRUM6+J4T&e$&s#11
z(yt)6?e0wbewjJt>(f8_O)g&kYMx4afQt9Zm%HND?^wZOGdtta?*&ukbu1)Qs%L%B
zjVhE=Dcm`OJ-P4s^5t2-<g5?*p5~5xs}<n=?{3WckM7|N$qQB_8GQV)IIR3X!}hf*
z|DOMlFRD9eFPiwn{iFJk{|s`o3T6K@9M*5I)BY&e@pg`El}GNExfa?CUOTO(EHu9I
zTvBOYX#2NKKRTBknpL*=(SFHS<zf%qbsz4%8ga*};L^0uJ3n*i&ilExpYzVi1^-Uj
zseNRft!3Y}r*ct-xVmi4mRP;l@x6`@dhVU(Hc#5P;%HHF$Q&L%d;5>;Pir4DoPFVM
zzSfFWn!dkk?<@bm{C1yeP1*<dBmOtnAD8Ff6I#0N$0U2nAL)S?ljjFs*3W(G_rsWd
z%BG_t0V+8yOI9qXS#`g9*1yR5%(vp-3@_}{i20-N@z~r){Ji%v*9#wBmC<zT8C%~g
z(H!qgZRH7TuN<FzT;inY@3{}||4{$W@aFx8-3O)KACt9s{XI_ma>-dIk9GN_o^ocX
zts7F>OkAcGREC}S(<pzI{f|iOqyBG;uPVAKPCD!#&QdQvaq>Kmch<9h)jVf!=ra@9
zAUwG_YTKl1|9oHmjd*lg`|32g;8j!KRjfZE&t7Bm!ESf{vKotz5g$X$Gi;9UxU7C@
zCfmbLk6zw>_I_$k_4BUZx4-d!aQ(OQcgzp<z}+6pr=1Vlv1{Jb2#;rmqNkl!D?Dlb
zG$(;^%e)=yPb@g3&bz&T!O8y&udly3|3^svP>+39Z`>>68DDN^%Eo6NHt2IaUG?uv
zZIQN5)VGRqk@pv-ecfft{Etg`)$#g|`A4>U*c@Uxvf{br<derQe~<XKzTr>iB3@n{
zy~RgzSKj96i<Y<2NJ(HkS2%IrpQ`XH`?s-veidhY^_JS{J34_YWtmMb8J?^9&#>nC
z=k**vW-c{byX2(U`Flr%PpSXD$hhGjOL+VAqeVCS`6Dl{TGD6ywjeh4r0kJn0v;Zl
zjCW`WoZ|D4j^;m~<nZMBh5rmpy7}oJ#G3LKMyg!<>g)FIUQ%63-wjWmF3;Zw=N37>
zFnjQT!OrT!*SX&(oG#w5+FAQa)9o0&`^y|H-dSD0x{u?dNtIsb16ie%Hf>*V_jx~`
z^A*b9o>!S?-gZlH@gXsZ1oQO5^QX5~1qB3kzE1PfzFX(^yk$#uK2t@zpP8=UwrhW!
zm%6efJm}bSwMJjrny-NUL*vo92Q{%Dg?{*d^S`oYlB4viUlNzDwBIUR5$7;zs@*c%
zJJ0q@DPPE4|EK!FS(Z6#*X?HcXy*3bNPa#$!{4XsA0F?mTk!9;z@3c$44b#jUwVdp
zcE+t7-SaG~(<Q&0TtD&5^YcMkvHn^HffIjB{rK(Iv;Pc-u5Z3`=jX=rE4I7~?Up?g
z@!s<F0cN?muiwbuv_Bs7Bl&@Q;~w6;uK1%-Z{MEeGg>b;v(oyMC5w>g_o^P@Tl-{x
z?34T>s=*+0$0cO)>pA}t=7e9dXRs+M$#2`wR~ncodS{-*#X7~fsMQ`xXFgBe-d}m^
zj^cb}hWRJLFFjl^Ps||pKf{SN+tylKS@o*4WzyHo+aEXnwWvE*&#*^wagFxHf0jRv
z`$ql=eDp&)yfQygam$N$Dia@caV%wVc{PdQQ;($8hutBS=5M<n#Rh+?6v$q?@XqU5
zvVV^l#+$CYY!l@5<8w-%i{XsR3e#BxcK1~r{JQ^#y8My1(U11O@qBR8COlPi%Rjl+
zKQ@<yE*&q~6<j+v&talS>bEETGo1@0zOFC&@$^B2ox+byu}{Y4(>AGWd@xPYjpMfH
z&Rc$OcUsD3f6{rEEf{)ezgykiLl&*mk9u=2%6@Opwx|B1ppEOtWtZOjpHa(}4qD|Q
z#ME<Oabh3eImfW)YyE$l*3@3C;hJ^)@O{zE(YG?ImOf~6Pgc??@_wdq&*JzQM_c1r
zKl;CIxMWlRTeHT$>(j67?zw90UDtHoGI$ET9{O~3&v}>PykUab28G6h%x6u`_eqJZ
zeU#m~CNS!L)Yj+~GYnmhr0A?tW_YW>$7t(mYZ&MLYrke-;I{Ug=R3r=7W)Uk%D?sf
z(Z9VPwI7$*iGO&u{XYZ8`}W+oZ*!OJ58+oiRzLsAK^F0}&>#thBJYHx9lFxr_^)pH
zS+c)JN^bdzxYN0%tarqXv!ZHmx3#Q2#-sIIy>a5STU9kTl&{n$pO>w%y#DSh#~$a*
z{|v&;pb5C!+RTjVCtIF#EzV<zpRK;%^i3Vp-zD}L{*Cju&YgaE{mt-0x5O6OcfV8G
z(#5f5wf9Z++nQ<jCTlM+Tv2|<W*@^z6^5!0TeX6wU(H+>t@~!{zrFrJQ+-UU^7dA$
zzplUd@^xC>zxsoE{~0pZH{G+Heq`6b=2E3s_iwEHc0)AD;5N7A(gdE38lSnXJ)7Rd
z&!5e<e~zux_pl$of9L-RxH36l_L-Tb@mfDsdhe+PCQ4{3@%C;Cx*fr1_SRCd^Iune
z7JtX(KW3Lr<vXITH|PA(eSBXy<3r~53pZ~^MxHLuldrjM+}kPmDZK334F~mX=J>Pk
z{|IY`|7U1<{%C*qo^WHENpVrN8+Nzy1P5PLE4e4a%KP-tP6oy~4;UL`EBS<@cFZo>
ze(yiS1Nr%d_Y&V}8T^R$ufBD9f9SgQ<NLSje{0+QpMjNS_qE7SJ>}~{mdVVl>DxAJ
zoSb;hXzf#D&2!cT*}rr?${q>(&#>Wsulk2Nh3oMLw{3ftab@O}^Epzi0gN`rhOvv+
z2UM(ocKBPz$J8nFx86TuFZG{cP3T9qWq|=HKc{UlT@g?%dvW`PNBbAacg!=3Z~4!_
zT9dy1xYDs(b<>x%q&?+!m5JzWuRVG|?#KE?k7oIWY`9n}^w-4R_~g>lLH=icSpVak
z_uXpR`tsUut?Yl5g5Djyx##q@+`~3=1bfnZzP<mlz3<EZt#w!86!!K#lr#OX<aVgz
z389lRhj+d?V^tid{-1&6+vP=9zQp<mwb^by%5vR6Gk>=6iFTeJEFYe4V0qqm^?KBg
zNv~u6F0RSecKfhw?qb!ZISF=$rNm=CZtNDYYujlYv472#?4RK;vR&7wr~f(sIW4`j
zKJ9$_e}*mJ-?Bd1&t2nvIq^!)f(s?aEGM;Z-;Itrb!o|Yo>iPqPRoj?7Jk}s;Q2@P
zfQ$P~{up1;uaSRnyElnf?AWhQ5(_u%+CI&Q^-PEVB(L4#THLaG3>6D3<S+Oi;?0sZ
z{?_?pewiNUBx_qEk(j@SI(3@o{XDMxas8pf$EsIrVpp8jxp*{ht;r^DMMmb6W|cPc
z%2SdjpRK*m5;A4y%k7)`=B@bYr@ZpSqbnul=6j?+o<ANZ`(yILxsl1@0{dQG`gO?L
zbF)mn#^>!C6NDsZcIC>jK3@9%=KF8Gmr{RxUVOV^(V=X^@^uayJ@Z&z_3JznSk4;H
zb8fH5gURQ#mtWeGy1ZilBfB}bYV1;5x9)b&m3cki^!&T;B9_*kHGd8iuocdFzEA3h
z{J}V-zbpUfG9S)oTVDL=N94XkHcPtSeD|+za`<$!qoc{|IkV(B-rB{>m)v^$Fa5mJ
zTD3<ztG?K6{5bvST;=2SLZ;sK9IpcI#J>D=@22<ibzzC3Tkl-lJjFVmVgAgGJ&!Zr
zR8-6I{eGLfva&geiSN#IuF8WJ&-=Yz)-XQGXYiXfzipquOM|1OYxnG0w{+#bw?^kS
zd8K_eGE{D<+$^J@wa)Xg%Jmh0^tNC8<6kw8f7g{u7Vp<B+EU%Go0>K)Db8u*GUKfw
zxy%+4(w!>TkEF%;M)ibRxKGvJ^P5MWJMoperT47=422)xAG>SkFY_b&$gH=2_fOcB
z-?BAQw0!dKqdPYl&S_<4G=CzuZ|?C!{~0#tbn_qI&$noj%k`oowVc`BE%v{}m)2db
zyKtZRt({Db%EvF$%@^G1=gs=KbVWi+#Gf5Yc{St<H?007Ji*^${bBt^@#2U-bsu)0
ziWJ>CBY?qDF4-jEpX%#-5BHp^xFtMi?%U*3XAA@nUk!-Pa(p<YQAa1G;AV7&$CJ`e
zSDqyNHGCg`P5h6L@bP&vSNEr{=YJumaP_+X)j!t7>w3+sJCijFm(KpQU7+JhYL4@#
zmQ?%QtQA^@@u$ohj-9)9>sI{Kg`I+XjXK1Cg}*j`voGzc9qW&>OA*r|f`hN!ZDu%m
z^p|0bOkeTD<3-uKJ1l~x<+uIn%`E!ro1NCTPxA4qo2=!13+3{9&9j&PEwf*}w)mi(
z;E(AKtk1XaGv3r4a$#$B{$~HYpPV{8j6sqfTJAh+mWV0{IIcgrzUM!~2XFqHt9`Dl
zd2f<(Ep=LEk?Xy+#U@_j@)g_PbG-bMGVj@b7yIP>Vlfr_ztw)Ydu`F}b!(L-`_G)c
z`{s#@e8qR2=6pY!_3uKEH|yRlWmdV@HkS4r&rEwU>EwCED7Vm{iYK%Fd9^7^PfcF+
zVCB`UOPM!sT3g5byLl+=aGHfx#7RfHiskEP?fiJI&5o}^{=m2UY<u|2_1p5+-s7%S
zi~b&wAhhKb^I;R8r;(|O-}gz>{&^x(*ZuFP{brW^JoWkV!kPA4@(<574&487?fhF0
zKI(pLk(%_%JX`9t^1+oqUDJeF(n}|Fn(IA_>#0|^)5*4)c`4!QyBeigZtFS~yKX&|
zJ)~{M_OrWViMqT6$6*_;zmxtmG-dv~Qom*E`=i%Bu)obsDe10NcedI-RV7;_Y}&0V
zlkTG3p(2$RPTZcIA;Gn$c>a=})zxb6-u*dmZ?o>Pe`>1O+U>r&FX}DoKNLLgDOukc
zzkU4?lZ$I7U8qRnl|F2=Xw!t}p4)zVomjO)@SXXoMFtjv&wsrBaNhq~;+9RD#m_%|
zA9nc5E$4KVk9~{TukG9WcZ;3f`s44r?DT(}U+F2i>qq07yRSDMYgny2<<m@^BMlQm
zk8WsE<2@JhAR+vOR9d5Whskb>cWjq(PqV+W<lZ8mRD3)z{(7VtW8$V;CacyaO{&{=
z{iA)$j>(d5H%o0^_GRC^>6bs){`~sv+WR0!qa~YJg4K?NTGxFRyfd#Z@A>4|<4sR?
zdu}v-uU=mNP~y*C?S{*HbeUe7T@TYp)@htE?Oer^{=%*=>$x)jGo<eiQ+S*xcYtqC
zZT5cYbf=iT{WF(aR)?Oce%_jQSJLLm&;F;!3M}lVzTee#>y<rMjiYeU{^ZYWbuj`D
z3cuW)^}(LUCFr4uoK^GnKmSC(T<iGg``~ZdHMfISHP0trmazH#{oDGpuU*|T=esOV
zEvd=;ZJ&8|<)5eve{_x5w|^AfwsFZhey8bGsy~j|J_%vlcj`xB#jf>DC9wg2j@8;-
zi@pE;P>=uXc%^^mqI#!I|9Jbr_Rpg6`f-=v9?Xy4={nE;fm4ya)UVSI<!16Vet7MA
zq47V%gxp0DpQ@yN4mkeGIrv@lZ}pe5)u-b{eZTg^-+B5k<6qG)#|uG+A7+&XP5OQ5
zKZEimk;WiSh8LA<Uhm%0zKl2d^ok<CieJ~iimt0Si7nOq6KtRJBlyv6jbo8tydN$2
z&rqp!Z~w%A>`#8SNl%{?O8;4SJM(zn@h0uBN1ycvZr^n|^=V$N-b1Y_*>9ItuzytA
z&-cf2^~uWR(RWT9o#rv|_)49HyM>$2)*DoOb-Qs(_&s;++5ZeP|GGXfE!SbK(3>3J
z^`D`kYVFZGmrm}lKjU!B{+#8y`46|8wLfC3XWcvL>3zoQ1&`Ei`r4NjWS?|ftXR}L
z&F`>;-Tl8+U+i1Ud;ZyPP02A@(zhUaMZlgqo_ec)RYwkg&-r^*<?2~`@y_U@x9)eA
zZ1ecfu*sCWcGU_qrgMQ_j~Q|^c1paDs^>m?yuD5#!n5ME)T>=F)1{v}oR*lSDJj{m
zxUDksh4GK@&9N2Q2g|C$w%RRI@%D9`R=v!~;L|C~(og3@f1YQae9kzo{BeGVJolIK
zEmum;n*a8Db?U~AL*^$%cXVD@cGJRo!<qxKOM2$WeEBrBK4YhlRl$uJ$G%0+%UqP1
zyRu^0ZMTc28m62oolm28@HCpM=)Extjkec3$7U&EH|d3)?8VYZ8}<5Co-H4F-&~B5
zk-fOYXi3h)oz`<KEsx9nxvsge#(DdPZwq#{PV3HUVRPIS`9y1tf!nj>Nr#nHs>2s&
z$_v;SByMZ=x;TmLvSWqlsfnERdxDv5=K0%Ay&Pm5wWaKlvBdU@#j`T^7|ORRZ`-eY
zvOg~O)06h>R1fDx+l=S#K5^prafOmKt5?TL+`Dhq@vh{i+Jsw`ebKTUJa=!WG1^w8
z?K1n=KJT~U_RDL(dwgb?u<-BWzu%?5*PO9X|FACn$gI78&&_3to_?y`E@(|gSJ#cZ
ztpSTSoUgAss+*(Q-}mhA`nmE=3q937y?J(R!7N2(hP4(Q$JLClOue<^_?g49#Q_z^
z9WR&ki@g%FDylU5cq+^!_`r#C;<jvlhPM~2Yd^Hls#cEM<w{<n*v6KhDmS+oSvOS~
zJ^7@4`cM3t=qx+^D_eE#LUwGQ6>xD+?$iVko@-NHdc6@d(|zS_yQJGNwD7Qukd?m7
zyvj#g)wgcD@=kYc;>??gTiVRi&r9fj((~W{Fott);lwQh{GVR_D-O#&KAWTPz<IxF
ze&@4UFSq4<oKPiqcFD`&li5a_RdRZ#@_uUK>c7BeeCLYUt==|CDc8sBdG3!dT%X1=
zsVHgYEr*bTBijlu6xGZ7X;tJr;JdVI^>+5DU;bEKs}GCbR(x*Jww~{{nn_~wYR*qR
zALPdM_3LwmYu|hN+ixGJa@(Gz)RkT9^x11i#$)YgCL51e=kNHE#`$c8%!I|FPo&b;
zC~T-TQwd55TDon{s{WeC>Ng5Bcg%Y1e`U)P))_~(cd&o7VR@%g^)u&yynoa=k$AI3
z3oY)tx%GU$6}v^rjHkdcN6z}6!uNH`$IK?hR%8cn?)h`+X3R0Ggv~Aw>lx=Q{?D*B
zJZHUPq}<ufdn+Z>WqwutzV5&L#kN^T*7Ba|S#g71x{`N7Jx{&W<>}LluS}J2jrqpk
z7j`+W?oyrpRo#?O@mamCw~E|c&&^D<mk}@*SAUiL;yzc_rMoY8eQ#Z0yz$DH>}eg^
z4Pwtu=RV=NJ)?lf$KpwP<E?#3Kc=pWa{p-Uc{M**D*i1$$B*KWO5yjF^OMA$&Ja8)
zpBlhhIxF_r-WA!~41II+UaHJEnP;|Zo2`4{r42_MPfx#C=ib@Zw(7{|*HTOT)SBL<
z+9bTUX}-PV&&&Rg!GRZ+cbyK{&-b=1WYRs!t`#;iTPg$mohSHbeVSVx{?Tl5g3q=S
zXIA$<?4El2$_AN|U)QI27TP}Edi3F$_Gc&mg&HhayK)^f^SSkE<yA-Df7`dSa-}8f
zy7Wvd)~Edo80wgprp+$RlPR@$Z1Z@n*6tb3GCY0$jy=WK?`^R=(!2O<)$UmlcSA$u
zxHf$G^?c#dv#H5<Lmo|?c&*0ZN9;%T$MSt9>s#wNzgXWFs%Va#a4<D7xzVPFF)dNq
zBvZ&`arK!`ZW|dSc32nxT~T*l%>F~v{APLfH+zgf2K)ZV{pcOAvH5i4`#tWp%U?Y*
zk?6CYeWPUCmOayDD%&jl7<fKyOR+cn&v0;m{pRqtJ*FSLkH~K={gYj|`p2?g&kz3!
zd1rL(SJ+hj$t5fNx$;U`CY(6k`|&8(oHwF(>JJ9nKUfwoTqj=RvH5R%eUeA|m4Dh<
z8y9DpN9C@1CBCa*X5hok8@E|c+{&pmF>O+0;G)fqlRT$z2J}D3m)P-K^r(!_k6_(H
zmsavv*L+?vf7jKW_l+_S8D6x`R@*E1{=o~4puOMirR^UquixhWM@0OQddJfr-oGPi
ztT+A$X1(<Gw@8#uaZKEy8LGiY!j&Gsogm!ypTViZ>x0U1je3Q7*NVzlZGJqD!M2|3
z@0Snz{|LVR$F=yk_ub47|E}0s*~x$S`}fxU*!5jC-Yb4g`*qHDoloatXXRTu_YEC3
z#vNHDZK<`J|22R6{s;5+e{kCWLp`oHc}3l|d0HRdciK2Ae4h0DQQY!;lfIWHvU9l%
zrfrxi!!&K_iDS=`Jnb*tlltiAE~8VlXWd#&zggcGdxd*1y?VRsYyOo_g%O<RVlLhI
zr)grn^kd4Wm;3l5O>gh$yQ#Zn#gi+`gZ%E#l6IXIcwT1x`la>G{~11b*5980=s&}o
z#0U8Tb?4*d>R4)AKdwJ)FBE6DG^b=gN7m-E%kSP%T6@cO@7W~<cOvhKL`txK4k|jk
z&2_@h_^tLI{?-3bu|MQ(yr9PNqw43#Ta7ZwhvfvWw9X8$__Va^lEhs0q&2QZ&;Rj(
zZimSAG&=rw;p0o32kU>ht>5<ey7cD8FK6p|yN;Y%w7D}P#w62L^27OK^*?k?UuDi0
z-=q4#{^sK2^8_!~gg*4xV$UBNmofRJvFnP%vUhjxy>k6T#Nx)}dBS<Rv#J}E4liKI
z`CR><;fLkPlKiIp2lG4b^L*((-_`6@Ygg;_K77;Wi_0^W4fh_owwdip(&vzwQD;LR
z8_CYAJCq{7c9!}d8OQ$&EGMo-Chzz-y=#rRz>>Q^!eee2|9#eXFMxfeEo;@3_zw~O
zKUB(l;@?!=KjzQ2_ynV2_5|s$gU_Eu-%dULIA-IMz}=nqe$Lw4|6Kf`{2!V8kN5vc
z=EdJk`+jH^f1gdLSko^aIW4P;j;5P$Z(Viger6|6r|y+PQQmD&m39<F{ItAbUCaEB
zyZN_oX1we_p&#ciADpE%pRFP;pUt25%64nhkgIZsttNZQRJ1;v?%#5p$JfMvrs&hy
z-;4h>zO^&2KPY5p6=OGNpUMx_M>C%W?lYh4Jk4qO?^CDN{=ByJKf{~C{|qeYKW5kG
zuRi-AzGc_aJC0%8-RYOZQaFxIKV7jbEOw2jw8z0`b5>ufcDU#~P4njb^Zu>&IsX0j
z{QJ{wgTEDiIC5><wW#*aq>l+#1m$d<ZvE5V@l`y!j3+7L$(~lV!`it&C!|Vqe|-OT
z?tcc>nSb}!sbxn^KXCl|mVTb-ANEH+WEsAyles+Wa^S9=n@aa@npBymr<W*r?9*}O
zqas?9tr-3@>`ZI<&yZyNpW&d{{s*(|6t?|6-?C+^dywPi>v@Y_-~V1d_iy%7`;Pk`
zoc({O{%7d7sa#vJJnX}<Roka;=lbNC`RHvBYk@+CCdc$>D+VKWizk!)dZP@Yjy;$4
zDvi5jKiyuw{$Q^CgQfAJUw-D6u9tdgW!pI2dxyb`T_$EedM2wER?BR(nH*!a<+GOV
zt<5&UE=?wV@^j~(w=w@+_wV|D2Fb1d@-O0yKR$h8wqK}JnqRnLs*YmQ(ex`O+qN~`
zT$|GBa&4nZ*tU%`7EjJz!m)n-JxTi&+3SCpKmNzr_Mki0{Ak$e%irsau2lSI*!MJR
z{lfZ#OrRsbgs&{QYSO)4<n~z|H}%goVV_n8Im>i5^DQX8w*K}7&+5fX+t*DFzwpl=
zv}2{O{-9Hh^>3$&=0`U6;$I)H|FNt(S~loW$mOOO$7QE3L>)^o^UdezP063fvABNj
z%$w)5U)ziQyCyGP<D0+cNB-mK9X6id;)U)w>aCW!Bz@QJQ?zSn>yt^BY&Wja>SCJG
z%E4TaWE{WCPUAmA6KHZ&?eUf6*Y@~6imkgA`NU}F<YTWn`0h+%Oc1}p!+5)E`Xlu>
zoBuPgn0$y`b1VL6efO=hY1=1m@!1|PptN=3)W$pFCnrYRy*}|aE=^tM^z-=Fh70A&
z_v{Qe-gdog-!zxsTr2bH4fYxQT~%jY6MW@sz2GZ5%PV@zt|d)&o@4uFgQs0Tx5T4u
zJ4$b)Ha>nW(sRl)r@>Qw;)nD7e+(a|Z~0(<banO84>`ssWw&mzn!W1Q(GsRRUbAYi
z_@?wKr&mbV9JRMpnNVN-HJ<N3!@)KG8Mt%)^!gv&Sh4y<+4K_|uJ7@Eq$xQ+!+!Us
zN^{KvC+szz%v*AOPHf%H_z(H=?O%7AtZ&-C>FN2Svc5|9pT%bcxa<xQJ~K~wx2FV;
z%-i0LcfziG_@Xd<)3WK=+PTZ->+)v0-J0JhzvbN850k_9T-c-h;c&o5^-j~zMIW8h
zSI0)bntVJ>bfavGS#Dv$!l$8UJj4tp&Y!Gh_`Uv3_J0PJX@6JNsn@7~v_E>kb3^^1
z*&p`KX>xufFCTe&Y3A!p5tow%j~-=L&(WU7WUr7PdS?@BVt?7k>wjc=KSm#_@~%k!
zrv5|wfq(NifjtwBTRWIqZ|OAG;@^DRb$PU_x>H@{#exv_bFcpF{W1AJ1FOW3jlca)
z@~!<HU$Os)y?|+T^y5;dJ0?oUSQ#p_S?4%$XGBWmMY7l>sQ*o5;QIcM$A8neEUP+o
zoj9@3^_mfX&3;UMSl=pkZ6D7M``<P{7W;n;Z>y8f{I$hw*VeaJqUx5edNohs3ft1P
zcV~0{*}pk*=A!L=$7J6t9co>gR(|r4^nrcGn>b5rm)u#yQ?{j}E#lO?{d+og$=SaC
zeBJf$;yP(>E9>Yib0L+5+dT6*nQWJanM-QD-ZH`C=Po%9wgn&BkH>Sr{C4Tkt)tJT
zsu-V1nsw(S^QL{zI%j#bJxb=;xIwjC^n`?k%*MlEecRG=eM~w32)m!UwXJhag>&HU
z%PEmLPduM)(?651<#c9Y1oIpNhN(8?FVEICe@J?Ne4fdrOJDPIRd@EDiHrI0RxYMO
z@%y0@d!`-uX;g3Zx>Wv_^AU5kvs?Nl)OND}vO3e3`~J`79cxzk9`X5oBll<I4!f(*
z>V@{?*FNkQx%Z>~;n#UH7p_PZKD*?$W5Rd7S1R`vJ93HwFH46A&Plnx+%K>0$>Oxi
z9cxxz>fe(0;>+7&&)E1!?X9X;r&%UkGhw-$)+Kwe{C4as1K*y{6C~X@PiS}j@INLt
zYkRwC^nA`NpJo3J_DHuY`RhE`A#32q@t>huHv5f!Yn|eiJ)Y$suH_5f<$U*W_q7M*
zPOHpZSBeEr4d7(*^E2`*o|N74cZnV6>v@W^!+uPDxV`<&FCYH$`n`uFk{YH~7I;{D
zwVsH1@{N7+Z?nq7n~oJ+;}`dh3;8*D`=`&I@lR9g0w+Cx&3>d}jcKGR*PONS{?*gW
z;!W$r3Zl{$7uhFuE)7v#Yp3aQ(BoCghb0U6>R(S^Tlp#b+PZ~jZv?p&7&gAWv}e}q
zN2+J;iP>>n(tBzZGJW;R(|ivE-wTOt6@GKza7XN-I|W`s+TG?$Cb<OuEB*1*PNL`C
ztF?LOZ)iUMytI^4{{NM4{M<iIW&f2wx{q!5g`}%$+dpjYd}peiePVyXq{xUfUJK6O
z>-ZFJW7U)LIsOP}VUvT2{Z_lx=>=zXCfs=0arSQiO@V(k|4jd`tUG_{rBwP6@4Z~M
zUeBZF2Yoo-nYcfD|Br8T(=V=@<uOTVN5+i>I?<L2N&7qY-`@2s^FKo-udiy+S-IIu
z7M5A2u^kege$Zy_o$E{e^j{a|Z&v1J*|7fl7rW#uHnNX;t&Xn$Dr@&lLhPP&v+_Zu
z<&%s5E%QC<^k(wE$bDt|KZvcrTmM7(@1AS_Oh0b#`YIMFckj;6R`IOQvbz)bmpOht
zT4(oKeyjTNztzqk?c4XbKbrm4@A}b`%hgs)pH#c}oUdBgtfP(vKG`|v?gbqQ6pdJS
zN9yl_{|rrDUcd4W&hNaZK2!X=**!0_;$5D~Q%Y^-E);)J96RHvx!>p5z?NCw&QJJn
zNpbfJR_uE0xxH9s(_LpSi-QUr$)^RX9yIwDUjL{Q)^w-$UjXOjbyt~{U-$eoeeqB2
z%EGI5im@khlX$=FOpWdlR;qNpoHgfzL~>8@(SoSUo9>7xKTFk}w?pOI>z6SRvZ8%e
z8@4?^GyRtB)n(gPxGXrDpP#Gx+a|#<#HVt$<73sX27bxBif4P>4@G^Oyy}nT^}IE2
zKNcn~^pWxMbpM?*?b-{bX^;6PrB-Vfcs$zizSF97%dY6S2l;M&rVoUFA3ONu<D9zC
zXLXEMN_{oA<};hj3#ob{xOj5&?i0m2Ssc$<+mmmz?OnBH^3vi-rfHXV+XvK1MjbEx
zD15N9+Gy#CN%t}yC9zC030ywIX<nTx%bfIk``!2Fdv@0dx0xkGKD`{%SJ)}@czfyJ
z>`$)`UOH_5w)MlVTSAfw*(=T2PNY;vesF&%AAf4UcYWT>F#ndqqnfwsx0viMW$)`U
zTk)SEV<Q9Kk~w^f_FJDx%(`I9S{Zfxk^M1&_YaoW@9n(u@y^4h?|=NV-`d|W|Cauv
z@wdkh?L%==ANI{I_!a+c-d4WNYc#m|W-q^^y6c3>#8Y!Gomg}6$j-DHv%9MzYI}d1
z|7SR;QIr31w%f*!>))!X9&h=hU6j0|-KV#3^(zj)r$X9=snTl2J0$-lICM^*e>b1u
zNB+a|1Nv>#>bdPCGYvDW)aI<)c1?S4pTslI)O4NC-pVN_-bK#rRQZ&>X<eaIM4gAO
zf4=&|omW=A)q2tIvUj%Ihq~U(hx54)%Wj*!)LC@t7R}y?hoxFW8A`1k9{0?uJ+?DH
zGjDUW#>~{8(=+Aw$T9>}p7{Fq(w_B4#Ai*p*z0xS=fs~uF%ljeOZ26k8mcrUBpH5P
zmwdQi^yRF&rFxUgc*?dL^)5Z#)_U$LhkHOz6;Fzs=g~Udu4l^wKU*)WJL+aQMX2Ao
z=kLn>>Hitp_siJHy_)5>lkcs4KyT8-$FZAQ^d#FN3QqS=XV-A8SKKdZpVlv3qxNy?
z@k3XqtUcQEDK>MHmrK&KTftkVrbwJFkTCoi-Pa=Z??Kw0w&?1$+L3)K8z=HTo${pV
zG0z#sm-COC{+$0ir0z`iN3TmSa~6i|-9Gv3=6S4<l4+@F0q>k9au-NwK6z}xv~RN3
z8PyXHugcX%ao^Iko%v^zYwgGAhxc}E_;K&ntMh-AEW^ATl!V^ODDD2Ue*51^l?>lR
zzn_0||F=Vp(}(xnxqAOZUx-&7TcjG+Cz1U5iE#5?uk!-Q(mChD8CI%Jc_8@P@x$zg
z>sDqzka+XQJ#EsA4bug@I!ze6bF~ko9;;BF7@zlJx5s~mR?82;{y%~r&gXDvy|-Zc
zuf1>IZZSN*{N^du&@Hnvbr0{}*r&v#Qyp88?s&H1=5e`0bItYBc21i;f60gRwy&Fc
zq7JPzSu*?gRM2d0?7tKDH<|VSXJ8fi(6jb;p3Am4#cdbVF28%bWp@9UwTfQ@H=PnL
z=!;w@#(Q0y%b??uTYFW*@t<4%F0M~}e=GeT$Ijo;H(veI>puS>Z0`zLE7|O-lj$p7
zx;}Q@F;kgKX~*VMcTP*I-Po*j>}h1ze+K9H55D_vh1v7|sP?<~I9Ye;mqY&<&hN<a
z`gF%&R;0~?H7_>tPtP{&6k*uG5dJ>?t>SN;KP>+ln%e8mi`#S9nK|aKJaFQ2#4Bzg
z)2ppVHcs`PUG_M;C211l_X(Sxv+drI-y!O;!!!G8`G1DCmp^{il*<-;I(WV0RW|$P
zS9|{Dm)_0|{O7Uj-`>PW_Wg1iwRWkywqLLDEiKG07K@d#UK@J-jN6OQ#S>G4|9D@x
z{w4Nz$gSAd{}~u;k{?=IFWEdh?4y3WiFEZ$fh~o9m%Tg2sJt%x3A@gXgaQkN>*w}w
zS^r0P`Vsq$$KQ4@t>O4Mzs+R7#cMI)h*yS@&Me{I{LAHT?+CBCq_rW8HS)Cf%I6a5
zFW=w3d{`>`-?^$~Qw!5XP2)vw?$+_$GG%LVA*ap624VSj)9*WeZ9EcsxY~C5&-I_u
z9~bs)Shw8l_dM7C3@o>|)T$p^$@^H`z*Th1r{cE597YnK9F<G$A9mfz-Y;*b!F^M_
zblu#=IvH+unR-%|5hW*7)ZV}QP<?&fzoYW}ZgU@q`AVggIOfR4Fa&No-}87*1Lu0a
zADLo{^M89)T>j3de#J#Bv0uCWwt~VJ>(oxe>(hQ+pF79-?{a}Z)1Ni7N8bu+-uHI@
znYT5Z$(tYFKf2fLg}hGIw6fp3O_C0FC+|2soq2D)=Am1zd%FHve)GFF(d+nBl`S4;
z%K83${JQ>C{lkB|uJ1GYakuV(#<r_ZZyn!1aoLgE?H4xlAGrQmKQS@eb`KxhF|z_a
zzv6$(48OcR`Fv^ZbSCF%Tf=@k)<0Q3^N3NF;n%ePpxewPf2{ZX7`x=-of9r6F21e3
z$t8Z~_X$UdPrqu5XMNMZ@%xzZEBh_{EvCHQr$e{w*t37)l=i<*qDt@d9OYN-lsxY9
zF;4j5?~E^VQ}dtIcBf79DzK7Qz3T958uQDz^}m%eK6-u>54gHcCGc<m!?#{9xiu`3
zWx@_;+FI<eQ25Uf^?T02qk(gGt^aJ7&3Rh$SeVTzd&!F32S2Z!!=p6moN4EzqWH`{
zQy&2do{wz@j}^xqe87Ke^&|eaH%eF5nVfjGb5gNv%LcKn5ofZN{+YwZI=TEz$h&~U
zijFKl!@Dl~TrSlOj=dsK`L@vd(9ZMs${1(JSw7l4{n7Fx{sKSZZa@5TtMzim+e+CB
z8`IhDF5Bib@r?2@mR0SE6ARAm2-g#JsBB~F(=#k?GCOTpy3(@RJa75EeXKtYKAzwA
z;g9Q;n(VSfGdZS@IumYBoAlt0^=-C^e-157{&e7+^faAHm6RIA4=eXS`d8s5cR2oX
zy!ssGS`L}{KG$E=zlr})AAQ|qf5$z=jO2gk`VY>U+HJCl;jP-r{9-8<hqZg2-SU|f
zQnQ@()Q0%8`&*~;%O5$<_iE<tr>~-%d5S+v&yab%U-s|o>CCN5JwsbrQ>NXoEIM*!
zZJ^)c-8*k(i%k!!)4r;k6!?4g?;FR85A;2Ak#FEWTRZu~?8i3yx$QV!{%6Rz`Sf<y
zt<4fg>QY)x<u2jsIkSShU7e?JV!U>Zo5$NajUVkEDYxXKt}ebmuQmT2o9za+?1|TE
zd~36p>9<F0*xL5wUZw86^4=sp`?s?itV_SHPivm?Xvy4uySUT0EY6vS+i%nVp??1e
zKVwbQ-}#R|mLFcLRV(hjW6um7b91Lx57W7to-Qp_742E@r?ZuTk1hLUzmR8X>I%ts
zPd=sjPgQxbq<I4S!e6ugh3tPYMSlC#`EL$?REuwq7kbxX$NVwoRocvd&t}$?Es7PY
zdm_X?>G6sfmH8S%QvbGn-MvERd+eQKn+__yEx3`mb(eun6aR`w`zO@6p8ROxb8pG(
ztYz=!*Z;6R|2CiRbB&$8=29uCB5l*#{}?}%AJ2}y{gZ9W_JmUc3xp<p{7|W`-nVB?
z$*TBm`&u8%-}L{-87SXdGV_^L|8d=@`-gsA{WI~jaO98rH=kop=kk4=;{Ci;=azHR
zY4dj{lA89d{4jNXd+;Ow_R_UMm##!dy}Gu^?8iYjN2BLe^QUgGb*;_)&%j!KWsmU3
z!;iw7>XY>)Ug@SUsqy%*yh|lhIaF0mD8e~iC#AV_VeX})pZ+s&eiOZaF!ajCEeT&^
zPJg)a@bNFxYeI!hRmc4Pb^K?riI;hE<!krMnabAtLKWH$TB<xLyuUTG!rOOetkCsS
zcUXKv<~29=6kqR=cZ?6JiT>O6pCK#0d7s&pKk|?KS?|T4O;il7PTSC}z2fuKo!csx
z_ShKdaWLz&OsO$2eZ1jEeB6he+=uUlZgX2dN%|CBxzXoBo4wX<r%wx#_}(t;WaxSD
zG5-3Fo}#&;BK5*HGB2+d&pW>4#l%&a28(4rxaY_GXRvzxC6v3upM~|jP589P*G9K*
zcbG9*rOb2py0rCUc4q%GBh3T@b_M2t)j_3?we)2DT)n)?(=YF`y>>}5+@^=`>KFHx
z^$W6jo!_dc_@@^19B<(4R}h|HU3mUw{G9n8wwqe3+|L%t-SMHw$Zo;opZ&*np7noJ
zwsY;9-!-3%)qibG{<Plmp_}-}gUZ+Tl`ZqN+;V&4i)z=r;I$vtZMzkJ<UU^(SH;$k
zdfkS$3<9sNU8*kOp8vV)FWaSevyS~|h`oHcIDLI~*yERCON&<jXXtB;pHyzA>8r87
zLuPuk{Fi&u^S>0Sseg`}`D}mK9{-G6_DAf+Uq1PJUf@;Gx8uKjp1mmfHf#T~x_;5?
z-_~a7uaW+}RP@*U=2}IS{|p;7L%VJ*imyri=k8p*+K|h;PShbjec`hmvwOWVHk@)R
z{t>KrHRM0Tn%CF%uiv+-UV2SYy|AtM;c$hD>Hc?qussx+|9y6z?XO4s`E!-5Y$j!@
zFn$aBRP~@y{B%$0gC^~7@s8INWAhF<{xJ`GGCxu4`eXK9^{(TO!aH>&9-q3Jf3e~}
z!@Tmz>gt!7e}#Xxza-W>Pt3R8{@<<oz`wGEF&~Z|wAJVTyXU3SE<VS^2LI)<hOza{
zrrl?yk6gReHb3{<%*S_FBDLa`r#=uq@O+_6_=LZE-R%mP83a5Yl!;!chz{Jo{rZ>h
zdx|!$X+C3X=On#S;=zB0IpLqh)O3&hoAdO0PXB^G=^y!z{ZqV{r>nOmI5Ded;WO4H
zlIQQ*YcMZ=I6p4?h`w_0l9?&85&~A`$FeW~$^Yo=eRa#qKgJKYs}^*t%six($FfM{
z^}K&Kf5{8)x*8@c6sR?Sk74TxnFqp`|NIMm{_y3C`MRA;#TFfR`CxGFsq*WeSG%=m
ze))Or(J5E=es<N+Z<7yNM+i86QRsTu^UTjX_Z;W*o?j2XzxUmq|E1MNfM4$C_h02_
ztGxM_-aP+yQrX7W-jCjko3JjsrhZ%DiJOqBb;V05HG8fXHQo>B<{vH-crEq!!|v$)
zUsIzz84kUFuz!WE<*(~g;<JrhCAWvktpD)I!PdHDz30cc)%Eos?mJy^ITWmzai+Sk
zUGTvtPy54fv?r}Ko3-uCa+Tzp8Ddpu_usnp;E?ns!-?}ap7gnYUQ>NqJJ;%8bar^U
zi}q)OTYe$w%VpAKwcW0EMLDIX2dfl%Fj$;OoM(7m?%&h{_p-Kst7=(Xsbcv1c!kCB
zn6HoT?aB<AGIipdtYznB>u%3;FKm4Omp3ajQ~5v{;{*@+_8(jib4oSM9`3MwQEzi?
zdHZ{{%;oMj%sV-suh0K{ZOV%+Wr<I=Tfa1$sW{!*>A~mAEXjN0KLw;Kt4u1sQvA>K
zyl17+t)DH8ZK+Svo6oUT|7YmUj=p0u?WEN<Zw(dmxcN`Q)IIahnqAj8EM1=1@3&Wb
z&xg`?vvVI+Tb8!=9M~i>!H3h$Q)FR~#X0Ay4~20#?@bys0?L!;|J(5OW$d$+5ANpW
z8m5Hxf4?|Qz2b3Cy297<4wmP%Qn{zIe79MYQCiFQE!OPi_Puk~=e@b1bCz2q$&X#7
zXV#19!70;hPfp-?etSLh-rO3$58oCqdUY-8>fJpP+}GVYUMW6<LGSQ)V>!uP9!s9@
zdyw5%)TWYTHm_aoPWsE}lgGRshc4TezWT@E(7nAi{CRyB7k+T-%~S}GeztMv{+7@8
zGmc;XuzukmiG+PuP0}Y!4Yu8($8blu>dyh;rn1ldhxVm@6uB6mQOCcdU;47&6~(wa
z(OJRG*Ds$v@b>=FvRi)ZAFue&uzCN6kd8k$LS=L!n2Q>F?;FbP-F4kIqByI)qkGb`
z^xBnCtowIt3wx+C)6w?ZX1?}ih4Jc#S8tiWKU8w^)H@8vJkNXmVm`L^(QAE?SAFWC
zZPveAt-Xqx(j~bTFD^a!oPBG}nMu7zk}Fx7k6Wns)O+pGRe66Vm1|Se#kn2Vo^&$3
zWzO@z_p0z%h5gj5sO*AcA5W^WNZdJk;`f3l%@c3$TxS~V5z1c1ex~sCg=(ouzrC*5
zcrNu^ka5AYa79+eHL(o}r#(wc>dxnNpZNXhL>GTj<xz<q8=>;D_=$Jj#RE@j&wmm4
zpMm9*c|6O1h6mH;bAC;^thWD3t_^qc>TUBDsC=*LTPS~P(j9g!o7>$pui4LNoc5$~
zk~RO0@^88q?NejfBYw0#PHT?)arh%!`PG`jM+s5kJNNHO*4b7T<YjYW%k8ja(LK(2
zfzAdeAHTL|{^582Kpe+~J<OR>Yoyrbr!GIXfJgtvLytE09MQ*@cC+Qwvevg$-j_^T
z6?WXMWz9xWRm-h=rW<GJpL)A(*X}a+7azMkE9I^0uK#D)5;ps{%D>b1EdDN9uk88k
z!?Ecq*Tl{pWWBc3P$2W$!3~wOUU^(7sQP01uV6cK;OwaVANkgr-!|<HtJM2y>z~k<
z{d?!krSmEy>(Vk+%W7mAcQZ2-{sm3`9;)AZZ|d6D`(*xh{1LC(%qvv#QM_x<cGl$G
zpFS>)@M8S^YLe;e<@b8JiyZDP`Ojb?e#)z}UGluo*H_wqm3}GxsQR={_TR-LZdVKS
zXUF~&oACSV^jR4{dA`ft_4D{*@`rWVAGwcgOD%t#e010QaM`spt!y(Fc(1+V$7z>#
z?04!Mv!`whnKKUyANc84x9P+B*8LAA`>oD?^uFsqgQTuR<Mizx;yQKWZV2AFV<C6s
z**=EeC1EokOLEEd`^`B2@Y>GH8)q{=XSPt^zO8co>s>o*)Yg`NpBHL#DdbxF8`u5=
z^M5FpT$sI@|JLM3YF&jBOzqn?dx+buO=sV4Vej=tTmHu5f1G>Q-+6whe*5v}lCKJN
z&*MHUTbgWOTUYz5N8&%jKGr&^%?CEI<t<lu-2BRF-kj3aZ2vq$U4&0CzL8jG&y;;`
zUU2aAss11S&Aj<{*SCy+9X0B|nf{%;5cQuSEo1+7_XBTzmrXz8Ty!bw#7&7?F1x0*
zzpynjJeR%xN8^76mXr_2`)x!f{E&WZeqg`gs|`P+)#pd|UDFIqxpS~P`p#4q;RZ(L
z<yHTRa@Ieoexbi!a-9(8B=;^ioi!^C&Jgh9b2xb7iF|R~<i88luRp!0yJ+jQ!+|?8
zTGw1q`Svg7{1&an`VwJ>-YQERt(;nP@_1bK<~xTAb@t9$_U-mRnZE)1{xdYO{JW$*
z{o+>n#$7wY9z<3gIwEBJ(rmW)E7!{Z3`hPm{7}07cJcBb&Hl0459hc4ah6@yyfpGo
z%u6}N4_gnJp53D>)9QNk>zWo(!MO(wDkLP<pP8HgP;K(kAH92YmsOPe@80LVv`^yb
z)D4xPlb;62I?3L3E2vK2T3jz`Bfq%9I_%<`()BzMnb-Z7D&4tl+PWr3z3bfz<4rBU
z&&`Waw`s7nSj^qLwpL0uCnuRz?Tg*jYxWQ3$!}>txHszl(f<r$c7k^@t>k9Z{N8<h
zvg?jE)*dmwW0$@?>}pe(qxpP(a9~CLq5T}D`2z0wkM@fDW*5t>T3?!(_flp_n;xfg
zvx4uEc?YVlAG;N|^}$}VpQiO3KfJvztG5YMy6&9d(eQ4niov0aVirF|1okou#$8<X
z<H+sTVYkdWly~k(>GW>-%zW2swLx#dhuO0;PM&91+jKNB+w=GHG=AH|Zj*av?|%JL
zuJB|2f&2V9dkQONskJV1Or7}DU3L!FQcnxz?{#y&uDQ>9^x<5qn<jg;INqez9&={#
z<X|bD6r#U?`QF~ck42>XTi<SZ8y>c8<LuC#+v=?aEqy;S_O3`dW_077C(Gr3x)tdM
z;y6Fn*hzo*yXn;1WY#OEjn=H;X+5ZrAh08VT|(xQzuy@fp{}qipR=D`@H_EwZ+x8C
zxBm<Yn`XpVN=t0iS^Z<)@_BoWudUDg^=$3~d6vCTd)CWsU)RavCU*Pj!TCDY+lo){
zglIh3Zo?coYk8N+=~}yI-VzJ%t!xNXKEd)>Sz*@aA2spC)jS1<m4B{2cEM8Kx&K6+
z>GiMfDzl@MkFKASai!eg-P*-{?7I%{3}s<h+G%TPw`}FhvhwfZ)<QQw9WD!v`1W{$
z@#TrpzqWUro#LszXK7Q<qTP8qe%58O=e?em>=(?Md{+1SoYNBoRur)ZA73tiYHya{
z<i3udH@!p4s`Og3E}HD_JSOV*pyH(Ix)(w|3?a`~u=m~F@%YoS8k37Q-jAibSCo7d
z^tfj_>CrQPJ<&8t#`%*cSsq}wT%Y0JY^Ro)-upFIHp=8oPM){Uy83oS_i0w|lKA*P
z%-h=XTvRXYtF4uJ;f<f&v73IIckVfH{IpF%>A^Syqrwv^h2e`o_SmOJ%NBjDd9f|0
zk}uMwZpV2E3Crh=U3Th@tAC^iZ*P0CqT<g{)ksMdj}s~@Sw1*Ews<`!{PeDMyQ|k{
zZMWLJphu63xku~kL0f)V->MlkQmds;JYE@9^5iG~mHM__U&6}n@n2QsG}isM?0u7D
z*=g0;+Uft;&c3NVT428||LE%LAD;iwmghZ_T>UKjuj}j|54&P7I5$rGyu)bT%um-h
zntr~2pkL<b!;E!mAMYN#{AS_Ar7gQAo%zJktP{9G?@7mD9wzHw7a!ksyMHXs<jNi&
zF-O*~r%hL#Vls+8-tj2Rp?bwh*-pE!zrM*^FKvG~BOy`0_LS%ARlRriOD}!4uCBQ4
z;jJI*H0Bv?$@LQSwd*VMthyQdYe`LY^56X`P1y-g%q5SXa;vS|H+7Hce6b@oOHXhg
z=P^9~IPP+JD(@lF%{&an`<WH`4>TFy?s|OdU}U$4@*RImzvB02>#C&$t55v(+q`+p
zB>VqYf9HRzyp~@YFU0xBV^OBANpF%nU+3>dw_G13TKsfmX3;Y~TW?W5|ATjY^ZYHL
zZPPz4KJriTTFzG8eDBM%s=Z6MdR%<_=21hd@nP-$ua(v}eiyjbJ;;>Pxc*1|!+(b8
zk9GZ(s&l_Y$t`M2<+>el^UT`AZ7fsMWcphEW*^wYtyiPGXlqBu?WH|F%kx7&9dPX5
zV{xo_l2z69g}uG2jvl@3aKQRP;b(jGcl8gt;x~WY^X%rH;75Y3%yp;5f+z5Wbcj4}
zJ}Cb<uJgnE2kTq*r|xI1iTYvwF#GrH+tK!$eDv}rnN0Ik-|lW1acJGeXIdW?_wAYW
z*J8)s$i%xs9QP%|?9JYPtF1pD_2=%7$*Z^Q)A=#6bazR4RmYaZ%TL?9E2@5*_%M8b
z9rIP|>`gN_O;z7JKdim}&ij+Q`p2^Doq4&sw*pmmN6x*$UZ(J8@f<dW&r#y{H@WxZ
zcZpwHlVG9nh;zRBGESZy^8Z%-I(%?f)9G5Zr5dRr?U@IjPb#o@JumyJ^yw6Xsiznl
z@65lpuB-6oeEoQX+2!{7fBb(7R<y@%@4EK>NZAILH*5Ph?DOn-GI3X4@tm^b^<FE}
ze=|n=?a$ovQRU!;Noz%yxHSG}U`leg`})iFQFuwT$JA~Oy-K?ol3!o{)wVkIz^N<M
z+U<UEn@!=J2eaOkzOuOWEIxA17CW&Y!N2W(Tz2}q%TD%>^+n(N9r@z^J9fK96kSwy
z*U3mRWLhcp^QO*^&=V}5SnEUV`S+*w^HzAhv`PKQsQYzp(#=bc?isO6yEe&f2j9Yf
zk*dyfHwm`BT5NOe{F}`mq`iLVKD4aKUlr-H&+wz|7WSZ>p>kQb4()$&t#PNKGEZ!S
zh2D`_-)d8~UcEbQ+U&BsUOuxM|1*S3y~`1BWcgrZ@zwO_ztkCrLQ7sQ{B_KILQ!yU
z)PBK}75k5-dv)r)>zwo~aOX*dRZMqJyz-E#zJAW?<&KX+HXD4EPBE6MFmIPUSA6im
zu>$+3ul;hjBD2E%%|0nPyjs_26kf(~@+4#Nr!UV<AI_TAU%lke^=*gW3bZ>ZofKlQ
zGKgI$S$w>}uWH_$c~{TI7r$KSKRqNdGhQHN^Ockj%e$1#t_L<<5-8qh#CFYbXLkXk
z-A#t{uDy@n@;#2+GClgzGlO$|sp(uv_68QL{uV!rmOR{iBiwvdRK|P(lkb<`OCG(u
zLXGp9!7|Pco+C1P(K5*sZ})Va`%(MY^<wF>AGME}b7u9<Qwi1+(q3_2QP$7gFlWxB
ziu|QD*Akn2<4ev5b4T9yJ$L^>`>~}TSMK}}-r=$BBX8HPJ^n(HdW&z*StQ1gY;TZI
zJZJLR>bj{9=Wn`mVCj`xw<oF;`!Jtb-@j8)B6hh-72hAOKi~c?{KLNLNA(e@`lI^H
zCv~?zsQp*t6P<Q=%LJ#lhqf_V-rn+{r#L?JkI0Y5>U~?Hv*jfYf8&j^IFoZjK7H5C
z?=v~hpS`o*_S@uZ`^x(CZ=9YwZ^?__9`|hhFX@(lGuiiX|G}d_=6)~_+nDQhP|P;(
zmdB~v$K||j&*<^pjAMPe_?QHrgy8wlZ-49myZTS&$J*aTH32{DA70ye#m2l=bJN9j
z>s0u4RxUfHtCu&+eM0Z#Q{3(%St1LA7!Iocs`=ZtPcQBVb6kY!>fddbIHC(hRw^Im
z_Hg9dvx=!|UGc<Q`&IYnoxc(O(EZKz{|v0j-QW5?q~4qPuvYnaRpix0m#)|NR<4Zk
zesb?LPd3+4p?3x|l|M`DnIy?~$?yG)M_v(LGqk>@E}8Xv-pfC4lfUOP73UN^lCk5m
zT5Ufkch%>o_xDaushRkjHG9(WME#bxNqhP}d+wQa^vt@xiLtlNy)erwdSWTvn78xo
zh5Fd|jq8ut=DfW0vd&0N`p1)?39-4IH~q?6>Sn}DV_wE*owk4G`v!Y98}riN-WBZ;
zSN^!mO%%TGmf92=KK0>l#-0fpT9QdBf1k-rGVrbUzR&ef{P42OZL{iI_rx!&=(9HM
zm59+gXxOptD$Ams#S=e$;$N>k-(O?Wq&_A7u*qAmCqJu+IqcS_woGW%E#I8qFV`K9
z{ayL*=s&){>;K3vkD8&_e$0+{r*HP*>s@>=r3{>Jop9DDnd%w1zrg+0gFJ@*$NvAg
z+#kNJKD?jj%YDAAYm=jQzs{R3cxq{!rQ+5d2TE;L%C#>%T3_>h^W9|=MS^uE-ig*o
z(JSzfkr5CPynk)Kp8bPW@f)tU?$7DJc|H82U(bb?|4ct@-7{<Io}En+rpz+wrF+lx
z1+ynAs-#Qv8BaZ7zwoJKznYd&zRQ1x^}9d*`Oh$WGY|7h$Ky}-uRH&tzWuZHZ=sj(
zQy;udx)sh-%o$Y0EaYYR<!zkkZ>!DO`}D8<aj)fIdmehZv)g)``Tf*C95xSR!Y}UM
zc(1=W^TA)Q+pP1%1y4jPq@PZz`ttkg!~L7g`d6J!f5ht%ZMdyDQaVDQNYQ3{%!8Gt
zUw@pMFxAI-fAS-PEl;^hF25{3bN|r(8~bE`9Dd9#c6QbM>=idzCQQ7!YNh%@hUfR?
zw*I;B;y!PUXMX9Eb&DDk;&rq&3#Wtz6;(1cPP`HRRWVm?ap`aMKkgqz5528kc754|
zsVPC_mF#&R&q+5__ho<3eq`Uif5X@IYhQNM%t$X%>y6fyZnM;~YWQ1tf_=Zz-h0x^
zURqslel`70pUi974~{?Q>%9Ia{n4)NvbRN7#4{DiM%4oM!W;AJ?6tnFznSe5?W_FA
zze_*Rb=&NRTej8SO#RQ`yMH_L{eKaH$5*ZsepI&i$;-eSZl~gEHWz+(`aG$g|KHxK
z^f!OkX6~wg^Pk~kUiS6Vr&AXnTTm2vt@<UK;kmmfcG|Y9H^#?y&RN>#cYDiz;ZuiP
z-B!PuY-e>%-&A^a*v>1>`ZHD?c{0h<=D7`1@r63k?GL#_YTd3TB~IB|$)QtJzVBjV
zAII@0#SwBUtq()Dw`cku?rA<L`HIi#U+CS84BfAhDXx~=`=nEkxpU0So40ho)h{1+
zt=30cMq4fIp1(f-X5}Mpd+rKxpAU8OS+1>rtS_7;xLYi2(zC-}AC@gpj&yi8y{e~A
zL_k<si(ma?|KX?>tJr%JS9p0<7Dt?W-XrSP@%>xOKha;2AGo77Uf!orBY4?#^@_I-
z8f!dPda5i>$uh0j%CNjxfbHpa*TmP`_S@K)*DkK8yLahR#lGv-QO;ZDP24_h`O`Q@
z+f9`Z9*aIo4XnErmACcxjdfq@uLr-h@3|*G+4INRN3ZW*e3x4tI_aKq^B(VNla8Bj
zm^K`bz3=riD&pRwpzDqkCi(Fv->Is;o@ut*^vSF6smj*7lKTw%9V7LbPnC(?i0DbS
z5&RLpw|)7^g=affOIj~Uj(*5LMdAVDZuX59PfCvG$nEL+`}uDR=yIp3w$2Zq?tiQK
zaW3CfqU6Q5O!1A&XBJHBZ2VT~m~g4GR$2Yo?batf^AF34J6?akm37OdWKZQMll4zZ
zu}W{>{YBzG!&k0fZNCG4#C~{uxK3#Q2kuzUM_;bwsa;v0GAmxmJ77j@^7i~`qB;df
znw4|aRb;|XeO%9f>CA?8Q?A~7`7Qm`KEXntqBpm?kJ#Ten=*asSNj!_{~0pvn|{r2
zf4k+U>D;I@n^ud(3cU++Q+QBtO5*uKcFE(W@9uA%e`Id@v0eQKZR?&%?mL^FzcSjj
zv{-WcP9eu^_DTI>&r*z(P8$pT<g*rxpLCz?pR(^#?`0L=oi|-B<-D@^n5lMg$po{?
zibE$QBHaqsPj0-mKlndGhHTdBupgEW`^DlVd@f{%T~=9SJKOc@mXA9mRT}Q{oBp|Y
zSU2&rl;-ic?7H?}mmj@nc*@;sXt9T<Y`NO(%)hf=rtH>RUi(<TZ9aqjgGKdhZ}upE
z4EEW+d;f+?xm)qNDLXgqatM6VU9~||;Xgy9v}U-hyOX`<KZE*%V)hTcUk09i_@AL8
z$T3rR)e%!!IdiV{)8Z#x%T5S+!f=Ys^3=So*Um3`X{UE(-5yqz?S`H!k9}Sh5qEmo
z-4lwbs%zdSrW&4=V+@=-|FDAL=EuKmn;*I#+JCD%_`~}Ced1fD-DADHX0qWK<AUka
z4lMarZg4JkQb>VI!^gXxLE694ELH|z`epp5<miLPwo&#y@we2!sr>l<!Q1<?{<|;M
zweilIHhQcpUC+-wd#goSVR3EJ(RXW85+2H*?(=Y3P*$qC`tzmSxa<=w-wvD=<~<So
zJg9xbO_{_tgX$;Y-#CB!#Z(;rmh)qN@#C|~!G#ZbtIj=o?^Un=eY$wzscmPocl5CI
zc`D!DEPc3m0$)9|{exBVOk4V!{xgWKwNv_Icj?yg!*cf9Kg*x$(On~Tb*KF;LCyGS
z#s#f;LW&J%pBucm@nu8AzSNbUEB<VLd*IJysi}ukr>Qv^f8W*k{%z>Ok8F!Y*WR7&
z-I0HUDOIa?{^pa<+(Ku1yEz-4bc=oEwJn^X*!<SgJ!NW-KGo}9<>UyM5V4Jc)t`Bv
z$2ZZ_-D@Miyfk$>b?s(Iy57vwMQmpu`8hmjy=6V;`ex4U8=qV`bmc`(#q=QW^?a`c
z8~9#FHy9WcB_&?IzqIbskJ+JC>yPjY#Xk_4_v+YFnS#{lxoXD}p5K|KxbdL&yd~Ek
zmPBouo;tH&%^K$Fgx}BhC+?HVZa-pHeA<xZ;PQ;Zl&W=;^9pKzGW^y4_MTDo<dKQJ
z`!sy({J+@q{&K!Jry^|0(@O>Qz59cgU6GcVx7E#(<H@&2>+dhSX85@4IPY=Mznd+7
ze@p++YI)D**xM=pd`{~ttky34cbfV5)A-5rWfw^0AKx#Yd1U47HTU;3e3|wtli~T_
zX)J%UzgnqlEm`@T{b%?y`L`J-(|-q4991~9<oZetm6V5XbMMrxpY^Zom+OW2phH*w
zeU7i%|DxWvR`R3nqm5JYza{JM3j5D+yWb>xzOLij^Rh1|-qAkOvvfk<-NxgNbNW}x
zuUuE+apN?fe~g?~#=80{$r-J(mM31upS*WA+WFVv+nYC6|7X}*b9PSIt+Fq#82>ZK
zY5ggB|6$9e6J`@`%6z_(Y<h~xJl}aoo$aoV@5A=|WN*0@-9NLDUAoBb8$a_r>*~*u
zeq7(&L)6vFl}%zijtdnnc_MeX@Az`BZPV2>nf;0-9$TvP72dymZRgXS>`X=l24xef
zgs<EFXIQEnBa>jr+k9X7mrVWqsyE+i&xu#hjVWKPd$K2isV=Z5y|3!4{gd#tTSxbv
zZ+QD<<s99kd*3V!*cP!`(fYva?KZX9$NyZN*zjbVr?TaPTL1i~QPZ}wKfmF<TTgr*
z<Lkbi>X*N+c@^j@wlw+r@s2GsxBRtaY48<cvMf(YXr91VaXj(9=<}+nXNu!JRbp0~
znKR#(6kTScnqByCg^jn&C+%}@RC_kuGTSIqIOk(?Ow8mJNdo=TEgs*Ok3Te5!|j&P
zlWWVa1aHh;SJ>B3cv5Cg;W@i~TURf<vniYBf^28+(P{(sEC05h<h;2-<mt&@4-yji
z>x{C_nEz);oMzorp%c>o=-2c0ar2*>Ys8x5J1t$h@~zPn!?PmoDoi1L4BG#cR%cE>
zmb>cC)N^Oj8LGbgXRuwhbnmUxQXU122P|a@uYCNgt?P5`*S=>wN&QclZ&t`wmmfG<
z8QAVt&HL3>R8KrZdgHu5Wsm>N`ZC*k#qup7T^1cZg*zFKS^X-$Z~AECeOC6wQ%%PA
z|NLk8`uf5i(>3p=Zn-Gz@hNqBQeIx+R0&J@2K%Kh3w|kknTmebshGzdeOE2K%~1NL
zm)?#5b5{$&lXI%P1Ut{yJ-I&L<fPP7tH*YK`WXH*aD91wFzb3iWNb?Go#`8QDu`%{
z9=N$9UB1YvuW+9D-ipt&=bF8Fxoe;Dj@EgWUC;ApOKKe`eK5hp-fP9BT}n%R^Uiy1
z3%i<Qq8+T!nR7WHAX?{$f1%7m2ZrbKpT_Neus7)R;a%6J>{>pznkD>N_S5OV?Yw;&
zT-LXxhS>=BH2B?-`uW>qSKl*<<lY^U(#1VuToHx$m1n(ddCRwU!GeUNTeB6ar#c!<
zJ8`Zq^yD8+zt%51SFc_8Do*o9Z@zu^R?lZ!Z`g0q@BH+XXNAqrx_~naHprJ4KI!vU
z+gEutKd00;D*COZoW(Q7oAS&P8$1}kJpXwu_uXQ_kFKwE_DHTz<tyGAa$3#e<q7*X
zhjo_vv(z+q@04U;zOB0C*L4?7H*2|~m7<$$S=mH#CD~>997Vs{ziIv0|4{xwe%~+i
z<NUpLvR7&n(;r$szOv=5y#KUof|V-|9DU1s=eiF|*|kfImV!$r*_;+*T4ndXW9`>B
z`7KXm9&1&6ecq?}`L(&;eVg?=j~RY>ko+>na$B&!bo)H9tv}OdmE~I7evMi`@uIWz
zNxhW**Zqg@e<=F9_3f3{kLsI>+*szT-`L|e>C~$#F>x^irJc5Je;5Bgw&(u0=Kl=M
zefzXu$8qnvRG%*2Zg!9F%2MC?w|+hSlr`O~b;oCgjoUkQZyx_(vw5o9&mKRvYyTp?
z^u|?|J~#J~ooCp0{OPNTS5@g<ueM6Bj5_x9z^N@UADg`9OuqB{(tftXf5msGwW*n|
zd=Pqd?wn=U?>tR^aoKkJ5!1WoWmRFzAH^mg+4b~$*B{>%ce0|^t+&1(cRzOHv`4R=
z74M2%HsRAH%U2Z)i6L68fgJnH1$FWqZOV>6JzM#8-B#|KPAM7RMHw1uH=cMKb<1|%
z_D8F)ZTN78x8m_LMXpv?$)|I>R(-KJ$+|mje|3b#F|(V>N9QSSFY^`Zc&{hf^`BwY
zgb9Ux?mqt+CccjOV|>R*lchw0(cy)?a!_RSz0+$d+C8qEY|0gPzoNgyv5n1J<I2w%
zA-1=FHmFOS<I8T?dVQUO@_C74=DFupcuHQzP08H0#dxi?s;2Ck>Bf=<2Wt;7e_bVf
zH^!}1RA6dekx_A^b68*a85e;EkJs_bJik-E>f)=Vmro_hXdag-u<k$p@!9-M6YcKl
zr<HBv+cb&e=jSVOeEk0Fv%c)--g~UKKK;?|9rNE<g?`<CE7HN**_`1wPu}Al$AjZ-
zUf%l8Fm**sX}-oh#^WlFB}BiLABrsTm&~+N{J^r*=hoF(r?Vuc-qn%b=gRW9Tyf(a
z%`fYf#T^ev%2rgawB>jI@psv6(=~Q#jk0-yVU|-TUf49DW}9l;#reBD^56XmKQYf{
z_vg1?!~>j`h#Rh&cfc>6S^oX3-?I-`eTg&wQL(FTo6mch`o#U7oIjTYFn(uklU{$S
z_<YsR_Q&6wzwGCKb<1?ylsN6mNsk=Xc;{#<F)^1OJn`V!hJ&XxKiQtU<NH*WU;Wa7
z-{LbWbr$3v^RQH@Q`@)TNBP6q=ecUa{+--0%Y5g?%RZN6m$`O6PYGD)=)BiKVNOrV
z$GF@N`G=B^>=!gSZOFM}^R|ikdM6&b1T;M^eEHdPqr*R)4_1#a*Gav)@H$?oCjL>l
zb<d{b0(pBXCoylgyV%qB<I$$0Aw@+V=jOz&J6HW^)BTFYkNMmG@E1G^Ec$kFqSVww
z-in$0VgDJXWqDX0m%I9H<Np2IcyjZe%QEI1k!H3yDVXx0>SMfuN^{WPwOdj)rX({+
zA9%P?cFK{)IVn$fr}tg``lgr1y^LA-#POQ)bv99362))4ST22czD?bgeR|E_KZ4cf
z7nkebGSxnvv8cCe|BQ({W+i?X(G&DM=f1$^`g7TPE7j&5sz|x5{Z2t{LGiR-*KhCN
z=6fPn`LI>dvN-S6E2G&ZLp#HN?yX^88R7ZdaDLgNRgUWH66+VAT(Ec2&L?TXS!JDZ
zpCeMX-8g(EN65jxvhiQqE?cY5dGoFd%dYaUNtV}Ow*2<|W&g3AESICwrtVp9_`QYs
z!n{AlZ{rR>lxL3pu|4+E9$Bg4daI*`EQ!hTduB|ie>rQL?Z>!v#*++po_6#Ky6`*y
zTlR-}yC3p1-Hm&FaqHY;8>_YlEVTK_&2?N-L8kYIZc`DP5nIKbAKO352Y=Y!_AX@u
z-{qgFq9-lflKboC)^mNE8X*?jwL7`LHK<60k3rUoZ{F2|KmIcu3Y({X@txxQB&NQb
ziSt5I1g}fj7T)gq5pn(5+P7NecJo3~rONtx<){8L-hJh3t=Q+t-S(N2vrYPr>n+^(
zxoVzY^`kwS`Rdsf>(<B|SCKYvU^CY|wej`5<`v)8ud;D}cq8pnp3cIAWr2M&Wr`>N
z__ufUvtE6tz5A}ND|wxNXBXqMlUD^Df6ly7xcx%C;DhiN5mp<gNV|7C&D&Nzul2#~
zNYkBZAI)~voUT~T=5NlEHd}g{?)~blzt82%Gni#&y?wrO*5kn9qVki6t&?SBzQ{7H
zIgzw|!{yw!I_0(VZbqLr(v#Q!>~Y+dTkglp;|!q(_c{Mva)2#HJN-iX*FRNPPUX(q
zYn7#SqB(A=$zHkV0lhBEOz)iX{Mlz<{N?r0idz+PBbjYavh>V3w0!>hs&BC+dJ7-E
z?s$~b8emZQT)l_M>iN=|3+h(_au^;IUZ`&^OL+I_UDxxC|F6AFX%64|L;8_r%1qh3
zFS$;U!OF$*8@(7Glryi(K3$``qGONpvdj++>eFuB(SGnav(sR=hsEu4o(zKL3*(mZ
ze7jtu_t9)RV`Wmm%avmuw>+XH&sl$Y8*lc5KX8&g?+d1<_o8Q4do*+GFO})K(0D?=
z=5a%9rLx7kH#Khq<2P2u<a^%U`MT_al8W0qk4>99Iu0td9V_BEcKPzp>(8e5>@l_7
z-nO;+XWrW<zf<2-tv0Ei{k?qqWpCO2K9wDP=AS>kwaxzG{@YEn;mRG4c>$j<nN5t&
z(u;m(?UDTH`^)&*;@`zV10@f>?K|YXIy>mD{~XzqA_3cM4Y+q&ygaAfR(#>GN$aHD
zcc;B+F?dlFbGvuqmfZq<Mgo(2`oFI(Ke+wVy%z#^g<`!oJbBJs_^!IDI((+<qv-0@
zshhSI{R=tr)>R?#cT??g`@dDMN+K1uTz>Oy+f`@90}m3O=Wl%SPxPXfuWQUtu5+JE
zN}o)~3R@B5asC*`fhP|pUbji^)4sBgwZiT8@%hp<#t+PTPJExfanHuSfZI-oJiGba
zm>R50*U$c^S+Uhd_2Kr9mHyUmZuAOvJzO%&wNJsX?nT;3<~b$n6aO<bg~wDpK4QO}
zN8rcos7b$gtq<Rtw&<ck#G-reMFd+q68<cl(^Dk!`AT?fmC&!LF+pX4{?Ai%_N__n
zTiU+$=d3^HUn>3cSidgnkyFssx>xIp{xjTVmN;;<^54o;FTZ`)QSK~1E3Iw7tNix7
z+dmoR+j~pn)H1J{?YDTOceKdz_B-***Y?QAU7F^--|Tn&eIb*=kGr)_Ia;1%c$}fa
z*wbJCd}rDvzl-+EGap=znt5yOwfQT4_7<%CHc@JllC_6=PrA&`xCX^zRf1<LRgc_y
z*Dbsy&AQ`o<+=$?X@{A@pQ?t=U?>XzAh*lv>(sAnvNLw<IC<+uk%t!3q6u}0%@-c`
zM?KBky4T(Fs!jKcc^YNgzD_K2c`of`*%+{4Li%&{#y)<PUpI7a{@s!o%$?gc`R2=c
zCR5*SdG=fN$MIh=s%F!Y47O_=m@`Lc@tl&Q73cf5%nd$L)}5QL^zxtb#dYQfR8`p1
z@{)Br#B)~P=t*a9+Oa<EN{xByD*3nbxzF>?Tjb)m(cRGSq|Ab!S*tEQF*wM0s4eW+
zo5sMsyZ-oJUZ<Y>A?uqSXJ3lbIV1B$I~f|v-sZeJ=O}T)^o`#hm7Vdyy|G>|4t|)n
zd0~y`hf`5m+kV$PxEB6#>ZcR6J4zFu<;le~taD^wJXd7=S*|}*9drx9-3syeUZv=w
z<lYU@XIeXM6sbrA*nPX_sc!nZPV|a?jq*o1k38v<?Qx$IrmFWSbp7L96S|2}F2y15
zgyby_(@Xy@#0k`TJNb)5M&CJ5vi6d}L~cVKx2HneLu``+KQl2Xi+;46CmMUZ`2NB0
zZGZju+b6v5mU3^h$+&gD^U=SnZI_HTL>s2HiPf>(3*N{&g=xXI!g(C8<9FLj+X#MG
z{*O!YLsC8Go!GTYul8Jw%h<kZ;z_gl6&;~%BF{5}!dz5@dgm<&|FrnGR>els-nwXY
zt+?t+qkyJjLH0QhdYYT8uD>il_`WAj@rVD%Z2xPy>1_Axr+McaemJS{<U~W`mIpnb
z<NU<-*!FDrI`yHhlx@VhwLGylb$ofE375Oy{AbWDtChO*qxoo^(8u^g?{9hj;eFI1
znDy;eO4;^BYIk>KdrI0IE%m*f>gMkA=E1Kg;V<$JtQUE;?YiL0sMu>uGYxc3>j+tI
z?AMmNw1d^t);lGgS=sbh{Xv&~vXK#Wx9!+}Jb(DR;@JGh?>X&f+>1JLKWpP$mYFx(
zST7~`d9tUo6wf>T;O)_W(;w9u9rwHQ`<-x68{ZCwzh455cJmz(aA%R5dT?s$tEOJr
zx22zUZ-1El#n1ZD`?vMqen*}&%q<Dp6!f3r<hr_pe@uQXf0S8c!v1a1Yi}NFIm-zv
z(%5-6O>XbK-Vnj2RlK7xB7W=hmObSkAAhs?xc{(!)2`g5|29AJHS+e(wvFjm-19)p
zsjuASskkcV@iXkEPiEDgnPt}SPo?kHt!o*T6W=}y5AB^^X`OUftI5jPEnHdJLE=Mv
z)BP>)c0SxM@+vB9<;t_BTRxrSx~o1@&uQD6W4qH5+{(5^Y<Ti)->IeHey5`4+b$p0
z+-{M#_1~I0ryt4>^?U1hGOO-4*c2{_%dA>tz4g%D<<pfd8kvp0^6X^iS+ag#alGEY
zQ`bJ6&o1a>pQgTllJ&F`lHL{a3;r`yo;V+WYX7?Zx2zA}6a8`fw`umS?LEoAb-zts
zdgt!VyD>-Zm2SCstjLk&Pw&MkLTmW^43B@}{%w*~6kWqT|46a+(yLdGEmX|o*88#X
z_PWaxkJhqD3u>*(i;G|XQ=WI`gS}ndaq03aDrQ}>zj6H7ul+Y0o9wq97m4n?H$6OS
zw_o+{w*L$b*B`R2n>Nqj+I-&~{%X2T{tAr$8Fa3>A1v%)3i)JvwC?C1*M0L{{<i(`
zTo$L<+P8GE<AJYxdga;oanJdy{qggm>xQ>~tUL6~@#56qUq9FWef_0Ra(TwpTABSW
zb+vPJ6JONWKjv@PFJ*F?U+Bm4kj=l-W<Ff~aoN4QZf-YjPCwK6?ep*Ly%SFc-DX}{
zyWpMlJ_i2fb!YGCUpaX?_I~6IkGV_>x0Ug~EBA5ZU;i+^<lp7(|7^M+ntom1Tq?i$
zw#vV}g;{S_O+NnAMCbJGW+i0-ho_HJ3knwP^UUY^G5=uv=3}cLtQWd@=jHXc>kn<d
zb<fds>!B5!HcT?Q=(q92!f64gA{`1GW14ttb8SL1RsFWEJ+n6V&F(+v{)At7>LgmQ
zJ?QE8_m{$7KDqemm2YCHN?Cbee&*AFbw)lFuWHX(l^l=DzG0*NaISOo_Sq2;VI0e+
zE)}vrCCSD#k3nUE@#WXe@#%FZ?{6qSUf&<J<rnDSzqVQb8T$LW^Hn|_UV8hq>}uZ)
zKg-tEg}94M`tzT`Kqokpg)Q~m`6Kh&?hBRLw|0L#@AIR$_`!XiO{xo<vS+4hF?;kE
z*j?Lj{&TL%u@jr#25Y%pV4JpACM})4BSdNbx@lkDN#rck*N>PUSZtmuTRH3f)=6J8
z_jUY;KN@HF?@rs{!{4s0m}ccSGk@ul9_Eua1@BbvOl;gaXF``@-;&A4Ig=myrXPvg
zx~=u$i+z{N>ut<7xEV+;+c{OSS6oFe%8fxxA*E-6<+=?S{VQK}E_=CJW%_n`9kU5;
zpU$eUpDvQPq^A7V@`Y-<WStNEXAs&a>nz?`dR9K-!owz)iTU{@uTQ(Sh2(y;I%~rz
zwaco_XZ{}6@+(IV&9O|lRI6vB#}q0R)cw?KpK0CM{bKvm^gE3H82;G5jGNap#Kuk2
z<=W@<A7`jBhWYFEU1wnGJt(1d_L;&7(Y4?Ho}baT*Z9Qaz4d<e%>NlO`ftwu$7TND
zg^lpX&3>CUf4qH*WmnVloN3d~%b(KMQ7K}dQTJOx$z%RX?XBnJ-_HNfz{2s-yz!s-
z$&Zh}$y|H?PyI)--{#L>=SscOuGr(fWE1~A%dJ~nyS`oF+4e&GoP$N=cc%TkQ!ASN
z=fB$V<5NiVx4P^TziYl9I(f)G`t;MYo^S6~+Mld^QEzQ0^5Im)>_fMfEoWJB_l05i
z)`s4DrMoRWBN<NW^F6q0=~N}4J!R+AOE1<fDm2LnY<^z#R^s3<{)cbxgqMGKe{@of
z#*f}5KQ8oMxOIBl6Xn#@&2w^Ql;7(Wp3XeMBgi`W+@A7f%Uk|ruC9oE_B;N@yQjUW
z?1j^moR4a%?{+!m`R`lB`b!yJ#^vtM<{b)ovTn`AUoU@a{5a;De<18--j7Kl%<Dg@
zODcSM68?7nk^ADVYwC_&o2SD4v}5aR@jG^j(}Y$h?>Jrd{b;?xe}+x-dzM_b;eM1N
zyd&GZ%|YZr%XCZ0S4Ib(bp6fwxctcOdWO2g=D+lo+uZ*8Uh2l}oA0eRU8_pmw=-3i
z>0xM*k@?pr*FUS-YksToTIpE3<v)Y;Klk74EstKL$q8OLdadsJhV18SbU&x@|IvAB
zr?6>9*Z0#IddgE{41N}VdKaIQVjx?6{Z^dhe}<+-(RHWibE<v3dUffsl{!)fn!eq-
zSMlBR+mE0}qS^;MlR778?Yj`rB*8cTyj$-_t$2}&XZ$>wLB@Aq39ns})9NPrV`|3<
z1+BcCz8ULtemq^6`A_?Y>Bm+78GMf{_WWqpxiYf2|BfSznemCG8(Rh6ovRLiH|enU
zzmFO9lc#1|Z|T1ff1CRsm+yzk->!dr-}1-!L(MDR%!jslEStCQ>|HCC9W*~XEn-Gn
z;I|1Y4*4$El3?1QzVq)2-9LdJFMpHx7}v4*cXr5yd$;2@Y}uSY?UJ?S)OSmIot}mL
zwx7GRBD3vn17G&fi9e(t@k>VjxR~>YU-@9Q)yB++TPMAHW^$6nS&I3y%!AE|?qLb+
z_LsungfxEHJ)fuIb(oyc<*giQo9Dm%{%uosc-mW^y5#Ok6_10-N4&RgVq#cT7;CXd
zrQrQEzHgQq*QZ=v(*G<y{OaTEm5IHFSKMMdB;95sns|)Ern)#Fb9=VQY^Q$14wqBw
z9#5WN_@b&hOueVX?L&U&`aL=+pXYn+n0Ms#mSvwal@IPwwDi3f_eS_w;jP{A?QvWm
z-Fr-T^S_y$DP^hduX!fN<=k>>#Q<Y%nGy$wS018Ywk#EQ4Y_Gj;2F8)^ffu@>sx>R
zXV{plFj4NgR&=Je)OKD)g$FE>IYLGS>}vai|1rHXyDn9?_mPF*!i`tAx@D{6hzUgA
zKAbZ1xNM@uxAkfl>;&#q=zZN|S*Vixh(+<e15?Q5N&Yi9XRAs*z4A=E^xOgGQx00v
zFL~wt+FdT`mi%@J*|ycS&qU&9s2hX&O52mRp6WZ-zc|16JjbJ~<har>v*jXJq<{Oq
zxb?|<efhF;_fOe-=9wP0*_%>wt5oIkr1(_bpt{_fx3{mdioQKH$tAflV$+>g3;C&z
z<@U1*<(XElP=EI+``4?$-Mj63UIcB)IUBLusAl#3{$u;C?Q^R&-t4ox7n@w2WmPx5
z>gEaiy&Jdte0e@&_O1O+xrbF&RTanc*4-0J)9;qzTX@oZp2#Knb;X}!kN@P?7X6`q
zNs9ZoTJwK~<=y`oJSYAY{*oWFb8B_Z%l`~-FWNb5&-6)jac6Iw$MEGp!`I*=!F!^g
zD##x1o0Dw+x9VK<$$c*mo?l?UK;A2J;?3=Bw)Hjz+CSL>-qa_YGEa{bX|p)A%}nE1
zb$?;sR?|P14?o<}r`Yn@-}2-^S%2HtBHk)ttnu$<7+?2%`^ER?%C4SyHD+b&%4TwE
zc}P3j>*vi}Blluyp!H%Q$-5i+KTWlKRZ#f$(zXX%c1}C_zNe^CaBBDrO~aMRtvm-3
zgsRdd-_DxH&+p8o{mS?Q$N6b{tqP~V{u%mZ<A#mfD<1Ehsr&p^oT37^LR`qE)`JJ1
z2w&bBe=WIK)1>IK&u+<-`nyexPk0_*-luhLy81-zJ$wO=d%m80eED_sv}^xldjDK_
zq$bOKdLCa9|I^E|FZ*^?|J-i&t-~{DUSXPg-*VP%&+kjFRSx>g?9F;^`-**YcKKYI
zvaR>~ng|(lb%n+`DU&S!P3^gEbYiW_-i;?;IsRv`|66t0J7QnN)Wvxgs+$<z&pWhH
z=-VZC)rK_osR{mm%Vm#md>N&2KS}hoT3Fht(wvg#{mVBjzb}?CE9}LdX)k-~wyx$|
zxFp&wIlA6(hTx>Vf8BjTA3n0^nlZ`t;D*A+Egzd-AG5HzR`V(9#+GSsUVm9VeecGe
zUB;q;liXRpzWq7t?zOe=#O~(BnR&NJtDQKnyzueTVmYagHHAqx7sV*tVz9M1p=>`*
zds%brWTV?}wbm_JsjeV@pg-#KQpuHZ$Cs@-dg!`=&bp*sJiAYAm)`h&@2>Ly47RV%
zoGwl0j=SltlFuQett@a@;=IDIkb=`$`u`a&g)r3x-FV*E|DPfJr|53gO$XLWBsuqd
zJf4%ZZQn9Mjo2Ukfz^qsSC6!+$CcL{X8++Y`=7yU{t@%eRWAc7PBDItnZGHv^;}TJ
z<R?X(7DmSyU*EoN+M1s;IrIH8Avq7pCF~aJ{U6ljwqB@6P0!|yc5)~zPPu$+NrK6?
z`!>lE{}eoarEM*_5^f}&`{G<(tebZ}>)Gmbwc~xyOj%=^nDq*eTON2HHJ>}~cj(8d
zy?;LKKAsi#Ea>TsM=E+o{5vGiJ4Swr(%H}V$8r0!4E-FHyDv7cdBHW$dYQ$ywf?Qe
zvy)e!yBYrP<W9?&KYLbKzMs3~%lEYlms%R7ybm;<Gd*Cpzv;0@mwVR~IE3YhozMAI
z9Cd46W9ssXtjm$p{xh83y<76PO4pjF#=Q@Y9p`dau3(p4rG5K$>80!6e<#g*vSy~l
z`DuIj*prHEU(ddLF<*7c+BF^X>s9^P=geb|n`xW5v^KzxbG5*lAeX-I&SZs;#}^#<
z^Pk~dw!@(h>rcFK42TfE*dF}lXoT3SgwADwlg@aatB_$l9@GCk>ST7#cAX0ivAcMR
zdrH14gm|s;J1DWXFWb*(*<PMies2VuuQwi)ZO^m5zQSj7Y}Bbu6Zd(<6drrzF2nWU
zySwNeajmk=2BBXLeQ^J>-mR(J&dY^Ovg1kr@}J+<=>&hD?4BlDz0Gp1QLx%%89|53
z{sM;+E7;fb9<YCSZEy8M{T}wFuio?DdN@VD;$;%+&kI;Bxbv`#fas>Gc^0BiXW2f^
z469F^U8bb7wBc0ayyv%V3$zzrPRXtNrmOCjI_XhSIG@uBEpC}f1qO@l|5lwAO`BEC
z8?-yj>i3J1zwwXv?OgJ5Q>Wrb-hGRgx5csPz1egmLC$C52iu?PXKne<p!M!%zW)i;
z(A2<#F+Gi6pMO4Eo4CG0;*ZUb&WE|-?w|D@OnP;9=1gw`rHo6#Q(1B~o=eK@w0(W#
zy^Zv`Tk)|`Q7=FL42U_)lBZa(TgW|B>&$Ks1)hXC%?FR>wjOc1W!L>xOsQqfWD9or
zJ*S#nBL5h_{JKJjU$gF?<E_2tpJ`ux^N+74^6K1h_Yd2am#J8UHQn-T{9><Gz+Zf!
z{AiWy`ZxW*UGKQ4<@3!}O<<BfxzJVl>Nb-W=JP65g)c9DJym<IszR&xrSNkP-G~VX
z7>p+v&q<#6dfuM!Wj~?=_g>a}c(r7j;hh^ElaJgr3f(0iQ1_bu-Q?@DzEu0)%zwo4
z;XH5e_qKO=g5}=X*{gp}H*7w@w>EF$dfT4G`=d55{3B|{r*P$u|1xKldYuU@v%-S=
z>MK9F{oVIkfM0UGzHrZS;|mL$=g8i&RX#jx?zFid^N#)YJ`$DRn{(^o0+tnhCE>*<
zS;T|-EFP?ucMSe_x!|_<!~Hz*JAN*{^6u@yn37pH)n0#XxtRR$H?L)l*|c4A*FM?B
zd-u#)<viDlXLq-X2A|dLy<7Rt@Vu=3QEC15{|o{)wu>{Oo_GCc*topwoA(s&TE71b
zfn2BaE;ghJ-CoHfyP;rr;kn{CpRA~w<0~chg%rj!rPNv<l+(GE`;qsMPIa{XK^dbH
z^Y#Chu+Lik+xGV23h&T8IX|z9dyBn)bXz2=KIpjm-cmb>i#C=Id5wcMUE2C`t468B
zq9%{~UIP3RHr`us-_oaDp-JNLrJd{fGQY{OTt3#j;C`IZnq|4~Wp|rB3+4SR@TX?4
zRp~EQ&G^~p4nKKS`MyE^cks8ZS4`Wvf~2#b^iEgL?9xa)`9=Mi{gv?BnJYXtwN9BS
zK7oPR=J%t085eBKADriVefH5^-Tb60szN_EcP`{PRK}}jU*d35=Hv04(6!}9Iqf{B
z2WZXtT=UBC{yWzH3|}uFIeqJ7Mu_O*<mSI?|9CI)d=$%kc<I!<wYup$e{SFuH`3C2
z@Sowjkb6zqKD#U2r`GGqxwAU$yQYx5K!=fm@%7PK%i2e$_uHHmUBat&cV5nUolhUC
zcc0w-;hgrY>5t4i*DT>(W+HZu&w1?@A;HE!N+}ZxUpRhUAI=(hh|AD@a`$1kqN1En
zYmL43wR9*ss~(xjkdmiv%b+5ECT(BC-+4Bok0tBWZe{=K>s{fVo-Fc7XXDND1u7FS
zpK_J+vSX8+v3<k4ibMW=^JR2%RU&Gl>sb^SPUcPfz{B%^Sw!P*?Z2%vAL@(NU8ooP
z6LC-S!_)hnHtuU;G-tmtn|`b1)0-G(oe4)ZA|A=)&2o(hSJ=Jc*=o_Cm`Tqw_5L$l
z?K*UfE6Z@_ujK3n6&vg8^%_?mmt@?2GE>KU%Xhn?V{Z2LS&#R`E~?mlB+B>N%!jM>
zjokZF@>RZVJHg#!_H4(FZV7gKznP{#_g6A!6>f?8@H_flqQcZ`kDtf9XWgu{jjxim
zky&A4{PO)9*8dSweysj>ey;q{-mF{aAKpK7+9i9f^D(P0+(M>XJokB)>_`p#wn2Py
z(V1zTbMK|x$ms73=9Vfes``~zZMfpun{RgJ+y2h1Q_qT86DQdn_~D7v+z0uaZ+ou0
zAsK&4`i{Hop3S>Oe5T)8p7G>C_>t|?Hr&mc6mi2{#LW7jE<d-iqWxYK`8oFYg7_}&
zP+nX2<KJa@89VkGz906F-Z#(R;5Jvk^^dCRqL<s_H0N_aS}*3S%u#o_woX)a>!#eJ
zYv1U$2(~<Py>-v&pYUCm39An0Eez0Sb!rf-d(ZHJ-KT8*g~Cccef=rQJ)U0Pv!}1}
z&;I#xyMOGyeAROsW;U%1XM4|a^4Q;7S8tyVNy{$U6BYV8+E}cM>0qb*;e+RD_gmfE
za9u~KQ#eS;{Fb?K(N5)MZU)BZy$)Y_`|iC-^j_N;^G%tW>K63XzFNC=Q|!wL(O$QE
zvh30i7QW(R&vSoZeNF3}`kvcSi~jz-Q*g`E$WNs!z%eA@K;yBB_h)PVGnl@}oV&P4
zWaEKv=P&Jz`#S5=mE%c_%nHqOWbc}n$y#0Svt4t$pM8DZ{@&7uv6HW~O_{g+|Mks_
zUj@5=cztAB>w(BEy#a4;Hy>^J&tP76cXPbKkEq{ujf?BkPb@3W&Qx$up07Kh$j{=`
zb6Jb^i{893wbti+ecDdRJW6f3fQ?Mv<{5tr4CgI=9k2UG`-*RWTgi=edk!dW-YR%!
z2b){Zp&imr3~QFR9n7<mJG|QXT49~*Q|<3T-uquvv3GsVESb-dE&htjbZzUIu2Y3Q
zE;pagNtn~z^<(nmue&qi`TuY(yYt3q&#tBxcNRVQf&}(ei+cK(*7AS!kGneip?T-h
zKIa*4^vpIMyR)nH?r}fP2YpuIkK2#>_xkg9)o4CEYi4@o%Wp|3>y^rXzu!E2_DEWR
zS9<oUwh7HAj~Q59m({S;R-SLUSkvOuzUP<r2~VwAv{{II?%R3YefQ%}?X^4Q@w7`K
zWnxONpx@!ftqm-~_t(}{{Ym}t{4vXwt-S0H{cq_mYM55JHuulZ6l;b9e{a9-<!<tj
z)IH|LVQ;zpE$7EuN7pXfb?s})B+JyP$vb+K5+&a73iL9!G313EXL-!F*DJzZV_jIy
z>4WF)ocZhZ<Ltw;*+=Gy%=fzR@VC!~llj#=%nH`Gy*5i6V+%jS<sfV1TD|>`kn{0>
z3fK1MyG{KPy;kaS=!bL5Q_WsH6*zJ2lCzHc_Z4f_pJ_?aJm$#GEI%vg-<^M|AARpc
zr611cI$yXVG0Ms7Sl5B#ots=TchA|$%upO(S$FXMme^-=e|uCoy+6JyOV;aogvYa4
z_nz+Q5PP!4^V5v$b<A&dFRS--oi;e;nYy*$&aN&08AR7V>Dx11Z>~+P)~9#-AD(}u
z9yCc}mW6?{-ZS+L$yX*-eS3aw&-)`{XGPa+W)1qda7vzX<^<Wp^QV_96wVQ<JX<xr
z!{nyj{S6HJ;+`Jn+w)86@%x)`S2UT+>Vk?J4lg|M{L{hp&+JN;uKa7fw10-4>Eh+P
zor@V;XO)+gMBF*CuHdi`kNxS>^1G!I-IaFn^W4b%r#JhbV7H+BWCN~^CS8g*<?lzT
zPv#bLP-IDdANFnc;)BJ7C6}Wm_Fd))*pPbQrnGhC%uoe3mA~)idZ=yu!r%CxL9ixt
zg{S`Ey>`#Oc{@uPDKGdm%cn?oL($>ot`-c*Hoq$}PhD?YCaN^A-}&9+-<&^+ADJKK
zH9j_<d3|0<t#^39+sqX)#|xMHs-$=ch$QQ7e&}a&HRsFG8qvr5+vN;@xIXsI4L^3P
z=9ldyAG^D<S2P3;YO1CSJ8?~Ac_0uW`tP0g%lXarlKa&D@O)&QRI%*b8)-@2(+89)
zJZ657+!0U^+`RK&avL+d=`YWZ{*SgFh`*KpE#q1Z@8gwEw(s7ty*MZF)8ZX%FE=Ge
zEV~sNv;BkD!ss8HuWkBwW&gY9OM0F*&PiFCz5GZ0%s)@+ZpQIk(zUT(_$Tng>uBdf
zNw?kGKFxFqFF0Yd^Hy3q-(}5D$CxHqC_FcPAtzsLFI~aK8|`DfCzB`WU1Q)g!A%0*
z`R5qqD{@csJf0J}SM2l=JN*xRTR-eSmh{?pe))~l{2CUWm-FYGda05s@jb}8u_t^&
z-N|W2^BM2f*k4tN_55P}yI04fWkTIiMW18$l{K_`7<YU;E%)>Kk-Noqvu9sgymq&o
z`iI{Udw*DeTz21YZ>hlT*q_yRMBJL{m<5~r7F$X_Xgs<8>fY>}LbVl_jAoY!>m6}8
zoM*Q4?q>nxrp0sQrv6;~JE+3#*Qr<XvMz5XReFDG5}7V*cFH|eaaRxHkLxeO53LuP
z-x<$iQZL~yY`Lc~b<!PH#!tItCFdk7PoCH#_0f>){7ktsL6dy`D*Rn+vcgWQ?)ZNO
z-hHaKmh_iC<gGq2&8@pq?E8d0K8pg}rwb;vwDE9j#PRV~@*mc9dUQCt+u!9>{H`?<
z^GbS;F)OBZv@^&akXzWlwEF&=kALTXH2xOz@%Uj$smQdxBUxgr&V+`(kv`+9!&b@t
znaSY($`AbQ+jiOP(`boz)}O`@U~?sQfreI;Z||q=3iCJ=Qa&I1^6Fke_NqTy{_<7a
zGkFzMEB$-^-k;lQ|1&&_SpR09%*-zq4?Av8wR6aE*2!zxcAd+!G-pED6Eo-Jg?~2v
zsC*>-d%du)?rN2wE$=>gP78G_c(@^ON`in_tMX+Qnef-{T_)A5@3)kH-*)X#_Knb<
zHER{iIYeC=HWu7?Kb6N?aN_*V`qcOBvx<M55B<=$U0~OK@8wP(PdqrjA-#xAYkuX4
z^E~$L_g}4As;&Io;BsKklDztZ4u7)O|B(O2JR|DP3_Y7j*}YA>d~UaJZ-2`X+J3jd
zLPK=2ZB_V#{|tw-*V^5FShsLV<N|@0+pMOnmHOD4dS6m`o1;Rl_HU0LQ$I*QG(Wb!
zQU1e{eX0=$%acp<pDtds>SVr#MC5{;nn{{Z<XS!y@z(3^I{zkh`5&RHHH8oKWnLA(
zHoSGmGfCN?J8af%juojI<*5^%bev#UpLh7)sg;`MUi#tbKQn*M=baz=Jv1_7>h<R<
ze+GV(KWu0FWBPA{%sBBM`HSwpzJ6<QwC}fS6~0H_CB~DU&P?{drx27<5^(o(T=fU-
zf1HvZ>m#q|eqG-ub$5OHn@MVE8!w%|y*^s`>0Rqpw~x4g)bQN-;!g2jh9B;S|4DsV
zekj^k{IHlord95Oxsz^PGVRlC*r=lQ*iv0(&YZ8$_6SG*T~x#P@U40H-b?zAuj+ky
z+N7MH^XiPxWfq1f4;UQp`1?rx71o};nA5d9{n?CHeOnei+GacdTiTEK5BcAcr}5?=
zvJ<$dzQ08zH#lhfZ@1NI-|mF!-7oABGTvqq`k*kR{=vq0_Bxq=x9T^nTmLwo_h#gO
zhC`(fmir66yqDm*f10hO$G(k|;v}zSJ1ZTNnIgn-Ct-#1v-eyThmYF}n$GyzFL>8+
z>5W6iB97%s&Bq**nD_s7m-w=N`PcgH`y6%>6~W#cezdO1x%_qY#bsy99(u3Xm9OT0
zck9G5P4zi_SNCsQ@oeT(cYdkj=h5@j|1+?istNKJsykC>`y*BKvUDx`k;$HdU1=;w
zSKT^Tr_#?Nq86!k>+r;$=Nk_FXJ~qnd5isk{f%4pt;Mg!4PMp@?^De5t_ZVuYW6Y8
z@`~R3D2}VMo;^+2dhT(18iW2B*Bayh3@i~pCV%k%rv2mV<N57Y^ZOU>*l@+<Mo!>5
zr)cNr8Ro^e)|}Rya$NmZ(j3u*#Ttz}W%vvKGc<Ko?0;DPN3{Ceo)7GAj(?ba?A!hi
zJwJpUuhzJ(e<jAx^Db|l>h^72_s-6l5%t6=<<8OABzM*0XBMnEwrFWkX?m&be+KS<
z>3a|Vuza+cBY4sJ;-mkh>+Z;Z@LYeR{qThf{%=*${gU_N7U~u+jEITLn$_4-bLmd3
zr%;|PLuf(g+*PYqAHRN|sXqIC!+(aYb|tyehwIcY<fS(*pT}G6xo3Nm!4fw2os-ly
zPiVTqvFXX@Edrbp@!U0u{~1^w{GF=a|6u!@=S<mhM!PEBzJIgFnB~^D-8S79ziO{&
zxvY{A{r-+kp&S2)b=oi2bNuoA*xzMZskrY)?YfGzduE6H*W7)%_F4Uw2~l@rcASsD
z$8x+z>W{bivEaPWWXZd)&uV7<i+@rd_oO0fm*Xi;U74gU@z(#^mbcjG{}%tj^+;Cw
zm_6$r?nkSWEq6>gy(r3g1t+KEJn5@F9w`hA=5h|q+FgHF{GDU!e^Wks@1`sNn4%&p
z>I1g>tX<G>^Df87wiubplQ$mhdVX)ekezx&Y;?SHvC*MJZ|h3ACNVyp!&G5mY1^Co
zqF!Wu+J~p@tzTcH9Ge#UX8o3*`_7kh#yqw@eC&@5+o6rJo<}QZ)RbPz4}bnIegDkV
z!qws&+vVMtpR=y>`QiPK`}cna7R&7)x?jt0d;ezol6N1DEjF2Mr+(qhV%@)!i><{b
z{kvsx?EOYx#k*E3{vPQ`J<z!%<)6l%_=T^O9<E!gU3A-F;@UgDTl-IM-6r<D&)(0f
zex>`N_#YZ^n;&ZMHLr7C@p{?=#^<r7i_R=wcHOWwl2QImbKlmF^Z$r$K5~D9{4x2P
z&#oVtwfwL=Z&sb@_Nykp8_Uh6=e%c~v8(^>MqiyoX>)^jy^bm?6BQ%_++W$qKH~MU
zdEA~o(`@SQ`0W#aiVJ-ZS?xZr@cZ=J{%+ImoUZ<!U3d2G{?DKP&iuMiyyL4Z+sAFU
zUzu%WKkwsgU?1}~xu<UHx9M;He(bZgcKdMs5U*C?=0jE0v!{mZO23wR(pg)<!OU_i
zT6a&Dzr&jaeXe!Q70dr|rhYI!Qgvs)$bW{E`NDJAKHZ(8*S`ML^|01$A3CcimkL<M
zuGN_9c&;}4!{Ki&e<#&v`!{dne{{b0p3v2j+bp{#s_mVh^6k;1FzN0)t}3f`pZpo;
z)OCPI?&>d9nRQchUOqE5xfp#t|HO6SM<p*m$XKLJ-m^4tXQgYLXU$Xf?{e86_8&2*
zh`Js0aq_E|%d&#>Z|W?ocslp$ocx&=m08mBMDh;x9=CiVzxO{wTD(-$kMj@pkKAX?
z;H_K{lO-p8wdVEdXD)Z{r`1k8p3P7oUT`8)C5?qg<Lyt0mnvDRQ$794CZ3vPVPVt!
zBmC}vhK=WY*Y8n&sNWHOO-OflR7KXmpyw*nGJ3L>Jb%g)!z7aOYu4|aPzx`;@(cg!
zrYx0?c(9MN!tVT0sRCd2Lv`vO=e|8*pS6ACoXlUvnvxpdIb|kU${sdqDsH^DKe#?+
zKj)A1hu@Fribq_m<9%7Bx8%Bq*tbek-NH99f}h2vi+%Lk@nBs+1-m-?<NllFUi&Vu
zebE14&9AuCt1XV5&5r8hOj2kqZ})HywOe&wvwrs6t-nJ*taknJpCPwW^!yQh`PWi4
zF09kEwF~oecYNXcq|-QMo`J+)-^#D6R{Cz+YW4EaZR1bJAGyDI{P3^$<NB_e%#XXH
zHeELDO%J<bYI^aFg4DKM|4QC`d~->+E9%CYjiRYLuH=aZ{+y(^qw&o=(F?ad+r0f5
zZ=QX)Lr?hBv`^7f_gsG`yzBG|t&SX}yk+-&U2ZvOTfB@<uBrNvJGK8PuXoh0o#x3w
zV&COz8gwpCZB^zs3^3my`1Veb2lEEe&u^dpG2HCBEP>~%tUZ6!zbhY3AJAF*P~+Lm
zss1@nrc5bo+U2XZ>-Kqn<sZ>U>z9OOZM^zv&bs-V0`l~tPu|>Gda*L^&zZaSE*ESp
zlVzvP6bZYq?Cr)Q3;_|-ax~r@ndJFolBdd~Y`dUT)#Qg&kCt<Ed3zN3R|Q;bY`nF9
z*~(*cEmj1Fc_;r2D}Cj+WYyKlQ|7JR_xH?BW#w7z3s0=gtl4Dw_H61l=E6%$=bEfC
zYd;j?A^G}o{OxOJ`#b(HuW2YOe^}DOclb?I>!0*j?lZLC6jVOGv@iPa?nj?>>?H5<
zbuW2!vHrf)yu$ws6SF_^%PWgdJQnoQ;-BXFD}Ud=_#C?CQ$TE@{-HB}J~=eEs}{e$
zKmXFYMcNuCzOu+?b*VZymfkWl{87Go;>uJ-%LC`EKU5yyzu|5Cu}SXVio2`%^)_uO
zdyul5$)3;t*mm`%Th>$erE^SZ*m3+`^1P~#Klr9jO=i8gPkK?3fY9R1ryKm`Zv4?!
z$+X(GP+`VF1HR+gMs`O2dDiK3$`+aEUkO}tvHa+-=2ztfQMV=}drWoeX^K`?U&r}2
zrY86#?}bTW=dK+*9@uBGuFszDb)e72n5Yx2p9H)=ncFp<`m*-5eQTZee!0}GYi4iq
zi_c`YH4vRG@&5JO*eQ!8Tpiv#efndI#meO0hQ7yDditvVGkkr$=|al(t=l5jKfb#~
z$n%vs&j)|mM!P-XD}Uran0{pWoWo0Aw*Gli@gp+w(}9%sh+heb#q%ETEoc4~@Z-j{
zeKAqVN5rS<U0Cloli%p$eTlynYco@KteO?PRQ;vce+HGxh&hLO`OB6@tdCUvx%oM-
z(M6||-<GCYpB8;kv%lZ+*XM|7VXI}|eTn&V^X|O)?U(jl-TZfgoobv@+V0(#bv`X^
zI$N95e?b1=v&}Md{xkS(U7Pw_^wq`INw1Go#VAiW5Nqwh_{wYP>ZZD$>}v}TMQ-`W
zWAdNjgJk{0Cs!Y>*);d(N0aM+_sf5_)7!IULbFQxlZ4{e&DW+x8y$a^@IWS6zWjFA
zU+%4cd;iEwFMcJb)8{Iovog2r4&Tj)2Y)_kuiyN4hMmC6j~#h>OLscYIVrJ6sQ!S<
z^xcNHXMKHHkv%_TQ=eG8wf@<~hmQQ1JRzv}RkHG@-G3(A8!pt&G}_JFZlV4Dip=#m
zQ~oWt*PdZNm2%6`Ci!Rmys5uT=5LmNbAj#VgRAcf49shL3+mQQXP19&dOuU1eSf;I
zZQc3Oho0|~o;R<ko$~qL)upS<<DKKC)JQ(!n*Zskex&=Kb5iq+KU}qTe$D&KE&fUW
zY4@GJE?X{IJ>@ue`NZ+ye|A@|y_glZwK88iI_kUuOU-NPO??GMP7^1_uiB;Fw2w6-
zcf0qG%4Mhayp?KOxauD3`QWx){pz3OuD+9EoqzbPv5$AH@_~Q++xrV@_urJu<g@QK
zKCf~2-!<c?^(@9y|G2Y$&i~}|^glz#^@%%8-RH%Bdlf&Y|H$mS%tr()_Uzm`N$`7g
zmBhc8=c`*K&fCaWZC;{!Ztf#r>wrYzRp(kA=G}8vNqP89VS3>qu?IX)s>0tc+x<~G
z;=|ev(+`DJ*-ciOdN?v;S4c{74_mf-{&LfUuk2;(^s|ahkDl+)n|dQ*Pc{pW!wX{;
z!-+q_w>JK=e<m6<)$4=zzkBshDrWXylGZ%DUE<>G=_l)F{;U>1nBNiA-?qnJu6xP7
zn9T3tQUzOPu3c*5TxindDJJnG<LcEW<y?(;?s-$2ALzH<7m^O0cK46zN>|ylOONh3
zmGnt1Sf?h%e{(kbEx(7CZOYeQTrc$F^s#yBpH#1JUF-Dq@s7q~+dG$J=cV8MIse`B
zxqFR_dm3XxFC90oU!rt!p5IsA^MANa-vs=!3oV*z-W^q6`0YP~kj<(69=EgvR(>^K
z`|s|y{|wvxXD$8P`Om5%?VRME@`oq3Y)RL<^eRr_qHa=<-{VibE*tDWNbS}?*uAvH
zJM*LS!)G%kPID~#Sh}&~;LB}y^ETCMeYYr?t90erwNtl*?4QpORQ%6yJS4n!*^l4H
zs!SJL{<8bC2y>(SROa=Uh1?#?T|L_Q%PRS8R>X~yKM$@y<@5H?U*%0VL$=1KOsQEi
z|6%IS`DO<n$T#nr+q=YGV4qTjambD>JM@bS7tXB@-Zf8C!k{lWF<mIfforvrN<;ed
z<j-MK>N)LGPUNR%)~UTp5-Mgfo5z3ciQ$tc{Z`)|-I;3JE#PLU<Cp#7=bxHihZk2I
zKRi$LqkvEDzv~~KO)ft1Sas4Z^_R!*uj}@{QlGy1LdwVVgZ-R#(K`3!W=DS5(%ayE
z=2z*Tjsr{{Y%<K}w4ZF2XQ*hKoY(TuUR68(KLeAe{+{1H`;VWKTDLarLtXZt^$S0R
zE&Xu)n^Bv);hjGoSGG-T-@Nt1-z9pr)4u(C6nNf$O7ewkTcZ5m+|5mscK&d^YyFe+
zXH4IEd-cf3zk7L2hs`~B?~d>5*Xh>q|7NS0#&Bz1??>eWm(3moAO7`h@+0e1or)qG
z$IR>!hkvh5e>orZO4mM#|K|6jU7u<U{w~?#EiA8@`S?CxR-JV5#0L4`w&>kVp08et
zU9fKne;#?feUEd~?)7bRcdxIk{kZ?$`3s-cS)JI}J)O6+`P1I{kCTtvNoLq@j$1F~
zzB02;?!&vqo#JWR3)kCD-ZXJrX5N?I!6M4C$=X{cPx512zuHdn-^u&Zb-K}e-@p0F
ze^6g~jsDzS;+^}qtV@1zh?)1s)`S_)bGmoTTibPJ_kV__fPeRI#r5)c{Ski1Yy2o|
z-gC{`2eQ?E*B)v(*d<r4Pc}2W7^ZIDFZv<<7=P<NwI8{w_RN>rqrI{s?zK-Tckv@z
zt>^w8Dk`i7cjFGqRNn28SYq>--D3U8%{q2QF{gUtJnO4$PS)&P@Sj2Wy}^a$sVbAd
z*uD9<{>}FP46GI(WZ&%gA*XXlc=lR#mkaCL7+!UM>pto6_+MrEKJCZ#0)O)UZm|>h
zR$KfyH~nawKnR!YSAM?R857^ID|(+^6176|anT0l{@F`Q<GJi}^KboUc+k2>Jf5RY
z<MsWUHD1%UPfw28I3-s?x>T^_kP*9wYPYQ;%d`C+|HS??9IUp_kma)|>F<|gyI7N$
z-n;3}i_fQ*#uz+r-MsU6>YAR4-<MsM&l8vVBWG>=SVm>e!q&x|UH?2!O<DVFRk7Q@
zN#=jAt}UDS<9+#W_nO#`PiO9&e!S}6Vz$S7Zf0-a=)Qm9iOus&p6{1$Ei{i)yZTkr
zr>f<<xk~Nh!a~!-RbMC0n1B6s{3Vw7ZTWu$^S>>dXZfEYBc9>qJc+CG%U<pYeE8zg
zr?$H9-;T{t-R?6-z~@v|I(ye^o%#op;y?K8zh&(%r}TH`pV$?*58FA#{D?oY@pai_
z_6fT0|J_){X4oLo*DU&Z$9(yW)c2EZ4}>4C+)?cOpMk0S`c=jM4C$w$j(N^MedOD(
z)Q2}qb7dMz_!ji-b*qxvpLfBn{I=c&TPw!5@q6Oz{xdW&{&C*0XX-wQn#fH%I^^%(
z{?YC>O}hEK;yRt>g4ImA4YD4lpZvS_Kj@wRA)uc_=ktvWDe=xl4#x}^zn-w=(%Tm-
z;TLYQs#Kjk`1N(X=ah=ahbmrcS^QAH<$L%)gLk08G_F-I>dJ4%uHJBO=RuXan)=Bh
ze>{IbPGM(1Q}e6#@csLuU;CE+X8Lz`pJZum_JiwP54oq6bxC_4m7DE5^~#%y*PrHR
zebN{GcdmZRzL}M|*|i@|A6vMv=$!cBs6DGs39!9bE9?LKNBEtGJLc=G|0Cn0`qE<m
z$<5|%D|7qRnm#x)OUmb6yz<@t`K_HlOP4x#6yAPcZ}nZ*{#*Rt6@Pr{&MvOe|2Sp+
zG0{J^D-WK}pH-c4eg4|=IJy4}O}X_49sdL=Rok~n{hf8@xA!Zdm)krRe9yQ08l&<4
z_a=uo{-P4=v`?*2d;MtTvAfSje{T4-)%*6;`C8s<4k#FHPR@9H+_rsh@vOb~XLE06
z3JotSeEp;9`s?kD`yaIbXV^BsQ!j8&^@<<v2e17uI;*y@aMiix%FJ)RUHh=|{p4?r
zP1aq%s}I<JaMEwK6WJ6m^zXuc!P43+38U+RFE2)CNF{5WV~+8=E}q4ptg0t4$>P9I
z_vb(N_wUhcy7*|SXIWEm{>3Gaf6UU^wPl<8r?V@w#Ael`y$+scT~XXxIWyVG!-lO$
z-0tT3m3FNE84lY1XUJK9D=K5%Kk*9Y;8?XH#;c`MtlVZb?mR!cOe`{l!65hHY?a5?
z<@Zgm-!lJ?;QVhw^UwdC|HpdikMl>TH5}2avCP|b_uHG^*LHhXSUXBeu(sdgF8s98
zLiFeP-vRXp6Zhwwzr}a&`QiP%YW)w-HCkjGky1Hpw$Ua+q0`h;R8IH6r)d+NPB~~B
zvWuQ={3zYIxjkpP{x_5RfA*|<yS&u5`uxdz$BGYJUjA|Se#M&b-)wb9;y0}AiQ4{0
zg#A(O^=_N^Cpxbm@H5vv%k*SnEH3-8t4sDz?ZUHNW)}?Sto-x$$Kv0KH6A}+FF*d<
z{@=Mejx9g3AJqCivsn1SzbSWVrKxqN@afPi>k=KS*T#4(mW%0rDzNiYbovZi=5PN0
z8Jg<quFT)=-<jI}z^>tYRnB+4Tl2e0)ibtKsMSoL^*EsRZKY*G`P%)r^tk_Q`dN9;
ze&c)4ahn%^EB|LWs8c5$|0nIE-17YDN7mZ5yYBau&cDl{Y+uJ~c6XLzI!|w_;E}jz
z4_bw6dRS|hg--CB>KZH`7qP~9>$<fZ``=yeo7a0UE^XiWySu+9ZMQeJe=z4i!v`mM
z)*6iuf9mDxA1o@k5q~~8_uGv>ie(qKO<i_e;<Hq3QSMpZ(?|BqPPI>KXFp@SA!uLp
ze+E{y{|rr2Ud`WX`}&XM4_%#U_B>ynyJU*`=&#+Q{$!HJhkda<Da`qK4)>2t(lb+7
z`MdT%!$D`8#NV;6ifSxAh?K|4|Hw?&$awSQr{31gfIri%ntED${m-(_D`@98ds#5y
zUwTaD#YJ-$e7vr1TlL)Z@6w0qt^C{;&vqW#oBLS)>F4@;{~0dTmi>$Rn18hL`f{E1
znq^Iwf?}(eK7D@u!q5AU7o_~iRQ7nD9e4ZP^J&UwwEGt)Jh^_rd|m9eQ|uDA+$GL`
z=zsk>zV_dx_oCYywk*+Mm>#IuzrZ_FT6yA~$Nw3w$1}asncP}?=kbcKzy4}JuL(a=
z{Jbc3vFMNZuXeu=+%ez$@KoOKQ~4jazX-16He-um^0PI(wplGxmpO`^>+Hnyiu<M}
zvb^Om+{j+`rtwN&-Ez~Q&(AjAR8BeGcJlR)&zCQMU4K4l?ZRJIru7}SEUp#{Ro3xP
znImUlTX^SrQ~lbsX_gPx|NT^dXueS1j%01t*uB<yk6FH~`L=_x<L-sO_Fgw0W<CFZ
zVVbAV`@>dGZ+WS)yIhG7;P`oT&SU1!$Gv{I`(3#bnOSzL<dTu@++7<3ijKG$m6`j0
z?)t6lwX<Rm_xgjy+9FbMi!5I4e^D&6{^_hA%#K$|CI9FyjWKEXIj!vJopp?7yyq|(
zvH2IqN^V*6__MzHC84j{br<c-H(vb5TG94bUMR*jKP@>`!T4^B3ZtjwN$dSf>$v|^
z{<ym?y2jHub35OL6O&Gw<jNFr%5Fa{S*W!mhc$5Wx%-#Dp8vMsisI~teY2Nr+U#Ds
z_SV~&2F3<Ydu7R2b88D&>+S7DOZB%^{CgI1<6ea82}zbIcZ&E6BKlW+U98uY_2$Jf
z)x~x#AFdzEXZum_Wi`L+kLvQ6y;lU8Om^m%s0W<+vpLc$dCCJOW*3L&a=)zNJO43N
zoGMoNE~j}RWk&n0U2CT;WbwYNmG^ktY%WWMNks+5@wydr!?g1^zEjaYE}`;V$>R7Y
zwarS~<<mEN{Ft!X&_=Mar||1~-^44asW(1P4V!v?TTYIRlJ3)fj~~lEI}}Ljm)t$F
z=y_%$?`5%9hC9-2KE_@B(0xp5TjNLjL%)_z@89zKb;TdY#WoxNc2%dP{JXIIoHyGm
zBcs}LPi6W~SLiN2@?D7W)A6Y)DMH658Cie%wm$Rk43mtn@jY>(m!7#)yx-%#C_3?q
zfb;#s6CB?-KEJl3n8$p_?esjk-Ni90<zL!Avbg3O6v=oZ$zRr>s^03;T8}*oIu72J
zi<o@5>&t%eQ@UR-s#F{(>uq?yy}|IZOt^Ao_A{qT2h6oo9-IC-+1bAD{Oy<arE=LT
zZY9NUyRoYBV{ccqrQv^uk~wmGl@EULNPS)3G+%bv5B**D--LxvRN27rIoc`pi0+x}
zJu(}4dmpcNd)f6l`r^~P%x*SImC1MJOrGakX|_>1%g|SS>SP6hj_w?553a*2wD=x5
z*lSvz)v?Vy`g_gALq=hf>?{8;|4ysX{a7O&_Wk3{1szM4F=wfIgt*xSt0Yd@^r_)p
z+<yjzwezKFIRDPB&x$qU^>>=^qwbedLiAqSJu_{NpKeqUTJ5gze)4C=2^_EE&mV7l
zpZ|9K<2hOS(xMYjFW%Cmmd1T1d(tMC<6I1u=L2tlTl_8KqkiKW9p%lJ*WG=7Cf{U|
z$C>*Xv;TTzO62r@;1k`KP@%l6)+_GPvdvYMb3`+p=52X5^XK*7zIA8p1?<y#t35u-
zcPMpzJM?zR<%d^uFF%>e%@%RT<C#Z<fr`EsyHoM3AK4BU(?1+P{+~faqUN)BheCTm
zr%JD2RM9-=O1(8v4o*x*T5nYK2*zJmKbFr{q5p0256v|-qF2@l-OGOQ=XUn8?zi?S
zI~$u_tyU^b>e=(4?a6~D*B?#qsedp-eoI>G8hN>lpcl6uy_~jPFh)mckMVhqgcqk}
zPVJC5ovULdxZ~p-!yT2`Z@&7<N|q&Z>fg7E)IYxYO^yHKd@jeeFWCJIr!_E3uRNJ9
zAwBy?`{e~T&)Ig~ziD*s_2GG(SN^a`MwZ0-MOWuf*(m7aa(ddi%iljvyuep^wpwjv
zY0f;s`61<J0uM#Tn#)X=NoHsDzijXI)Bl^(wY+sUsgGw{cY1KHI3!TBfMJ8{q&=VK
zJb1pg=F2O~;If<YE-NCpoWEy(!@I=J=4y@Z=I`a-!Z|Kli-v`@cCzR>ue2{`SO58E
zeRg`j=#k(v!QZvkEDAVP=frNq+$#A*z~V)5*Kg@>x|c=kOb(Z4s7z7OdKW&Sd&4_>
z{o1{jf3&tO|1Dp4QR<Ta+8_0YKb(}k@_zH%>jj4md#p`T7Z)6KWRYDyXP#@O*VN2o
zMvK|r+&g{Y!OD(>UR$n4s+P*$ia%2p&s(Q*Gp3^WpWy4~+t2Ru6m~DzkTbzRu|ki-
zNQU|M22N#$@2~eUS17w}y{i7vzAfj;B#U)RyEvY7c?iiKbZJ;Kabc(vpI`Kx+!Ge-
z?Jw0Q=64mEF1@#Rb;h;ro3v)?Mp)Ze{)`k|(z9lM9D7c9>H6&654!`l{-}Sf>-5{9
z>zGo`p4E<;vz(Zg94eiln6vUhV!P<;zg26Lt6m+S|JBP>IwCW6|LbS9mmi+3`p*!#
z@%{pns=kwwqCw8mg2G9T!e)UTuk7;Nm)0xX{}6ls*7nEG59s&&v(M+t+!%3O_T0q$
zY~7P(#?JOPFT~`svlgWUi8Ovn?wMr2YJXEydxP$S*4)y`y8q@x8m@4e5Tifyv$2ok
z-^W6nthf8UeoX$yE&rSENAS0oe`mUPiCxX#+Rxp-t3OdL^=u#CXSvI526ne+?66FE
zytdZOy{jcg+cM{CT&(}3;}3;bYKbZ@z8Jsv%kT3Kg&&=Nd-J#Ft9q8C?K`iw7~cKi
zAGCks+X>53rY?-A<UgQ#TSC&}_3NLZ%l=)Lm;X|>!=L-rh8rf%Y8h)UE`Pr7XLnNt
z%b&egNqc`kzPD7p*-n1{;kk*?Z$DPlT|42?C0cWAm$SmLavl~HzUH0l&z0&68Yvm2
ze4g0HctYOm@AtM9!E+`3yuMe-Pfb64<H|SBsJr}SAI0C+|MttiE|<6QBXeZ&_ROP)
zjxCVe;c=0z_`ZB^*pG#e^QB(LbM6r@T>sj9`ytP-;mL)?CP#MN6Il9vcWT?2l{OE;
z&t6Z^&|$ZAmVX(y@bOKPzxEILn{yxVT)OXEUGdXKe|l{(*96PoC*R+;xqk6nuf^46
zk7f05pPX09X?Z9veR}OW-IFpGj$B-DS~FC8LZ!v=sNc;G#QW?-E0`a>Z{Fkmal7;M
zBXwMt^_6SmJ)57Ji&e`;DXa>vs%(|>*v_b>?c%IG)t>d<@o&{L*L)Wf{Gw2`!dCl=
z;uWcQ_N50TwBD?}{q)!a%dhNf!%|z@lx)^}zkF8mwDh^tqLu91_QhYeU;Uo<Kf}Sy
ze+(H_1wU+mEB=wb{xvPa>&DAlVe|9T+Dsk@rY2pE=?HI#K9M8CxAp7%gSGYlxO6{;
zhh5&2{;}Qr!}~-2d>*GwW^o_aTfIK!kc45_;lrXcCmOd;+1*f-6l738r~ZcjKdznY
z{~fXCG|g|TlmDPLakc-dSHAUs*Ih5Zac@J$R58hU5~`mU_UFI5UX;t8$A8Z*^S8%;
zhJ&&8+2?QZyYBcf<<{Q)Z6-5M-e+qSzI9qDk40sA&s%FA9=r1@_LdUX*&p77w_D5%
zpUPv)viQ%ZJpU)#?8^>Tw6^!jnXV4Yi$5uvvNt||{=NFdd-^|4e%Kr|qaxem+LxE5
z7B^cqsNUT%(Xi=+%cPY&M#cy2JJ+l%jkeBK-JQMLpm~Mo#S`C7Sg7=S{b#W5%#WSB
zd}83;bC1qT8LE6$*`PA{RZ;!ibeo4a=IgTmUd8@t-Sh{ayZ+ff(Eri1Isb=z{~zYR
zVkY&y@!TeJjo(zATb%uE`Q%L39WAVq2k!1|V7E!0_2<ifhNflN`(!@MKe(fGK7W>@
z+s5kLOdCmgqmxP}y#6y(hKhDGREYkGsqEg8C_Fzj_|I|q*6R6v|4eF<KQ5cN;C97-
zh9ldf?k=0l`0rfTv&V0hSX5Rs8Sji|&NRxa-NCr+dRg?tln*yfg@%S)Dz7TL^5D##
zplRBiQT-b?XP122H*5ZCd!GFn_eFk`hj#t;-#ek^V9lYM>V+?x56H4{SXvynx&B)G
zQ2ni`b?P<7A9XgL{x@^!GCiIY<41PfQxcn-j6!-6J|C@@FRL^B$Tz)8KPPXltY5{8
z%5#P<;|_kP|2Fl<#1GBKrpM`Dc%P#7H^qC!$x|m(84R^Ad^~pfnBCN0Up}3FbN+<J
zqgy}D-+kXPPwa2wKjR-cS@M!5x%P*xj;-9sxb7wA-#L$-IXF!7cx31DgTY#5)u}sQ
z*0+>^uBz%vua~Nk`BD3LuWD&^={Bp@Z7Z|Omv^pRTyJI8^s??Mv#WvD!_R$P4=azK
zjo)H_^x4PuLvxw#UQL|#I&jj<<k<ZxWgln!xV1yxxTna7-6#B7{l@)A`MGO6e3cG|
zU0Jm8V_o~AyFc>0qo;H2y4G%@mwQd9i1%sF-hlpjY&uH}ZduC7m0Zq#7Lw(b-u@%{
zALr|j#}DtaecoZG`$PJuc~tH~#pCVwy>_{1x%u?vsY{-e_<Q3)^Stbr>)Y%3a`(x)
zrat0t+%L7q^Fi76onrG-t|>>)HHc;6*fw*mp3?Sh<p;T@Pf+sm;Q0MxUHUhhzsqbK
zKXO0(w(!I0*lY9sufJWhX#2KnoN_g(cG29&EzitPnJ?fwv3=WAmX=o2OIh-wd%PdH
zUEHTvk?h*;`|(LyJ@1cxUmxz=q;Ds^y^{<49;EEp%2q8oGlk=$iR*36IoVexPo8pb
z|8=J?VfOCz8SiDY<_p+K{_sB%r?6cx>)Iy&<Q1zObZ=QsWQ<+RTq2xsTJU7xi7?ZT
zH+E0?v!wsfrhgoN5<YzWwsFP3^KEArT=)~a@bsD=We@ctb0$5yI`eU#wos4G^Pqm-
zD}iSeh18z389mL~FuP8r=feR3yFFe1e*Ut1e(}f?!G+gmXYYIW`t$Y^{~7H5O}u09
z;pg{j*AItjuAkQb>5uPW%cBNf^;U~z7EYP${j4Ya-Ki@1^Ye~Ji`{a{Y;AabG|ZSM
z*xOL1FmPwq)NZ-_b0Wp>eSdU6INw$;P%@u8@{jArJv*bheFGJ<%NrfU#S3<pd`_;N
zw6I@#!>iC6x$Lu=EWTU(x*q#TLouJPqU<C8d$X)U`(-ZQ*6m+B>*qeLlLj~b*c9AY
z@!9cYZ1$zUd(Llo@aDbXv`1P=1w~J1HE;gC{zuFQ<qzE7%ERuM=tezXCRLld*gk06
zwTtVr7jF2G{=wUmQ?|cZH<iomKg064SK<l%L2C=T=NGVF+O=TElhS4Lr%#Mi<>xE1
zs#>E{m-U}v=DU!O!5!+`w7f6gSpJ`ZWBy@Ap|$&)_SomVZdfnc7sEJld(9-vW7fg{
z86L`fn82LZy{xgPFrBaPP1%!@=kmQVL3j60^^v#vvOcPx^J&RH9ux7uyY`>>uyIfJ
zobdA1U9<l)Y+w2><y+c)UzW^oAEKYnzw0XXpFwr~3j4JDhI%pktp5xhj~{M7{Ci7V
z#@Z!&ckS9YD|FkoZM{>u_Z@h1=FG!nSIM;V3QX>&o?BY1-%+0+e=G0)x46FxboN9(
zVq$MEwKz9@tqfE0=DAn*UE+L^yOdkI>WGSjdY(naE{i#4p>fMXeXApm?pR&=Z`)^E
zKK3?w$=Mec&kmWsY09K&>wn!Z{u1o<pP@;;;@8u~`9d|`m){<I+PZFfvE}g^lk0)&
zpY8azKIyXkgO2-bk2~EvZ7SE_wYL<TR#m!7{`XIjx7Yu!`n#-g;)ai#PAp+sw?s5m
zSz)EDBa1+F*Y=+4KfiW=yxgU=x6tfMPxy=aMH2ojJCeHg6s-KU)Bf!IQ~YnY{%2sh
z_c8y?!o~fab%Iy!ADPEHsp9RD9g|erJ{^keh?w?L`S0!H+H)tKl?dFk%8JQZ{>(O;
zd3!5G|30m_f6z|!$K(fVqaVKS)pdQ=zb?u<wVLyvMVfT9T#wzSc?%nqm(~maXV{W{
z5Ii6$@%4Q3J)OIz$0inT(w>u;_clfP?YfW$OlloXHzb7E1HWhgT7Dp2banca^rkba
zRUfYX(#!aM*?alouW{+0>M!vh%8Io0cxG9W>sDoYEB?uU2DgeG>@vlDSwatF(wl=S
zqyL55q`&*m(7Aj~mc@bNFXJz|fBM|IU0aN$pnj<*<EJ|bA72JnCR-?fUb%S7ET1ig
zoBI=d`C=sv@13}kS*Cxg_+RboOM7&VZdp2YXOds`*=YZr0!%MXc}Sf2t9{{*RbFn%
z*49O}ujkz<s#vcr`^Q?|d2(^Jd+EZdk4t$HooXxoSYMy(c|35|yFbA?mro1(i%;+Q
zYV+i}WKqMX{k^3RmY()itGu}<Kla3ty}26~$V}U@o!M?*)~wT0norHTa7FMy@3-kk
zE(rHo2rI7A7k<t*S2JqQU-4HZ#qs>U_xHbWn$wr*xH8E2=fw@zy*HjeW4!2tQTB`T
z3>D#rzW<Z=G?h3rSxjZl=bkUJ73=4Px*51fUG5ILl6(1dTe<5O9@oknuY^|eMOe%3
ztg{lyD)zHE@vH9nfqmSPv)>$1u;G1D{Pk@1tsluAO>En@gl!Lt5tck$_O3Wy|Alz?
zrB@U8Og_0q{=H1Xhl-bHYhxE%%sMN*f5H06XI6$RT|D*t{u8S&9*HYx^06^qe78b7
zQ0jiu`*mNc9~?Y;ZLZBUbJliC<ESk`@-bpc`<?Bi|1%u)w9m<BicoL=`kz7A^>MGN
z2Y>3L)gJ2)_7rYR_g71t_$SEZ_;u3{RTD38Rc$zCd}*Jy^~n!2zUHJ_oWH8}&%gAO
zy~D}RHF4ZAx}MG#xBh2f{B!;yXPwG_hJ#x58QC|N|6N(1UhU7B9lrB-ct?#`lxFmV
z1zUDiZn|RJz{e8Qz-CnFvHyeH`y1llCJCMWE%v8;*XG?G-;OWII&?i;?47$@j#0O5
z$o3VLGrqo$pC8~P+gC3f<h}I9-7Wc*TwWI}DrR2Sm1drrlDF!>7cIx{>rWQ1XEVCB
z_B^L$Q2h^)x|iAi879lGda}<TEo7}sNOEB1@AdDa>YprMUE}eep^4$&?RzY{(?7ia
zQGDF&qu$$Fv0rAzKAw0%w{M}`!Fm4~UbZja$9~{HgFt=ae}-H954Nq9@7SmEN8_V^
zyQ%1@wSTH&whOuUeA54NuwY`p+vn?|zb1b;{O!Wu)&F?kZvRl;_m#U_qW$#p*Y3aL
zF3YvVPTLXqLa2m!!}<&TZT24``z2p~<gnAL5VJla?HpT?_u=-5<2!$=zWj8|mi261
z@azizxry&ye7f2{dGq#JQ>ULat6Mqw$L6VFo7T;>tX#c*a`>Mh`&skb<+r)Nwfyku
z;~xDF#~<76PrK&lGEMkZVAlJIJ)KHdgTA>kFT1#%`NR4xdo2Gmu;%^UVPjh?Rng|p
zQ_*%aglYRMooV0siccEfx_hMg-yiw-tbd((_PO~#)c!NPWl#7fFRoj%LiBRZ#frmD
zuHEb_%>8*b$gh|#>U8-Z=f?jGEc1TsUuN>3fqxI<L;KBlp1l9i`#bZ&v<FkAO3zfN
z%Qo0lhd+o3ewY^<xP8{sjr%KuJ@@~vI=Mf3{*u(6`@}`|-^_N4>$Sh~$A8m*hNcI9
z;x0esUQ?s?;qR45hSTZm<D<9le|PUt0{^y8wnxhZ{xck`T>EHhZfSh0_=8iD5x281
zZqf{pRzJJFcjGZOM$1>Mb+fYSKRD+9P``5SQ$%K*(dF$;cK*Uy#rk$lZ=cCKU)%Gp
z{)dA88&{QcA7A}5>&a0`4&I)yWNMuEE#b@k$7lVyx4qFu)Y^Wf%AcjC{~5N=Tl%^r
z<ImfV=6}TJNmr*y*&nLjxkSs0`)qAekeh{?w5P}SNBasty8jX1{CMdbo_&HpLLbgG
zi+TH5Z)>j8pY{1WbaS1PFBh;cbFDj7f5d+N2AA{y8HB6%OU3aqvd0*t%gs-3GqPv0
zeSN{i|A(UeA7OL1NtWyOFt2+3u6@SWdVy^54g2c%GwzI-|KgNu>BAb~2fKXjSFEf$
zmH*+{#+JX^BjwMyABq2={r&Ch^*1C-^`&3Nacr$&o$PukH%FpO`*{|BO+j@++ZWT1
zOTO*jvj6SU)jAuZf1G}-dSz2;r1BNh)6VL5e|m&pUV9^<$$g5r`c#(d-%mfNzoGw4
z@CUO^o#F@mL;NfiQLpZrasM>gZ89^wskpF2@;6h_oktt@Y5r$8=(0cQeA6{?GdbNK
z^A|bgg!XKc^4Xs^Q?w%I_6?oc4(}&0$b4CUwIaB=;L5UvlM<Ac{ymlTpP?r7yuQJ)
ziwkycG!2T&yFc^Kf*Rrf3{67y2c7J6<D%|XT=%@RPa?B*ip@RMecs(i`(>tFE_pU*
ze**KJ165CW68^obI~)JO;r)%@5B+a^t?w&}{S$XB_oH(3E01keLMMB+-POC>KVR-$
zNZi@NEe-C<reD7|+Gno6#r&;tLx0@g>Hqj&1^y^2p7AIABi~CK-Nn07Qs2IvnP+M}
zk1ts4;;{$v_xOyz`M29A{%4S>yEvae{XawN!;f{6VgWwa<b)b-y)5kc)R$6k_4vZi
z^;`Zk6olV>^dni^i>tEbr*gG*_1UTw_s*a4(|L6G`3y_n3x`iy-ukw8|AW6L=L`S4
zH2*`O{mtFq0xn7)s1u5)@n8S4@Tb^5*$Xy1)~q?foD~~$WZA8=A_6{Ha!GsEr0t*i
zpW#;dw`D&b{*J2HWn2H4Z-LaYb8eG;F6kPJ&0hXa;*6p2Ox5GOg_@bsIwHq<lI1VD
zADRC{*}k#v+JzdEADs(Md|Y>8jVZ6efj#_Fop0SSyEE^f=dbW*>yPW-<bJ&U&1sQY
z%lm9tS$3s3f3I3L<<MvU33DFoSs1$Z-@AyjGTA2>J74})e7Kyy;2*E%gZZ{~pD)FK
zdsX&F@AtO;XZb=E{bt8PDyl9AEdR5y-2YG5)jx0c^q=%KKltn2GM1{?DVygca9o&l
z{6f{^FYDIvH_kKKl~kJQYo$B8bB99pW5#}q@1kFtD!xA|J>z!S`NFi5ov#!hu*o{+
z6yK4XcWk5DkNn5>!hYNB^!I;iuDQ*5ukuYuLi+1jfBn`ahs~KaJMd5B&$&9&S}r~H
z^MB|5WdGZ(3!{D%{}YVoi@tZXR_5BT-XrUpwPaPcb%xBD;237}JN)^yrAj9yOZARy
zv?(}#x%qGQx8L9H{0M*0t=~MWZ9mh=(iK1QPwi>To9%pJ!Z{f}vz**}XS&>#_H%Dl
zpCu;fRz6j|@a6GK`{!7E5~|$lwW<8s=D2CwU(^TvNDPy|aplD!vnNH}U-$lJP-{D4
z{QC&A<vFXK-~SorWl1jyol*Ju=OodGTn!<$>?(DYrb1rAJUg|HtE;bHXI1ib#k=*l
zu8A|RV-sPV_juZIub*;p$M2oW%&YuzJHeA@&#DdV8-I4%R6Ultrm;JKLCeV2{Xaw8
zmV9orlkrW(_m^3H{l4bGrTXgs46^?jUWXkM@H+ng;xnO3(fWMZ+sZ#~F*kg<tI1Pj
zzOw!=l>=?T=dwSoet2(xvHan?V&A;oCa%-beUkC^$^8vKy^iqyIJEx9$M{SA$M_qg
z{xcj|xaxk5>2|5MmDQPRyk+NjocW#-eafdm)b-Bq8E<3f8};$a{AVzX=gwE}e)w&A
zww7nM>C!0yCpM+Z%2~7oaR#i~<h5>TYy{I9t_>`L-tw`2f!mWW9ZZzfIQ93-@0o||
zF3oCvwlekM>x^j<)2{t`l+dpcz<=`w|ICKCH6n%wq&LpH`eXCjKgK`$#d}-7tzCGp
zvRvG{S;Z~&=5CoSc1h1==GA6@asT#w)-!(IA91yI;cX#%_jE4loEe`T{Z4ygb5pp*
z*Y#(#<vZdmE+lUE)eoM<I;ZAA@#j9H^0p^EDScaSHuo&%K5|&tdSB4??lq;avv0Ru
zS(}&pw&h&FY2ih^N0=N-Wy|`$`f0C@n9DJh!#im4^8jYy3q14Y&CT9@`9DKOf6pwJ
zv%LFumjv$8_V~^4pCOf*HEwRh`&ZeE;%`lVbmW}U)jXwLF}b%@0w>gqyV+m9wd-o-
z=d3<gj#3*x?kN$sBxQ^|c83@9HuRMK;m`Z}EBHSH%YnbMYtldd{<i%?+0=*Dnt3Ms
zd9%08`nJ*fVbZoum+z|G)tPa?$ZL_sWyy(~8(Whs^Be3X?Tmidhi&+~R_#Ogogc}E
z%CC!E-?c|f&~#NyOvKr&X`4@MWDQimE$H`d_Ca~OTmKf;Kj@gxlVc}acT9Yq<<&iw
z;%%ktg|g<qbn{T#zH{2KTdI8rPNel2ecbhKnwoU;dp*BL+0QGcTYQViJay|$^-eh^
zQ*GCnzo{Q(-``Tt{IvR+|ACw*ZI%bVGwu0zIU+jNadDEDN0D>sv5KQ*2636cmcF}f
z-SJF=X=>-xzIaQO(#H#4#zj8jHF|fftn>s2=TFbW3?Az1muLN}IvR3)#@}qdEt{=+
z>+aoqq`xitkt?&^Vp)E<tIwpCu9<LRHlJ#de1^r#9Z#A(lnZ3!tRAH8I?wm|qSySJ
zvl@@Rd2_(x<^A=aS4$n6%8<V$nIZSU%g;Os&n?ya4{uH7TzmY(?@cykFShP6w9?kU
z`6=o2RJ}FLS%$|XCSTd^z<44t_I%4f^@_e*@3b|yhM66i5t&+aT1K&<wxxG@nOoJy
z0819(n0wnMt`QepQqAOaK&$yPgORx9-R9<b{&m{Dd)4k8iHSWiFYD<9Hkr+41v4cj
zm}M9Wj2q`%&y(BjA26xRKDAEf-^E?|t$SE*Jw1E&_F2(2dgqvD+MKwvCR;La^XZ9Y
z?I{x)|D;I$w*O}P<6TYqQrA_lT+Mwh?KxJi(C|h~M}CHt)<XxCWYa%8@4ni8X~v@6
zB{R-j&$!BwB*M^B@ZjN;cf~h%o-6RJUHpOl@xRp{KHPsPmNn7zPM{0#;kO~I4Syfq
zKJ;|z0rfnm$8(yyzAAS-$qKylXmw+#qK4h_FSdohZR*a(88t=s3)k3R5)X`2Gv}C~
zwK6s7;J?^~-<fx$$nALB)oP#Ke=|J#V@uSXdt4X81GjH$yQ=nEB`ZQ9UpG=*aMP+u
zY)@6f=hW!^m|OhFp7CDA^pMuIPxfstk6ov7SnP(7qhw~I+s_c8C4J2{y!?&(%<BbS
zU%$?<V3K5zX>UAFvi9}w9qk#i%*FG5u6-P)yZUJD@tzM~m6rUxH!uIs`89h?7yrn1
z*p$!r!|L2+zv$vmw+}T*%n&H-ozwi~9J@&5ozn~Nbm*x}R4zRb{`1?s`{o}R&)XKp
zW#_NGb@tKDx<lv8R-IaAv}WOydHeN3tme&p(!+B-x%AOnv&bmUm`x`R=v}DpD{%bj
zzwZ6gyp5d4Uc2>)w`OkLRbP4K)#9@~u^g>uBJXd#vXT9&^@qy!ia%yP+{^taZnA!3
zO)S^meM@$~)f3mac&_2$Vw*P;`7PhsR<3u7&3bm*zr!xA_n6Dd?F@1ZHs978f0TWG
zYfI-n%g0?Fs*#T-CnUdd3^-_i?{EUogR<iiR~}vdxp*-vr<3Q}YiIuSf7suuZ^!>*
zdEoXRi`Q;lw{-cr4}T}05!CtEswyevQffUrGiEBg%7cRJ*Z&z9|6Q}Hv08P|_KlFT
zPvF((cWpe5q|7L6Dxb7e%z;Dl_Sxe5TioAV|ET?#{Yb6#k$X&^SeG7~BlPZ<M@#Bc
z_d^=2hpk0b@(wUJ_}f(6UH)eJ!+fqaQPYpC7kc$lVTY1qdeSmcSIMOF(tgQr=l*zo
zz&88&Vy-Q*i`GoOzw=w@>xUmTy_T$3+xGUp^T+r9_)PvYG$mF<KU#lyhkaiE&Drk#
zZzFF%=E(IvEI)};;FZ#S38(cl-bIEmE%8)N(z*Vj^pQNL-qfO8Q{8OO#z$$atQRM_
zJV~z7sVRI>_2q2+#`ld|_*pBa9~7!l|HwAq_CG`G*VU3=UbpP&_!;DG@aZ0B;1$oE
z2d$eIr6fz9w||=aJG$=RKdT?vAKxFd<NI)Ky5^;l-1^|lYqm;v>b_Yk$DO@WdHbiU
zH<wzpC{2F)Sh?|Ry+cK4uypU54<<@amtN}1zkadIUgq)B=ED#7ZS9=YuQxqcd)@TU
z(Nz(DF3$J=u(-8&y-JHrZr7zWyS<))vu=L$@2nAgWGn4{X<NMTqRiKcyHs318=72}
z<fscT_U&D)-nZPQ)-dz8QPy>FgF8Pq$27KNZ$H(UwoAK@O?DQ``HKaHagB>=L_Wmz
z3U=z{r`e<iF5KqRJb5xpw&I_Z^{;gHAFTN;dg`hF<UhXJwP*Jq_*Zr8$KeSV{7hc$
z{Lj#8e|E`!X?dZe4|lHLT(8!zt-VSwZ(U1-1Q%xrL;tb4)k2xKLT=@xT@hjJ3A=1^
zl>P3{nLAnjGfa$MU^buMhH?3(vvU3UD&39G&hfnev1RGW^}2tTmQ*PGs7|fVlqq|i
zU8T&?u}U)CEr^4m#KQj4-ZS41>ZHXt&P$Bi6R)&i%lDt&wcj(Jq{JB~Zrs^w!z!h#
zxm)ett+Mbx7e8d3TV=*SL+*IrUH80fyYNFodmWze*=udKmi^smA!|3kH7(}k4pwHy
z>g!MZe$U@@dHKqyAdiEl9>TkpPnagjert7KG;`Op6_Yo<2#ykuc<bQ5G|JrLl_D40
zJ^Nojzph&QU2Ep+F0Ct5>V!>wZO`p~v#a*%#Ci7uWlmZ4_Q%YrSv>i`lR5oahwu33
zJYON|r5Vd_(|F^PR-sMuG>O02Sr#3q!xtNW)6K|;du7%7#UT3bnNRLHOO@PIR%u!)
z)*4lsUaqnI*thV*e}-eT;(NF3y;nB9RP@rSZFm0#w`tC+NZ^{>_g8yzSnoN9b5_4D
zyX3L^ZN0Vl?28k7`xlwocSz|UzJE(S;N$kgn|8HL{q}Qt7iWk{x!Cr|O5GHB1FqA`
zE`D}F%*k5XZ)}4PT{!(QJnTb$Td8K=9{rD#Jz}E|{p#NA_HsoeztzRmiIvf_GapxH
zZtxbmxbgR$x=0h9s<JQZ3qL$Rrd#d%fpvb<6P@#mUI%2)^7*OzE%HKADu*AJmy>1a
z?a%8TRj!lqi@N0{^(C!q-K_ap|IXezxAP<4=|lGvuN>aD`oVqSSkBa2fs;;$Zk!c)
zFZh7&w;9pp3{NIis@pG;7q?IM@A=Qb6n^;RM`x#6%|D^bmaSdp{>;^8a@1}u?VQFX
zDM{xV+zwajuo)jM-v7aOefNKc&D#&jOIA$(HuJ~sht~T=e^iH5&x}7jLAu<#`_ZDu
z#k#MLOE!t$SB#l6Qy^iz=wHyFl*6&ckIdhG{GFor)jL7wkAw0~gPrUdeg95<Qn9YE
zj#*$K@$G2c<A>%#k2h6n2`&A->)xfByMO0MZz+AZb=Mbr-jDIkpZ>i6zHarmDLWNY
zFVD-2eR=cc=ljc_^LN-k=>5;I^?BPq9?y?SKQfD6iCx>DH~;X2^UALZ4+!k$J!HRm
z&kM%8O#1^uQ_>{trx@PpbUH1`vxZqymTSWa<r_Ux|7QP_`tke7<@$paHrY$=-Szo)
zeVXx0HKn&tXM5M``|oMwO3%CTtTMLZ;nE_z&*?v}{kXW~<v!UTM<4xV_vlUBa`}(r
zn#cnk20|L9(jAK(*d;;(*f)s&UfvdyIx{)jt1VqsU905P(W6nPmj1oI_ie6x-0}zW
zbPCiW8xOmSPCI(kt!TN*-FJ_3!&e?)x7Es+GH+`r+auN-*BnVl+3atrA^+-EN@uh<
zh);}dTb}#8LfmsYi^1M2?Y4zaZ%Ccpw9)94&5i?d%l~{?f8jsFP3>>uKPLW;$h<av
z+WEiz4`Yo(_H+kalQnNGYdYJzcZ)kyc9Y1Q`qll?OVm4VKdso^S+Fxt_;tm~6~}bV
z{?+#{{CbD;u*9145+8PC6nh0uiZB1V^5^NrKZ;|omui^Qs$HsHeR`XAety32d7CAr
zg3dx)CJElrnp3|1LVSDu2e0|J<sY$bscOC7{`QY~-Vd!?e;-AjIQ>eYH7||%=2iZ!
z^<MRi`_uTF>NkgV|DFC}x|_H6$|<_{mK%QFD!s|5*z`2-?IKUXWj8Kcgfi{@;ChVl
z(f)}$Hox@lp6l+fv1qaUvw3U(O!lm~{ZsyWjpmoA13^vmazoG6E?yLGUiR-vy&3m^
z2A04duXM}zcmFX`yZznlzUcX7ALU<f+gJCa_df&6s=piRWTQM+MrD}&)7aKyY@A`9
zU9J##&UeqreDeogZ{KA9x=?ZO!KGCXn)tnb?BTx@-KiN8wCb_x&13f`yWdLQ*C%5d
zCNt%shTY5m40F#vSRHst|4XgkW6!I)Pq*&cQYiDmU;3zt{`H)V9%3$bjaTHea`$kk
z@b~<BzWkB(KhwWU{#}ya6n>EZ)_m9B;z!=<@CHeoihLc`n0zI-_;St;rHIcb+Y&x*
zFR;4)Y5(u=e<$Td>{Ie(mbdN6TV202etNEc#5OnY>??i|3`cv67d-Qj>|}lxR&rAQ
z@;;d#R~sIQel6QOH~(pVy~VzLv)7xh{B!Y<e&dck?SEHwf16T2Q#X9o-!l6$`v;Tb
zw+j4N`(cuQW1P;eOdH1s6%!)&^iJP(@y6Sh=S}A`j-RMoe)`kg{<HCG7ptV3{;{rM
z`tkA6{hRk6J!}71e6Z`%-Ar-md$-H3?%F>2$<D2HN7K8tj1QgMc>a#)-;IClKb~*-
zr%@s9{$t{U=>DxQetn%2ey!+1(}gn&rx@6*Ua$44AheMsZU6K?RUiI7wVZ!_h1-?Y
zW`9+$)_jk*&Z!Tq5Prl`T(kMr)YPgiCAD{|?5CZ7a_@P>4td==zxsm_{~1ze?9;1J
z?tk3gsw<T*@Iy`A+*9Dp^eAVumu>7i*ZO~dk(oO$YsJsiU+0-TUu)-)T%xJODcBem
zCK(oF5YqRckK-M0UHBmz-+1*inQ0Q`Yvk@;5B==^N+$g97UP_K>zD<$%=$gwZLj1X
zZX0gtTm^Y2zT)@u{xd|yb}&e+-&~)+{$}0tZ=pYaS3d036O$9WdUdNVliz|U>xXYW
z8F;TvGN0Q2^GTAW%B&w-#MJg*nbU2(xc}hgV-J^B_^Rz+_d5ON{HNg}1%Gok%Z9Ud
z^e$!3|6$i(lHn*4w1NFk_O{D+l>;t*aIbo_X8(0oTkGqEnPO~)vtArK`{rEDI?mUk
zD=$TR?_j+1G3wi=oSs$l_@kaFvn23ct-AL><Mc*_lJ%Oa=eu&=E}s4|)9BtYrpH;I
zYO`DCiWI(&O<P;Gz5J}zlLoW?!?$*>{5;A1)B0-eQjz}7vqEz{jpy%tWVH6;Jo%M>
zKZS)^uFc*ov3-gMbFm=vj=x_@9Xmc7o-_Uxwq<|6$!`5Cok!Q`+DF#4L_D@#xs%~@
zd}7_H{hQ5Zf4t^ffBe4S*N+eGx65&C?|Oe^*3ag*`~q|T?2gvfu>9?|u;OQg(&6N`
z)Z7#OFaI;h*KyY!n|1uK@JH!y9v{OyCI?>1U$F7YAIrxQ3Vq)m-Fskm*6mPq3dcv6
zfWOO({HH82<S1DGFlonOPJhX-`jxwv-0CjuuGTbNl<&Vc?t1vIHS!FPUnkV<eRtHf
zWVTn3ce%)S?=NNc_9b`ia-Cl0zP+-0!vn@&A8+lo_xh2&_LZRQwC7w_6AEhU<Fvm<
zKh!_)zVSc9rvAn+yz!6EH?7^LRO9%uwZ-bti>Re%w%rPAUK;cKO?+0D!1>}8_cV;&
zByPHA$0j|qZtI8jhu1gnYJZ#iA>xO*^Kbsve=1Qg?x{)1UhY1!#k+Oqq(^6GZc=TK
zcDuRTGVJzu2hk6e`@0O9XD{^Kp{llY>C#i{-md*+Z8oWF*RHMq8C*};C{6CM+Zw33
zZF1lCe&bF1roF8;yLLW$@rUUiKb%(_teD{c$>T?AOv4#A3x==H`|Rh|@;;PrjWfHx
zPVLej&Ba+(TaRvutGSr@tz5icCi%ym=;MkG1%<n%Hx$m1`YZ5b{>T21AH|t#{+-y*
zZW5~%S-QL9%iFR~(SfFKziq6xGK#u&Zb|LDTSuStoikW*WXjZY{OZn+<KHqqzJK%c
zG5+7i|IW@+-SuH#?}MAI%a*RpbhCI@I=4jY@2+2ug4V?<%{Kes;6ANem@SOe>Ce+V
zz2lGWBy(lY^4wbX_SD+<)@oO8hehpMcP+CvPrAA24)^3z>A*~D_qW-Lc871Bdv9Lf
z%l&6nn(oFdIo-RYi9?}@k3-=Thcb)cgbE8&jhz?XT(3PfCw+Si=r)?1Yjq}9|H=QU
zt5Dp$|Hs0I+_lM}O?R1GO1&*-o%@w4yXTtVMp+}ySAKO8yDlm044Pzie`!^vn{Cnx
zw>?wW?|O4NbM@EFzA+EZ6rARdDoJ{uyXUg!@~0)2_4jwzh%yzNz5S!&SLuVR!XMQS
zZqU1OTA<ec*v^wR(o0X6HPpI!9!)v@;kSRfUjOC`JlB`M(XhR3v-8nL?S~$3{g2#d
zdS~o0yFKUQ@yi>3UH4s9<NTv^g+-TjtA7%k{fY1E#b!S|H{pJryTyagk+~mU9Za!{
zIimmbZLkiXl-Ko?;4_7tcaIvs=CH|pU~S5}E}3~*aewl8<`2(i)FgkHnK$iU`Ig^K
z6T*Tz_Y~gzxTDs1)=$0o_GudzdRImkS;`3h;JbP_JD&Glz|U<dn+4~29IHRHq0PB%
z<-47mD+~RMChf^w%YV66{M*!B7r5lPf1D4we5m$f`pSDsA1`nm*=_i?|Iqf*{vR6r
z$936!&3^m;n7uAKs`H-amAjlZPs~1B+<msBy^~3BOJ7LUgnGHWKa!6;_Sal^r%_~Z
zxcvH@&`KNIN7^snZ2762S~lY?&*4cMeEjRZ9v&+Yi@0v`Sh8x#uV1n|<b^l;<+)b8
z-(1^&?ezU0n){E7+eQAEx#sQHNM-K6pQ+m={?&aw{5pQS`cZj_JgfcvTYt}x_0Tfq
zUcy{1qZ6c7f8OiQjr|{%Elhr@Qg*b%|DJ*6og;G!FC-KmGrp5P+5L@qK+g7vIj0pv
zJg%hPo%1#{KIlk;*5U&{eQaNqEZYC}#`+7#;uM~X%Bx28-CO_X{O&hff9Lns>2CgD
z*Pd3Bygn<KLpN8&xw=rNeGYTM84G!1v4j;1Hj4)M)~)<w`gd-9`u-cwD)uSXq%^yK
zbnkzoEY5MAm9Kq);0c51sh^(ja5DV1GGs%}+C5pE?9cpfe)j+1|Hl2pv)Uv^(fdd2
z1&(#Dd?m<iGOfU)Xjbh)t_VYw%Ep3ACwm@-us;3cxU!=8xYg^5#Yg^yBpv_0bln|k
zT@!t_$Y@2?U0elc{EqzYoIksK?%Rx@{YG`?my{KKu8y*c4g1@lR`M})(Ug>_{#*4<
zZ+iFVSIN77_x`T?&yan-D~|cYy7tGOrmMB*1|Jn$Tbi0%aJG1rdrpW+k!rKTwk@68
z8B}&oy(7mW>+r|u$Jzf3tX_YYm+%_>et4*2*{@H}B2HzAhs*gMpLB`$5qHFr?o+)7
zv?34HG;{69nR?(y^T+%nQs+BV`lI*ydOnyq=~$}u!s^tCExD2myh{rT8+$&nd;KZ7
zwx`s#_36LetCwsK_BQ!sbX?f)yvii8+T9+vj>x3UVO{_D&FP-cHn*j%ERHSa@?CLE
zd#Y~ix;>M&_P_bl-DotYnUTjWS}tp9P+m~Y`|RDG>(+kRdfw;b{G<7TSyDawbg!&W
z_1@W`R<nQB(_MUg-|8w})w0$q{<f<>7*wA>|K_S++VflEEU${4<hy>^boRuRFTV#)
zZ1Y^RE-XNq`A5<;v9~+IpXW|Jx4NeOq3V@K5$hzQthED<PGdN%I=BDc#QmN7TX^`4
z=g9L`G<`lQSG)M^Gp9>aJuQM>&JjMYkdjch=lbr}Gudu3d(QrgFMRTN)2WK~s*k=u
zm(=_0llafj)Khmle#^6d+w1*X?ixQxKO&Kod1J|^lMl|OpLV#!GUfR5jPiBf5{qZ1
zY@YGRP=D6Xc$+KxGkE#pS?~RLTI#L5)S3JAx7}ev9ZdyKPb4?(<(gMsvp4(a#Ve+<
zwh!jV^6C_b8@gTCtn9g+gXyiMV#k5wy4UxHUJOn2T=zBN(4BKTC#lA0$lobDms(J%
zck|?niuJor)i@owu=HeXwcpuy`)b3dpZc~bo_p4h$maE?Had6hUS`c-w#)wTiLdpy
z+`n~y%s-MZW%519Z<f%;>{=VImjXRK+GjS-@wAjkQxWywHTUMevdTqQb!tw`*Lqb@
zzsudi-p~3!!`Ib6*8NS{Z+y?|bdQL_-!l*L0@(PhpKo=W7H;;d`tFuaqpzPu7-S3%
zZNGkPU$AKB+{)is>poR)e!n5YDx%7(l{I7S#F?xQZmr>{_uVPG_dmn2&Fi0ew}x~^
zS3YxBmpt#lzTo`N_srfZ^%~4FjPsw~+I)J^#u@8E3MW<mXRut7c019=L5%TWfq}5h
zoR8ld57^CJJtKW)#QJG`{K40@KAY!RJn`TYna}+`{~6|lIdb?#Y^%Ox);D|p|4V-_
z|D9{cS25v5*nPo&dKpqrcFA;$+*1A47I7y!_i5^^drs;p2c!#@7d@HSr2X^de}<;h
ze{?^vH~weHKK#-6Vd>Sa_u4;t9W4FwTWQ9{yhoauB~r3S4n1>?l#C2`pUKB>@$bn#
zk=M7<)<4i?`|fk~*h-<O+Y9#A>+6*<l<Op{GJFy6V7=Er1N#U2Kfl=U?|!r6MV+Xd
zi66es`DBv$^vHMN(?y@Q)NU8(NO|MOANAv%+>xut9*bJ6O<fef@cYl%%f0ynPe!`N
ze%n-6TfbWV%=x$B58qZFt>-IQS+Y91*CjJ*NpF#Y+ca0_T&4CK3umlIVpNbxpJ!F)
z@uS)M%9hh6zCo6`OZtL@G%qerSdwmU5#;{xc-_{&A{9x}onQ6eS~Lhmt?4*FC$0Q|
z#mhN7Pv%E`T;I9t>)Cs|zj1p;r+DsQ@|1brczwmc(!bS{DzvRWge;Ao7F&CJ_1_o&
zVjsy%D7NhNxcIF1%lEavj6e7l$gJrK;i<2v@3nt3UFStoZ(m^(<NIU9@w@*sq;AR;
z(^%HT=|7E|Q_210>vQ3s)-nFke8B6#esz!al5<ZIXRcXjDf#slU-qT-Uuut7@2Y6I
zKPT#M<m1FY6^G2TuBhyls((^B|Bdrw`{v?5iXZC_-oGUu*6wz}_v_LNovI%1-q+n)
znX2WyKkH4)QJ(AkyA2QTb8K4J{?+$4TaEjN_ebmb{<!{UXvvS;bX{kDr1xt34e_o;
zt8-bBjvhL|F-gU{Lq*WSS>z(eGxvOh$3GAKDE^TBAaCbme(fXkgf2hZ(0A|IqY{rO
zn~ud62YatGSO&k0PpdmT>-pjRH^m>jHGh=$yp;Rp#nzvTFK!jiIk)Oo?FWC;nUP%^
zn?gOE&9xS8a8QvyTk-hC`&oNb<I{tTGGkTl-jCKbFSGmI@~7f-oYI_hPFM5nEnBYF
ze!KFoW%-9mrWa=2cr(2~^*Hau%RKy#DqqK*y5qijO;p{cWbZAH)Flp2J$drvPmlN4
zukG&j_S<^to~NvU)||zBjxhy?WgTU%pOLe^_BQ{P>DK!*_nbT!%Jnox#ND|mT;jaU
zgWuOb)GXA>yJWvEI5<jrp3=p<l9x9Z2KF=+d6~z2m1L=2aeTe$#^u=??;qJ!w_Iz@
zDhrESMr;O_DqkO~?c`^#@$Y-5YksI+@I<ZC1L=(S+a8(E45@pUs{S-xzH|ml9^=mq
zy!}Ei%cWc%)@%*2RQ$Y^t;jL$1ebgK6qyg~QCss`&Ck9&artV=%etGN7Hw3$@lGb!
z^}tD+ytHGCZ)ZKye{*q7T9ZlQeuY(&BxkF%>dtvEC#9<JeO&jl?6B)*kA0@@uMiBk
zc|37Wy2Lr_vPT<C@7g+sbo_h4bf$3PG|MD^8=mAFp~u3~%E~uBJa%_Y%6*wakv@e<
zCdsUa+If5C^qktsFsX1}QP!QHUaL<53@wT(1(KezXB>n4A`icPFuBioPUzm;h1nGe
zpRQCcJpEky)2e75e`S_={3{-JJxSdgo!t=|U@}qt)|6b;Q1^4M4%?WCBqaR3c);|9
z<K4-+TkUKA$<{bt)cGg4Z~B5W3lka{4Ng8)c8e@{SaW0wTiUH3Kc_Sl9%O#;pP{vg
z+n&8XKjzg0ukxAKJR*~=Z+wVxDOS{;n)`9`#0ieCe>DHLuSvU-wyXazFW07%S{+>-
zQzKQ?0*^fY?xH7NkZ>ejx4G-D*`^-{7ySsj{KhKDeWQ{`vhd0LJ*Tb3LnD<WZX7U^
zVA{$2>`vwPm6xAg`KWb%+UuQPk2OA8UH!Xpb)3R9(PV*1l3~tr-y{{Loz_fR#dr5a
zRo~XoeQKFyD?a!a@YH37Ry^0+xSxe>YFTt!PSJw4u#+r3*H7|)takeFZ1U2`t%q;l
ze#QEv+T)m-L%`hT(@sld#MHA45+_y9YyDHYq~h8$wWgP<-GOBpY01WB&wUrhKV^_>
zX#O<mK$FK~_tw2@l3wYaU-NdKN~YhYyB@0<BAoAN?>P6THL`-WaAI3ZaT{}A<)M%A
zT_t;qJ!c=@wdGgiZ~y7v8uO)2eLS{)(%Y>z?`QO`I>OU@p)dQPeD8ii_rv@wCUGK{
z*O&78$?M&F_T<bnYk?y|>XWmN^!@yM$@pDf%VUdg{f+m<{_(vCh|R7Ozq0kqm36*5
z_gifY+cqtxxBaYK)BywkQ<A~V`-)>qm&)b2ezwxMShMe<zW?im+trW$&G)?i?rW`a
zz_v-}YcBaR-PXObA^Pa{zolEMQ(8GB?y9U}=6N7I@k{Fcx4fClZ_dt_tQ0(My6D8W
zO`D%p%;);gkUFza=>)UPkpmOljQG{h%Rl<haCp6}&My0-^ZDJ2>$#2Y8om6^T`W*^
z%;2o>O!isbyUh4bDm=FdPhR)$Y(4ir{U27g;)l0?zm}a5mTf+Dc8%WSvLA=%E{&|n
z-4WdL_kriJxl*fM%~_Wjx0Z9u>tpxoKln%gh+kY`leMktKSPtA>MZN8Jxfo{3;(>x
zFHj}zU=B}@*|QjiiuIp&f{w*wxwbz$zhhVHlgXCx!dZnYCeGcnKu`Kf(9<@H6US^V
z53GOR{NVk;`<?O}f8v+lihre9zTBlza>}1G<uc5|GPwaokp-3Kx7Ksoe+cPKGyGlr
zCvwa7&P!$=S#KFkX$WnMJH>F^y79pT_qgT1gI~nDhMZr0aCOw|`kyBCXZ}V13h|z<
z*fV8)<<a=3%AX6ryiUn!^0S^CeCnfzpq@iPgHrQ3h8J2>wzFuss%}2!8d7wr$d7$#
z{j%bz8ZV~a{8#BFTrX_ZEAt~M`$~7*%mv$=KXW8SrsZc`*|f}mwL##$J>lP8eO%s@
z{=<LakKhCQ#QOc(e+Mp|9=L1Aq~`%Uv~!hK88^xZ9G&)AN+Ri2WXN=j=a;wa)=-=4
zoVxpWtzo=n-7Tpu*N3(2hXokQPU<aqzK-E`PWO-ZY45*he|j&u@sx~p?Dp(W>-Two
zv3LK_YJQ}m%H--lwSR%>&t(s!G8deC?^E)h;dS*@P6N+_=d8nyyzc0DFuD1B%|F@I
za`{tQ|J462{iAs9PELK5<5ZdNE8L@|ZgMjW<lFD{WYwFJ!$~)p6C_uiKltG4yw$VT
z70&m%x9rH_!c`S7gL0X>dP>jwIScM6TNh;z<g?ORFqvI_`_d}@!~OhsD_$R$l5hNT
zU;lU1ziS8O^B%Q5EA23l{r3KxcGK;N6XP@M4*V0@_A&fz<cCk!YI~HgC(h1f-25%$
z$<846%`S%T&z4^5-`qX-jQZM%n;+=ku>Q92$NC5BWomqX1V89aKN=_dqjp71=C5N5
zmq&9>x))vi`F)SYj7LT)^;(u(il-SYm;9Y#pLqV3__w1!4ll2f`l0-A_Fn(+-4k8<
zZG?{|rwg*op8fM%{o<%&j5=@3J=~{r?P<~Y+j_ai^W*bxWgo+j>EAql;McRosSo}$
zi2hjfqbb+UXyVcfS9BN6FIm^2s=@i`lq5@z^3RJq&xb!K{n5S1+w^OHXKAk4yO(8N
zw{pMUUF_8`Nz7AWnp){e_3Tu~7e>YLTMFj4>^O5;t1mHFP{MNc(W33kZoOK&`Tgq)
zf80B5k`6z;xn<Lfhj*sPE_t6?9q%jq@9T@|^KU=@w)&&=ckbF6!QZkqZ2Q~(>9_uq
zx{~|#_NT+O|8}oEGrc@t!=X^CQnTX|i?`M>!yf+4{}~=Eix+zH_D|t&vl@>d!K+^0
zy0-Mee16?O7o+2y?!}(ndTer`=$@n8m1%`M9pwqFcN{E~_FLE(f5`I}IF-A0&GPxW
zlN??h*YQ+W*{H7aRekcwb;l$B&Rg=~@5<`EW-f8dHG*YNTDuv)yZY;0{GlB>Dg_ah
zq5H2sHqEYyyQJ&&>*em+YWZ0qkM5io)QQs)sl9d1>OX_N_O6%fbL$_-Z`}3#`1>E~
z?_2hnW&LOP5O|*D$E5EOAFnNc_@80p!3QrwDo@vZbd{VGv1jc^uai6hdp3DL(b6nE
zSyw+JH}CfGU(YsHKav-SIIsHl>zVJ<jdXlgeZJ#$`OE{k#wBIS7X-9l$|gVjH%mgr
z-$ctYVBO)&^EoBo*JV9ETt2HPf78CX`|lS$w+}vB{YUb!Ma}$KA+Nl0R~)r`eOluF
zG_8{v>;C%pJzl4F?AeE2tt*cumOZ&rvS;4gyYDI(vOA(r?dyCn;oAgJ`?V$0{34zD
zJpVJ;eZ3PG@0-1kx6XdcAvcZ#`Gr0I8T2$hY;WJfFBF?|A$^+X-3IS8u66I8Xt^z!
zlX|0-WfG&!^%wscZgo1I%Kp=TqJHDgR~o@p`}&Jt^WT{N&Ff?Q+sKcJHrn|nv+CNH
zt|^Z?w@^ZQ?c13h5f9ay3oU~tG9P-lB*BTb{tffteOw><57)O^**E;*Oca~GI5S+I
zcj+2sZYd7ok7>!%(k#=GJS|N>zkf6Rx5bP7o8BLsYyWU-qi3nwe+KVsc~=tdW(lnj
z+E(?ZgHgm`{xlQjYx|a8?K=7JcE*(_f7hOu|9XV~W&CsZ?tN;Z=RdwPx&Kb{u50<f
z&tG5Oti1D|!L3H+!?ixghM0?gzkHqi_V0byAN!~7^!;g?!g&4KB5&(M`x08e{hF#!
zm)`Z%^gn~#5AH*Tl6#^b@#=d!o;06+?Ze{_m5hJ2KUsxng_N~Kf3Xi+8D<zhdE+%X
zzfAYNHQ!Tz$JU*^)wXPxY5$S)Jl-W|H@NMZBdKG}<ahttzV1!cv0mqF-TkNP=`NRE
zG)pZ~x$xDxC9C-tuIovQ>^yukNpr{jUD=;4H_Ysl+xxfW%G#UDe{$@fu-@>;#SiHZ
z|1-R0{BS<#N8m@J3wK`5npLQjd~Vy^`m3?g8`)DXnxAQ3_|z|CV%)B2E&bEC+Bh86
z?$0{S-n+VewbYfA#~QnrZTFRWwBgF@;HgrpK2F-~zbgI1(~sXD<oDF4+jsvueu!U2
z!F*P*ruP)54R>#!GLOD{i2u*#nMMViHy%Ddso`69u>PQQeU|XDSLOAa+I!NE?pyZx
zRh(?OjqWv`>C=+c|3$AbH{^S_na^m^zEl4hnwI}NBb9#id~?}-Ns|{$ukG0GTo=;#
zx%84+;<wiP>`JpcnwE+#4atS;59G5~#QzgmTXg!!KG{8!4u@RUOWL(%xAW(NHhglL
z;<8s8PP{m*<;ZgVyP358p^x)<s%65an$_Q(Q#R>S^)Ivj$Et^J%oBK&pWjr!tLpY1
zxz|^7*N4pfyG+Gpox7=FV2{)%`<urfyLJC|{G)VfpL%AZ(vBU$`73TKp1-+%;emO2
z$MfncPRg6)EGb=IVtBl-X@C32A6YxHE*-wsyHxCQT*kk1haRoGzFg|c+{daVe`bC#
zfBW;dj{aNU-*)$Y)H`mEv<ZCpEjQdbscfd6AlKQf_#WLWk^S?;eEXZi_D_tiXRBy>
zqOCe-B9rmf>6!80B80p)ya@Tk=brWNr=nf-(+cJJ$M(<f|Do~yp!|>E{|ur@Kl&f8
zHudE`w#nQ4!~)fQOBSEm*)5ZNPI5<2^1rHIT>qy1va9F~=6O0Pw95LF`1^0u&zF9F
zS8q}A{^2%xsl{{L-DOqtRxkdU`@O{dk=fi2=Z{YIS~u+pQxWIOp5J`??mwvtoqlM&
zplE+#pF!0-b%k2(8w;<ca74@rI=OlW>y+lkbJ@QpRqj(-Y(F#O!#lCQ?dk07hdAen
zX0M)l_uu*aoaeKeqke=heHj&Vy|Y?zV#oxJAS>awM|18~9McX<-!n(6xqlCb+@0{L
z71tld^%iIRN;>&$^}1^u{~63}E&mo-)tO#wY13MAX<xfsa>s$7=3U`7vCBODp48ra
z$NpuN@SGkw%XL-O9gmBWRr-#6D*XCrjqYpXgnv`NZ(N@IiSv==){I}#hwGR=Ok4P1
z$NR6`>C>KhpB7cGl;2&wBeacug~j^vEkCM1Z1$bvn7SbP)a@O{X@35)5)=EgeysQT
zc)nxJmi=!|Tbdu+eEU>LUz>Huog!Pq6YD1F_r#g*yt4T7yC74&<xc~w`;XL>ez?)I
zUDPJj+uvJnUy;4<>Cboe&ExBuYFd3VXZv^m8|%A^Uhe0wPu|}$pU=jU#muncny>fq
zS+krP#d1!V{ME5Ienxp4&*}NQ4hUWdKQo{6kACJy<wx^d_etN|kx}EgHuF|WhsBxj
z@W7)+J%Xp5Qkd^;{Lhg4dvAKk-?{c_`tq6O{(omyet3|vUZ+T)IpE^@DC-@OQy!m<
zeKPg;jWCM?79a25yzFv)A4|pRhw^WiKEAnj%^q#_zBfr*KR>h2+_UBK6HilJCy5Wv
zH*RTH7Tw9e{XCID`PurmQyauiX@&LtXQ<Q+-Sq0&QfvLt>?(cbFK>=Zo6iY8Ty1}M
zsn^?_1y_RW`u;O?{+j(e<n@1sjeRqJJ5;=W)PG#QbLFGo-FMTTCVpsdoU!Mm=scZ8
zoA+K*)6P$SdYtLFPC=uQMXH+~U&Z~K?B6D}KR*6PME_8|;Cfx%oM6|j`*v)(oTHqw
z>2k?gVfWo)+Y0gyep<-K_K4Zq*php9#*g{m`v11uXKByBEq?Sr1IHfu2YaJqc3j!x
zyy9MFxY)L0Y3bdze($1hXSeRx{O0lS(=xg2Jq>Q5oA?;=<NnUv!~NiX!~HG$k9zEr
zeEt0Bv^u6A?vHNfeJ$w~y7oB2+d4w;Y~PvboBJxGBvgu@*&SEe^fvA1ubFmCme#FW
z@76{JWm!iVX1Z#-s;po3@AI~I=k7bo9GCmNFKf$GEy30GmZp_?ckgb!?OM8M=V{R4
zP5(3xf6V@N?}xA0K9=uR?>m#O>V4Nd9AhGGHS=VWyYVuI=Q4a(KZSSIXUK2;u{q-U
z*6cFjJ6Tn&Z_l(me>Uk|=F%k2*ONTg@jsA15-;@c^nV7a8p)4~?p<6q{b1G6)|c%X
zHdnX(RNo%6f${0~OhMzuX)J$suHU~W`-Aj9&X3Fg1YNbyxEudCul-Se+x4oRTVMA#
zZn-gcPh`b(Bh%~ObdPS{;2rXL&S8^Ji&ouc3liL{@!RKIpET>tT~{@?b6)ncSrxQr
zv8K7K@aCF}Ti<M{dQsCB^!iz4Rx4MRajU0gvB_Gt#p&zwVrx#_-?sm#^!oOH@;@X$
zOb*|kv9+GJ#^iEdsYbN)!d=&wPy2DGx~*3^=<o_2+w6y&`>anea_8~6tISFG&DXZ$
ze&2p+o8;dPH5nh}kITzc#^2hfyubQoqJtcVfY#CcTmdb{wtM$19{Q}fvvNnnne0g)
z&L5uNG0*nm9@j_lY#HHIeRCgLGp@=u7n|@*np^i?{CvxEg4|3NCx1pf&e|Bi@WhU)
zY5a_S7N<2!ue)kmZ`t}UGqU``k2;0(A0^(LTmLQhPMO#BTvyfloywP&{P<h2O3FIm
zPr~!3lJYZG3D;EaexAa6zUBdc4A+OSpe1XXd6u)t2VPrH*!cC&>wEuB9M)Y_bNt&k
zy>G>~NB^0{d%ba*z`u;ocH>clnxqN6m+p8qlq!mR{adf~VVZ_j@U$?QW&Bst`rpiw
z?fQ4~$lfRCmwcJubxY<u&-Cf#63RBm8!Uf)fBQ17H+fCwubsb5yJGH`J8n-ie))aZ
ze4jegj~=@|%`SGAY2INeze3^ai><q7qzT<zuw8+H#b4<^!<(Cbv%3W+JH8fQdB6Sq
zs-xAXUVpT^ke%ysVnxoApF3FRnI3$7Uj5Rln9N;^UzHh2>^r|LvY?#p<R_Ka+i&d)
zZ-12Ds}r5O^|C^onS~Df-*29Ov(_#B7=66FD2n|GPqk`#P}eFqr2@CY6AE9}OAAi9
z7Pu+vR$cnu_VXF{L*B1{a(>;?4c8XmmFnnUsQaJc74t{akNZ3ARA1e?-zWCjd8gSn
zIq9i;RxUa<bKQkM=XbADwlA0c`<nU4e+IFCs&{YHCmde6bJCyLDTfv)S3K=zoFH1{
zXKP?}{qp^d*AHszi~eZb<G#9M(S;fvmNxH6EJm?fGt1BT|JmFa{#ID-KZDYL20_s&
z1s@N)RrL66Y}@wkm-6L>nn^n|9)6kfpMhn2{i2`W?6&?WO)dQJ`9RR0^dB!vjbfH$
z98++Paec0Tl7;JtaBUI4rA3>~ll~d=kLceH{>P>JxW8-qrwZ<eS5LkCB|AH(%i8P=
zXPf#H<?hY`5!1s@Qsgy5YK|}e&(PFRclFlu<Mnd(hx*%!{lz+$i*@Y0(`IpZqsrv+
z&+q(HX7ulrj9~w><^1zwGuaRSXW&_vYgk<_#(h@ffd#XY4HH9{Bx_MYf#>>X_lzHF
zp4zhVQvIG+*ZtqEyY}k)i(U7B1vgcwwOR?T?+kCh+5P(O%kup$f8)KY{NJqqm>>Cp
zZT;$_k6vu$?o|(MIsbf#&|Qvom!EmgVDeLSIPu2FPh?K(iP!qGLUv8$RA4&7zj~T|
zf7VCo{axa#HZI+>&O;|gfveq;v7pGS;rNa}tG9f3f25ZCh<Sa|N0US6D#H_I9)EYY
zKTY|mQ}Jm5k$DfUKi1ZsYBg!y;*av%FP)w1Rk+Z0@%A%swn~bct(oI-x}kbSLeb6R
zRUi3TO-?>sz0}A^R47`!=i$Lh&f0zL`OY`yTwm?WGvSrqCf+q`+fE$(S^qb7b@zw6
zjobEL$+?ru_Vr2N@w;{IUhi66B}_sVmX(-qaC{c2!^KkII;H(bu)S8{zZ2{-Rr9t^
zTy1~jfslc{)mzodzwZ00yK28a(py_KFWJ~#%HID$=y92%^6LJNeeXQB>RO%hZZmW=
z<edL*@@H-S<NKFoEjF8#BWn6l`D~42{__Ls0Y}^~$fWc<`S|5;_SEe+`GVB#od2Bg
ztLj_jzO^)bdy#XgYU`(l6HlF){A*H59&OZnQ!}GyV{*2Km4S8PF*j?zsc#Sd-Zd}Q
zd#AB^!1j4JDkm{E70=sgf4S>?=F}Mv8xMZ@_ByJn=e_BYxZ;%M%<CUz&&w>hm!Ke1
zBJZ~~R!?QOuty}{HA&9v5-iUb$Uly}m+&S3{C|eEVbSj-Rq~e4`_C|cX^1!vn_1ob
zzg1G^EqV3-FaMijpFaQg;RoOQb!uE!RLu6v=dGCR-kW-5@h9(}M@}f8TC}D}{Ema*
ziLQI|^|U`l|KpSX!T#{RT!r()?{5!(m{Yq+wf>E4(mV0o{b>_SwjEu3Fl2)N?`67M
z8jku~tiRHKbM}#I`?rL5+GKw`eRP)U7Ae2=DpjG|fAPenUNL(S6}~IEy_|L1<^?yF
z<g&a~x%79_e}>ez%*XC;tUoH>8qb-M9qpU#IdPqi-jhicTV~(5es0UI?Ois{%oMa+
zEo2NWd9<I~Sf9y!V0=sT)<w^_zw>(ktgoN=?N8=(ow)d@R<p}fqCVYr{l5P4#y?W7
zt8TxP6Kc5U{lw-(%7pEq=|5-ml)quE*{^$N*0II5U-m2RNbME3WmHK15TL!}qkq@h
zQt#lUYjP%QzuUpLL?prR=_gA|)#wX7Ro9i5NgTa&Qp3W3w(|DnqW_jZ`5~V!Zob?8
z%sG`avYxAAm8#YpF@Erkq42n4*JFKQ@id8s^9+1XW?kQUWx?+D5=-f-)ur-(vyNOj
zz4Xu>#e*{Gcdl=An(ce%=N#8sovQ7JIF-2{g-@7l{PJWz$Ja`A2Z#R*4J&_L%@@7n
zWvcve_l;ZjZ=&-z?{RoKt5SrsxUWTc3*(97dkgABKdN4D&6}4Ie%8~=TI0d=miPVk
zZ`uzg-rLvwcan|qe+F*jZ|xuY+f2(QW%ouOF^IY2v9Nqf!`9pL=X0NSpM1Tif%9mk
z<lWGg#o@By4_jjPJzf8xdZyB^r&$(KRbD}XzwiGs{A>85I^bhi_Xp)eAO1K_a$a|E
z(M{D)t)VlQ^{E&&pVm-xJa6-Dz3H~i`#;)kw7q(IW6y~j8msuHpK#bID_VHm@qEnn
zeLrqp%NKYhE!f7LcQ_?|&O9sry$6+*Hmh!EcfU0MG|Psd$eZozvYVT)H(vj={-e6Z
zTAetxWlATD&E9MaFSoy*vz`Bq!G|Sx-%R?wd!B#tgWIwGk+JcS%x|KyHXXd2vuRhG
z-r;4+$GPsLJSkbP`H}stB!9!Q&GphZxBN<eUvH$iuOc)$YeSD&O8g7~J`QCDbBV9-
z<zAcB$$v1KtfWx#JLBBr(?yX}m^?a?8~CakTx-}L+e+4yu3b6RdrxvQ(;ee_Zf%|i
zGJo$hRQ?K|?Ppds_pQ40{Q8W4iXZ0pZTWV6k76y~()5De*COnaq8VyV6`XQ<tkBri
z_UZSVu+NOr0-n;l%%%N|Z-|}z*WUHB|JXkf|Mq!IU60r+B33P&B%Yn-USwBqWEZkN
z&hDG`=XJ-wo%*|U%l_WL8jbGo4cFFO|L*&DX_B0~f>3?6%tRyM2EVt@=X{)JUGSqm
z<CeS4@?8Jx-K)LLrqvrxF?+e#_5?%m#Ov0bzgB)*CmeBsYwOXcePZsPIc6Tv6gE+m
zF9^7O`Kg2(du3jMYwiy}jXjwUU)M`yF45T@xM7w|`$UzVKOY~jyz#v6iNW((2d?Dp
z@n4p=bNdwUyp)I15_gtc2H5=wlWSP<_}PKup%T^C3|EFb3mrQ6<!0E=1>3cfdRXcW
zL?(*Jg%_<8-N|M@rTLs|mFxba(o3$K&a?BFvg^I?Zwc80Z=FOx999sV=XvtEU9eL2
zuWnAY&Z{A5CLxNUl{P8z@y9l-FYQ%6yz%79ivFOkdlpk<dzHj&9^|@8pHy$KO5c`!
zcd50u^65;^`DuSNeyrSm<h#}K?yjHLKjrDmiJ7F`lI#fFqj#})mD~M2d!Fn6c>BB9
z^&!8=i&^$fkM?(a&U&bm|8;dm%ZA%0n0|iycGfOo+5^|=+RAfRo@9B#e?Gr+dc4Hf
z_*VC$|9CI!nbh;CKDvFr<mY{3z39^ur?Uz<7=;vtujXltd;V~KU;XCqN9|j7)wkGq
zKDcXjIP!9rtImc)$4<SvTO=2~L-$Ff)Qh}3o0XcxR8Ob8vEB0Y%$l2%mrUPt_5Ahv
zoAuvbeRw;+ZS6m?AG@8mwjE3TB=#+&dSczHKc~wkvgckpzP&tzMabg7ihZ_qC#%>y
zbkcux{#ML>DD>!7_K7VsR5Bmzm}JIn5+JS=ojGNjOP-_|kKP52^#@<SXSiR%9sKY9
z57!mm<>|&o%Ws~3_-Fco!X3s2>XX(sS@51%zt%o|{;lIj{z+YVbg7j4X0HB`eF=6^
zcjV1^Kc|H%$|Ps9YdJiT({8J%^NfpHyw>-<xBK<Y8qqaLALG9*pZ@4S!`7oK+@CpZ
z^7_On{5*Jv=iG;nHK#KC+4;EZ_w;YIf7kwTUK+b5s%>eJO8-gMIo5^+5*zL;dC>Fc
z#sdMb@1}QNZQm#OcY%#`V)>(rg|&HiA9nrA4CCm1W%RUW^-@Fkyx<9Zmn7>xP2Rft
ztO@_k=LZXST(7(EA?jSs?dlZQY56m6<fip&KGSNr^EP<*y9dot$N4#bUr4bD_WZ2;
zz4>ANF<JFTMmJtn#oW*Cjgj=^>EcSa_K)e^qnV~6lg@qq=h?bD^VE0$X#E{f@%a&p
zp~bc<rElFbzH9of%8Oy#+E>`XVas77leB*U|E<aYxE6o-{4M5(>-rk$ABL5=Yk&Ou
zXSwBgMtvn;pGu(2`9duVy9(#uD=yAx|2dnBQ~tEx@<+Y-VOzGEe;10`WB8MG>BJ>T
zi{DL(ndIlF@_gs|FUBt>KRlM$P`Y_eij1hsV(AyR?(QzTb@xAm{loi9zRNr)6j}LH
zBC^=a=vmp#sF!NLU!6;l`E%t@QIX~gyO=9NC;M3I^KbmK@OyV+miF;YwIBIsZ>{0|
z?NV{>amdG||N2+n-sq7Kt?^VZ`b_OfJ+BA32a<czE#$s_H$3^|`nmmE*0*ixUeDzD
zs8PcEcV+Iv&um2>w=7^uoFlvBspm;q_NYJo$L6dT>^`yV#i>(rf2Nm8->upHGvaUf
z!8^x!o6l>W+M@UTo!TzTNcESOpVze?2wFe;GvDDJo(IYMKdm{rZBy>+o@+-woaW4!
zuh`~z&W-c<`j?SHDcd~RCr|vc{!wPsE&1CQ?wl)bocEQj^4YpwPm8qXw1}O{K7ZuS
z>$am)?DeeWy;{~=t`zvTY{PTYi{ApZ3+I%qJ9OCTcY0f%=^Vq1l-tLBl4m_WzGD6I
zI>DD0Ue$5$?n^NIwt!#O(ZSy9=bOhyzvh}oFTME7y)8zQ=e6N9w%A0oJ+q>WpWR9M
z9KWpogXez+e(!a4*MIRoa(|{aJ-@bEJ%)FKM8L0fW5M^c{ye?1<>r^SZnb8`pQBG)
z6uMJ;D182@{R{JdsQMqY?r)!Ev(NmxZj^3#jMh_$qzGLFmSa7f50@sTBwk@!Rp441
zTh%2|m-oB&`19byr%Yolb(6k+b$@HS{c!({+sCa!>_zP}WZkND{a!hz<vzNazS&dg
zcFU2l1>VXUsu9h7&9AS#6tDl_xt2wDcSY3e2(5ycb!!dO|NeXym;F$>TGA%_LHOlI
zJ3pmf+-m8(k+rd};0)WF^_K51-`*Rv^@Hph-pNJh_VROg{oC^4c86kk`-`C6e%jOB
zei{Fme$-BIHJ{RvkSVu&W=-9)X;=KpzeaTjcJcoaRzJQ^Yr7oxhq>pb7FqPfo-R;Q
zU*}Tf^H}orG55mw1^*eg?SE7JTdT(RN2!hQ>s{&1`Lbn)%e5CYOum?+I_1GUyC0^1
z3M!<-Kk^@b>t`E(XjaR$&&Rykg6cj>s53Oq313#@^>^_;<3G-q#9cnxt<}A|L&9+K
zrw1hmlCJ*z&md5sW-U6$+2HV_n4ovJ>$UHHw2ywMFJK@c(-&D=;d$!(X1~8*%>OfF
z=>Jd;e{23>opo=q<A&yAx45QNeC6joqc{Jwq-yWVzc1x3Y<W{_9scal?9YWJMkj?U
z`I09}##t&CUR7~!bC<n(An{K4g@3$1o_?%<@NQYDeA}<L-<pl)&(xix;ycf=x;(t~
z^Q(*VljA+^|GOB^Sf6F;YyWN61-Jh7tr3YI*S9_Xv|jm@_}gi_<Ii<^o@77gP;@Vf
zapLc1@m6y>L%;92wE6ee{U`6A_?LbBQGL~|DEs+ezst{2RW_bp%B`M!@cf03zdpz0
z?SFXTvfk#!`CE6lZtqmEj#hYHpuCv*Gm|At`ik}I?5yj~{ImX{o|*rcf6MKP`3IvG
z#=rT`AoS9`w&&nEL3M_W+opVBoH?<d>-P!A&y(Z3m3Z&5#7a38Zurlz{q6C4e~wm(
z6@FjvZvXmM$7Hs=Ivl^}ce(q2hNgr6u3vJ@UYu<;t)FG0(oxkXRbI7=!eaDiDpt;A
z-e&YPIaK9&hD_M>zWUttx6U6c%GmZjUeI)Pw)eDsnTlI7bgp(e3p&rv2t0OYo5A06
z#mDRo_T(-+oT>C$DvD8L#%HcCI{v)#zpcKqX6t_jbB7PlmOc~S7JWr!Ui}q)x#LgI
z)}+}tZpsqq%`uY_%w4}}_j=_wpW^J!rAL(*Ms%8<y7hhDo%LtFzjZ$P&*0j@c%kfB
z`&LE2=l<*U>5cpko=>~}O+Ded>_u5#`j*RU7fsx$v*Fm9+D{_#*LIkFd^W#n&C`y@
zPvxct`Agsa=@v09jQMKe<)7ip{q+hi32w4{m3CoeUS{0!rRP`P*-{sg!#6`+`P2Hu
zAN;@l|3v?tWBTN3ophG8&dr0nF6D8X%`KaGGE$LU&^qN&MZ-it&U<Xfek}X^sI67F
zGWa~#e&)nk1~=`R%j&(}{jq%5-}TQt<v&A<`XM=mtFwG^%y#*Hc~SgQ$szco?$2<s
z>?sdl1(XzSjOj1cj{ayHv)cT~u~jQuik?L++it(H{^sMy-y8O4>bIHg7uv%VWs+`o
z{aUa<`i4EOysBGnSE#V@^w~u!r<R_``u1S4rRb05{|qdPe;EGus?qtlz5DC=t~%)}
zHM$S~I(u*Jve>FSarWseb7#tFh`E)1Qo1L5H(1FvAeue@ZQ}gGlj|SoS)VM}S(Y8n
z+q7c2Z{)IB)vIs4cF)~!>;HBg|C!g1i(Zv}3@Ds^*EDy_-g(#WT;6@zWN)$W{KLPl
zWSY+X<DXq9-Eiun&oXlsxt(FAf1)c6Mf<ne8DHHemGwz}ONLbMvuWPj&)iR%`yedI
zKRkqge$~J8liZjK)NNhsCF8eyUQYVEX`hx`hbr$Q>+@6hMO>VvvFQNww1guQ_{1$w
z<lW!$S6cn8VZ|Ebn@7E$&D|gT@jt^7*%uF9Bqi^f+<$WQe}=cq@5X=dJ%5|q;fMRj
zP4bLCy567u@Vqaz>sWf7a&zGM>FLFjKfNupPn+6S_own9Z@piTv71-!t&j<hZ`=dp
zpZ{lgdUEx>jaQatPoE=N;CaU}c87GOOaaF+>+r8{|1+?>_`6c&@6!Ja>8leTWp6Bg
zbe>b<%iP>^<}so@(%F|7nE$E?a6d@!*`%NK#cskLh80E6Em9Y6N&nBV?ev%WZ|{rS
z59HZYtT?ZAWN+vlTdVcg-@mE-H@WwR{M1VMx9lIP-Tp4D<9lt-wY4llWq*%nYRO^y
zw0$k_x6Qw!{lMa%iq7)pxVd}S&-zH@N<P~^)4<}@j;squ0;Vn%n^l(`{7YH7X=%q|
zEzzluRW8T*{FAY%eso^4!uUw|Kc4G3_M5-PYCVe9zFleLV{Y~?c_QNh6*hV8dZ7u2
zo3u}S^%t+`4`GRk*`@H9>qz0t`99a*y8jVd{h+M<!F&0N>TeyFa;NflyUZ$ECd?%t
zu(89F=LSRS)2%#{3{~c<+P?nq&0ffvC*@$KMA8n{zQXud>g_Y%^4!*1JmX^P&TFeT
zN11+KYt#Q(_^8fo!KrCmi+*h`^Y=IT>i<sL-{h0!=Y45;OTOAqO_gZ;c2?!q)F&;Q
z4SppgEfU^5XVzaSz7v0@t(snxu%O;*X7rz~HJ5T9NCj$ItnOKtdg|We^>;dwZyq!k
z+snss_Du4Z)oayN!<YMe9ow4_##jIJ*>(FLg0dNJ%Pa%@FN9C^t>1EGf5v}?x5t-8
z>A#w?_Fnw&%<u7UzW=WI<NbI3KFPa(BzJ%K&(Ky=`cN`oK6vXToABj-_i^hw`NciD
z(eAV_IdzE>N4jdWrta?N=Woe>oA6`fZ{Ld7|HSx@&VI3O-Qq@_x4LT;qP@ALEk19$
zcJ3m#ioi;hx2MI__0AObn|@f|RFnGnzVMA7#s{NZ->qMrRn%SWt*s$f-T5@Z!{f0-
zWFKSl%@DC95h2^vkC(qG{q0wG)_a-#@qCu7I`RHUy=_HtwR0cOd>n9I>SVUb$4&v+
zV`d3ISXvc??5gI)PI_3(pD{%_Zt1<(GrwonY|YHR_WahG^Bo&^rf=T!w7qrmW!IbL
zPiyrzO4r@`&#-k<jaq!e#~RO%Qa@}J%?^8sFLBcS?f8uKxBn#e(@!PORM+|Lwu}1N
z$D1B<S<3x#UfMQex5Roi_a2)Ro?{2Onr1LRvDagG%n*J}j^%I9KaC&fkJQO-x|;u`
zo<F1NeoIbGb@?M%ulJ`fed*`V67m$?du_2|h@r3Yk&~jU-c1TuP)_i;_-lIie})J1
ze)YH7>1N*Ixo3aTl)vrzJxPDb{YSL5D{p&tI~hqx)hkz@R6QM&+jQ@eWt8_!72g&{
z1;32+nPPlJi#?ASO?`4Dd3Rjbxwv@Y7c;+z?(pyY7|@#IG&vwk>wT`xx2{*;Vk1A<
zUhmzf{-5EHWxCng)hCNnMc02zG4xgPI-Mq6(ZC*-+GFsudcA|gqrICS?SISqq5atY
zP3?#Io9u)>1YD{KeyBY+>T%rl*(Y>YO5c<?vf_o$xpr;kH49yQrIt8OSE&kr>-yXD
z55oufL-tHH)qkh&iCj~$`e2>G{wrHDZ^v)y_P?TAYOAqwmN8GD3rmq(<Q1cLu?ya%
z=B(HKX#6ex!qY4D>HTf;T)AoSVl|;3>f5*adcISeR8ha>k7upw9=?s!j+lLLnf;{C
zCRKE{bzgR$<i5zR5JO(mOy4(;Pd!+&^xT%JtgX>EzGQwlR@_oC$7D`)VN2dyy;QTE
zm2tao7eA_avup>$5rz{g%vT!cOt5||bA3yV{@-PGnl&On%0Dtc)NgpdR(H$!&Ra22
zZrf!xtl4}zliRB>@9C98XEvXd-Vy%yb^>dT#c%hc^S6q>IsYN~Sk?VEcOT4eiWB)5
zf4G<L)py7JS4vOFRIHEMxv?@=?P_?0+u6xmFPTi+=*k)KFyvOU?lyaa58M$i=6~?s
z-|=hSVkz$4;z#kVUy=*A^Ce%}a_m~_ts8eY>v%KN7QgfsooC}JvBppIlV8ct;KFi0
zuS=P6=d8T$&ARt3(x2T%&M2F^C+5pTyK41{n~`hFcbDx-KYpKgpHz+akDHGpYM4Jv
zKm4n|^Xu;mpH<tY=Y1EJxcvUaLAD!@f*g!IPD-d~CU~%|KPun8&*q2nquuwJYT_>F
z|1n?ta^uhKVo^Q1EFX`BY}yz+;nYFTaHkVDtRo&ges{lDPWxl~o7@lF2mdo{wm)or
zdq2;Q#m8rv&hOo)kR?^K=~nz1Q>C{HUo?G^6w6q<CO0`VPpNbA*?F#I)^V<-e;1VQ
zt^d~dpP?zYM)%|Ne*L`Cda)P#46gr^zWu6v)0XeyQn}COnR06^o4Z-%ep=DS#V4YC
zcj_G3EPPf@`^fLC(4EO&t0oot$K{I5nx7Yb>dp4eJ?mF@eOdXVe7aTfA-^U2Hgl{z
z{WIs*uGqZEJD<#x_}gBm_u5`yYd?F%tM{%S+-5%PwfDQa$MF$weL&xR_e*O{BZ8`p
z3yZAI7xb}&ov=BUa9}EPX=VRg!{25<9)FAZvA6g`^U+PWUS0k>>wLiF_gmVtXXkny
z4-C3iE;d8@{yD7^8y{?+v6L}qwfX({4-xTQQ5Jt!Z<TM@#~sq``62h|y2WdLCh%{q
z==`!fI@x4T(KV@<uxk^{>H<|BGtBz-pP@ybr?g(C?za7AzvlYoX6x%eJbs|wUK4HF
zU74l#-eh(3%Qb6fE=zH-&)K=9Aa<(zG$W^H`|^2@MYihb>Rgw&)bjFF%(QJ6gZ#c%
z|2^qh>brl%{I;LISywmhF{=6UT;yr}v%FW=wsk)*ewNQ!cdUNXvhI)ko`0v>+0-~*
zFS*}S_4Vw!S>JAn&CV`gSWzExWg_pi`Kx2j&Rn<rzDj2CH>K5#6GNsRpHWx$!}Y`F
zhszJwvsdhX{Qj-!V*9Qy?>Q?b?h#!2BkkC)T07h1BO7!!-_yPNNAua?WjCT-QYRc+
z=G~Us%{*oDtv~9ED}=vk{pgr4|DPe_KZE3p`vP?)nc<VOzQqZBIC}ou+@<?F)bASZ
z`^dMZYuiU1bK|Y2A`Zx9s&JHV(qx|acYdALzq9eeb!@NWH=DohU7u|y{P~Z+e$SWr
z(h&~RvvXI*M(NJ|aW&^^U3PRUTiQf%!D+?2WILYxdS-cXWu#xJrk!8f)OqjcUiQ>1
zx^?Q+yX#N$JU4H$ObhoG_iK6SBs$%Eb9Z@^>gjXu({As6c{`SW=KhR+=^ExA6IZ{u
zr}2aTf#*Njle%+WuYJkA(roE6-CKTk=k;dmJj@f)R5&?HGt|kuQ9^s?{b#Wb=C|G^
zGsu5kQ~YMee}<c@U&h}`|5pDo{>|}^(<6RZKYG2|*Dcoi#H`x^8<MVVzZO1G=iByz
zywf_xZU^2bd2L9&bI^JFsas$6xgH5x@XSKp=F8*LPyUsDx3Jn#@gUJkxM+FG<=nl}
zyRN?ezI%TEvw)+aXVtw0echI=T(MgF=C=#}JP~(ZTb-FTcTZYcB<tK&>myYsG&ud<
zoZDOb`*VC=-HrVMi~mlmPtR3<z~6Gp^O0_qY4&l4Bc9JT=Ik>n^EAm<Zm55Jk0tnU
z*TuiH>O>DOsfoChYwG6GeQ2Bfty@#hEp&=8i9S)&lVo&OX-+-+<M?UuTb>`?8~*71
z(fa~5zMXw9=SA1*34edsX|`G<&he+9qVmSx4vXaYX+LHkwGTbyHrKwp{&!XQ=Kl=a
z!&X13+x~Dq&vDVNDX;WP&Gx@N@iPB+RrH_pQ@&PTy|Cr;!k0nDr*(R+UuT_tX2%Z3
zX+biRKbbkp$n8nDT(7@>>yAnm!-i8;41Vl>e;Z!LGDdFoeyEbL&+TgHbC!Aa!d>6}
zIV<>XT{~Oao3W<s{MM=U9h+-bEnb<H+`#l?a!*zGrzab=dP=YE-@Ex&)|91TQ91jb
zRLD(z@HgtO^AeZU33+dJ{621X->>%7)$a{kZz_~;a(Kz1Q?^0%fXq|JbG8g@`*z#O
zebn9*o$0;&<tn>3QFFhTU7Bja@KZ~r!1#Ja@a3Lsb?YDc3;if#+xgM8|K<Y!S>D~5
zlQM!cS@KhEo#J?6tPp3J7#-f0=qGorWLE#;KfW4CABtBj<T|-Obp7(;=l$$IdQI+B
z)E^VF2{8D3=1sYd%44p(^<|YWPtCh=&icZ(Z?pcS$%Tbvnln#TjV$nd*<^WssrRG#
zoX%^a_k3V{e#~fhNX>Bzg}#~J&s(gw{_t+axB8Fj`-8vFaJp;Yskk`jTk_?Lo2;Zh
zC7TA>T(rG$b*|=btKB8(rR$?-Y)!5_c3Aq*eGSD6a~dk&RK7efdc?74VrIJA?i#g}
zp4@*z?Hc~F42j3AYPBzXm5zR$ZLb{Y-X^<r@y>wQaF)CmmJISUN}1<JeQxi1aQ<8L
zl-nxjLL=m-SSaV8;WIN&WBK-=>(Z2Wy{}GByeVOIs{5{)<+D561$Z|Zs-(}K{(3@H
z`25;6N7X)f@V34F^D(Y-{h4oE-^vR`(_`25_&vDGq40&_`+Aj$W+xlm_!a(U-#K*p
z?rw`z?i1VVYi;ixoz9}qz}Qn;zckI{{UkS5Z-vCub3#4kZ*7}0>CQEciO+tzJwEWp
zIIwnK;Gx|N_P0#qSvOgAO;GqEdQxj@^d8<Rf&Z`kTeCm?e)}!^!}Hsu)EoE6={{?A
z+u~iU&8lDW+uY{JYB9$9%KZNsYOea<vU6Tsp~l}?<$ZM7k2cHcUW)U%OS8*%?A)fk
zGjxMp!S8a-xI5RMK7X_SKLcye-&u8LKiX`C!?*6Zq?dB#U5UTZw^w%`bXgoUw48Tm
zL4?}vy^#kJcWCFT=hp4|vC9AE`6G40{h>ehmoNLzkl>lCdv?in@xUXsQV|hmkyH4m
zEPQ_9*?!G~!K>Yc#e;19uWqboU;n6ncKh4H5ATD1M1S-@vWxX@>xwP4K@T6!RGxO_
z)LX@g^Xq38@8CCRiWIQ?*)C!F*>=jhjpmb=$HW*XKWnQ{31GK4(#u@uw11ua56%65
zgsmU4_uEvj%a)V+XnMP1^${tt`Qok9EDqg})Vcd?)}x0?xzlw^Gqu=sPCPz!>Oo`w
zvH7={|8bsPUSsufegFG^0<U+?+xX%B!FqoEKN+U4XCxL~-&K7+=T=Ow)S=nScW#-V
zt(4biYRS&9{g>;*{|sG{dFt$bQ@zfa>aP8^uiNeNt2bN2GjIG8fBc_;d$VZoTrZQw
z7AId`d|mrC|JCuQJEp!>*R>JfxRF^a=XnlO^%hU1e_LM9jdoEva=qYqpZlyR<^K#5
zL$%+ozg7NC`s06wH&Z_(AJ{Ku`kz54;??AewMXYIU3Tl(Nxklsz6qulxoP#LM|Qt8
zI{MAUnXx6M;Pl6!itT|098Y#t-0qqCgy&yP_?t+#w2fE7)LA3Fq*mX2H+O#M)%uA)
zmen6V&lr6pS>u$^#h0p^-@e;_rrqU=jp^zv!P~rXClqtnoG#|iyI=F*_v5a=3jZ0J
z>MQCb>$B%G$GMlvY*c-FWP*x=)mv}NPq&X1Px805Dn47oxx8Z5_rQoPZ#|AyW=q`I
z_*1~+xUG1x+T+RRb$n}Y|7T$Nec_L}{M&^O+Ar@hUvjW)@*S`1o1=Avj=65xY4%=f
zMP+2fs?{l?x_44)j(3V0dMh7OySjJIpM9t8x)1l5u|Bs5m&;x?;okYU)ED($<pyhX
zE*nbPd^w&U_4&S7jOVxNT&ugqx=#*@mglnQpL2Zu=|OShBwOuEUo-k|e!Q<Bd*u83
zIQ2)ncf2j#YxgM0>Clg`z_w(KoE6E(6$@(F3eRc(DLr!8+ogWx73mwF?fb)v_bo17
z?&Q%IVdQsza!$Rv;_kUe*q9f*zkPI{ctx)1e4*Pm2N!pGPB?a;#Pz$5-44t1mMq~5
zYsxFv{fR8)In|oD-OXp)oy|gi9{=9i#e6?o7SHm>_V3(<_p;3mChz%K_@322&$#jW
ztsRy6YI*x){Z;-h{km-Hh8>&l*<YNh!o5R7c>XN0bQ^}&O5O=K4}M*L>io^(hkN!J
z{Mh@*UM|*Y^WWao(u9u>Y<9}5d@duu`@rK_zu$kG`%%aKhPc$1Ty2)So!vHxb3=|l
zU6p&|VXaqN-0s;H>zu!peNdf#_&>wVYxzR98*;<LTJD^?SMB-C<;etN32V1&2f6qy
zEzgz)EkEsh^HsWa)bS(#8N|~*Zf~=RuU%ci_wBn&8E@YEe5EF{8FwEmnkNe>&2vy;
zD6*1cKN!Eo{H^`^KLPoC6_1Zewf=3rx@h(48A^&bZ-y*v6ICyZer6rrP~7#4J@k^&
zl`E%Ki!?dU@l^X}@nV_FVSARM$MXz)i=yHW9p83I|LgDSvZhz%N=)IbLIOuq<TVd;
zb{6(=9C&hlar=rXIo~a_gUc^Gw-Np@`w{Q<x4O$;U%z#3{pyUWxxG(>j#gKj9FlI{
zc(`?1Qs)jmwj(UfP1e_M{p0_k`EdHjy-TiNJfQpbz@#^OHY_%pmiT+`C54#>mA^ad
z_EkNQ@3-Uocil{mYhHZ2y@<)`-+!HsOxb>AfyeB(t_C9KpP8hpT6f%GjN^Q)5WXRM
z|CX}-E4a_b-9Px<F#6EE6zB8q(;Sw+YYkW!(Kj>s?W}isi?e4h?2U|#mA~M-{b+vc
zJ=MQcxBh2nD;KCVdvtY;mvio}@Xw*|bXBu!PFds}-FwTDnV}-U;SbZ~gSV!2ukc*;
zLSN>ox!4rh)e=e0LJ^M@QYI~D_&DeKoQmvkw|@Aqim>Znt+$@V|FEm-lu1Xod<dMR
z+@4T$WI~8gaoqgHb=T#YO8+KBeA#j>|JeoyG4ai%T?)4yJg(RnKJ;KO7U!xsA-Y6W
zwd|Z-Y;6CEI(hFEcMm^*CHB<y@aEV<H76ccEc@BhVcz0duC(t7!z53Y>$S`N$nD&{
z^LN(Dh_s0eg~A>Y+qsS|{LHCm_c{HkrAorb6Z*%_bJf^y`*8P)oaoN0s@E^B7qOqt
zu)R-d<D`c*XD>Z%KV{s?&Teu3Qa%5l%8%xc^gG^e$=1mI(p;@|{ArZaS!JFE$0-{p
zPwd~ds@6kU^k~O1vo&SG3s-hO;uout{X1*Re}?UU(ms~1n`x}};>(Vk@A6Z_Y&deK
ze_y{_zH*9&<#T4ypQ^uo{xckO|EFFPmc5?kkA`uD|DoO)H=Gs!UDy-n_PV>(es_?S
zJKrTM<LzF5LH)XW^#?6#3_pB6{7?4p#y#ALnKtFuF1+}s)5fVDK0WAG)2**d{6eM#
z^R%|htA+R3&pQ6YwQz;|w|=g>y)M2vc?sQG>TZ&DE+_c7jo3cjGv0dBL(%_q{EPUD
zn-856o5nV+()#M!>+|kxm~>a;ZRxI}ebche{8RY&{z#m1n^t8kckq(0e!8E%tn+`E
z>?@C&=g=d#ZGp5Uqdym;<%6<6T0soVvL~45{hRky^=R+YrEhlSUdo-Orgi!{`zx!z
zt|fIcol5iSZR;y$JKVi(dH(s)`l8?7ZXfNt4NWWaHS>ysc591F5K-R9B7fqlyJb>g
z+}u?!@87!i%=q7y+H2|ye_fyDEpx%LFZI^xD^j~cE8APwEPdsCX;bN6X1|YS6U{nT
zEvQgG_#}nRNizCFf_AjsRo1_!Ze?B<&p&je_2d^Wqk6}fpVOqKW(hBij5G2z`E9!X
zLDdYatD4tZz4R{mn*6qYQ5XFuc+0fI$9HYr+@R9+bn3U-J0Bcas`#|eJULdC&>#Hc
zy6ej9aH(&L>sOsAm!9c!#PFQ?q>5M7pCgSne)`W)QRMLQjs4R4*`>;U#*>zQxO@BZ
z!hgLFLtXu}wjWKck6Y%Q(6#EY<=e0)Dop(TA6G5)E70!Rl2;`l)819geBD%PPO+aw
zo`03__Z+jWQfnC5MZdZqtX=zXrUE<b^0JdJFYu&<pH>knunNC!&njek;cYXM&m>FB
z{|wcVq91K)-ZpHXWxrrwugRPrQ%x@k{kinlf8##Rx-(Vw-F1qu>ZNSLRf03EVxJ`4
zI&Yb|UhJ0Se})>aiBA<04zuh1WMSBE{yP87USmnM9dkWyY}%dh=|&LaNtT|%dHh~K
zPJhds<@}&uIy28ML;bS82=j@^<Y{+1<i8!MW7>E4@9fa;Sx@~!92z?g%I}%5u3m=k
zKf|eAMKLk26Ee@`r%b<76W;YR>R_RsSxe|zv;Pbq^sB$hKlGP;xlbTp?0!YlOP!J%
zI&tqFJw14n>$d%j_|`OeP32Z~nc~|ARsZhWpPFy~=KM#tvi#k9qT+Me7yN8tNWQ;J
zd(-Y{+v;O+3O|yoW=cI>`gL~ui_?WX-F+4ZAIok1b26^N_~^8hCEtwMdRPk<81mSK
zv1qDWZ;oGAFkSvp(Jg*%FU_@I{r_D2^Zn=^*5<Q@+`=7mCU4!6S(iEg^76L*S^FFB
zncmENc)mlb^h}T0l5is(p5re~3OCv{%$xc~uws(O<LH@}&u>%yo4cDc_(p^AkB9x2
zFaPA65F2$S_Z{<+j)Ks}ApQ%VwD0W``ghS@aG&VCW4FYXn*=Z!H95_H)KYD=;q9^P
zuRfEHMuqCi<XTrA&)@w|=FfK94|!V@-x~e8p1ow+e+K&>^2Wca_wU(!Em!1tr;^M(
z14p~P2iIHdyVPZ9AoO_qif`wuer$ed|90`>ALk?<f7IPSxnQC5o#>i%OWW^F;@`bt
z-V3jfjqzD8_bF_@rq~y#Q_MNNq}au=&%siqN<Q$<>Tfxlh5fdQM)T`s>^uHo=02{i
zT<7|<WH!04`6Kvu(VzSe$^pAJUb@8VfB4tF<f~h>zkV+H{Uvehk&PP?CK>%%6e=l`
z&&Lq;{q_1A*N#7aQ&{8vw<k_|F4vnW`!0Nq-m-nyg*=b*6IFWmpWRkaU-Y<8;uiNp
zX*-Q8IbshcZx`ab+rQxLkMPP5`j6-L?@#ydn6}UUgUl(lj>>Se>nwlgeY)BIUN=vq
zC~&9N0b%JsukXnF?Ty;BSk>`X*`?o=@xOL`x$wCl<mKffT2n<IU)9yWcl+kg+t;4o
z_{Z~~p~>dog`%5hm;LCE`tYqkUt28H^IiTa?b6td2RS4xkDsgC`h~w`|AUTya`ili
z^B=G8G|&I$>u^fk^RiNV`P^J3QQdOg<IF5i6wWWL+xSQ9$NmTB`|A0&-0$4SFm<-y
zmB8tzCjTv6^Rdu$$phivH==i(DA9W5VY$Be@(r`e2JgSk@c-vDYk&8T<45H*4?jw8
zSs&<l^wpH)U7s`eANhCjp*`=8tbKCxjCsB1dS=|Nww20yS!v6EYCX??hJy<BDZQc$
zA6f1xU!Rk#mh1hd>&AbEv{M#^Kd<lmk^PVJ>2IMQekN_#AI_UtyM6Aj8PfwN%n!O=
z<T?M?zFW7J&njf#34gZZy};)){vS6MXKy$5eis(s_=}IfaZ{H3!NZRAw^#1pJFoQN
z{C0WXJ%V}L_VIkUH+k`~`K38)avw0i++<K6^+jaQZso+Or}_+cJpQz5(+c%@Q&qf-
zC&#PDi-xU!wo>i>Y`a-gxk|1sSkt*9cn4o5<LZrv*6hv7S7tVCT%B6+E_Y49{remG
z?%k10D|;Abaj-o3jfimkf$vA>cLe<j`mz2|edo>z{}~Rsu8GfD5hGBu`t(e-mgHMv
zj(s<t?O%2OhgSPr^Cf?zesJ0!(v^Ci-dU&MtU7Cz{JrSRNbc&Q8&7MF+NZaC)qC2Y
z)#Lu@JMZ<@2YN1n8t2U39*~<`uNZ&xKZDym`IW7Q!p^)p{-ampm)rNc-j|>3C)!QC
z`PRlaD>Btmzc{jL@AQ+|pKUhkZ&mMIJIRx4+qKl-E9(k8UmvS2jNi8ZgY#Yg$W4D2
z{0Utsdq4GxjX~;M|FkW8`%nI7xcG^2eogpO8#%QP&s+l49$4HGb$>nUU*~^@2fh2*
zqy0XZchzT9pYYLsq#5jbIpp)M+kO*oJxhGK@8y}ef1b+C@rx@S&$+bpa70H~@6NZP
z&u+(0o&8gOPKETOtMdf|*1DBH-CZ{=`*UW^`I}|uXC8RzFWu_3m^WO=Y;x8y#v})Z
zFDKW3KA5@iUxWY7AD~;8Ph9=-?1$}#{|twMPIXrnuDkn6tM~h!?rcuoo5#1$ES8$T
zw%+u@jVSY9r%yb7eUP>P$<F7m<BRJLde&#A{9S6F<(nRSF^^}S%!g}l`P~oxl#|Zn
zzoo~Xb0?-P!9C)Vk@myW*<lseB9lto*;D#Ixs^S(NIPJ0$GG{J<IDJ0?9G47!!;k?
zF_YRiIeX^1J7-Vb*S`7l&VL5On!HCIX?t9w*0NR{yBJq?=|6+{i=Z9bx3_lm9$9?V
z@%ZbmJ`>(kTo-n4+tTIcy35nUHT6@`t0VJ5Hs0=CJjp@XhCfim$w@SKt<U-%v$tm_
zc^>52U3koTo?G!b_E%YpHvag%So_o7W4%VN;*uo4G0*DF(Q6j{bbI~6byF98Tr+9<
zw#^kc<}~s!Iw&t=ko;5p<GSZJ|L&ZH98()*zfJp<@=d-?d+wv4SNlFMlkha%{JURo
z@0PjB+xtRO?w4mU9uLS9o`2eOw{(Q-C*6l(>Wdbt{7PrqZtBljaq5|c+n!C)&6Szk
z++z<e5o%gxR&Md&amM=yaVyn#oknL1mEQU6h!OC+e4*^+d5bTv<5IK_MRZN8RsJ<^
z&WBLtwq;MHwNL+N$hG&VF@98A{w?@#_u4v*itLcdo*$1N>)z{h?0k6dp6<EYhpbFG
z^Q&_6IL`=WO+T7sd@RT@hwWH+z$1H^S8--P0{=6xoW5G(-+f(tW%WnlV`g!RALh+o
zb=vr@-rPku_kZhKEn}{8**UjRS$C7!RpE{I7{l+~cd5H9zvWfkDLaWDsvmwIh-3V)
z_CG_{AM+2J51X6C>0E!SdUf5J@Swg&k<$*H%iT7?^VzYK>^8l3XP6Z^w*Gkgc)j=^
z|G!KADaL01XArh=EPqrl{A1#y4by%HOg}p-e#?&SodpZUET)_)a~E<KN_pdY^8C}E
zY)t#Cv<;3pI?23SJoWOFDJegNwq5je`(9r4d-crCzl3eieAt;YE!L@M%1;qXp-nL-
zi_PzDFWd8WUHdEhKcd1%ex)D2%l=UQ&Gd)LPv;6BoF}^X`Vt@Q^QK!TJ1&X#I8}7<
zmh#;@YjQXu--)>%)-XNv@A`e=XCMAEykY-sQp0)qQ}5azUiP9{>p0mW#J)XvDPZwW
z<C1rG_XOilrzUPQVwCgz&%hdUT^V%TK~qiSj?VqX3-8~);oely?|ms}@hw|}7k{{}
z|7U2Ln8EolzFVHBPE=?2^h5F7HiC=o*vd}muFF$7zw`5ziC@;m$(+hO))vY&>*Vs#
zpW9{cFP^o1(VLQwe8nC0w>EWe>h868y(s+Uv$yr1jrN(n+V)TSKSNXOAF0dX)34Y>
zf8>s1tYkF#7Hj>V!72aT-s*3Uf3&WyJ9mG(f1{~Avr2sa56_4Fj8W0f`oGqjdu|e6
zCVoIQ%yp;65vEfz8(11+mcMm;FxUQwJyU&3e#@?GOR4ou%XgP>oj7yP;QAuPZ@)G;
zU!NGe{%z$4?nnM_%l|X5TKu^CV1Co1>w(vD^7ZxBl)QWwbT9kKMV*r0Vw*O8W?Hg6
zCpoRpyd;e4$*x9k-IZ-~GtP^=^}Dgs>vvS>r11X?+w)4FzZT^&dDs-ccQ41%Yp?kH
zv@gECd|~0o^$*?Ol>ZK?V1C5@*7&#5tEla*Ho*^9d(RiIn0+AX*P4sEQ?~2eYJJvQ
zH+#>GN7I6p9byk@YvnZT;`+3{!%B7S_CLbh57#%x9*O@j>rdcE+c&rUBo}VFeAy{2
zc+Q`;80NRJWs^TxKeB)0|H1r`eTRKUtm+@#NBcYH$xl9TPwGPc(%w=@9aHWZsn@<{
zcURnU&d+AuBj}iSY15YNe5W_)9nY8hyY!FygWTe8!9SQk96t2x?$)R0rZ1>i_dB}n
zT*{<u?*9w|*_uTg&#m(8Drqx1D9yvj@@?ImeN&!?^-1$bg=(zY_h$aycdLTRp2Z6V
zZ}NRzE1fHmq<!&l@XG!pmwR=5R#v~xeYSPGr)TVo68jIK+P}Ns|IpZfv{ofKZ|>^I
z%xNEcY9`#yxK-rRe1my{?cdk8Y;+f$spI)~eE#Mo8`6V5K0m_#qq$hb)tlGqd*s&3
zCM#u_C+L+tnU`vR*X_&N^&Ozgt{%*h-x{|*|94Q`g<Jc3w)D%yMMStiy3dhem9%x+
z&J_{S?irV(Ui0nNS+uW7;!@D1B^y_q`dRen`1AEVb=U8yUir_ESI__Nrk&x3H{ov|
zzV*8G?6Sk<rDosCwn^pg*>)>$X0Gz$p9N8?6?r#^7b?FAR=awd*IBsZbVj1GQ{Xf?
zsn2?$n#X201?HVxc6++fWsldZw}u~2y}@&8U82^-`p7A{xw+gcJ$LKsXGdQzUHN(X
z+ntZ@#viZWvi?}SMD%>4Xa5<F{L?VI%lBCJ?b)q69$#^3D1V{-E%;GebNNU1e_W!!
z9qP{R6Yfp9y7Y(a$_i$;?aXS~w_~~8cYCJ<Ip`|wS)k`uHovA$E#~Dtg)232|Mafe
z%y_rXlzsmsO=qhu{Uv#G3}Tn8HWoM_;5GS#dVlrD<wxy1>jmsH?z(@QyZ5Tv<vpn@
zvmVD}-xaddIlA}JBA5Og$)_1tgG?RPypt?izcaG&OYxkpr5Tr&`!0R+@|5<U@a3nM
zr=Ixt`Ot}qQ*BaftJdl6yc!gCf7&Jg@V)CxcK?(s{*e8x;3NN0>Dv5bvwr(NSl@n6
zX!Er1k=NI+QID=Ra*U4V&Q4Oy?sa?jWQoAd<DHB;=fpWSRrR<0XLvAs{x<U?`OH6p
zkJkx&c)Is|drjuz=vVO{CLXTMRqI{6^gzn4e^+)^D*m>aRVKM^(XBIOZ#zyrS@moC
zvHkt`<^MBep2$h~yKs;Dsvom%drv;QdE34U#qC{T62`iFrvx~qX?guz)2k5Vw5ctj
zX6<b64}HygGfPXq*&01dG})G4sC3&`<Cw~%JNu`qG-oK@<*r%Ke86<gXPIk(&w_hW
z?p-VLth7G3?cT1{8B@3CpZ^xAqc&@yrs{f=rJ3f{ucn*iUcMZ!H2-bwdinnPEn!<9
z>9<|`?EBEx=)T{FZ_TA9b%C>eFXk-X)KtbYsqVtZ(^e0dl&3PYCb-t@U0P$gy}sK@
zy}2}d>Ae?vdfRwbIc?&M5We%adA*NJ`TF|n`;05pJ;R#rh3%iRQeykl@-o)*@-g8p
zFJ|5N$lh&}`cW+R)io=dumU{?#dSBF=JY%6nV)}b=jw}Vc~o^+O;1Z7)80EdeE%xH
z=cYQPT047VPA%EFG;{mSI9=^3vt9G<uB~|V`*8fG`TcdqXN~k$Kfde!Tk7l*2~~OP
z2@@x<Pg%3K;cnL-<&R6Q7rruzl$=wap4TAzduN#Sx9vf)CoRAK*&kD%d-^}a4<|d(
z8iOCM87(K%7oS`o>-KS)+q91}AL}jNAgJ+N#>{%oKU;tH+qd7Gp4;=P$ZCRt-^HKT
zKQHf!T(x%QZ;d~Of6M+eoDA`Qv7YDCbZ4D!{qFXc|1)eWvRdCJ#bQ4BWMSPh3*E_Q
zX3j`wm{72XDWZ?PKI`p2wTkOe7v4^&2s%|gU#Bu$Jj|>9f=lz$?Y)P#-Rx>gox;=n
zdrN||)ZGuC{FnWxxD(mR*BZre${}<9lV+PwjJ%59;;Y_%(NMfta%Dri;4O#Ncd7;R
zlEoxv{A^%uSD83x;=JXvzV5Mq;NG=R=TQE%pdYc5H%0HZ`(2fzXYg36!m68V@tMUR
zwYQe<_q!ez8~w?q`(gaSA9V^U;lJYACcL#vxqoZ2>87dYj8(c^=6scAEPH!U$L`?f
zAK9y4UObrlFj`wvZ();l{H9Fv%cfiZJd3|)wQi}JZdyd2kVVXK;}5TPiXN}158k}v
z!|WeR4qZH4)wt)*N09`Uc;g>e!)zA_nQh*jF!^ZiAN`M0Ti1Ly7wX>Kt&yw3bZ1({
ztRTmU*UVVC=Fj-F)AFQE_^W`2H99Yjg__PUUH)Lp_1fzBvy&>0OT7y5vU^nR_33N)
z-Y;9H?)6vtnBP9xW8W;tyxcIekR976skbhe@Mpo#JjQO_PkYkY%wL%8di?CX?2GQ)
zs$V?`&%zHUGcX@N`#yf*e1U(873q(~TORD{v$Ws(CF$apP0TY(_U={<w>=``Eo_)6
z8nCRa<@lj_s@*j~(f9SFbT4kSHCI%a`0~X03)erdmnnFC+L+~~wp03h8|fqV@uz=g
z*A!lk{g<wtyXxKz@5Iu~qHiyL@JsE^Nxc8vWr|9&<+0)`ALCt4KRC}CQ^VN(=;!v`
zOxA7NcW>VoF-vrkce99_?vb4EV`ZDu?Mw9h>QYiBevwo@?D>SrStGE4@7-Ld$LlPA
zUEllTc-)rlf2aQ8eXv_2Ot`diUDk9zPPxo2d#bBbQ|&dmpYM!G=2?8Xf70BD;8}j=
z&vwPdrC)Ut&2rT^b<*VitT#1(A7#&H&zh`zZhoz$mfL$fCJ*JtCW+@it7d(wzU%JN
zf41x1y<jzupXV;{`xhBh9xcCSRl0S>RwJEBrspEd`4&sw?f1E^T)J5G{I978SSB|W
z&f8nDK5govHM7lTZ~opV`*d2^9fsh`J^vY^if--c?b~|w@M2BXe%|-D|NLi|pQ*Z)
zu~Fe+Rms6Wzr)?F-l=!Q@}<A&ZYaJkb3L8CIm$!GZE|KROEdSAloFHk{4ZCpcx|?=
zqe$Z2gkM^J?zelrdAC*7+(_c)w|5o~zMM@A7I^fgZ;h>8YT5b!SASPOSbnVjhl=|#
z!Tij}t9i9OKB@$`>fSwbQFqBIg9z(AJRg2un(05|&6($!76BGN<l{f;H|OoieYE6<
z!TG|69A94~UDnN8UcI_I+dAUI_4?ej^HWP+L@`gh#nrQ}z+U@5L#Dn^#q{I*<!j>C
z{;~X!yS!~-Uq&I@<X*4S0d3L+8)IBGXWHF(VldTplh;Op1shXMe@*_+z_Q~<rTAO*
zkMj>af3$CT;_A$>4@dOVc1$omwQUZk+2$QCF0)c68GkFByhSD@ZI4%oqEq*ZrL|VC
z>N>SPKYO}uuK!EzN5>D`=Xx2>T*v?8bbMd7^n1=|n_Pk1RYCu*yw7f``#x>KoXH1Y
zzNnw+-(7Y7$bSaL8o7_x55`u#e7nXpzWG0cME?4mu49MNFWY#QnB1J%p~n?{_w*KR
z2ABB;Dm?Xx`?u>iZ_V$n-?041d)6OvKi_WU-p_k~+1zrjnR5418jlny+E=Vka2NeE
zy(Z@G>N?39mk%oQEPmX6$n?$X`eEzy{C9bEj(@vdc0Dn%*67Sp`-{tV1gS`z@=#8m
zRPp;hmuC2p%Xx;+y}bQa-rSlWcKd65{ei-HR(;abwx*xnzwE`&$N#w8Hkcpo?=$i<
z$o*&bBPaS-%{`87{r&mc@@?9mZ+|nozScy)L-1wzhs9B^R($JMW=-0(kzdTbes|kf
zma6dU^S3R3EB&GU@%w}O`F?0WENfir`e<%)Wb;uu!{4D>R`pgde=+ezS-<qgjJv7Z
zT_%5zaNMrjDbf71KDTa`*<7ug>NnTrzEhed88GRjN)AWz<SRxE2Lue?$KRBbe`@-8
z(jM809iDsV%@x{zcJ=aW-|Z*WxSrGSwr<nvnX*`7ZTS8Co%22ZGaPiYF<zSSYktet
zwPwo6-@1L>E}q@s@#o}rw+qt`NT#Z6k~8eP`m6po{|h;WkNijZ+5Y%_Sl64Fa6KwG
z%j1KK;PLsHpL1^?S3T!jS6O#?p6b>ghkqNrs27asH<I2VR<xk*UF6iabNv&y1ug!%
ze*69hlXuN}6({~->BLjp`j=)^*`Mt_lKHvP<M`dhx9&SxtbZP-c`W?kY2!mDcb}SF
z{VitwXZx~;YgBncb=dR_ecj4#me$-~_}g$*jHQBJh#7<YwSC1OH^;o%r+R5iw(Y0d
zg*V>`39LG#5zX=YK11&0c^o<EqF>mS)V$s(CH$#J_}BHOlMK_3-D)=C?sUC(_NU5W
z@oCZ-Dh;9^PcSR)4*&2?@l}1;!!7Q!E6#DBEk5??X?Nu%mScVoHxvo0lqOX^zdbMe
z_SYS2_9#C%dU4{PrJrs_cHUx|7xCvvuI+UDqm4lo!496KE4SLZYbh7^-n`vpVYlRO
zRrstwC0Em`HNUK`IJBYj$>#`*P{xAZrw!h7wmbF|cs^QY;CgP^^5@@=ck5;!-9F8p
z?~fs;XBtPR#7*v#A`88Z+0`5lmRt9%D6)$YJih&p)2{iRA3kMPu}?|tx~{XR)KTry
z5}uXDc}`1bG){a!>(L(7B^BKvKhD-Zp1tFiuGXoGYmc03k<?S+SijveO+k|{a>E|R
zm!Wow6_Wy2)b{%Zi|%61&x^geAy~PJv6aU>;jzkhi?wr29!;EXx6LL$qUk?FaLA5X
ziQ5d~tz~*Nc)EWtpU5bA@WHePAB^KRu6xP3s6y$y*PP=r(_X3Rnpn?@H*|V)OQK-)
z?!r`Ng_Lmh2lsh>s~<_n$|mcDi@W}5VqTL{ndSF1_RMoGN1MX!mZlf~Bu+7ylKDos
zc6YR4#=fMBr`w#>{xj@pn7rfpiYHf{raqY%RQK{j-`WS>m0zD;OLCw5{ikQ7bB^oF
zgNJ2`FS1KKH~sd!-9|T4xBsTzMe#x(Ye5A!SBu>JS`T+mI4tpG;?cr5$q$ZuKK;Ad
z5YDjT^q)Hkd@Y7{vm3vfzN->zEv+vXYs}fW_sSW?kS?Rwa_{(zn6z1c@18CBb2iiN
znCNNks+WD`8ETw=ux3A8FL@_h>5kj1rrHGs2lCaQ%dq||J})D4d7sc9o6S3ZbQeoI
zZRSj93r#X>IIQJheRCJj#0IN`=cd2zew6+e^P_oXjZMC!*~GG-^OiMUoP5i5PM^s!
zGKex$ZtmgB{`B2B?F0YOxxy#hqq8rn?y%l@!Y+yT$d{)Zn<^eln!b3X{I1x2<H`1*
zBKx$h`Zw+$z19Ba{looz;Zad{Gs}wh?wEdBn6)iTnlo5oiniAd>kYPkh4G8yKlsnT
z*{HwOyT7AOd7I#^D6`i^N}nE8Zr}(HQP>c-u>Xw3lk2PM4$V`)RA*Krd*vTX*7rl=
z`!B0(YP4B#H-%kKnx*E<%olei{)q{H*?+KC*!jcp)(0Q_W~byV*zB+Vq<;1pr_dYg
z98Vjl%Nxk_e2lX-mptjG?f!H2qb#pEsp22&`d9XTtbTZJ;>Y?2;oWv3e;l_qJ@>ly
z<!8c<zE=+y1~|#CQ5QUsc*7y#ceJbn+x|1{kL25*e&Fw4ucP}sb>6vm8GBxrC-q%8
z6?~@4X+@m5=1z&modrkT3hb}W_x<g<ZK0HqM{!?;!sE-!?S9xD+kdwCA6MJ`tiL<|
zX=NF;yG%cFy*lv9v4B-BeOzKSsZ-|hEAuwaUHrTGMedx?zQnErwuu@mD`QRe%jF;V
zXZ<TALG!fc(w?p@i><ZmEA9We{P}%l>st5VYwNbojcu7O-gC+N0sqXtx|jm?oY1`r
zKWFtlaFgV)Z&&`Av?0%I)2jJ<82_w#-fnR%nSEh6`v=K?Q~$N?*0?Euu(;p$*>~%m
z0xR!Sod0Rszxt&>)`ZIaWe?p%cgvL7?fm*mdqI)(ikFvG+68>PwV`L$RY}WFb}5yy
z@8(x0{MLJvVz=YLU*3xE$K?g|+y04W6}R2AeYAFog+=bAIfmzR)cmqvb4vIMtDM-x
zlgz{Tuk`2F-<hw!Z9KWC!tOBVlcTD4UM*mrDSf(Iea9`8KiQA>_?(a9S6Uxv?d3hS
z>a_pC*gyRj{^%VzZFJt?N7)wtncudQ{)wG_=7+zZQT|lnUC-rqy!_8_ZKdAb8Lh1z
z?63c3Ezx~)W?iN1$MbAUrWY2?^<P`hc4_X#e@$Licb434XGne>Fy~k3O1AsQXRSY0
zvD73}NJQq!oaAPogCaXm94$N*US=+S*>?4t{|wD#@BhwD=qj5ipfW$^***iA9=^S+
zzlc9rH)D0yYNJnz0sHRu*`D89SNcd#eLC0lnSb5C1Rb#2`P6gW#Q5(0FY4Or&Tc=O
zt>2?NH7?%TW#fb;37h5B-laa!^OsAj3cr4T^VTb2Rc;&YEoL~an(d&)E#z+TVB-CW
zXKT`bt5mEG`p|!@*2&h)cXi>z*&lajy?1MSboFARE!X=Txtr^^)Nqz1ZM*WUrQz}x
z|9O_yGd9Z?d7iY7%U<5}{67Qdl*^z0+_p=8Dcc_SSSC5PQvRQ(@X4hgP1n?Koi_jB
z>t_*1?nNCwXw$qyQ=yN~<In1k{Ezm{&R<j$^U<&G;tsK2-&PBJnme6q`ep`po8-$f
z*I$MAO?y{=OX>X40&9~E{@mKy0v_xPQ{woaPK=*xzcs!sZ^_>!f68{%xGGxRJ+ixk
z{rgLq;|j@=>AJIi=V*7$+WF@{LvQcHjgQ0S)2``WJNL5n(7QWgFUylx9NP7u=i5n!
z^7Yo&_VDVIOI~n3d)R!^;qT3v|72?aGb}T&mU>%q*6QQCIPOIcf3>Q!^nA0eD*U>-
z?E0tZQzhSYH|$y$y21VIR4sQWj+dAAn(9UG*nFZjU3}q_dotJGeOdiud6P5CMbS@B
zczb8qG|yY`oxMNmuhrkV^%*DMaNRufpCO~8@!M|0295`nAB5)^O|m>M`$OUS^XXlC
zw7z@%IyY_UQy=jg%fC18ZagO;zsLIPcgr~LkG}WY^^>lyc^)!}op1L9;X8uoStAM#
z@A&fI`ppmhlHsRUtvvX9ed*s)JO7>^=KQk*u1002-~7)o@vmt`e$3|UZzq=g49cJ0
z?juk<_2BERdqX~17oL@BT|R4#WYOV|C)Q8@$5a#cQEl&s&kox@Oj}r3zCeD`bN9%a
z_ZzYb*@R*i>15qcFPX3_Pw!OU!+xfHhc;Z^%3JTd`>Kvh#;n@a_s(6iTGTONRm05R
z@7}!HxTxuzzYLT6SH95sK}Rn}bQOhtwVzx(Pj-Fd5gXH#cl+1d_OG!|kiRvd?!3L|
z^+Wsgb_x8jKN{?wzf%0%Y43@jqF!<L*_ZfFxA(oUQRR^V|Cj#^`NgW6w$45Drruc3
zc!H$p_2xS@cjO+k@2wX;yF4!ISM$rN*wwKcJyi@>y+0DTE;aqYfnN9fX@?pd)K${I
z&;J(lci$fVhx2b{`|SVmxU}w9f1Cc|4|_gG-SV#0d2oC0vDqf~;vOx1`)JbLWfN9y
z`5<!cTR^?S$JNdE>{<$UMBH1oDKqbKS-kbj{|r2JM;~mLSR<R6P-wK(ylnPOlXd^T
zu0MU|Z;ST?f99?kr`p%n8U5J)k6ZFXyT^V0mOqk@ctfwhJ6WhZb&Br~$)!{3G-v$`
zKR*9MbbfcB!|Mm<88fO1ZB(Xj-(LR4_`;S<*;RFn{~4tInCpM=@A&Aek@)tXrfc2y
zKm50i^~HbGbIo2E_wCK>zq&u>U%ayEn7G3C)dHMq$EU6N`R|49pVoSLIphBfO}qcy
ziBoAfy7WiiVTY6FN_y39i7{WWy|~-*`}#>W)xVSeU5gjouHR#)S~2gfgg~IF=Uaj1
z8%sO4Iaw#Ht$i2!CE=Ww^`mSj?Ne|6dDf{Pd0aP1QpNU`!IXWT`e**VEA_2+`|w6S
z<NEsCEkAy5z4I};e_cxI`m_1Bvj1@%{cT#qd-1)=`?g<mw;$0L(Mah#?={CWk!7*6
z`Sz1Du4u{}<)3NzW<hHECw|s>3m;qF`yS37I9s`7d*#l_|9;P|{<rnTulmEiQJ)j1
zKVisa-KFt`p+w&6_nH0|cc&+2Yt8IayyE?4>8bgvcb9$H_%U+*C2{GlB@d@P{2Be*
z_x^`X@s-7o-XFW)X)n7^@m0L=KJ~1%E3>1vEPPh@dy7k8$AUHmk1mcWZ@U!yE>7~c
zw%*S8)L-+)(@vY>Yx`zi+9RwtJxQm2i|pFFDel|da(Bl|Z<pWYEVm$ix#`uH_k=FK
zeJC#W?S;~Fo=P4!PKJ4&2hVB$66c?p_~FY{DT6Ixow`CEf0zwV6jq!%w@)qiRMhT&
z>V1DCekeYk-!os(M816<U%;%s?X|qUi;bRWpPqDS;smaP5}9+-r#e|*{~rJ0`NREf
z`-K14U$hgi(9&0T|M0d)s&>)j$xj^?Ivd(dE1sTI<ZY<7U;018gGu#_YnNOpt-qxn
zww;@|VY1uBPZq`}828PsJb0r~A^3{nl&b6R5+*!uj6YiM5oa?kd8WI5^LLH+|J3*2
zS+i&E`8WCuKZNFmPxqEoeSh`#AMO0TcYm%Hy>w;TX{jHdzy0}fUj3l_&Fx{69e0_{
z`p?iAy2V$|_4h~5V(H57+W#5iKI9kpf1D!gTRWpy*&;+z<pF>3rTw$~e`w4<zW+ze
z{4J`_+e@q`>a{+2@XK|f8>`CBFt%TbeLH8mDBCphFMR%JkLttnS<eN6!<YNto1SYH
zZ~i0Z_j+NA-qfElKVz5Mm)YCiKUw-d`O~i358GOoZ^(Q*JH<;-ByoyXkH+J9?4mcK
zZdOFNvE4X!!E(-%{@<^eKZ)LUIl!a2+KD68dP#4@JR=9S{rl&oTIyHMKY0JfmPfan
z?mShz{G~MTi7TgUMc_I2xTy<yJo64Xb?tXx&Gdix*XZT7phgLvR8RKX%QO`(=qaik
zF5Fqa>#_a1%-XD9cg{uDOy1PVP_(?Pz|}H^)nC><YQwj1gTC<cODj%%yltkYXvwU5
z%ya4avpZ)mx%SL$=V#v~w+(ooy(;^0-bd-Q;<p!DH$J)TaKKl{sBlh0#g`|w+0sFp
zc1sui^pl(%6nx{$ww?JeV}+x=Dvmo|+mYe@{cHZypK^Ulvnr~xKxabyV1Kc8<=?6H
znfWbtOw%8|Kf+z#UZ?+ouUowJy>P(g^eYRmez`4Hwqf4&H*b3Kk~?q88Tsot2ANs@
zWdGLm<N1f?!*!}Z(jTmEx#j!&kI@J5&YVB4<*G*v+*fCBzi{WkcdOoWWowK)^98qU
z-l{Y4px}`PA(lEP#R^Y_dDYA@`#av3?2fin+P|Z<eB~hzH_n$ma$Ap1E4ZT>_I<gg
zbF|~_X*SpQu9;lDJ9f8jzq{e1ta%5$<|uQnjteWV*|zoFt!t;gdA<30`P+;i6XtIb
zKbGGiFLF;aSLx%r^{eAmf~I6HXbza>ERuJ^%lJ6A)}$rto<5k^94r3T@wd~D=5KR<
zJX~E<_>r}B+vMVvuBk$ix2#X{?kN+S80FHbvM{#o#`Z}EYR(iGc70ggv@bh{fyvME
zyy(mS3><&Vv)8`v)mzHtEs}j;qBB#iVf?c5tZj##=DNy1JbKK|^V8k>C#&DtYen8O
z7CrAg+iUXk`bXE}kIqlZuovE^P_f+cL)q5#_ZTZ5+|~BESmLSJtCa0+E7^Ucl|dk-
z%gv~A?X<Lmwydse@4l*2{wQ)!@7lYiJFn@jTe5$4K)QCx_n?jC^UwOO*|d3M(ksW4
z7Dt1<EpjV^8(;Xb)lFTUpIKP&P^ovmEz?TNKdV3A`n=fhQ&`teUF$0O1&J$?vTl0r
zwAJ6e`~9mzspqY4YFume)~~Oeetq(T)5WDGlka$h<i>vXI;)&ez--7+V4yu?^27Gl
zr(Bn!n71!DdCYiTGxN{u7tHSQU0e6lJCaehoOl0u(e2`g`2}NK)(9rvJ%6UCUUfaQ
z@FTJ4mYA)EfxWwm^-mh#TmJA{VrR{3ezp7G<Db<$7H>AuPGikglK9V%B7fdS{@AW)
z?d)i?{|t^DE)2JrJ}jtWyih0lg?0bI>f2jBy?ZBS_LX~{z5Vl}B~kSU)~fMv|DHC5
z-+#*YH^%+vKdhg4rY7%1=GyF?_A2+EP5R@%=s<<}TtBZXQ^aR`f4cs`F5g+FLhAtY
zahqC(_dmEc^X{0rXA9Ta7X}``dg`ry{b%s};r$@jaL<jmKIf`T-d(D-P+@#~v@~p<
z_=k6M<tL|RiYTl6>0;xr`mv_|lDux;jH;mNYp1{Z&!GHf(|-nL!*k~a!wkRd{ww(5
z(F?0H&;QDu3rn2mw9VrC(SZGbXXyM1k^9dOwt1r7(!-VA#%i3;mwDJ!HOE(aCr@Ar
z5<R}&|I(&g_kIb4OCNaQUY{7R*z?OhdH*w^rvBCWfBIJ}d=SR?pJC6{qMxe&(w}dA
z|0XnBWZ~uDSt=G1ijj@K9u&TfbN;aVLEPd;zUDEPj(&;OGhM$)nN?-`%?WP1D_=gd
z{C@Xs{EG7LAC8GtFEwnn-t?f)@%8yjdxF0OTv|KX=RzrGv}Wn5yIDq)Pu`S0vz?`m
zQ%w7L_K)93LRBR{A2s>%J$!leciSpCjugSADl7Mf&foJj-2e2(pP*@WrH{Io{#~t8
z+<NKmpSe=pyjEgitfEPOuTKeI$^B&de}=|+Q-7}c9{j3&QHX=&^+i1C_nCLT@A_r_
zt@mT)$LYuPC4VgY8RTA@eX6zb=V9)YO!G4Bec=jKljChO{>2m@TXE#ifs}_855E2}
zp7l99`PHLkudmmA-umx#UHgrPA4EQU49Qqun)`FE`LX{DBCqQCx7hREej)76^1bcR
z!!r{XKUC1p6=2;LJpbNC+u{pf*GKQ#eZ}NI1LKeMn2&kwsz-J`-MMGS<!hdAqap%~
z-bN~iPZBNSY1}q{O7g<9Rqcmm_56i@Om=o_xLe!qczKEPX-|VE=bm<?l>VIA@FcM}
z|4*U!d*STUws*JByKsv=;%?cx8?%dLG-UZxCF~l~_Ae`nX_s_o*9cm_WaUzcx2Jvv
z?fd)g-K46`KObA2|FB-1J*f4LmZfFsr1H#~b=zxAY_1=&`nEj(p~jZfO-<Ud{{Fps
zH7~nt6pXbNIL){GbpM&ofs}NH54PODg^p?KZ#ow-cbRDl*AcelLmvt_j#WKo&yNYW
ze)v~7=F(P;{|pb6l1<+9+eAmsvRL~>f^+UFbImyCyl*zw7iJ#H?s&edLa5+BgG%b-
z`%gPM?wow_bk~L_JbcgXYY$cE_!xLuJe%{MVf}?ar+bZSY&NcoP(982H~!v<8bjH6
z(;s!dDV2D9_OtGsiR(TsJLYOA$EmC!rqVy7fS)1x;rp(t(&O!al2=p|2mM@^n|4!=
zk@>9SQxE?I`qFY%lP`;YTi@~JzECCWmTaf*eXUdfY*c$Fyt>k{NMg%O?N0^;+_@(o
z?MwK(Ld;^H(VbU8r{tc8ZteQ_HXt`*om!^3QqLrj2L{2@0}l(&`m_5Ok4)Wq&ZGKe
z@w4nBK4cqDdF|`_r||Y4vp?@@-q{?#tgjq#^+XtB%mcIH{|vAHWN+AZ`KxUFfm>oT
zi~hx~5fE*iA-qd`mgf_7b;Y?)p7*&~tgH6AoO)&LvQ14cZpGWrq&^VhNVnY==XuUy
zeeQ>A%NJyu-A~^>#dEm}k8@F<OUi;!NxPYMU%1xWK2krmuKy*^zWGMwHY+lMqVFGF
z<MDA%!e$}kBX!Xlk~V)IS$tV1_33Ww=fe`m?%37evTgtRWqs*K*51B}onLOI965FB
zq{f}y96#CpXUqLO@jgyd>6O{_=WhiTue8*aE?_Pyu*(rVAE)gl8ne~v)lt=CyMHQ8
z7k(aR^*HcgQtkQRFYjYY{xjIWJE@Yc!c%T*xBqX}t&eIORvYx)Gg>+^GIHNH&$l-c
z%1y<Zm#)40%GH`xp|XAQJdShxk7KV)?ukxU*P6WXV#Y1keZ5Qk*TnQrj@9hbkrOj}
zf86Ov>3PQ=;R2=8*_jyJ*Ou%vzq&}tx;lyJ7{~Di%-jd$pZp4+G`FYRT4tU<`}zl&
z7baf|dS%rY&m-6I|Ju*p57YmMEq)+=U?qF=AM1ziAGuz9yB?oC<920{<YhsL1=UM*
zB4>A8Vii~+?f7$3{i5FFZy`S_fBRM_JO7ye@U2ojLq&VwCA)hbThrYtzdf>E!R5}J
zqr3NMi`eT+`#aA6P&)r+>7)M)opmM`>U3XU$gG;*_N6x<HtL4IX5_Q|m+znH@ZBb!
z@pkb9&T`&Uv4RECUH=&z^jq(lT>Pi>YS#NhZ-YEdcF&gPxGQx3OrLAp=VG6uA3u8?
zEo*pS)OhN_=by()gXYO?THcm_=C8Z%vz4A9lRg{%XGs5PXZ!Ea_gVKF|LNVhS8@B{
zOyigvuf7?X-rTq~;@}kTte<m}bt0YG3K-5a?VsNNL-YKb@2Ts4T(fn5D7$Lg{QO6i
z*WGGz0+(cOJ6$l(tMx?4?&j0lee7{o|9UGH|KsBR?O9{{k-y76iMKj(%g5BsXT|z?
zzaHJCw^VlW@o!D<0;lramJClmI?2)W%{=oTsjF(-|2CQ2?~Yn?w(xK7s@TlyLT+7~
zrbLQ)oR}eWs?F)d=>yN#i~joFI`gd0a(N!_-?{p_RsZH2e||4ml<}-W^Fs8xy>IIE
z?sNZVNVzXo<Fs@C)jhGbwtbDuDmzkp=9@jMIH4=!bzgtla>Xa-n0XgJ<8d!u@bB!b
zyrmzqBlmCE9KZd<X3r%SKbKEFsoJ1>`BcGDe#zo#?2Os(^5y=RcOTpJr|j0<JKOe2
zUDkcPebdD^DH+NWn<ktuIoXyH;B=g8!VZ>go)TAE*KE<XlsY7@bnh;cqW}Z%Dzo(r
zUk*IJJ@4z^d^^J<-qQ-EhrHPp{ds@z&nz41wiZ>+W4~<U=l_(S{GVa7-P*+!=RL05
zvHw_OGb_Af?b$OLe6niYth3Ax-c)*+;@rPy`StnN<A129ALf;RXy2Lqp>1+`aoxm&
zD`IVrUZ18iDSCqB$%v_fp`oD;f$xfZ>)d`EfB1CzVgK&wR(HOa|0-Rx+4N}3G}XZS
z=j@WTY`T(}jCV$|JyT#l@cP&4{|qeWKALyilz$99CiT6;RAkSli(6JGZSAs{WV^o7
zxIH~JRPSF*mXX78o8t55EACEDOrMri+!c0h?(ElVr|w^GeEmbUY-gKQUwGhd&3pHz
zUw;=r@z<TRvpe-tes5&*UoQG+7vt6|rf-9a9Ov8-o0uZ0<yA97d6^^oi|lKrJLAs#
z7))ZnCH*|#MTM#Gy841&*V}5WgtMfkt$h@^FUae*;W5UP@^j(J*5M51L5A_qrhK>G
zqw!koypQ+9C6OI(Pv|UoAb!$*YR%S<a<8)Ys{Ng$k{KAGaeK$=-7GrgLJ{lP=iL#q
zSYPqc<kOw#okA;O@(!vz>1#;7{kreQ>v)SFn+|00e&ZC<Y*%w=wF}jr_}R|#?o|hM
zxjz%*XNo;qyYg6O_)GnE`^{_KFQ|SdSAE<6_cWvC&$*F&Asf##?lq24TfH>?@1#es
z{xkSxXHLE4`LIE!Yq7mfyT+P54Cfn8UrE}wm0M$-Vxmb}deR!h&nsVkn!^3e;>7V2
z=K6P&j5yaX)tkF)b;R*Zksz%#x0g&y>16X@(=OciWQvWI#N(hU!*$zs%iL?d-zpWm
z@zT2*SC#r*yKjs5@A7z3a!|+py+MGz#)6dG*G<~`NAL0P+dpyryC-}Tr^K$<eV4)7
zStIAqrsCb)#|kI*TwihTgkHkE3Fo&KtWfPZF8TKNg4-dDR~{Zz-k7I7UHPr?l!(A5
zIzKbqr>nGlI;?eM*UC8a$}S^EhLS)Zzwq9kwbE{-F3l&W9+XyA<W#r6%fl_$XH+)l
z%Q?sOtL@YOGcdifllwT$Ce(CGu$KPK3ro)g9(reFb1bub{fs62hEozI>_1}s@E=dt
z!4z|`Mf_V1bHASy^x5THWX+n}QBStazpM57!0%Ih+IQ`wU)@q`eRTY4(##_h&q{dY
zL_TO-e8c8@W~{1Z{NAS<S&J-rcDJu}n)GD1MXK7|{ujR=n8-<Aw~^0&lKHJVZ{lfp
zq0J7FA3t@Pv1uKUVdF8J^W}E@(e-~sZy)|PpV7|l?yJC;mom3Sm3KX?SU5FAV!<9+
zi?rC;PtH9kYp5#h`gd+0YfNW}wf7Fk&3f}vCYm0~4SChKFwEhI(cIs&pXwBNJlfw|
z|3i1)X8xn=<$k>PYrIrkT$Rw~v81Pc+C3v?-o|hl9-|d&7yEq`Y-98F@|9m(|H12i
zm)YbW_dVLKX)K@jGw2?tWJ4b(cbkd;+tXWIlQ?V*<1eYL%uRoIU&ejK{u$xH$%_41
zeu4)MKYa4@P+NdQ@Tcb%$Fl!?uYWKle(Tn|Ter8bH9dWN`~GdS7>>@Epw`i6d27kT
z;w=UKGNtR^&wj9OFZ;3gEgLI#aktL$$Xj0e>44M3(~~aFI9bHUal-QX!u5)YOZ}Ft
zu)VzV?yQiWE7|wm)|_8$(yX&)ZGk~c9+!o(+>R6f+HF_=dH$c_!N&cZ@BRtY-Kn$v
z@Z^xQ?6D=cdW^h|xmB#c{+4mOT!min1y+WV^<NA=v@Ok*Dcg7~f+KiJqS_NnWoDJ{
zCoFCHzW&)+fAE|<!<xl*EPt1n%s6x>%hRlNg;-9$*o*IGM?;>Zy3gP|?_^;i@o(WT
zgO4%=G46gsw^kMWe79dTf99W?kFPoFq&db3Mjg5oult{Y?dG5Amir1Z$rC4smmH1Q
zTA?n>ZSd!yXiw^aBelP;ZC!dv^6feg%busl^EjUEztXnF{_ILk<qM6^m6z{zG@8Fh
z>&e7D#U?>LqAD`K`v2_>-8IcZz~is>Oyhamju@)_6b*SYxpDrb{c`&=&kOMj)udi~
zr)a->`;Ol-6_(Pv0WJmA&m5lLHvM(Eu<qNx(zB<;4V}KLuyIXXv@&r|U&V2y{oJN^
zgL0FDCkM`Wm-(b}#uw{l$%^OWT37%4{E~B~MdF4ZuHR-){u!zNS9AWw{|s(>md_UN
zJa)21%P{`i=iL7cFEx(G?Fnl=WHeQ!$nE{|Yb(;9-MwzH?s(9pd%DX0*Uo*9byClt
zSzvzTw`9lzCWeC#o|M0hKW(BmeOG;)clDfVCW}|T&gWbsYTiAcRlCH~_DR_%`zd_~
zBR9@rD)6&7r+MnTrbwi$!8^O)3*VN!E4%(?en)+3eak=dzwP=p&L7VEMeGTFD3dk$
zj=-{4zZj362{LNa5j0lGGGL71)Bd=%(Pvq4-;8(KXQwGzZoMkY$E#X&bQWjcL&v*U
z3cs$uc)qQO+oF7b=`q`V^X`N{pWn97bL(r5CkpzrmaE^M|1y4oo!rj8>pp+qi8`FC
zkU0OJA#T6%N70=c&R70j`lTG)s+m-1Ty|A|r}?k>e*eyymy65Guh-R!)~K;u(I3EU
zx{Z%L&f)Q|>o3$M>qOZ%uU|iN>X}J8nF_XEpIhY?%t`p`S{GAyvTE_&e;2H#th?P)
z#ri<v3Gd}-4VhZry8a)h1N!|w)C6cJS=@Y*qtA0hk3puf`N#DO1+DBn`vf!ogdfkz
zI`Yv?YfIU#KSDOE{kLwuT2q}{UJ`hGcGJApbAHy(3(u?Vx3kZ>ZT;8!+su#u8EzkJ
z=neH2vtW(7baTpIj)Q-)-`2O^I<fQPB-7o0k6BObbGvl-@@3F;*n|HJ50*}^<Nx6Q
z*48BITW9*y>|btkSE%0ld2REVgFZS^@5B_letI97aDqWW&M-cA`qNKGu7oVQRG0op
z;!gOcWv?Rl`<_2{LQl+%Eyg&xsY>uiZSBr=CYhIxO76-yk^0~p%hxZ@um5LQA2+-H
zVYTI&XV-0{D^=g_U1c))_NlJz8(a){)=hk7`GBSAvqPbr`;5+}!!!E|ZR|?cEL4$>
zV4P6+`n-SDsx4ZHudGZ%XCCLe^7^RXycN&a>c!nE+dg5w=Et4>A0{yu{z@rZZ}2g#
zqomgVt=VG1Gajk0M1M`NPHbeU4qtlz*hI6kynA;GkMZw(b>!<8QL*(L*S<W?IVF3u
z;qG0IrxMRsuq*c+mt4Kn+DK;Y!uRnT^^fXv)mZ=7$ltb4<*d;U|Dzoyd!yexsGQi&
zetMpbw(Lj4TQg)TTR(r|`n&DJ5<Ah^hl4Y$c;A0}c<Idk<lRY0a}y>;S-b9PQP%R{
zI9Zb8v0sDBll#w=3bRYTPOc7K9(|D;JW_+V<ehk~xa0Ah$FJirgui*4`uKd;FTLq@
z?HoI2WNyylyP&n^b9btT?}CUao;sb%#?F#qtoss99eMuc9K$2l)+1iRD^H7O-+g)O
zKf~oe{b&9-olxysEHz=-Qq{Uy{~6++)K))^@08=ZWGDA(KmR|07oRc%E1EpSBX;gm
zi*DPtCE`q3rrNi^cP_6!YwoJpk{~$Aa(<)W_TJLF=?{7uRr2LBgQ9Nn?r^!b<&bHt
zRQQYf;^M4}4Hjw-zMfp?9{AzjdcN6u%S*FW3|ybB6xMcotD++m@i>fO_u>sat0(P^
zmepF`y2p9NAK8z->yH>`tu0*~d*hYIPt}ED!K!yQuK2ykb8-L4qC3ZSUrC%X@vrc-
z2P>RfR$eHdvTJ+Uy-u@x-!}c8_~(27k)${^(JZ}?wVO71hcDgz`g0oZ&dXc5E534v
z{5^X}XX7-PHxr%p+%H_8^2c}chG>sx4l5o^5SLK5Z@0g+-_xe{x7weQtNRQq)_ea*
zesDKB;?m@(y^}6IlVAxucI{c(&h3J}1s7dTO!Vq7+sK?5x60MxKf^(d{|q_uviF=z
z3o{p0)EWfN54>{qZs4v*+!=ao?+X=d8)Y-vWu97iu9`8&C;8erum22X{}~!D_dbZZ
zEa?>T;YOv`-^$p1fA<T2tjqZO>srmk<T>GA)E~<KP%K-md&v9oe}>Mm3&+^c@=acP
z;+@^(*gHA@8BT<L&2RkA@SuDDCj0jO*^kz`AK9lmS>fNWU)C(YST8?n-T1ZU_x1TR
z|0?cC=9}FbZvWxvzisgyo8~XxE_ikO)}DktPxgDyKNo&zKkuDenfxo`T>{R8HYj{x
zu$lA0`1Y;6*S#;iD?RBF#xIidLN?6(V5;S<<N)rI`!l&WMhF=mtq+o8``cuntk2Z(
z<YJx7OLL(^44zw6CkIVezUF;=%Cmi&FVxsCsHjre@?qcH?BxwiO1B(kV)(kuG%UV|
z{`gn?rT?(s;(1~%bN@5UT>3*V`P-W2172HJYE{fS8NK!X^W-1fKJu+jd{7;j^)beO
z<zm)J+B0~#g&)Yyb7?-Kd#>DbO9GR?%IDz^_v|zLvHp>Ftgy${?77L|d-_gY<eGo)
zPK<|ghwS2(JB~?gqKr0-@#*ykUH_^4uzs}vZTy;7bpoH(<!;IL&K0U&a+rJdZm}8X
z6%r>LGMjvYr&3Mrjo7|L{~4NmYxw^&v@CzbxAf!Z=!U<|hgRj3ygmJC-_laClnE(C
zxo_t)H1}SfP#I?*bhhG{gr9un){3I@Q?1Rv&AMc3b$i+I=Qry)uN-+k|K^ufaa_I`
zyL9j0**$;Td=5MDjQOl~;xFR4Y|IXM$8ufFJ+p)1yy4H~b2naHHf8txwN(Xv#(h~L
zk}nLy4p_WCTR(qBkIU=OsZr}bP0rnKzS@54hA)a<b25X&y29c*el~yG|Kr~M&F>G$
z<{!5T>6&%+Qm?gp*nfukuNQ>M%O2s7OOxx2Kh+|Y#3C&@b7RxFqjUSq(rh*xKABYH
zsq!iNOZPvn^p9`rl>U_cXK0OGd_v{oAAw~zPvlSY^-7R>`z!go<|a|g6Ltwl>&hej
zrUzAqEu6boM5un^`nUb;JF<W4YlLRKwA%Oi%Wv&>*RO8=DSb5OTjaEi7Z<OY{Jr}6
z+x+{>PYN7Qd2#b>hPyQX-b-6^O?s1lq}{s~eD3m8?c0_=w|#sc{p}yyN0C!LO)9@O
z+Mfu&o4n(+&f$7_LDv5a`P%dOTOazI+W%pN=bxFU75Y~`TC#iErDObCV?8=0UY$9h
z|IAN&;ng~^ACrSO2t>Sk?l<9UMUs&D1@U9->shXg)u&Y7jW()i4&Sve$Wz<+t@H8k
z!K}6a8K%~p&6lvqntr@<|CD6)A2;=neBJ*@^7-dY%N?tBs_f_9f8a^!{H}cr7iTV*
z^~GB&MYP>Wz&)q2=bz~_tMkX_%Ggg|`m*hT+}eVJjKB2N<)eNb_xw9y4{O@Rx$eR_
zuQ=0#&((K4Ue4aXv|7CVALk$A3nH_9wQdMh{q(4+`gqdxQPRGNHTLd5M6^Qc%DVpC
zwp#f^a(<G@`nb8KPv*>jH1Vh3KhuwVTgx-eCg)5%vq@OUVa?MS&IWH!KKS-%H~*G@
z7p0C!>*l2Qij;=*+5G-<_V$g!_~laX+xOUucki)I&CHg`xRfO{HI#Yk)*Dv*zcRn9
zyYk{%*>W?j6`Us}WJ+XTKQ^rQ+_iC~Wuie~%(;J`^KPkLy4%0};9uDly9)Y@CCwhq
z`X1E#HGjQ%@uxa{rn(Ek4^wwlOlk1W4_E&8Blyc}@66w3Kb{{EXL}sJb6(kVYuy_g
z&*z*tz#ljD*A6pxwZC0U${Etu%x=x|l=$+(Uh8K~`X%>{S86ME1pjB?3IBJu_?1B%
zL%|oF*P7?<pH=@A@#pHr{VCSZCrF=o7rE>0#A}9qd)@@OKaTtSkiX%2oWv2aYZs2O
zv%j}yeP=FI<iE~B^lS0?{QTJ~W0M`P-f3mtAAHnL_52wF$9GnOulV=Y=w&`SFZftE
z^kZ@Mrn2~=jo)t8w?&Haeop+b!GCx7pV)K!ejjpM=VU9knNF8b6)f!cbGPr!T{j^)
zjv>KXj{is4uL*Bo&p)<A`)rMyvf=uun5)a4zPkPA{Hld5OFg5e1bqoJSje4s--cb*
z&vLcXBL;Vuw`~$@eH4R_I(>3ktSl+JdQ#BNi$yB=j~owvIqE0#MT`B?=B4xQFd2Bh
z-4bGWy5LpKgx8H%+vV<7E-f&PX70;$oVat%&V^U=k^@C=-I}*_s(Imk#+Bm!b2q8(
zoc36GlELbqx(b%}JL1LmaDH%h+xGGKkzVo8k9@tdZ^W*LNvWRQy7W(Xf!Duh*&8ls
z1~HrcNp)mwJh<NBN9BJ8R?tScxF0Q*R?iRAcZx|n{Aci-AG2xqX(4vO+ph|nL{jFl
zIXp<Yeo}s$&Of$IKiF6MKDynqeTRGJmmSw?*W3P@f7g8rQ-slUJ;T<3h>6=xfBG(}
z*qgZ3ZF7@lkh)@_W$@Hr%=bU6_vUpnYQ0(VJbmR~W8dGI{}~SQl}bL|_VMcc{y%1^
zCniq!xVkP-w8)&(<YnHKl=?jfN)N90|55l*|A$ieky@_f56{0@|FJ!O!_{S5rXBX#
zw0ryRJu^&?<VzU2uef!v==gKXGY31L&R)6x$@?SwH0M=>zRNAxc{1O;-rjf7zN7yc
zni76!e{20Q_qX$_IMu(?|7e?cZQalIvfOI!Aqm!_OY}w3B6OcvPyVa)vQ4qWW3BqV
z->YX`DoGYC-Zo{*?TtT<Kkm*<x%S6TeZu*Ek*t6oC%3!PjTKZI6_{2q#8t}rR))<`
z3peyBDsQv+eS;+>`S#NCHh;0K)oWkZ>295N=~wnk{q=AEGh8{IUtC<M9CPf#_H(^5
zXFj&%>=N9%GdQO8ba(XQTsiqOtlQJ`uHC8l&#<pb@c85ST&Ezf^TAJEyMEr*zt@ia
z$L~Y(e0!XeSN*v6>$I=0`(d$($G)EzI(GSXjNc@+R0VN{9{Ieh@9HJLeD867q^r!W
zIl+0yBAdGCBTt%kXoNZTS;-V+e-1x>k0HPFKLfu>{F~h?*5;Xbzn&eQ>1?!h?~mvi
zo!XNOwLF@YSp?5j*q7FbZMc@Zk8}N@r@MZaEnOb@v%pvH?(*zu{Rug5BR&ZhUl6Fx
z{<XPzbB&w&v^6j5-cK@{`u$>T^vV10KHE>*@tn17v0P~Q_jN&gayNx<-al*WUw`8Z
zTX)`j8Xs{*F2Mcf(z}z6$`sfIUJzxMDZbM6EBxV{sMvWM?PjlTWLo@`At-Xr3f`VC
zcP~7VJ0egVXZo<dA$-Hh)vtH0d35mY+e;OxyK1L>VsM|eY5okQ6?fZiA7=bxd2adP
z`}}ume0S{lu&?#8YM-oatbSz7=Ev5HGv?VYIKs#F!0B=C@}9r%lns_GdU&QrRA*Yz
ziq+1c&vwuEt|+^Hc)!3uZSMWNuNHoJE9krCTUPt&Nf|dAr-=W481cZW$V_lv_DAi<
zcH5KJ)TDis+qqo9tUhn%Li;1iI$lE6PXsDo&MEHt>pJh=e})HJ=e|Fh-!0@bDK5%?
z>CGGN#&hnt=bgE%wMxZ0Oz^W`h|H!YZwvO1&m`ntiB0?a-RFj0LE)ah3JV3khUBGn
z!jICj{rn^<PW`Q4zvu7g!#48*O0_?2T{`{sPr36SHYMhLepMb;Rkm0-+CTNlE3sp*
zOnwLb^e*IT?@v9Wx;^@o=coJ6G=3b7xx948hAZz)(l>NT=zjN<xz_vXZMuDx8Z)1f
z#KeQo_h$ZxvR=<!k#sNjlZ2`E?vj~pW+J|q7pONkDzH}f@o!C5J$_3seUDI)!|$~x
z4wu_}zJK|{`lB&BpWJu;UM29f$>aH-$Q5xhcRdzv=GxI?^l25x<AP%$@}CN{dY`wN
zX8SYUtZ|<8>c)+%aG_hyPfvDwblCkYdo1nfWcST2WMZEi-~JUhBky{J-h3DHo=Ior
z;esOf&oAS`*S-98|K_5;+=<7FHu<>mJ(yqFc~T+0=Pk4P<X6@jhu*5ZarIi6QS2Vj
z9eP#mip_>ak=*(|t;}53-`2-$X7;}1@`>%t9pwp@Tzi_&v#)&rHZJsGu25~<D~(0g
z4AwKg-@a}i*f(#-y2D52DOR6;w)Jwz9)n||8#oTy)Z9F2_v5&|*Oy7px;oEGYHYiC
zJnqivRk4$1{`|#w-|qMYt{ZYf6B|-zI@o+V!~e)S^scs7vu|(u{(wsxq}_@b6X&^Q
zOw08-byUigWe&qmhU((Ty=EMzSKI%;{v-Yy?~j9v|A=k5{MJtX$7|0^YjX4!Zr#3F
zH{T>zxL+$%_j|6shVPNKvQT?#zT?04{+(%R?aiz8AydxvYTu%o*S67tygHlqPm+?I
z{Vn>$@(BhZ>AgFi?LW8u;eUod!v7f_iE!60&DdwL_2Smo6+LBvf4g4VT~%58`$XMU
zZo?iX#=Bc5@0T$BEx-6b!$C*;T>YEI5qp0yKk^s56`Q%MDpEx_`gZrpH7VP+x@`}i
zDY^Za=i$nU`AH7^4I%%^;}ySMt=zCx|A+jt%V(A>JRN1T{C)Yc`9D;8_8EOV6Q|vM
zY+_c_vi)V-uLta16ZZL}&PlbGsnhO8igBD1<$ib2fx$-bYyO+&kI@JAG5xSr|0BHn
zvG3I5?KZ)dd$#obi=L6UV1H%ENtRXRCJi1O0Uoy^1Sfbf|2+7&WuMWX`XAqa$7kD%
z{nMy8edO2nwk;7;^|xxiyCzl};3>KN(w!)G*)@jyXQXH`ly!!t+}+dsxAoP1Q9Ggf
zLzePg|I}WzhhKW;@m6o0ZbDbuwgyH0f>vWa(QQu}diJ`xmL(Nl)i|5@%Ij^^wHFyH
zRvx|;_5IKJr|*yKl3TdwN7whmR-2~m+Az;MbLw>#8{LfuWp~Oj-+meA`6&CwI{mn7
z_osB^vXtoF+xHW6fnSBQ<B!CTt3JiEXDyE0@KJY<)Y9Hpn@*&3m2z<^|7eJ-J?9_w
z!`Snp-g;B-0`_;EX(wNJ@yxH|W8Yh!Q1H*n^uvZD{~3&Y{zX5E(OL0md3&tnNBOtD
zk5A|SaFKp^$|<()zL4bRIW~ebRb-1KHnU3n6U~`CvHwc^57phbUj1iaGL;uTnk&0x
zz3twXmm=9xTdqx<@QHWNwnxR2@88>}_jl!%^DT7@A5!KE@6(R<*Iha3-tCi{j?Xte
zY<A+VxCT#GkF#Np#4%|LiN7NM8Jfzn=CNMipB`!2-xmLgWye1GG*&4y7mrXcEAuld
z?mX+H=iYqsA-nyU&#BoDHG`Lntye9-Tv}YuvuV}pj;ocXsp7A<|FQh?zFY5^=QIz$
zs~vjL7A#L5B)>kN^*O$sS7ck%+pmWtKG(fgso>qP=&glTmHghz%C^6*FRJLhq?A@?
zvuT}MVNX@x-p%t5?UZM5_;~B}ns-b67NqJ+=Sh?>ue17i;yHWIv;7UvzV5Q$khx?*
z@~fwpuB<rN=kug^cmM3|Ifa+|qdxvk+5If-UQqb?xFwC3GbOC6=TwI;e>Hi@W^XaR
zLlG=0lY2fl&b#aH^E-Uzt8Ewe{8aSFVM!0#)5OVjs%H;hWn%x4%bweOZa%%WB;erw
zDwFk38;bYYyt827pU%8pxv}TV-I%*K_bYHuo2MYXx%t!EgLleKtXaC3yXMZb-LjeL
z240iBLXJrkty?%_TgcocQ)T(8QuqVoLYL0YuHfNR<a)Y2aZ1zS=1&bA$})W|RpBL?
z_g#u(qn)q5RjjqTer9^=>Mbc7b)Rm?`#rb0_)5XP8}B26GnWVLndEUGgXw|#naG)S
z&)=78a`9E1uW1uqyY$TVi7FR1dJ2Efda=O5mD%vE!ld@515e6X1bE$xRsWc6*H_(H
z7IFUk&O0fSn<YHjWDO^6vUtUyW9*x`;MQiFUC-We-}Q+-)#foj=|l_9#HJ<2p64zY
zuq#U_tE=0G)Chcxo1FUeq#76R%ko`0xBV6#pFWk<NnpX>LsbvkEaf#bW~JWQaEBvs
z!4r>94>oOkx8kLMTj!^p(vqFB)!~=#Z{FYZz9#umgl>q5xWL2P=Q~dDBsN5JL~JTI
z;PA@l+hZ7H@g*Z9T4t)y-t#ZIAF3bu%Y1M@XQ{lv-7L<0v0m2K7OB-oZV1LQo&2mm
zQ&5>tRiVjQ-@5&y?(c}K@;cRPiF>aYs?=xg*faA=(M>mnH$I=wbG7soSgd~){cX$j
zwRMvJPUdGnc)iB;k*PQLPUV!+1B@x>XDaWByxkhRw$EtwJo{<$d#!?FC7zvWPuh~u
zut3OB<w1$^uW#$4TIJG<o0{(3^*>pEqx|@`!fg4QCyiO!o=$A|S?4}s>y}k5e|8sd
zpYuzmG5$sTe+HJxe;0n0KCSw}Z+)@g_DOfn7Cuu9+})Za!Q>El@{ZH*XZuetKDb}d
z{$W5(_`eI2oWkzCi_n|u_n+bJ&n052Zk$2pJf+8Fvwv^@&(M_lr)b}YLofE3UU;Wm
zI*nE9tomt{V1@8woUC5Y87ANO7*pfzRFds1n5|Y-QE_Rt<io`(U;fme`FD(Wc4pP;
zn>S5zc~(Dj7O4o_QS_uVKtiA{^rWToJnhfS|F~;ET+;8E|G{^?Shm@R#dj*qvUBsy
zxX#>*-QBt)^uW0&^~A}aeoeemx2nSI-{GTn%$N3fFFO)u%+xCMpJ9#fo}%iK=eF5T
z{crDgtIhu=@nid<1DE-?R-^|$Z1xDKOzm3HuM^(f#K<65v3|*eGc_M7w@C|&Z+WOc
z^|HO)`GSc@6J9-hvfa<VDs%qRuZ3K<?|So@{mcoMYml0DB5!Vh4Dadd3r=&rGTmJ(
z9}wOB*Z!<$<eoETT)ByJ3Xe-3-yijSOG0z-_IqxZb*kHw%$wui+Dc7dw&dbJuSW?}
z?gZbQH`92<l$m^$miB&I+f|ka?e$QSu4aBeZ@**k{d46u8s;YR^<|5ylh#K>I;X9<
zRIL11_k}g%8*Pg>6`Q6zpRu#K_n+aA?uYCn)5BDbL>*ml&+hX{OF=!)cisi|T7TSj
z7Uad}C%M+`s=FC=<8mG6-p+G>oddVF@ENc~FSGp5u+RR)`V(R~HILW%v+eJ<sXepQ
z=9Wm68)wb!{IBlc_FufO8}cb@>aTP8?>zNCs~ij4?OiY6TKrJ-!`WNAPiB{-Z!7#B
zsv6_fKJN*WfraJCw=qe7@02Y}$>@7x@m=&s)~YR&U(|hnQZ@f@eRI9YKI3fr5B+}(
zFX)%<Uf6p&TQJq<xm?N|B|eKghi{wyI{%^iAIHLvr;ijkuKW{qWx<Ch!H-XF-|D|D
z)~3hp$cq)+!UwpXZ!60FYW$DG{6mvJ&%aZ3YCo2*%?<zPx8q~f%IAOOeLEA%URY+H
z?kO@@yf6DZ_u*N0*EN3RcfIm#=GsMVkCZMQ-(Hec7j$}u0LRy3g|q%hch`6vJ1%LX
zC%WR8-t|}Y4j<y%c3AC*Nc!k`@?_lgO`mT6Ise4`+xx$B{xdvSIRArJue0}strlC?
zbN+}v^35glyGq1K-pB3|;#!-WHp{HC+Sqx@YNZO(s-yKB-G&Js=NRN2*jVe=<^K`q
z{+4*jK0E%0N_nsE+*z-xt~Y<V`Z29r!S_=4Ttl0alWg}qdUX42<DtJ#inRYsG>!IH
zV`};4?ff&noHx}BB>A-tzcO&GYds`+W~0HBLaDRSaWDTf`20EERrDfw(pt}=qubVA
zG`;=g;#`5dYKA|;7gvObbh};Ici)1aOE0CrAXx2QLyF+ZR|eS)o86{846L+#w42x7
zRs6b8l$Xa5p94L~1(LD__FR8gs~kAAOz>Qx9lv;I$=xe!>e}iLn!h==@bP`|ir)V7
zd^1@b>sx+)m(1I7{MSB9*{bjt(~su5Ma#10E#i@kd7%7OfvNcQ<@=ZRiGl7Ih?KV2
zQ(na8r8ZMgxkvUoPx0-`w*Th-JNRSj3X^X<soK{WdOmO*RKEP{`tjtIMd4H8i?1vV
zpT!k>-u#DlIqUHrr5*h`jFFtd7xEs@`}utT+FIw|m4D<v#2?kxXL&8BzG?5SDKEEA
z^ERC`QCp$$@sy{kESAp|bQ(ACUC4gq-?B+>_M;z{$_~4$9p3W1Ro&)EVUvB-U+=#Q
zzHr-%*RX!r-?_wa|2Mrg>lXH1S9>Pj!gAn5&IBVqr^!8E?BgH4^(r{GV%5f=?%c?q
z%k~F9sdyRE7aUcx<gv>7(tW-5KkAh~2uJ=<e=Og!Ywo_y4}IM{O_t1+vp&f`(Qe+8
zx1ZzJzdQE$*;^j7lnJLN#(eKA=@#8+r+D$`Cb!L7m;T+mIB$E?lP5<_cOI}$-V<=1
zt-_sGKqV*eSNb~NMYr$V?fzzV?ZCfR-e<eFOfY_yu6^=^?8m-8;m7X_{b65}AvGmx
z+N56g_CM~sj+F#O+}1s;cWCLZpW<rP9Wo7J>Z#1y=ikJs{wQ@4kyGc`^Y-@FjX$=x
z%PBw7zWQsQ^`n2O-}cP+{#Rf7FY=1A_l#+FjULbC=C2L8<dR=Bt*1w_G3fpg2gwI@
zF=eX_RnG|Ro4Znfa&g{!o>TsJW|?U!^#{mCRCk>W>pwG5uy8~5TZxyqKYU;RY+tt8
zZutv(muim17@AFd6n(_w<1-`KQ#YlnHZvb{dwBBYym?!HcmC%56TJI_-~7b2QQBL?
z#J8Jm_GMWn-P-g><DL72{|tI3!?RiI9m4lL{IR%lpY(SHhRYm><_Mo>pL~3$(*EH3
z#Qh@b?eF#T)GsGpefu`|ZGK+v%)XCLd<xhMw{CmtSIKqr`BHviR+U$)m#w*eA~ez5
z_tV}r=WpmszGC+Nc>dekcQcM1KfKxLeZK0c={qV_s#~%<6Mwc`H)@-d7U1zju4!NH
z$7|b5AL|QbNqyTdHT!H@r0NdA6@r?Rxt}hnoubc>@}%^+<*O}~`d|5ZU;aul>n&V%
z<7A;qSgTLsJkQR_)eM^??LysDp5z=#R=24C(3`#8e5LBu6@5nk8BDy&63mLk3oVW(
z6&1gZzw*a;R_cu`!<AMW{jTkvbh~bS+1L8gyZz7lluvKw@lEFlnjHQweBa&O8T)F_
zzf%4d@zM2o?|+80_skXZKJGa^d#=!tJAeMAse6cNy8Y|@e5}Zw<+<n=E1}g}WV(Lr
z{>D7b(>^tqi8Dd$(XIC(Tly5dbGq*RN)%A}<l!ds{q-BWYdzZf%%*=zkCm?UHaX(e
zvtC?1ZL5Fqul=nHO{WKh2K&0k{eF8T&+{Pjtj(Oo4T~1s-SN=fbam1Ug~sdsYirgU
zrC)HB3OI67UVUwi<nM}qm#6<{V5?!)KYYJkoTcLW5dqPzh*R$_>pVTR^(MQ5*8`Dl
zEb_CB1VRm}`ES*KJMv-vfz_ISG#|#RM}C~V?&_9vKXg1Lh3-vNX5kBCaNaMyO)Y9a
zx9NO=*Y`9&%AW7BiM5%vZDGCPyjR(6xtBc(CmrQbU@%xU+i3;YZU=_4r!#&$+$gYK
zL-W(_n{WQs?CG~RX<qFXlB_QMvUJxMyZR6B56g?jpOx*Mb>#Aij|X#exc7WMsm#(V
z(zo=^s;9G8o?QPr{#(fp^QHgJ?`QoY-?ELxTW==Y>zh}S&+nV@b9&Inzb`$RFFMGs
z{<QfY=hF|HJ|DX;viwKmiWO4sty5J(9Jg7Payp8=s^637ds+78VTtome-C)f-&@-*
z{$u9M^eK<sMN?VcXROZ7&R%Vo-)bSuJk|5s;kzeS$L^co@Z#h-*UI?g{ax4Yv+NVf
zwiiqbt)A`C5@u+4e0H_r&Aj;z_pRklExEqVUEuxv;`sjf4*~t17k{jO#5?~`t?l>7
ziqx9dYu6sm66ZX%&1y!1qWhjc>+pkzcYX_fp0TYi@jpZAjg#f7Z;yDIo;}mA^J!P_
zrL)@Nlia?hm+9SGGV5yF`9dbs;}$RbKmQ1i&gBVM7~=ZJE!$Dfi0Op!*SE1VdM*n_
z|Ja;=bz99>8&i#XKFuoSd7CdYolu(>;BcII&Og%&?wOhLcPziX^)a})Q7>6iSw=`p
zwa+AI<<#Rl*U6>j7W<}zJoUT3)MwN4kKfk>YA?4ucRy;a*`{qW9t$_$ke~g5ZGx<o
z=Q;m}VUK5qe7?MY|I?V9swd^_0?x|9uPpxjuGI=GUE%Sx@5aR{zAub(*WMTXvG(EX
zi~}4ddz0#a2uwPpP_M4Ed!~M}%)1Bk_GTY4wRm3N6BU#7(=fxTS$OjCnbm2A{~7wi
z%f9g&7{%Jmu61+xYH4E2@H%bp7M99M8sAQwP0p%%d^6%s%*%;u&mMACJ}maY<~UcG
zT6JCy&$o4HmNuq2Z=O}$XgqO$l0D<eKdZifTe^M<>zblH3H3bb^0SjBryeeT6Myq`
z;D_Uf&vSY{Qd}OHHS6ge7FnlX5_(Ug+Zd*KtP}EB`>=nizzY9J$@%MN*TjF6Z!SGA
za=7?`HFvgxqSDv3OiP5$MO#l)W-`?>k~w}@$nu2c&qLlvrWI>!ayq`+(Bb*=Am*?h
ztKQ!QQuhA4&J=z<)n^_4XpZ>9Fm0W4T4_J_99vuVb5hUjKrjDQyZ!F!Ox-QNxo~}#
zgwJ`Mw&<4AFE4J_eX=$0^x{pMYD?48^i=&SSib#duvjVgD0cVBmoI-_7kTu~J@&d#
zx=kzB{ArBJpO@PR7|3OB>9Y3JHvD!%<v)Yg-{rTIKdw(JF|TUY5~*(Kzw<!w*MA1D
zlTw{-axqOWCVyv0s<%o0`d4d5wYEi>yspaai4&XZ1++HlUOlGXB6h2APD+vS4MFcY
zOMPXzvOd32&5={$m&-oZ@T(*(uR7J$QEly-lb_tSeS72Q@bjrkvi%#L&zHZh;}8E>
z*Z=T#dcE+gvRx@Ea(T<U6sI2iXU4){t9@ka`CIEB$h95V-?jF=s=c1ci>LdP*I9OY
z{bzW5x87=3$*c1bu78gn6O5i8cu@7QzjT&W_i@I8H6PqM81fi?HXB+VuUcQvqFtac
zDRX)7gnc#ZoEiJf+8E}!6<Mxt_~ZY(_K$Apr!BI|Ay=3+LT3fCu5r&ecp{Vg<CU6u
zI~Bfuj1B+CRl6Yab=i5l{w4PgXWd@DX@1Dg*5`qrHW=S_iDGg*_u_Hc<DQgRZ`%C3
zXYJ}dZxhS$?);Mdxf*NOo3_N-NhG<}CRiqP&DYp6fBuvrM&<o#`&>TM&0WMAx^qig
z?8+@{ogDZ7KK}GzPTjKI`@8Bt1jx76Z{2_Rul>X84f}*%+Oh8c@NB`Xsn@oru7CAw
z@6j_x2TindlCI<~a&>y6lJ2g<lUUZ^TPP>r`(%4r%e#bwHy$@cq)YxWj%&%dveegU
zS<ecKQ*rN(iTBnRK1|spocS&6+uLb(lzUQlyg$Fb{?L9e`v(){x5~fOerVrkrT*sj
z!XM8=FYjS^^zP#x`|NMo+0HhTRQi=Yd3VL0cyna(vlxqm2c#XCKl>jk_WF27EB$Hz
zh1^%!uh#!ieSiC{eGWhW{W}feC+0e}v38u&)UoQ@Q}u22_II-<uA5$FFIAJOH(&qg
zd8wm?Dh_wDt8T6KitO6|ZSHBki+B6;b7p<atuoubr|X|9n|MIw*OQNz+xvvC`f=_3
zZ}Z3MUCA3ywSMH=5O^?%tJm#C?ybrfc5|-!i)T~?y^0PlF$-E0b8Lc#TE(QmxwG%&
z>h;*wJ5;DVw)bpZd1CRii4Pu$zU!UO`l{?d!%cIkycIRGqn`+zR~E3D+asrW{BL1_
zOwZrDhuN1_)wk}``;q=IZ&kjXVw|kiYwsD3CRxXgRvb);(ViA5&=$O%mBaR!UC4)j
z%S$s{+)~SUybP_kGk))y_sXwu-jX`eH(~P>E^OUvC#!#SUe(?ucD`%>F6_8-`{;yw
z-fJElwc#ok@wBTrnJCRrcKy{I`D0&;{+N6)%DR1Y@6_+Hwqg5?Kg;Po$g=Fscr>dj
zdZzBXU2A`3e5uyf`_Hg^AN!B1ANn8HAC5Fx?R~<v<)i7EuE@2^?nLt(ikzM-GjU@F
zqXTn()Z_l{ee5+%SJSV(-`ef@ResY+!3~>BcJ1Ba6tdb%LGaMojgHgYJdRn(Tz`K0
zhu5>1WBUbECmn2e7TFe*W4mX^+nEgqEpOcUw$AZQjrPO!Mwbs=;(Qk{{kO{lj*GV^
zDjj?CUT5_meKXMtB_r3`vvsD2E-tyfV*ax2U&70NZhm4A!yL9Wzb)+LVo!auEBP-L
z<<(uVm$WJTn14if^^cYN&ZTs?^Ua$1Y0GPyH4_hTYoyI8J93@xfcTNbsSct3A{W0r
zzw%W&R_~%;{Iep7npGTkj@uMoT9q9v@x1!<Nt^3;PYZb_6i-uMS*AXzc+T}r|IW|n
zu~V!G{&;QThvyI9F1k}O|Je2q8MkzbM10PdJQSQczaZkE^qmI}1!rd`Xa0${JZrZx
zC}QTzUzPG(pGw%Lo^ETp@uGC<hV5G}Z>^4goqcuEwP(-YeE2#4#k$Sj`7%YuTAI@Z
zH`l${5#Tg=x0X%Q(RWFgpU+aajNRSulfKW^z^YF4m*{^6R>9^2_oV->+NbbG>qpq+
z!w=`Ts~tXIWiZdtWPj3!H=5~cKd10slHOQ$?ncZL1~%=_uWbHK@@ahfVf6$@33b-Z
zujf3!wa11x+#+`I%e#8<B~O#KY~5I?zwXc^k7HGR#?zFqBsaz-KjIC1XYzWj>vy&U
z-N$z4Zd%yQcGKSb(WXyIR?GGG5l^*e*4rjHyggTV*`{7kIBx4^<Cnh}awpD|%Cxju
z^<hEZk-oXds>0WMR_|NRTN!&(O3)@w_Ct~FO2N}rv%?qY?%+Lp<FB^0^W~t^-k!@J
zg<J1@x&6=A6-z$v30${R|98hems4}Q*yS}ItJ`1s75X;spN5LBm5^Dh)(vKsl;W3P
z*ZrN^qpCgCwAV8^UQ0;j-)9+v$C3xXoe#XX<FHPb*P=Om?3X{Uo&CGJG9^0nSVioE
zFXzLKSu&J8>VK2ncV<adbK{>?KNs!dI{yE{KV|ig`}^v|fBbvy^I>_<x(P4Mi=0^>
zoz`{<Q=X#eQCDQ(c8Iy;#IyZj_33y0A1!~&_|e>Z+a<jRAMLyCwEUO9_#X80z4a^c
ziHFK<fA3zW+@w-IG4jUSAYt7WJK-gDC*wEw_wDgq^P}49qt7hSce91NTc%Yk_jtxV
zY5lX*>(AKVy_-0@fNRJ4t@Y{l4F7J%Zxlc7-&QYJ$5pZDb=-#QUo77&ywcWfddAGm
z@9~*d<ymgMHAi}*EWfLt;?iX8$Tymo>{gI9ZSwZe<W~!u*Geu8j`;ihi|WVp!|{Ck
z({s%a*>C#K&}?d9vR$CLq(ALf3D0|FU)@`qr?<U)K1EQeAu{>&hqC8iUw_N_`1R?u
zrdx80)IKt7xG*`aP<FzOJD>EYe+vkl(^lA|tXy_^((wiVc<nRve`x!6*k|P5T2L|j
z+w_a;9$xrz*5;+yw`;Gyy=VFME>PVg%qhV9<C@&-b7aEb`~MM^|HpOzgBZW)!G~+T
zPA;4G%egRrRi%8Yz<H@%D&^dTI$0+cnrW}|lG(gnX&=Ar<fLR%%cHwrFZ}wW=2Xwi
zU4>;EztngCld5s~@&4i3=p$xQTp8E*u{Xah$}~8TSh3}G=ZTq@*yJ(=CQp)n#!##M
z*f!`()a$hKeo2dN=WuTM<RM#R_1tFO*T04}B0qLM{Lk=1qrJs+^?wG&8{QB1OJ!_a
zv+*_WQ<Eacg0jDps%NylTsSkdSutpFhPtY2y?wp-e};5>fj^QzcCW6`KWg+ds&8ts
zf`PVX1E*(2SFX(ZX%F=M3@30Lt#_!XKK3Qi^<m-p$<wp{#a}P}c+UD^)Z~?4dyMwX
z`_Hi0UeP{(*|j~DkM6hcXUWy$pIvf2YVYN|^OL3iJu=IglN+(`qQZH}z@EwR>*YUq
z{S12iE$OP>maT@F^&ckQx&3lu&EnLpTLPUdm@U(I-tJZ}mb)SP^YL$&8i|k3yZ*S=
zuKrPURCRvH7H`3N8Kp?wHH(hr_FaB9->`f8DYKplm9Kxz|IJb%_4?uRH?@m?L_ILr
zU47Rpy6K|{?>_HkuQo9}VL8CE;>0lq(XaE2KZ-G}=Q!3UwIo$t<HfA}w`TY6O#Jju
z>Z!zzLiR1|*(Nn#U2nSZE8EhdMTg2-Z-(%^WA(Tt%{y=J=HtO#Piu7Ur7eEMkvB6^
zd3Vby!OwaxL^qsrbMuSfo3YmVXVP!?$yV$EOLCPPkA*bU>-=YkiWR$=Yx4T7^XZ$a
zhc(k|HgfG?R-eTF;mODN!=2mCznUv#Ge2O<tcd$HYnV5S#U4qYGq0#F@a660rYByl
z_;_sN9Z$_kZY+iY3s$}`+m)w$oq?yY&#kuYOM+z0A&&DOMNimT1fKWX@%Y-F;uw#c
z<;hxm8kSyu*Yl3GQr)JZcutYSx>W&JPVSy(z1H$f;fZ~Ly;B_%-u4@I%{|rV5I1{M
zfymc$h0izb*|?*LVd0EjQ<IxExq0WZavKX-tv`3;XQS!eY|nhVYXTmHpDWu;!Vb^L
zO*+3Lq2yFgb6?@C&!=CnjQeD%yIAn(7B?^bGvSjALK_t39TBj!&AzdeTbEC(_r9}V
zY*xwkPZPb4ZnucH5b!)HonmWzKjT+WMcXIo*`>O9o4ifdta)QLlUYH5x68Tr#<Ak<
zv(9!08vaZRjd-fPv1UWd#($r79btdq|DPdl-jZj}&RK7sxo7#^!%92(k4tYWoOu2e
z<MEu3^E~Sddfhi(dSSSAVV9@$sY#)+n-+U{eKOl-&XUu-<?qwuajvzCf2(Fo)h<7>
z*V=WL*n5@6MXmbwm7Qgi<#;x$Njem)nZ5W$1k+-BLD!6L8<%d~;XYj}cCKC08ir$a
zH9e&VB$by3RrAUpiE3}nPoD2SE5aqm>@cI@x(C)AHzS0W^z?cB^v_B4-KsEaSH|De
z{|rsDe=J?MPp%^0@rurZ_7J{Q-_1u0J{}XjtSh1yCtk2X=tNS&ewEe@{GaE3l)GZH
zaGnv@<3jaf!xJoXzB7M(d2Qd1A2UCieSV}Owzf8(aoRaWX?Gc47Qxj5kzop_x87;G
zWVKEuL7K5S{OCWEMz6n17H!Ndh?buIK_&gxzUAEM((_Vk?-$CSlt1Pzzu`~pN7o&`
zt7fge$Hw(Qa%RJ=(87kQgzzsP|1+>e{a9k!-&|HDdiBPv$1Xc(-EvK0)=_xZ>hb>f
zCc}9*ju*$DJ^t2uQGG()1v&l8vfmq5o>ov`JhD5LnSrnIL;bP+E}(Pz<;A8SikE-C
zPd3gc%wF(TTZ=J6TXm49%#(K+w|f`cYd$Gmzw^<b-M61|W!7jKKefmfe`Bm|w|4R0
zi2aH2^8C^@(oLs6|IOWKIQ30IR}ue;bNuSFzVY||6W@5Pj;G?X<0MOo_>8I+*P^2G
z==}_uam6p(ukF{ie=t*C<k{Bi{Vn;CE<(<lz2+0QOGoxyKA2R%_~nJg`djBkU!Gr6
zksWkd;rZKbliij-d-ZYCSDC)Ot3R)qS9hr;<$JTOp5n3>$*QNfY_&h}>*3RO|4G+;
zj&HO0{#-(LW4XResru5?7Z>Z7{(NIF?SWbCFP`i5AKSh9ojxwT-m2^Oc=?^PEG_BN
z``kKul2^SwR(SF}(++Rx^qspaLgs6F+&|Br@A&ij@8W4m%Hh0Ht5@y(=UONx{p!c5
zEBRYy{qgJf>F_N5_HvWcob|T;#Xm~c%`TrkZ>Q<}yd4tE%nN>ny_=o!`Q+YnS0$fc
z`4xI)R@6LJ4X-G9_J8-PI=6o~-&W##*xcMaT-80sUFrz`b9K?5b-x`%e~JHRU}e6#
z`SE@J7wy@#lf5%{#1s}9C(rxO@M`tvbH2OVEY?4mFIKqkzTFZ3MVYlH_0P(`FmL|B
z+V=2`iPe_dKTqyIIgL4e!Jm~OlV0t3r^S2Y(V8fmq)%#-TY0$U9q0K!ji0+xRjh8Z
zMD>Y(5BEQq@I7n(2fz6Cvii~|^P{IUU;UmnT_V4xan|qa;a9dCn{}&Fg5!B`+uNSU
zpU;c_oc`PN$5s3E`!~5Cu-xi-%{y=5;z(z0Gd7j0H%yYH{X8;5YJF>2AKAJ+t&`g9
ztG)7qsilw;r}UIZq3ZkW5+~kC+dpCRzRbt3uEeJNXE6Sq-KKGDUc8g;TZw<}U(J7O
z{>k{TzJGsOZ2X~nraStce#s7R4s4jSam!SnTm^||W<Adp3QxS!{?oocJHGuE`=R}}
zypP-S*l63|+VY;aqB-o6?$Q&AZ@;|$-R)f#WYw>x@_fJT>%a2$59aL`w=q>eTF)PE
z&336y@#XX=>D~uR%2f<QYElxcraoWhmi_1H{+#-j`NIF${#}YQ`H}vy-FN4uKkkdO
z%`e2?zH{v2u9K=~HoL1yPnP*;b(Xv7q)MJ-WSei@;)lzOiq@-|uh-r8{GYFU&yUqp
zFE5(&GFNTs_to}C?f3jV?-_r;!1zM?g~_p@f8J+GZL;8PvaXvywRo1%oaup+BnqtN
zXH5^@72WGQ%^}X>+@0FX^B(W7KevBP(XG?`4ee$1)=8SxUjID)2L5Mg%6`RE%YFP?
zP|vRVw7cmxo8HYbetE#+<?DFgAIDzY-+Z%jcTBoMQH9KW|IhtZKaBrzK7S;(;m7jT
zKg#aRczkt>cf+YOmerZb6FFX<VBPz1PWX*^)>rC|uJA8g!tiH%VRK_o>FZy0r5|=q
ziNBW8pVxDJv&T~#`()Go9l80b*0Og4JI-CY$tqDIq26SCV*NGlxt^u`H;bdAXFN)6
z&0TlOyJ`RKsou{mS#r<EUHuuHYW2$OpHGUl;N`yNg~zXp{>ptA8Gn5K=Hs1Tc6|DD
zKcl=bmm$Tbu=IEmzv<lx*S}e|a`k(A+0U{$^PTtY2ho+~-SLe-uReM!^q(Q-;}JQD
zkKAj@9(WcfT~O2zPG;bmbmmOYV&+ZnZZ{Z4+6(Rzt+Z!a|Aj;M#N4$hQ)iso^rl!i
z?{<Uj$%E(W70ZwAy7Eo`;d)VH!OC<QyF&SUVUdh?=OjyCw|^_Q^{d`r{m`rRo1aY5
zd^}@|n$f||yAzo8V+68)$L;0MZ=b6*YuT(n{Ew<Eb_T5WTOzyW^6!~H${%+htbY{p
zk?R3(*16MRT1y_rJ!6e@t97|}!e90^lPiN{XU;kXh6(#x9+W=XyfwRNpUj8V9ygPh
zpJtvj=k4~rbA#vIF=Q6q&g5DulBrfCp3jhOx4*yYpTe2UQ^Hx*`>zN8_UBc3FzIII
z_sm~1>pPZ5-nzu5>S?(1aqlUw{|w4!>(>4|6g742`d;2SPgAz<+pw$aS!n&PuBV%~
z6opHkx3t}>{i!%C-a4pByZlH`3zPo|j>OL?&-edlShqjaJ~`Gem;3lN-gJTF>|85@
z0?C+}g3)zWJ;L*vFH5eU`N(A7vT94Gy=DEkQZD7$SX_F!D|Zh^(%xN7*SJjz=EdZ>
zg?PMs@K(VvN61ropYHwWTLy;CIZ`h^1o^B8lMyH=GW%6mYJPZSiN{xul9}bEv(J6I
zUUW=w>YQA`o#_=<T9Z7(Q{&nfO^mHQHvi%3?yHw{T(=aw&$#ugyl9e^Ayd%dO2%DN
zdp+`)KE|`Vt-bg@bji+jwKsq3{<~z){g36}`Kr?OM^3NqP~3C9v|{0ot=p?xScOiN
z@vQJ}{5OFkHB7d+?>|G}t$%mtZ?d`e=t0G&L!!#oX<e_(|Aa1N+pk)u`Xko#{mtKp
z%cNpfb+UJrb~^8xAnDsSZzuPho~aLH<fDH6JN&Rod8Xd_JCB!7;rd-KRwdUGUNtE*
z=2%5vc=ET+$K*c*_20}sbS=MlaeP*s(o8ooZEi_rzS?EGKPewyoznPq{nYjLx#w@y
ze_MD(&qn;WU54`ET^X^P?<~FIU9{pS!|8fMmlnY}-6cll{PE(B57u&@5%SL!nZ&@5
z#yVr-yCZ)qO+U<kEBx>^cYSYo_@j!)W>uk+oVm?sOsZV3WYOy;T)?~Y1iP|~OyN>V
z$NkmG_PLfXH~wDx;rBnz-;eDjc1%7Jr+s;?_}Rq5zms`xo#|GqE4akIt-DhFS+cUs
zr{Y<^(hvP-_~2>z^@PpUAFaF_W16l<`OIeX44f9d&yq!``s3Mp9VxxdYhGMi_+@T<
z;N>O;r^vXN+YAl|6cr|l2;O+yclEOQ+rr<W6?TuT&$IsV{wOx@rAp2u(^GeiraUZ~
z-dWIlJoeRrzYfavt1nKzJ6B-w@;w*-UaJxQJ6ZJy>xX5>58RWy@@9`?!CKX;SGIMl
z6y5PRE_%($Q`XAWvHK*~f^^dhS`s&w99YfVBq87^BjET>`{%;HE%pzV$ZubMyf@Fk
z?Y@AWM%J%sv(vw2EIkvp!CRv&_nD{ef{s6@3~Dwk;7Lf^clyW8-&ubuKC~aPEq{2t
zO~2%~go*b_oy9xEnzCn#85k;`EO^H~p~&yx+2YWaq&K~?ez7X&uhjR{i`!U#a6TYD
z&-x>`X2rq2V>jl{d-taK>7nNR_9pF%7U&elpQ~HGGRx}P^5V6xg-y@CeRC-$#_Rs4
zOOX+KdVg#dVoyAtwf%8^XPwQDg{%7oDt?FTxc2U%*OJZK!c5<7T)-`peOXZ?<?Gp^
zZnMSTA9u)n?D<_MI(@4}_SNExQiq(ZJ_mTOaAo}am@!19Kd`9gllb2`59U<yc^>uU
z>sOhXDP?l5_|rSfKNWv8E$7@jvsS<J4g0%?d~aW|iNBuwXI04FE9(~NGp&e!FMRnw
z!`i^Zi(VSp&$d55?aBJn$JeoDESvc7>V&kLGV3f$@3~n$komTvbkc>aiBmS;P8Tod
z`fIeXt@0botUW7p4wz2ez3W%Ui6_<jw64!hW<D`Nqx1!Xw8h&AjLdzDXHB~HQoW~P
zjYRK)<qYz#J+DYDOPB6`aYyU6(X`__2kImO3WIlCxoB?lVIA8eCNYIt&wo=-{y6@q
zzoCX#^6H+#N4CZ;T{>pJPwz-{aNoTBr|HN1BkO-?On<ZU!C$3!pS?eZ?%TfND9a~j
zzWE~8?Q%}c?BzZ-FG$-=ym*7e`K7sTQ=|GWb{ai(zZxdEZ|~!?@sXZO3}1H4((+pW
zw0&yyTk#0aV^=0F?pJuS%feQBi&c=vYGZz5ONpsH?R`(I&Erp8f08!&KLe}f-+BL}
zD&p=RoW<I<|B>fgrTePyC+DYa7Y~}Od*qCss!-mvv`T5ttE*4$@%_)h+Wpb>kj01g
zMx9)<2BGNRFPAAK|Cl7PC??(h_~pG-C7Wzg!`~g8vB%fsZSi+I?X>3a7qqnWV;3mM
z{<U1OaQ76Cw<2jZ^D0#SGbqQO74P2vV8writzr8)ea*uzZHfE6<*l8e`VQWb>lWvo
z3UBvE{oH&se(UqMoR769t9RLyuZz);*K)7a-BrZq=pD=?SMj7S^hNMP9`9>mE;cn*
z+Vihn+xTd%wp-`>8u!xd<wv)d{hqnFIpY|I>dmUE>)o&ZGi)<|b9#}=#?y~=t-fW{
zg?Ia;?Vngs*cP2qll)=*lcx8_#kYsI2kz{%KHc-~^STM%nwIB$`XbL+@y~u8C0;LD
zlUT}r^IAxk?hdX66O0cktM99RwpXe~{LdxBil3%S>OTL<{;2*(B>lm;*-E!wNTqFE
zz543}N6|T%eQ&?b6!Trap2L4@1%J2wgQd5QF!XXeTq@b3aWwtP`dPvMzEA7s$g^gD
zzAXFa(_J6gcCQf1*IPQ-Cb{syV;PMHVG0gx1@>CsG(JodGrRPt;^gLU)ko%k2)f^K
z{iB7y=<VAZSz0cBS?a@lyY|Emg~s~@?~m4Oe{}wK_apw!?%w3sYhPW0YPQaL`=IBS
zSf3<Q`VIGA;RhFN=@RX$+qu$gj*!*$TAQ|>=q-WWN6x36FWCR%=_AW`Pxo!yy1DC7
z@@JomKPPQa*>KuW@}TYSU*V=JY9fEMuRNr*<LbM>$huUw8@3y_&%3vOY2^%tlb02w
zDj7Dtvl0I1TQ%Wua4cVB_Tsdw&(>Dg&)*i~UDSOdGImLjd;M(t=eJfLuhmIUVNW<H
zam<K6@UON7UxAgpv)2uI^~;jS^WzWgN?tf;(Y&7D+rL@a)!h1fnn7t|ZsNK64$c{c
zZ|CiO{UzRU@3!qp-hcM+eEu|VPWtUz`z`8|z0Vpxxb`J&a_Wr=y>Fj5JDC*|s%q98
zR<^WUe_=(Q$&5#dwr3o8YL*`O_I3Ta%}0O#RK9ue_%uyr@uS}Zna(qB>DIJh_&8Pa
zPf@+puk-&n>uo;&yZWp2oH<KN)4kTG4)*J`AM1<UIan?+-Mcj7ep!IPQ9lOu+x_SE
zE&b2XR9<oUP(0WEjEFtuAN798iaT!FGA;AHUeShQ6E~El)yOW;_*EE}>;8NBowxl*
z&L6k$*yONZ+$K6%r7_O7Iy}Lvsp3i=zf*y8a=yj!sEgaK?Yq0wJ^7i={nVLDwzDkg
z4f9KJ4g73u&9kkDja_b^=*Q$^x7a)Cw0}%KDkn8FPbYtCuhXkrxocV<&ihsQD0iI^
zv$EzbH@8ZLYiaF|jgu>6=PW3mcK6(!uL%|pKF_I}`sK?8y^uxMzS%@gjydx+w@y~V
zZMv0aO2((-3Oor3J$y6lmy1qc{`yhTg;)*#JsP$}hI8ioRh9nH`fz2f>F$j6Uw$Tg
zet2?Jp1bw@-E&1ueV+D)DoHy|uYA<@xcY(h6HyzPUv)KMS8i`z(j%k0@#Tfr#z#6P
z+<D8vKW(<-f#3W7q$|%lwRitzrPd|W!qQ{~IaKC5UP!*ae`%4}uDM+fYExDCm1dm$
zSvavr=1F>gvR~I{|4pHLGeS=kpMIBMRlL2S>f@Ky->W%&w`IJXC$aCN=<E1bfj_NE
z(wQeLJ;D4mhG$;YyaT_ke|7!O!1n#@Z=pXtKjyCZcj-TatesJX^Wiv+48O*Q_xWE{
zZ4nDEJ6UK{yXjx*j+>onpC0vH6uhxU@y=(xtN#+-l-h<L5p#+aVtVj##<8aX%Por*
zb8mV4)I#!j)cp_pW*4e#ayR`I<DDh<>d`&PYq1ko>b%#|)M=hL?Ev#a)049v)@|f-
z*Or^c_{npJ)4%jxbr<g`Z~oYRtiJP}>g9LIdwiph-ukzY_XzJk%WJh+-y)v6%NU*L
zTeJ3r)`33WnseJXMBcJFQt4(tw~g_nOv(G#v9VvzToZImRlAhhJ7w9!X$o!9wFlVu
zR`z%5OP;7;e|NVovG2j-W%g@xrysf);GU=Wx?1Muj^DYDW6!)v;S13`AI8!+r{sNH
z;-jClc(cTVFA4U@J?*Rf^?mK_wbjAt+1@EC&l7bH7rZh2@$v23n7@~@4DQ{E&vHIn
zqUzKmrv6^fLAJO0%gP<EDuX6v2e00B<xP$5qN9mID$^&q@9a1!Z@>OO!}_(wVp2Ze
z%U!o>+U(@u;j27m-0y$j>hsGtuYS!fJ$zdEt)S*thR@r-EQ-vN@;5stk*g%Hp|aVk
z`Lg9P-(2zB?I|9+P0FO=Zpvq${Jx#fUm;!ci@e|0o?DB>R1+o6OG?`JoBW;~z5Q0o
zt`4o|jGnwrwbqkgcrL4)cDU_a^(Re%`u`XIdHrWd{?Bl;{h#par9bw6G)$Uz$a3b|
zH~LdH#d%*pGiS4=K%2^^x-w?<JjZ{t?S$*D+v)%9uVeag`Eh$&DL?;dlQ3r2Jr~y{
zM9d4>?r@QTnf22hk3(i|<qR7W3KrJu>=V!S=W7?({V7jWcGlDFMyEM#n1UJ2-X3Re
zoYOctF8br?=pXMN>$i7**#9u(+h^CBJh`&SNs2NaJ0_(~+%{E}k7+x@q{DN<p9>%L
z7VYd=m0N${uh%>-i5h#A(Ekj<kJk6pe+ZZ_{3q$k9`AJ(&4;&@{c78)mmCqZb&i&3
zQs^gHyM&1fAwL_`pDAxmtUIx>;(f?Rz23ry-rQ@wJhn<#EX+>neUg3PUrE`;Wj}7Y
z&uG}0C%&2Mv%TQIWA<CvTTSABc<61Zc$eFfuWh>ajId}(K&9`iBM+WvwW%*Nj$bPO
z!Mp#K{kPD+Q}(GuSDZc)CUtM?BU!h5+Rlk0JeO|WYpYqiroeE=)Myn;&fS|@CD-ri
zjS~6rX_{=Y-HD$%^4m%;tzW*b{g-6@LH&QSFYKBAGo<Y`d;Ht)$o-f@-{&cQiu5~q
zE_PqSJ16Bl$B7pTPn!PR|DS<1{>R1N#y|2O#kbYzWk<c3b^OS#V6lDMBI9oIZfVb-
z^J<O2D#LT%B;K*H7X4?C2i=$`pAo-#dvi&3KL7r<{|paJGIC3u3(FaIZr-fBNg};s
zNzTk04NvB*zjIJs`K5l-H2F>8$LHTTXWu%lDtzkWz1rs{g<SUO`E(~r=(~|J(*vE2
zO({O2caK?xA518?l>OQ$_wMFbANTYYmD)>f(eMAyu-Uy^ch>I%c50X2N30AuX)$Ha
z=T8l1j9+*C`u?qS1NU#cm$&j}m&^WVm{?u4uV|a&eap%FJQU0=|5&V_W2abm;y=R&
zfBEiP)294W*mp5^t8QIp?w1o=yQ3@CEuW{<<nhRpb<10&>AnYwxcMyCFSAd5e{=U?
z`Az>BT523WJU)0`vv^tTtNL498~5DbHFcrK+_F<=E;cC#i5SXE?kkEbcx<JoT|8U6
zd3o5I_X(GtRzB`CIvW1|N&3{6&G+YD+Md5|(WXmBqMN2A?aZ5Ttaji0OY5?Wm$q<h
zd$YQ*=$?;izjTL6y88C#F>d=;xF>2wG+mNth<RXU@%zpO)y^;Sy)`v2j%obr&puOp
z>)hgPMmH_&4{ld@-gsTsKd+walfIDOp^HnVupZ!O+}2}wSjbUXg|Bcz;bqf1uQV=2
z?~eC)IHR>su_^Yqpj7X@<(4n6JlgX-q(X0s!^+;5pHn?_cQ^5Iu&dvZk-HM)_gyW>
zW_SF)zDP;gyJ=h@Q&}7876@+F-od};#(A0R+@;B8$&)f}p0~K=5PDp-E#kT5i33l{
zzkZ1qyc4sq+|x|&($bRw9>I;1oNMnrzN|j^dP~~Wce1JlXN>M_`h4*DGcL}ruMFeP
zio7lE-RrYloMSg*X%IWto+*~cJXjcN8|)4g$DG?;T*>8HwBU)=<7)jghZ~s0SnImy
z9!S5nD|^Mlond`f9d*jnGwKRI%kIdN_;T>^^;ysVxG(FzZ5o;4)?-i-)N^~sE6)Ij
zUw`(^?Y!&uOSsmr+s9a%lcQy^Qu7AA$2(*`O#E}h*08VkW7JCC!#7WV`%rM>M4p9h
z$lv=h%*U_qEt*w&bn<bTtV_x(IQ|tL%2V#~I3oN*hHtSfdob^jjmzh?{7lJXnRJJF
za$D??Nk(jpf3i6)ZoY8zbnJ;e{>j<Wj^Es-mz+r!Y<#xFVS<~$TP_LxGbhg6JgBzk
z`%$SBo)&|jr&pdldH3a<=l0L-re42)p7-dPB<@aiuKh-CYtFpfVlMb_+a!L+>z2=L
zBCbqSX<d*On({zQGJ%i(?zyKHk9nKp?g`#vmkoa}f6D!ji16Y5hyNLFtv`|_xb5!R
zwHI_ac%L~e*z|;_DWs?0ZztQH=5M7RzaBr7-#bt2M@wv?uX6DAX<^Fm4xLk;@lSBK
z)NlTOTwC)J{w{m_F#h3%9J`zZvy>f{49Sg`Kde9N9T63#Ip<wifb9(d?e8|rS-;NN
zWSI56cfa%JoYMT%?kU&Z>X)m(Nq&4gSNRcJ@2aC^3R`y1VyonOr(~|ZW4*F<cS7Us
zm+@D>br#K<HfIytJqd%m2OfN9Dg4m|x)(Z;zbo@me`6f?$8GbLxlQ)noUePE=hBRe
z+cv5+Zt1_=ANB9{KlX|y+v<a1yY>j5RCqW~bK<0mo(2!0&^+hFMjlSS9SI($f8I~M
zI8RzQsArd1|HU0$OAIBlN*A2}%>H-n9_`A9@wcjv%ZX1t<e$C%Rl#P<u-n}`XR9<h
zT1Uv&{JK6h@^C)a-$}Qn8P8RmJYW2E{cZan8rNI*SSS82tMQe}-DBjm>+9kCjDyxs
zLMqv!Ee{*U{4RX^@rl7fITk|=%NL^VPaCv<KUe=160mss#l>GeEj5<>eX@1aez$s|
zkL(wBEmJpI+flJp;*{^wQ}=pbY<E8{l{dArR%?maC98RLAxVZkUztVkIzHT+`<Nlp
zPh67ybWXDD4$-e`H)=K6Br{9AuvZK_+{9ToW1UX?rNx5gzt>2`ZO;GCkn1)hezBj_
ztnVLvf4S;koqx9f?WfDfKYrbE`-tJm%w>`88+t_VtXEgQUso^nqw&O@%JrM<^LIb2
z{~ht;l<$!>=7A2)7n8QN<o@ByejHPE{i)@&Vw>8?WG!vW?P}A#chBFM^3%pZBCEnG
zcPq=(d%w6mUSFCwiDiPJbbH~ACQHfJXWe!@37Wg_Pxx%Bt}|aI{#CA#{PAi3w&QP#
zAFgky%G=6gFJi;+ZPC3$K2G1a-SSy!JLkfpNhx7{DqWBB&#dFlJt+E1|HJujeLs9Z
z?)Lc@-c}>LO7+;LP3-$FscMV<UGi=B!W}{f{2s0N9dcs#ggJ>F>mR*#_$apfVQv_2
z@!{!{Z`{3gLbWTqQchCvxSM<L)T`~QCKOJbm%Z~x?#IQC{14@Ke2W*Y5np*af9*}b
z>)ZwZ8TRU2O7T+RpKqAT<I>oFe$M3GEOoInKk#UMwhG$zw$gn6iNEP;ADz~691=~e
zjx@ikyRUxc--LgM=1cuk{iFNgea|25MG|jooIlJy`tlLCMBd|MsoPoe_bIkHO!Rqa
z_B1R`qNi`md+tA)oBlI2ovAx_>s{|}?<_Mb^CRauUQ5lJ``|x=>}hFNmO|S*m(^O=
zt(rdZOR@6QtvgswF54I;z4)`}e%1PP{~wx9`_?{w8+Q6z|79JWlJf#LPs(0fz2GI6
zsc@mR@@>vJXWpys`1|0~m72bXQ)(Z_?~C7@fB1b{mH3;J)$&cIJN`H?s#q7jHu<;P
z4GEWJzv3t9Fg=lI&PmM?a!%2A{8X`KyI{lm^QLKUE=R|&{5oTu`oU)sejZ!CZk_jS
z@A=2|kFFoA@37yz|HyiQ8pR(=mzzyq|0C^Nwye|HCtb<BXC&^*&t<j=TE{hYl9|S<
zgHs+ns5G0(bx%?%e&*->ww15r?tXlHq{_eZpL)gaBUL<t(J!Zqf7ebF(cWgVrO#jK
zZU7&Hz_A&}MIZbM_Q<<_nsxSu<5B;1pPn<7OK|0WrTwezXKg&Cw>I7LWqJO@FYRy6
zKhpo<xX<cGeAJYUUC{^AekASmK9XTjc*A(*w*#iX)IS<NpZ2Ue;`pEHjgg!xsgAbR
z^PeBB^Jm|8@m=ColkG>3PF{Oxn&ja_hg>a=+Z%QL_5IPj!tqh}laFTYR^7RN5_uOx
z5{zQp<a_s4s>nZ&3#)D~TrIh7S!A55pLovaT(hrl(z@OzCvB|#yCCJs=Pi>@tiP6j
zGe0zA?X$~zD!0=sHM@BX3=8G><LeAx$4|Ety0~tuyV$mm{krEO_SMDIKCqIJ`n~x<
z*tQbyhYxH0jPjQDcxJs?&KA*`>Qwbyrt5?D)$E9ORd=>`+gqDT$IIRGuYRz?`(8|B
zY^AXFu6LX)Yq>Va@NDpDY@EMx{la}BnY-RiTz7g^R(ZMMPeYZ<b#I@@WqBNPRMhg4
z*fzn<;h);6u1kLx|FK+MVg1-_d+EZv?jo~#k4SBa>^HP=t+{c{$wP<btpTII%oi1@
z$9ud#mP$WR@A>1MwKjLvX{L;o8SAHc?>_jHU8ZrmkcTs$m%=#?h5EP;?}e|eo_bue
zr(L^n|KzP-V`smqSNmwsf9c=lY3xjwV@}$=Jazin^wQ7vMmFBxva5e{>)Q5QE4$#W
z!gqLjSM}-Xz5f{=1is0szBYBj-6V+z8Z2$kC-6)BD?R;V)yLo?mm_ZPFuc*RM!6;>
zXS1WYOz~&7b?-eUajsdrHuuW3TWk!kBEG%7-uUbKr*-A#Z&lUT?X~HDS;Jy`WadQM
zxmORlX7x@KmJDU%VD0MZVLqKJQ}SrP%l?!O`G6md`PtfUGuGt!yz?{s&gLm`^5^m8
z8`rm&+?T9~fB0_E<%;$G=EX6`SiCOkbPH<>#jKwxd6I=yVcz`tH{v&*KO)caWAfwH
z?cXGrICAvTclJfxvuT}lJ45H_l$Dl0i;4=ruAg}Bsb%8aYaQQ<j%J;@>wmYOgJt8T
zBfZ5c7nH>{rT?ttckbj!(PIm-x0YY<nEmRP+1b|WlPYrKG;UjbR?#asGQnJU@^Q%n
zc6+Y=XK0LaZ#6y7@A`PZXx8;vHHAkK+)9sZiqp2~a#^)*;glR}vpnlI2j=-<AMD%y
zm{u?Lee_=Rp7dOIUB$KsM$W>2A9-nh&Re3=Kc%vO=jr{vdh<R_?fJeo*7u%UKGHX{
zZ?luUoL140{Wj~xgf%Pp|9CHu*H?KflRjt8gQOiCx~^N)syoFDFXSC+e%<r=_@!O;
zo#o%!11@bjYrBj)Q}(gdDYxQM9i7%DEu~4iKSEB#J()b~`Gc-&28T+lw>>p$usk0;
z&*Sy`AK@X|FAA<ME?+3K-N50WkM1PHX#sw=^(WS!+kcxo>_c1sqqmB0Qo^qH?lhk$
zs=ev5O0;pp1c~i4MAEIxQ}~R3$(L*P*?258Y&<TLKBsTlezW~qV!i*2wHsTlVrN?_
zq%fp0&-eLqwCusFdtsAAG;hw=nJ@V&V0Cxq!cL>;IfBi{Yd*%@Tl{GE>dqrZcbv^@
z^c7^jJm`-Pj%!{S;jC!RHIb*dX~E=QGHE;h`rW!Ja+oKuc}ri2T-6sDdB5x%i%;Ea
zJ@@?0{69jw|8d^_9bb2Gp31f#3zr{X`N#T4*%6yxe^#o_xz*`>q^hQfHNB(p_vy_o
z+>M+Qc4qvW^keD+e}O-?KPIoM5I=fd?0eO`nPnei&gYunN}lH2{#mR{Wk+ekO`E2I
z;|kZGmH!dmfBe_C<sY}2%ooevwfB#(<EDGpeh2Q^y|w=|OUL7;XO+qwjNijlLKzqv
z7><L^W0Cp0CvP9)zia#Sek3le@GRx-c3gg^cG;^xw{LHXjX10{)nm~#KMB#p39?I?
zV~S5}hpl+bUjALlP;{}x@8h?>^K5##TjuRVKYr#3c5`3P=zGngH20Lp%ah9c<+lF$
zRk8UWSNw0kY{C8CEH9c&E$3Kt-f!BokgsR98;jb<Ys+2zJiq%tLzez6>7x@QY+^qO
zhku&W@bPG=+`N{*I+yM|zA;DMIrhtsXrV8YZ7S2I1aGom!J8ei>2h-Q*|>@|2{C`Z
z7aiwdC{a0ait+p3?C0_#bvNTTJ#T$`k2m}HFOy47M<jHfn_r$DXV$ScEKGOa;aUF@
zO8Z4B)FRKVT>VP$wYV$8ggdu=%Z&v*kIyf-_k4oaV+oru+y4y5Bp!z~du^|uBD>~{
zfKcU0#|wN7bz5IO+~M_~L8NE-4DUBb{&m^7|7T#;{lUJ>vj5Pm`VJdMjgx<mHr;e%
zvwFX8lJND5p5NB9d@TPXnt!w`asNZ!54uw#{qLS$l_l(P_~xQ*jmhV%E04d9ZwszT
z_$b}xv8YA6{=7qqtt}@*t%K;<`#=6O9KAImW!IjB9*!Fw9R_avu3!FS-&lNTN5;GL
zpN%V4z0c*p_+GyLpm%+CZq<#W%U+vV@mNZ?O<jIe*t{lxclNSB9k!OtO8ZPdE`KZk
zarg0{v-aIJnQP)JkI#6zZ*KDOEdiTc>{-^&donFEx@1lK-A?tdOIV&~KDfT#Tl?@~
zkAo81&DSi+l0K3AOlj%C6REw<>DLRT_Z!b@%Jq9!dh1ODe|**wkJrBMcYL+EzM5Bb
zjZEkJmB#+oGR<!%`lip^_gna@P2eO4_N_K<PYVAtTwm>{l&i$hG*8$x!OiPe@~1y9
z!)`sC(HhtOGPGi$RZBD<gNW5UHmlOruT!n`Vv_f76kRPg<<pTKk*4E)Red*p{SNWl
z<>t5QMe%L(o<7@+{(=+d)QMhpUwo>*<UfP9xkJSRzQ?mJw;w7OH|#75e|pFGMdkC$
zA6NW(V%2@i?zrl=B!k!eIrU#(x^A}Pv*+6%^(EtvvFgg30-w1x*p(%|K9}3?94+`m
zudKM^ip<2%#n(5y$)5YnFnXhg=bK9L$=kKB^!q)za@c=YQegNp&hyN-XMNYsZ{Hrg
zPPt|7ab-*O`HBDPw%&~TqrZP=DCd;aLlZ*#9@Mf~sQ2A?{`t_lT%U`HPp|x3#mo2O
zn98S49pm#X&tL!i9HiG+sns-5&U*fZ+U(cW{>{^8-@MT@+wLXHw#V-$US{u`x~NXB
zqS*6_(xvzB*Dl;=nbNw<bz+<Ge9d!@4?Jf6876dg*W#!Ou1(jDhyGUkp?B3rarNty
z65jtAwo8Z2Sbz4(62lXM)d{<W3h&EJ{c8Gc@(SnFXQz~t3b@|be!RMqS=Kl8kI9GJ
z^G$m!Rk!|Kdbj`9I=Ry56>1G0TuSZz=Unc~OWd0oRAjtE>PxKC$z|Kad+VO7F!%I)
zJ^u62K6m-fZ&T;2s}?bMt8Lfbe=p<K79TSc=dw!1ja`3B|1&hXI{%i6_~Uft%lrO1
z;g9nDe}dOU#J-GA{jBrm3wNyDkJ*)>DW7kB^PZV(IVqSU;`)=0HY4M@xVv{*wpZLO
zc-&L<SNqNSA8Kzt-uQQsOXc_d^i0P83`MRM>bB>XR{mK2ds|<RQQf6$_5%Mj|1fUZ
z{$uf@dfp#K=Q2vp8pmBN`5mH{a+`JT*Q0x!D+6L%3Ri8Gi)cEMGUw-={Y=Vj?|6+q
z{gc*SJ$JR}p6h~ZHW|yV-pVK2J&z&u$p`JfN_#B-Gq5!LXK1QEyfW_fto4Vb^9Ao_
zeK*c3=UsRAURK8ESo`_P?&-zK2WDo<HZ94%^6}QbXFsBUtJg^VNL}E%_>b6+!sQit
z((0k@zwO<&Y<qpOw4~RIvBC3Q-IT@0_yhu%&CYoD@4)gkOTOEm@qZZqN4Wmm<{yj8
zHvTdGFuilDy236A6YGz{xytYE+;L@H`Fw)S9l4zcOn+&9xc`rX|33q(!pEhPPCxSJ
zz5T*h@%1BKXa7xU=jxJjRj<S|eDa?@=YimP`4`7?KdgSF^6_~7w~(f*<;=2IFWfTz
zUbZTwRb~=j@e6Iye}deSlOBhC<eQ(_CVjnN;?x4i5PNN&=GRTu;j(r5N6y|=$@f=1
zy!NYor+$0=hwT3hN4Xd0{%7D;eiYW6v^;;NXzSL0OVvVpPi$Vf(V_4_dUu|m*Mo$A
zeKqF)8JctcGbGMuePx$_q+a;P`lFMaR$aVZxy>phuaak@XKv1QFXP@ddB)rCum5s-
z*$?lBI|6y`DeT`<T5h?ib(g_`JApA1Y>j_iU-YB;U>)z)&7ZcMHGB8t;f|e=;+8Kz
z&FwO(p68zRS?eR4UVZjE>$-(bRvQ1<AE_Ve|DlrpN4WW6%*s`n`#Hbt%}bq_*5ohn
z$~@}zQ7gtR$7c1c+c@_??bRoJY}wE5|Ij^tl%JvQ{QeLAwZRY68`tK1$xVK=_KH;O
z-g)!Wc~|Y5n`vV%wR>utVrz!eZ6-cvFGl4R{}yiH=W|Y!|E1TMxO^U)N6>NRd9yn$
zpR3RMk^YaX^*6_l?f<xxe;Y;Do&P8EQLpzQ_if#@+u`kjdoHW)=g@sTK|<hoVZMr7
zwb7cs*2exKBZK6aA3ix#Q?2@*ZCdDeQZ@O{4jX?3@o?^MrMo7%-F_ixJh@G#`TebZ
z^&jQtR|=XJ9y|SXU#y?U&B<+HG4rfS{_Xtx=<l-q4_fbk2>#D-^ReHaYkxvNtb2U4
z$|rEo`ISG+p4pa3T=dk5vzW&Hrf)~I+hdt;@*Poc67_thefsIMakWO!8b<A7*IE87
z^;cK_y#DH^IWby#8OBdPUQyZlqSE@6@>`zG=PtUj+3aY^`MvqLx`f@5zU52P?G~@}
zTyeB;`TR}CIkY5arX)nK7Q9^er?5{u>(jOB&Zu&^q?E)q<JR|0_C}s-R`1RYv);e?
zw&LU`>KqN}HeY2v{|LXVvFy!xu7E<<9Z8pNio6n^<aOtXIET61<Gkv!)#g&i+H?P{
zoqEUoF2lrwUlY%-Eu7@MV)jz4H4FFORA7AX`7QFvPLKOq66+$`j>iYFs*7$t={tAs
z-fQ!Va}C@D^NMb0`MJlH^I2Wqb0hreXNKcBCCh!w7r&ep`CG=z^A=-(pLwau*B91Z
zPx`i3wWkzr3_M`X?|*8M!IZ5&t8LH!zx2;|kKk{&AD16Io0-43qT97Oc*@SHDLdy^
zrplMd?ryw2kJIKm`>e%}_TLtM6yNcsx>ww1%jGX2b5H*ET~buL`n2xcUXw`%$JqD;
z(&w>D{7m=Vc+JLnrTg-i7rm>C6*wj?(0jtzz#wVC{DEoj`U7&dAO15O+)=;%%WD7a
zKlYhVQu&?ZsXBF%;P$E`9+`O|%}w`r`+QL;KKggQlkPbK-+4=nx!&3I<+}Xs{ySky
zf1et!+2=>!)|k$Jt8J1U%{hsab&BOrwcS&W@LiWN(w@$>K<G$|T)W-&-&X(5$r)Vv
z`k#Tvu5oF_I%}itMbWp{&(9Y=QGQY)Q}+AmgP%o|H56pRAN^-Ie82CX-ADT#zt+e1
zrC&wKO<a42Q~zDgDP>Mkvt#%54s>uZyg9Vu=eFmwew{mgNPa_oYmO<e_t84tJs*S5
zIBn9s@~padjdy-@(d_9qPy2J8l>hwW7I`{!SMTdf8ozS%k|mF7W#?^5e=E28KLe`(
z=zNBZ_cy<Ne=v3Fxdr<L-v-^feR#TffGbO$!aUmpCoZwvd*R_`eP_;-lt=rQ*#A&F
z|K|Jeh(CHiT9^EZx?;ku|7P|VXO&`az87D9?>LZgsLy4=({p}R%Q$T6jOq_+KKeVy
z##8IZHGlS~SK?BgkqK$rCvJ7iwViP&{j*@riU5|9lUjQ=ztfH1Ghg<f;lHc<8ESkV
z?(eFT-WT~td4)TVxtQ=0qoesn&y8GU6*^C3Y)GEiXWo-M>*LbC@CqBPt?&0e->oHc
zGGykb^tT^Bv`74%S)VcghsPh=hqq(P4~LhF|2lhT@~H`@m*0#v-LtGZVxIZu)UDY`
zHd{5EiX;S9Rn)i6ikrLOPt=b_*@+YHAMstD9lT|dakKHQzy05<`$V}S*If<ldGb|l
zU;E#6|CF-lZ)ZPvI$!ea^79Wo{)l`pyS2XKqwLk$H}30CE##SGz%8^#cZcVW%3@ZP
zM6dbEm-cV|dN%3%vHd*jxBLyem1}kC-kr$1t_5=5n$K%{E>1g;@${C&JpRDr#v1-N
zcbv^CIQ!|WiRWXDyu5X5*XCTQ{NORk?Wt!%<qQ4*KepP}-5Yjq{CM@$D>H2^lS?M`
z=`*=3CK-NSwazYquP*n9OkvFWV{`eB@7mtBJ!5-$l}Y)gqXIT27q@)U(ny$>C>L#@
zbMa|t(UAu!^@8)aPCxG78)y1=(N^2!z-y%}J3qWzT$q`x5*{wNML$_*LS;vggYtx_
zNm2&OS@@&wxBbxDmucxFv~~C7Ssz7hbcEBtJzSq@Zl<@ZWHFmf)4Bx@YTXQv@3(x?
z_b+#aOK!TLo}lE6{2Z+b;>v|KjPv;1!kdrQE7kMtf3PNgd-!3IjT^d;hg)53ovFCy
z>kZwn8czdH@O@fzM@FvrdGnm&qqWHo*Z<IWe{0XY>c{TGaS~SrQ&?~6zRQ)p&^*EG
zv>9L7gu@#S2G8mDTi-f!iR`7IxaGEXhKEj8Uw421rSXYt*Ev<zopMe~CLSv=3jJMV
zk*c(FuiMqP-#jaKylI)#+q6ljh*|i&O!E$g;_H&fpZ;fP{m<}V$9|Tt(Hil`@AG}N
zwfi6zS-)w0uAb5@&RgMc?bC{G9Iy<$@{6hV{Neo{LjN<|us%91w|eEB*S}=;H1j^2
zc3sEF&0*5Xr#*c)&udv6tt{P<Y_M?2OIyBKmG8vzJ>>&Wm$D>zvgkb7Kb7N5b<^Xg
zIr38-lrx#P*KKJ!SKS$QV&=qjm4z*f4Pw%HVz0B?Ycgx!F3<Y0J@h|A)8e|rhM8-N
zm&d%m?8$ri_L{<%eJLpp9y{D79;uFgH?=HM+-5yX->TpLxD<aYR3sfc9DY6D^sVYv
z3EsO~j5CFwd2H@Im83HxsWRw6Pw$NrE2sH(H$9tbrkS>*?C;I_E;lp6XK5xKIVAG_
z_r#6L_9dIl?xZi8S8c#P>)O^y+19ncXHIx4ZxY1DzVc_w&8L2qK8)x1Eq+Fw23f}(
zf9E)loc?6LiJQ#sWr~MgoW!Ve%(bCOrm)TOoaLJ8_dhh%-x#JQTo?PNw(p8O!;A$N
z^I6(u8fPZ=vTr}zc&-1<8RuKGe|JtxcdkpRo$xIn?#@h=O2>{|*NGcq<XTQ|UHrU&
zbw<sB$Lor(9)H-eUNQ5?stpg=bXFzZaq~~!EqP3&f&XcIr@eUngDp}zRcs5F{$c*G
z_3g67Mf-gBEnIz`TZhZzuKLa7&)kNA4ZRA1bLKo2{h9t~{q6Q|3qIx_VfoQp{%H4U
z?-y6YOg87M-DT=w+V;FAdSm~bl}QXIAMKm3{g5X#^u4y6pSJyC@ny@e-2V_>Yo#53
zEAQ01YpJs&w`fNki2s@P!Pm;8g|A&jrtEB8Qs%)+?<6C5*yH@Klzv++b#MRLAKRmM
zf7I{PTe^4e-g(}g&!%p-nRM#t-IHI_EG?Knto7%OJZgJ$)@wVT^qLl?vPDf16ZU*y
z%l^fzc<SHUmR8B^l)CEK$s$j+=AM6*{*UwOZ>P8#%fIus=xY03etbnwcg<5*<9E_g
zSLcb|?s+2Ed%CY$>TlDB`ah!a-{yVbKfE{m;k7B#Hpbp@<z2gPS>(M(w=_0zwH7$@
z>&&<yv{q8O+1&A`>Vy27$zeZOf7|`h+4#|T>$aWiGp<V=TP%3kL^vjPrr4bc6`vND
z1ivVbeRiE$@0q*J=E*13SDOCF7fwCZmK-&^cfRqT()eb(Zk4m?!JM3$vGtQxKk6-C
zSFt`~$4CCo_32kkxwjkn78WaeoAlkUoO|QxjPJ=;uGyGPJa)9*v{q#PvFX{GkJs<5
zEX>U4n`ym!W2o7K;<NtQOJ3c2x0r9@;wL6umpl%cO>N2SJ*pHuy?6&}{A!t2g`LT&
z<sq4?{xc+<nze9;m{Ihm6Pu=Kg--bp(mdy{cC+Q-M_LcHf)1UZwAj}zZ0~&c<n5YA
z9=>?=^6F9Nd7R50SI3swPhEfOQlR=<&BsgnD)Yo-%YHGc>@K&z`P5*VwVTzk!oC~p
z=Wf2WztGOM?qEHyopQzGz>muh|7Q@2eYvY`p~>~)!z+&Dt({kS<HS?7pvek)-m;H;
zQobEnf4*O|?r{AU^LD+Nx+X1G7liVtUw)T3lixx)drMGCsr~MkKd#?>D)GXd+pjnB
z_eD?hyGwUIde$3q<jP9VDBW$-Q|{eYexl^?<ojx~&P>x=u9b>yY8K_8_d=@Po;ZJ5
zX|MXD^9TMjbkAq{`sKs%WBj~X^Q87qvNzTJ>TUVvNyc~4drc{hO6iM_Me?UvuGc!j
zt~~48&P9(G+uSz%^H+n}CWzfu)A0$HkB^g)#rl<Y{B<|&x7Z&5-FkDM*G{gY$=g;u
z>a=gpiA`EQZuhN(?i^L)SM`&4uxXNUyj}|5SJhSTcQ{n#iI!}b@=>@~s_T2kuF|Le
z_nJ4}j6cUVAyE41t%;3q_WxUT=(3*JwNIAwE!ZbnJ=$XWc-uXR<E%3_KEB*gFLf;N
zQ`6R8_tegdy*yf@DW@hit7Pu4`+xeQuO*4yT7FA+hUu20v5}QA6U-Us$Z@RS{g3Np
z`lIzsFRstpQt8d1eko-~_^pjw7r);YDe|!B!pR9odLDd?=Y5%*xjN&6qoVbc#14i8
zxf#sNuiWFlOuUg5w&qt((T=7s>a$iWuPN&Iy#0(r*|u|KPh`@&)|}V=bw*iYw@J-6
zeuG|3FX5NJ<O5#)XV}6w{b6px?P!n9XEP1BwylcS{F69aAy56%zAb;}*aUv8{x<DL
zXZFMV=37FJ<;#@gPOpsFEwZi2;^x(7|3vSd3T0HiGlxaNTK!piV+||Y-bcUr`HzJ$
z))vaB<#`>EJv3dRlzU#o*JIhguK(?{VSezRp|zf`B%kkx(=F|Yyg-%Rh5bg49)6aY
zbmsB2;sY!nRxzz(I9feN_2FNh(2~_T{qkKF&nmL?Z{%J4vD@ap;6Ak)M}Ns0msw%6
zqMeh!1q-cO5;#xSr8;s^?YWdwbze76xN%_plzkQzhYw7PGunCKkJ-et`47D_RMYfs
zOb_yuOzud2FVQnY$E|1`AA{wu_uo$aU9eTY<)6{jf80Ox&R#xx;mohvI~UoQZnkl)
z$#W3)ySQmX;U||h94FVG>@9kB+<#;Lp>13}rxj*>dg*CbGvf)9o0nd}%qI`_TmSqe
zFYu#pu8vO8A1$wIw^Q@lPkzwndz6(Fm)@VdZOi_7pXzl*|N51kRM|1l;_hkVxoeJF
zs>n>Udot&5_O%-Gyvdc*h57F;V5~~EIMi2f_33qXiNog=w|9t2o@XeY^Ka_wIO$H4
zzZTr@r=JckG<d<1eZla%WKwnb=X++03)A05WSf^%svqMGxcg(0tcju0p<5c33SSr+
z=O^|rtquRr!1AQ$&Y%2!+k!vK%2kH+@160i`KjC)&hzX`YlK(5Dwo=}*lcO>_vb}N
zs?rzyVHf3XTUfvJp6klYNqdA3mAk9toOtD4nyS$Jj<-^x!)i*Z*YA1z<m%3O#rD73
z|A6<{YW-&2(zjt3a~JJ**%|SCn_#7(N)C%xN=(PhhMeZ<>N+<Ltm{9zU%ZavkKxAb
z^_}xfE^c{mG1L5Re6-V&0*+pZw&dOH7GD_3*FRhw|6}Jz<D*qBRqUOmZ@vDVQeZk*
zTwQGAz&E4MGm`ysZo#r|Ne{1RiM|LF<+ppqTC-PA;MuicThC|vPxZh0{>c50$l`B4
zm;QvWIB(vSb~Q?1BlFUm{>9R*F@Gk%^@yHS$=@@HQ*B?u$M`>D_7C}Hrm;8t5nXlv
z<kVaF@7}&SDEYj6LSAge^M%j*tNxYUy_K%7sXBY5x>^eZpKtY)ifq2MXICDy3Ay=O
z{L%d%I`PMRodV^XO?c&9+MlW3%`@fXmdRB(sk*Dl@*ne@FS5Vm+wP0)sr>l-P}zN<
ze+qYXpRFv^x%TjJr-Dn{-BZW9CiXCx3!hY<eBSGi-GlJg^WU@=1V321YLlDe?%jdU
z)_t5-w;+Z0uuO`ezv<}}7nbdvl9S!KQqw!E)`Y3)jk7s(q58J$Go{_nci0v22t@Cf
zt}1>VYjb_GKSNJKVna?j^D_U>>&&Bg)F!k9ZYh<U`+3&K4BNaa;c&Zkf16Ez_ga5z
z-slo=%tynLg>m<4O=U}#KFjrU_CMHteb>77-!-ppO`BTqf!EpbLb`SJvwI=$&r54x
z|Id(A{eE-ZMXQt@_qetlU}MPX;XglT;)U?3{}~R}t+{KTGuQ6rxyQv1dD()Buk+T-
zKbw8^<g5MbRPQ`Gvrx|4_#@lvBUW!8Rfd;OKCxuZ%Ch5j2O1-uuqEAizTf`Z5)OZ#
zD@|gzd*rM>#xGE*$nwnSU|^W|+W+Uax3*a++sj!VFL<=B*Y4pI<Hd}9);w1yYjvCn
zyy>bLz<$dAX{_$H)?)3Rm6Bg&`0EP))lFT^-=3B~F__(kuioa1>6~Yi4NI>Fw?)ip
zoY;52SEKPpEA!f_IdOt}rrEqv@H~H^F7#sbAM07(Ww%5(g*Ki%uH4tWd|hFLw>az4
zQ=#!8740`u*q_PIuiDNx@AIDpMTR|m{#$GLm;EuE^-MLH`S_lv9*lmqj(Pjr_m=%~
zKjgi-^P0p$q3w=aCSP8W!;?Pe+qX68Gn}ksMPB$-%~xO6ZQQdfhsQ$Qrnqn3zN;JA
z+h#fLlKFh%9RJg=>({CO@LclJ>~!^NPtlG$Y<bHf9Fzap?@{1imVIjv|8K*J=f|3E
z<#SY2hh1-3Q}8QncJ+#tFX!xCVzff`u;ndl!C6mM&vi0<W~KSGRQ<#1`SYjU6P<ch
zK(FHVc9w~gZ~tdlKRNo^J)SFRQzI8K+5BgakhNQI{q6CF{|pZ%-`{q>+f-0&=7-JE
zTbf+M#icqnZEWFrF#Wg7YpuqUs*7bgo_vf?{lWi_!|-?bYeUcf44kFMTW#!xHh#MC
zO8EZSo(6B{?2PWI{}j}Y`$&CS{n1ZK>(VUihljtWuGjo?_27qJzq8(K=X{pXre*nj
znZM)9OS`1?+rkfqMJ&F*<?$2k`78d-ef^vDNA!ONwjV!|133RPaIQacQh%A?=3N!V
zUR^gkSqf+Wo_%=&ALFObyV+$P)OG!_`OnbARClT>(i_y*ub6){cmc=z6<Ow<jE6Pv
zByKY+Fg&2n>h-yCf^S7cpTVLnUHKQ~TJ2<>#(kM&-*EItcJ3mFysw|OO=uE1TXaa}
zN$c<TTjVN!U9VmEM>*E%p7n00O-GH^PdZWVsx+@Pg`w@sgZWGAm)al7|Do!Cu)ekY
zc<_(>59x>EWOfNvHoeqclRRUCdPb$B-qO^A2jeW%=Ul%%&3?1oo@p*wRp+KIzx{?o
z%;L#JMTg?8#!nRv{B%@i-e&zV<k8O450`)6y!f|J)4lrZkLstlH`FKZ@0J%_|M>DA
z;RkE$ql&+$Y`U1A*1-2FFNlBh$_IbeDp)?2+n@Kx?mt75;lDd}CR>HqHwYir`Oolb
z|3k$qTVCrPm)^MTR`f~t)3;BuHy^EED0=;1f7>h`@vy4@41GQm?ay31a8W_x_Yt*}
zCo2vr7GHU8y71wD2BsRpZQDI;j1z0?pZ2X3z5HCJh@;n^eVO6g82-*e-QO#f7fthS
z@7m=%|LA&9nz^6fZEkLM@}u!1^|n2>YF8@PuE}{<8g4zg&?9}4ubu5Fe$_?FSF6Ks
z&13w}(8OMMDk}F=OvT~jcA6h`YS^}KiM97@Z49!gSTHTXT$Hco?O}Bm0fv7|-mNS7
z&%k@4dvS$Y84uUrg~{8sTD=|^bf2AA#8(vFz*imieR}HJ1Cw4!)wM0X%$IVe&(`ri
z*W{Nc<-H!RoRhTl+kb}jyT4i|wl8K~QosJlACn)I{~1{P|F)U*>IxlxsJp*Q&aV8&
ztY`1TVxP!NH80+z$h^a`=Rx?3^M~Kx_<TT~yX3@|{|s$)!XNgxyiNKUq#f<;(WKSb
z;<~*vg3s`Z8N>VdK;I9_hi1*06c_K#(dT-w@0O0%lTvrxsn6%l`4}~AKXVNykCW!3
zc~6UX=v+5qRr#)HQ1SM>?CQRv)xnY5{-sTtQYC-t`XBN1Zy|pdn$GW%<N2}q!F~RF
zKb9ZfRwp;vZ};wtxhcDT^SrFM^kyDM&*X-e3aL}vpHAqJSb3~|_RKuixxXXNz06ff
z(d-I-dU}G9vvR9;e_gG^`mf3#?l<nyUG%E({L%==T*cC0CH6FXbEk+WpR)hl_|NcQ
zxnSn5<8Oa{oc8RIYEez{s(F4K+J;W`st5mQzbJY&X-=+Q`_%45vv=7=Uf0cCuiNZk
zw(05Bwt~9$wYByC8CYIkG`*Yut+VU!;WBfpska@joz6{XnQknZQj!uDF?CxWyTZN;
z?v}?*KRlcIaJRLZ(Cw2dT#t1GPaKf>&oD3huh{+veY@NiKlsn^Lv8zEYws-?>z23u
z%9P;oIBEK3z1%nE;+hs7x#m8G#Rf;VW+*1CP_62XJAOy(mj988H%dMCUhaxMHqq&*
z?wJ`Wp}{9_pL65mV|*Fly|iM}Gq;V`^>4jAp|j}H6NmTPn_DN@?w|PU*Y%Z#6Pkr@
zTj&%x%6xw1@TcnXlC9HRLqGjEp<=X>Wq#h@o$FbHdbeBeUG1NIM)>ePv2ELwqc&cN
z>7QM5a9yYNi;KpSkLU2`gsxEjU^n^GEz`BTg}i=tDNmL-Z<i7F=k=xJjGNQWd6!Oj
zAmG5*`2G3%he!QQj3hSZr)}Qu8lDs`H@o1f-n3ofT)kf{EArMaYw*tA`}p>!DfW8y
ze1<;1eJ{01^IJS`K7XNjV)%L+`-i`mRcu{rc1fgPf8sXrz`qYpZ)~ed|GG{+bpMaU
z#k;mh{XM%<i=#_2>Wx8>)6||NZw}iUPCUL<s9m$L=C<;xzU(Wxmwpu<v;5VU^>X*s
zl;CG>D{dYOpJ!YDxAfWfIFpNe4440B$U0lBdxUpVzwIvPXF^LGgH(GAkE`V9pEI15
zV=uUMYM<oS-PW~Q_nZp9b;jnY1|86ByQA#&Q@v-^I;(jVC)X{zvnlGvL;D>4p6~NF
ze}7Z>G5hh-KWFBD=&G=eypo*C{x`?0|0zR-rCx}>ZT6o!oA{;CFD~|Ks-)$b-I9(}
zxfNnQrIDY#uX}#|sr?tj|M6M;U9-paf&2}(`w#MZcU|)D-qn<ON#~-g%%qoM)_U)|
z-FLZr+-(UvbGy%HK}}0@{B!A#`Z1NIo@=kRd5cY0Y4hHu-}#vB&$sc*Kk)Hx)#^{H
z$rnDkR9g4EO7-m-snar+*gRqQH}gSN`mL4qhg^&Lj;s%CGAgLss(NNconzx>g<rqZ
zHr&rV=Ww=erIyCeRi)B*UcIdemk~c*S}1MAxSf5$`32{rZcjc|m9try;p3{$CsdlM
zK3E+8yxt_`RY=LQRZrg7E!wH|V4-HQ^vV}i9UqS{Nt$_`idNteK34thN!gm?A6-vx
zthe*?tE&IHdg{ilpH)L|&b?E7`Sbd`jX$E--MQ&pFfGHSV-2U<$rI;oLjF1l-Z{3+
z_UMiOm;cGsiU0AuT*I%EZ@OmH!Gn`B3?e80UGuo1^0;&C{bT<bgzL`7Szfw)M2@lP
zwa;}&wnt|D-^E$?eLV3nMt;UNyS$e4SwF8;+a@0_I#?+^#avLQ<3xql<K;f`g_rhS
z{yYEc$$yG>OwV^N-nf6qWv5Pon{M0r`9C~MYzSa*yD(EmzWDj$kWBNA>&|x%dPQ_6
zF8R;E|3l+v{^9=&9RJjREYr-}WBTx~(<coP<CC&mT15m8>bSAX{rmbw{E&R(eW^e4
zAB|nEZe7n2b2q9j@*a1yNa1O5`=ct|g1>hjo>O?@W&F}Oix0<-_-4Dz5Bw3j_HIP>
zH?B`drI=n9G36SV1U==HWoa$fPhvb;!~d}V_Wj4#o4>kWv{P)omism>_L_NsE93Tx
zZnn^nUccf7m)RS89;=%^OWa)bV~6*Rr7zc>_lpeWQH?mYW&V2SUtT}B>mT|WhhJX*
zb+4PYwYmGwo&_`eZ{?XCTWQ?FxjSF0E3&Yu!0JCk;Qh^OkGJj9{3E>UhxVh|$ggLG
zKAluH+T*dk&|&$L9iJl?_qa=csrdQt#q0Qk(+}MLp()<GC%Zm5@qvEp^;!Rx=a%NH
zTym~D&AKA(=03M3rdK_T4BPH5R!EukxAX5b8`u8~to}ciek_V-{*m`ho;fq@nz&S9
zrs~EkCchoamF`5IGEmubQ;JzKSW<TqheO4WTR%-JLV_m;X79G!H_d8lMijsE*WyD_
z^+(U&bU#|B`FEOWrmp>_J+aae_gqytzHOhjUGKu$JC=41I}|@X@@a73DeU><`sn-*
zGy6y3t<Rd?KbU`<<IQ{JkiN9*YeJt$IPsnC)wy|!udH!ePS2cQ{|^2;vHyc#_iBHU
z_=?}()_)YaFSsu6?YW~{x9r}uouAJm#Pj(i_kM*py)K0-kF!jSpL_p9g#HhW?Z^3V
zJ`cOJ-ah5N^yvrkY!<Ob+0ILEul>4j!AzZH*}JQkhNK+3a3J*u&l#udmmY51A2DB7
zJAQpy#f>>OQ}4dn&-~c7{2!<Ge+Jf*KQvS(KQ!B!`gpdr$9Lt-IF-+OsmHB_F2`(7
zaZ_*g-}3gj>T!j7?f(qhzBl|+tC9b^;7{<w_?}<9=Ncc~&JDaDeL3&X)Oq(_RV><>
znzpS{!TQK*14CmqnS`&*U#uT3|06p2TlbIlW&Y_O`5*mf=-FB<)o|!?&=s9d^>uXz
zziIq@<q%+an_cwh)ZdPOTrTfZ+Bf@=#k1Yha^3C=`_^jT@mJ~kZSL{OrtipGna#p|
z`=<Vy-@c>r(4L*sUi^9AqpMXoW$xF1yX6(KrX}V-$?yxjU14|j{C|dZtCr}B*MG{+
zdUh$|RPTWaJAR6+czmVsZ2C!Q#pla^zKvh&%`<Jq&sn8Er>;x$Xmu+-8aBCHCVke0
z`En6*b6-tl+_3e@qs&*AtTTPS>)%}M_~CiSKEuqY^zLL&lTWId6VF{Om^f+GjaS^s
z$_pjgo8wo-OYKp9u)k|Qzg~%K47=Ey-rPb4*0n13N;@Q;88@t%lNayYWUuy5;MJ}C
zrmyRN_?C9^gnfH;QBPoJ`h;Xgcl&Zng^zQtzi>a)-&H5|@k`Xa*$=%pn;yEoa+-KY
z`=`hcPuOKX_e}l0Q>IV*vz%_IVn^>b@6Wb98xNJoD}P#k^q=5I{=@$n1n*SjA2FDr
zmwQ_>=54Bd>4lF|5>L%P@Ogsej}D8kvf5w$zb*KnHuG^jOI-E|*{!|`+>ItjrdNp6
zeH52FUdAu4zqT&i#xA6lf4#)IIsNkrLd6btFFk1&bmyYhiqxM|8qX`UUshrK87yjX
zKJnI8o!rN}woWtCn9cV0jgf<Fy8_Sr_^fjr$&*hfPv8%{e@E(fjw$O~;cd@nJio9r
zfAXgi_Mg|^PX8mg{aeM4;E%zN&i-fU|EJ-ZUoGEmvwYL#wASZ+(TmDEmr3&^Cf(W>
z_UvTsk#!8FKgB=nyZrF%^R9=@kEVWoH-GWlw91?W?@nhuv))MpyZtRK?7jX?{Lhg5
zvp!YUJ?Qe<I>A5H7frHPS03SAnk`lT%{W#$QL)cb^~SopGwYI~rM;e{e~FpT$$7GP
zt>DK!p<OGb{N|c`eKq;=^W5_{_;1^LR=-t0B&W6AvZr>}`EAE6y8^;xi<>ImScM-v
zvu3}Z<*)Ep;>YwkGrrAdRQmAt>wkuC6E|OZyR_xF;*p$>yLN=hb_rF@(|+i^pGD-Z
z-gJfO`F0_D%r6)`czlO{Z5`vIyBrtKYngtV68|v&!moJ#LcYon<v(lJAN$X+@+l|J
z^JgI{Qca(IuCJ5Po2_EVWNEb6@LX*NL(=ZwbLIY>*VPd^#=dHjz3HRPGn7+!%-9t@
z{(Ov|wQ6twmdx)Kk~Qj&W-qx}ypH2<7)RG*yN8W`Gq=_AnUw4lms)yfSIeA)GiTU~
zFRR;kuKU4pnl(Ib$1CH1wV9iv7W`CAD12xA*Oza<TgoXjJCP4h`_GE@aI5=1GQDH@
zdQRxfFTFyKT(|6LjWbicV$`&x-=`;Z#Z!ac-P@Tjv)fON>I<7`v%6!q<OvPV;|pa<
z*D9-D*sXj1sQeGDxwBu}3+%DlSG;5E1+(?D-Yeezwk)74vhS+2+f^C92ChHL_Fs%Y
z+jZ~JRTqCAUugr$RPDnljMvvk{Z07K&@@A`|7bn`EwA}1yNsqO6dyhPSn`i+U2S|t
z7I$Wn;8~ToDuRYxZcZ!C%skGl+}H3q{?Z-gmgPE|+O77@Uu|!2zSuJ8=#}383~TvC
zCm)(n$*{-TJTKv~vVu%P*#Wz&=RF^;VRFowH{;-oTJ8I9*IcsBSg<o@<=w`f^uD_v
zSc|{!D$&$CQ5Vx^d|P?F?CKjwo>WAx&0K%t^M*gJq1I*<i(c>@7xX;tR5t(P>Thv!
zyP6(ZFM9R*q(ZuKpApBpXWXp0XA9WgImq_!|N1scAk$xKmBN#Uj<&`>uiHttZOF<h
z=$&=Ftg5v5<&w+k(_Smou5nov8p>uh=lS07jS*)KX^LyzNxrwQ|D$-DiEgp;w!NF=
zqFO#p-SwvQl|=Q#^9x_Te^T~OaCf+oH7f@*QxP+Na^K&6=jhZKvn*DgS`xSNO;zww
zt&l5OnF}xf$oJc^`Qq8nOv(2GCb_fv`^P-^m9+bGuASvWW1*NiZ<S@Zc0Zgebn5e=
z&(Yoj!uGSb1^EYVmf<V=@>ryzPIJrUzw_%FQ~5kjN~FAPei`>wb+z}x4>MctEP1tj
z<>CjP)7?Lo&8^qY)l@St4|3!x{HnBn?fzzEDZ9xgo?A|e_%}E(E@AAK`1jF5^iS{Y
z!<)XI`ocO#Zmy;Lh48PUzh(dUUb3lvSj$y5g|+AQp|_d`6sHyx|GksKJa6yocNR{&
zdb3OIj5`)Q_n&o3`Sb68+_evSwGZ3reQ577xvO+d);YTE*R}VduBp2xZn@5+!OhO0
zJW2D;{*!z6Y?a>DBY&W}P`POd!vdkB{T4D`zpj7j{g3-(?K1z&504#$kLC3~TU)6R
zcE=^jV!;Vpv$lzDmFu5-9rn+@-S}kDjDUwHe=p#3wCUSZ_;vjW8=s|8me-VK-Fo@w
zPH=tauX+~0Qlni$RlDsEZt2|eSNUytVv6LJ9`;J{cbodk`im;Qy$-7JxVrSBiTb5j
zo7H<mIwew8t0+8|kUw;XM{du@Sk7IS-{z*ydX*@<cS~A=S7}kv?P{KlKiSp$Z1)v^
z)Z1VF$T#$>_C7|&WS>cb;_p_RUmpC*)AsdetIboECcoDV>PcSM+V^F~$rH<S4?LU4
zP~3Q}Tg=6HURF%{`l`8#d5d3$37xBqU<vZHe{Oo!N!-P%V`-c0uM5SKXI+og`?|qN
z_<UlNK}FTy+pK)-ar~c-+qafft4v#SE;R7;+qaYBSN><%RJS^NWsP#b*XEhL*Jf86
z?&!8C@x0+FoonmNa6s^m;Fa*_y~~@|>218i{Jn$av26Ai>2C!ewr=bGa4vhd%BOel
z^Oi@qTPB_4&h4!0;<R`<se0BY<DZU~?gwvXG<%*>%davmcduMZP|@;d44?~UBc$4=
zya^Kz+HsCkw(!=JANe8E48K*M2zkyJW%gYDEmPrnTkVNgw!{l&e%I->QMEQ;5o0Ot
zkIR0tGJmn{vh&q{=hVb5{bTfFW8!0bVP)Okby3bTb%}uo9=Zpgcr5Fl_Ybt(xA(`|
zMK#5L*9yh+y}Z@h{zutP{?ZreEmsx@cwH}$?mn($d*;+?(L2e{4vU?aI9B)cKSNW=
zkLwTQoA&9xoGvf;hjaCh+eg<IC~uhbJ7CMU3px7=H+igm-1{zV$Gem{20c%lx2w*6
zW&cAv{>|2p#ot!^UGYcvaeT{v2Hw2&>)-FO$la>{!+p!mcR`*y@0xCJy?UWP`IKT=
zz^7Av!3<2Rr(S37?X?LiHSu11yz`*dlu1oj{&}t4BUu$vdBH;AJF~j-*JIjsmk;ck
zdPY~nsnMKA!1HI-$A4~CY5N!OGyi8e$X}m-UgU`WvmcfGtt~mso{xNkj{Cdzws~u8
zpY-$gWj2FaTkZGyZT27Xt{>OU@{aD8`EmPjmG!BKKd<d7o%(KFUD~VZ)^C!JS+X2I
zr+st%(H|N1UH{s7?POQ$cSigR*z&&3Tu9rM>w(zsB{H9z=jZ$?UH97Whx_Uit6A4>
zIXHi_<}EkldF`KGzm30Be%SwqIse15*~R96RIT>+*!Z*T*Pkj=Ru$v&T<77#?U}o3
z77L{_2pruUUs_}TpP@;x?!-LtjeU3j2`*bRzxF@FL#-=%rj9#G_`mJEWqjiNX-SF4
z3|${L+9Z4ZdzABT`C;u!U*$h9`wwf|T0PQ^^~$dH?&N>>c$$l+ih7UIW~SpR3=Hq%
z9e(hCv;495BYR-G_lNN2(zjWjZ7<@Ed+eK~F8TcXY4!;muTRhEnUg&0KZDQw_WukU
z<{w<&bnVj7hrZ&6<oH_V9@8~C#Bn!z+V4}18=Gp+R=qvm@K55V*7?;x)~Q7}v262r
z@?^y;=97}T=PF;=?pSZMT;l5Xo&0;}ZaAr-vEuIj>3^92ytk9BKPb6B?>~dM`h5Mv
z(!Fx5410cEeKtR3c5y?2Uh0fGL;jlZ>-PlyGc+;RRL(nU|IqSde@l&O$=Xd3$8Vc9
z6<!TkbVJkL&ARgO&VN@Ieb|4v!?d|_(cSxTODe3DFDoaAvnz<D=S(VRIxZi4wrX1E
z>iA0g^oupJSs#w=k)9p#$U=FNw}oX+%Aduu+NahY*|E}ADz1GY&%CDa9{wk<AMXDn
zee|L99e$A?uOqL>+H5PiXtFyxRD06h{N9rRZsx2iZ<TpC)?ZlPy8nZt{LS>k=Vk96
zZ`8L5)>-J%exz#7<pZZYe}7ACVOD;h>p1W3>+k#cMgREzp5@oL;O5Ut&Yj&GA8!b3
zJ%0VuYPJ6ikL@;hJh{I1%NKT)=;#$H%%_^pR9Dr79*s6V;_n$!Kk=ep>$WcUWA>c(
z52oGcsuOXUSRsC3pTLJD%+GEoF1@WO`AW=LK+(;rYV!H@moEN07bkaN?KFPDigou+
z>24DDXmXKNIp*A+(8ItiuW)=nOX>AEhUzW6k81P2{d8wIU277(y~v`&%{ol}kLG#q
zgXL-qmmaN^>6?A$cu{I^U;XpmQ)k5tuX7pyxUMrrZr#&Q=Wd;T7ym4AdCUGZdw!pY
ztjk%#mCf4uI+N$#%*hpar@oT?nfjGETrW-j#y<?}JDvZapXuH!U4}y^zC9F3n0(mh
zxTMOw8P8|k-E>)R%gra=+1=$aHQnWD&GPR~<|V1<*Q~Vp7$$sl^X+rFd25tsPH5hB
zEv0Z0yT>w)!*d!x7rzeK88=OM@w2ni`7$-387%w6KJ1&jboJkhrRG}vMbjR9ejR+T
z{?M)KI-S?nzg@GW@X{ep89uADqQ%PdJpO1)oqsfU!+!?99noj)EEv<w#oh`rzJ8``
zCHnO+f7RuUKbEII3KPnVYMpzK`B{XD&<@E1sv(<G{#uCU)uja<UUBN9i?jRgof8-C
z-m$0jj)eLQ<-ku5R&ZFd&*Q7x!*z1+2l2-B@4WA28W@{#-ji~ic;RiD_WU@@b&KBJ
zf2-ws(SrHi<MsRaIFB!nS}NOp>kh};K;}7?s$TDsuPe-}+qt^iHz((2xYxF3zvArt
z<p;BQa#&oI9F_=PNpuXJ<RE|Hy1VS|W89U?;tZUZy>l;Ml$lkx=+@TOZnM)FPU~t;
zUN|oK_3x8*=8tOoqCW0_+xXkCg6-p4JLQ^?58I{|%rRYYHDQ)(;>0tB?`s}!e;8}n
z8kxzl{gdTV4gJpfA!|1nHtV!!$X@wiYg_o^>g?*@Op@l&C!fj~O=DSC*x+bCwa%yF
z@IP+j-<*G}CPlodabNYLE0u-g%U!M1NWKCm-!k1t2j7$@bp42bWdBFT`Jr`orTxS3
z8of!+8_Zu_zvpnSaH8yzU?!`==X`&z*U4)g4cWe{=)AO>m0ACbRiB+d>^iBvbpFkh
zv^!^+O*bZ0-jOoe$-eWr-B&4#iRBr;_Pz<4`02R%^dh?%lgx5TUmV)s?=SbC;b6so
zh8%tI*qJu+`3rxfm!xUzJDsU=Zk0!#+`C69>5mzEB;}n!PBQ-^y8PRlk6QO{WZf4t
zm5$&^O^b*+cFxt)E`H|QwF@TM^zXWTb@O+Rb@#v43+|caR(SmKw24>#g07^T^Pk~h
zk)8R!1Mypu|DCU6`rzMI<ElEXe_7V1EUUG5&rWIbb+}Xa=C-rU?l60Wnx}1_o-pjL
z{Ach_<B!Y7<;VUrblp?`vHy|hrRQNE<JMQNzB^-E$Di9L@1=FAp1;#y(93u_CveB+
zlzDyM57b%yxcW#_@7nRGk7_Hc9zNOG#oc{#?wqO4DsP|5o~a8pGK-dAd9-iB2k}2b
z%-=5kXk6u-z2t}1`@;ph)~qaF9~=F0!i-PMM#ptlD{Aq*?OC~lXQkTSsFIZzyY}@w
zUwPJ6$maI9@V|3Z|1SNf6kB0_Bwk>T@rP6AE?w12y;>7$?99B{OIaZL_&$BB2MxzF
zCOT={xsxFOKKfh6--Y$5_nZDRaMoCVu*>hBCvau9)3%%YE{ATLlsRQ*TE^P7PiBQH
zmodD58-HeA|9=LyC;u)QRrFmyeEmOzRE@<opPA-HFQOJ{6q#!|?|bBt>gn$3d&JQ{
zG;iv6@i*K5GqAXPsBb7;{McTu#(VzJa4Bzh-F;IR-Qbq!YU5Uz6>Z(?6j^5RFu-Yd
z{WZ4rv(984TeI_VdGh6hhYY)e%Ip^xeyrnuy)b!MX4IMso^74WvMaco%$X*hxAMAE
z{AoSIKhc?mAMKB{aYlP@+0><x5^-==^ztXqGwwch70Ba!=DR0h$BFfdzh$aITPJKa
zY-suUmghBFio@!y*EAp3o@;J1w6r*QaQTh9FF9A3?wxc}ckPQ$dybz!HA!Z5erGPn
zts`uqQ)kGThxdBT4KH36y7IpBwKX=ek0o^#uIs07p2KwD=yDxlo8BhBhtGDaS)A;P
zlo0;zTiLeuac8OZwo8A!SKW8j$$DY(Lw~8~$$~vzsxApTEqSKhl%0{Z?r7rj*cajR
z<oEZc&ASw=KdHW6X^MhJdr9~)rMeHH(<^NctSF6KaOLfrXB)fTJ^Sv%E$yaSHp$|~
zGo!$DsS#5ew``7{u9Du9v`h2Cob74#k=`j0yQF%zWPUsOWZM=aoou-o>rLLVG_08R
z%k9v%3a#r}_AlpWofk8!DqRv)bYNHbnRVNyIoyliwQHyPS;HBRpL_^XY^uM;w^eNA
znv8#v*MejIo!fFbX@8K9k+<lQb@ESU=y>TYllE6~*SUM8NL%cDXgp`;_B!e4o9UO=
z6>X5tSe`K1xbDr8S-pEM?wD+mDV4B_;X%r*l?f`}((cEHZFbK(ot?g7ZrCg3rLk<x
zZyC0}TXR6-I={u_oC<ku<r5X>Pj>C(F^;Tg)6F{h^pal6#A4~R{|o`UjEpCR-Dgt?
zw@{qKqR{jH;Ch?Od-BsunOzfW_?8PMwB6W!*CN3D_|wR<MVmbMJkB_leU0JzF#opv
zw@V-9zj6F+^kezA>DMkryffKdw)t|&%;c`CTX~ZzZoe^mU=px1J^$WWC707YUZ3o)
zI=Ngv{c5MiLT_o2dYSnj;{P+;y6p3Jk$vv({|xQ-1g1U9Wquf=|8RxsuDR<}cU<Y|
zG+VDeBle%mEQ{PwbMxt{dsZ3F;eXbCeEOuAimuux#?#U)e($bt|FS;!+Mn{3+2!GO
zs#o93eGa>lHtE@?ulv4SHy4sj+o{mE+2g!&;lboM*2he$24~(#elvR`c+Rih>tEBu
zH~U{*QTDrQYOjCZaNcd<yzb<V%DVWwbFMJ2^RWB7vbEFl@%pTZ9&-EJtA6<<&viT8
zc;LXn^IM~~ZOP=YKje3z_*^Z&*E+#(V#=>C|9P}G-0{PV`9W>gYuCz1RNe}^DYVYq
zEP}}+l(k>tfTcpPpJtqYves6!u2;31zh(ZNk{7JcTHjkI@k9K>5#`tORQ7p?PCaBJ
zRycQm=AIoa4I6H{+^d=05yqu_?x%qKms>vy|1+>0|Ig4A`h)x7v*rhxHq5JD`!0HU
zZ5w;QymMcl?l!xyCa$JuL0e_n`y>mMSwE8haTxz+V0m-FKE?j#WS_qa_c%ZNUAa%A
z#`W@|J=0zXNV9b=KD({jTS7O$W?xPBw(LzJGgY+ZK22P-{+;Ua?l1jY>}Ni{-n(69
z(e2hy%NL>@3G4|D$~)E{u2|gp`pS{5t~Zt67tL8US1az@oBvn-Y5r4pR_`vUE&6rq
zrr8UrH5YVFZ#Cxnv%BoCgRKF(pPTl%e;hRq{~20yAK$Lcd)jsD4DX&F>K!-wXFOgJ
z#CW_Wy!yighyC0(@%06w)2=3`N&ftok{YAGtm16VJ>9!&ZWY*HH3+kmc)omp+*eZ#
z%|jtiH`_{HpQ6fj@y@@leKJ2Ddwwi!UAHiQ<?Zt<n-(9}(I_|RDSLZw{~>nO>RCTN
zfBXG+#-q!+vmb{ymYhsZ*36BvnEGwigfn_xJMI`c+;Ly`__*mu{)6@0HKrfm?x_;*
zu<^JjbWLIUnYLGvWzinZ&(hP1R!!145o7iI&h^{o@|*OJuNQZ?C-LF?k%OyW3Ol_z
zmc4sflWUG4uSmWo!#cZv#V^<lKZ+O_9!Q$<ckS-G)~2s&OFkAIPy8vP|KeKzvl`Y9
z<&V<4{|Wq<Ta)}?Z(S~b!1j1EO9f}W=RQ;1dJp#Qd?LxnRmrTjKe#?+{tpfQw=+Mg
zKR#n8I{VSl@2x2xo&L^x`R4Jat)EZCuIPRib#~Xo8@-Jo!sjk=t~+%7o50^m|2Y0=
zeYpGlt>Yup%~$sX^50sp_jk_4TgMVLpG8mI*0^nRp0&;UIV*Jx#C!ZDD`x-WjQy~R
z|A+5C-pIJuby}B~_-~9jTDwv@+3Z2h%{&!(oq`@i!*-oJ`U;O<Y_x2X7n{Fn+3hOz
z?0I?e-0{45l}o0rjSv2v_ILJwhOGN-^Ec@qsP1(>GEZ&amB*L%%*d7d_qO%j${O+9
zLyKbf#D%mKe`XJm5O6#w`s45Kq#CE@Z`c1$+NWO8{V4V9yw1wf{KD0e@7&+%>gRq`
zNi+LY=jy{CA(o>4)biPWW*hmB>mT{Q6<l*W`p5pL?boI`mtBnB6d!eX+XEhrEkPfR
zHZ2xZ{CT5)cID~toj<l8m@hW{o6E=Tt#(q;=QnAqUMbahtDHIcx45S4)x*<`RLt&$
z*_8^uee&)cYx0yQfd^f$%>F*}dhhY`qN*IqAH+k1rMG!F_GimXQP5w&(06!imFl<F
za=GS*C+7T|cs^%S6GMT`%ZLenRn1pQ*<Z(2*KmCdo|e7yaXatcrnd5L>=H4J*V#p{
z-+5tFQS5q2$JEp2gi`luA%k0|l`Jio3%LyYisP3T$VL?%-LZV_{1<hV$3$K^b*<X{
zujiw^M3l7kwe1P3Lc2Z~PB36R{`Gx~?14iaZI!QIzKyk8U3Pu4yUfEs2lwvFncOLD
z$$t6L&e@ZjM0eU<{WWJxm|Zj@+oHuvlUJ|5^P=*}ud7VG&)>*gn~`+JxuE*_Hm##e
zC*6y67jgCJJGE+t%4XpMviqZ+PGwcA+PM1E++#o5vX@>id8_6B)vMRwd!|Is?*}|w
zzvREUewg}g@#F6GlFo%H0xu@?emul&vbJPhR}166^;~D}$T{_t%W*#5ox1g7?7ewC
zk~;TKu#_BPoM&Bg^YPZ&`M*WgZ+`I?ie(ZxS(q{NUD=uz{`f~~`=uUn-TC^;(^fx!
z$2X&h>J7P-e}B#U`N-R|wdbR6y^(9dT4DC0kkvghO%)9CpO4lBW$jAY6}PZ>;l26y
zZh5?%V4><~#Q!~_$e!zO*GHz?e)Cf%=oMZlJ!kR!!+!>;Kkxr8u`yPg`RGJVXr|Z=
zQ;q{=uYdpe7k0<;*wbUS1=+is3$<^ZYQE)Om+$$~dcJ+;QiZ*p%ZjDg7;n0H1Qi@-
z?_=}LdHsv?Qr_*8p04{mdQP!DW8Q!I(}PcL)^(=sGRrISW<0*POM3TS?}*EbneK>e
zcGzUaBgTEeNbXPVy@ulW6^Ht@eRFEAdY+yc@ve^h$K;3ltu|q$^4<3&cYSo5{`Bo{
z-DS&u#dO_nKd0uAs(bu{z=Hn_72)su-(-Kx|HklfdROir=@0P-to)m5oa<b?SNz!Z
z{C8B+Ij+{e%A03WHZb~ByLmjG6aKkm!utXv+ui>}zsDb%e?$G-wjYxpO8a-(bJghF
zQ@ohB%~SN*{K{k{<}0gJCNEj>%1tuLz)|#lf|grvs3~9CpLOTiZ5K*SdGo4hf3*IY
ze{1U>ER8exvHHXIZ}M06_<uNe__uN7hokRiR(y6^_DVQQMeMrpN}n{7NM=J7hM6io
zGWEKJ^#>#O=VWVoOb^?b7UU?Dc~K_0i9`3#>t9`eyZ=c3_V{7{@bCFU`M1ozoe#hG
zb$8_2#LMsOYd*S`^sJYjb|OV_L-+*ivh@#7Khke0^=GWO9{j;?>z2DO#e;A71SERj
zJaz3&;k#tDed<ShRtX&mI=17F*R8d4>K~r5u{*BnRT1*;(fj4|{}|gl-~Y$;@pnSc
zjIX@9#s`m0=lA#Dmp%82{ev~}+iKtL*xnw$aXXg*PnB<<oBjRX*PojuUf-M0^{4;U
zl=UCh@AxZx%kKI8wf`Ad9sh27;;^~m%KYyocQvc3lFoN6HUA@W_}i&DN&ZrI`|j)R
zn>YU#?~L`$zdpF?F^6^ah~E^w`K|Z;9}(woNA^qP%e^`||D6d(y-8#C)ct>V)Mxj4
zdij48jti*xsUKy3IwAgLy!HeuE_<J=ZgavNV}7%{eB9pqPbuTtuJ=cD(|*V7ofh3O
z?Qy`)Y0pCYY}*qmBfD1Ucmy~+`FJ+w>e~E=d$;eHb^gSCkzDC%Dqf2WPq56h`tqVW
z@WZl$`8Ldpws<gecYjSk@U^GsKf`>l*ES9>E+75ZZM$bRPxX>%4i`_kWSJkCY3(du
zczJ2PL&5KDTwVWO*~^~|H`7{Od;eLH@uE2AjXRX}>=}ye&)0-&uTWrkckJ%Y19n$$
zcpFT3vf@8Og>duNHGji67O}A2xXHp-WxoCLtZ)5tQ{J58<2ZU!UNg?Pd1BA?;)lLs
z_uf4|x3_kJ-b>le+gp``JkM1;m-+VnWz5qx`sIaBU9T`t{8xPa>w5pIC9`|A4-`A5
zGVa{F*JV>D1H(zx!;D*tFK4h!@?W{8Ft~7`rQVq@qH$Rl+RJ+W2Hmw$nQYs`7A-9F
zz*>w~ug=e}?z_88vgG^Yf=jaGls|^Pz1p{6fA)^f!=4vBn4iD<o*MQzJ;BW?Ja=8@
z*(JAc{m8jfyZN_y*-OjNNkMhV+b`O^ntW2``+CET8+UB|=p2_iHJ&HVpt$$G*(Jl~
zAJ->OeDa#z{r-=6&o}p-Q|x}$@3O_#{P48txALYvy)wnz$n9pFqXlC*f8o7dYFoDM
z?TL<M+)-j9yJVh!{L{EIE0@0f$JOn#&#?O^)850ZhbPZH!!5x0TvF23I4-@gdg*PS
z9ovmk(s!J<H7`B>=~wvX_Sut)Hh$hQy==C{vMmvj4KIxQU!JXN{&#S{(2@_K&pQ*Y
zJ(-nlku&X)wyUzfmLccUcefaGCKNe6NO_QQ{X~>ozkJ8t+_kztia#f$H0+sF_2ui=
zwfg<#x5N*=XH-8Nof)Suko{Kl=o<&wZMTYroV*UCpV^h?Q-7Fi?%`(vUO%s2dGK2I
zVnxoXi0N;3|7Qp{t<O7ui`o0{qJ4UfD_@jnn{_UV;<dUJX32NEXS>m|!YM{AE_uCA
z-%0Xt{^arvx^eVdhQsz&bD<@y4`eo5sxLe)zqay>`StSecCp*?^dvrP)SvP53zu>1
zytyA%KdSHU`p<A=+av8X$-4^2YR@~*k9oj<XutZI&74WAy#*uh1(m12+*!vNxLnHQ
z>Y}OrmLK)@{d#)-=367(3r~LSX6!wFTSmjyUe5AF&ho^mlE+2A#<$w1y^W5!GT(js
zl(>7xc1}8XHtN;Gh%ZbM%%?nM*)GpJwBKc)Q2jxb`t191w{B(4<N1;JNc*(+hS_@S
z7PR}dI-ZPu960Nmli}okonK!?pFAq&G1W~stq*>YnOf1gzRc{az4+QamX!soH<srg
zcp%tRE%m14KSTSht&ek~%eW8Rapaz#R5<@|*S|S+(*GF_GS+A3=85h7sADJb;qJ`h
z&a^8__wI;euzzu_?2U9^{q>UbO8cJwsQu5t_U6{oh4R97N_URko}B(ouT6If^My`R
z&Ajl**T2`SeB+^f@MvL~6xYY{`pWx!l54*`{adI0acAO(MPIfQc{MsnXrJ@Uf5gJv
ze`qhi-w*w=6YEuHvrhTXux5hLg8ID&m>K4Io;Uq_wZixxhwX2{iXz*2rh7iJcfL~!
zJ$)zZZKCuv2H~d}k8V8J@IXdx@v`D?{-EWev+F<j>$hL;USE;_aC`gNzZ=ir$}0&h
zw@Z?++_`7se3hc*%$C2d_eb{z*S(3nv!h7t`_dos&#NEixA;Gb-kkW*cGi&(JzMup
zk@{9@d0ZfR&AQ6RjGpI3zy4=9y#9yU^tZ_$MZ;bnoX_(ovR0a}e`!pFqV~M<__dop
zRi{+Vvt0ir_`)9LhwFJVCmw&8D|G6>x@-O_Yqvxcx8Bk{v|5J2LjB{q_ih)rzAe~$
z#OUC+@}kX0MY7I3wwbeO?!A^LU+nf&np*7IyZ6TW*Y9k(Dot6w+PCtv)gNTtpYJac
zt+rIW)#R>$q3YvnrZW;Oj@$3v)b(Q$$CDKPwUza6Ie*Jk{Qjo)(XRhP@gv`V^D9@x
zyga#9cv<Dzyv}ly6-vAYVH2kuDLTMvDZ|9E{)<k0`>!c06{}w_cROe1tz_unwC+NC
zp2In}OTP8W_8;Qrb2vYEe_P*qTdSmUKKsihngJY%#Z^}PyN}rg_6Sa%l$mHe$F=fP
zXcgbSXg9&4rmOPp<>rjSQ*K_KJU_o~-k+`~e;iA>O%f6sPv$(IXYptC(yPz5+?JR8
zxpCf;vIoCrJ>4p67rnD*qucFJM{9Q(nbLn#UoX$~*PM6%w}ChNAHBP5-jQ4y6K6bE
ze%B+)!uQv$R{Qszzs-w3$amK9$MZ{N$){FF-`BHn-jQ~nYtz)w1nD_Fxyg+$;}68Y
zxhpdN!_JaYl|?f<Z5r4Z)fGx?!oRowXJC2z(f)>=;Op~JOy?_ePAf1MHH#U~^N=ZH
zpY_prf90~O2+`s<cm0E|{*hdHkiX%N<?`3l)Rdq3%N{Y?9`G))Eu)mXEK=Nh_S2~x
z$INEEvPt|X{8;*UwtDl!4O_h{4xJV$d#$~>ad+C)bk{Hm38%`Z{>yD^AI-L0H|yU!
z%TNc!f}83Esu6sK*Cm*3-J_nb|Kqv-@U!^%7}NPPCQhAPX_-*a==|>X^$8(!${vKD
zJ-K({t51hFzMUs|^`H7{vjacckA+QhdfI(BKWEu3*YJP5+YNuVvs*kZyxqt4=030M
zmxPM`qf$Mm4iu;|M)W^ARyL`6-q%n67FMROUKRD~o==n8oiiNw=hWPs>0$ByF!R5+
zNtq}1$u;KIXjc}dx$NM~E%HjYse8FE^bW@Zvq$b#nd_Eq$kcX?eo{Mm`5((4u}KR&
zO+Fhbve)d4ZND0xH1T|#YpGOy`#-st3MZGl3YJRVQ|7ttUc^_ww5B@yQGVxl4!u40
zy8D*OeeF5EVvFI4**g-}b*=Mwx%Eof^Sz}TYaFhg`nhY`jQ57OiW8O0t|o;)_mq^3
zNS^wnPUdQ4{9RX*-}8g*wl8#+jOgBWge6DTt@u#?E5mnM9A9f$FQ3`&vzeh_)u|(o
zm**8<pQnB3e22+Ijw@e1Q#ZHH)=BG}oOW><%d)4k#=BJu&lN^Tg>B7VAHnN?xN7d+
zw=G?gYTKu(h4Y_K=vi;uVe`$j=DN84%$L`r?(jK&QoeIT-aLSvecr!0r6TqnYCF;e
z7Dnug>DMWm>%fw{eECni=+zbN9+#3!u5Y#W&eze@F4r;qYWsb1Lv`Wx#+YmSKh{4y
z*R*h*zEtfBZqM9&<5llu<PDQGw{Oh7!Orm5<T1PMMB%J&woUJYx+0ILv=xN*Bu_h5
zw0s$#?SBTZGt&e1_Rb3P{PyJGVHqadjmNJqkNWxOKf|}S%agsEqb``(x(98aDpirb
zEhHn(=D`ND`x#}i2l^*UJYQB&*j@PBp<-2RVU29&vWTNLmsYtyy{~fJQ@VIpc4XY$
zZxc^OeBU9-AocRsmK#$;rY*lToypcs-{>LF5yQy2DS>S^49WSkKfS&Z)*W#m_i^@8
z35SSXM^1RD2Y5VZURU@sUh=iP$UnuHSJUkzKe8=NUo0J6`QGMXuHJl254P~rv3~ZO
ztQrq{=owi2ER3_vU-9GmajDRM3m@r5{XQ~H$vSl_r}Ekp6K`zk%ll)kdSIFjgZQZ~
zF~9P6!QnE(ue^^s{FS~Ed^q6L_U)ge9ZpHCHaWF;{;u2m!eaQ!o`lcJt{3|!bgTXH
zv4zXCcC`rp+<5z}>6YRc%dlG$e;zH|vF=VETkYycj}tRjRs`L8eMI2a-MhMPE=B9U
zDciNA^AM|{?;6i!rB=&3Op=Y~B0HmA)i^)smyN7oIwozsU|QKXLC&sMJRdi68t;F@
zpIk0>$WQ$IuFnM)b<ANO4<5``OSJLMIw>#m@4|nE?Z^L!us_t<Zf?bYVETu7^OA(5
zzg6GOQgd;7y61JU?1q$>N#bSf>^5CL*pKhu{{D~X`Qy7(s@f*))82SFPmxpd!}>N=
z!7~zUES{N}rFP$f=TCCAuw)4TqMiI<`|<QgJasx3O%~gD8hc&3aa=|E&y5pdX}ho7
z)r<5z`P+5Ts(B$PT)y%Lew~pzwt8{Jv3H7<E2DDVXMH^TPO0{l?3ZX?JI|{UPZwu8
zt<3+r*wXHqyy0SRSKs>h%BP`=E#;5-?XCaq_b2D7+syU1D$XB?ntNuFo6gtl+_+cC
zDk_ozj%D+b_9Qeb<?u8#9bhufcK+M{pCS8iec-<%m;TAT&Tv-Rbmym3PS%mf68q=f
zDDeOA{IaBi{F}Pd2dwsWF7cP|dU9p??&wK}-xfxl%t@YT_&Fwf*|*gG1}Ei7{Bmg(
zGJacE+<iHZf2(=7?6mp0SxINgs}>*mc)(Bk<R(v@NjCCRcI3=|^u~7m*NI0>ITlZT
z#r@W--qeo!KSPsu-OXE1FFUS%`76HVR@nr1zO|Jm!d^+SM|!7Cj+%PQDCRCteYp+)
za?qT!$l{N3J-3$k|5LTSKUqazb$k1kr}MuXrA8+0+&Vkd*rUfN{>`cda=|j!-}y-W
zXJ~o5Co@(1)c&m9dmB2Hw`^!!`g!7>tv{bkd*9%8*~)&?lP2@rq^|Q3*VL~o2}_^0
zRH)RS_d4TKgr{Kn)SQWnW9GO&&xu>iwsT%>$E=IDp9r3Qxz_*8T<(9ImcONbD7!Qt
z;a-?sr?J<4$Cjz4xt=Ml&$}f~xfU-z)!Y1Cp>a<7b0>HE!V2w&;cwo4*i<Wgc$av?
z7g=-fZ5gWD8xH0wM{hmA*dQ)dQY~FQ=h*bO*6GsTGU3Z!PJU^pe!-OEP1Cuc3d3)r
z-p4bR1gty7lyy5P$Us=p__*ZRq}Pv~w|!VQ_es2CI*YgNoPzkXHasl+tuC$lIf8-_
z$)}^kEFMc2$CW9qdA45d=B1S@b}L`nzoorpt$vMdk+kcU2(^}D$E>|0dQ_|)#>M(w
z)1Us7Cosk0(8A|3e3MHHSO185?)0N}Wpu2s==*s>qO(3!2J?Bws%48Nq{zQc>q+?H
z#2S3%i>|ZBzRNb53vV6g-7+cq?%C4pd=^FXhRJCeZ_2gWPCoj2gK=t*pVncYZ*q!q
z+#i=MoBpe8>GP;}`|3?*GJIa7|Lyi#$B>ldl8x@o2i($_cBTsZ_URw3Q~5Y==3>Wn
z70upFxjqgT@7%l{`?Bo&<kJ~P)=!jMn#+6TTnO)(%f}~wH!|?wa@%A2th3uY*RESX
z>(qz5srqa5*C|E3n=BVG=~t$1?9^`!oid*DJQNrz{5c{H=U1<-2tToPb9$fkj>nx#
zwr5^5N}i*C^FPBT?wp_H(;^neo<6;;VB0+T56?Sl6!LhNwrt;3eKPe)tI)K@{+XPS
zakn02mNl^{OiT_wJ|{xh*RkF3-i_E7*R0n3lfK-d_V|=xNAjd=*PKmvo=DHtK3jTc
zIg=rS>aOP!BJcD~cE_qcyXR{;DO;0ycg&KWldKo>YEECj^k<11OS<&Q=g(dhl=h2e
ziN{H8_%U%=r?JrbxjBcPPE6gNyIp{Hx|*p4PtEEK70aLA%x6o=rLH&I7(dFce7n5$
z%j}kbJi*8PC&azDj5!qhla+IM%um~~UA5H74)wV_e`Ca}s-s7u(snL;vv-=!99Ids
zXeU1hfk?lNtCurH>RoyKZX-+B+<z+{{%7Eii@M{lyJwf)l2xyT-6pMQd+=w{vF+y5
zgDl<bU(4Na>z>@hXSn98*!0LfAC5l!9du{SWaqsRth<}1XYzdV6R~lYet!Ci)}kuM
zWm*1@WX*oNx7~`~sT+KzkHcnmzuCRy&nrDHKAW7<^5nFX*2;j@N4=Ib`k%OaQTKiF
z)pc7=n{^o$EPcRpT~RKDU0dp?*i@O{mlyB_7Vem2xne=H!~RQp>*iUP@7bKVb!o&b
z&jpj8-a4N%{j$kKGlxD&H*x8XvkCD(wnzE%ukYG=Q`~b;@3nJJVtr*-dz(mPmrY&w
zE+;DY6r-j{HHWI%#98}SyuS51CbHtW*XGY9KNsa&%uLx@*5$x@Xv1%gE{=mg8-8br
zaTydk_xAkEE17OCzN<y^k*Aow(WPRZi<5OGbUHO|Z9RL%qbWq8<8gZ#pY&}|m#Mj>
zK07<U>;BdUf9Kc;&#veEqq5yhpRr3iWP0S4gsx}59vo(f_{h8aU?#VS&`NWy$f=F?
zH@A1y#3p|5cKN8@_osxXimiP~T$cZer3*{MzD;{uHtEQxyRQn4nCo4i7Lm*#x5M;b
z%s#sx&5!nX$EofA_`Y|YRBZl{@XfEo*Bnrme804M=j5aYrq!oHLl~GE3>X+{-MJo4
zjd3@b*73PG>f9XNJ0D~d-R7@8on3HylJf2{<6{=b<L-PsS|lDE?X_;&Vb10)!apDX
z(cbg%;?~MN&r-unxcqZ?9{;S1T(4T0RQCID#)IncHzN0qe16o0J$V;6)l2AgPsyK5
z<-j>#&ijO{e|lnn_44I)b6=Tue$NTwd{ND{d95w?#iQJYo}1?}SROOJasA!)KZ2A0
zasFKS@812bW|I>idk32z{?EXzaCMJwTc62}wu{Y&mnxsRc<9sp9Y-cg3Us^9+|G0&
z`(yjV^uzHT_Tqnvm;SN+k-s?Z^{->AEw*poczMC3N6#Lmv9<&p>pD8OY2J-c)*G#1
ziT~!ufAHRaW4q(u_Wukiy37y0x2100|M5yteQw3hEfX&L7S`IC?e@AptLAiK#)7D0
zla8DT<mcTzfAXU_uWtl>GrZ?s7ugu9rL{Rq|IA;hD>l(9P8W-JZi!awi#8XGkq!x%
zsh|;En9h4GaPrgS=X3YWJuJGIzi*G#g~i^+w>C1&i2C&LOuEd%{Ox*PU(Q{eQzEN9
zu|H(zp56UNZ;7s$6SHyazJ@8AieBBAb&cU$foPN4!QQhs<c~;vUH7tN$Du~{Zj;*{
z{~6ji^S-iGw5O!S#<NaesNCc(`ct^^Ync82tN%p*iD%d;eXQGXPxz9G;LW=t)4uFf
zGL&K2@tHqy9{WoB>9%5xD=Vf)Tw!l}VB{#%s~D<~>w7$(rTOv#hFO1YfB3GekUla?
zZ{fl}=9l-(mQ_sL)_axt=erj%8*_vwU)*k5)BAX?-tUL&yK~o+tXI2sKH|!r8~;wN
zI@8gptg)bp;q)B7$9vPg1<#s`t*I_PJta}nGFDz=Prl4CvscU6<*xp&{>@vX^P_V4
z52?$K`6lLl3m1ymBVKO)vom=||KF5}C;l_+{xqj(iM&JQqy6&x)NYzC?^}Pl?C+WN
z^NflX+mt<#)1DVE^rQW^L`C)6>+*><f9ITfCLi;&^5zx(hp&GXrTr|~7&6u3^z=Wi
z)03z1?OAg5{GIsQ)4#p=!TQnuTj}L}EERgE;)PzDeR8$g_2l{K&6}n$?cC;Sm$P}|
z)U=6V3Ul=QMSt}3evZo7y~SdthxXO3$2-rn&pW=gO8u~Wd!5~n)@7%&AL<%C4(z%Y
zS{WwNE717&<&#v0!#4WrH%iwReVG3y^<#X@mH2?`*YtTJ9G*OTI4$y<==qZ(t_NTD
z>|Vd#^i}GPED0&Ob5j4(BHpCN_=cMAzVNt4__ss$KCW{!m)vr%uC!g*b*W;>MAy}4
zcNe?!@#MYW{Pev^U~<>Ld;b|8wEk*8_`dl+19SRCo8YA<%PSw>cHMTh_t?uMGoRT(
z=gbPvBp4fSPOjc)ae$#->Qjx}<vPjTH#0X>u07SgO<_;V7fTt9Z;$rZ**}<6{~^Gi
zr^dQE|K{$;x^w50nHPy}*jKY^^W-B&9zQueez$xm?AvkvP@!MGjjNqkmD}@|f0QR$
z@t)eYDf^vW`G1C{p1MPVbw}*CEWLl|JokCi{|wDvxl^zH(Jy*x?z!yDQP<tpGMjJO
zzw@-2Vz^l>EjfOIymVg5<s-8S*gTRmu9>R3rKalqX}poNf6e<J`gL>b|1)syf3W=M
zZtIL^oBD&U{IT2Y(K<^*FF}0u=ao;k-}H#9RFM%fj6e3D;fQZ?)b&4}rKL)h(;kIq
z{Cq5ZYK2Vc?VjhNzxrFQ*lwy=zANnKoj-?<imVKa$jG^S^J($!*%=<E+GAGa&uFMn
zkbC@j)jYo!+voW&joq=`qaoqO1h$|V%B=oACBgS53GUGno_Id%@5<F{`OjLuS=U$C
z5_sygg8KfrtuO1jb9D1-!gF{O_iVqrXB)#UBmW0h*O`m64t?g~yOZ9(TxoCp0Wp5j
zx#yM_xagbinQ&Y4L2Cl@2@6|x=IiQPiyo!FS?RU-#mwtLSv4E>eT%PrwohT_1--A?
zYu(>g->Q5%o2%zwxnY9w0o(dx`+ofGsc|-I{qX*%v+wpTGve+Z7wIp|*<{gwf}P{+
z+!o<^Y{l`a`&*TNJDq;An6Kc)fd}cf)$&P(x95c4*uPn1R)5nT=~Z`MZe*=oAE8q0
zvPoHevVgrd6NkkyciRHD><>P%;TGF|&0iF7_|ull)@Rc`)!xtBW<4vQ-GW)-!2|xf
z8!zMJKN@>%yk=u=VzrWA=A%vP^k(UWI`YkbY!AMUTe$YsyqXDTKK{(w!MB08yLpnq
z&WFXfmv61uwtdCleNS_?iZb1JFXVLhY9r5*UlU(c{K+_ND0ga2R#|G&hdUo8xgS0z
zuX@JeN#B2lhp~K(mAQGJqVGFDKWfw<k}&tNg>r$ih58)1g6iNJ&qdqXSI6AgE&OC>
zsP2_@b-{B!PrSGJ%{w!{$x81tB4c>cEfgNhe(ni>|I%$q&Ne$X-<d%(bJs-~PSH3n
zTk+);<N6i#Y3pz0KZ<|z@sY~a8um3YHyum0O#iO&3$t$NnZL&>o%bMXv;vdIqdoP<
zXQj>9e(`SRMb#Zs9w_C6-eP*t5|+fq@np`%lSeDROqiYdXPUxP`$H9L3rb^hEjDQf
zFYj3P=-2#P(+}<yKWL}DXVc$hHvAvuUcI^<)aVmcw@{@>$B22yn;dQ9)u|rmeXf6c
z_@9AQ^@HEc2lBU*ADJ~S&HI#kO=Z7>U%{@P!uy5)PFCKR|C{yu`ajOb-wuCduCFsW
zf3y4XziF4%zb%gcQ6ARVWxDmros+pmjSZ6|Zx-!j=PT@avtI2#L(|?LY=OVCvo60Z
zT6?G5%5Sp4rwh{p5+^CFV^lHtRQY(JOz=m=;I&gOt=p0n^)uG`pZlqTX;Kw6mnt%2
z?^$JDG|fNrr%~on58s{Z_3DkL0{0@qPCiIUR=>>7lKk=OYQYMoe`$g%v~H+;wY4gF
zKJUJBe6xmj-1Ar2ymrTDr(d5Hlal^neMa-c)+e9V6za_Gv(WCl(^MVqnEj#Z?@j0R
z{(F1O_!Aql9!lk}%xk%H<>!;bY6W6boZdJbSKqLHrEVSDD}RMdWkrAA8-dq9|N74`
zrzGq?qbZwQ(4i;u96~LbW!snUv|JUm{NjX_zF$oK@zm_+Su5qLaJ;ry-saOm>E(9K
zYfJB`UR?iHal&1{&yHHki{|v}di76`YprEpTVf~mqjcpD^MgT0E_eujWhph%yZUpX
z;<kB(r}(z)`V#d<s$kb{p)E!WGMcyKEYEo2-WQVc#pXM^=<j;It3d}Z)rI};KV^K!
zdU@wc>C*l8S3Y^kwZ@vwF7EjIl<zOke_C@k<g^KE@{vBjqKac|hWBr6y?3`@Im5ii
zJJv*Bv=KC3XC&J3y!rb4z<5`=<7d?_yGMUGe|Y2F+T~&U<h2a?^jgFvb?!ajVSMLX
zEqZ5{-uz^lr7qLM&Yb5ioN;<(><ycAmcPbF(<;ht9e4ZibnDd9KZ7?(#xK0pSA2V!
z`{S6ab0Xa<IgEVXYP#CIwcxTX+*0-?JLK5iCpVw{S`zNysrWE<Q>DzD=l$zHuUmg;
z*M#k}<b|_7{%2Tx?8d!4%v&B9a!+uY$8g|IZDGKVez%=Fn*WO3KhtLy>5%7O!_)Wn
z_A+);wY54`y?X=>XXP%GU=@GLI(@lJ&FYI4zkVmi)tsL?J7Dpt^~%yA*DnWORiAff
z`;-*bU>*nAK7W>9zpr~fcq<(C(e(TDbZJrRf+G)v{Os)=L;sjR6uX+|Kl4c8oP8D2
z?s0zX*Y>aP|DiJfk8t?G{|vl;%(H*H)Lq!Nl5cydz~sZfLhod6J7Z_Fd*|bV`}?QJ
z99y&C$d2Up<o;=o=4maSmiY7D`bF<*{dqqe`S`W;l6F~L`M>k?KX}i-6&>)wc7IQe
z@uJLc)2~0MESGwE*kQsE2gOSq3+H8W@JMGye4kUa`s8<e*8dC#cYUg8kDGi{Uh+?V
zdU@gMck?`xH_dwY@V>oC>$_*43XU@{@=M6%GVs6Leq{PDu~zF_G48ULPRNRMst28U
z!g^OARO{_`w}+ouPdr+(>3ZV6Gg2|!Jk`lJF0^J&slC9slU3Lz#g4n@p>Mrax=nWf
zu~VO>PEV=3JFVcEFsEEp;m^J2kIZNI&u~z1e~LX{wC?hbQrY5|8ukp<BUUMnB0P+0
zGg*X0b?TpQ=i2eSwD#_U^*_{(zcGI}Q>U%}!*cIESJoa(*>NSI`s~{+Tk7}j&)joh
z&Ya@r%PZG!yOis=Hst<2j*^>Y<}O7un6s7?{!Hx55%92P&k22-end{(SBv}iTbKCT
z?lKck^y}rj{9$)#x}#-r;FzT{%aaM(PhUM=efrVtdgD9Gy|`0~>?A+LH}8>L=Dzet
zwCmPOYjtmKJD4oHb&sbU`+GZwM!z?Gj<1^>*4?;qv@+TB#ueQMv)qhK%sy<n<Pq|;
zJo)K4OM6YZIdWBVxnv92wqN>UZJ9JfTW6g>s>nRqcjnebj>nkg>f)NVn{rFA$lv(&
z`B=)Hf|a=$$I1&9<mTUP@V7iA%D}*IjIZWp=w{RH&Rv(j{LOt6^*#8C@7|pgj$G38
zcyxPOdL&oEyWj&10!9q7tG8YFqx^8UG{4!$_oXY<IwMot!fr8tZm?OjB-QVcapN&7
zuA7%^bnRAFf6M2oNDkUJd&c*BZc07t7*sepxwkidcRc3sc>S7w#viBdT@(+Pbi-<5
zw|AtnP5M;U*-sCgSG4+eHrucK$~mvwb9m|)vbPt0Q`_pIptYrIl?YD?$7BiRg*nL^
z)Ky+a|A_XRATjaY!*A0J4*tFx(>Q->&9PTiP3+E%;W{;}k2+>O`|f)!(a7)M0;v_^
zhgg0#I&4_u#h@UwX<sD|$I;Mv`F+>I&YM1)nr(Fc^O|YqUR~!FF#cY&L4<FIy<*|S
zzO1Ju@3`ZZ*Dn3R9lEWF-K^lYW=!SeH$?^(3{3C%S!yrT9$eSBW#^iX@>$h8&V{&a
zSmRv(z5B$u0`}a7UnS3vUq629>AqR1A6?hJYb-c&TIKq;eL2pj51jI7S!@^(&C^v|
z=yPG8)(`C?QcI>6zUHh}>^UmJk$W{#oWW>iNNSNMquYaehODXEg}dFionHM)EbF@1
zw3q4mO4GQ-7$hX@tsn3dpE!87uB`6%{11Nl4ffk^T;3D@(aAU3<D=f(>~9)hYo#)L
zPe+|N`j}VtNV(W&mfSNvFL#!kNwYM6y|?`l%Or~@8-${`C*1Z~wbV0k`<gu($Be&w
zD0e+rn{ZV$WfuEH<+5a@7y)MunKe4=c5j>9bVK)?QDKyu-@kWHPMWU#S37@u|H0ky
zH@UxU|G50k&Ba;M<CHdjSo=mG>XmsXOSrh;og24fr%g=oc*H7I*8jv+BA|fN^wW%w
zD#p1&hn43CoRa=<LTSJAe})I^tNt~v`Ok3B>7UB^#c_@+j>=x`(Kp?_rc15gcbjLx
zrjL6ia%+T}4E!Fr)@8q3om#HYC*(PCW6vc2I`;iF;Wra6KZ&_LPfd4Swd#$(&Hovi
z-0M!w=iHxtzVFuc_I)b%v;N6%`S7i;G-Ju-bxEzyX86n4MW4E8cSY-Oz-qArCyv|S
zoPOv(LvuafK9LHu+XwAfw@>$JQ@g9Y_i)TzuQCRy>`uwk_KsUV*tc-~EC0{%py?mO
zr4ni1>SLFqe825YyX8_jvFK!eu7P032TrXeTY7uuOmb%k{}TCk<I0zp&&sWMnYnz%
z&8L%GCkq_i-l;l8kBMo?wnueyuAh2VG3C|P;`>WIKP?rif2+28n}_d&{Q?^fYJT4M
zT+8mG|1J;ab%uS9UdQ&@eScG^e4ABz+tho~bLJk9y%BrhX~cxX5;o1#Zk^dRcX7-Q
z$2DJ9C%szurDfZd)DSI>V%a70vfn=En~^xLePWE><~0@{OYG#XtT*|gGEcQQzh3uP
zXWj1p6UlwA?&TX=sBGG`A%E}NXQx(KDYwo&pLb!8W7f6HamRC$%ly8nJ=2tN@#NYW
zan&xJakg!>3}5!Sui1MIvI<|WxYn<8W|fH3n@E4f#R2CoPDx-cy?eao(blW;yLC)z
zqeJ)BhRNzh%vlu^sk3p%e}-_m+k3U1ztwAhuU)C+VD-u3iAv?yw_K-PHte1sI5FjO
zPr+T+x_vQO4*GoiWw-R~?s#UV$H&PcrPtSyXgzoD^R5RQuPbc6`u4Wxo}EF-)hj05
z5Up8v)mV(D{O_F<2F}MSVYbVruJc}eKWk-iadKuN&!m}p=B9lg{LgHkcJtJ<cc*Sw
zzP)z8{j1}{dJ$RYkS#kd=4`of@k#o&t0g-Qbo%t9%;Mym_HmMD8Z+~R!(GQNo4Q{8
zqgwb#*Cy)T-(Alnp6|GPblFOc(<bZAnsxjtd2GY*GhM!7<;j)L(_J!Lr7|DNmT`0Y
zCVN~-pO(qFy<)*6>o1d310rXiob5l=!GiJ7$?Gi1OV`>ToR!x6QPRfh*2FHAzPszz
zJe!%o<7Bda8~1Hbju^8GLSMrb+LYI3R&@Dt{bx8f%e?g~_l|Yz9&PjV5#KK8srI_l
zs>3wf`=+Qz;OFBdOZYe*NZrm&4!&ISpF#LX_qm;$+8hl!CRVaIE-w^uF^b75bM<&$
zbTj9;PV>}dOK;qssMkI_szN*LQjPHH*HZD{)-Jm1FBG+=@8f}$I;}kuH=kbTu%q8H
zwxiEMUeC>F%^u#hM|Ae+K76*Ndi%t6dCVuK{mZ#LhvB%#p3O5QRy9Sw@%z_UHS6s>
zp<i;d)!Qd&uN2Bmo4aL3;@qpEE?MVph1`;PST4lyDJA$$x%ir`Yn8))9G0E>_SN~K
z)gofw%8i}BO*^_nao_osH)@v(%zL@QO2CNElRc`U^LSdKj*aR^<&M35-^?Q3oA}y!
z*V>7;MbGpxd!%O6s;{zZ>(;%;PaT>2(m+M_)b5?OZ>~@N(S2O(`n|yHl%13Ot<taL
z=c+`6Kg&?fv^#V!&WNYZxo+pvw<iA?ge&YHKE1d2k;l^uie1qq$Cj#|YZcIW>Jb^0
zn{~F`l9|c)vi6+b)oYD|KAJ9TxRtx<&LPFwrFZAeDqYd{(?L4lWcF$`pB2x~Y}2Y`
zW2;&`<7{4HxXzO6yUzS)V0C_28<v|Le9>*%hUnW?C+#NlF81=-q@mlZ`*d=JEVrB5
zbFC-OHkID4XTS6E*V4&;yVh)ojXt)odducxuNqcuscMckobY*bwRJ*GpH<k~ZEKU)
zR-8U^Ev#yeRL_RB=W-OU=#)x|9GMZCYxeBcy}w@D?L2oLurF=2l(bXXc6E>OhflYz
zAB#FNO+8?5o7%tYeX&9;fx?y^O4seT>Yj@&-dvSFcOA#`s>(_ALYC^&OxB8JzP@Jl
zpP~6nui5W_9XmEyr-d1F=7z>J9k2ARbxaQ0%Y8!l_uA&J=ce@n*}KZtCO@+0-(%Hc
zeDk*1kF>78|IW>M>bv(#xQc+^p=qDgs*|6t*?qokpTeHYCHwg+;!b_aczEB&d{*t*
zuWhsLXWjW3y;rUB?Zv5m(Py@4+;!r)KJCXWi+@Uc+onFuPWvc(ZFXip>z8k4Qfix@
z`ZBLbHg4N`wP(eHKOb78H$1ZQx}K_&%K2WoYa7=V(~PgY&PP7Ks<YkvVcW*q+~VBY
zYMp>i)mhRT&I)_%Pyd{oTXS9F+zq|kS<Q1A3b#L$m-!R1b=ThRfNNjnH#w*4tTJ8J
znkeMvlxse#X4azC6dMO6VZ+0W2Sq17(wC2X882P(mi>3uqhp_g_6ppIdL=$<L8WA}
zV$JSYFX7}8X&Luy6+R=6Bu94s191``Q|=3`FO}6l%)flkue!x~-w)k7bSN$Mz=KzI
z(zBdpQko7~>h@kv5t$h2VS6z!>p9Pz$!|*S#C}X)S#jL``r2oGw*#h~dUiFv-C<8=
zoLPy^(p%4BC2r?QCT(sw`+drWN1MOS^*`KxaGKck!pg|%+d;P`?VmOAo$7X#ZC0z_
zsxRp+Qmk9`yCD0_7wyyeA`w5j4;9&eJ2Nfp+H}pV>+-k7HCDXqInCewaNDH25g(t$
z?AdtA{X|G#>>}r-KeP{Cuc|(<i*?PcRVSu(+?v<4>XOpLefIn(3v=yjKOOzoyZcE>
z5MN1;(srfqw$(@FG_%htyM1(TTbuv2LhjPF7iUEe*%)!0IN6(cRa8BU*>d~kyBvQC
zt6m@3$9KU_^X283n=@{G4m3Ndx<ysM^pQxwc7x1WHEwQ23s%K>{Istqa-WoCmHNH=
zkL2>K<^J)4kuk?h^S)mztMc10No2yRXU|^TxO?LC<<te9BI_jHGtB#b?4Rj}A0Otf
zo37%iwz;-&`Pr1~yY4Mqvc{}q)pXxt-Y>zo_!tFm+MiW6yFSVI_t9gexvNAcn{Aov
zeeip|KxseMYa!=y)4OvfoO~X0yi}#!Y*MPyBul-m2c<V8Z?VeDDHP`ow-H_u>z(?@
zpYd?+is&<woL3%eRofEQIAzIVzF+*OIAnGmTOvQzLvmey$cNmw?MI}|_O^XGb?VZ`
zS$8kHZ`#^%TuVehzkIpR^#X;vTc7QAkKL25!&`8Vd*g>`D<4~K+3o#TJYd?x<wDUX
z*ZMzV=MiaT_rErib29t8MO(7MpEGc6kC<_MmDOIqi0KC&-9EZ)nptpUtY;?6_p`a;
zGeu@r%(HA=w@^7(w;?E{zo)Y0$<-UB>qUQbADk7pcbR|XO4c^ZS=o-Il_@HlljQ7;
zw0A1l7qkgPSwDDt?#*N6!%}?PAFLHVs&q;7OUaeD*M44mnDQaYW}{*Mxmn*`BNIw)
zIZfT}s4j1{X+jpaulzsZ_3g%Y@4gVbr!v`ppOCZZ)-7_{H`ID0>rR^FFTdj?&N5Rq
zbZ)=$8Bx7Axwbb~KjN1(oBdJi=<U!AebwDFQu_UkUv50BV%)I2bp7Oft3~N5o4pkd
z{w!~d-uBCGrF`eRlIou-TWe$XPMM#wb@!&|>HRemdw=z)NjKHySjVt9cnVG`vWOSB
z7aLcjae2W<y+t{?iz-WA&-RTD?Dp-*RbBX>!TEY_>ZEt6K|3S$82-Ik!<O}JbtX$@
z^5bah$Ok*8ap<dX^6eCs%)MbK)wX!KZ|!n-?uK&LCpOjoJnp8ut|!iwYvjH4qN-!d
zrtaV^jbaZ|tJj;E7EYZi6)XFG&$Zu6lOqIp<fP}sTzbCg${s_}tt~?53zwQttKVF1
zdg|8s-KTYxV=~TXbsU{2e)8VY;?FX(HvebfIJ&vUx%+5TwU_Vd)y}G0_jO(R&yaps
zX}X8Bf3>e0$2qsuLOX}wJCEJjt;>8^D!t>~9>YhPx$6?=F53|CUT^(Y|NCZAoQs=d
zJExV0{}ga7x;XbZ_hrdbQ8znod{o=NICH~GIlWzbx=y{)WT{WzSFLTkecFsW-#)}f
zEqV9G{^{zt1-Vb!a+<27&$@eCEvlGz|E<;X_N}V-bvDgS4%jHR`Dv=r)?4wBr!Lxg
z^qIHW^m+4y$xY6F<j-|8E~6l$d{&T%x#9HuHxfrCXz*R~Umg<|t>UEQ(W}(6xin1S
z?U4<3(jV`)-P|KJ?VjS5lFXiK@AEePnB>u1zqXGt?N`mmEjdQ#UQgFOZ7E|KbcWyK
za>@B0?t2m|AIkIJs!zLh*Zqlg<kq!QUMv0iuzT&)v!|kuh)g)TX2P5mDqq&jXS)}>
zWqKW_o&T-!txsni)6<u(^W52X$-;i)^76u&JnJPT)t}`xpRaM(@5<X_oNxQ}iIk0$
zViV`(*h$yjc%HDexz~D~dsLaqKJn=}``yolv{zjF6a2_F-1Tye_bTbn)g|jyE*@pu
zyw*jfho|y<s_EI@EyaxUr&%((J)U#v*(>#B%awn}dp_*v`FA8<w5If<zDLt{mk-BV
zO)suG&azFssXBDigc<MTzM1bb*Eu7&C~^}gbM@q|{|s7xt0KS5-d(NzGIV+0J%vk8
zCVf)U+R5_ybW`P%U*W%W|1%s+6N=^k$C>#t`pAC<zQ=9X?uT7?6BMbCYjsc3WOuLA
zE$gpM96jOrn`~dLRmpRFB|bU+x%jGA%hEhdg{KsysPx|7b5bRJdt7tZ?|012dBxT8
zmPbtGb;4&GZrvK|I%WTfR~$P266#wk|8$(VukfO9PW`;CSK?!$9p$GnPO+=_^6mNk
zi7^inp775s{Cml&eEp>dThh;6NG*DxC&A!WR2UUD-E5J^qr>7!;u_567u~;a{&7_(
zWZjLv2kwRUFaKv)AD>ot^gqMqzTLk=|6TmY`*&WAZKd37{T@?~Efw#5mrUAXS7Kx{
z`AvuMzgH?{JUb5_Ha{h`^J7GRI=l6ol0)-trdZFvT>eKo`nS+o_KvOgKQ!8ptmfV;
z?egJF{LOp(yZ3)m@chcX;biHG1KU@0+8DUF?g@4@Vx1Owy-@V;%(E+8Hs7w8?XYFX
z72Wq!mrml04w$CodANI;|J&?@b@deuN*WKI_gR7tq%FGsa9ZcX{k%1*+kCy9KKz@{
zH(g@mmXJOP-A5kFTa(-VnO1jvdm@;0z{6kW(%r0E<?UNVFYNIvxtLk;y5RQu#eEON
z&rdEc5VAEr?9%YQ=d^ONLhZ%*M~iJrK8nVA8o&9l!{bs@i!Zmvm-oCLIe+Z`GbpSL
zHA=gD?VNV^jKi|K?KkJ?>M3(7i{AZ~mXpWQw>9ax<B!?d#i}bNo!qlcdvftwLko+O
z_K7ur%gt*2qb_W3iu_Xl!`)Q5LhPAqcCA~s=Ca18IhCH=uLR<cZScL@dgA$<-ka;v
zyl3dBWJ|8!vLj9?IpcIDSHOB!52+@`z8PHm9WU*9Zk?C6sQ&-8f1&lsKlYvdFmdf$
z(VOp0IrCIbO5B!OlNf$=hQ9Ohs*m!wx@xr^KbqJ0@UPwj+p|0Si;f-Om=)>B@X-Ct
z0k+r23r`%+Us{v6;Ya$1{=@fq_6c=twU@{$U{>7P<8f`WhjXq@Iop&;j)4ab-fisp
z^YLT;A^s1=$D>sDcPzJBwvofvIk4zlm{aPV&YkDpybW6NPifB^6IHEAEA_4A9XpR6
zO?>QU^|tUogV-PQ1@~X_KR#iqF7$JMYTLC0?p;TYM(#QDw6CbD$ZqN@dCq<EKkN=4
zyk+10RaYi9ChMZt!u1Rl%{oh&l{|L)-+kDS_h=9IBir{~d#V%av|c^3DEXN;>)54x
z#uFt1V%AwFlqMA&zrpoe{9$bC<v)5Cl{oe1%C377e$H(7X679qRuxY@9*}+Ykn62W
z<rape%0cUm!gjv#{uq2bAfngk(68&hO;=VeF`G8gZMGHf;%vru{`IFemfVd#c5B~a
z*8UE4sh-PThfn=>>DevY8Fct*z+vS@f-i4v>YJ~9X4A2Sg%h7O?=Jk$P%qmre`#;|
zgY>qNzrl}=wjNtFdzQc_-U9+YS?=5J^c5A)Uz<7ek+NUUE7MKsWua}Q8x5B1+LBnY
z{6L(})tq-GJ4|NJp1F4Jgp^}vB%`gpjTdUUYk6AA`d0XN*l0e^H4H74m5cU_Sf@Po
z!fvyQ15Q6rm;7wc`s>?%R7$<wPVsMl{E@KfFBCuX-|2JkaJu=zsBrg+^EM&>83b%N
z^mSFHiS#|rWKm@1W3vl;(6oGqjbMEHe}=rcvPpOTbuXTvDynfhr0!0I`M2sH+ka>L
zXE-QR`k$fkpGK4BpWLOH8(&-LPc2a6T=DXiT9?`+VHM3iddFQR`AIY%t>?OwZT)Dv
z&z_E>QbLmcr(P_cu)as&<e$hV29{64e`(YoRI<<Q)))N|clm&w-Zb?qUtUbRmvZQ+
z6pKXg(}^9IWv6KTXQ<jg=|95{ef>A<7ydgj|3g5(i0{Mf@~t1<_XXC3E;`BM;wZ5<
zNnhcKfs*yobOpvns~*1P-_CRFXfk<jBQt-uZut5?@)!QNAMI%>RoEEzeev>D{~6l<
zoIjeIo9MmF;QaF@hC3Cih4TupRDWM(7F;{4G$;Q~rEG`D?YU96zKKlpWIiodys@lD
z_<(54D<%uhKK(hZ?3OACpZo65_xjfq6w7~Tv0KfawbI&R^YV@!JvA+GlDNg)#slZ~
zSAE&vIzRiP*zWrE-dvMeceIJ>ZgH2I5H0z*_4xBRi(6eQ`E4qXfB5w~eNOeq_$Bol
z`y0~sZ@Id4t+RimlE>Ob(ub1IPT8_%M;$lI4UbpG=d(U-{<-3z+Wq`9Z%@7SzJ2V~
ze}=2)b=p0ylx}?Ta+-fx!GRe`nZc5ei&xy@UtV7vcm9Ddci@NPZG3ZUvvp^mELQG#
z!Wx}-m7!;ngN22C)bAvDmSanfCnrB?w^R(ztLAe&_-FO;e}+-FE2{2Ea~zp}i!rQt
zPkN4zSI;EIpMBNyci-;$r`p~1bmuQq{Z8fQ*$*?W-A_x`y3NVsXu)n_`Tom#nJW)=
zZ{M1><)MnQwVRQ<pI`P3)5?@duivV%XzL`1-f@>u?$bVLI{T}D#T=zM6Z{?>w(0pI
z)Af0!`GvQW-8moevhE3dc&%l^_b`o`tqLgzZmPV0Y!}Jp_GX@kO!%n+4?Y%m-YXN2
zU)pzg`|itM{_0hV9-Mw+s?tI3nQ}%ecK6F{JP@~h!P%PGY*RJ1OpEY8XEulNf^d`N
zJMC}t1dg7nsJ7o!qgL!E^4h%iO~mCbtJl`u%619*9If{>=g2B?o4iWN0(J}TNfi>0
zc3zKsn{K$_=adJ1R==cP|4}b1`CDXRWPho?<mT=BQ-8lY#rME)s;PMAme<v>Q67mZ
z?++);3)yb*V*d(xukTa2eOJ%X+Pn1BH@l|4J#`9y^nc|3cB@D~c3<pGUcO1Sbeqxf
ztTQTiRs5x_DpNeXjPq{IEbgDKlJKvoCiL%&ExFc@M4v5xsOykjCx3ma>0I&P>gIy)
zVdBk(lBpBkS1KzUIyz&g;A-J%7C)1}abEpX{BV9}vGW7}w!%MN=7y%rRwnDX?!S=d
zc2hYs;%9+Q7a#Xjox^Phl=g2se<S%H=l$R8KQ4c(`|!Q1PUZ9?ey*6v&XWHOKU_^^
zz0Pr(Je28qE#%Eoblzy&pH7}N5tC1@pZAe3W@k#)mGGz2US_RZn|?X|@UyaltE<wC
zdSchh&W^ery>!?8XY(iinVea_xoma0)Qn4#0X?5YXESfRWL;esx<2=})g99Vn<^d~
zZ9L>C^?vH6`d0Bm%P-8f?Oy->{E_@ER)5fZkHwA;#}8Nh@z+WDT*>=w&CTGppYQHC
z&-r%ZSJJ+@AD;hFn9sNHlb!e<i%lP%WH?B>w#^7hwpqK&SHrI1!Sk*^T#;Xtmn76p
z|2u2<{DbU=?*C9d|JL`TZrI}k^Lc7~S1KDY&i6G7oKXGq`y!4L-+AiS)-_dV|KolB
zccbZJhL3EMAHL_my@BOFL&ocgKf5em%dQb;E~{#|_u%^1&&40@!}jdzx|Ds}JET<S
z=)S8fco=s)oaJ3{;Jd9`t@b(7e6flq-7?;=^GCj4+h~$2elywIy4o^w_7j~b%M*D9
zTql+^_f?1<xB0gFqDps!l=bb;_MCOH{}~Q$oz*Z=ucr8;xZ9@A%8Zh|dXK(2-fTK;
za&d9`J>wtWekUKi{~`bVo92fs(dVTr79Y8_>G9O^%UgDMyu4<?Gylhb2GQ>;uGi$Q
zGwdq8nl7a5wsZgdX-^WJd{$JlJm2*3O7YR`IGGP`r+&Y!zh`##Lc=?kJSOiGvyu3|
z&!^_o8BdiS`MRi?y_L0#9y@8L)S3ThI2ik%;lUjHjn5ChzhNBq@&23p%WmGPXg)M+
z-|X6An_X+Rf1fT@Kl{mDmt~$QL1C6Q2O2}>?g{^R^wH*G)uqd3==yj~OtU<wE7RC!
zA-heEKkMJW`Ui{l316|v|IJbp_F-S&Cs(Z>#Q}SwL)`>U=^i@IZ4zVPs(o5Redp_0
z|M+X_b<fV7B6OI;tm&$pWO?)cX?K>C2JK%jbN$^vk>vDXR;}XltoUY+Kg*BA7=<ba
z>PG#U|3~=Q-KcBcwXSa;+9fsiwW~9)|IZM$SwBZ&rCaQY!z_>Ilz&y)vUPT4+EvL*
z$xkQG5k4+|_o&se>XZhZ_vhX)RsXa9TlKfo_)})^ZmW~QZ|BMGyuRKp(?Np$>5;<5
z9S@Ri<mOF1^HQpB;ToGsj&jc${mhsf*k$HTeff|5vaadI+J}D~YfhwZn|Q1;p=Q&5
z{p-pvyN-QGTfcC7>%<&I1H)qm`!y0Q@6PkH(tmzmH16KX8@o(QpH1Xl-krSn!>8NP
z?oUrWU9{s|-G^5WHf@Q=Wf&(;@^wsI9`{;YGdW%E?~?-K2KF5<YFEemU07!t8FuQH
zy|D$ed`11&*S{kEGc-B;XE-Qp<NopM+B)k$!IxCz*tSm3-9NYG-_;!*52y0;ev3FS
zw5xwkZ&%&7y5x@HUy`+)VXOYd-uya~&ox*!)KS-J^BMaGQ|^E8`>XWr(dEbIk1?k`
zy5=(7_2T-}KC_*Z-!FZ0Qtv{7)9!^%^;NGp6<F1ON$>yIwnkTNd*7#9pWb;CY<qQD
z=hLZ8ifX*gt&%L7aZmCJjN=#Hy8fnfS@y2dZPOp|+8^3(6}!6KJA1AA`G}eJS9h`B
z|Lo?FYQZ9SZTEWq8u1VAE$@VKy^rYqu!tym9q}fFZ%25K_5;D!^JBXHMV{aM$1OSb
z+N!<cDRp0`KD|*RtLioTqWp|o=Qci4+fy5K-gU=r_tvP&H4ig#7Pls=9?p+BYP^pj
z=^*2|XHMB0KkQw$zIyq_E??`zYfCo8Ox+W@XGiC^Rd4GzZ@I81vFK31!%j<^>o1oW
z{n5SrZfSPm%J@?YjvadU&U0JJCxiI?HD$-DgLB^5NaouA3H~Q_c~O9$_W{pacQ%|(
zXZRJ~`$pTd%=+(E>lZUWesBFJ`=b2f;nmsV;=g`J-ma`mo0+_kpM_m-y-L?P>A7##
z9MOC(xjyt_opeQ?rfzQ1Wt06pH;xJlo-8++UVf%=dqG{9yrIfFb(Qa?mtV<q{86v1
z`n9cl>Dh;?w{icQxcK~&bs~xNWsB1;&g<a~*!v^)W869Azx|Ig-gQkY72n|2Aa`^o
zvzTpB$g<)aSJv1}{(fBR;)~wK53dhJrM}rN^=;|OEO*TvZZ3ibzjr%5)>*8woweb3
z@bzH-eILwP4K9_~Dhj3?bS|9Ex1y?bVwfF=`~l<Jdn;|M_8&RV=UZVD{II!Rbb?*T
zH(|At$}I8|{pWn#oNkd8z~^Z3Y_qBUE#`+`7Z_!I7s}Yc>anc)N8iz++fFkl_=-JC
zZsIOI$k3OmrI~ec_U!ci^Cj=SDw?gbv&(|ZrjyGl*+xKQQEO;{k!Rw;xAUgXS6iK1
zn73Z{;m_EvbrGTpQx&Fi9m)GAQ*iferH|B^s%`PUJK7#;if-@rWId=XGvUS0;O(0k
zd#<crb?e?i(bb-XJXxnAcJEGayvkO)$%wy>-E>v=i<IXV-o7{8Yjw?R%jKKvB<Id9
zNqC<mt|MAD$t%6@_|~ASHUSgvtZ5SESP^M%t@gm6sQ6FHynqLC3;LRSc5L5$<w<WY
z>y@0=O&8CcmOIMQ+^SglT+&iv{j566e;4Z+>)3Dm${#&18=2AjeNX=uchd(aECP8q
z8W$CAdHd^u)U~;iCqErEbFy1qFX+E=nttIH@2Ole9_!9tDPrSzVb1ei^mw*aee?P?
zlBT?Rs?&@%=`6deo^)qY$jXzlMN6;mX9$1H-fRD0qdnsuOZnUXL@VNt$Z77}alkmv
zJ%7pVxho1)PkVeiaU-X(qx;Jpc8eeR$L@a!zklod(Zb0OxOwFdiKTWkXEMLqtY;xH
zt4QfV$=?&q^Y-r5NC|zqYx@dsQPHL6UyAOrGr7%qbnm0+BbO>WzOBeLQ;@u=_A=Dt
z@zbKhK1-YHpEmwyV4eMUd5!$z^|zQEFWGQE&aiP^l(9=;%dGQWS9q^(?frgB#hkln
z+q;X>og&AIp59P;{Dh_L$Nfk9-}3)<_*0x&qx#YKk=W|>{*_y!T_y);i*ze$ZQM3H
zgQY0XGSpd`=LyfO7dFbjMe8ow3vIPkKJ5N**<P;u$5Prp$8We|5-r+Od*)8eQ4Yr)
z$;p%aC4y&tdGU1Op?y`8uh=emrMB|u{P~}<<Cy22O%#k~X@BDJXR&}oaRbBc#<vH4
zJ=%NyTg}J%H_tzOKfe0W`|f+pn|?GW3Qf#idVb~Ih+A9UIDF2tnS1PEpqrTR?@edC
z+ivan+xSECKLZQXkJFEHQ`|r9dUx7sgL_Y9oy<JlI?r>?^7l-S&fI=u|GjNf`-&Kj
z+vonU{>S0}TjWRm;qt2Xp1iGR(<)?7-8sMZ)jrX@RBaw@-Y1^P`zN$a&;8F(kudAD
z;Ji!W-PfPE%1q1r?78^RKe76Q`8DhhGS}AdKIm_WVsGocAh^Ic_U+?{&<2(D6Q3LL
zwP<U7;;RmSWq;`YZRz9oTSB|Cey!ai$9?(Hl%t7KvwH<rfB5XNenri9B^L&r$qH?*
z3deVwzO3h{Px{Yr^YR1s!>|2$|HytY-8PqPeT|;Y`8SK#OR8;?s9d`Ll24wVv;yan
z*%m>TZ@<XRUY_~wo^|(OJLzk(|ITlTTT}Jhy3?#}rr*q!s%Iuljora*l=s5l>*pLl
z>$w(}o5DZY-m(ytHZQwATjO<9+15udO^(bvm+L3-xbnc>ON*{130ZROi#@w#+P>%<
zNsHJe=925`58G*9`P%IpP~jakQ%G5Ta^~V!CvI>4y+z&gs$yvC56RYL3=@yXsb5RK
zY*Jz4{88xHsY}=6B9{D?nYC@ESr6}#<tMj^OHEy}-D^RC&5;g6h6Lt|zw-a+-WREn
z-*9p3X|`+c-iJnIuf0&w?w7XRcS)uAXLl`^OLG=K*?IeO!u7c)bI*Nc+%9JSq3=dy
zl>73VFOBYbZSruNTfD$0N`6<}<%PEQ-!so?DU;q;c<1qI#Xa7ST`z2n-rfD%I<!wS
zcj?|srQNwFxKDqIXTRz)!@_XtNrvQn(?c)+GklnHtHyuRhrG4RZ@;`|6}!k)r%LzR
z!ev_~C7id*nYw1J*@S}SM!5%BZ|&meJFz+XNBbkT?aQ*Fvi;;l`U5v_xRw;Q(>nRN
zXXpDR&DnXUeU9)v`QUNO^IcHa)*fB?h>Iop9Ixi-8agjFJ=n*xQy^=fXsUTp;x@B&
z>RUTMFdRA}vR#tl+VqYuv)_wXL_11No%HJCaoeLO<_BI(_?W`vz~XV}vG*s|-K{$8
zCqx@9^Z2TxWtn`{4^OjlZ{dpaFE*d6l_}1h^qR$Ck@l^MmVGZy3o)%)XK{=@HaGiF
znN<G~X<7TY&D)JLw|!W8_T0jyuLLY^)x0cTabrtVWq@r+YvJTM4+M4#dp+09U0Z)B
z`w{;S$2aSh=9;v2St?yLZBDk@W3aN~>7|;(Ha<I#Pg&Y1aq=KTrRnu%T^qxP(sSeP
zefUxIDKnvyOZ9o<I=RY}bI*3}s!S+%<^9C5XS*d!!pARCCs$?v;_v+9aNWGBcg@CA
z-CTC_A9<(#4isGe&Sb@<zYA}bC!CVu`Ftngj$`UWeg2nH`R!l1Yt^cEccxV=xZ>Ao
zGVxH85%2O&u{USB&KL<O#&P5w_gL$yepRlt_F=!+riv`>YnQ*?=2$o_;_<Ez-@pB~
znRLq7{@c@yJ0j+DmFIURE3<FY%IEx3{?YV&_nw4b$68lPSF`Spj<B&^ZQiLkGbvC)
z*}If8&t2iL(y_+I<M&Q}+xYP2<j1C4&uv}qYJ5C9OYGC<!`IK9*tl}y!E0+`b!0_5
zl?_(9ojiD6X6>>iHl+{sg<eJV-ig|Odu<$x@V%&tV;937<u2gn7TvyknvML|oZs7?
zR!iBsR^0jYR{U5T--qpod+of1#aq*M?hWe`-@5xl?E#O)>T1>^dt*Ksi>zAl=K*75
z+{elXUq6-~Su0d8nCToWHm&Sn{`)PjZKD%s_VjN0nYT7y`GH=|=^}of1rr<|evMqS
zhyQ^s_u;Zly{h@ocI^mWzV&|dv|_0>(RC-QrfVu#?|aj;mzkkJd;9E%Y3ucmY0C>{
zREci?WfRu%YjsB0tlkTT$EV+1eLFt-{GaH$>eyH1A}R)lE^fRsY1=M=j9<(Ds9lpY
zxV-Put|J16%l6;g_N()1`Oi%fSEUYzZQ1M~ZSiT=>jZnPZTDyGoa_BN{^9iolgeDx
z?!zswj8?mBy7MC=C!(NeTIU)^&2tu0798`M;K1H?u}1&#e)%8PN6M<EAF)0!vDq!q
z<YQ^>3MIpxKbbS9heZV$_7?1mJ@fgA{@G{dXR7#x+#m6`{bTv?t-E$<<~7&%Y16`Y
z?b-Wb@t=)v)i}Pmeu|iT_<OKt+Z#@%W#ZZQT>ZTCef?U$+|>{K@o-tzb}7$mDf3SI
zmtSd}JN4=Tp~?oW_@kBC)f+v3MtLhwJe2ZoO}FFYdVwF}NB&7)Z<%~Jn`f<z)YT`u
zI_fw3m91=#-FR6c_Mn@T_q3QVMGND0f4iFZ)xNtbrT9hEmJJ6p6DG!+&0qYgjJ5Au
zz23KHj;q>S8TNhb5jFgC`{UFH`^7Wn>2La2yR31w>WPT_q>9|Fx^CqX6IT3ZaQw)V
z?BDV31lPI5JOiKfu0W5I+i#rNaq&<1;vdZJJFYFW5;pzwv14uGo-GY)CO-A%WqTaD
z%|~X=`6=qlF85r!WXJS_-}}e)<v&gzyeH#wMef*LJyTvSUNP0wIf4dL=iJIVe1`dZ
zd*=N=Dh8$(?!0{cu)cj)?vZV47a3eR`18?h$EOPu4!*O|%3JvT@243zJ|4W4y>8Ft
zwO{KytwjIq%GfV(BT96S*)6xVQoV0DyidQ(-I{8*<jCO(;m^+Ituk3JJgqRl_}Cun
z52wB6@eALK{W)v<jY;oMZ@ltO|9#^mO;6`<^};S2epW~@+>_uutju~iEb>Qf@rU;h
z_ntj-?XhF@TQ^}5t7zYa!V2BI&pa2MULCEpsmVg%nE(A(oZsgv2h93@G*0Kkxw+Lv
z+}vM0#DlM@7yX&I>2OTL%M->20yUdAJv8nM)7JQ-`Qf9f;__apjQmGw`obB#zi-?S
zy7VJ(-F~r&Jnk$130W!ku9&;7_&g_P?2dWH_J?Qe34Ew6x!z<qZ+^(uJ+tC}%*fm}
z>+Acer6-i%T)t(Z!G22ZQ_C55#r`uzHqP}cU+$B=@TI%t%9f`)w`6-x+<M~67olSX
zLb}#r?!P0|8S5^*I#T#P-uKl7-uffA_;xRgT(;-pO&67lw_o<gpD3BQ>-=iZ%vG8R
z#k-UB*xaPo%o2V2^!O3o;zOTLwLY0v6B%>=Rkqp7<hxsSwrZ$e_Oq6Fnqhq4z=?J9
z-^!L*s!l!nYUZc&y?;!XXYSM4{?YiQRNUNh+o@}>Oc&0KTH1Smrr7n{<?ABP>Tddb
zd4^<^;dj4)>$$x5yVmW~?B29%+0JE03%M)BCuLe)$>w?RDS^$_>5}c*-6cL1&$Bg;
zmX+<}xSsGM=hmCfl|K@<ENMCPT`p|SN|{MDKmRkd<Yn(JlQ&nnHRHHCqr1dCiyx7t
zAHyztT>CQDtJd#P#*_9lm*1MqO*-Sx$(l0zZRgS~pThqPcApv>?&!JZ%N&|*nLgb&
zr+6Oc)_neolYeX%p3h$FZgO2L(0%do`iD<GtMGhWBk+nX+Ir>50CU$34c_bALS7$E
zd^}&!api5_<#+BnT|0XA+>)HH8s86iCq>T{S@KDMJJ&t5;K<vAs+Se}4_V!B-=}_a
ziB`&v9b(&sv|s;f?Y(+fc(TCd`~^EME$O}KwW05krKq2|c4Dt?wdeGQ`A4nu1rIKc
zch1f<JDIli!^O=WLN#l;`4%oZsrG2Wgs697vNx|hxbCBU@Xa~T3-d!N-#3}Yi~ZQ`
zz3;<+hL%4Llf9Rp6uq(i!{?=EUpSrV<-b|u;2q^s*2J0o%*^3dIQ!lmAMXBJ{BS3K
zzuM0FH*Xz01+MA6-(zq==k=#GzDbX6MH+D$v48SZE^w1ME_?Ov@gwtpxICCxI$QGT
zyi@N^eLf<U-qE^Yr`uHZ{cR5%S035P7$lK0)3b0d$IrI<LqAnMl=r55uo1SMdThJs
z)g`)%U;dik_AV+rC?$0BrmHRAc+B#QVvcLv5n<|C{`8*SZOPqh&(^v>ocK|{IY-aN
zvi9%#Olj|Y!z){~{Y5?JymPi&xXfoeW7!-{r}JCb5~MB5yYjxe?YxwH@#|T)SFgTZ
zGf&xcEy?WmTiKwD+%I#(ZkY;B;@V;Cs?|K_-QkdX!k0?tOTN5yw!hEhbf?lJ`R%TH
z+j5rmY0oaZtvKuTq3MjvXRN#1apAa9>w|3ux)olZ?4^HH2YrZ}Ycp%@)p@6HXGe#$
zhwPbj_k?G_?H`jQ)+IDbFu1I_snRk<eu~u0Uo+*@KAiYb_>t-IaXaA+7xtLyT-U5x
z#A_aQsiXIwcXRa$r|V+oMq1XJ+zTb$3hYWB9$y$!VSMCTys+Z_tJfnwhW7q4;jLWp
zpCKh~_079X7uU~Rt|K*f4P)1CHX*f(pX)0eZGKH}uMxR+aN)(JAO1Y$+%rGm!_+Nh
z;WDe7Wf$MO9cwhF?M9SAl}<XtgL~&6`V0LCI`!|EcWu~*%~3Jl>C10rPv@1X)GoBW
zyXRZ+D&bZp*-7i%l4UL&o^s>E{vK(skL-W6EA&fZRXrx1OuAHe;gYL{^n!?zyJ^Ba
z?-iw8CR&$15j=7Fa*biF=(3d${e?5XM;YJI+`rBH$2uDm)t&9!I@`-{iEN5Cw#q#a
zDAMZqGez>&e+KD4PW$$K_%^$=);eOQLxX$y+T&^6y4&t9leG`n{^@)A)VoHfdju7g
zl}ave>6Jb*@yC9r4=LMTS|2RAZnhySaKYUEGuz9{Hr>5-YUa}^hfcVEOn%0?i_h!$
z!}LGm^51@ckUzNp#-aF|^@mn2ujoHAU+mHTw(4tpwtN&RixOJU^vOeCrS0A)>we2i
z+KE<@qBozaUNd6<`SbprGuyulymDZ=WO;~Taar+HnFq|5Z(rM=QvYDfe}=7BK}U2~
z*Es%|xFpVQ;ewZ!`*~hWGU$GG`AgU&**6zdvi_xBnI5z_Ax*8{Qd#}u?4Vs4f4<CC
zKVxzC`aZ{3wX46`@tqEpvA3DF$<Eq*{rTX@8@r2+*B#A0VI`CN@wlnShJOkSGAZSY
zobH#Nf28R&>A*Gz+rpRk*Vd*yo7O&WVwQ&Fd`T`&?j0Z4DxQ44w0~3o57Yi{aX&m)
z{#bo%|JLw6leO_jq|P@_<JESXcS%^cw`bNCKGoUZtMe6iMKpCh?`iR_oFlt0vG`Br
z3%w6n6MgsS1j?KF-ZgXoY<S@Jab|^b8=mK){}$GN@au27Tz97agFk;;J?o$9r7xuP
zySK>d#J%z{xnX*G=6X}jS<k9d|DD^}_xx?x??b1~mFFG1Uc01!;$xYtrEO34t@*Y|
zORu<S>zmq_>nip?{Q7Qf;luTUKNkC(*|bDwSJV0OCnvYO`6L_}*0E)sOND3OI|EPA
z+b{P?f6QIF`bXWl`yrQg1Lt{HESe^(CU4njBzf!R`U#4GpH}v=6`6g~o@HmbbKi#-
zS4tn(OTT<G(OG1Zw6~_BjLJN>)gm8fGWBe*Joxxb^4W@i+gH?B@4WK1RAb9pGv1ii
z=<eGdJ>{40EIX;JTbkk|e6YO3!$O&bZ~vs~@LIvIfBHARl`1{fz5b-7_gbyz;SH?9
zjykiJKG|q!xvl?AQ0C{=E^H5?WF9n6a;?&_GyZsXiFbDH0-KFTn3T^i%bJ(1^?_&h
znmg~6r=8w-KFl`z`P<-Q`_w<yZhE~dZ0EX@<$OQiuGLd(Ox!h(CHG~{b=G_0%=%BZ
zbnYzvoMU0H>-{0^a=_H}{}~?Ym3%%qIcIydiuBIIOD402Nj@>);b)(9Xldkqk3N&?
z&Hu0ei}_N2^O}6qKbCmO8r$vh0zW2snmHC$T{z04Fp2rN+}o4eSMyA|)6-D#BiiYM
z*zU*cJ9e%8&v2xB@3m{<ZMuGMJlKBTJ;m`*rReCtSFHz_C1jX?bF*&#(GmTkD#yRD
zxY(rZ+fpWe%egyw=OjGtNnftxAo`*I*k56v%|9+bJm0uaASEp}{B70x$x2q<1)uYE
zQk;sCT??-__Dnvwe%`5%pXZx?{cLyM`1H%eQ@_Mo&uM=v|KYOtg*}{!l@DLf-+1HY
zx^0jB4Y$RGC#}^!;c=3S;rG5BM{5s%xcuPT*2m}D<U~IDT(7F_@?CU8A!A{_X-nW+
zeuW_Ws{2RPitfICe*V@yUTfDMnZ+`x%y;e{T7B;Er+shoUL9wce70^%4fn2#U(Pqg
zakK|^J!6UGI>7w&q>AG_!)Zo~-W+^C$?S{i`zKd-K0I??+ic0=jxFNOXWs5lljS^8
zbU*8Q&qD``h>6C3T#eQoko$SIioMN_ze4{&`Q!LYXFkQdtrLq}mr~p&p?q4RfByHn
z8S57%ZMmc;8Ki#qz_E*0<h{z4FMm-GVPm!Ab-qYf=)BA$iH>pnXB=MN+Fke~KijRK
zHdrn+DrBR;s$V8G+#gSe1lr6#8G5t9&)v2``QxALWq;?_*?O*8Rb%<_PV?KcgJIll
z3hX>(%Rc!Pxl6t&d>tqIG5@HX$>qfA=x*!SDBi_967LJ=u$_4De8um>Kd*1A*!++4
z_HXwe>ffS1e1Cg=MMZJ=_7BTDg?;+&J<E8za8svgTBw^)<$0TfPc$}KIjx>1c|fKA
z;LE2%YdKAG`CoedT%&PLu=?c9s&94||4y$dTwkN~cf}U%xrR1Bwo12do~EYis8`e%
zQNUq$<X3V0qW=sZ3icn&6@L7m;SJ}*`?vhPCaHcDKlJ;{)+>dAdbi@%D&0Ogaqmp!
zwtBUsXv>=?Vm|(u{^37E^v8SK7s_`?O?jq0*Q%`Vo_2_%p}_;4ev=l~=Mt$5kMHgG
zsL$EoabLj3|33pu_($<0@*;lQ!|fDvtqwi&;MPfgD}Le7(J7PGDa-zv{`~0++j;Cq
zuP*IhF7e&2ynn-nl?_v#Z=L^h{;?~wN*A4YSzgLyBqOkV;a8UAPm4HjopVy0C*9z8
zx4+4+;=$KHS)O%grrSAo$iCyA!!xf+Fm_sRV!qvm{X04H<<C4*Wt=HKjpgeLKHG}7
z@i&Ewz25w@TOAoc@pZlPYx|q+-vYM$xVrvy`Qyqb7r#_nxSqLuWaB$a#W2%JL4uN>
zJXEC{3K*a5ueTGbVcr>Qboe0XAb!aeuWrRI=j5B3US1Sm_+;x5Loe^0KW8}|nLH``
z7wB4Q??2o>B!6rFJ2Ibd?UwWHyYhBEwypPWkGWoY^FdqXlfC;p{9C6*baz*m90}CS
zJuQ=vus!}#{f~_Nu3dMg%gJAeJMR{B;qR>M3JLd(4LUYALmzpXO$amZR!N>X&tCNW
zjz^`db`?gcFaJ4z(bGGYTmhT!?>+x)^TYjrgqgps`7t}`+Ase@-FJo3&fWf7AKdM?
zon@Y(u-oU2@?THS56J$c|BuV_w=Mro{ckOMe@K4px)T3m(siecUo+D#>7Urzb??WW
zW77_w-5NG2;M$ur{~5I2CNP}ytuL>N@2%6kdqQWA^CMlSk5lYtBz{_aFJ$5l(<z26
zj8j&A<~&!xx&D#xKkjm|&dmP|tQ;R(_xKh~Ji0JLEFn+mtxH>^xXu~LIg;_Vec|)A
zJ`6nf>iWvlD*K+4o>ps7c&q;X)PIKB{|w5XIrwjGjx3LLy8K9V&kyPP%}YPLxgf{x
zSTgZUxaI2;417CHAK6)aSbiYFWUhPQhkL6ZrOp&MnV!Eo;>Pq@4`;M{F5NJ9aht+^
zgW5HoKMP-8_2r$rMLw(T>70D!Os5`3*$*D)SBO5Fr^lGHG2PJc`HbHTfBmm7e|WU2
z;8^tCr|#@mCY67i^!q=<xo7<c-^*sp^M0*f`XP2*zs|2a^*4jguY4I0cgK<UUebif
zlXi8dRXU!=g*ZLQJt$rIGx||}Yk!k>=JiT@{popo#I)wHtCUI{SAL&v`gRvXWR2_6
z#?x!B=y0f)g<fr6zs%xA_PW1YYxoP7)p%{bZpy^ld#*Rp#)s|F+nGX+Zw@w`zrywV
z9Q(1j&5Q5H@A!F6W1)Q6_O!a1rQ2^jjDFdda_os*i%ie;^tCT%rOjM@JFCudo+Oul
zF~gJzMYm7A5Akih++eAFUVXcLfz3&t%T1zwPR$2o_ts0@x>~w=t^eU^W^Q+HCa~I^
z{TaJ)9)s`VOi7t{mS5Ii&c3{5u}VLmX{xUO)&9o#Z9$oFYL{xXKbRjX%<$M2EUB}$
zNn>89wlag`nb}iP#2FjU)@R#q)bA?M7x*K(bGF0OdDXLTEH6z9HVE%DS}C2fLE<E%
z#0Q6y7VAHs{X2d6N3q_=y7u87%s2EF=jriTOs;cUIC)i1k#)N0-{=1s4(ix=W<J)H
z5B#uqmuua1vp_GglrZT91?7*mPdyRd()=>=<6g<6AK8Me-*i<!Wq+~BX$m;>e9Mwu
zcjNwE{1v(+yK0Hl*(0}H&z?G2Cz?`PFzw=U=WVH>22+(4{T>ycYA}qN_N#35Biq=w
zxye?09v)t@@F|P4LQ3wrAX5p8wBzy9^S7^y{Golcs-{qHetG(`pUpxiS(kmE@Wsuk
zTtsUJ_u;}hlaJX-yZ&%}bhlvk?7Pk(``onLc{(b%oOus&*j6x0u7BKdVe*T5ms3l`
z-u%ozA}4S)KS%9iX|%|ebWMp_pImzt89gVgpTT9ACd2!~zIvVGg-iS7J(v5d{M!3=
zvOx4q$tRvOE6<!32s}~ygC!?5CZ#Yw%JYNuA+c5U4>fmhbts-X@8#SLj4V^TRp!V&
zzqKpY-s6Yq!yU;@M_C_)9-p3_yV1a^SaIz%uIQOIKDrA(&biNH60Iw8`)G;XWzEmL
zXV>nI$(_OEcYNZ62aTWEYPQQvd-DGN5B~$(W+_~;iA^r~s3hro{^sH>fpf%ElbkFM
z=p32$Smpcrjl#!f$@WXBb!})ok@@6=`roU^e3S3g1bnnTQSs&GG}innx|{g!%z1bI
zMdljecWE2r+)v*Zv}25`asOex-tmDf)8(M%$ctM=CcRyEEnfSr*t(r=_ZyBF{&YC-
zW&LO4Ye5=ca)q8h;n$na_Dxvm=v7C%l$4rgl~&~yCzO@;Up0&8j`(r**8A|SldL-z
zRh&IKXVa}a0<Vf^>fV&yYnNxcG5+c0kLmt9ntpwDonx?l)0MB*7ALrzOt;=X#+WCO
z8vO2)#p8wN-_(h0_X}P4;y;7&=X<tUB@3SJz5n&6yvmP>dXIM*iz?kcX;ZLZ+KXDx
zw|!I38yo!G;CKGv@wl(|@30&02^V62zC7kh-@Li?e@p$ewM$P6cybxPs61QuQu0Ne
ze%$Px_iMymCm-FmeY$!!tKrmxHYY!=|GM_KKG(6-f5$hpC$w-J>iJ-mQgVK$>|cIS
z{X@4i&Ufjg1Q@7y<i73c&$~10-$whS`X8$6-#C6;eQ1|^&sXd9f|+*OO<`8kCaWG@
z^D%4HgznDuU4N&j%{$|FU+<FdQjg-_*R1P`J1p8HBtD-ttF`BS5_HUb?V6g&{~1`O
z{AXwi{?BmO^+%I^m%X@@ul~b#(|*oN4Vs))q<(M9mXqxH64P=Xx}Vx_`Llj|u668(
z`)wxP`aBg;SKpMZHDcMib@O&d83AXZR*%OK$Cy_2zm7M5DHS*Q!Fj%j3j0G=1(&~^
z)w`RUo3O<?Oe2|rg?+)}$#*{aug#0jDi52u*_~x!^@IEqZ;EW)cbNWpdPMT6&!OF`
zgY&vK{;rFhe)(`v$b<b4<{j7X%h8)}*!ftxAhd8^Z6*8dKCN9pW*uZcw8-Z{-KV(T
zc@`(_AICY>BtG0-8Jf55?b|152~Cm7VLx|<-ij_%e>vZ)JL1R02eE9|c!Q&MeOkLt
zcCn{T=R8i?aMduUMkD+CuaB$ktIAZq{;fRjm95j`;O&#eUNiJIeK^RkZqs|apmtMM
z>J`(_j+6O%d<MpSj9*?~fB7SPM*X3ad%U}?W3?Tw<O_YWy>KUbiO@Pfvv$E#mySi$
z94<+I`kZNx^5gX5@qJb1?O!GTGo;6JyqGUg+H1mZbRg?}uF;evwYxkUoMM(sJMD{k
z!oaS!Q02{R-Nfa!{cG0cmxfHJ+@!_w^qx^mLt)R#xAU)Wb<i`ty|CNU`#bCPGs?D}
zHyn>|-|?K8{pb20?Y|5DGaQUt_b2F@K!ut=$L&)yx<o!qy~eC@QvR0t=hMvQ%bAxu
zAFXMBe7<x3htPPb*n2lC*1dn!dU?}gPu?E!Ln8cbuAEC9^JXMo6g+u6Ap3e-z|z$#
z<@Y>Wd2arpe~*9tyJq^={!qZa)sJf34tqBV9ohT$NZ4*i$#ZF?$8$btKjiPI{}96e
zL%p=8eA=%0{a@-O?q;63xV5d7IlDYAY3^EyjENKZ9Ho0Y7JOg-tljB9LsMzpjd+Qg
z^HMM8ad&-=&V6%s?Y-z5ucIft&As?4?{eGm%9#=CeR{$#fM!N>|E^5?5EG~Uae9|Y
zJpZB@lVZ&yw(QxNSoEjTvo__@(Vgz4trH%<?|RwB&FCAqHTqZmft>+M<KlU8YKuQU
z|HpOqx1r+_mHUh~jB8!j8uThnkJ_{SlFsAa_-EFkrjj=gSOy50s`ozH=k~GwkLdAl
zC$5!rXVe(3i1?9z+Uaua%Wq8|m+=^QPWyYujgK!hAbI0~qqVjV?SCkRx4zw@nfz$J
z>>tOEu4|9%^Y|^_u6S8Lp)ASSrfieb^lm|ghS<~dPM&kWHH-a^aQZj>4|1y)y$q~K
z_q}S9qSE*L&8}^0SG)|rusZ!zrS9CV9P1?SdVYGs7*g0*7_eDqUsv2YoBP*iE;_y1
z`%#(woZRYfGyg8J&*B$2zC6p${`#Nlnw$O`Grxb{)2IBP_41b;j~b?&yZn0}`#rVY
z{O$WU^1s#n$Q-)!;un1;--UOCcqYC6mcP(Zal*G9(}XU0Sj}zhSGG7?pWytkuXE9l
zrMba}H)h^SYtNoN`*g3g-<}>Nek1p;calO+j!)j`K7r$yQ_r<|jgKYPt=(!b`*O`^
ziH@#or=73m$r(K1xcd0=SH<kSg~HEL7}mWHsywt@#Pg*Wr~c~;FZzOIpS-I#m*=T}
z(6L{(CbPIw|Hxf;{|`I2xtC1$GyKuowBTg=r+me!P7~ax%jCVC*dx>UH5_yr^u+kh
z?QJ&ff0uvskH2E$zWQ94bo#8!J!Y3qcoa>%mG!YDcVhF-D5nRt*PNT|<7|8%^Ygse
zRlB||Uu8qQVAj!;Y1&6(<$gYL+Fi4IuAU2D&Ar%~YwQv)vbXNZmpQ)b=z_iTRxXXm
z46IzI-e#M0EXcl6=d^XF+Jn@X%7;4+t#_)anz>DB*}D3&_J!{3UR<x#Pv7!C@K^ic
z^L87{2lqLDn0wbNaJPBy=ljo);j%H|C}-cVdzNpn-rzmbX`U?I`N}rl@#D1K;>Xe_
z6h4)_HFoQqdanNwXYlz?jK+Bz8h&c)&*JL+VR3w+=#|W><cdkZLqC3-TFQT`E`O8n
z!|eN;?)od&Y-ni@?&1h@b=-06(j10x9jmjC@;PJnx9Yt4lbP~s?Y$MRZd^C{y=`K0
zLt9vMukc&J!^$3xl7$nNGjKhaGrN4|mYm9*ddYo~jw@qher)=6?R?y|=h503TVH!?
zSGP@iVk}~AWtn|6wL{eXRS}<m)Ys_Q@<O*?MuoSOSVkSpoBcLV`Ksdn^q3hB`n-K>
ze!f~Vr)jRo+hd9Te9;xh<F@=LO;($^D&hvadDz9fw_XLUJ&^EeN88t1U*#0crqnb!
z9J@U0X!n6Qi4QHm<{$CYRs67b?~+W`_HWZ>moD5s<7R~5^T@o%Jklz=q8N%Vd=Aub
zF9|o=JMo6+gIN8*kNYP-UcE!oM7vPtdT-*&jGWFqo131ydRr&!J@WG4yLhg=tlRU$
z8LR&cty|BFERJ~{xM}a2xXdjdQv&y%=2<^AWuxD#j*9zc50;yDr>pn=v3)S(U5)X|
z_&DFyr`|-J4&1swBKPX|Nr%I;U2m$)p8jN8O=Iivz{{_v#c5nI)wMtHt4D0J*}T;@
zpI=#}E#y<(;ixQFoGH6@Mo9d`zV89<>ZZD7rq8wqtG|izZ`yKJ``|p;otrPNf4@X{
z@7%3t{)z9<SaOu(x5>+@ROio$p79^P@J1h8yZXm9?(;&Ku5V2^7^2U{yKLWkYeTb6
zzuc0^YZglG_|Fi$LvWtf`j$PFD}T&C7M%4@;>z;97fW7D3u*Scx@N0Hl*WZMsX322
zms_9uwCq98_qQ=}&5!K4es~}L)wXpFueI-0)8}R%JxzP>x4cWAc>B!U)&tqgh4}YQ
zSQxqc^F(o{DO+|~t>=Ahwe@?;*15&ryJvlS^rT~=NpI>`Rp*kQ$+GKqZ2PuqVUbUy
zg=DBK<HFT1Z@D!;oGX6#(^1xzT`iMipLs{mHHx3oF-7N}44X{Pw!rz%Wd1X79(%TZ
zNyXwL^F%KF(YhsjY$fZRMV~y^wf1-BmRsEDI`%6&@^PuWg{Gv$%acddCZ;dRva^vB
z+<r|b)FdUlZ2RTBuf9?R8<@_?o#fbbCq<oqcits7kJVw@mRQ~nD*v!{f7d^?%v;Ld
zx=*J~NNVy3tCbFH{IjFmfa!zhDwp50pR;x*uo+Ie`uvyazqt>+&kI!S`W|SNdiDNn
z(K+QGv*qNsMR!lvmg+Q(%*$zRJt3X&=}F>*1vOhQ?wj(>PT+b?`bVW>Z}X%~J5E2c
z=CymwmUi%d;eyKP(GC_y?;bE5Y2aMjk+{>J@#U@Zrur>jS?0bvmomyX+%@Pjxn*<X
zkB_%ajz62q9Rm&vOQQ>#@y>ImdtcYzBQovQ+TM4YW&d6}FM4$D@>|Kh3nZA|&XfJE
zvN11b?pa~Q=aVml&iWml-zk-Uc&&ZpmTj9aKHT2-*tb1!^X^@qs((LkzWGWlJp9$|
z$g+Qb#8@V=v+b4_e0fXteE*iS{4v#;>%RPsNKRgP<CWQUg)>KQi(BQLwR5OA!OT(j
z@gURol6rxdJK4MLcPs3^u6Frt*rSx~onLyRF0A5hT+nth<;vZNo}cdebJnvnNGtvh
zFRNtjTezU2Jo=;ik$QocxQrFbyC>cLC&X=iR!HGVrPrZ{`l<~KO9YJ~o5Y`K??`y_
z@><~Q`<z0uJdTg5qfg&Ro|t<^&UC9?fKHUl#GJGP35E(f4<2^dZdmgscaQ9cC#QL4
zh0QfvSj@ty+8tZrm!6^){;6%tWyQqpb{;_-cZ{!Xu_=78q9$|ckD$Xx3{S6iSonVG
zyDyP7?m~vS6Sq{g&D32Iu<g*{XKq1DzR7e~clrG~F+XVchxZM8au;WoiGSNCxBrUC
zkE2J|R9(H_+P!?1OSMVmv`-g5l{YI{dGNCrSjtv>xHsp%xM{!G{`PBU?b0R(&pv!{
zri#G9Eoc93PA}aTs#sChT=h85fVDU(Z@<od>G;EPavy!SuA945VvYUA92?hMK|3$D
zgkQF2dnP&SMXU@g-8!9RLWRuMbsG~uJo_E?WA@`%W%mzHqK<4jniKEsEA@Bzt`oiK
zSJr;Do*{VSLFF^mlZSKFyK3&9eDbP$pUn06NAic}`g>enuk<m;h&$9f^h)B#COZ`t
z{!LkhH^dLH?#r|}!?RL{E$_#&mv-_$+z;)lTX5~3sIY(0D!#?l54L661#Z>N4f}Sl
z_P`UBO>7dZMMoY_y>3%pyS_#{nqTy#)V$T1m6a?j%@*g&_kQ{OE$yD8RQ}B;@&-Ru
z?nqeh_HnG6^&oTCx|NG+OfQ$tmG<1e-9vBIZRe|tFXqX4x8GyAWwwy@p3@sPO_qIW
zZ*Sak^R-kv_WO(V#0N+B{J5F^sM?n)d+Ic4<-f~HV$J@TDKjgFMt7|D-#JO<$)A~$
z>rE~%`H<gPvR?9s)_;c3%^yvVEtq~`Utj6V(%(&Mo^V%u*;^!$a3|70ab{0#fTgSG
zCOg^8S<{c?W*@Z|)a`xxckP~!2UotTVm&v#Y}$v#KO?U%m~rGG<C$WPPdo20n5wm}
zzwzVsgR_5fRqS;5ziEn>eE9KG&f<x*N7GeZJ(W-kC7<cRpC2nUo9$~V-nKfqX}<4=
z<<0x#A}ZqjyFMQ(?_BwJ(KYLq`3F9pQ0Q56vGdDB6`}q)@_GTG?b>r2`XjFY;r(cT
z<e%b)yKldBGUnP{(%5&ud}(yWB+by1rITbspLBgPlga<Atnl}#%H)vJ^J4cZ^bgfZ
zZoTMxuIsu{%!=)o*De0A_(TXBmrm(K^;>Ml2PTNhe19AtIPG-!kHg82q~B^8m#gmW
z)6?5yyvo1i36Hkf=0wd+1ub7P4t7to3==I#DL%V-$_Mohwd*#Ok80VxSLCIi{e3$3
z;d?><Ri0DX4CGz*bwnS!%j{Il_x_vbdHd?Z50?+xbLr*Rgy)JkuhZ4bRqZV;k>g3x
zd1!E5ie=KaXD7lKef;i--i%xQ@N9bI71R5InN@qf-`YFHdxiEPQ(g18Z4c}Mb>2Si
z4^FVE<SSo)NAkgS^@rNAPKO^{z44)id%1_&)=sy{yw_Wo{l0N)+CSyU2mcw;PbT(1
zI9HG*QYEaJeWs-RmW`b4<vqradgXn$e`ILXQx*@~aHC?18?&~a-d6w3aeSW7jKY<l
z$!hQ2dv)oD^GAP}{0)z6I&uGauEwUF*G;*@a$jy(mD$g7&HnHu&4%+jj8Fbt{h0jF
zuYFa<J<%(5DjDBqwH`6P=gG6{+hn`d#XRe`<n{e_Qo47Yd#d828;`l?^wlce_xpHm
z_D8OJ{`^_9Zr_^i?WCJq8m)49lHu-bS*!A<kJ6hbPMwe-dWVD8e6!3;?YmO*<UhDB
zZ{BiWRCQZlNyn{w&rk2{_UU#G{}i!l=ans%&t^LF?|R8~g3Vj)&C1i&Gxw?eF=~5u
zN!nhdcG5pK?S1@`EMabUTd#!s&E(^F%J;!q$YV`EZ<e{8=#RyZxc5fgK76`T_w0%E
z4Hws&aDV^I?zVqN$@aNBpOsAKJA5UfGQF$L<mD~%gS%(j-_k#HPvf%k)V0a}Z@V>Z
z%5z2b6$qYx8mVlvaphr?ZcU9HWm;@*6MAlMa<|zT9De1O^s#$7dq3o!Z=D}=RpG<e
zIn#O>+G_K@A6BXK;|#qlWW8InF39TCI`&gWR`C~WlyljSt__a6^rhd(HezS2*LjES
zUE$FkZSlX8{dY#5<NVJMt)i`0RQcd~*AL@IvG<ScZxxHv{yW`NR{Thm*xX9nIoJ0|
zU$cKG*JnNB*v$o#E<Ju5D4A5J(iSP?apM!?ns||0ua|DA@0L?;)925=q;=c-+kS4(
z)%VyM=eX-$eK+mpQ?;VgTBk0~d6L)}^}0_i_f_$EasQ0D>22#x>Lq^U{bz7v_WQ`T
zdhvuqDpwwV41FSW+cHSGJ-F>$peC2I_{8{qj|wvHCtP0pZu*fr(YE*>o+-N`^>y;}
z-<xFWh49R|ajH~8)iQudpu5Q<fwj2m?fq_>@+F!3%(rj9`X|uz?w*Nes~?^hKAxKY
z{K(OW+YxupZ8+V=V|L<_)%>Z)stV%;_jrEzedv~G-@->}7rs2(-I=oU^4I%(Tdvn<
zbc$!+du4Xc?yT9vX*pKSr=BGAt+FVWy?HWPV%~|@Cbwt4{ipOY>fPkUCm-(3e3lWX
zeV$Ku-g}cbsoSsXL`i3E|IffUQ(pH9bL`dL-t)c7_Fn!Iz2^1ltViCJOa5KDZ2DvE
zmB~9(Y9D=)*>LN`?&~b884vSihr|p0*r-#dQlahoQRmvN)}C<hRWGHkZav$3AcZgN
z+M!=5eHHWbm|b?JTC$j?SG+rS*yGCLkM~w*KC}+sJ?&DqclKMO{|x?Dl6Tl!^sZOn
z)%!T--$xlf=bqx&Q(lJO`z?>pa+}_2Bl=LDFT34y!<Asy?K^uPY@h78W#`4^(@F}&
zPi@(0bW2i2VX{ujem{;pJ@tmSPiMWleQbHaH0>>s3+z<e?l?`l&2;qn-ixQE1zAKq
z)wtcL<yT-?FHqz1;ckELvde#r^>(k!-PdtWE_LsAF2NX9&+RM>6V`FBnJC7`C~Ns+
zYuV*J$vU?dRfHcd-=8gBb~0P`?6QR>MGsc_r>7Q4J?yJXHVIlSKRdVhZ<gkF-NYr|
zFMO?U-}UO=i}G9gZCfj9Hl3{$xhJ!`KQc2)hi!Y8Y+_KxVutigotf%9TR+zS5z&79
zC4Q6m8`h8NkDeHv%zYFqbs@4Mjr+9sU9JpM-_o;7awWHwZrxeBv)H6bER;iHN8o4q
z%K68m{%tHSTzvk~^egX{WX2snv9;w~@;OzHBP%}V#O`*Q5!%T+>HgtAi~lnmJTAXw
z@%`8FeE%6zZCOs_nCM#kSRNF~tkPRprLy(%;|V!^2125{C$u=Xr>Zu}{Hk=-OfnQ)
zo_n)R@5+KFH~(zOHdy61jZ@iUp_uHErlS?ovzJ9qDe^C>Sg&>M-Qsz_Li=07EKVGJ
z-2XB*Zt+Ubr;;Imo~y{m`}~vXdXRq1o58{I+xq(}ma-;)?zmd2^6b=d%Wv<rDtsEZ
zt+e^rQ$O#kWLWU$9>IU2>z78E-o5lw;Yk^T%;fJ5k}~t|eR=Y0bLMX4FOUCm`u|pV
zEx%3w?ZgNF8Co`4-FjK*bL-sZvWe{3vHD)xg*Ho4E6WX|kH1uT@gvoZ{jWs$Bbhq&
zYkGfdm)yVWU7vC)Wy8e<4fjlpCO+AEIofBb#Ck#N1$RVtvmLwjN9I36bMb$Mr1d<1
z)c($0zdu*MQ)-Uc_IXBA!&v8d=WW}?HnZU4(!+ND8MNZxa$i(d5puSeCGn{A)6c5E
zJ3q1?pWkftZsLl}?cM4ff4)xAP`ws(I$~ds$Ek%%Tc?ID-JHPu=5yqKhE|3gM$opj
z=lp_Q0e&C*pMAIcu5w_PNpSV%rjI$h@|(VX`*8K$^i>(xU#C7l`JaK4<zmF`JJBbe
zCKnccQr+{W|0Lths~wqF!~&z@l<Y<JC@*<=>)7sx(vi8QTPotiyTd!*hIxkyEt#(D
z-?_9a{OQDPyF7mC-0tGqxb{!(#brOz?VI*+K3ZL?mZ7rcvXk!Kqu2Ubmb{HN-M-nX
z_Ue+)Ul~p+1R2ixP_;M9z9U|!#QJ<km3+&4wd-3v;;y}V?7Mwp@2bTd_bgOAbxl>+
z*&LtWzPrlok<p&(?V4rj3pLgEwa@?K@G<@^WA?+_=Ou6d$Ua>D&A@b$*SC9`d(Fk!
zGN<T#a4@-DY^>(I*;Vs}_sZ0O4F8Y(kK7ho-@jW?{qWDEbI07Xd))(s#gZqb@ITyE
z@Z|5?Bio86`KJF^cKhf(h7a67)?K@FKH~EFL$U9+R{Mqtq))6lnXj9hJn80kpW7{)
z*677gDB=)SKL|SBtC4N5eYcAHKKYE)uFtXC9a4UFL^wZEm3+v~W$`v(@im_;|CDw0
z|1bQh{X2i3T@B9<(ejlw4%hP1XCDijCAL_sH)DgRirXiT+22?1&vBhSrOl~exoY2?
zu0LLXr<9!aJ`yjKzbC)2CimFPyvzR9iFfA}H$`lGbtCEQIZwN--_`c7t+Dta{9)aH
zh6B^0_FT8x6DL2-a;x?Z^NEVODrSWzcJ}y09^jmIYq?Gp^UsYRrazqCS5vkrQ!L1A
z?&7<fOwS(VSrp>au)2Sr)dTq{a-QqOxm%X|_56%oe|5fp_i?|a8JX23w$C3wKT^%#
zS7&f(AO8;~=E4k9jzj)AOZWVqy=ViY6yxNra~LO2OKz~f{!9Ol=6{AJ<+|f>TtD&`
zWX{^&vB$SOJu@>uDe1Gq<!fwQf)lS<#3d?im-c>lKHvZI$-n*oq-*Sc^!~1`G5Qhz
z;P=X7Q)*n7+&Wt}!Mo`59&x5enPS#CyI0R>N;MEIR_9uB{Z~?4g}3wGk9-S@D-r^2
z9-O%se@k_mi}qnj5s$M|wRdbbP_{8RTm0BiXyIwU?rrU^^7qUw-`BsCl2ZR8JpCVM
z>WAIFecWrA?gx3Cklxyx_B&YT{RuT?YbO5%K75Bo-`(fiWBi-zk6x)fm!0g3X`h|m
ztkE&?P@Y^Rvq9+Ys!tvVtT*^O#|dUHSl_Nc%~vln?0{Zs-=}~}3Ywodmerh=;Ga;u
zqrO~p^P*S#O1f9S)D^vDmz%dXDs}QntwKd14YuI@lcagrl`rk7eDvy6_>`HKwX$x>
zA7=j}lKwFFdP9Ade#boVw$mpv{sh(*Gx;1aioWlcpCldfxY6zo|CD6z1ERln{`UD3
z_wm<%hJ!omSxRifl65D~=e-pjbyUV<vb6Ty6Dkwl6>m&ZNzTyidCn3(`#;0MsQR?}
zp8ewWdE0(ee+WN(eb%-8kE(fXcHh2z$8_o58{wT#ckR%6$y2aM`P3!P3C+sI0$X3t
z{}2_=mieDybNU<U56<75f7C_2yLIZ{5tmDAysjH$ZWEqwWv{OnaF>Dm^Nu+}<&1H%
z9HwtAxB1RrnY8-Ynhm`*zAI}_hkyUK{E_&ZpR0Z(KX&hWyHB=a-o0oEg|uBeHctvj
zo_gZgagY9UjQ_-bR>@uc{{HxX2BH03`yaH)3+3wG{>$z3aoW_}oZV&`jiwpGPu{)U
z^SI3HNrG_K&*MIO{crYvtDAka{Mw`Q$Kv!mOa7YaTW~7(Ihb3wo^&vZ?5lgR{`~ol
z_^sy~_Nf1s|FQU6;E&wpcdUM_KN?nb_S({tQ}2s&munfF-63>i-ZT5Viig%X7yRrk
zE3gX=7wm6&;hxs<k=?XaXIIH9+xV})=FggN?0nN3Z{cIrldpWdzqi)=w_c6R)%_X%
zJ^SQ-m@iti_I{VCcdVT4f)rk-(8eb$^M9uGT&fl6(|(#Qo>KCuAxzfx*T?x)|EASH
zxXs^CC;nsp?~3R@t{;zN>P`Ic+jaM~edVP`pDfJPIiUHOr*b<>Ly-sb0@J_2M=Z{-
zPFx;Y;{IuxXY;okCyu_|`S<9{I)M-0oA#*e6TO_zI&bd68^@PNo@DTzz&j<$^j61$
z9jXoq-c0`)^d(eYy_jaTck8bI3~8CSraqf@YLd4?=e5ea*E0_=hL$lbSZ7pty)kYw
zfA^xx>=Pf{Ra0$ca+Bgn;onka({bQIfzjdDQQVLCMPD<C8!quW{EW}rgJ1Fl_dkgj
z+COJc^Szr@ckEWzl_yIt)`S)_&boK$S9Ghw(QhY(?k=1#!C7FPgs5y0-@6^J=RYj}
z$E~@{Gy8X4jmxEX&xHOnq{(U>T_P?1H*P-50;N@}-pb_}_w77+w!Z4J_mi{F?keAH
zS7_BcwaWeU#GY-1$JsxwKQ4d!^FNNQ5A|=)KK6aTw4KC{);+wBdA%eqeO<Ta-hT$~
zy%mAUeU*zN73NviEQvVnt{KFj${F?kP~a4;;uB}D^-S*lZr^5hdF|56XEvO$C}j}5
zzV4lG<@V0Ci={V3mK!|osadS@&BFAn``gqH!AIpc_P>>W^#11LN32)Z?Ot7>^iJD)
z^<NE}u*)ZHm+pO#v3SnU299?E0%r;i?o?*^vwr1ktGL}Ng~yhO^Oy@Zg-r1GdHnIO
z_MO%(HY+cOZ#Js26u<E&bg948<J7y`&mSvD4Y>EXsW={ViihJK!NST9*$3(@b|~h)
zU9#h{Y5-&IB{!9h4+V~bGR60|Wk0!V?SJ{&`?nL%oAl=N+TB=u=aWQZ!75H>J%>2|
zsDDfM=k)(jS+?_G{STGnJ^L&wnjeKu@5}q6ot*us+QP<unS1W?B?cU~Qf5`=<)ux$
zr1W5lA#;!DvEsKWmR$?`mc76J`NHSTIV-Oo_Bwz0s{G-rZw!TQ7c}r5bzkwq_|~rV
z+y}E){-_SPED>}1GkZv%!^A(Q|7{95!^pW=dF9Cmp|bhj27WJk=WEW4_%*Mn_|K|(
zuDdV8zF!xcwX^-rcY&s3^~R_9h1r}A+0W?n_dk-fe}VQ^tt$DMiO=gxE`Ct&UiYOp
z;$=f4>*=G<@*ceFZB}IIUC<nVhyRbD{-fMwQy-sY4%pMAnY5!VI;qV`aL<(+oT-xR
z7Uzu5)^i5ljr3jRaZ&c>lnD;E_#fWdzgqr>^7JFMey8HOV`5LJO!nU2Fg1p8d(j4+
z{qJPtw!TeB*eFqT!?SkB*6*w3<WlzbDNR$<w%Bt1-8Xx=9}S-0Y^AQ<_nWxmHjmb&
zzQa5}E!UiU{&C&T0=v7WcYaTwR<6Lew@*a)cGs(SHNh;wZ#H+IW7cVL5oN0?+H3sv
zkJjQJr(?S8zZM+5Gf~1q_S5l+FXNB-&DZPs*Bay-D=Bu5?<32Je%{3b<pR;qUSIfU
zd#rA1O@-1Y6ZP<!x-k>j9vS!-iLZYiY5q@d;?1P1`A7FXllZ*U#mPN2OtF)B4$nW)
zQ$PBT?i2cOa_jWS8HeQ-NS~Nwp+3Rm^!E)Xme$R*`F4(1ZSBs2o~N5^bzbZf+mv%B
z{%4zVdqlGCmj4Wj^N-E{yZFKHfV$)9s)yGzoI1i&HNjH!>8<M>dS8}p*>?F$^jqKc
zq8$}H{7>dEv8+f74?6I%;rP0@d(vn0ADK11!^UBs+y|atcAE<&O7=Cxo|znVR`Ot2
z|H*=~&--;|DEHnx>%3y(5`)cEH-0glKPG&%RAyq7ilCdb5PQy_<91*FW$xd0{jlUe
zp_<|!n?KwSnD}tVhwnXGlOFI-S+}t4SBvC#v+EP5CLZIIt*T%6=bpmZJJ+R_EiZjI
z*Y13YxzOt{&rFd?(>dC-J5?FjY}~KxbA0eI{`mPn;`I-%tzK4lwf@7_l+AsYy?#u7
zxI?{h;U4pgp4AI|a@Rfk?RGTile_8icfT5zvpm}O{_vfuHq%S{CdGICXJ{;bR&iW!
zrH=5V=&X9<=>av%YW|$N$uRH6qh(uN=a|&SG}!($b^DjSLe3+P?WVGY?cdjW$3A_3
zYZoJ-<M`y8#FKxbe+4;S)N!iS>VNQe-F3AlJvTX1ex`y>kl|@hwM(L*)sy@mRIdM`
z^`D_Br$+0;`L;UQySKBKeY<^h;)_GvYr`(7?7X}-XYHQ(M*K6Up1JNP$`Rn*`m=yJ
z{l~-q3{B}3*6tU+#LN6izrKjKc6ny^@|TuRAI=X*%u{2|{QEjTr02oJX$PL|U-tfn
z@jouz59yw}cY+pB{t3ML<>nvl6}PjmRf$;nTw3$(#Tlh7(KAB!bbnj0*~GBn?2*bF
zk^Dz~Or5U3!fDO+ee-7hXPEeXo?O!Mud}8ktY5Zom%Z^9ze~T52}E-H)(396`Zaq=
z#Mz~5RxiAJD8A_D+WbnDO>Airy?oXackqPDMjt9?P5cnIx4KNdW#(4RufMftCbe><
z3%m;3pR&!>@ysT%RQCQUebw*fDpuWh`6%tZ;<Z)T)<?BY+Uc|IM{dtnWSL(0bJJm#
zZPPY+KRfnL{B+t~0edrPmV@H$>-T8n{!xCoy0+N;g!`4R8gaJKei`4kefeyvnYKgF
zeL~C<uQL_WyTU)qJk_{obmw2gQi&ZamlP~MJnh%I{^Hc7hgHwFm0a(OUOl^X<45~j
zPg$eP1>Q`0siOW);Y4p;@@~ncTRzUXkbl0T^abyf#G1AGUYoAune1Gr)cMboZ*r~f
z7RHcmvIp$4nJgtl_borX&vb8Q$?Ixcf9DIyeC^)5_FgXK-Zqi#$tRJ>TQ-}l9<WVW
z)c@|Y-xV9*RX1<MR2)AdbobBYN~^f}k9f`0w*_u5pSIm9$J|)UZB>ZP+<573xt+#k
zbI;X158rTU{j%=ZE!*V`uXc5+T-$PZY3!09HmB3|OP&5R>{I?REq-G4deIwqqRy_q
zQGaNE#rt<#sx#`YuDHKuTAcdE>8E24pKg0q`To=~HxV7{ndcmA!nN}s{$~)lQK4wc
z&zCvf@b2rPNsryHEZ$k6IAOZ=f@?PuQ>M0E>J}*A=VCW))^D`YF4o<DxK`-jdH*YW
z9{ifLb?>vzGBvHW65e|i*FLOx98@m2%gFzpw8xq`Yj^yNb}wA|qwAD+@*@@9#HEp%
zO^5xr?A!O@&-9kW3$^Wmzg1UGmNz*ras2e0gwWl$U(b~~xF_(@e+Hw+N1~qOZ2KIa
zxn`2;4r`l(D>DMlY&^Mf+u`2_99VivW%^b=^mR4m%*{)?nrmbF@X4&~wjEMsyIBt$
zbNTpAd{;;Lv8(agW%oFejKltzKblx+dcJR~u9SG+!82vwZn1uSyJULcv7hawORr2T
zNDbWXbygy7u}x#J^roMFpT2Q!wdSZ3zZrk;OxmX<`-*M1?aj0-aEcbWBA30C!{9%|
zE4N3*le-RGda!Tjk52h!8#R;NzS6Gx!pr8aekEmlTZz@kQ+G<)#hbggEM8Hx+k^W~
zsQ(Y|8uO)D=2GvrmSz_|`s*T`&bD*eLDnOMVu5?tmsF@v<Z!z!nLLm2`?^!L#*y1E
z=>C&Fn7b-V{+6c1u36#zN1`fwCh;y=z3R;5mB%Dcc3()DQ0QsWYW61Goo#`Qcl}5E
zM<HgvqN1PY9`7*O9q>WuXo6#P`j&_McdTzTIGdlH)qQ9edw;GCXW{yrv9I(@Reqbq
z-!Nal{@B`cFQcqKitO{+#(r8M`M}p@Kk91rqduz0@%+fG&(2=<((&I_v;NxBMd!}&
z>G9mEy44}kv@l66e}>%6XS&gW+js1m|0w;aui4$)EjRwG)vXC$=9=?y%Myv)C0BKy
z?a5v9z}S9D<&&=MBChBB&OdzLX2Y1d{73Ym;+M1JJJv1fdsH3mdHL}4Ztmx&oU<<8
zJ6@oYP`=vYZS%ygw|{&;d^_-C*QxtQ!ooI2yeKf4oK>~1TibUUllS!gu&q1V4EY%1
zXDJx%X)=teGVj_`%-{0lquX?|jW)OD^ljUpI_1Y=|LrI5ytyc{W%_BGV>@y*Y~-{j
zU%q_Ej!E!`_JQ=nzuY_W%Ffo!a{ct9?3?V3NhaBv)7}@Ehw*L^>|Zf$?aIt;CHn+_
zw61!ky`ti|V}Hn`Lq}A~u2sn`%wHF^*vO#EWqZbgM5z`0N;4bp9#?s`QRwsGf3kh|
zJug4HnDEiOqgeIO8uK{mD=oZgQ6BdWma^UZ^jX13&-k;<yz-jt)h~B_nf5EbGim3Z
zOMk2$RX)G^MSHF%&)SB|x9{EZ6)0@eSelf?=4Uu3Fmv73D|Y&qx9p5Mn<942s&4km
zTYgJ}8?~HQ+`et4AsrRs`N{LZ9fy_6m8PyQ-nz41Aj?jn`Jm?CmF4M4yWgcu+_Jaq
zl4tm{i5KpkRDHE2S))+sH_zt?sqn5Z5nFZLAL(4W8Ff2BcZ!kO+K1oE6E|H`kN)0u
zQbqQo<oTtQy4MeL^K-l~{E@3KedyP<y~^GNire>Zja*Q!(lYPp`kuV^y$Ad_V;(a+
z+iUdvz&~@Vr}G<XbXR5tzTCK@`sCtChr_ncy~}lKcK-9~D-j#`4aM(Xc>6OuN!EIM
za_+hs$I1sYd#`Mt^`+|aPo1=FTR)0!pEBR1+x}bBEdlv=ZASLC*@C9g+`dVtAFglA
zFF9@fL;B3_O<S+7tFf%u?8kOATWLC5=%){knT+SXp6l3e-nw2=HnxP<?6J?qhkg9p
z_sr^>UgMJA?y39C+qz8Wc}a31%SML6^YP1ToUeX)9h-eLPGiSM(LH?XV%_VaBI93P
z^i<U9TDx@ltvHE;>@&S{UKO91c8S&J_MR=Z{zuB?3_fn1dv1R2LS>PiAK5z7OJxil
z45wVF%e<w@@tN`1$9ZM*wDk`g-p%?axc}q&wg*<*7F)AK)~K&OTld=LjnCwx`KvnC
zI)tij6L64W@L<~XNAI5W_8+D8f3$bJUAvY0=Ox*HLOXr6o=H5gUNTiUYI3sLg9QtM
z4DMRZdbOuIUv9a2yN%$Z8RwQ4ZJfQS#(iOI)&ra8DQUXy-k)-nCyE#(o<H^A3IE>n
zww|7SA5)+8%#*)VWB+)`7W1f<^F_IPJhQF^PvkfxvGkJQ;&8s=tuv-c9xV}{Wwx{Q
zk+1pTIH~PdbGF>JSls4*DX(PZm&ew!pHlU^?`yBHurAyo$5y#2O7!j3`$srS)(ZW~
zuI4p2(2)|`n_rx-Qnujze}>NdX`fYge_GSH`GT0OcK4?K!%?B@JOAnb*rv^)Cnu>Q
z9(Ao<zg5-PzauHK)cxM8QwH;L3g5{Ho?}%N`z8~%T`y9-xzu0o)qa7m`foyJ``t_4
zx%+Z{$?gLigeJPHKK*HSlfR*Fl{ouT>B`kFSO3^{|KZa++ts5cSzn6|nC?=s@2<<v
z%xTfN_GK@+QW@*m9?s$8&9y&LHRV3nl77cY|9-!nZr~Jl=tspZMW%&GsotCA-`(k5
z(h%{%^SodD(OLf)T1`E^<TKvzTwI?MAwKQVwd&vdIq$DN!*on}+vNjop&2Jn?OEu~
zGUvJ2<D@CkcSZlWKeFen;C8)eBfR+h!}I)SS8R@(ot+!!&l=C$;x4B1xXn|w=V|kj
zX7;BKzR0ydvgP~FaKz4L<A-aTm*4Z{o6F;*Svr?bHtFuo>1Q$%uBsWHoV;UkQ_G*l
z41Alr^QB~Sx7z0M3src#U(#(X+tco`e?#du-rrYdaL>N{>`BVBa~CYa)a@!C?&nkQ
z$t~UA@hf&&_al1&yDR4Nc&6pr2WCD!RQdAnV*8s@FB#75iC%WEf=wuS)4sOrhu3%6
ziGI}YFO7cBmHn-%d-bW4`AdFG`;_Dv<}tD4^wMbSa%;oQ6+H$v&((JB&C2*A{Gj^j
z_1wC%rRz3Dt@(AgMM`Q<WAmA~--mZU^)yRq=V3PB+B2)X|BrEU^#kj8&YGyXd3@`u
zpY5IBw?_Gjkn6SpH?@m@RxFqrvsy7Ne?|&ZfqS%m>mTojf4L9u6Z(-cYi{e@7P*4?
zhkq?yyLI!=C;HP1^XnCNCahu%OL${^@LZ-^bW^@lcV@gm%7<zF58s+ezs^Wk`xbpx
z?9utCt<&q@U9$Yo@KA}jWC7zI8!!H(`j#bO^JK37Gd=n6ZP|O5eY-F3*&Xs}>Hf>6
z4jYcCaD6zkI^~>fXQW8W!N;?rSN_p|^q-+G<@Gfw)4#{sR_1J%THl_3InZ_M&n3rJ
zYrAHvRClJNsye4j_Z4nUUSDxJX!l3nKhxz@F28Br`sUhq&e~<K%QPg+r|Ot(SbfLf
z#YySB<9DBYExQnNccPm_>HZ&1HO|!^wQ56kgD$0=@6k2+x%RP;?83UsOT>3%9Q(Wb
zusHXX$&*8CbQc|)&poqFl6&=n?;EuKGaS-hp|}3&&qy5?JLN$BDeOGLdLoZ(<g(}d
zC`^2~R`}tzwdD^iOm67iT)S2*o;S+A<$Yv#v!e5=`RbJk5yu>2p1P~|p6{%a-TqO%
z<qONl{$IXN%rE=$?9;jweI(_`#<zd3+|qWLwywNp-P0X+7JBA1X&qE~pOoKa^fD}{
zBJB3Da51r{nQdi`j~L6B+{-Nw{Jpb8L3j4MhmURRV&r)9U*G3>XXE`b?%Ml+jn~sJ
zDSNwmCbm0YDcN*t`I*#NPyJR)C$vs3e8RYS=Sux|U*q|*s&uC}f0cE)eSG-=^=_9d
zTYhUR`1F4N^42x#neE{p6F<41{@xncS)yzGt>KF4+pN>hm!D7i=&@t=;ak0}pM`~z
z&s^n}wr+c#b#8`(p`6i@tG9kBTb#PJx#NTFzTWyrcZ-8RxUJ1GwU(});vFmZI&kAN
zONkZLydl!8Q#Ws2a)PIzoP}BX*S^({R@=9mPpa|TzI)5&o%62xM19@6clFArvvZ%f
zt51BKdx~S?zL?($Vfk(U%rf?w#6~~Z|3@V(f2~RJ?MkV=f0ylfsnh$t?tEr-zD-BN
z+vC$O_k3L!?09YcKFL?p_VefcQLKKL(fh~kcKC%{Y2VBFvZ7O#9@sWN!0@2rt2`IQ
zB1_qofs@NTp0Dg`yOh54u<7&88tp~5D(VAfal}3=mff?h>PfLBbDM7=>w#Nr&c{wq
zzOF2K;kDVsjQfHMuFGXdM<}-)@z>7UwQi!?!$~_gZ{uC=Jz=@D$4O~_iS;v0=6A@M
z{+Ru!!bZB-{_uYWxtp20rd*75{<dV-)h$~J{AX;8jXpK$gapSu6@#aqS`{~HF1>nv
zY?gd)$$tjEid**b8QY@ft-28P(&}mN+-Ln|OdcnKJ{_}ko5>k^CfD>#q+;@o$c?cf
z8+>1?6?+@>-tO^Vxwg*m2ebQ+nQQlc{j=Thr0o&Ivucx<drJy4i3SH>R{ebF6T|0i
zXYV$ep00?0WdCj2wEqk|rLk6@eI|#5^j$6Oo*Ny#ZR$enjWShVmlW>W)OKgJwLuVP
zLV^1kd%i#N4|%H}vCi)(S<T-b^<|gtpAEg<hdMUie|bzbm0PEp|CTC$>lDf9lcLj%
zw%&bl@=?W~{6+QY^@j?VMN6-qI^XxB-R-qnKWnxh$et2r)_Ls5w;0w33Ne$~m%lRH
zwp{zz?iaPPk9?(%{5m&3d(n@uZ?_MNU5l$$+xg(G!>uTlHv6BITeeN|nS1zY>*FcL
zJ$XT{#d0E2_D3p@x9&+^ooQ!t<?&^i$UD-?ODiTmZGV>A92lA6a#*Y~aPsLSJD(yO
z`vY}qvC+rB)tP<Z{89Z#TRZ!AclGP}EWS@)nK23+J88S?=c2a<tqYBhgzig?JrG`=
z{OI-0KgkdOGqC>X_W$^>J$%o+YsXF>4dmXfd3fQCll2S}ZfP4@*Il*H?QJR2UL>%5
zW2@(t+`IGId8+zW=dOGyFI4jS#@n>ZHy8CEdv-bI(u3cIr>#Ago>~@`df-!fLWD+&
zB#*Cti@Wc&J=W_Y|7c!&vt`HooJkeWf7BLjw4B5gQdw2ERO)z!M^4_YS3enlv8}iN
zQOVy@(l7IO_QR?lT!$X}&-2bc`r+=)dDRs+3wOOcdS&&gzS-fYr&w)Ne>aW&VvW7o
z&eeasHprRn`RKPPwNiJgjq?K4o^ZygGnKdO-{vS2IALd^^1}niPhBm`PoDSst<0Qw
z?myO#&kDz1-e>Zo+~=y~+XwsS?o)iZ?b}7S2Q$vRUy*rYL#(mVGMf#Xj`sOoGMxRu
zzcuQQo!H(F>ks{B=(yF^yYzHPDYxVv-F32M>XmIbbszk@>Z!WDxgktacCnK~$Ev2S
zuj2W(TI)0ZSaJKswOMJCm+y{oRm!wenI3a_?F>!p<(HSApQ@n6)FCpp_;X^ByY$0&
zffrKyk8&zr-{Wq3_U_-U=cat-=l6Yh*DciE>L}|Q=ads(ZOR!5ZeJC;Qf`)LX3yub
zvtQoywf~3z+drz0YlBYxiH-1mES-MQMJ%UdcU*Sq&aJ=09vpq%o?&^|ZAtOk1wTH=
zeK>z;+n%d$Y9b%*D2bjH8qc+Ldq?6d&0^&}K_*3~O(z*@DQA3FcL^}-dS_$!P~(r?
z{hRj`KfJxVZl;Vl!@i~U`H#3&OAkvf@th|;<IdEdemuF8q$e$j{J;~(w*RWW;-%90
ze8*R2UCZa$9w)y|if`>E{kcNk8E1Cf^3+u<NjX>8bG4ZB?z@^Vv$h|6-!)IzH^%+p
zevzzOzHg>&H+ucH_F?Cn)|-)vEw>paMc)xoXx`{N&mpEUZh3O$${*>6%c2;re(jaJ
zcSPFrO-^F}kxg;Yii~;cJLXDNcYL_bJpX>KMXE}Z)s`RX4|Rhc)fzu?o47hFvp7@5
zNncdQ>guE%hEBP6N>M%uk2F;zpC`!7dS)m0L;hjw+`g?3*SBroW>$Fjh-%`4vz~8N
zgbsgNb#&RCpWRuJo~N~^<Ub1X`(U<4uI*pv<Jpy8PRBYQz7;mt<l1HFTrZEOJ3f5b
zmvE3%cJVuxnMqm^9)2DyGRYEF&$ceQ9sTmx``+784v`N9?j4vlSzU)QbB%II#8ZjW
zOt;(ln<qvW{;<<cy7I&L*tPOmSAuW9+uD9yDt7w>xjU1UZLe-}<ypO@iQzQgs)%&%
z2ib3>y)JCE6+RR$wu{B+&CK<GL|2(D5L_hj+a|2s<DR#L#HYn_!7>lty?V?tGcUjR
zxcx&}scp^jJtfUcv-ZhcN}rdxPUx#n&3^sjxFhB!Wsf`_-HA9Uc_L|PNa=qDll`}?
zzje?5Ht+B9n$+J8Gj3_ei@ee;Tz=%##J&4wbZmHe(du~1y=fDVq}~v%xi+Cya{YVm
zf83$JQ!26_$o~<pKPD%8rPO)NkL{0ARzIxgU$=Vc-}bN##%})^ZcSf0G1+|*w`tO(
zV*+c|t?(8LjDN2AC^u29Qmr${j^Wl0#*oRaGNsQyt>5=xk8n|G)F-=ayCbH2&b`;)
z-IDCxkYJbdL~f_dx4+plpKdsiAoF0>#_B@RGrtc_SlnQIdus^SDdv^uzpTGJt>b5w
z!ImJE$6Ac<dmi_sU)#6f@5KKM>HEe1U70Umqx^yWz|8K5kMmaNF1~r<zLvZ0mDxT|
zChZWr$f+lhl78wI-y`GCp;O%4LhmfCD!x%a@4nZ+o%IiH-@nm)RO)`m*ZH@%$9`CQ
zyrU$ZYtKKqi;uT+oGZ2NSe$)&?fNZS%D(mKUR`Xx=jQU5nkC`AM<o6;tWHd|pZGHM
zMrqil?i>FOKl?k&#{W0>tFY_x%zI=rAN#k5S*cEKyx6+^w*HpRlHIA>+N!gIKcCGu
z(l*v%T-N8N8hWwsoWj4`MSqemZLR12A^%VC^<Dk^o9P!>_imfNO7|GEj(2{^CzW;5
zQ-dz-GV1A>*f;<1evv(;AAX;0cls#(Vp8<UXS(yYKD+7gQRq(efoK2BZx#0IpFZ&W
ziPZkbx&9CPkHz|^AJ1oe5of%sN#ohpt0fzBOJg?~H7HCv<(YS(_okLt0#jAVAEik(
zXHUMXYkIV$sQ1>t{cHVuP1cq__HVPvU+!dD`RK|SAx@VMZ9Dt8TTeDUI~<hpWRhmh
zCi{zevF1IR#|p1kls)=%{D`@o?8b|4X2<Mg|0{LrUgf=8Eb^~;=k7VVDvC2nLdnob
zd;KZ1IrBYde=GZ;yvCES`9Z!&#pA=;29ftYuPAT%XgX!$nwCXd%(=cFEZ2K_Tgl*<
zV{k0%_Cxn&Gqwk1)XDv5eP|o!J>5uc?%L?ADx>sE7SGIsk1+Ez@*Yx}$8<e;)wIV`
zJ?wv^)qLh}D{bA^e_T%Jci2+V-J7D$E<bZUSL^{#@#*3e-LD#gZBHj@zjlvloTea@
zHQS#d{rQiEchy@azW8MMJw3ZME%|O&lfMez)ED#Ae^h>)9=I<%U*N@uiuQmu*Ga{T
zvcK&*7@?Bf+GXjxY;j&Q%kfQ_OoFE-9*x<0`9DKur0(KL*B`QXsdY{fnQ(H6SER?o
zo=JzF*|}TKe`Xs!=Sppw>M`+G_5Uya%dgMMXQ<Kpk(rtOAkxM%b7AH`=G`Gz>rM)K
zuXW2#cr5&2OR@IpjbXm0Pace6a+Pn3YQ5g^hcoe!_3x66|1R~PO^w%K6c)>voFSp5
zd_1r6R8#hu{|pb-?0WmD?)HBMfqlXidB*vP$&aFEToSp*ed5i!6{r3@mGbL}o;>$>
z*H_8h;D_rE7Uq}zD|#taKK<E&x|k&{8(nQ$*>^s-l<C`V9P54Kkg0k4ol8?qqiS~R
z{`FsA|Da(%-}-;L^#`L%>cwA_U7K{P!spej%kC=YGsG+&Wm~wYnOaWioZ&9X=zk`n
zN!<QLG*i~~;Mm9?mC;@m%aThDny)?(BB=0b{<DdW3>(xJs>n_KWBZ@s;Idz(Z99Lb
zRb0sWob$Ox<5Io>=ckuN+<A96V%|Odp{&dz9DncK!UyMDZoN7x`)qCX%D<BwO$war
z%Z1vyr`&zA%b3+hYnsC36Y8^$n@;}rR&Scof<=pFN5879ZQK0lwk{L%`k349g&dzk
z&2%zV))b{1c}+UiusSi+cJsWg7qa&A?eSj~e|lAP<he_lpWJ6YImRTynqp+pDbH?Q
z_OQXG?TLKw)~lsc3-(E0eA1!7vFZF_5m{qxw&E*abNYU)Sp4Drk$S;sk6Hhge>3>R
zqr0XjR`_yJL-G7?9luJ}+XffC$XGUQ#pjiFlCLhs-M;&J))qtC#%+_12HjN6m{~5p
zOuyrb$-}08{j3Fn4USs%)6W0U3-9~F_IH_$>WA5fc4gPjez>mbR?ojY<v#Dffio9H
zO!PakXU9U-2FYZtIe)hPZMyx(?stH<Z`iA6Z`nkiISVK+JQ*a>Q~G@W(|>jHAHp;1
zGx^)>#qBg}B7aPLSnGA#XYa=)yJXjGEaYiA=jpobcXqX;ih^JAh7QAwW_LOHYEH)B
z^IfO4!wU{y?7cI~{mO?veO|9EA1!7sStzT2_uKoW=a1~~lb0~{7y9vYkLO3L(A~}c
zDgAFW%+yYtOw4JRd}J}Vy3fj-uj{+^WIxUqsB!wJxA3vNphti0N}u!@#})>99td%~
z7%0FJ`ev2&vt=Kr?W|lkC3;)hZJk!epipO-Is5F=o==|hSGy(sSYiCdJ*tPMe7Y5X
zKRftSoZh3IX;XJDULt(4Zn^8C6VE<+o?4aK8Mos<1J}Qw`yX7*Z~kV*|K{UI@5gHE
zm$mJ_X6kG0vZaXqe13Y4-jc&b74x1Re8FZ_Zhug}<;~-LSA4W0PW%oO(W}%EN%{6V
z{^jof3~c}Y$bVFC-v3~Roy^sD0=M>el%CBG=-9|$x+!+++Re``5<VPSXSem_@gM7a
zlzP8s|2c2nrg?A6?HBzwzh=+yyOjIo@1ExU#Z30Q7F!;#vsiVj_wU|kDp$5juYML+
z=cBa!QNfL)-tw(_;&L@Nlk5ssMa(I+IBq}J!z4O7a-(dwm&d7@6}<1yGvAQQ{umzk
zuJ%eoPsbjgYrebPH}r@}g#Vnm_ne1)zt8WhU;i_-Z2QlUGWmp}OwAc5ng0w2J~*Cd
z+BP|Gnx>FSVUA?e+|D`0e;+r_KN9|N=YIxP_Wuk`r|NE&*USBJf9T(6XH?Hv5q{{`
z)@%JNQXyi&S>i^KXD)c^e)%2{Yb;)IV@;t>w$KBi=PIFE>w>oUCbtLOT~ZhQpW$HI
z<9YQzG|wN8Hx@c)<DJ)6QNMFh=HAb@d;W?3Oi1eEWN2p*JbCQ$tndE4aw;FEAA8@i
z>-^F4(m!VT#vhrdu-iOp>f7JPWv&PP%;cY`(5cjKt<+nvanVBurmgj9_BZx_oAP(n
zKh^Dr=QsZH-L|q|V&!-9;Mk?x=BM)csqNmCS}3)VH96FMlH0?8hBx!hC@tpox7%H`
zGGp_V{Ym;aKh#}{7tghkF6BEb#((eCcgGDUbJ#BPWM4U5IJe9FZtVFvE7<=E*IE5L
zSI=*!^GD*Nd1KUV_9Id}+x#|8i@33OMz82J^&X1{yzBP}UiGchs5@}~gO|1c&1{d#
zeJVfBo%;2y%rj4UYr#b}?(fN=KR0kH<V~3Mch<-G{r}`^EH6zC-S<&--{icH3p&MK
z`X2f1R_C#}=;3^c7dzBNAB7!_TQtdisZ_X^mite`AG;6zTHk8=x}W>?li9C1Q@8G7
zxBMNtdUoaXIr3j8ZaDe+WnA&M)XAaU?|%9!unKI_<oz^p>hpz9zOKJs|3jzz&Fd94
zY=3v!q~=R-F8i@zd6&uaK4l@3s)_nKSxYwP%RJok#_;DILxq!#Ke-;xdLW|MtdV%W
zp!nYYRYo;Ag%ugs`)|2F+S$wQEFQ$YSbAlK@e8Y$Z4qY*P8>XbQmcXU?Xy+88DBY^
zkDL0t{XYZC+8<ks7gV(A>PM>HT%Y`@<7B`hgB=GH^8U?u+4U#oW8F5>m221MBuuh!
zl0EmYc-?cG6_a8nUvA(CyujG?YyCH^AG6CJ@^_bMbV*6hel9p^%^@Sh^EP^(2hUZN
zudi2Le^TS@m-NYVgGv+M%fI~oaKHGgsQ(Oy=2{>5d?#z3)Rt}Aw`cddowL?;l5`AU
z%RM;jWw{WuMvu{B%iFUq?!Ef{k7w3}tZSUBGj^3MipX1||L$$6cbnkneHU4G92RnV
zddA0~s_TROP4h?m4SW1QR3DyoXV$;P3tzEaUC_pGY2RFvk437JG#2Seyo)!eoH&!=
z&?GkZE5{F;Z?D?h-}R^X;a>ftx1QdybN{w&es*@E>5hOX+qKokz75_Yg1djlJPH3)
zF8(mJ{mknNTPIEay?*(Fy5EPdJ`88}T6OJXeC<|)bz7}<9Yg;(mZv54M)_(VzNfNv
z`&O+N3q5{2cXzhi7{4(p?h%aT{r&o%#LnL-8?%0;tzEe?J7lx?u6t8+POVz7Mf=H7
zsXnfwpEM<v+4j6Tek4k5&i#ZB&%55OjXL<mHz;59*4<bwrSx~P{@)@VGxVvQY4T}U
z(mZS90`EuKVpmMpv)nwDt5Z2U^wRptfs>wk+&e8cS8-yHrzJN>LV@wDpPA;x_nux(
zUURubTl2l1;s>9oxb^E_)g|B0j+2{r*>6`<fWrin>UA<ZpLo1E<9=7!=IXPVHQDLv
zE&FbNJFAlX_VAHkwNJ!#ZHkzhq}zU*<S@n@TQxJuoXPRA-Q%DOrT-atPA>Z~Nn*>1
zclDRVymzL2xVO6O!nV&FoD|YRRYMO>P}KeWL~7c*$b}bm9({b#?e*czBjfyKuf+mi
z>+Af`S(mq9#|{?39z#FFPcpN%9MWHS;r@wPs!dtDre6Ke&{kv0)REliJNN6-BTG-P
zY&u?8wB|@+x6!J`8=va=?H}y3=QORC|9AYJ?B69q+OG2tS-su5e(tir3yyuWTC{im
zd&SuukHr1CH?Mkks`pGt+WtJ9HKyJEn}4+BZ+GGFczoGLx5{<VI?hPBb8iz;<nKj%
zIOCziAN8mCKSR^Kir<Ih`RWt>B~O<8ire|vUM&7ao%BBQu+`Zsq9R_IcTC!+RDPyO
z_K+G2hj)IQ+pTXq>b5NGTdI+NX1^@IwdtazZ7VtL`ajt>+sj6*TUu$hIBPe{Z%>Zm
z=7u8M%E$Jt5g*nyF1_hw>Kn3Zv71_rOlwcg;bNKO<+iOsSM?sZ{cPb->T)aI8tK(D
zsbHy}f&bFl?Z1U;ivCWllX|sw`M=Ba`KBKc`nxoB!}ZQdkGz?$I^Eo8sM*_)I#Y1Y
z<hENP!hf451@>l5Y<V)N_WV<uv%6x>y6!H!^QFJh&h#T&f8v4~rE4~})!EByJU*KB
zUE6+XWuw%6x9M+Po%UT%ombjwRJK^zm`#D_-|~NF<39wR-hZR|9~bi@UGYcyo%2o~
z_$Rl2(}vlu8=5YzE45s@xi7SL`R>nwha{&n>FfFMygwGTyT8Yt!-n^F;1B5o^^*HI
zDrVh2GXFzQ#ca1L)1t-Mp1-*m=lpz4SG3l}1-x31->psv*Zm#z@0gs}kEtKi1AZKQ
zII(cik9po7)z+p?<gscxb})3QXUI?UObNM=J33vWsi)qQ{5&tQ(neLQWZAo=n?HHp
z|CoNW!Z*xf*5s9<*=kGXz1+6nrQYK|!{+O6?SE(0-QO?x{!i(Lez%Jy^)22k-|BpC
z$#03i|1QmY$9m<Y?UTO<N40dBhFQ+9klxk#Px|<S+e<%`w||kf-Q!qpz4Y$&c75dw
z>(<6b#<)KDd3mQ!(Yf*meOwQo?J@qx`Sm{otNM@n58Y0e>eKT(Ugj@)aVsV1-hrRm
znYO#8os6DcKgG^d{d{-P#^;4H*I%d~dp*BxR(oGgol1@JmJi=HS3Y`iGky1@`puq3
z(aWc$wms9X>@E!{yVH=%V5r>xjOVrf7SWV<b?>J?S}L`!XK}`D{~zk-%L9MpA949(
zvwt^lVrIdoczN;6;8?{Sz1x1SuB=$e7&FIt%eF^FbF))(+9sR)GupN3>K0#imm>xT
z7sm6t`xmY6xDpZJlJc{geG01t%e0rXPF;WaarWKQ3tw(>Uz}0+ZgP0`UPV)F$;Yno
zbJM52J?Zj<`H8mWlVuL;)UF@d&$lPA{@Kag^z21H>d*Gw{A0cTJj?YA(b$uhbM4N`
zOy@cLPJdQlVVmUbc(Vn+Hop)Jz49Vg>fEjLA5$NB*Yju3Q{0<kV7S$vH_OTNlyr;v
zr<2+pZK7;XZ&k?|#!CNZ$p29%`lD8C^{QnXSGbGcO1S<;@9S&Tt&@xX&VTFqBwDP%
zal%ZA)`!RVvX&n2PM94s`N*tu%TrhE$w<9eQZM|{*)^?aj$3!FP0^WT=d0J0A~)`k
zdA24ZvSR(As<rQ@FMIvVZtpss$p_0bi)$bGn%#U}Kl{my?h=cq$w#s}>S7pJqnp^{
zbk=7+aGUn;@PU7<m)_=@oOarLCu^VZ)d!baj^sspN8HjD>r*_WnSSz#f!eCtZjT>}
z*Ep_v{prRlDZU1?8#jNfc9?eRi=}kU`nR$^{rAot5PHp4ctwWU_rtmV<VUjE0Y6F~
zX0PYX7CNtBUOrEHPb_ml(<4r9Uy+RwI-4f+7(F@Lrm%XM)r+icVqMd3<#&9oejU$|
znRV$rf3L~f58^#<?y4;=*FU3@#3U%4!>)X3PU1?ft=}|!Yf8Ai*LU30XpgzLd{=UQ
zGTZ#p(nqmY*B&gpdpb8^XV*R3#ZS)^PJ7&R=RroD$d1h)zT9eWQNCPSTOL36?2}to
z^LeuhB?aD3P(2*y``qJ(wYS>=nRjo>|1d7O?fY$i=dH4akI~L5fk!hR)E2!D+Z?&A
zB`jL3?b7X2z2U{J{xf&2RC#`M(f%LnAJ%s|JwEnbj%(+xYin->nr&il|N5=NqW5au
zX`ac-C$FZme$x_>(2?+Uxx7jAvaNQ+NAr$9uFL8VF>LoPmEAMRZg=jZ-;(d9f9Kxm
zb@y(iSgXJaty2#p=B#9OHFo@1W46m>bGDS*#)rK8j>3kM4}b5wc&}aY;=beAJQsd$
z&Q(yHuf=xZ`2LOl56??iL_0ShxD~p*Lpj&Y;$HUF2^D<@+&JY^%dRdH;yv&_O>n)$
zlR4Lww*3?Nc)nxJKJf~n_b&UJ-ODFE^ED2<Qlfq1-C~{XOy0F-77H?_`kC$7p*wl|
z!c|Ypjq;tR?7mhbzcOn7k@Fq5=5?-ql`}v2Vta>9d;7YSyp)K4*Dm?Jxu_Q1;ePhq
z)sv=IPcNzH_WYo_Cp&kwPw5f^ccs6}kA)@OmbWS9JmbAB@Iac~PFw9DS!KUHSM&Zj
zKkhY;`0%fJ;R<Qf-ML!-R3m1e4)b1}sh5B1oZp|_d5k-6pIBFa_*U7})!vmKx5?UF
zkK5O~c>6Xfzr{tHJd$!(UA+BTKbL6@$H5N%&k3wL6<UF18y>%k5{r|)RH|$JFuz&t
zqQaFuM|SMle#zAN;a(@rREOl=HMxstoM6fE3@>0*ZvNgL_~@*?_thGYZFQD?872CB
zizW5`crRG{L~u!R&35k9F<x%RU+&OPe0ePBNB@z1To)hbOT99`E;VhtNO#7puU&T+
zIrXr#KEJpy<M0ma0F$4}i{{AqE`I5JFivdSrVnaUZOqM6Rd(ca-*fX3P&af{iJEfA
z)&03*fB~~ih{lbp)^GBDFdv!zPj&azeJT~HORwnU6kUw^5gtE1ym6+T2UF%JcNVTP
zhVxQ8B-!7~Wlz3lTF+mh>{u^av2c(5ve)|*XRf*ATXwNVb44uE&YhF2XUA{#Nx$W0
z_wu}D5aU{VvCR1&W<_MyNp9bBxyDyTsPej5)%97^KgNjMm=_#5!)!y4b6aooG!{`A
z>9DA)SFd-i{bR^-PxC`+UysnywdvbBUIynR`JVFD5f*-y-V>89BN}#ct;|>9w(aUy
zx7dbVKNuD#x_Q&}^}?ar#f2K5{)8_(D{!JqeRAkjS%(voixxcLnS4(&&xUtxjmKp>
zu^)A{O0JheZk_x)du@Ei^}usCvX{*F-PoHu^8n+N%};pxr^sdeD7)|cae9a8`mS61
z+imPupUvl-YwFLPC6p!AdZwUhTaNBDj)T)>1$Hykh3ZE6KeF|^en7mcziaEU>uNg<
zUvB%h&$9iW;MN_Lj-MUpSr`1vpCT=-@Z^Kp--n{Ar3(x1&p7&VYI~cFcm0Z2^Tj4T
zI_!K&^11wn2`{d3=VtQmWHA5Mw0lR-Tb7fj|J=0cQ~Hpdy<y{zr4Mi9m7Z7|rxA7i
z;IF^Omgc;3a4k+>VY+wKlI+g{Jra*C(jI)3D((DH`{Caud$yaeXW716ZZL7#1=r(U
z3L(u5j>@s`6(u&>Yb`wRuvNWp?ShX!x55v9n8n|fr~6dsuG-=irx#^S+rDYhPbX_@
zi%#psNq*1c{1_CTZM^jK^u|N4Zq4tg(SP_PUp#A<<L-|}G10bd`+4N#cg+(0eV+H&
zoXH!ftMJ7uq%^JVDGB%y9{l0%v+3y%Bmaaizjc-+C`Q))^!1Y6^NlCSJrBx!$Jo8%
zK!4j4^Spbx)=~a)?ho(t-v2TGuvFPhsi?iHUQYC1DzCBmq)qvz#V5?g5`Iqa-J`V4
z^RbCO=gk_&AB$I3eE-dV*lOw2`S0JZFOkj4p6m3D<AQ{gw?n7U35i_Br3w6Z^D2VE
zZ>%^O^`t83kM57z9~azyak;`cX2)g!o3p&FZ$7+wC`u?&Phopt{$AC4ZqE*=voOzk
zTXJ6X$83+<>ZAV|1WNOTUs%QNI;-XSsG?-0$?me^tpfYztu06jatyjOxo=I>&S-f7
z)#)v!XVZ`WT6?nhvA~h}0y+;bB?-rD)^fQn_Tl(mbAuki>5{LWTsMC>pFJy%@kgQE
z@(;VN{r34C`-XAp2hrcz4N6QmrkX~4`ze1YOjU<b;+QAj-=itldhUGCZ{KpmPCl#Z
zKf~c(sY9QtcPeiew`17z+x8H9!e@WZEB7oM9B!ZLz4?UU?a_=Hhpvk@%1birh4dHi
z-nnmg^-_P?DBYJS4LR{zxf-rKMtKP*yp07XZdX_4e>A-#=h-D2)1?)EUd(E}qFr1r
z5~uIJ@oMO4mPp;C?vu<<Rb#_hn8a;+=S%$wo`2w<-laFX!AI+4FFe@3wOh<M)7fj1
zS?sgawx_B4d>bB4Va-Wqn3wHw?3vJ0|9j~Rk1nk7+U{%b{o(G^yRBQyUO&B4QT2=C
z%lFUH1wuFPTJ0z>ys*vjfTc}Q*sS`tt@C@oi`Oad{_t;YZEn$q&ip;rw%eA=6sWl*
z{p{?VDy^z2$!zhYDZA}roqi4fkJgWM&yUQL+jQxV_qr`@5zjVWUZ=Y?f0L8=Y2%;w
zV&?CDp4~Ci;n>~1+Wu}o7Jtll`8cOe>e`pT;oh5eM#iRJ{i^L7bjrXn%{`=#dqIJR
zOTnKB3pY;EeW(?k%-+*<bKca2(Lav+_D6m!TgkUKHAh!3Pf0kwU*LA?LCdCNyq8Y3
z$ex;8_(|i1_Bj*jdM?)w-$OOi7kL&ICHC0OWZB0)$wi3iXc|xY3Ffj3?#g+U79ZBC
zJ-dEb&a&D6NACKU9}m~sv_1B@{Kv*b`sdmU`S!_^#9MasOgM9%r;DwqxH)`_KF_Oy
zAKNZHK2pc^pP?no^8J%3S(@v*JMJ!aOZ|6gyJu3l5QEvXi&rd}3z*ecSr)|$Tc*!i
z*YVZY{}KP;7bY5Y@@EUnm%pyh<@+{k342^ulE@+#y;89b>kZZo+o#U%<78>xx$4zF
zgTB}PTQ_f>?sfTsPGI~k|8E?DX_m$@nU6wCT#s?O&d#t@W|?@RqWGBDt^S@jfAkkt
z+<W%!-ZLkaOY6Q&-#p1-_Kdkk4jXtc&XL)>=WtqG;uUM358t*wJl`=PF8+sFF5@~=
z_KL4_jUzhW&R6_-C3n%z)+dqfr$X1N{5+x3z|Gh3P+^x$@bN2CZy9dgn;vmxPvP=g
zS^M-hO#8cB;BdZu`&E58gWr2rTfd&_R(4~_!XpR!q?eXRO>a)`KGqzz?V>5Kkfr|P
zOjGZ<$=`FEBKF>$yr*DB+PRx$PH$gSU+0-GUTPgL7yZNP`Xke;&u5n<O!wJ!$#>^O
zrPCZGuV>t1Na>e!x^TXMPa?h4-gnQ(w$?`-igui_3UOJF%Jw!#cDU|nI&HQ%_j&Z@
zBL^N{iS}*F`*Al`u<5tD&MVJ%=Vr%VS+~da@$6Xj@Q=&e_Bc$N{^4})lJiUc&U-3i
z7Lqw#%_V%2P0j2i%XbH^82>T9W@G)4iMQI}L+{^(SMqz#npnM`pRXl2>H4kGBfIzP
zk+Gl5sl_0@t?T)kI>qc+-}}NHH+;PNY=PR9qkCrQ-kY|oWI9)ok5%d6Zf9+cXO=dd
zjRB4}@1!qO#2=kzFR*6o+3bhQrYDP@y*}mE<gEV;IfVlDCetsNT(DXxac{Nkp}yT7
zlB`RdveVpGzM3a>-A*;*R^86EKkCExZ@Y5g#!df4f7=6^5_WT3&ga(hHqz8uH(~DS
z-MSG*71~GT_<yWSEnk><&-lZ;nSYm@Et)p#NY%B8D>(%xpSq%}r&_72sPiv>X1+*@
z5vx(Is`S47KQ2GW-1_mMZ2qzDzSi+e3SJhy?9R^HBxx|=hRMbQsg)dZ(W|^XUe0;8
z(>E^KpEKJzcHfV>lCM@hIltzv+x4>G_s+`oCjS|%t}bn4yseWh^R~I6T~b`++S8rd
z)yrqS+^6*;cio?qEtmHAKC<VkXpX#G>i<PM<>GwLYdSL@SJXd>FF5CW<sfIzjK={d
zcdI;U-oB{D^uizQ$JM+M74^qviQh7{ee~#YjMTm9MQJ={cU3lTJ-R3I@Slxt8#i!8
zOS1XaKYH-dynD@>E$?N#S8$d_2;KMEeaS~Gr**1NRq2zpd2iM3v`kE%@$P`a=eWko
z5BK7^U&r6RC->p@i%WZd?8v?yTjZ$x%y;*?H#NU2mh|Tvt4~!tR`%{_NKX1H3vPeG
zO!0pv8=D><xhHx}_42zDT^c46mt={pK4Y{-XwN23oyBDbTeu#~b5ORH;%_Y7Eiby{
znv{OG31fPp=7g+SJyE@Vi})TWP1C${THqufi>ELX15bd_yvIlCg-oRF#bSQMAF(ss
zxU*0D$=oe}-90B+Tyjl(+8ur2+sECFXHuO0Gng?ZM@4Nt@^+1VhmG|^-vW+zi+AnZ
z(;Vd5=OCla-D~Elq#9APDW`Xa=I_TFt}RS%Y(D(Y;3Ip_m)+;ZU(2yyUwYvyztO1+
zFQ1(cy<D@&vm)ip!l#{%%5o8POB>eOhP(CsKCZpOyZ+H$u1Gy5om*=@y^`{M7h^xI
z%(XZ_Tco*RrHPMu2@7LbP3q&>(f-1EbM>}9v{?H#-FwBB*Q>Rgb$BK3t!G=ntuWO<
zk|Abt<BoLG%Rg3Ry-Y6#oo^>+xTnq4_;h`KRVTMrLuCEtC!g=L@b4C>d=<_%b>72j
zx!MFfwU_q{FMo{}`eA%%p2GG`djqb=NmtDJ&*0P9sjVI5Eji(5^0d(D#l<Z@cf9)=
zFIQ3TvZu*kN?tPhMO~G%$gN4!FFpCpCnDBz(sZMG$C+~r3O{{tjr-{Pb;lKDt63Fx
z+P5PnW!oBkirqD(`ooEnCCPI-&5QPHy;IJXDboFM$oyLV^J{OFKF+=H>B`B<Y^n3f
zlHB{BZJy)zZk1c1Oak+%Uo(8~EM0l*r9p+h`$y}zjH<d`-n(lL%==h!`{$zFxBfHe
zy`Js3kFz1{&P&aMHmlwpE!%axL!muhD0`pQb$#8)t1acf++I8LEI*yr_UV#A!hsWE
zWxD4iJxraCe7CAwoHom#`%rn=_H8ds=T2L#=<69cUFFbG^^9|#3Y(6dI?m%7x^34-
zzsA-5;*nWW*H*8nosqL?(xFG69V7i1jddsgU1FrQ>0NK2#I|SQq8V*@FXypd_@lmV
z_I#d9`<uL}rO$TVcx^Oorib!hZQmW!G$hM5s+tMkEh>z;-(wT5-f9!d`)u=L?&{UC
zb_r+nzoc*O(^!%_nL9VgcH?S}+Y%WYD)}5<Ui}lZ^KzZa(Pgh@={Nk56ut8;@zIVw
zJF9j592lA3_-)kI)>o`KBqP5^`Ix_K^~X3*#SI&;|8ZUWqFm_a&+;h0*~`>6rnMP~
zmp<Ium!5P}-e}Wm#>vgIc53Ii-o7ifYhG*Z1KlWp;fnY}zs^Wy#VBu#jec8rNBz!`
zU%BUQ)@(cX{!4+MT~gtk(*^16k5YttlMnW<T6*bZrpUD3WpT$v9vpdg??=<*$&v};
z2|N{Paf|ix`F{vMs_R`^arv-ST<c>^uG!IZ{mzH%z4ZLIi%#;C$VI#xtqc^Wd0xHP
z#;K6D=l-`_e;4n`{>@i+EKcw5l9IV`v0VA=FWD{~cH7^^>+mXS?m68rKbG%qT%x#i
zM+vX7_sMes^VVs-Rq^!|{m-!e%0IFF5BAk>6J7sS`FHh??nC?duDmzpXR9%v_4sg=
z`K@*H-dG>jkXm~s=W%0Uwfq#3)KJ|C3$<>nKTw<Y@X3yeOVW<C>~KE*^!C!K^S$d!
zdE+DJM_+w+>)o?=o_TtDbCS<bbIVMf+Ey2=(sRk+<<1RkhH<j1?rga{VR42`a^K9y
zv;Lk|J+Q`><Dl|`jaTPJeJa1O;?>Td{XX^c|1-pD^j9eQFS8CgX8g3Xc#hoO9V-)p
zF7>R)k=gKk;+?{{BkwOf53=3-p#Gq}cun%hXZ;_(A2jn{`8w+D8>zh6xlEg9zSr}J
znApVh%v8PRs9Tt7+S~Y77k}&hJ9&@i@5DNm3hM`;D|WfmFK+RcsJVUY%F`{maUYY}
zp8czkUA%SIv`4vbp0-;`9AK6|zW$H2@^7WnAI-mYT>H<EbvEyIM8C%m+hy)*vwqod
zt6t9jwSP7Xo1(#|l<a8vE#4|Q@=A}yG$+jb_w38;xzfj?)D|y}jy}5Xb=Zv^_8(?v
zu3x?<>`WzZ$781=&d&-yGEdum{>2}?**rHt`J#O2q{KU!pHHuhK3Z-kd1=kr^_`~H
zY1{TVYGqEJ6?sK>G5>!CoqH8>B4M(YX_m)z4_bcy;eTkJ!KI-0hvEdR_Dy;fC+qCL
zyXjW#fj6bcau*~{+}d>F_LRh(Csxmsy}BoGNyhhG`QMhr$y|P`)>oZ=F;6`D^Ua+Z
z3E3^5%`}g{o6C4m+Ac6Sv#PzdPL;F9_EGfdeDU~$GTX(r%{n^!#rKI18|HaRF5+#~
z*-;V7B`0m`e$?7i?(3|Z^RgeuDj&4t+j!Z%(<ZU<;qUC$v}XTZXaBC<bGzA7_T*iG
zmTiw3c~A51<UVlnq3$2fk6!P6_S6dH8XvipY*4H^dF$ROh3i=6{QGn*EOymGsro6;
zn~q$+u#2txQLME8{Db@Cx7mrwCC;-AT=$=0+eI_hur9HkpVPv$PxMaFS6R&*8Tc|z
z{$tx*z2--~(cT}U?g-oV?%k5^xPQ{;x##$2oKq=0Ka=m+36&<z6I;z{-miM`i|f|D
zxrGm>Z|bOD%Gu<UyKsWOri_@s_RfN$RVSZ*h@4$`H1+nY`K-$t)pl;(+~pn+$u_y<
zU__rolB0!9O5?0wlMmVRzyA_G+dEq~|4{h!`L=W4ZTL1%Vfz-t<2#mw8=W;hwEFWW
z&)&1&%bv40?D;WUcki7IF*T7N@@Mp&x|iPi{`(Ud+1sV8G0)dANWNfA)Y#XyZhi9q
zOaHv<^X=QK{15E^p>e#sMsi(NXEk5{dbjV_&xAcbJImwIuANhR9NN`9{S4SFSeTaW
z$$wmbL|^((+J~dpJKrph_UFnp&t$Pn<kmgXJB7btu|<%%zUzrsRkhK-WB;B0Wj6nJ
z&L4*l;hpP+uF3PiDvo#+ZfNAr{mRI5!bLTsi6{4@M)Sq%PTp<$dH-AIhkvVGJ{+66
z^p;7$i>Tz|InzF_bh<RfevgGkLfOY-4~jh3m8|^jv3#|6@e4zfRr;B=qBnov|IffS
z`{l|NbvLYjd6s`GHfyaj7jX|tGCQ+4xyO*_PRVhb>)+2-F8x#V;kU{^>B)z89Z2U@
z^3&V$JXPgsOXs&E_j_0+LSJ71&v>)-{5w(gzO%GntnNB{!G;fuy%!x>+IGA9uG2lv
z8;n<U%${<pGi;vNKVALzvVKRM-+AhNOopG{vF<&_?o(&_`Nx*Il^*Y&Z&BLQ&r{#I
zPw&I){|rZcAH+s^hw{{2U$({kW6i!5lQ=)z?dbSC!Qpj?^tY{l=Y2W(Xv;_Y&P5;2
zd@?&Iww>o!+T}S6DLXrrSo`mu{&RP8+|T0thri1?%@)<XJ<KI*@OYWooF`?b*>3`m
zGgn#_xh!}Zl@hdM{=1*c^Xs2S-11KIH;H?3y!+HOU8(QxleAyV^bBwEH%Y!C`rvQ&
z&+z{Y&D+*~?fB1-tlx6+M2bPb*sDnm5p9u57xE(uto}1pe0ltF{hj@{*uPEu+g78!
z@@VPD#gEMTALb@|-OZcmxKiuhx@*=GbJxtA^X>_cMuNTn6X}0^(to$wG5ou<_@R1p
z9aF{r$d4g%lDSczo_^KV?#@n$Oz=+q6j##c-KoM;F2r}0U3VJ8UwzJpT33!c`wH*<
z%WrNrC$W9X%s(}+xBq9zHk@#N_i6TLcla$7HxwAvx)wKVuGz!bSMl<FtbETj)%~8j
z7e#HBa0Gr|8Ru|Zl7a8|tj8CZ9{kx`_it<O`NqSSzVj#ji2E*;x8c^>h3<P>B_a+T
zE|~Rn!-fSfuQ@HAd~g4?;)nc4>Teo<<NZ7BpG@7^eO5oZAD$Jh5q-GV+>^6#<-u>A
zDouBJdY>HK=XB<G=b_K>PZoaot2Ft@G+njS_${{<^t#`#RC7IM`Gm>O`uf{zJ3mf7
zaF6rKY@e%nYqxl}pESE{yLZh2x%s;%K4iD;O#X5GxlMIrujl1GyK-vHc|C8H#rnV9
z{iy$s*y?X;AIfL*x0~8l9}PEqI>mKK=CZq<j~V={u3em9d?h9Px&M*%KlG1Iit?`g
z@cm)8r;Jy*=eq1;HVl=S%A2>(tdM!&{iExT*pI^BdUZGEZ|RDynEW8W!F0dK4Tq=8
z`tCit#JgJR$>f;}GuimOj(rk4#x(7~`sH=v^#`T*=jcm27C+|i`BgXbgWWmKB+iu;
z+a#8@_Uu>M>9IZ~mFLVVoA<h#9Jr6x<=e=K&HDcI$NY5G;OdO3^~dXf==Z;Me7skt
zBKyIQOEv7qE6={`=9$&|E&AQhp!>(Q)b1_+E8BUlTtntRgVlT?^&eLsy%&xDaXsXk
z`gPOVv}e(~cP@90-kG+e=#sAnBir|+$gUN)=P}5Hf1UcF`XBFyYkQn?&3o<aetf%p
z)J*K9nr;nq$t7PkMkS4B2D-bg`5%5d%%=Rkq4d}JhyH&Ah5vDW{jmFp|Jond1Frmu
zRK0c9wy*J{+<pHoTRE0`^teAc@?9=aYpwE3t0zppMefp0lk?a%AKsa9^N)UowbPIL
zkIsfYKKxJo!dH30S7ICA&AaZgW!Kfz9`n1IkGJ$Ci#<LxEtI#(@m%4XI_@9Bzbky#
zIxhUdeqf)?rT5S7t(vyY>fDq$EAOPvD@@NbTk&w|#KMbyj~M?mxbidAaQ$Ha5bwUR
z-SbC%>Vpnb`@4tcab@q`Z6K1)Gfk`@r@2r`=N-cbv#$G-W43>YTVi9pH2c~-)oVTz
zI!kKZGPayv@nDK<U(%<P`Nb(5S1*=-@=jlG8}sqiVxj*Go3CE({F7Uw@t>h7rv6~s
zA7|Ue75x!c|ClEmExB}f)sJ~$vri>%vHIKp_T-M`XT;wYPW}_^skXn!KJ`DtjcnH+
z)(O-8*?(L%{n2|l1-^}5dMt5?sRzu8?@2yoe|B3bM$bz2u<5VUkNDfA=C^NkYd;((
zam8eAe&9sCr+YRzufBOy?a!|LbCq2BZu~qxNksER&X?<ZF4zP=uC?Olu1F8Q@FzUC
zlBGFlYFf3pYwqIj@(G?(jyK&tS(;F|r7_O8#x-j9i>g4sYxYy;|FF=1=rUixhV!9)
z=VH&_Y8xNMI@RiZ`*`_Hr;SuoUZ2F<C(}H;{w`DDR@W%}WG2!4r_iTc_S(xSY(1Y0
zw>01R&oKYm{>$6Hz5YAnOZ+YVZ>ArQA6U;RFHn&l(Ck0&k!7jKjLh%h*O<?2J2R{6
z<cwP>VI8+mOxiAQZXy3{=VNY*b&tA_2`ry1w_vr(ii%Iq3a2|CI0#x6wK;xYMfA*5
z73%Giuj%`{uYX?rsm|*3-?<gn`ftTgoNc#y*}Wf8mkvF==C3NHu`n}Q_v!vWpSZWH
zR_*gHd9?4=59x=0?R|EB$Unl*|0C|%qg!rMQ}=DzKFu}a&{XY$WT&pf8}pWwo>+hW
zt$F;e?HAu~kx)(bJru9=GchLF=AB|^m?Wd0|HAdPKNx>U)I|K9Un)`mko`)^WZ%ip
za_z$Ia<i-KKV@Ka^U0jYmu2Ly8GW1bGv&+94>PA~o)T|=zVq+L`h!Mwmal&;KX9YQ
z{^8leE!?knXQy4h^y-}V?#lURK0OKF9^MwL5qir|NmNCM&oF-Zt?)x<g%6uux0CI6
z++OSSVbAoaZ4ECMpXzxN=deaCyEUP*GW5niuQ{LRA9(*mnf+~g{m1#flaJI%T-N>a
zd-nF(o;$Yg*^$!n^QhN+Q^sSDEES8-S(yGlxuC-S;M*1Ijdf!FYkvrRI~2^ev^aaY
zx9FThs)~z+vnHNccE#RskKXPXd>#+}Nk8_BdztoHP`+(R@b9VfpVX~>*rpkBI+lIO
zLbdtN_C?K|-)7^T`FPEb`Ul^;zWhyg_-!rgkhSgeE91@DtUT$Nk6mMA7ilUcMeDwf
zuv)kMp|*C1>G{rUR{Ia1RXaHAnz7u%?EKt9?d>cFm!CE$*1OX_QDo5*AuGA=V^#9q
zdptH})(d{ImMuOcC!e~fKOp+_?!95bJe8Ser>^m+yErY?BdP4fF-r^KAEEkxoQw6=
ze)!K2bJgUpkVs(mlDN#*N#?nCk|WnG5_j;pbK+?1ggIX%)}J_kQG8-;+V!vTJg$#x
z-Tg1w6lcmT$t>G8&ETfj1>*#dv@7f4Y+PpOod`K|U@G&1XL>cx5ASol3ck6&OZCI`
zK2!cLt8>-E_T)xsB+vb@B=V?E_SO%lMGDWjR7gBv3^hGzGFR?D!#}a<$M*B{@(1tx
zl+YHdRqGt)Y?8RGvOBLywUa@?Q$;c2f#J!6d-ETy@7$%{HvQNvzjZams&DoM-Mr_?
z)~DPvNiMnf_tM8toi<K8SMg}dl1r*NdG{;)kN%Up?jl$bX}UK%C|Kv$vl%&S;_hxx
zzP0Gt!*?zR?GlyVaUYOS+L!WoWu171^|xz3IM>ykl1lHs9MbhHB2R7B%l%u{>AWvF
zdF_$7l4q`Xj`8u|hh%25g_N!P?ebB*wZ=5L@F73TS^cIxxz;Y1qD<CT9Mha#bX?*}
zUem5qjM9sk^Bo-5JAJg9{&D(|I{6(xYCp1jHivWt3s#=CnY3lq!8WC~XSWQWPLMV{
z^CO{nPN37~ma87trYn0RmaWz8{~Y~yTYc($sk)Q<WlQ%r-WQfSbv}Iar>z`Gu}&7c
z_fCC$Ua_>biOscQ@n<fv^q!|NbJ%mvntwC;yTB&;;ftE!2j|;=^?vQ#9`-x?4tGZ6
zzSyHt@1ET+xaE0@X-Q*q+{gb6towfSKGc5yL-RjF=a&Brtgoj1+S=Zxba9LS_Ndib
zo~m1SW=~qJGHK3%?`mqSx1TxBd+^KufPIIZ$;a*eN!ONsytezJ^0DdjWX(Uni1OVf
z%k3G`va>y)tg`OJ1c^IFhlTE#?6}h^!S#2)&Z9fQOF2Vc?KyvDV~wqo=~IdC_L=)1
zbk5(f{pfzS*t>s%J|<_*6Y6@UtD$`FZtc#ehhsfuv~;CjibbX{nS@S1o0=XwN3VXt
z{BC>JKf)j5f*-H%oaOq&YTa&*?A+`_lkU9=d!;PD+b($Zu?+@4L!(3wvKIAdf3p9_
zQU8cvtS0L3{5tg?{*U#WYg|+HJ5@K&x|bX7zr9UY>Yc);NdJ7^jeVutw^lNDH??Iv
zz4J~qgz>lHhxbRzuFdB*<rn^O?cJ~IF`GZ?Ok=a=&R)G>`}Qy=_gUE%6Pb0+iq8qX
zpgw!|)VuMT$7Y_b$x&M6{b29D{NPtcGK;3k1<f^m?{)q67CVmX_KEf#x0bD#Ck<K~
z#+&uIX~FH7*pr#X+#Bu)MF)%gn4rnp^y~Ty^|lgg(9S`#!w+hYcbJO$n%!Jm8d*A*
zbKRE8N1FQ_HlKVNy>=6mL&BSN7KsxZcf4P}ckS9c+sx#2uY7e2N$2EmfB!aF<McDp
z%(%2kJ`WU26lzXYaV=e$?R@xR)E}b{^A@gnS#`O)V%@{5Uta&MJG%D9)ZbQjPAWO>
zmN2q9b+qnHv&{8p_wM<78ox>A)#;5@KWLToN|>Mbg~6?tyDEP>znUj?_35_i1<9=U
zqP1n$yg4E$V>u;VnnPW5VgCB4ALqk&%=*s|xM|lV-B7vXejoKZb*COEbKa&{T=!ae
z_XgGZC+;j>=X5oDK6lLDZKn_Ya_j!rpS|tj)_U$Nv0F~QW|1mJx1A2o)414n)h=t}
z^R|O4)~H;l)BZ7`qU><QrLS+fj%P~ccbG&^yP}+3rWBUleNxnXxA2Cak_Q>YqfXyi
z*Ibwq=2v2!{-gEr>D+K%^CFe9m+2<I?#<ZT@lF31@A|n?4!euouJp`d-rAQv@4_C@
z^%cP`_2NIWf1CY|y<+E@t8XVW?V4qI{?2Ic+ub|%T+d_470D`!kh6THaHZt0!uiMV
z<uZRgZz$=t3=(V7^^(jHaC@2*vTd`l)=ciyQ$G{>;w2snyYAfjan1L5Nons7*N>dO
zZGZQcUFY)Kx9?ANs#$6-eqC4o-PFzfCQOdpJrDR+ti98JB&xsji>;M@dz{+TueIrs
zjVf0ZuAA(BsbJu7W~GePwEnyaoy;2PLEicd4IEkbCQ08_kGuRw@L|N)e!iQx*k?WZ
z?6&9f`<(TB2h_^CzTAy_+rYF+G_;f5^2Bld+{Yy!TqZ|m#c5u#QGOKbTk~7mUnWlX
z?aHwFnN3lrX766LV$ReP7RTed?jP7Sy=~31cE1lP;=(_g)F<T&RH){fq;)PyI9hXZ
zS=Zw;Mc!Mw_XvKPGx@}`ZwZg$wqLWc{Fr`3dv)}GhU8bb<oYEd;$HDO`(EL)2>57h
z?aV$~d%gAstvRV~+Ts6%SNHR=eZ1e3e*KHCiIsc)GLLOhYnK>_a7u74KWKXDfZ5YK
zr&}#gGi0CMI-mPxoY}Rv`vfxonQq!Y>r&3Wm;02XSKoEauM1M$zN_uo?bCv*jh<+;
zStcA_xK{mOe#b8P{wG^M*uL+uv0Qp<P2)Pf^o>`(>~!cczQZx^^>5emgl6%35<d&)
zTz>u{s?0i8%2)mHE}MVGZL&hO$<e~@xn`{z7xlk;9zA=7IdVruH`9Ts%uPk*<?(`d
zejGpikG=Vj)zWiISDJS^uYLYURm$a_@|J05`1RkMxn;COU?z9lU4?=N0_>79{LM9m
zAGsg7-Vw8!^&|V}t+Z(!0Z~iBg&V|q9Io85blJ?48qpqn@NVzbdztlO`($tZ*p)B%
z<L}q`?U$nU&!(?<r6z0JyMt>r>&)`7pdC6J*4s>zeRbs*_teEnmk(HdZ`tB&e&{~W
z7Y&mgizY7HHT%%5soN&+N(&Iw%gIxmFqPwuX6~!PgJ-Re-EwPuyk6#IJ-@!*n)P~H
zRDY{%{4xJ<(Y=_;OS$E<ZU^4a<#3Y-Gi>jfcwIT;`iI(O6Ccg|s^7Cd@nO7FRseJN
ze*TEV*(+kL{xht0G=1{4d{OeWIeZq%t;^(P|1%ug_TluadAc7%?@hK_aW-{XRK=%P
z>`i6L#VgG+cRVy&Y_z#r@anx6(>=E**L^?qJ*eXP`5l)__p*CkUhv88^0L<+vud_o
zyS+qMnqzK9+MT<~_j@!|7-QbIre4^m`(xkxM>>T+!jC=o@0@r4%`A`R5W(Z~m2R%n
zmu;GGC$%S8WsYiSvv2=_IL2*u+#j|cn^Ssu%DxXgWtUuYSyYVj`o1!xOzCY<;W4~h
zVY>OTyx6U5snq3%wf}}YeN<a&+4ef%vW<8B-?=LtWZJfAiniDol&aLM{+ygGBX#!t
z!kD$MCU(r4`n~Ck^nKYMw_?*BD#cH3`OnaDC|Y{8b@l8;VHR`W8vTo!Kef>CXMxDP
zt@(#;v8~L1uyX5KE$g|y`6-_iXCM9^^s3Npr}ga<SGsx^G%)mTXDF~r+a((ubY+k1
zBVPLh|D>lM*~RQCAubqk!)*C7Z<RY6vv;p}Izi%NUz`o!stVJYtG3t+)|5;Sm&%*C
z?q;-blHQlIVWE38TEx|)i@KtVHfm42%%1Oc^7sa`@9FA~BL6Tar|jeUShse0<lR?x
zv8P{7510SY`^tCYe}-}`&%EDHe*R}@jrsh2r^Wh^t2U}@qN8tAm>-^g>Bg<-WiQ|A
zm#lv~W62~Z`J&huFKMkkGEd46tdTW7TGjf#Gyb32b+cVnr<^ixUF%8|_^Bm+TD&NC
zLR$de8}m46iQ^OXkFIb3C;IX2jgNb#Td}RxIph<OZT{V=<g;OD_eo<3ox__M)(Z7J
z*K!tPxs&1L?c%dhAYRzE@sF<V`y-Wpa~J-dck8H-_^yjK&L-L>fysrly&D%f>J=Y5
zcHqGdnUGy>`~U8JJlFe3aQ3w8+a~Bt(p|Q6(bC={)@)Zh*FQ5n;r1uDcFE^E;S+u|
z2mUzx@aC*v&)xfvOe+`I<y*{SR;9K<{pA$7D$dz?d^I<|m)y!$di~gRdt>g}5`W1b
zi|%P_zi^JZRna6pd#Uw-PuDz`&AIIs@Vvz9jHkW90k-WCnz!8&Z4S+{KF{dA>WA~e
zU;i08_BbxdjuS8KNh-O*-ua-(dy#qV%v`zXrpA*+=ef-IEn*&9$9>%1zQ^#xqt8(v
zUGGg_l{r0}>DH_2$kY!<&u}a1r1BOTOfI&NS-p(UBe5rB*SbabG%kKQ%Xa->dDyn?
z+54qbE=NYcKj3h2)7Cv}chp{L;CZaH>PF_QbDgZqrYAoVy;#a=envjV^~zSZ&ih$M
z)qW;SWvRF!A@rZ&-knP8`t-F=&XvzHyVYfqTc;Se{_uM12dA>EX8S76eEV)$b6nrc
zvNwWjuY7M5mgMpKu;4@Soa-}w+&^acWAY)-wH5!g*SF7VZx5Ujch)*eNqY07mu$1k
zRp(v^*m3L3Z~verpI?2>*c2BL6Y)Aq`$y|KwelTSKFhAGnaI#tkP_BZ^pxT5=M*`+
zoRm)+@4GJek;ZFx`$%9#b<qAvVcVu330(U0&WZ(`x=!Azdu{|6?qHk1S8nE-&10kV
zZRdF#m;2E&$D6+17yWVDW!}Bd#}*%}iV1kLrQO$M`+tTok4f4qMeg;s*%*|5x+7Gi
zZGL!{*u;n2-Lsc}xbb1lv~54@x7^*gIAiyWH#?g&?tPO?)t$dvK%st3|HR%ETW-Jp
zEB5o*WwnobOIMtK5_7wv<fmKG#5a8pZ-q5ED#+BV-&<htwlOBY?aN>8gH^ugmM_Q_
z{E_$S--p|7_q6ZpTsWIE!|Y@9oh`vu(}G@|RXll;CwzHUZ=a<t-{M2puGLw5wAk5v
zboo)k8&UpQ%TArsu6+A+#<~|OQ^isRPAu24={V<bXNT$51r>7o{8>dSKg|D@yLId8
zv)^W}ue+ObadOkWkTloN0u2YlL`zxbButFlK8wHmtF7Jd(2t+(yW|5Sl9in%MDM-2
z>CcHvl3Zuyj_Zhug+HEf;{@-8E!O!gH)68II{ry@R0=xn)7UZVrOwj?Ps8p_`_gCd
z$+m1#bKtmnE<1K+*NvSI`$b;;Q`@)I?PKYGhAy4li#Kj&ntgOin7}0Hex|D{ylC!)
znj6oRyXO10AB^(vj1RbG!<_l>Xvoy1`_p;U1B{y9Svzbryi+tUbzgP!wOzJawa)SL
zo`-#uTeMFpyCY0HeUtn4>=QF4tLT1P;IwLrwArcTyxab<LJ1${F8#N2g`|yTa&}I)
z#r0JET*k?)sp0cWeC{N;sim-dSXGeesbFMd`RM*z+p5!^n?Jt2`*sV@C0V;$8W)vM
zP3X;4VKV*n=|=6hqa6xt>}#goW4`kEWA3`;;w>d-t%6OCMIXH~FLh>|k;k6x&P-39
zKXuz&W5?%cy=v{Th3m3^DgBsz*lOR*N2z^m0_&!xKNXMMIOE8pq*W4$o%grzyJzt+
zo<H*L%UwtRt!8hPK9HX%GdatsV%o!ZI<qv--FT;5F)unj_mt#Bl{+GTew+|lV{$(8
z!@lJyr7LP|S5(}~^;1dPG1)g;Y|FH}Nk3~&$LrkA<35mHZOLZeVaT>2-t)t?>5sVM
z1>7G@On(-$?{&AVgWKj+%%5X#t#<m<#$L>+^Ms*~^TCuK`5(29m_IxEwKnhgv0a&M
z58pih@ODeD<Xp!<rrR-|wwpQyHf`zn`!AJw;?*DS9v|jz@A!AV@ZsF>LjuQ_#dvMV
z3f}r``tQB-_k@`9=W@Gv9LYLSmZvSqtaVx3u<_yDiu0?FF3hyEuNUwx2z&6-$XQrI
z<P(?bf~_-UMQU&6rrhqIk-pw;KkvGd_zrU`x9tzpK6LJz{8l||>mK2k>t0B9d&|x}
z!lN?b<F-df+x#vc)4q{-^^3jKvbie{ue<SMAIHUel52vvQ$3#eF0%F%O79H|{<Q6B
zP}QXDQ(LU%`6{xHnz7wKbWiQW>N}DT1@7Lp{Wj&T)OK^Dt!J)HY?ah(Xr0lxwV&0x
z&nVVQPU^?jhn_W=sSk3sk6)}<XOWUR-KFos&3n676h+-|EX;qNt3CH@!u{RBZRbtT
z-ufYR-uvUzX`AMABz@TPU8*7d%A2i$wwq^)?yp^WW6!kr8U;7c-*|G%&sq4y{?w0I
zzmMG0x@_{+_>p`2pUB)~>pdS|hUrb8Horz=>%=Gzml?NZ8n1f(oH2>RYxB|?n-BL|
zA7#f2n>W@(KRoOCesS3Ty;qj)zVuG^{@SZO!8S^2yq`Bm9}`KKCb8^(iFmZqw&@=y
z9}KARYCjY{UvSIKcWV11;+^+guIXgtF<aVtem2WmwKutmET@jk2%nAlsNY=Un7`^w
z@B!hBk8$xXkAt^eef&EuDCXzo+ukNZ9J8045{o^3ASjDp;K%YuBLDRNGqmJ~{+Ru6
zZoE_96KA_--dV2I8I27>$Ccxb3TCJTto+x%^F|XVck`Jan-BhqUEeK#G*0M8@uQA+
zkB;;|;+9Q)5Xm*c{7yvFo!gzi{$ATQyUcFN;)L4%(2wfJrES>*uiBVCs+Wq+5Kaw#
z^PeFp*4(Rz@4~*?2Yu@I|9Hyuel9uq^74=EuD?T{ep{LT;9%B!4&$uyU(3IxzH>^E
zIJ((crl(3HvpjiK-@o9G&c}b9o!+T@@vDC4KmJRJ9t%n@<mc4fj#P;eJu)%omY7@N
z?umNWUKz*A?S6P-Ph`<NoeOr-@f8c7cLqI<y!2J$&63YfZ>_oR+!X8OV@dIPf1dle
z=^5`X_l4R2^see0x^<&sx6dWrv@IQ;%cC+jXPHUd{?DNMwBxAKj{gkP8kgpj1s_~J
zPxZsr^SyaFU-ue2eN^xKb6ex$*IwnYe`lxJE}kg5=hAJJjZEBX-zQr>SCM-9e(T<9
zpNn5Cb8Jfa55M($#S*e{Pm}cQ(+y^eE6@0d>sx(%Hg#tiyF$<8*-~eZO;vBrN&c8N
zedV8kt5f!vANSW6*!En_yV`xGK8v40q0FUy)q>5gTXw98xn2`qzpSF%r|CaK<i$Oz
zqF;EWUDrgcTUuUl<M^*g-c6Dff1khi+G(%xLR;PWqt8Cgjh9Ph_0Gq9oO=J}wR^!2
zPe$E4CMf@FOZzkCMER0joyAX;CC=)z{AdooSi|wDLOFE9rCZV4+K$x=-}1V2=+x7B
zmonA~>Zz2R2&vbN(U8=$wAZaa=vHT2<M%`TH&ey?W4Fu}vvoguk=`b&R?8OFC;Gdj
zQ})<`rOMlVUrT#-EN$GZA*qsEwX2}0EV}p9@!Pldws+R}E{nM7%HH-s#bdL2_r$#X
z@9ox$r`^z+G1u^_LZSj=<JZO65BG-MJ}4D)>)6)H<<U1!UAuNoPGn+>(+#0=9rM8D
zC;Mlg{%vf<qcw>y`^T~$=D%a_x<AaWReJO;;@+)5wPh-0cWuuc>_}D<eIgOl6uI5Z
zKOp<d@(26>h&B8FP|Z|t&6mq{I}{muQ)!0o6(5F}TjzDkxh!PdP9&@UUas<M>n5*>
z{?m&Ow$=OJDms~Y=il7YT)qDcN9T!8_PeU9{P9TPshGHmX%}<9xt!jo(f&@kH`1D4
z|Jf_A@6U45x(~$hOuMP#&lGX%E|c#{f8ClhmMOoreI_}b@i=XgYS=%u>W};f^M72X
zzqRTvihbWUPw^w)=Bl$9la42^&+Jc@5_&SRyqf#ojcpH`Bv~vNCh=ALn*Kok==p~I
zV(C|x{m@;N8E`a-cgp4Z>|Sr*w$fWaoK;VAEa5m6ETFaHgsk@QIa<!1%C~wWywfr(
znh(!s*=O+L^4Z7Sv;8}`S?=ean_l?MS?CzI$z{o>6&D{{p5C%ti(grV|7rg}KA(^4
zW`Br2@SlP2KST0-hL~)#U4DBj%O7X|wGQ7=J#&HBs%c^Z&c?oaFSzgc76};krnbhq
zy>oxH{*OrgKd#J2{x{Sg+4X<8{g|(rzr%+0BeVaNl9_+}mqh2x<>+$d+V<+fo^7fV
zpKqP082PZ!boTC_6PABe{m;Pa_IGE={M+r{TDJYz{%|kb=fh!P`(!VEG1<I#zg5f4
z%Zq26x|im)=(OpPo{8E!Tta_tI@9@8Mt^F^>Nr!~ck{w>`=2a%bZ;;J`M)9ED?F6>
zcWXGF3lW~=?^E@cbG_b7|5?Z9Jb5hpq44~*T}!XpoIN;&NAFJa1io7PrA41C^c&~x
zJGMX7>(uchfm7DK(_vsuo-@xb?&`PlH_^Y9Ycl_Cu(Pd*evp62nv-w&BkLatk@M6I
zZb#1)h`HyxrD@x?i`!=#KMj9(Ou|!%`Qy=9lJAvWnBOxM8SOZ6F667+qWu?^|Kol6
zcjlWq;ksj*ztexnAGx;6ysu9CY;F3t-e52Bs@iQ67sua;c1_wWcEl}n;yXRNgo8a9
z2RItmvv(Nxuez9<_szCuJ=dzM*BAb_{>@x>B%WvggSqoLb?ejTx6Z#|ryU)sDyR5S
zb;+iiufwO8>!?htUXdJ`^!L^(6@#BMyHs3b7`uL@J$vuH?W)Sgy}LiEew&#0_IY%+
z*vZnY6Yd{k4l|YnAGBVgEMp+~SpAsQ^CPnUKE6r!AAWDMN#1qOUhBQz4&LITH!~+3
zxO7`3`PtpAE~g5tx|XJX+*dF9^4rFWw&xKa=AKEbj(n@9;1c1Za!krKbe;f*q`OhW
zVaeC=J=LCGenEGBhq8-IGJE(V@jnAc*`9sMm;NX&cqtxWbXw+?@1dxe9TTP|>TcN`
z<RsF+=g7xT#a)XZMZVeMTbpY-Un=|hT9sqZPwd(tZWdu9D09(mncAn5$DSqajpVc3
zy6{Jky->!t>l0qy%I|xZpug)`N<@UlfgbhA&owlx+NT-#EB8&;>F=@8Uot!MYvv!7
zStV-%a{InT_RN(H6WdYlI7duqv7TKLE1%BZjxX<7GPZ3`j{4BwG>O|Gd1u>ezy026
zJGnn6RisqtrUzBAsR&+SvPkdQ6Yz^~Ip4-L6}zH6B4#FT-*fp=wspYc89f(Gyd?wY
zK0cq^c)hPUFZIHo%v>dpoISN`jyI;t&T03Xa(v<rF{9X6ms5YEix!@@_E&eiSZ8>{
zRd4bV)%y*mLYMBSK3i;3b)+(s;h1Wr-qNWNMJs=AV-VU~=y~~Ki?8&FE%${CKbkk~
zvC-f1`u>bpvr6wsRti6@pH`{7wS-;KW9E#K<D$F8yS`i&nrXlFK@wYXVTL6Ccfae2
z6E8fRQ6+qBUy-*w*N>m;O6GUYQ`_{TdFtofH6<%%drW`pFj;>t>yb|z?(bwe&9%5q
zWy5hl%RP#Z=N^A^pYcyb^7&Kl-TH>xx7lAlo}c(-DR=GaKfR&9Hvhl;{6E8kxBAWh
zq(6wRKcwHaPk8&5t&{#UMC@#P5#^;g$u;m>^K+*qKW8rwa5*j=*~Aw;|LOg2^DdgK
z4S#U=+|EqlE!Vae#4s!|au@!yq{;aB8O!tQMgPXuAIwSzU1?SQKyT*9q~C`xznI52
zRj;I<Cnm4!RoRX$#VXg0->B#m8S&08{KQnw;9IYDUu;iu`osA*pO(Z68TqbyWx#9q
z=$`T^pRTeK_d3kp#l6|__Grb-P{~y$ySDE99y#UKl=nCO&8mOUYX2d4enb4m_CLbM
z^qDi`I6kuNev})1<ks4Ai$2Cj-@dUskLhmvT<cxA+XavPi(!}+RF{16FXPAlKjOC^
z$9(YSZ`ddGqu4#cSoZ9<#nmge)XiQPksEma?-u!of9BR7l-MU#lm2&|>3o5@Q}JvH
zm)F}kiWpUN`!$E|GZTBuqGqvv`dc}lA1U{RS8<$sd!~Y6;$O*(`VX%Cx2jH6Tl06%
z7qFA7(93>s&uOmL^WaHNGwvz(=Dszba^mjRV@6hKdn*$Q3d>i0{rZ<*s^`@e@2PUB
zkNbaUzyBk`eB9jW)$?QD?#XjREdM6go0=D1?x3=x>s<^_;pgY~_Q`x~KPum`U+~%N
zppWajww@P=^H!YLx4gEzY}FZWv4~|;r`qKetXeF?z*@KKRs08!_pSHY{uD3&QT}b_
zkH$x{ea*66cKv5)neDalVo5x&x6ab(Z`RhXj=k$KnPK;aP;(|GW3!ODwm(e&8JdFr
zGaNMg`d8}ok^c<r>)+U^pRTgGzU!mNrB}a7uD#+5ldk4`t2_0eve48bcZq`%=OX9v
z%|Ec8d2Q;~ThAt6_-CJ=_r=#bs^8mtNq5K<$ungWW&DdynOl0No|z<IX&o}bcJ*Wa
z+ugqVF0c8ctG6<JMdtLIyEMfXCl@EHZ2K&7X2o{HV`n8Z{zZz2B=KFdx&Eu*kJS&=
z58V&b=GQ)mZ@bU+wuU)d*#1`OdH#dROP^VM_|K5h7ah5Dw`-34)PF^cd<K>O8LZd;
zu*{FydUgMUrN5pnUr@26Vzsjsdwbh#``f;EHb&3T<DaZ8z-4tRrC6G$b)uhL*7qI$
zw!J=CURIIw>;+P%9rjeK<E!}k(6_)*?owiJ=#InblGeMLDqmTA5k0E3@wA-v)!RFJ
zK6iebvq8Rop2bVAb*l}NEMy-4shj%iul43fFXIFP?QZ^OXsWBxyI7}Pck@1{oz#zZ
zpB>jq?#3V86`WOOcI{KF&9;C$x<`*BNo-V})}$Fa)vs)lyVCwE@dxC&>(kG3W*TMA
zXDqoL&rp$d#9-TpH&L>4GEL6K&Po>9HtF8`$rckkZ7n3v)pzXwVY>WV?g##3_P00v
zXL!`!SL4bzxAK8MzyHe2veX6U=Hc7>azY<=l}s?$+J4T+Aoi4cPZOi%zfXTWAKuli
z(avA`C;da;T>bX9>ln8;yKUcjW#;pr)3n>WtSx34_r=BU+NmIy{b8Q{nN*va1@k6e
z_-oy2&}9){UG}a*_2iyi9~Q?~JU?`6S?AK1uIp4MAD(pQcBHFGblGNC>sx-|^Cldg
zJZBqgRzyw2kM#>8PCt5KVtrophlhB0vril6)9qT#nMSeR-)3Hz5EZYgryBE+xj_5&
zm$TYOt@x%EKhkf%HDyAC%OP)lzSt#Z0&Jn7hMapEOSw+f6@Aj)=3m&8_+xwEhq$GW
zrG3L6m$jPBf5e>K&9V00uTREOI~8N!9=iSExsv&vw^w@i*4t0L`PFc#bkuR)hx0q+
zIrb?Z7e8{=b*rr0vv(?6%x>{*Uv*Z>TWI>HcO^fPw|j>%o|MmQvXpNq?z0uk=lL;9
zSLyuGIMptBd7Vl1i!!Hw+ZL5`@!0XF6K_?X+U#c7AS(GoMflqE&Of}5D^)Ii?H9=V
z_-vK4D`#It3HNFi!?~MOwq2_1JN)jaw~|)Rq$NG!@(+834~y;7+;zc5b**&1jOl6a
znd#eRy?Vvn;B5HYW!<#Tc@n(F$1gnb@HiV(7Uq^WDQa0sK>eZhmuy0d(=&@q^rh}v
zo%$7j>z#h`)=H+IK04Q)zu9lV@U}y%Z*Os2=h~wmnLQ?c(HG1#uGp6AC+?}g<=NKD
zmo9o}oZ#H`+iN%TL?s!035BcKy}`$~eY*R{`eWGS6|X18MNivxRc*(%O)inlIuo^)
zo+wyQq|$p@<^!Adv=6T5TeePZ_y0SiCVBZ9&iUK_F4CSGdTPO;71N@(RG67ny}LVc
z;?a<x4Oe$fsIlGl;qSw(TmR0s30&@XRQ|WaE92N~p*KB@9qV`x-h8^P{9Ty-aiw(?
zZMs^vX1>NpX6628Xj-eI$GGPs>z-*=p<ABFHU;ar`Cd2^!P4cpTP5#s*zvAXTfO%_
zJ2(B9o4MjemEKgX^Tm%uuOw~URw(~xyMA`X<~2FdOq${H_t@9QUtDyxG+TPwkLooq
zrOvl1wtC%O<6m8={8(?<tLSEyvzqc6r2%tN9?zPd@O=0FuixjCNTn@anX#+4xBZ)a
zkBwlu`i$J(#aUG?Pc+JVelECuy5P8)?QW-(#OnE<ZT>SfHUClD@<Z`=@}J-z@@BJ(
zm%Q{{cPBpc+VlxOgB`Q$>aMfD`(V~_&r>;o;b#Ef)qm5z&r|-9S^X$m^y8gd*AL&G
z`F6(b%yMzFZvl6X^_k~xZ#gY8Ni)ZI<(-OGhVjSJ|H!=jz<ul<$KRDTvLAmRNjenm
zFPov8Eb=QQ_^?2(np=g-X=St2>gqOimJ~NnS;O!5<dWyw)NkH5$^XNZpK@jko;OXI
zbj@o1>Gw@_vi2SS6kq=1+`rpfV*R_t8z;STyDc<xc9yjP%bPn67Jq&{{=)rj(SL@f
zv_Iv4dri&?KQ?cBr}(kGH8kka<B&_qiGSys<nCOwr~AwfLp96D?^|5b%cuW|pEK+1
zk?ny$dCFQ?geMh${U$%P_WOtUZ~qzoF8j}rZp)-$CzmyC<IDcelnuMKZ!<e{Aa}yC
zi7it$H-0u*^Yh(u)4$xUM-JaoH@m*PZhCC^*{b>7tFC4RZ_)XEfBpI3?~DI&W`5M-
zjsI4Db&s>o#9q(ku^y-M4y<E-=upa#%Js?JdN<d<H8rN|DxN<IZ(m!(z3kS@IO7lR
zmM^<~=N0d&lizMPtL%R*6dm#ANSsfK+MNy7oi<<BKj!|&`TjoxtK!vt)<2qqKhz)7
zl|Fn+#4%~|?_mG!(H2iKRZ>1Zbt)4($8qrBNej^{b=UthY|($qy5^7bbvv1gS-+3m
zlmGB;enHc{Q-=ekY8M@p>eoxlj!e!B3jEw~`?!S`$K$gf)AbhioHqEp+`h^v>)VTK
z`)1wvy2pBbFn9l2ufk1Pzwd8ddw=EM`qy?kAJlpmoP1=wGX9Uuhw1GKlXAVj{kz92
z>>99cMatZFZ_Tze^lqFo)oA(0^|Nk&yZg7ZPUq$He@Z_leq?^QzGsj9hd<uhzKgRa
zW=EaqJsB}eJ8YYf&gWH+{8i__+rYXp{%GC8_1>#)pI;jBT0O9pYlrvg?$y^ni!U~x
zsjO`9Jh>ozqs;Z`6>Sws+oSu19Zjd0J+7Ek`DjZB^Q7BTI~n*qWghRXx2s>h;dhXI
z(zK#q%D=5X{Ac(h`urc~<J3pBVZ8j0*!E^-=k%M+UsloYuy@17ClyUvQAf*kdY;+*
zIXyM^uysUZ<I}43f5i5G6aR2!*ZTf7d(79z{pfp~eb~HJ_en|S#WK!~E4<V5_Zpa0
zPI#-r`(yn9elAe!<3GcLMf)^A9Gn06wts6>Po3oc&OBZHJgGy4HY$&+*5CFy!SU4R
zqT+G89e>$BeE%aD{&4EC#S8CLY=87bO7z(pxks-ZuI1_6dgmg|{!aD6Q;$o63Kg>y
z6?Z(bI@elI@zEki)_%)vtIX?bRo`pJe7i4PfAH8o-HU%Lb(bI7&v-X$SGU>C)Q@lf
zuA8+;cggN0R@yO5XXknENht1-`eF8;;UD+?-)`q0OkVg$>cSqw51(GSf4UxbA@BXy
zN2hj9T(CVh<a8!y?tU|tvs(nWl*(_9Q~%G<RQ{jgpvnH!{oFSzx*u<E+GD)-XQ8Ct
z*3@fklX*LOotI1xd^Kz5&RK5kh8v7bs>=&J&d>T&{hy)feEmVof5LyvXCJ8N{F7b(
z$a}5VCGW}y{Vsd2oBVh<&Aj6%??<x<+C|)+!lxTJ6rSz0T>0K>c9~VU-t_wGkAKQP
zKlyR~qw?N=CV!l+|I?`PxU%%>ALq6A@4O1%ex0@Eb@%F-+$Xi)ga$-B=2{raz|plr
z)cxguhBpfzS?hOH>2*Gk%@6q~vaL+&NYJf{-~)Qwtgh{v)zhtV`OZC0wX2OO6Bnj4
zim3+0Hh%i}Jbp|1o79CByN>C1-rux!%Js6#2fuai6}uK(b&@0g$FIvVsq1nr7#BNT
za-U$Pe`h`G-|pqtp8q(S_~DhuyLUnUTO3Q5N5&mq9((_$K<ci`N;_uCI2IcANNifE
z_cSHEWwKITBaf@rj*^$VqZfV@&Ga&zJ@N0tAI9Ho{w}K%`El&`w^cv#m*1>#_TJI?
z<jVU$*^lq)ep$=z&bYY$e4EC)$C+U&7S36#cWl&)*&Y67{+r@OCqJ71<2;-B=)5G$
zN4MoGvy^^h*{M#^dZoR{q->k{#a)IIb<Z8SZL~PGC^R%yq|UbPkiA@;^bhrKW&3{Q
zf3SX#e|Ud)oXv%=x1}p=)F1llschIh=>f;XX`h33^!<AEIiOX{GtYl|uI$dc+$ThR
z&i`)xaQR#2e}<+7f5Lb6KVm=nUaZ3U;TLmmZTl7-lk8f*W2qCGgahtQPv<_&vZv(k
zi8zM!@<w|jOhu|cte0@~+_L7^&ysEHFTSaay?>~BKkJRt9~l?U_Pe%z>AmUOKAQI=
zHy)BX<??OY^@)cX7$v(3w{Clo%M$vYv&P}a)rA#x_q{)aEwafhS*D%&E`LdB#GM71
ztk>r1m~D1R4>H?yzTotPNDs^PX&>1SM%r=KIBor~Zs()Vyw4U2?zz0>b;nz=YmYoG
zR8G9*_3f>Z!}@8Hl-_G;N_)m|Jz4x=(t%Gk(La_y(3N^0Y^|7mpU+WmcU8<BNoL!g
zppFD}dyU+NlDF}5uLSkXN!?{PZO&thm9BS<#Six`%{W%yb}PMA{eygGYQ@cWdz8~f
zcTGv&eL8GM<HW_m|90}^82_AiEPJj0aUuT?o9@Sd_|I^pmg{NgJEd#-0(aRvPZoTL
zy5%XXk{UW;zV6hv0uIpw>P>G|KWx6~|7hpey<QKavUSyuhkd&yxW&iG=FH0FDsL7>
zv?R1Y=bm6SOX@$vq4R=2;tx%`Wn%E^TJY<h^8z341ZUl<@oM#mRGoB>dxcN$XZ<N3
z*Ig(+W-R9HySCr+V#!<e!%<)UGkj>jThaXRTYu6f?t{85%05S2o;`mX-l=xsb%TW0
zDq%@i(@WmV?^N7Aa;akRkz01H>oR9~{q(M1l4YJ>_wBj9NZLJ)huvo;{!}=1dh&!D
zFQ3YZU#*E;mihSM_x3;W3mnT?{<*E>Tktu{+{o{gl!e^2XHR`sFMBiN&(Dx2>1?~s
zdWUY__fc-{hfm)fuB=hrxI@T!b>{aC83uPxoeImp!@c5O#>7oFn>J}O7%?BzI$X5v
zx#N-_AGcKR{CfMnXx6QiB9GI_OMgteb?w-hJ4XNB-SE1=-R{DD<-{8i88Hh{z4qnD
zS%hl5KC-tguv)h0XzTZub$X^|za6DhcHYzpP`ug0#_?nuV~~;Nuk>D%`yF-4{fGWD
zaQ%s1aQ~%%+lRU8!5gbrpEnaPHt8++&fR+?fxUBMPn+e@61QvD13vN|@32XJ__zMh
zh0G5ppWlnf7C5@>?=+q5v#wp+o^!_I<mu?eJ#TFoox+myotfP}cE7Z8iDFy%=;YU*
zrqXUDTR$3X+>n{uf8wTxQj=>^U0AXt^MvquI(iNF`L<ZtSU)%`9QI+!_m7=V_J64H
zUJ<P#XppkKxR#}(@c{1@CnLj+M`JJ6lrR19JZ{I;;~jsrAI(*|*>Y`KeFAsIgtv@}
z=F`Rfg)NWY7d$@kWZ=nl&WHXph}p0&du27f^XqJWk&NpFY`bP%@_v#3pmM7FY0<57
zt_x0O;Bn{VD*UwWQSnx*+%JZ!Lv^FA_Dj8rYVX++9naEf5-)eln15ST_H^&umE0Fj
zTwHbAF?VxKR&n!FqwPM;v!-cl*QR;PGo4=WD#~{5x}aF)fQw6aU3xlWg53qZCO?4{
z5<D_IrEy=M+w=dkt&l(VYtN+38M}^myw$yMkHe(=vZ=(ZghQ5d^`xR(+z#G4u58PB
zOlx_YP3XtuL$@YpUfXWYzeL_p?3HhnZ(w48<>!U_BGP*1btPqfuUcWcrl4r@w&S)w
zC1NXH=h^X9q(6%9)b($DcIiLErbkNIl_k1G4sSa4?^Qb!<;`?*p1He9^)cphQMdbX
zKl*bLFDrlKeKt8arAeaXZLnvy`W$UT!8My}7e?MlW|dhU<izJbKXdXQs~<Zby$nA%
zPwR5d*6sbpFE-tdI<B=!#_LjqH}Bp%)g6|Jnn6XCY+Gx>ANnf&XNYR{_~_r1Tl&`M
zR!ZBwSGTgOPbNhc_)I#ee^Ygf;dAS^HfI<o_k=qgTr%}c>ddpYg17G1IDV*G{g^vn
z^vCzZ<z>519TwcM_e$yxgC4<Wk&*R_Crh$eznj2!?!cpU8TOL-dotJfKRVAIv%TX%
z<PwjBeV26?bXhV!)67fCOzA%LFv5t_xM#iTlic+`;@-#gAB^YwlPlM`>Lus5z@;-T
zJ<BvR=T|zHw5O<o_3@l0OP0yAc0NAO8yA0KL&f%k-~Z`EaO}=pG*KvI&is3xqDwyA
zzQbg}_0eBtw)=|bRTWm*!Sj|`6<v65;xAJ%-)Yws(_)DWcW1sUTl)9fZobsJdlxvR
zmXsv<o!`8uRXO1nZ}F|P{pF8ieX^p|*6VGX_F>1)J`LU6<y{X%GraxtHttb)&?XdZ
zJn_`;$I)g}7oFJ0@!>y1m&tzy{y1mt)3VDJ$p>9Y(_>Z;yyKyIYkrByl-#Gq6I{!t
zZ!@2#c=5!?X;Uj7S?Z~9R&3+@T`2kYHlxXD?I$vC!_xh_s;^z_>N|DZW|dd;9Ja|1
zYxV9QyY%YT_qMfv3@iD5?|eV)?egur9CoXOXQ+fuoKf>u<l4f1m2{cRAJXxAuf5OB
z*~9+$;UimC?xkmY%r@v;e9N9w_){Xte5$mb?j~`|q~l6|r?-81&zGUC)>yv$MS94L
z*%mcEajzapT-JCo?Yl4UrDgw$ybaW!sz_bkyYZvx)uq>VugP@!9eih7P)tR{rWpT}
zf@7YNdsa_nc%GB_Oy)^b*6dfVH>a+uF!tN<qh)&3{<czo{#VBHjd(Nj^_0A)xqg;R
z&#rXQ>JwSn_l(b-<H*|;Z}vDo@)z{B{BXU)#`ck{R%XrWxmwm~6BoAZfA26$^16z?
z$FuflD!i{akL_>WBe~FV>HYf^!QodFJs<s+F`K8iW0#?0S^Jrv%Dc?A`<>yqFIXN^
zdne`Evf2E-xm&x><{$r%F+JQYY^{oT6bsk)&1?496uR34oN7t8_&mSd^_*tW%aWin
z3x45<wf`A9Mc4f?e&nkXdscMoysep~Dgj=Vf|V<|w*)Tg-~FxQrd#2zUDmy6g1S%J
z+e+{Ap8aOA?d;OqD|gK9pZfjO?55|Fyw{zXyYr>{;pHFh9`Dl2t+8EI(fe#`WAC}i
zYmb_F?X(N&(OdjGe40$UpwC6a6AVeqKe8=f;q)QvKZC#@`-QLKZ-%qII``f`Y}O~v
z<R|7go^FrsI4`etywGU-g4e-Z<xW%HWXGK``7!UY&xVg?8?%{a{JXgP_%ny4QytVe
zrrr#d+&DQebmQCuVNZ6Ye@j~|-dYnW-o9qpq??fou1aa|-g%*CrPz^O$M>XYR&=m0
zTrcure}|3b$NAB-@;QH8j@z?uQ=#s;DQ6~a@l@x1cKeRf`MiZ~7eB9vV_@m4)r+<J
z^y=Py_m8H_+Do~ax9X`|&D`{<*&<o=OrS{(!-Au`Cs{n071Um0`Ydo)_rY2IZMka%
zUI)CKRpYv3%LTj3dDCW}7L)VcF-cRjA}^uhp!$N9U!r#`-PG>>Vd>JPe{PGp=L={|
zKksIJ`HXi8H|Na@(oXzAY}xIX|0(?lKN6?Y?)ss=Z|m+_r^u#lt)g25I-Rz?^j#zT
z)BG@(M1J@bJ;&QUU7H`zZ<CsOyo>jbJhzEkSGvc-Ys>b8Udx@bY5knvx2{zjYLY!8
z>{IbjS~@$_b?XW*U+Z~&CA)=_`C3K$7N^Rb%UkNt5gk)IiF3PQzTun4{$HDUer`)V
zabn%H-|ipfT2r%EWZs(FI{jPQ_xK+kx>IdlMCUPh>}d-!a7^1)d)#`8V4Uw`{@(4o
z^t;@fq8~*{JyMofqnq=%?dIL!cgH^O-F>dUV}^X;3*!T_`bRkP|M)HuUh%{2dEkba
zDU+io%<h>QHpP+m-USY3?M)6hpRg%h4tdiVSlea3sUjmYC?f0Py?dUug_`rOAJST>
z_Tyk&)Wuvq*~r2z+)1{@*XA!dT)nu$=ykvc*;n3$HfwUDkF4EgxP>)4T_M_M)8gmP
zDxPS#@xAFOGXJ%`ZSjUJm**dw|DoL^Ah%D~>YnxFHt9fBU8(7o=e3L0zrGOsWq0)6
z;KQ3=Y`^7GFX-4`eZ1<Kb-uZTururZncQvhJ7uPKy>c^uYZ);`@13b~^*_PgciDaS
zU;k6M#5Zw8e9RVO_Xi6L<i3db_^54<wzN64U-Pc8=N9H2O{~ckT!+JUUfz0oef#!u
zsm+oLy`%FbZ=aNYDfC9gU3*5(^9f!C_4Uu}+<A(--fqzicK<NFQTg)M%7s62Wxj9L
zJ1HvmNOF;K6-S!6fsUWyR@Y+}3^z^@jGooI^mykV``V=yo3!;ircJh}u2z`m6ze7;
zB6QefdcaAg9XYx4Ol$;1J_nz>Fl%4WhqL;J<{9=!e$?CfQQrA-39svxCr!ET2ZL0f
z{{6daqozR0_6>X7eBK58OAI=myggX_Q1x2A&&R~Y{xM(sTALJ|t*mpazH8xcoozXr
zM7>XjMOSNIXPC4!%5!RCj0Yd%mwxt_bz(nCAI2t!ZrZZ<M|QeE*S(6Z)^iv8PnU4p
z^xOHq1IwJ%9np!WnjD$MzSx%jab6JTyS`%D`D4Fgk8X@MX}fY*d7oQQ_C(VwLhcGb
zBi00dvJ9N3X|9x;-1}jA%Rb$>AHS}Le-xeG{3ZKj(k{ofFWfZOi>gQ(*w4&o`Mo^!
zq;|op9>(Nj+5P!!8Ftbi?@e43ku5d*)%8h!NtbIpHvf!TDLDN$>z%^W)>A@Nx5avK
z72WnwsoLIXC;g-PaJXmjLw?574|i{G%MjA$?nu3SGO1YmmTRGjzS6|0Y8NGBm=Buj
zPFr58^R4GUgFwEiHAfo9kIPg1CC&#aXDo2yKNb4+%EWn|kG4ed?k%zT_uKKu&dhZY
z_p)x8w{7X>Q2)GO=LWM&@i)xMY8Na%Y<u`^Snj=;hqG0310#OjeScV=_tojOS+}Nl
z<*sKvWiqR8;XZH9gOjH+9{uGsiBF_*g59;BWfKZt&ayxBp1Gntbo)pC!|xg6lHR?s
ziQ46>6SiIWo&CqJvOTA{JNbFG2P&D_CGlx*y;f8H_-Ed_l34k`4{x@ec%<E{c45j6
zHx{N%wp+?IyqKbs7a1Jq;Wrg3y34wC<DrUnuaEs5>(*`gYj^pO_^!eoy!q*?j(q#R
zvGvw%u}Goc)y<z5etP`I&FUKe(c1Edb&ZcscfaqDy0?4r{qxe@y<ukabfrSLKW&`!
zN_w}(nS?(NFVq~Ed@TF)KgAlsAI#~6D=W^)vLE?nw&uyHeYzjk-`ca2BX(cP+qBC+
zyXLS(uV|7<sIS`lK4|mbmCvr!Z`tx*rXua$p^89VlkC&>n>rs>{1Wea`;5u?Gt<XJ
z&);i%Lb9$Nj5JO@QYZ7{@WZv?zVSR2#*QD^+RL-LYx#1IZSh{l?Qngq?vz)rn>QZa
zAv4Lab)Em?^v-<@73PQS<gV;f$eyS1AzF21-^Kc3+qKg!F|@s7@t!MZ+x$d&+q#P#
zCz+Ke{pd_y_)6@SRgM1#^N!M9-$b{0-(7ahJT}|-af!gb**4+lB~+$PvbY;rS;GEQ
z*1hE`zj#JGuSupI&yPNR{+DM}rrj&=Tsw1}-W3mTouy~@e*0?KKjmIU(sD`V?y5Um
zuJ+t`{PBA4KjF+-{~6j$-t+(Q-&&~}y>k8Xwo|7nl9E=d7#hV!tdwDMDBSCL;t5||
zy=dk>`5%gZw>~=gRliv(t#w6=gU;fnbEVsTZ%;ikk^8p(rZW*IrJFx}DHJnX@BZjC
zuioRsN|ztA&0Uox)l<G?>++Voyrj?jd-IfLbZ1`J^yj=x=6+l5=cc!63_s3M_qx6%
zp0(GD^UadTg_DnUE8ofd=(R9VQvczmX%RD4o9n8yJo(vDv*=bvcy0LCzm;<34?Xql
z^lFrMUfrWzy{x9V=~q!s^1Y3bTX+`MU#i)uw|375=fq~GbxZVaeDM4r-*ca<#J_9)
zX7Ro{p;!NyuhmK3subIPtFL=ycXl^-+qTK4|1)&v9-VvkkD$QLd@apI|HLL4c&^`2
za#rl^R)67_^#Y0)P43!9wW{p6YNPR<_1lsUe-`-47~VQ7(y`=c{=PUPktf$>KTJL*
z$Fb>SQpP;#=|{znJ(5h={^5J~hv=%*c^ONmai}M(oN#l;EZaE~C(hbiqCb08`0Ky*
zhvlEo{y6#J{%$+Yir+{6GjP@fozZ{eQ<-Y*`gE7!q)RUgZyw0I5y`Uh1j~HGAGPa_
znBJDuKW$Tas&9et4H^D_Tk9kKGkge+|DpD7|D(rZv)A0Z^|DTLOH-}$;ae@K`_9{L
z7T$F((ymfU)LJO<^g_Wq8kP$G8I<o?|H%I+{!qU&`r-Sdwqm)=5!-sqZ{{(*D>)#S
zBczz|ynSM4Qd(TuBpFfp^l51yj|A`8GClZVan7WYWzS`kzS$l5G5L3N#cIC~YzsfM
zKe&B3IhBj!)}Qy`JEneqwxokCN$|s(JJTg^gg;IEpntT#D^Ba<-OIP`>wK@1{haJw
zviInn&&PQ(R<mep<SXf(h|uxs+Ii~1lQ}!{-fda!zH39zX(hK<Wp?QkF|9A}e4JnP
zt2^q$^}{UJE+100@mIYQ5albjcKN~Fm4|}fUE*#oS8a-3d;MmTvFHS6%gISX5*xW{
zR~0tJoQ?VU!)wv>U2keme{_G$`n`Xjd`#wl2H8K(kM@>_UrK2CQJGiTJ^QWQp<+#Q
zZJVgpBj>kyuuqq|-D=&a<DtOc{Z;-;?{)*tTQ7HfRgf!e{<40@*SB2n5ByV_?6JGc
zI(v8Oq||xG@{PDx<gdLc^p3NzbM3o?iSsPkjQCwkQ{$z79DEq<`oXXFqqwhk#JoqI
zTjqL1y2@^GdUiF)BgNqOrzMkbZ~MvBAUU~!%k%u&sgE9duFB4=V|SkF`6qhuGpA?f
zPl~V4Yu|4wZ9eCK+w$v|`#&sCf2yEaSJnSKU{A-5@H-q5=eIwMch$OP(q;N)%gy}v
zikmy8WVd--`6Z@MB60rt+4>dje+0A-+u8hZ{LjEL{e!~ClH-TguD$bWo@!h5j6<7W
zR^9!wInrZ^&LWpt44ZnFa^*8_$o>)jpP@<j-{G+O?c3jOepuhOtM%%P3tPhNR6eqZ
zPdurx`{I`B*=~C_wW%ndnf5U~!r)wo(j>REpHBOKmHqHOVpTVHJ;#^5(nq6GJC81%
zyKK2|+zq|A-4dRO;SrMrw<!HxqQKDhfXUwMvCYwtNekuLFFx5(HhH#rVmxofdcPf)
z#eV!a<{jN=+x2p@ZMU-Mts8|pZRW4aH3QsZq%Ll1eq`FZWuM%|{|wvy*j;Wm34Z-z
z)|#-1huEHYPpd4~{`%?e_a{&JSy(QtvkA|96fF9?B0FN&7NZ08o1dGRUvyTpdHVN~
z-@-PdfOE_r=SX!uyYBU2+PY7f1r_`KyKa?K+`D>iIkQ5-(V7X@gWUFrs<z}9l})_1
zPwM%FPwSR*FN$$|wDY}5Z1_<-xsS0syW+R}XGorz^WNnm<0kX%l~2MYc+7>Tsy8@V
zT>J2Bdi}yv)2r%w*S@@$7~%Bl-1lu+9ET=-JmsbJO_^)w&wqhod+Jxe{55Z3^7`z{
zKb#)1m+aio9M*EMQd&8`&vg!Wcf*Ttt$RMz(LM8)AK0h&?}|LDjm+Y(`Jo?KqIxg=
z{GPoui>caWLZXNLEvCZlJIuayaJ;e(+j6-|X{yK3tXj=v{XX5V{~6wR&lh^J{W}*A
zyI;v~>os|d+VT?u<k;#yYZp$ww*_>0qU%++nGbr|o|$Qj&otfo`Dkv#!x_@9X<Wuf
zn#(-SX@6vX9REk`{-JxKAMVa?t&y)>b|yzTx^mXP>u*1c>-cfp=5lX5FR-ck07F9f
z<L}4qf9NhhHeV$AZ?|)2uI`%)D!RN!u3dXAc%I4d$udj%DmyDa?d|;2uB~`4nmn)K
zRCZZ?lAXnmh2=|L8NRYp`RLcZD7x*w=-#KRytt44XRtZ7|5j)tGta9v)@gf!9)DZ^
zcTQfO-1CrY2X{{F_6f4yyD!l)cmEzg<2f~}zsPF;`MXd5Kf^)iI^93cVH>X3q*oTL
zb2KXx{JG}lV}2E`-Hr?iyZh$))~wV&_FiDgn(p+~6F4P}80rP`8rfgRb}LSgl-YkP
zFk1QlmEV*9afyE1XWx^2*q&{l<c-*h?1TUKyCO<9O`LH#Y}W0+G7>Et|GhHlw~Mej
z!Fi5B^3UNPPyaKpwESJSKW~4F9P7vFtu`8JTR-?*|8BVUP;};|S7O)C>7{gW%KZDg
z=f$IvOwSmmu2*Xu|4sPMkj>v?|G_W6PhP-A`eA=Zy{L_4#ytM3tk)K8xTD>9E#*H$
zzvYpP(~^~f#=F@w6y%Oy{4)QC=JYo&AD-|3TqCt(&*lp?qKV7<-<%E7SXy1(Jx%b$
z#N#d2BFD}saqxLq9vA)iWwX_WrJ_z!YyB^4Kh!)O>HhxTcKfr<-_$SKXZSbRe+blg
z|4;7tii-M(AGw7qUTrtK?Yi~u)~%EO{gX_XSoG4cpjTKkQg9QWXhi+e^=~HrPILbq
zS0nbHq4oQN>bL4gtXK-P?^mi``gW=`C{Ll*Od?PAM)G$z%ZO9_r&bltKl%QL?y>E^
zWor_Cgyw&o{!sL6>;2x~vzJVDgAN^iv`Z|UbLx&s;eD#Jyd#~qcs<>b&H<{V^!IQ0
z&+xYQx5K}K^TpTf)BdBscgOxq>rT`bdri^0ktKHK#*M_@nxm!m#c7AuxtXV|{Q6Pk
z-)_%vuQLx0U2L_iw)lGc*Ps3`{vWnC*GN8^tE>A*@R4oFi%m;bmnW}xwtc(zOi|<S
zWz7-&XF`MLPb{iDTq1h#wLJen;TpRS3?Ghn?~%`axSk^_<|vom^a9llQ&jf9IA`)Y
zl$(!_Q)A<r^wk2a>WA;k|8V}+cF{y$zNX+u=;|N!(euu#UtVkKt5>;fd)MRaO|=V^
zwE4VNOWd8(!*sao+iZK@ivJ7;Ki)KN{W`NIUeBwxKXli&O&)7+M)dZlrrpa{ytObw
z<MyP8iOrvleC>iazF+-suV1;_B~x!(F@K>N&8vU*^SRA_cxl0wh@MM}o-`Jhyw;lO
z!4=uOs?0+4kJx{PgNMrYbK7au-LSLy(O>-V$hN&(y8X897V?oxxuUR{+u-xtIcrvg
zxLGEdYsv_o{~rA~HvhqYhPL3N@`C#mBfS^@nC!G^(zEZuZRb8kEc|UFJ@N6pM}pY}
z0lA?`TzNnJ3S8^wZGS8Kz`oml>+!epAD#Gx4%Z#Z-}K7q*+aQ|*J6Xd&Rt%)uIz0}
zpPFQ!(VY*Ad&1XFe8$Zm=I3|v=&QoV8}?n(j9&F`&-r8ToBuQLY?<HlP3%_P^ri9l
z?;aOs7F~16<D!zs!Sanv8rNmHr+zzI>%6@Fpq=i!C4KqAS-Q)QHt+~~=`9asx40*o
z7<{A6DE!s+mVIoIHM&2F`J4Z6icid68tu}pvRW$ou17SV@qEKH-RV5HcYTVskchwe
z{rfWM(3`m`mn*%$Ef-`f4SKVp!21D{-<=PZ$FyGmXzjTsQJ%Vf_MNAT5B;cEs@3)W
zgZ2F%s`uY0ez+a}ccYygKl_iW_knWaS0+bY$x~pezMPuU6Eo=zpHwoJpn!~_#Eq!^
zJO3K_i`|$V8-8Hd`#-AY#iy0_wyiH|e)Ia=gZ1fIKc^X)O*pV3pf0EDpT>WN2Xp3c
zZEvV!th;iH|5&`htKQ6qxmLPv+-nops?IyRsA866q!80*t7AWsPA$k~ZF6}1TkfKb
z|A+KP?(K;m(+|7uyl9dear^G=AKTsAPF*|qPu#loOjW1QVbd*3kDoZDl6;u=4!^cw
z|LV@n>yvZk-f{)B<Z|4UzRvx?H~Pq~*5=IVQu;khZp+*{J8z1YtJ+mf6Z7j~ZJbSd
z>@(G#vLx_yz0IwEnDrw($eW*ki=9^2BlGON&H=llJs0Lo5LIZpeYzy|WV)Wb4eQag
z?0xdr|F|wa`;b>DSN&+5#3ZKa&%^t?JC_!DDz@%PVs~1Q+p}uUljoP`eAw6dptjs)
z%ZKNOFRrVxZeojEQnKaW8FM2o`MXwkZ=aaN=gA>5vFF`^HGR{*d@`_+PX4f|c9#4B
zS%(Viz!vM+lYDcZE}7WBpE3F>lgYiJg<P8res#V1>ipPV;Ktn_(#NeBui990Kg#~k
zuubRCGn3mI6W2bvspPTLGh*>OHcqwerDxTTeE+5TzI{*Ol9%(eKJ@tRF+DgtVE^t2
zhcf<@Y4buhuWkxdF0v9}6!ktlPwK<B-DT-N@@rRCc)M&3=v}h5C8|cqW67j{p?4?j
z5He7(3_H|dz+Nc4IBHIQn~f!Vr;p(u+3Q>Vc{74sHu)zPFE`0FD=MG1m#I)Qh%qdA
z3r{Y)$$RNr@vnaAgxwc?t7o#F|Hb!JCs$@hZ9R2T;pgJM^k_$!rMJt^i!>aYd9E%X
zd*ij|-N6^vY}N1oC$w2?!x^zFH-7$lKHa7(#AwEv#gkMLI5J}xI1j##-c{HBs5;xS
z#`8gMQTpWzCbRNd%SHE2-Soli@Ut~)k1Qe^Rc}iER98uwdhCluJrloVMY+TL$Pa7(
z>@&RdXh;6$%-=!R!us5vs_fb^Wu{B^xkrpO3G*rrUA1xju+YZ0a7D#xJBg2W3v;ET
z4yexx<(ANvS<53_JMpH+L#}rT26qHw+dGv%@a$9D_EG-0teC8E%#Q7!*7}H>n<rjU
z`@QZ1$0Nnae=aqfQ$F@wPtf_N{v+Od!<F21Pd^^{T$%Z;vhMT}kBuAb_vr8DReI>q
z|3t#_K~JEhlI67LX1}H%>t}uWAuh}NKLh8{ySLXRZ~tVntj~6K%Td)GDHA&nz2Vz&
z(&Dk`kI?@NtcU+j+9Uqkv+l^PZxcV9I~}<9$MOf+4<AYU^4-dQ>-40_{9d%9u(w6p
ztb6VUw(~H{@cg~?cjlH4{Vjhii_4c(*nN9{@SmP>_Zq?KHAltgem=2L=hEL9Gef54
ztF~S8kT(tg(fKj|a2?m)_6OIG+!w4U53Cn-xVHB1%5^s~g-<_QD0E<2zGV%|Y2n>v
zMb_bI%)(lxi^FDJHRcJ)ys}g)_|^XP%73Pq$g}-;el$*L(tX#9dh4d$y=N&q;Yins
z+a75XG=i451%K98Sm(xmdq3-chUB~UQ6HwQe>A_VJp9+$uY2DZ^7H=4x*1iOv_q>?
zXV#okA6*4%I+eTBXEPUVco|>%?_v~tlZkw<o$iPFLuZ|ChkiIWbCs{$%<3%mi7H$-
z|K670GjU_Zo<kl5vkxjX$6NiVe(ZmgpYxCN_7CshT;KC!(lhbx+1nV7tSH-<X5{uN
zu&jA!c;9i``hvAb@&bC6FDZXh=h=2rS!z<NXxSF~#p{2lU4Jw4KLg9w=HJqX=gZj%
zS0wohy%IZJSh_SjxA+nF>Gb@Gg3GQfNeNBjWXydWw?wZfd*6SCrYHXy4qDpif4J;?
zaewytn@6Hv%oE<az2E1$$&a<OPjBpy|B`)T+lh^91e-4IdK0j)Iq%S;{o4N-QtMmm
zx3aDM7<|NDq)xly_~G#DQB%q`+kW}g^ztRkwI%)9ypno9Y#!+EyVLcz^GEUT<ho1$
z7%x2dA^*YpaQHsu_DAuzOS9Rhxqnodc>CpBk@9@jHT!B3Y}QGiP_m!8o&7QMM?bBP
z%7Q%A6`65;^WIL|_W9qMy19q{D0&9<EZbl4zIyNU_}%pr|18h?o^5BpHK|g0OR~&%
z!#nN*ckgQpzhh^&(4H8OA*ZnS!@Y%a%OB_q>b5Oh?xnY2*4?nk2UG1*3O;W>CL?%o
zBF9&@{fp1vdjBo?%KisS=L_WSN&oQbc+8L5kLwP5h)usI`cbX<@BHNT(KmLR&t7)d
zMM-Qs^V$5nceU5d<dUghv;N@uw))ND$K<=^#g_aKT$Y)+^hevVw{N~meDzG*WLD&M
zN;P`vrlw~l8Hd~KcPXsnd%MK)*PQ+?gB`Ert{Hi*y`J1`cv3rYRgvk!*Y+%+RY!4l
zKT1EIw9k0o`73Yp$Mj><43EprUiqW>$gQb!dwW)_={4MP`D14BCj-ITk2sw3lG~HA
zdwwkZ&%o;apP{L>Ci>&l^BsD1nlUfGPZFEh)|<QRWs|}2;@oQQvK@gpB-f?X?v0q|
z|3&(@RsF%;{~1`f{FREAtjYa2_x+KD8@FZD$(l>CZrPk%wCa^m%<Mxy7;BDYEX*@k
zIH&z8zis~qPyHWi>kq7rJN`)g2!H!Mg{GfR<&*p+v*T}xr9G@Gy`PzHo%#H<vho?f
zh{E%x&mJ4csH8oWxbtec)4p@=A95dCca-*v{%1Ip{4wa$y;`rIXHRF%T7B&M^`HcX
zPxs@`>YjPRBk=Q_fqAmXZChiv>oxC1+@42m-s%?J-IBRJp+$kEeU9Pwjuna<JRUrk
zef`(?pTNJf@!WQTKk|b<x;N~TsgRD$^^4R?_2>Ul?SJu|-qSMaXS2L#w|CA+S1@#V
zQsA(zi#wn32XD&O&Ub&9S7)Vp&(1Xto^ki(#M6o=C)~INI$C*+!cT6kl$0L6?3slk
zxp~g@E0*ehu|FsL;CO$H_lM}C-|Q?t{5|tcENr{B&4rj;vr7x5Qzjg0k$I!8(_+nF
zQKL2g-g+MI-|BT&cCl{n-{b!9KLd9~+wZ4LUk+#1D@{49?OrOhWU-F%XO;qYEspiK
z{k!Bpc=+FFek9v*Wl#EtbjK^DzDZB+#JrxznrUOcV#&IHDU-cY_NtXm+?3*Q=E#Jy
zjZf-=Ycl>bG*|9V=NGEzddA-zFR_(ZI6}o+Zu+Cy!gUE@`4g3PUz&9+Gx_$!y|?^l
z<R<xLtIoPK?c7m!p0#OJ^@rak+AtTcP(N%N9&j=B>bI@0Z=S6b_TT8F_mfk{A%H=8
zS5?<9{)hYDR)3U#uy4t%t<QF^dTkcHS$EH^y?+8H@H=<<?_;~?pY`X<h5Zk1*Y{PG
zZT#E%(fBcY*S^z6$94DKZ+brYjZcs9wu-O5p6hI`e(h6gkP)63n}3-9hk5_E`fWdU
z7nVO-e@j2&qu=CZ=Qm_*cY5x-*DgZa=>8qodbz8f##<LebOvzhaH?KCv-EVu`49Ea
zd<-s5nKdPR{g?h%_7D5tDt`F>?feggx0MSrr+<&iJ-U1Ex}{t(iyn4O3oPE{Z?G;@
zMMGTueX{AZ>D%jMFTQ>Haem)=)Awz=N_QRQ*t&bR-(`~-GiT=rFbdA}-o5X#(x&OQ
zzqo!jKg@sgpWy@dx9knw56TbCXULkx-k!L(J4EVQ`y)-ISf{sZFR}04H|15@H+REE
z$;h6rP|;mqUYXk8VvDx#$o_Espw-rYb7eZjj{AHRZ-1Z1x8T6WNzt)>(eu@uLOD}&
zZ*b3J%RVwk+b`zR>!-=fgcf^R9Diqf>u~tTw#`e-d%ymuG5u)#+q(SbgNtt-iW~R-
zVA6cQJUb;}M$&2}HsveV`O7OG+Vkt4+qoud*ZRZz1+#<w?Iw$Nl{!}@={4NBq&s6*
zhD+hJ7^le!#|0mYKHD#$Yp3?(dDzB}?yV)gdX^=peLT72Uzzb2w*BlWiu6?7weVP>
z>1G3kKX+F%AHQdGNvFnMzNOAM?sY(BcxK*zhU_ibKi(wIDVkWHbxca*NRENvp~Z&3
zm&^%Wqq24<zqIs={)O-U_&)m2z+X|MFH|w<xZB4q-(MZdKF{x-oAL2>OU=2|-Micp
zdz!?29|*Y>#-%@;-*r#?qkYrT{AQ^)+sZFJx|zId^6xr}=|vMI+uyERBf+$UP1@bb
zPut2@{SkYkje36S!<)HV=lWURt4RH5vXU(!fu~UQY!5@epNCO&&FO<GP1(~v<{yu5
zk>lRF{aSs7tjZ7jkSlMVZJ8goDf52rzK0WT9i3vW)L*owVOqaTO8<=T_^ZmYUoGX#
zg33B?-~I9XQRuO$wI9Ae5^sP1RaZN#BIoS0F1yo$ksK$gLw5_i?Cy)~P~a=)%RaBz
zeC%HB*Y$6{KK^o9&t%zeyQRxG>$j|(mvM80-ZEj`J4QTjPx%EDPfcUE9{iBod-h#D
zf2ltv*Vp|?Of60q*=6<G+~8zF>x@5-gElp)%u<g@R&ui6Q@Q5GpZLYc6Ycx|nZ5WX
z#rvP3ZHcGYCw}eV9+TaT*`8}3nJ0!%Emk_-;P>>n=^9N(>l=q(3s1T@bx+~nnN{0<
z=^y21xmPjonD2CP@k>gt#FQSaS}nR&$o5k5q7x0<ERWl~&Xg1Vu&i_0`X)PxAN~Fp
z)+Nk{v2hI#o|-&=qR650%xg-Py+JOwZ!;t<|B-CpRujL9U#LdsW9jwIEhi;rCP(VN
zU&}Jv(^2+P+B4bZENzn<#1%9iZRDG5-~Gq)n|=2@_RDYWPVago>vgQU`i8<JB^i}m
zDd%dDHEfS~cRE!+w|o&e^^3vYbE}USXK%0L@Ami@+j_iPb<gMAt<t$#Cf@ZbmWC_5
zJEbxmeT>(nKefC)hdIPXHhIa5Uoo@P4_kMB>F&)^w40y1D#o`^i{+=!w5Z%KO;7p!
zWQ1E4%hsFxRSx{m(6ax?rtEmWIwjLfl_&DPtiBzge?+<boRIE@*aHy-^U|KO)E?q3
ziCUfY&*<ZX5B^8)v#Tv#VwfoUdhhHb65nU|KRwU9{$9Ld%FC&iOmh}}cU`HvSnuSD
zibvd>?`=|ZN?*Q}xaG{(%RT#eUkbO%?EEu9x6Q5NB%Vyz&RXPmYvG4gmk+ib`W*J*
z*wR%mt{q&m&CKf0_O~+S$1`0GvbaT7-7au)RiEOhB9v{%TkP?XWtx@#q5E>TBVS3$
zsNMYXVwSGg)mz4&ww@99<-ILbwd)MOtbf!ioAj0Uvv-xve|Wb3;D(CBe%TdgkDt#<
z5=v}YD>uLFV?)c6rs@1@76)IY9{no3Vw-7v*hkd~X8##P-;~rw*(!9d)iZf<EArnB
zj@wUe#xyBS(AQQeS9Q0Kdj3aRz1j4=h{%V%{~0>g=n0rUTf8jGw`jvj*#im8wfodR
zElRVoU9-@Ufv54zwDSK9yfw^u`}uNe0{=5`Y<*b2ecfc~wO0=<IglH#^v5gAR946`
zMDwB7b^gceJFovrZ+{-E?zHpcj47TX*CtKQ>X}os=vL*j#u@WgsWSJm`DU#wu2DJV
z@m_h$b<>rPK72oNSNX72TWeuUA<IgYX%87QZe>TGcq-g<H?=MH_P<XWFK1U)KCG90
zo%G!GYK`-v*G6?O70NPlm-h)bEV}lMy>T-4j;))u1wR*F+sBoEi#zJWe}<{cUhb2=
zWF!9V$fvc}B4hIeAKPpR6Yo~tSX8hsRM=7?C*jIB`z`Em?H9fLUQ{v7`#*z-qhQ#U
ztry-d>U)%MD)8dkw6azQiIYL0?J_c9{~1E2uHQIm?WN-{*R9Te%=|3#R(*R(_gkr?
zF0srdJN8I#+G!A{eBfZ8@y5w7eACt~{P65pb$zp#)!+9m>)yt`efuW&bB6lVh#g`t
zS2*Q9b7g6oXnvt@>d(s`UVq!L<6=toeC8UvT25WbweORzN<BN9G_x_|iJ4Hx+q=`}
zDYAOL3Sar8Ci-{izZ+3~%XVqKl5#yZ+wA4kH@dwmJFmQRoph~aVqH$ko?^iX7GDAn
z`MFwk>7Dr-ef5w2>UC2^+dIEp|7hg6HMK8w>#Y;TGwse?ZtSUj8g!(Tp}A|O$yxq~
z*JkD?E_zkv-mJJwEn{&?b$6xXfz*g4Q{zn8<yC}M1lhe;kv}Y}eb`>Y&ah%>UTMEb
z);;-;Je$_^W<Ncjr{;1nNq3#|VWs4@NjE+iw?%z9>;CZlQU12RPe0lNw(Y<Cv{3HE
zdz+nI+j*Zy`$`{I(mX9BBV?slb!F4n>}{qUo2um3-qXMSNBvPgoAZPFLNBk^nN%)G
z-MQsbYKef3yQWTE%Exnydv7Nc-CtI?CReBAKSR53`9pij{|tu|?Ut6+Z=QX0>H74Z
zV`Z}|7Va~=FZ$qX(Q(W0C&?c+ADh4Bd1Hya$ms`5uWwygE%npjX2eXPGu!NZJMB(q
zN=%+0@_fO1M?1^Ei|RKnxKv~L;Sq0<=7ZEdaw>DYWE-SsY4fh?lSp~<nf<zg)b&>}
ztG*kDMrS*J?GO9U(6Z~d&$aX)^ArCwaN0hdt-Ezkl!W}tZM#FBIj#_yWa@tIg-ff4
zB<~5veGL15WIud%UH#(vygzCik8Jy1Hcz4Jm8{*dFvV*bi}xisJZ5n=>}+Qi{qdjS
zk!<m|HJ57C6CY^oNnG+nB#Uv$mTg;mGAH$$Za2yK9xi<B1gHIO7QxAVRyDIf27j~v
zyKn1i^J}KIPVbL=do7tMCVi1<i%X)R?3wv#6Qkz{Hy(30-6pRaRQKgg@zo=damT-K
zFZ*}1PU^#dhEDd@e_AyjAM{p=uBu&jJ8;7^mzgoCHcL0pO%<H(W>N7@zT9bn)W`ko
z|1Ry{^ls}%t*d)vQy<Na4Rf!ane+bH-tCu5B^KY2Y1wHMIq|cm8fU=#=?Z^u{Sp4)
z|EBZdd+s0U|AhK`UY9;7+3VwJGCzgYK}ES=<uu3L^S=&p9<*SV{I&j}+RESNfAlV|
zGszc?^M2f`5zYVR{-&3gqlDGo&xna}H<^~#XZZQ3kYLZYcMSKIMSEtl-4@kJdA`fO
zaR0+%dEvXaDw1m558c||zI3kguFDH`Wo}g+yFJZ8R8M!EN>9&!hBb|!_&2P!)4y&f
z>bou`%Y55BgQjl}i{+MG&I<cBS;VnPFmdPR$xlx@8nG!a5AHwS-!3m(!~0;q)a{D>
z57!^cRX-?r<H)DlB{9CLYfilqJTvjOS5PEh@y<nemZS){*3N#wf6M*YJ&TW`)4TR4
zKi;-)Yv#t<-0Ym~YBni9%RV1|vT1{abXuFA#mUz(q6TZNl{Xo?zj(G<y-#Ps@AAXd
z@!ZkTt{g&{-}PRWsvKx4k9XOwwJ-1Ckqzr(QocQ?)2jH-@bG+_>$d*2F%|QEzEkYe
zRJ*AAY!bI=>WvR4byxYUSmno-bh~kqTVcHY>;DWKbp|z|AAQX03_eV~I{#bCN|~rP
z!rBR&6S+_9Po2f!R{nFslqWUMcAOXgcXGbq*Ryr+{XVQeZu`B^OEH)2R=%2b<&;mo
z#ml#Dy^^9IZ{Yp8?767Of^9j=Rr;4Fe@tE8x<`3=b{zL)@7uP!J+@2TJ?UI4C>^@E
zkM+~RREdOZyFDdu_sses{mA`o;3IvuiZWm0L%aVN=T}#xOuFpwSvPiRk@xQUv{uJw
zWyz9Z$Iob=w==CfQZ@JN*)vva?3Ayq$-O%B>)FfMLI=c~B-hS<JMqEiNlWC{i+;Y>
z{hxv5>yMksYhT`KZ>@<<&1RX<xzPK@@?Cr885J#Pnfz8GqF(Io=|A4{=7zku9ChdE
zoaYyQEq_?vWvBJy*tOR&7v4YrsQY_^UEIoA6+xE{Zi#nM_ausboV)va@*kJ4_H`A?
zk9Ci?Zt)Fz|Csk(@59BJJcjq&mu?ZC92d>tV0L!NhFudEsjN#2EjX?sdOG~XFaLw{
zTX(Uy=!QRDV%4_dvfrUc*L`;ExN?b6Uh76#+v_>0p~^;@Dv29+{FZOxKXB#4z2&JN
zgngr5E}n2(_u4kOchzD6k`Ej!l&2YQc_+AK_9i#!jOUV{w!O(^U$pc2tnF`Ce(-j`
z_HL_x%dca*A6qQyi?}7pyQkQ-;KyO#!t8Btl^?U0)FtFUR!Q2Ie98X7l6d(&p&z@h
z2i3RTlAEZ)6tVD{H}~zieLD=#TTa!RU-hY5#do``<I!5zNAEeZ>#U{+b|0_fzWBcT
zhQ#7sm!{5p_n!S}Pv_kzGyf@*)&=zMZqk18p0)0r)%M<h3P&IOXJGcNTz0QxS@NR$
zXNzZ+ExR_uxniQ{CdDS7a#aJr2ia96D=mKC{@Lnjy2|d+kL2Ip8S;XEd^0xxaoV}#
zO7dK}_r5zKR1(<=6&g<IzE4(ZV9uH8{yqC%P4$YG-=lo)DSc!=^h5t`qM_-sl`JPp
zQ-X?RCb_HM%x8G4v%%zq!_USi^8H`*Z@NEzet7m<W#=F3AH^!!s-1hNr!?Pl9>=>i
zjwe2!-E+a?c!s*2@3T*iGR)zozVYAceiT2FUh5rl{ZD*y-DH;BxMz>w+=@9mv*^O?
z7kX>1rW|1D4B7tS!RNTzi1nM^WwYFT9WQR5q2EzlvEYTB<d5dRy{pcuosPBobnot#
z8phU)TZPG%nMTnm!5hyREGhZ2_@R8K)V0>^`n7*7H~;A1a=RX$Z^E!<uk@RjWf!#7
zj5mv0Pf5_U<=<X$?D6BCDsJ<``Yb;Rb<|o^kIj9=-lyG}tgyP{>GZdOCzg8Ln(QuN
z`E*L@<C^%DKa9OU^tUVj*u3&bzst713*6SZV%Op~zs%}lzqx$g^>Z6;%e!VOW*q9D
z@|fkpUdEENwuO&s?GMQbUdSo+7mcg2+<sHX;N_-+GMi3pH2iz?wGY=*cg<ZtjW}LU
z?A+=reYnox!^z8kf)_b|6#MkZZOUQhB>{U}Y9>_{dzSgM)T{}6o@c?cXxl&GyZRk9
zBKmcFw)4BBEa!0l4bS=LDQV-r>15bFrPZG{&*0QPz0OTL-{-^C`)wt@d9gv){XQ(6
z9CNg?TCCrOKVRqUlyuiie`Xr3?tSy|=*99vziW5Gx3yb7oNM&>u$;`bFaH^MUS6tE
z-5%QY=wGaZ$7;3<p>gLj@4ZuM4dE2hJ;5ijYNO@yg*TUN`gHJdzxeUTv0Bd<KObf3
zICbD%M0(n+44dVFpL09;-Uu<MZK}~<USoePecu%u)m2&h^q9=t`|c**l|A^g$vV>b
z&LY+m3Ab<XJXYIvR@v{zW$|8}wQ3*MPH$eQU6AwDTdXM}dE#Z=Z<95>pOj19;@z%$
z%*{3Y>)$-n>>Ecvtli#HqqsKu^*zZCGV}Pem(IEw_%3zVWp$w>M+L#tYIB9x-IJYW
z9^}=N@_cW9*pJTjnH$#FSvN;-6LNhPc|0x6KtaKJ<@Wy!?x&a=*3Hb}pS^ND%eD)4
za@qUTCx>tPvAO)w$+znAx2%F~w;ptH<2KPypJn|*+NOP?N>4(~-q$zuwyYO^xvhLd
zMf}4x_is!v^2}e6>Gys5yP14Z5zDeGFH4;4W1Sn_ctR!2FYCI@qRRgaU3FZ4G(O7S
zndP?hq4rF@g%j?mEzQ*Vc*pIihp=?5iISN8muu!h9Q>{8Po2ND{hQ5&(z#~*E&my|
z{AXy_dH-M+uifn8o#A|rOwpAKi|yu@iEaupn&)S}&bRJuR=v>H)zQD}xqqxb7AE$q
z_3FlX=e>$$KIdw;6z6Wcd8P3nQ}C7#j5a*KFE6P0>@Fwvaej;LpSTz;-~1J8^o37}
zH}kG;W#tdmE$HERdCbRaa@?2LnI#)_^&(d<{=xot;eUn)6ZcEnNUuD<s)qf_;*Y7F
zs*f+5iuWB4>q!upc&ae9dh&!Nrn?y%oP~UA5+6j=#6Mgwc&mc{$i=LGLLWu9b=Byu
zxn*>Ac~;o2BCoScUzMHwbXsHc3?+Y^)G12FPZz7K|HW71{de*n%eA)8Hhwr(VJGdF
zbvn0j@sAlRF3SbX?qlgyz2mQ-&@AoCXZPy4%D>9G3-KG>JO7j})o=T!TVv9G^jGdm
z;pjUriw>`JWzNl=E|$Mf`gNs9dbab%3(w{L9p(A7NBMMMY^7Y9vdZDBHCN_qzd8T-
z#bNQ|fA#7ae$0t_F<;;dbHRpp`C8na6K}42C=nXJ`Lsc%h2*xmJr~=y&I|2-dR8yv
zjd;|L;EzG)o?SZhr#sh8%}MXe@6$n1+%5g;`od;%ivPBm|BP%q`=4R=e0lo^lf>+W
z{)ARPp5L&~boYhQM;A|;O@7p|j%B5d;IU~x_PBKYy1C8GzOs<_@Rx++bMMc&zeWGR
z{NDRqYn8jdo&VsrcGD?i*7ZGqEH2zRbYbPOo9_apZh0KA<gS#_m(+jKDk=K%p|O>z
zNzeW>A3jFfR_V_QwAZM~{Gk8Hyjk!1n`=c`vvMAoZd<%u`OYoBmI+)oS+^qun`LIl
z`m>bV+O__+u5sRVLHg)EYl9!r-ucrszb2{}-7#Q!bnk}dEdR1wtJp0~zsUY)=(dyn
z;q3W4{ZMW6(T}gh!vm(wdQ`3LZJC@<zEezZ@@c~WF+H>A>k72bm#)=+l(u(y?2q$D
zrrqj26}A4oeyLl<_0#8^nk!za9PMXRx?_AJ{A%FwN0vd)Y^tsXRVn}S{m;;xXruqY
zpZ!n#$7Ac0^K&2N3v6qcbZ1rTHeY?et`Dp``d%fhNuQK<??R85$2W#EE#Y5Zehh#7
z{E$EAEA#NE^SxhZS9cbj)jcERxnzU(gyy#etC$;`gffm5@1Ar0!{Yx8EIWT3d?0`G
z@I(EsefqA+tL*l#yXU+>XIJi#4Zi<6rQ?kAIs_*C`zyMsN1|cvIqf(8V)X|d?QDK@
zozvK(y4rE+vO|}4pZh*tSmr^^D<zJ@6AqtDe0yzQwd}OeBVomV{1+d1T&by-{448Y
z{@bk|KKozN*&3b8e|XozjQYw#o!yD|>^{4wgtx4g|CMvlpS4f>v-V^0KVrKq7VfxM
zqp$jH(lzZT($&RJ53Ol$@+mY4YP=X>An|15>-dI$`XBv|@OPB^)C8(6uhmiW>@o0G
z;NJ00#WhcG=j*oq*VnfE6Zj+Y@%Zuif}RiNx0-ve%1$$S>_5%5>t%QY|Af%=Psc6G
z0vOm;!oCz)1?*X6cv@U@x1+p!P1=8krWF;FkADx&ytQm?&U>9ok2}YUEu9;Vs3_i<
zdwl&qTizPaNB<f6=2?H-<xyjuUtIKNiNVBKXG(4#(DGE5x95I8Ieu9@=YNI=Q|Akn
z=66_?x73;3>@|H~b3A&kP{vo5UL~ia>mGV6oGW|crUcI`PwB38h2PJ&?td`5e&hBQ
z)6@K{75_e;+BGY@OY~#v*?n`qi*uO&ESnZ|EU+PnYm1SwTrF?(vBZ^27Hu_Y6I=7o
z_-FR^OLn?{oc5WCiJSetxs9XbQGQ-${NC+VlP6woWw&*$o__fJ54HJkLqFa>5_aiF
z`os2~b#LbdOnP;zbyjVY(Vm?K_wGgK23T#<l(Z3!zcszJ{=uAiq91BocCBxpmCJSd
zbcoR%?t0aS>~_I>zl2-5<s>G~6FR(1`&wJ?qxY?|Y-YXdOiayA&zcuy)?2UEpCv5A
zshgTxbo^}D6CvFj{}}{CpFb-8`b~M|O?UmS@|}Oa{4x5^&|I;{aoy{x+^73Hx6IsH
z9UZ^Ldy&7*n^!+Aj9e3IR&3mHsOhyPOY=O#xakkq|4{FLGqL*NS-a1V#1F2Q%DDCC
z+C{tN%a7(38%4z#F&8qO>NxdUWcCEBjXZ3Q3eWa0^Jn{^ez?wj=f00Q^#Y5wTrc6S
zSpUA%pEDvV`c<4u=d+G=>!NNI*0n0#xOkjPu&?VV!;kj(zYFYB*E+}T-M{niygj0&
zD&K`XKF4K#_bya67K%%?lPFS2KHYS-?Y#Qhimk>u&QmY{?(4C&3fNT;^!q=<1Nr|~
z|9to{@nigh@2&3_{g}M!$A1Rz4OdJxrrq<1i%2yuoD$+z5ijJ?J8_!N)F%&`d~0(*
zJgYT7BG0paZNAA`pNJ?)smtNH?17UGG3Fgu)4k&Fgu@I;KRTDBy#Dl#A^gkd5B1+9
z|1&g|)tFy>XVTw%pXZP4gZUECe$&2--7;MgpV1ZJwW(7rKuvE+8;`^ao9CA6*C~C}
z@AxNsPra?i_ff3%k+3tzIKKR@T(oT`*H8O>pYtOn_(WKH#B5tDrW#wnnAUzTXwj6M
zd&@ta{c!%9)!(K688X&$-2D;%(7%~EDr;Jk{@cH?YZER%nwoNl=Uz7FEG7OEN^PDD
z=g*!H{a*jZ^*;m4jK6d2)A(iFKgvJSUEi7T@lfm@v0rlzN$Yamd*E^QS(KyB_N0eT
zWES6HyS4w-<BoTtzqUSJ-#35L_J*y|xBoMA)C-y9xBpY{u)I{NTV@^cIMwN*>D490
zxuKSK3PNvI&71lnO8%&>dF-aG8$SMLxKZOR^5IxmJ>SjP`!|w2u0_Nyout;I({X!p
z-UBN!wjCcOUTun5?UKv#=-ssEuC>J<lYRE=vq~wmQ~vNIFn`*o%%{_XCpO8O8M27&
zbJ@MQH8gQvZ*$DI_79s6{&TSkKlq<vTa86Fr~J9L)81RQh;wgeGwXYH&EX=GGc#x4
zZh1qQaNf0lLVt)p%ol$pC-<TMXsl?BzfPy@{O0#x=h~gRtJk%_J6})RQ!n>$=?&&>
z{(jk4{y4L@mgb9PUbC025$3sd#=vA&&9q;o*VgiQDmQ#w`zey+k<Ka3?gABtBgt%g
zUOL_n{2ZB8Gyiw_kLE|=ZS_g>JAT=BzuEF_!xiOzpDp|PelD3+SY9e)XngzcG*wTw
zq7!RE1P{w?{j;Frc<6Q0=#on%Csk_KZa&R(oaJL{d{C|Z)OyGLAHwZ>=1KkV{=n@1
zBfR!;>qnMf{~0<Hg<f{ds=AXoZQDxIN0lejgj{-Mm0P_Rs4JL7oBrTmWV*idy}pg(
zVvo&f?_6B_C681D9O!?PJo$W*_LI+Dr*E%NU$y<`yklJA3*YK4&i~Wr9q_?tLR8ev
zA2U=>8>qOPl4U;TtdyJ6^Q7RfbCGrUp?%sv;y>yi36E;;*yFb7S@qXF8$adFFgcm<
zpP@FnrnQZsfoWy?B;U2l1*~-wVl#iuy|+^4*DTNc{Je*^JU=bHQG2D=Uw86pGXsVP
zlPaE;if$4QiitXAv)m%#@zXM!qP-mFE#6gK3(?-O<)&%!vi4{4hxfP4vTsV+^ijTf
z+Ve9P^B(Qk(hzgjY`*9bK9!J)#53irv4tw!JEf=8ajt)1{mtp`#`M1vZS>clPkyj_
zzRVxNAG253UYq^kFVj8WsLzMxjAl;r-p_Yh^wRDnQ5|=y(@jo_?&NV()-ta%`SIC(
zQ}fZ!>)Nx;R;z4WBKB={&N1$^@O+b1b2qs3Pn^8PIN37wfZYAx`ah08`u=9+W6PS#
z2claq=e~ckb$;-rh4WARuD_8k9(McIO)ggzqjf))FwQcHU<kcqe(AKJ*knshz3652
zc^7`9yI(8i&^PgQ4*tM&Fjq2{h1*)=#zx(l3BOHdCe)XGa{FBuqiC^aZq@go{|qhV
ze*NDjd{{TLa{0_l)+rZr^Zqyl)$4BadHHwNGKp`^GiSO7EO@&5)A7gW|A;ex)BBNe
zt8C+AdycI6LZx^8&g%Qr$zPhJ@n-6cNB6Slrrg$?8f`sEETMUF@9FvSAD;h_vHYzS
z`NQGIN|Sn7vz<F{+SsmkU+$sOTh8jSmD}d_u^$Y}Z>5CDmv&gJ+hrl+^JpoD*`A61
z!Xj^O{$8E@;BG)fY{mJ5RZAb;Zq;A*qw1T5j>(sa!Wj;(jk~sYIiKEm@6X)D?4s?D
z!awAEmr8wp{67O*gx->Q<=+x6zgbt>((*Ja_PXFr&Fy?;4<lAi=y~w=@z3@9|1&hV
z+p)#}=#Tqo`~1yM+qSK>Qrxz2+OMnUI=^M)$u_-E?VJ~-8gWXra&wPhgYjqeuKf@8
z{b%?PSet$%dqo9%_=j_oljgt5Rl9UJR%Y4xFWZfcP91;GEK=|`r{F-scW1RD+tZ~b
zLyleQ-ktu<J$Y%3^M`d)_9=b%w!HLFiqO057uQRj_UY4@yGiNZwvW5kXw;WWHymfM
z{;GatpZ*`mzccN)<6p^({AbAQb$0rZ`-uC+<Ef>#ZlRxz`_<Gxcm6iHtjXZcf94KP
zj{yIN#E<FUw*0vH@$-@LeTqL;KjICz7klo!iIjKjtq5c5)Fsss-=enkRA$QA9{DbM
zAnTvj$HQ^Tul6Zl+1i$RQ{q~w_v)sd|3uu47!0iRjK8egRbzGg`_ms1^_jt2FWGO5
z@38+6{r=|q2j#7cukMqtm>=@v=DPcS*Y5d*tz4kG!!=1Sb=pHEPa(H}Rf&-j?|4>j
zSE=*J-v1#szI&RL-Ddtn=bQh@{iuATeY<U<>FVsa?$HsUPxv*my=O;zC#%f)^RFOO
zz3kYFdfvD1woL6!{H=T|w*8s6wZFc~$A23yv-)43b!FbAcf1#ly)4_T$+P|PB#u|^
zQ#L;6|2*qUX37=COV63lsP6i=-}&v`{C`~K{~1^{u5Qgfxo)53kEV>Rs)}zW#oC=y
z>D~N$$D^$qg|z-05bFz>%>4fA`2)YwTWVCRSL;YE>*y?89jA2vPVG$gTi!eFT;6(U
z+LVn+5gT=mJo)77q5I`pms!TFOCh;EIk`O=<@J?Moae7Fy_m7#Ugoa7TjGl19Q2YW
z=iHp<!yY4G!SMMQn{jOMVh*R6?uAnfg^GPQ*>~UP{*(WpzuVn6W2<fO;a{s(N2s>$
znRHa7v*E+3M7PkB&%d{5zP+?>?+@J%Zu|_H=U2ZjRC@KR&F0~p8H;!)N*r^0*ZT2T
z-PA8(8&~{Te(>64ch>c{b7bD1QCZVqZqs`5z&j56cz+}R4y)2Ltx9bVJ^u+MTNl5d
zQ1A6;y7ZBVt}j#7FPGo>wW@-{DdwX4sx4yEvt@R*6fT`()H_Gw`WgEp$82|Z+Q{BK
zU-eh+Z-0IE>-9HxACB7Jw&mMzwFT$aFY|g48{zYNd6#!H&;0amd-Kyx?#vUkKWz{F
zxNh!>%ndKYHrfOnY>IL+dM@!qpCNsoU)|IfcH;YX?)Y$Y_t}%v%kIpX)bOFUFkaol
z($+sxW$Kdt*L;`1-TuM((fM$c!H@3r%HqPB&6RSlQ!X$5nWF8rVPBq*(*3fa0O6+P
zOTAb9J5$BpvCsTwP4?u2x6Ed)&X}P8&A$8X)|1E9m*$*2Bi<0%^zEn3n(x8_Zf+bB
z|MKj(D!xZu*r%FV75}Yw?b2Bby4<hm&U+`)@+myU=%C_>6D%Ga=kJOB-uvMF4~_kA
z)_<@+DE3Qk`I_Ur%jQe8NtC>`Ikv8fwe6badcFC7U#f7htIRqjvO0LasrLPyEy*0K
zUF*v17G3|N^=s*sI)fjlA4=<%y}DVmJ93Nqt}E;I%#@Hl(aEFYB>k**&A*$bY1jUJ
zcA59=-|-{gC*F<eRNH*v>y_=7lQs6ZwYF~9Ep~B^o<kY)y2sZaz5LJcV4MBsbBl|v
zMXB~JdZHnCy7pf?_jVgr*I5CJuTIt8_(S<W11sBy=WnGSUHR~5+P7Vk+#b4Q^As(b
zd^7HWnf<*q`PN#K;;b(7Iew~bv%e=*>n&VTQSY?N&gMtsgZ>}0UiI<J>TCaYHn)3K
zp~||AP7g(RCvH3B#`Hl;?c>$|3@tSh_tY=jxE8M#aQYdwcJr-m6|C!6=T4cNcXN`&
zu^-1`7^CVX>$oed1FkK)y2XEc=6S6L_38HvqSKE%N_8p}6dyX#%J{PDQ`iU4^#@<2
z+b^5yYQ?Mk47?pXZS$U1u0LnLwfuJSRD1KSyKmor2LI`9)0C!f>9(1Z8hL5H%6F@L
zrXSBAZtp6YY2&!?<+f|rFV9rTe#`bGR>#Q9+b42ivyidOyNX@&XN1|e)hX9xZ`^Aq
z_c38tuKDxel|Q$IE1CMd{ruQNcV?7ddy;3Hg~adUr}m^jj&J{UZ0COluEX(HzH*p~
z?b6P=_UOI$tn60bgKyqlvsk<*sG({8-r&Yhk4={sKfEvhBluucYI}2(zHrtyp_3}d
zk6hB5S**iz^V7BH?C|YjJ`IwOV{e>HRhj(iIJckPOSziWzVF@?PrmuXIQYtvt95Lz
z!{Vf_e0g4PWNT*OW3>CvnawvRKUY+@(7HHp`J8LhJGa^kWQVc4e%#)sXA}N#b;s1a
zd#c-amQCqh*PmQbY@*WF<eu{-&Nw>ieb*k#hZSqLp6?M;_Q?%m-|YP}d6N6K#yMse
zSKO}5WVATdwxeeqGxNzKx6Im?M&6FkwqyF}w{%7HUDj&lwTX*67N@Mg^)R^L#p$W6
zJ?$1+2jogae(Q2Pdv}iC???558r$moOf^DRb@$jUi#>Gmo^^AsM8_iO>gel+$7Ub6
zE4ojhsA|@iv*IxyWy}JiD!R*7SLGT1XAt_C95KswN#%KwGdB-fn;q-%t2oCSRDELU
zmeP;c8a78Ae0ol;{mj)zK}+T=jBvRixP|RZhSLN`n^{*b?ccb^bH(}&8{YbrZzpWN
zyTmnbt=Y#pQRjDM#PErRUg+Zp+G3g;IIHUSF}MB?^AF$B+cHn(N3~6rpus8SHlvgL
zvwrBrot>p>ten#L^l6cQP0-=YN0n!<&3rUB>w0j9>u$}QZ$fw8YTcGpoe{mw|MchF
z7aS){x39c^|MX&6`(swRXOD=pKJa+Z{&qrcPOFhi__;`{=cmK0H*hDbt+ww-+qiMd
z<r?<&?n{01-YH&QpZjoHWrHNwhf@>px{37f*`#pHfxS7>&G%(-*wmjhpF}-B^uGQ3
zJ=^~bEq6;+?-h?$vhF^;;=SIRJzp{npWdnT+qU@_hn9!__C-_Kc6Zb`KVHjyB<#|i
z>?+%P(<_U&RZNpCd7Q~{M?x}mdEfJif8xT|RbOBD(ro)K)%$-`{;6DkKPTq)iR*bY
zW-&0H%y@G{@>$OutsEiIyG_fdt+&6D@WXR?=6l_DD^rtgZ+I@rR($Fw*e!9QFLfI4
z^Rnx=Wg?HCDd*``y0c}Y@g)D?vwz|r+PBzgfApQ+z9%^Kk+0Hgp>>nXGb;--^QZD1
zIjq`qp5=Cf`spbT-b(s3&YrdZh}Z|S$;<CoSjS#qxi)c$x7g+q*1NYAPg`f19V_j<
zS)t?|yUNe=1^bMO>j$Ouc9!#=Z~v2Bx#nqyN6*JduZeQ8ee!SKx!n_-XVd(B^@I7H
z@(lk(GuMARFMR($!y%*3yAR8JFAw|X^JdB43riPGc|0d~qQ{f;wPlwMsV`2qd42oL
zU+0f?J3sgbf4F+4+}zxJSK8uD|DxA2&bxP0uWW);^=Y=gq?4!KS6uWspY<^D$Kr?c
z+i&Guo5kNzbCc!ZTfMFS8Sb4)EMTAf%<-vb1N*7BJZs8p9(Jrhe)@jPetv~LB^!S%
zU47^DlSdLcc`BFvUYuaG`N8G%s_>v9yU+Ipb!X>E?!S_Dee0F0VPBg}CdJ$_y5rIE
z=aTe{_|t_wDKj~rq?F5EIQ>{wFH!5$w$;vGp9lS2m#a8+>)(_JZyk?opYPptyS|!7
z|FE`S(7lSqImLT4g4j2%yL@23<R8v;5yw}(OnPLkEVY5@mG^J=yC)}f&heH|e%CVd
zfGy)O?N8GW*YiC45c=wVMcl8${${Tv<w~c-tSOSw{2i3)SA482&qnNh%<-Nr{p|5E
z(YOEjUVFb@v0ppebpOmJ4Rs%*yUR-N9Qm-R==cvm?TClU7y8%4ulyZp|5o|KyvJwi
z#qVZ(?&UbHy7x$sbGelPtMfq-kMA50i`FbCXPLL8Vp{KS*FVhhLPv`q#CM3_db`N)
zS+3U0ODT7rScL32eoHCij*#fp4MsZ-Nc@?5MfX2L`g_(JxBYoOa_TY`mHtzn*m!En
zRIVAbWrT8Pl&gd*uBxfqer>Jq_CtTIu9$4nzol|{>7=)dV{iByMVodW`p#ZpTh)-Y
zf78S4sWR~{b^n$h7ksqieCr?QhiBz3yIeWxzva}$lSwTM0lV(0&sfrUSb@2~lDRpq
z@T2~*{|tP4!gbHSYkYiT&DI$+lP8^Ho#bsS^ruJa-Xo7~!cELaw{Nt3v|rOs@`wGg
zs6#Oo-R>VnFaJD}%eTI0;u{qMBdt!JoZ_oba=uzhtgpXdCmnU~waz`GeSOb-b*1Xf
z&b^a-!sHMzJ7>*xEf0AMf%P^;uIVx&N#EIHzv$H@ecaZ#Joe75{mqIW)tWe+-afs<
z=fH9@Q}6KBbAB&w#e6-nZt{Wsk~OLiZwo(otA0evzp1xtzScP-z4A8csVUnOmxRPT
zEIY-)euL|y^Ka`vW*?Vc_RoC8`SrHzYu10S+vUyd(u=s}d~kL#n|F8h37g8_`ak0R
zKm6Fa@AC4CN_wGbyYsCs9y}pYaq0~_v-H*M#WxN`&$+ZVZ~4o<jUT05Ki0S8ZqXO<
z<?mRhesB83mrGR|6kh)8w^<a)tid=%OyPM?c=yX+{)hLs?=ro&|H0ZYUn%Ry+l*JL
ztmR!ZQAjd*+ukW6w&hx)GKGEGpF8b1EAAb8W^4ZN-x`HhgQF%7J}sCa)6-Fx#`5*=
zd*!X=)9g2HKkn-my7x!>y4$WPXLltRmJ3UC8>s)4dY7ph;Ld(Je!b7NeqP=?``1r2
zIC6Hi%df`$nY>IV1%50)Y9@8{+l+qMDYsIJ^8%jaN4$L!9?_|go^rgrh+)0mhv~=c
zn`ec0%7=frB6Ta~PX4q<*P^!>c==0uXS%EuV0oe>`p41q!mWR&?{D^RGp*QSFZ|;g
zx37DZyU?Ae81Gcenp}@Oj;^aG?GKCe9C?zgv~Tf8|2GepRAe9c@baF}htj@<WtS{x
zZq>e7@;a!?fQPG7dH3XVCuK$bEN!#R7EGIe{Z7u_<@ajdCx1M3A<OK;ABW3-?7mI%
z-sV=xy4h7;Jv;h@YFHjy%}&d64if8gFVtuDGsai+?tjQNKe{_?uG3M~4NPbE#T4hS
zSbbdS+ZnIr`yTn$+<h$1^uzk#KfcYoKB_L6Cp0-CnW1qVV@gS$$IdfdjSVLX3O_UM
zR%i0&Z;lsuXOi6;?f2Wi<Iyaho1IJCg0<%F&`Z)Xo2pe5-Xqs?@r|Z$>_n~2eJ6g+
zKX!k6c}vi{e9o8Gs`M779CDd=`|ZZqcxSV_o6_zst`IHfYu$XC;rhw_Qu{Od1u~`7
zCNKY?f5=X`-T!j#G;Pa2cCRy2Gg>~a&3<}roq$Yhbz0ybi#79kYGkf%<t>S;czo#f
z!{2`erM|@6ahKV)X5*h0_d;f-a2{_q1=f>lJALh4KZ;&kGV6GIP1&!hYbHI5&d&H@
zXv}+vInVKD_|y{?-<SLK2=90rxR!rqjrybcoflqw`{lNwMAkd9PkmO!*KKLlGa~=F
z-OZKgvt9k^XVcxQGtx8G&H5hvw>SC2>!Xi#&2;5M_v|!^bzU;_&$X#Vi;@d-CNy3U
zI8wwX>G+_g@o_Exp<P$+Y^qp&Fsg6Gr`+wn1;>?RH+@)mWW$af4f>A9xo_}X`+h{9
z>BldQw_9}CLpEMow`Ogq&^hPlrxoP2j87c#unRn`H9yYJ*WByfb>nZHx@&5UAKJPf
z*tK@;+4~Kq`9Hkm(wI)gdg?|#`X?+i>Bf=PDTSYHq7Rp<&-%6b0e{=t<6Zft@lp{{
zKZ1VyY}P52@LhA#Bv^iC(vIy%4>vgIOmdgw<9Jf|qno|?PvnDV+xC3y+q~kg(37*d
zOLvy=7>Ue%D#Nsgcc=QxqqQ?Xgh%bYl050N!=Cy#zayJWk1cqcrJN$6bLQ0K!rhk2
zeU+x?I}h&bd3pGe^2T59AH=F3`t)N;mKFPv%9`lKTlzNLc*ULbT~KIwl5>@8T5og0
z)VZlA&THRJ54*I^^lWL#d6^pX`7;;(JAd`=+V^6*Ya}Dr2`=2d&2W-=&Yc<T&r;dt
z#ctHNZ@IKpJFWfrE}{EJb3U%Uy09yAapSK;*BL5rcRp=4Gd#}_zP2Lypw!myoo~Oc
zjeaD0_6zUto4H>l9?fZG)>7O(^W@2MZ;W;xE9=WXzSb=&=H2oj{aD`f{kQHP<NllW
z-s^+^5sNpbFJ?w$mX|fXI;|_ms4G6PQk-42+l$fimYeo7|BiZwe;PHud$#Srwq^I<
zS|Mhe?^V^^r*A8S^PS}J<-MXHGbO`YuE;I>UA@4M>xZST%~YHE=syGR?N?!It(NY6
z#ayFY^QXn6F64rBse;<Y6DLI*Kk^@$FIW@3-hXLD{;~N<847Y~9UV<378cgIDSeOi
zCvg8<E|X;U^zxjwsXM%EXa3w-{99SQZ4d9_is^12&mQYe(mm~3`Y2N`FJ&ULOyz2u
zm365S%0>cz5}r%0pKlZTvET8-vWYr!HoT8Aa^CHkuk2}b|F{NYq*~~X&J>3w6E}!y
z9cKKoetn&J4d0c2N;fjT)eG*CRqt8ydEbR&k6h;_PQ5O@D3bqHkv~@mr?p^2oWS2%
zcD5DC2g5xdWb3LQ+Le9B?DW~pxlem~gt^x(5=xYsBe3GYe}<Bzy`o`eTh8eGzH{X7
zto<4D+oPV}TJ%A8+QM%;9tLdN^(yAP?3A^WHgRVkmYLYeE^YI6P9n#%eJ?)5zh!^a
z>z5tR`{O@D%*7tV%14%4Uhm!HFfa0!-GLA*Pc^Tm?LwLox@Rl@GqlyGu9v<4B7B>@
z<a%AbKPN6;$n?8(u%xfyZNxeu4si>KV8x!v-`lHZsUP-lF1xjMed8bNhimJu{ZuN<
zU6OS#cTMmjrZe9jxtgt+IM3VBSb^p1x~x8-OZTszS#jv~j8}WK7uKCFs#tV9;)Ceh
zbFC}(ys|s@^bO0K!X36t7H6w05apY1uG@A}ZEyea{NEurUtE4Yk7L7!b=x2A*k4xS
zdE{2edTHT*>(4|k*m>}PWT$@^%NKiwn)naqZ?`|(T5JE1cW=wClI>i^i7L}BMK=@~
zcP!sF<@lV$H0L=5yfw|)AC(_{Z~T*5xuWjkuGV|AS2)gzU9<T{ySjAjI-cN&lRX70
zPVQSxo2Tx4bb6}G)LA=!XFlG2zDex+v|01JbZdOo)+mHZEt{vmHt3=(TjGv+S9>&+
z5<gAzVc>g{()DdE)A`4Gt3O<K{@8y|*V*Z#?3xLZZ`W<zJu|U-OPWs4uHH$N313++
z-JLLj&tm<FEB_gqCjD6daN5Ge^oRF3)Nft7X=r<N%k^SkW&K}IcQ;0;Jt$}VmbB-I
zflPS$`ns$8Woq&tuGK$s&+hX2FA>~3TMjEPXxujc-j-=eYApf<?+-lZZN6^aGH;#7
z^|>bfm+q#0UAs>{=Joz9OQPC(nd4519^E$C^xR_QeRh!#cU*QU;^;VeS4DLSQ%Yc*
z=ZD*m+7ImJb&s0-Fuf!E=qIOzYr{jQNl)1{*`ng9nW4KOpMP{m?3KO;AAjCoY5&&z
zW4y<-#}B`E1c&w&_2+$`es<N;9T6W^N!<-uVSo79#@ah#Z{z3H3;gl_ol+zDG3dwg
zW9HL;y_x>e=w$Z7TdqZqEKdGs=<lA|b2j(nPtS>SJ*`7ZtuG(6%&e_@%y~6d@UP<!
z^?)DEkK*OiAE~$He$nopYxRtIZKk<c@FB&YDZlk+XX(D5u>I6YnGIiK-t#cpl`p+r
z!@uw29I5#Bnp(9jB`>G0|5EGvaEG>#kbSx7VZDXSo9l(W4XhnF&t?B?{o(qbfz|Vx
zoy3m?C)d6(uR6G8MrX<Izp3ktg%<{`Ew>SjKd6u-p*7ttuqoV9?()arf83=Xiyyho
z&0h4w{b78QZtA6HeUEPadd2zmu9sTtk%=dIi*o<06j-%s+fRc70(_eP8B(t8-_<Vl
zA$l+W3+G4A7Ov}V-Sx5j;0YV|MYm#)7H6)0x#4z}RqOVfw@bo>oGY$vzkPUx^;({{
z^L%q^0<P-j?}_KUQl}})AHRE>xM60Yjrg=rybIXP%<p+Wo<GN3>(Bio{{Bz2AJ_j8
zS^Vw8kHe4MKHBa5$Q<<HjJVlr!OJF7wr|{0d?K^VV#getnLj_<Sx7s5@^6U!cWwSw
zgWbOF@jtp(zY0`VG<c;i`gP96<2_5J?drO7=;N-2H47cN4^60CyYfk>)c09Co6cxz
z=GEs-ynoOAVXU_IrG0V-Kg#`7Vh#-0s8qRR?&s(mvDQu-EmgmnoC*JZwjq1@rS~>&
zcH(!`=C9yyz9rUO@Um!DkLD83oKKIOLgL&Db4`5WpJdEfR<!U+)7C$A+y978|8{5N
z4{!N{_3i%*<{z^1pK;lx#(K%EXd7?knX*bdcJyT|Ztb*i`8h>KS%ZOJ=fZ!6{Pnlz
zdtSbye`Ic4$rO+EVhc88DK>vQddXYN<L&J^VL~Tg-Fy>$)OD@o->I2$h8O<GfBTz!
z<epLg@q+HsX@{PBZU1*}(#r`?j@w>6@;Tb>=`CeLk>GQoZrW${|1)I1uIH&ZbS|F%
zht+?EL*Z2&zh#1aGkUYF=bZ4|<vQz}<rU^mzGIJBHY&(J?LHL$AxOS6jwRMU@Wb~u
zleOkYwuKelj>|HecInpI53?Dc&pUL=b<^i_7i>NX?RcUYs>9z{@%-EVzsu^hvV`Uf
z{5Tx2V{^{C&W((BjB2);9gWX8&w6D}vdYBBpwn9SJ{hm>=nA{@_vhb@_SyZ+cU)$j
z@7@!<?A1PnErlER9NBjzsk_`jWg|zJ$L00YO%zg|Sbbg3@x$=9<B#;mp-Va+aIbi?
zRcOaN&6t%pcRw?V+K^h<SF|SNclhV-b??M4z1nqeo>JzW-LbcrX5V@K{*<gr+4Ff;
zpJU{fugm%-btO*igV@IE{M9!!4Q&ectlhng=hK#4vHI@hsmiM+U(dR!YkBOq#~QOt
z4ZE<tmw##e*#Dn_<=Efpb-J-<A1goHX`}v#yZ61??g!lym)!CB^t@)$t;DxW(sex5
zl#2Xq=KKrz<Nu$bN%Li3MdMdp>qpC0om$vswsUd!?uO+*l;>H`aGGR)<M{UV#vj)I
z<BI(4R>Ak~o_yB?*=nC&v)OY^FTXwI$XIhiMO&oNtz6*MaU0E}<#y)(8JhM~xYb%E
zo6TM`x#+BnQ(<P(f{9HB-=(|!N|<EbxAmmcKCAAh&DN_E3rcH$Du1s&DF4BizcFh5
zAHh|(ADn-4e(lNs44kghdrIzBhkuOQot7)~>{r4x@kh59wN8t6-B#G%&lk~h@2tw~
zIX~17pZ}r!ZtlYyOaC*pwQSsY?MrdiCdbtomt%AG%#7IR()CZ{o<c)jq)?>exjTBy
z^DoE$P<3xfySP6kp1a2L?~<jBCG{O<%E7xn%<o7^-*xG2vBKt*KGs>1i+4)vaoy>7
z)~UjEN<u`|{7C$*$NxD0elQQ19=Y}6R(n3r#W8QQtE;C^_Sz9MHQ03O(xXQgx}8WB
ziav7lptZ-*suJU<Z{PBZn+2UFPn&h)&*dMP{~34$f1CYiGnzi@TF)!qB~tdC*B-q(
z`F_2un54qwV9&{CgFhYF;1lv*F*%RxU(b(f|BtEvX68Tcm#nBiyiaA5+nkrDb64={
z2e)y=pT5t#XMgVY!nyZS(%#)KyQ4LsFn-E^2HE-t%l<L_=zWyy@zPGV|7e-N#-vl1
z12-B*A61f{c=(`6$3geIx><XRB*G8WY5ZNgPdiIaB{%xeF1e`>tzVXHKD(@T5%=^I
zNrz9jZIpulXsPtM9%GD2+dfThYiL>V?}(#6=U++hF^#_&{6KGWasILzkB`e6w{owj
zyHl$A+vOJ1O6w~pO0}!s+FGwxm@1?BV!7zuKdygQ{Ly@5&)jLloBQGYv3WvQ6{loz
zu83W_ch1HKYZfls(f91)r=m4$-kwx=%d~%5K700mh7UpadnR|(NuPaWy;AT@ug#fl
z98JOB_g(nUkbZzAnR7zrp;_;@-2b7L|3`%T(eGEykFL$HXI-LvZr*d>S>7+!$+=li
z7j(~g`mG_lBq+~@_xYq%PkZ(2;;%2f>Mp!_+y3ik{?7by`#%G#`rirqTQc^9f6PBN
zYkyPeTn^7<x!H@d1bquG9^QVsB5~uiN5>v%iqt)^-7={)#z_6{`g8HJ{}~P*2>U1d
zVcPD8{Y_E4-+R}qTbKMzKbpBLvtM@iqBddIq#kd@(`(kIN^i8540T98Tm!l%LGC}p
zq54YxwypU+*X)F@yn7tT*I%2ia3w`0J<GXjTCkb)dx^z$JI+<EzhvL|pW%bU`$l`N
zl7of69cnD?MfAIl?Z3qwRk65IWUAgQzqL<}3LLlSDo^Ztdo-KJOo;1i?4h8^RrT?e
zf8NzN|7U1gT7S@`K7021H<G2+Zxa`6&o*s7RAo7J?Y@`nZ?6^F-Vx$SG&?I`^ORFk
zUVT^Hy}YMScl|geF=xW3A14fKKOcO4ZU2ShL-!f&)AMhh6hA1>T@$+Ehn1jEYg^iH
zw<&Kd967Em*wL}+t0wOe9X3C!@T=GMng8&bwsFA~<vFa(XJVaV*B`$pzeh%H(WYsI
zZOeWpdPdkz^~|gPf9=o1kKu1^e@E8@U&{O9-(@efCws-=>KV(7UWb<n>}tMP(><eG
zyWD}pmgBhSqp14k#h15c=9^gR+<M`@E8foY*^WFbgWi3KFL!@knKu8;whxg%Hr+b@
zX7+aZZ86-->UO3EiU-f*Ozii%bSc<(N8j5$vPIV}=CZiw^B5lA(Z^6MuDo7hPWZAZ
zO6x^x&97w_-8?ztS6cI;Jxlj*&eL6&HgV~!2pt#0ney+=XPVXJJv}UDdh5*eDvijs
zrrN!ZZ!b0-ws~?~=o|M_{s~o2{VHF^?7g;gwsy3=P-ekwjjB8GUXxgl-_!my|Ji;=
z&-B%|JWIaSab6L-r`9_^cj^{Zh6l-KINbN~6~AumIuv?+h1FE)y{G3%edL+PbtShZ
z{6WG#sp|<lD&M}}k}dqq*`(op$;`KZ_8Yv*J>PKO(30iJU&a-6*FcM4Zl(OPTl}&3
zSk=-gC%7H%Del-BZu8-wDxcvC4)z^3;iu+le&p}E?&NFrae3Q4N%N#f6-R`O3nCxg
zb3bFfO7r`A^DVPIcg~A{Gjs9QIqT1Sn`nBB(Pr+OqM6F`XIwXp+EDfBRcY{Q>#TFr
zoj#T~mvH~ytL`^XWdD`)?Cu#CW~xs7Zfw1I+hvs{8`D*$sXUqFmwnAf`(tw02i+&r
zXZiFNW>0(`)x33v;lTuc>yLj{KbxEEzx&@=G4pSqVvkAd+q@M?XL(+r%&vW#+4l3i
zEPnoM-vwC$FK^lYxcYWMXnNBpf1`{8)^0bCMcWiU%RBkXJ?hWxjvZM`qs|MvzP|Ch
zX0?6$hF|*>Gw=MhySz{N=8xt6vCe+GGR>2VH=Ne1Jn;6of7bTpuP)q;vpM%K*~w;u
z_^KxRmg=u6wb~E7{e>o0n*L{KcsI>anYl1kBc=2>`_sqlwh}3Fd#*2x{8Mnn<i%of
zDerdYNn#GtH@^JbRerQ)@=7cJX-oWO&5SqS>v~r{<1XvY^tKAG)dG>yWfEm9DScMg
z_0>B|?uy1luPIcTB%PG2EHi&L%g48IjQnr8v%Y1QKRwm(d5&P?{pLBv_tj@TDP7-p
zPf91fPx7gX@CM!kb5iE-V)HFa{P-c~!OAIN+Yi<HKdA1%`T6nmzAxw7;$=(E1|N>%
zTVFJ7{o07A?vpvHGkzA_$xWH)w4}#;vZQNJl>Y=nd5*ek`#0<N)+gV;<$Y9s)Ayq%
z7XG{U;mt>Hv6V|BC+Dun{GOGvabL@>lN;501Wuft@zhiK&O_(@*X%c?O<hrU(O&+K
z?Sq?N=I+Y5?(se0T;MI1gm-Lr8;cA$S$@lDzpVeEH~oNq-+a;i50(VHs^{IqyY|Pn
z>qqR^KHMqXHaoerIFset<oE-Mlb$MNXUt%h7F1cq_V$chaeU;Vm|*$!Htc47=3h2G
zORq8SXp>Bex_kTluRDLNcXWpf+Z3D3nxk6rd1;>v^OanW>+5V^%lrR3+4uVFg|w}k
zcQUm13Y_`3gC}Ip<jcyrb;~Nk|8dOz&%mm(|Kk0ladIE>rY}D<TRB6|v|6!PQvIo#
z#GX$ptah?&TCcUHV*Pp>*8dD_-~L^@r*&cWKXL!wJ+=>iE+|&oyC^O@bxM!kNd>E<
zR`wMM4(l&!r%BX553>uK$F=;Hy+GoQE4jIMVs7i+`l?@Sl$&_vk%@!*1LH4i&zkA;
zZTX<yc2zg;spN!+Lp?_9*4>I0a!am%DgSW#AMcG1{Vng^)_y$xSnBn+ZI{>#UX;lv
zS91PitDfC`lY!yko()S%+4lYXk^P^6Wz&C#rqn;Wd+iiIrXRlfCzI>xp1nntrP&OO
zKfR;(DaJHTe5NMSGx^@0T{E|;et1>t%=MpP#y<<a)cMYrm*++%&Eq(EU-#-ErVyS_
z-4Zf#hhN7YKlq=4sbc!K&TEMu&cC_4Fe^^;%3Y67HipY*Up(++Pe+?YyW_q{LAOdv
z)4#WWlz%J#+rLM9Rd4=-{zL0oZ=4kISox%)?68_~o8aFyj%pVVFh9M;Zu#K)l3TBL
zv3Kgu_xdsO;adB{xk)xBl4jiuyUQ|DI$`&gjKveo?igyV+3|C#<MT<&3chUNYxkPF
zYyazwe_H?8{%2^itv~2#lb^3}ZJ$g(UuL$}&&@v;{bDJYd!}q#)3?gV;<>A(dQzVE
z)%)9lZb;g{pKA+m)a@hx8Mde&byO*n-y>z;s`L1A;;xiCr#9V*=Txl`{JzMeTcG&3
z=<nU@U(9;9{b6>su9WNcE|xR-T%8Y6A7`6ng`bUMKedU;UF+uS{#6wdDs<I%`I-kB
zoRw_N*ZH7e<h9%Bq=@HpEir}n38C!w60iKcy76o3yEj2AMXqc8+gENsrC;{Wk7|#P
z+cq!CnAN-cR%CpPbKbE>n$oA-wdEoN&)rFRkn(I_&By$%5?lGBa%r1#pY}fD>Q(Gn
zVCz?S;7|6m_@3`(;q@YWoK272{m*b~`_q#zBJP}=zmDHIPPcSbrkSwBwG@kE4;D<a
zcs-}&ZG6vZLA~^px=oujK7F>7Pe1*U`Qc$NJ(g>Qf`7D(Y^xIbw6Bz$@BC%9u4Z@j
z>XJ%>i91tW1N$HHHqQ62`g3&Gb=@UXbd(i$)pM%LZjKdi`f@k^SmEv;S(ly%_1i`N
zovN}sW^&`iJeAWz25jbXhdQpVyfHJS<oh$b?;rPkeigrS=Wpxd@_)8eCfg+cUh?r@
z#k!)`$LEP$S{rqY?YH+Ec^w6obCxG9SbjIg96$X2ruw%zAD=!cvlIVO_~`b@`PRu&
zVvBQBxUc72FNi+c=WhM+W&8qr?)nFl_HX0wNbU~!nBQJ<p5;Ab$49x<xuWNeS=^P~
zyK-0hFJtw>IUi#~?kUy1QTX@l%+qNPGwbD+?wRfVkN-hkzU|+C3x2N=eDv9{fiunG
zopIx@@IC*|$mxA#Z?e<4ee<l@%2hV|_xc+9epcTxv5i4V;^2h!I~d(-uD|1N_|NcQ
z%6z6e+1m%#|Ed3&w)T;#$M@5Jdo!+CS;_RC)P0t=^VHvKii>2P_dKXu^hfiD{fFrf
zj<=^@tP^^{{ouFvgB6>7nzB7r<0g5SN1s*R@nF6|^Kq8zOWPh+U48U#qqg4u565}y
zbPgqMIdpvH`bmFE?J|E9{&tS9nC-OVN8rcJ2hF8;=iZ;5Gi}%6<Em%REY4>6wDwl+
zOli-1rw%Lk?fA~C{;+p?YmIg3vLBYYf3#Ql8g=N^II7IrBj~K~Q!zp=;#rq*Pt&;{
z-`AawYWrGaUQtucHn(=kt*LXkr6uzp??^Cy&K=@fGSOe&>|0F1v3(Vn>m+LwKd$e2
z`%k?_ZgR+$D@i3*En?fv?Qc%s^Tf4!`El*s0={zX;|hn`SnGnnMY@H$v-{sjyf$z7
zk!LfP`lN<Ot$(`k#jSZ;ALldu$hsZ<ao$$5B^&OT_~$>A)+~(>XYO3O-J|(HOG?T?
zMZcmaMHaElJ|D`v^>zQ0f4Fq*>l$^>N3*oKZ%<x+!dcWVck983D{C6WB5q1s2KTw9
z{PFzppF#c2;}!LX!asJ$T=*mVP&1AD?@B2SrR{eo31u#tI5%SM?wT8y=Rf{>dBey0
zgXeGQ2REO(nEuiBi4bSWPxb7ECnvaPcT4Xz-LTQ_{ywz=$HR{;*2j99FMB>~!KK~q
zsmn6{Gsu`MpL8~_#QL|fNZ)rc!LvL^rxbHuPW#Nflf8F4-*OfKi#4Zn!w<=s>~6Z7
zV|rqb>vGqp&+grOb?Ai>@5c9=Cg}KeRT(?Ia5E^3JGPJSqtNk;S-wyA&C5+bx#e2)
zTe;+(P5oPr9g8@T#P(8Yc7svz<iLu@M{m`)ZTb4)`_Z$0fypb}I#pUc_2zj#KPj%l
z(I!2QCx_4aL074KFuybN(cVY1qYwNtJvKY(>;|>@^%~o*EdE(kwz2YIj?A2ioXmZD
zE35B!{1d!f<C*_(ea9x-tKa87Up}wyxU`+kR<Z4Yp5n72c=WCnEnbzv^)}^4<+9_8
z@47zF)e$Qcc9z@lIW|IT<;jBBBZsx>0#s62nB3RKs>gneYhD=lI$lui(w1m#ch<>1
zw^tl`<rfy(Ct~zevQpT6tEWoIS+(DNdcWD0<xKXR{7-PM(pCMQvpU|ZY|l*0vH6)6
zl5}TVU9q&rE63Ln*Z(t!*pxmz&li;yr+4Me7LFOG`SO(e-d(eiZLGU4)Y9WQ|L)Vr
zY3$4s3No(6bJf(Y)$gg{U;irSyU~*A%6=0((~DMkzsXMf?4tA2-o%&l_3mZbWk+hf
zH(tN(vh%~#t?Op4@lxvhbnmOmJdFas{0BQjYUJ+4&tfYQ-{HG{%f65Ioeys9Z<Euw
zB2v+Q(CY5hTQSE@%c!OA+aAeyCNCxTvs=6Rzo`A&y?(wwZqHh$_<Gv(usVDGrK+2_
zZ?1p)yzA8sEwj4||5ZARsmyrNT4X%&SoXWK-hLm<I~MjIjAQ?3dam2NeVS{=md?b+
z+<Rfxe_neAI2y^!-_NNqDe%fw>-{`GF1uXNd6#-I>7(_bhM0S|@3<!$B;0i7U8tmf
zr+tDtPxS5OAzHV?k{*`t{Biiv`<w5>t}jep^y5`-*sUU)6K@ah3YuZPts_#|_w<AX
zD-Qk=j4OOF|Hi+or3=$c-sXpH+c$IVnU}wR>uj|6yfBExg^ycAYw?dwm46pq&D|$;
zRQ}tt<+)<h*S<FU(Gzo2blE~FZP^<Fy}uh7>Q6hrt6a}?ttN3rjopqNXaBxioGrup
zpvk*r`%a_O4f``$)VQAHrG!hKRBy1Z+ia;9G1E&kFZcuho9YkK9b0QGAG|(cve(^b
z>X~WVF1prE+HbsO!p8egpL}vY7QS3o`{JI^hq=~H7fW7jiD$c$eSLc2$#2^(t~qr~
zM9$n<`@~U?#~Hfk>hh+3{I~jd%8!R1v+nb~ecUH0lrlNs>}g|%qD?x@r+bW^H}&=;
zJoy~8OaE>5$L@e>&m*pEUA`sz<>Q-~GFdNqybtTJU9&i$AXKPrppvqE$*ESi^@Y{0
zo2~4H|DB0i-leN@&4xQ&zJ34JMX7z#8$Q%*+{r9fED(5c^XJMej+Ya!KbkL6f6%PX
z;Hc@>%ico1MwM;3M)$HKms_6TmHXRwx8PvIacTFczZxIK-}--8ck7ld`=fa?3)kIh
zs9C+&!%g|#ot>@Dl_&e(%kDhRE?WAZA-A8sBHeNOhwq1fF4;KkipR&Tr@X7CC+<t_
zIa{n`ck!Z=*AoVI$FA%ARv&)^&h<~byQD6<#_~TyQ;2=f*Nyz$s`F~2IQCt(5x(i4
zTaui{Fl}1U?kP+nQ&fuQSN#?KQT?BR<yHH`$gO)Xn*0^gt~1}VB+75;#<s})RVoU?
zSA&-^KJQ<$<^FB4dYO#)o9h0XuD(kNntW^TK@Wqfb#K?rRBqbjwRld-H5q%^1wV3`
zUkiC>KlrWvWSZ)hT@#($g5Uq0!uc#@qPyaR2}TvN+Er6mpLSQaSfN_6xb5TfH=iHO
z@c*M^r_RrEFaMq1vfr*ta+RmvO5822X!&c~qXNhGAMYR8-!M=3!}QLubDxh!`AE&(
zm^Mked&72xITQGAF8(aIq3-vJy9ZvMty<q_Q~Ic0Bt}x_Pxi{!)2?$wX;<%fyla9X
z!!fapriR6H=kL1P=c&HFy(0a=_apN=;#8&Ldre;7K3E_XVjj@BP};3r_d-xW<GE|v
zcNqM=TPjN@E9KrgvAc9l{P|>-ThXs}J$-U;;m)SxC!;$aJ6H<K>!qDfS{L2tS{b(R
zL%;j=1$Ihe+x6Qj0>AFmQ=KQd<Ahw*nwBQ^Q_*rgu60c>;u+K~vqU{_-{ZI}`p64W
zlb4gvY@U0l&-aYQH1qS4XBJfPZG9&%^kyGN<}K5GQy=%U$NgAz;CAi8_d)lf&)VHe
zi=P?c`fpO-j{gkN8#DsHw>qzxEVbb2qC0=YKI%>W=zn<oS{bXxK7pILy{4-SB#!@@
zD!sWUS9i;|*CBhPAMx5BzNgcao9sPH^PRc-rb-FNlCzT>ZcLiD!?xVuvFLAp{ljyG
z>{+J%$YjdAHeG1Rwe8z4pDoRsaDu_`&~_D{joTQdJ#L<4__}`f`+rg~D&N0b&A#ES
zyCCwhRLrE<^LFKWPr5?++Ix7H?k(<m8Cuzs>g9P)UH8H7_r25EE+5|2wmf;sOYxl0
zX{=o;9gI7@Z=c`0asJ~lRZmG~b=m1%{7rk3A6ZYbiC+7k;ZW$_q|ds~qBEXoeqxvw
z&i&-n-1cb;3@x9l?OA<D>=#Sam--LuOMYLrU0r#7o6{$Yl#G)KKet_WIqEIfztgX3
zetf{*YxNnOrMsi^`CiVlid=gn=s0uq@xnq$-l=7iD%sC9JlATLP+^Yn6TkDa`}g^z
zD_`TgrF;U9Kgef2T)b>a#$@-B3*0l!nbrwOdiGwI-7fZgg2j^Az8AjO^JVVi{iwH@
z|M0h~Pja2Ob?rEE)bHH5W42MF@|oj-wDWOOPRBAwU9E{%oBb$X%53(!-FctX3uTv_
zTOgp^RkYEJJuvT1=>gl?-?1OUyL1;?rOkhEI$t>R`h{j=W7l$J19pYmcO<UoS(y~I
z*-j~cmc26b*2#JC3v0CZZU69Wd2Y3doyA^@-z>QtTlsk!*do<bA4%Fg|FJ{jRrdT3
z%MbappMGS0Um&ZFXZ}H}XPwMTFK3C>Cx`SUwkvt;FE&bL)Z0^Hy}_;4Jn*8aMveZm
z3iX3kf7dsyd7L)y-mP;Cs`XpyJ{<aX-RJC9bD?A(1C@8{jQ%qmjhf&7$Fef_qZH?#
z$dw2FdEL%DX%IcTMr+|T>E&D=2UYz-7|d2KTk>7s+xV289sld=;ip$*?$g?E-Q?#I
z)-xA7xZPeI{%&;WtaQTT2IHQObHXQ8G(R+NUH`{J_n%&5e3b6d6HT_xZ}bag{;X2V
z6P@S6@>sf^d2-`X=ZE)2qq6Ur?Yr_%w4&_%;Y$v3x2i2?Mb|EK@JMRd<Es|3;Ydn@
z*%Q9KRT=V9?@Dj9ZGF_CUo!K~)+=R2-pfyNO(^J=yAo;m>9Oj;la`M~muN@374OP>
z|4-ul$NO)JANaScmZp5Po0zENR(3mE`7N);ImgdRipPDl6%W|odmV3D<NcqZ#qK|Y
zL$}YyE63K?7rfa%&1}1GIiumm*k||tE*8?(yRe+~<J>(w^Fx1ZeCW?=x8m$0Q>nRM
zdY0Vtwzhf4)wJNA=N6-NcNmNoPnB5TsQ4q|dXe4or5T$&D~c}OiD}>0qAk;}vmrEi
zPQsMLzUOO8gR)}%tTq;2l-MPEZR*2%k+b>v4<BZi=g(N&C-JoV#NA77+bz5NjEp1&
zzN>J3jjr$5FZI?`TH3=VxA2J}L)2}D<mv){>D&i8>--AaY8cO!?GmYKZ-1EU|0s8r
zg+=SUulGW38GcqNd*hV6QOoe&-pLLh>l#-@ZJ8&yb$-wW=`f93(iM+Bv*#NZOiy@G
zuI3)I-Sm1;_D_%Hnx*N{5B7KM)BpJ9<inMwGvi)enQZ*3{>9%SwiAog6WQ%+-DR5Z
z?R)Ye|FFI^x5v{xoBrLu{ID;qTyXF2gHOME1cn7fugMkO%{b|xALE}3&By=ge+XO3
zxAM_>&NT(M&rP~%wd$UVkLQb{Q!j{~I3|99Ikw>MZX5ZB(YsGxKf3wlbq|Y;zr}Aa
zR1n<BBk<GM^|+6h)5nR&vd^q+oBSj2Wx$$g?eE1Vf0%vD%D#2W*<}BZ4?k?kF4QqT
za`BGM&fndIxmJ>W#Z5vfg%{>r`4*>f*@U0}?D86i&G8-PCoQJFc@)~G+4dlDdfGzm
zMx`Q&%AG0=4JGSO+DiZ9n*C7v(RMlU4`1Ky6!ALPVV{y<aff$hMpP(!1M^0kgre-1
z_O1UJwyxXzD4*AHS%ubL6K+|*u=#n5g=RJxznf+vY`BYk+u=Ry*w_r?Qa)@I&Wn=W
zI4kRX@az8!tTiqh*pE#9qxa#=Ki(@(E0T6^*?m{Us-|^@%7$C9VokPZC#z3jI^h<>
zXS^W)pH^hHLFAvnkNc*tdGTKO{mv~-)zve)crQvO>8kFTJ>#vhvYTj?;xYc&FXME7
z<lItQTK>5EMCsS<4*eow_p<Lk^n1!#y|Ge4I)$;wYSwcb!S#O_rXLH_{c!lOxs~n5
z&ZlDHx}_{e>n`2yn``h}c#8x3eU8TxDo?HnHs{CMuQxoY>!%+3W8rVJisZ1a!!8#}
z-!cbQ|1R@<d*)l2_$KWYu67~$DJP50ZaDtwtkygamE`Rouik&_x;{(1sG`{E!rL$1
zTQy3ofAY4xeL9K%mv6@|9`hc4GZsq;_2&6r(+}56mF)e#>)67FzkhSj6uo!p$-Y@1
zowZX_IGO!<mf01wpGq<?o*YwuWcGiCoArn5^mkm@<6pk+_PvhyyuC}ezMGje+aSdB
zOk4@i0`t3ba+&X&u2ET=qM28D^m~JyXa%>+#*gcd_A-ZG`ntT!{{G9tn2wx78ak8j
z-|SS1F)KK;P=;qt&*N)0vgwc33;wb4-rp#`?VmwJ-tzdj)z8|V*=~|Obmvagnt;^{
zt(_~QzX_!9d6-^*8NbE6r{p}xORMV#Z}-}VbiPdvzqYmX^s6=d6{hMhiq|tsJ{H8*
zGx<>8)KAxs=HK%6yJ{o9CZfh8@Zs;!eep)Ta<9)#d*mr1zvZaetczZ!jz3BI*rr+(
zp22b_WVWiG%(m+P4DrVP$D`KGOwM0xe*9##>+Clhw_bU<GHOQNQ}(O_y$Kud8Xu{D
zzQn7bptaNV=i^8Ax2JzA`mnu2*!4%`s*1@+7HQn^&a|H}K~teMBV~qr$<pZe+SZd8
zSad6vAJ@Odf1rF)T;?tJ-hDSkwk@+*ykGFN>6Qfy5~h0$V+0lyZF+amQf1!$Ss${0
zsdcZKTkf;@-~Ii4g$8@wGLw7ee13Xb>cPentW{+;*LOD^h`(3=q~MWZ;MV@Dy52|a
zOnw}T+<Kom<GYmV@hSJS`c9pC_hy}^p5J1bAQ|RsN;jUb7kw@-WXJaJ_<TO)Y3GmZ
zQ@gxiuk*9hNz)d+yE(B#cboj370Qb3lN=?V2wwj@KlbDGBj?3q=UTphcHvr4k-|=E
zS;L;%nfF2iUnz6&7gSx>xySZ#-;U1Y#k1E21(f|~SQ++ncVcSsoc|1)+-kLVS!k+$
zlrcKux;o;!{w=oe-&C)g?6y^Z$kx3+`tCvFlZDku7oy#*S`?K__ZS~jOw0Yxup?xG
zD8oK;=8wM5CO?$^eQokVtJpjByYD#uXYkZ{+@^DhrOj}j!P4-ap6i$IiT>@fQ?0mn
zDSL&EOMuH;VbeeFvnD)rHvgq|AcFB^jX>q$vh}Q!o%VmYv)wALAxG-=8AC}0H4D|0
zQ}1pG>;F6PU|w~&uU6saz;eS?YjgSHe9eP)Zi~==w8cgFZ!~+^p-+sVc5&7p9&N0D
zH0yG%@7Xt>G{Sj)Z+G9kA$G$YQQHE~wa>R)5;&T<X3v>>No}`hJG>Hq*A)Fs<=bNg
zxyn`7woUsU9&Mv?X5*=&+ZIh&YIyH)_KG}<lfSM_T9hiDR$N#yjj>q&o83*_k4H8+
zU1&`{am>%(^5=%Ssb{jxuYbR;m6y^gZK1?C?dAFR#+T>x@LaDfUgmCk#5h}<g<JE^
zr_ItUxBcGY#q{=_<u9)1dt4u`=Xja5YwNnjJpU@~qP)zlC)EXP=v^+~xS}Md<WPC_
zyvo`_=KD6{+l+0G)biY3nj_be&%^Zia`U^2bzQpR$Ly3R^7WRBoI9Y=p^zSy-0JFZ
zdeU8yCwxCdi(XwnrX&=7+S{FB?wJ)kP8{HFdj9ubz0_L0xeH_N%v2X@2~~1$;CO8L
z#<}P78^gY>-3zv-ZTAkV)qkje^Yu65OEx;D_iyPxI<{VHZ@%KW{skFrVu7EYNiV;W
zd|$hbU7xWv)RSRy+xi7I>c7)p$g`GopXd2^qMqMIeqqen?dPx0b~2l_WThmNvGu*P
zHJi<hyme2q%-?0i@FV`<Exx6XvbSE|Bfm5z>yz--g$<HRB%X-$ZlA}-%^G~4dE>7x
z`<u-U+phF=uF2ZI%k=L7k4NVItn;2vUf{BiF-74M+ZVeV>%!eMe;?a8d%Nb7S<8>S
z7p<5dIz9B`_m1Ghg7<t?KHZOq@?3Jb*w7+T_v-wK>02vRPD{R=bfhW!J?LoA4<7e#
zbw6frH@V*{&u^;Fbw9IejnZr1{a5ps%+fw_M}D64Zq=Q|(lY#J7LwtA7Zup`?)mZX
zx7)wd@qAx;^&g}k{>#Me*8S$!(sv6>HcEFoga%7CnfHZFe=n$eXyQ$;XM2K=+HaSC
z8~>60pt+pPbrbb%Ter;dl$|?k-CP;HqM93eC7BAP0YBeWp5$)wd{R95pVY>^R~E0f
z^{W4&y8MVP_rpg&mOl>Ndw1IowF<r5lH}r52W7lG`YNKXajai1#AEEHdtt$e(=zEZ
ze+2&KtI@c=CtIxf!}Z6qYv1?i>Za_k<@$7T;oj}rx*4BM_q$RvdrO<{!Pq4S!Yovz
z-t14;W&ZY`;m7Sn%@60hOU?$}dn%|?vifXI*5m`BCz;HDTgPa7_+5*fmSn*7dCuR=
zhy6Df|KkcR`FQV7^@ncnWe)E)#J!mHbju-z@NA)3YsAbQ&EByls4LW7D$usLwwmqd
zEG>~m@3wvU&(QoY{enH`mb2my{!Qnb``f+7<w9F~<<woXp1m@4a6I(vT*l|E+Zt?U
zO0#F1ODeyyXa9H8exrQ*`lPKN)*p%f?y)p2TD$w9++3s9!%DiBPTY>@S=i;0eB*KR
zPu7p_|2PkRnC$qG_v!kEJ-+MJyV4qBPJIi1_3hFV-roNV!soXdFO>BOSfKD+;jx_Z
z!}~YdAN_saqx0;_mTt?nxfgpjyu9pY%Gr6#SaFtVXLIuJi;WW&JlZ)|<7E7dt0&ba
z{&jnCe~WqRKMftRC>N``)k~d?_81yzwQ{z1%#>B{FPh4;DX&{4MWE`<k9GeU9@cI?
z`uMMZ$o@;EYV%Le(zUDH%I+38X}hMdZ_cV}kB_Y{Cr|GB^WjJQZ<!j!3x6c$DSfnC
zzplpM->I2l-mhO@%+}q~C%9)xSK6!-x2GTQZE=baW%+ZU`uO4h3|(?|AJ(_7FWt{~
z|3~?8>5F}n<@T;{To`}sqP1pq=a(O)(v~i-m=)dJ9D7f2Dpsib?oIm75L~YD<v)Y+
zi@VZCJRjAw$r?ZSwl@7yZd_*3`Bf%PVWE;CM|<jmta_S`iSbz6KCp^+aZP%fuKMBK
zM#m>_i?z<Heq1(BT5cx8ug`IL^S7Gxn@qoF@_}#T!;VrBZ}qENu57xZbK|7i(agLz
z_I2AnPTsj>V)$u!!yB$Ka?(Gf4TRPE*Gt%+k+gANHC5qz@Z^avin3>I(R=^vKf?jj
z*8OYiga2RuQ`9Cea3eBGy?tHOx1;WVs&C&`F>1U%*=FzW9{$(<J9b|D+A{0?QA53{
zPkC2eisL=dcy)1GOk(}L=a)9-o5cEE5A1vFG<R9Wu}|B}gBmQ4mASP>l)VfMKWgS7
z`NvtN=$>_M_@*uCrB4`)UQYgM@o4vxH|uISx2Kq{mAZ7!SLhMvn+WmvjS+ihH$I<x
zX&<M`C)TvAU2St8Y341vGVR^b$3Z;(MF~NLCvS>0G*~~Ed@geOu5sA3Z_;nYGT*1B
z+N(_NaC%ZN5~%e~L9TcHvdT4)HJ%Tn&$?7Z2bfKIy=mj8wQF?uymh>h@<=;i(|O~9
z0zuBaLpzpy-EE~PzRQ){<(kQ9>&TqE#gh&s&P?1s>FE>a^Q?0o7yQ$o{nD>G*ZfFl
zrRf{-T}3$$m&`ulRCto3cc;Vq@6O>HU;by<y#1~7sw}hh5A)mZ3v5->_?<la(66;q
zavLXkOgg4}Sk`>Qx3jgkKV1LEvHEw(pV|*^>`X3{tZy%SUn($*BkxZj&#tETv8OiQ
zj=mY|Dzo!vq|cF+59V1MTC!-@Ts@(%U0Z*@sPnj6Q66$}jqbh^A5Nz&R&nH+?(=ct
z<R-s+6;Iy%3a!wM4-ywL*uAZloqua?_w)6q4xf==o+t7v{Eb@ge+CxN@|Et)dny|@
zf3$Bu)-5=38l&CPC9Wdt7CaTw$h+k!E^o$WUGjGQBl{nU>3>Anr0+V%e3Wms(a%q2
zP}N)i^|y!W4)zIQoQq22W>h-7^H|xFthdBc_4-G90aIPRTi)8)nJUg1d}4tnpJF!1
zmU&BrhkZ$S{xUqMUihxZ`$eyURSa3q-_GTE*q+-XCC<Jv{q7gj-%}s_XZWG~y{ATZ
z*^P?r-*)}j{cwMql<Jpbx6T~oiJH4+{f@UT*AjPot4zFF|M<@F{bf$mnN8nc{?BmG
ztp35odiJ%CuG?q)XSh}N=#%!t-?Jl2=SusfsXXCG+SK_jX1lAy(TxXBs_ihW@G*7$
zePl^V;PG>_YbIr1dj2_kZC1U=gKZIC=30C1>J^bUdK9_#`{(AV9#3D?{#>uQZ|C0y
zd8Mjt8DDtK?ysMrJ}t24^EP{3*^ZYt_@DpP`s4g#_kRW!;U9^MJr`CuKa{<HboT4a
z9{;~Hm(Ml+o{-=9^onVB2kXgue7yT-Zuz{mIDW3ZsGWV?fp~#EzKMko^=~fv>~Qhz
zXW1ua|E#W>{9Nj$T=X*_;*Nt#04LuhzKXj|zNzl*AB?V<?EBB~qd4m3J;VPDr;qJ>
zy!3Bt$^4reUM;9e`?2sN)Ajh~<ZgY2A2!~qR}^|btSqjtapqY$%Vax;j6f0N`ZwMW
z;*Y-<`f=ZT^Tj=^3-4uCsZMcJxNQ2`F?mIF^gbWE)ICKf!pkmC*1UIyGe_!Q*gl#6
z3<pC>`ENcu@gw^i&yT=|_n9(XLo7ZTnXO%Y$Fs-ybaieq|137q2^;UZ-)DFd$}d=d
zu(<xg!tz^-`a3pP@P}PYnP4+3^m+U9i0FI<-BYieQc77Syei-iH9c-89(Vax;Iip=
zi(aP}&oz}iyMOL~2L2!FU++HF+>=~eF5mgbws3jo^|Fs1P4^<zwuq}Qc9lJ2EOCKv
z$24)S!V~A*@;mp$<}S{fl{&q9{nAZ)cV}EOQGL37N11e!d#U+5wR7)xEuZJ{+~S{3
z{{9Cm?6<4;)I{01F8C90)kNAY$9YL)bYy+Xp&7@gHD##HZL2H$oL-hxyrYlp+FsCV
z>HiE(OJ11;W>&c$?S9L2qA20=n-bS;6B|#RIBD8@^0NhdLE<?MhU+;-TC20=a(z;A
zOWxI|%nCpJ*XrE6_fZ#a{W{^XZe{MO7?WL5UO&#vo-=ciiY9~Go8^|;4ZK+q73%{p
z)L5>pSbVfU`Qcr0&qD5)oA(c{j96J?F>zUk@uJ4VCNKG}JzlQ<=Xag@AFq$okL^Ca
zHu>@Vj<33P-vf(vuk2d-_Si!1-L=oet_STg;QyxR+EW%&7#H|Zau4f*wTJ!~U3shA
z9dLH<qm1nrBVCIYt0wR1x)(9+p`*IsxlIh7T8yUqzv=9sbwtPaSIob=b=v<K4tm-@
zm@}V$d3XH&ANRA(HZErizr4p<`*qK4d7ksjB6S)B?i8%PBYbb4Klr|q&wnTV5j0u;
zAiizud-=Z$Z~Qzfd#q!^!;svWrXEUjXLhRS82SnvlWeUwxHfH`;`Ig7e*0ZmUux~5
z%JR#%_3cZ&J)&pV2q|jz7_dyd@_k)mjp6F-&Z1vTad&hVCfa1?ow~pxZ$8V(*uDRe
zQLfw$)2sd(%jPaQRQmOjmHdw2`hy4SrAq!rdB^kCNL(n9HGO70L*e>!o@fcyN3rIo
z6h6cTtn+tcpY@aZ(fvPSi~n(De#}$bdbv(9@`uuu-8zL8@gCc@PrP{WOmR$H?LPNI
z6U-UK3g<8s#<Tu#KX6}gPkC<Pe+G{J_OJ4Shm&T`xOMw%l_Ep^X}9f>Twh*fJDq>H
zzh~?0AGs#)c`D{uYld~*Km2R%p)CzPDsI|2#`5oawpkuC?p1GCEWSu2RlR!g^Y;QZ
z4u4ms?wB2ze(|fb$y(*Rugs3BO!Ji4vhJCrC})~#XT*Ug5BR1&k$T@-pB267t?0dp
z%T_8s-_lsY@?b)$Q1Yj<wGSW7Z@n+HPb#ig|JXmtYg;(yUQ&&X_uad}$mYh4iEEGU
zNlLT4wa{GlzJ7qigFlfAV*c3dja5G$CAaut_w22ey5ZrM-hJ6VC-;tz(m#osr-5y0
z9UGWg9timJe=`%)pBWVX#aeylqa|yetA9?n{cZH`y8YJsZ|>yhzWZbQ&|mK5ua<qK
zN91%rJe{|t$Ek&5I@g6*M~Pc&w`q#7u{PZCtFQiJ_@9AYsp9>iI+1RV5AP3h$4Y&>
zek!EzaIE{5X)4Dad^fsTyGhb`?(W3-+agjX{;*GfxYs>s>-H-qr+=h`Gra9=-to$~
z@6VI^{)}~d^aacQU2Jom$$sXy6GP$kr0?hBqg1B_?VIRvHtF_{+xBZ;$N#YC{-%57
zkNq-vncFoEk@*W<ujvN+n{V4T*^1xD;L;hXXSzpLWM}k$Kf!SQMf#ickB7en{9U$3
zePzY@Z(dh#Jra6$G52evp4x1mc`B?EGJegzeaA^w#^8pJi@+)N`Ujjg+BTcsPSNnJ
zbaPR2w|Kp!|GL`ldj3BaSM&d*FOT`5?R#b2o{&D))?<@d4u|&nb>*gPV|!%Ay6f0s
zNtHQiJGGwfSzT>h5%TPN*zsTXH&1?K_P&(2c8^2y?#qk0R@*MgVZ6onSa*k!Rq`^U
zn_rYR<!)KeTQTcxjVn*#i8q|lr&DI<d{SpIN&M!~eX;Q{-+{8v_iui>{%yjQI_V#N
z^4+)6=IeLnZK<x*fA{6*(cQYY+!lE}-MVYSt`p0DZ$7=F`NVqf>o$UHi&sS7_|f(1
z-RTf#?L&_qygbm{HnHn=dtd6CBddiccs@6M=IUu|7n@r&cgj4aOEtdVtYbw}TOTEh
zew{MGrjT)x%S&a|Bk3C$Josh0o;<tyNB;52NA)}vbKgAOHuskM<<xDGQy$mP=2^9R
zuP1}JgPY;C-Q4{=_c9-GYsYVRHCZoo-lx#6m^m}<R5~pC!{-pnyx%9RWV@7D?;~m6
z=%f70Ze#^9@@_qP#+zl5(4J${y-pi5*#)e6(C6{R^sIDjv;V?s@2fS{qI&`|#kNbW
ziJq&M#%5i6^W3%HHm^4N%&<53?C0;Iy!>3$`!_2;X!+Jhemwei?(?S7yT#nL@7n9t
zChDx;ocP(~cf^xTJ5M!8rZ-N%(#KodUB33#*2yljM7M}9+&=T|I<;Az63zQeCxw=~
zD14sRY$Nq}kNKm$Zoj@gcDiPxUA@fv>6W)VuVs(+eAFvAX_3reJ6%<N-2=lYFRNEE
z>Zui*pXBq^sQg{Fk2mZ4_xmgf8-Gk+QmOqdo7X=!*Eq1p@PK`CiovNB?5D(DDg5AC
zv3322_21ThxZkmr`#%H2ABXAwAMCqKPA8lGn_MaKtMp&&EZdDYVqNr}_iKOh=9r}Z
zq?1qk4Zq%}XCGoRuYbI8P$qS8(>;mh!gl4YnQR6Ncw~04_Y}tDAF;mAT(SRP?gRP0
zdlH*Irni5!I2Gquxy*INOADQ{&MB3Xjy-2={8>1`@r%mcH5wYbm+gE1>ih=_-@5yU
z;%xW$3%rQB`m}A!<Yj4_bj5rei>8~EtA#w^GZdOrI7iMZU-;zXTDGrSW0emTW_?@n
zN@?nIfqV6v%3{_8$OvCkdwEh)^uUkcZ-JL<1oHNTf8c*4w*FzSdC)eGN#|av?zpVH
zEoRfwy*F;IToB|x?QF5#!9&Z=PusDcyJGjF_lJM$RtNn!x#0Ca)y)@Fn0TG8S*+91
zpT631id)`f?%vyPLp~V!3Qm5PcBRbkKSSet^Ih%jlcLu%RjiH_n|?iKdU)9^pSD|H
zpWSZD{m?OS<AuCCYb=yDY^fEimG+x=-_LW8cUj(lhKp@WKHfT|`|(VEIny4$hX-#-
zpE~idLuO8{|6})q=cO{;ejkfUoi=^xOoa-)_p<qG(p6`l{;hgw+p(I}%rc28Jx%Aj
zKRw@asZJ|1+)lAJ`Qd+tE<F#uRl0g_73UqEBX;X~%0=@9r}<_on=bZUz4W`Vrt0!%
zcJ(4R?^fDr{^(w?thIc}ok{`U)!ap=HG?-<#H#3&GdBdevGmPYuXSzxAIGH?ZTBNC
z{&6q5a8CNI*(N7_9?SD)pC3lD=j`%qJnr>%XPx06*N^u*-_`Iw)^ESAcI@Fh)_H65
zuFaY^@4~7lKhH`npY%!1T=`f*k&(mM3caNd^V{!PUw*dnN8)4cUgncCPVl$qt$psO
z&*k#L?#B~`-bDtdR-a_Hx%Oq{*Z9UMk1lWjBT}>WqyA&}zO_-g!qJzctThim@{R1h
zx>8cbd|LPu36{sq>|cJ?dw*QtQByAy<=?P1<CcfxnX(C$g&M(g%;%g{W`1SBU^DBl
z=105kM`yJU-}0#n?fGZ5w~76C>DBcUm&bI9?h9+Wm6~z4&v=WMxbnhv^AGLg`H{@J
zw7<_ZR>_v>ajbir@*1aYQ7d`pemuqz6wCE4ChswC-_)C28@DdrIcH&NS^wF;{s;HV
zJl-(j<*uOY0HaUSwkzgw#zk;EVdRowU@M-#HsSSsCUL*3Y9IXj_jt?AUKM|P&83&`
z3#Lsn+R18v^}+Vv3sQGI=-a<!mwkJU@q_zf9H##A_p_yxoRv-6)-Lb2vpjGnT7Th<
zwE~v^86pLeKTVs!c)q>j@-eIY&RhI!6}Jz5(wfs<y0cU7ZK_Xk_m1t&4R#+>?GL|<
zJ}hkZrua0!T>HVO^KXtn&}UOQWE&^z^)6wOO1Z<y?{1P(<wC-*_A4-ao*22|hq3p?
zvuCRMW~<H47Kn_B)C<Zk3+{jD{M6!o?}BgVvR~$l{s{d#NzbGs-gE1g*4&Fa3gTt2
zpMDWikSi8qGg>>9S=zmRdQJ4ASF=p#On&)c-}03wV$)oDZi&_{@qE7SO%W%<9J$9!
zOON^P-d1>yf8m+?HNHQp^6z`+CcRQ<n8~A+)>-(O=a!dKtMdA3r)qnv?b~h2KOEKZ
z`NzDW|H!T?{(BxhEG>r5&ut78X5wcMy2H2ib9vhz>5t0CKOHWud~mxmF=m7Lx@V8f
zk{nqdXEG*U(Yv&mS@h+${|p<~_tp5Wh`N2UvNk<aJ8|L8v`^C~9^zdgJ#XQR+VHid
zXB}16|C;gXO1>|D(ueEE{<2vIKdk5ekr&U?wj*=eqhlP4=d80!`)zyb)RFWbPRl$_
zWPLx+TNC_IDl>R)aL~MWVH3q}NlP227F$^y7E+twKGpJ$VB5O`&qW{Xllo!5?uYl0
zpc>te6=J*I2>mRK%39i-!h3VuPWOVk_?c0b{>%y!<DKr_|1taUB3bjp*94DTJE5%h
zO>CdJ9>dSYv&_?+=ggm_Ja0+g9nnSeHd?*hsh%nRhgZL~#(&-Hx8`13FMf?RE4Z%U
zXku>M9>hLBYhz`Q%)7$|30!}*cU;N0v$<C>i(6JdX0uiD8Ah@EzY|Tj<Q%MXusJ$)
z+jFgh6_P5#T_>*8lxB;!3fXtI>DnC+4(sx;%U+@&)3b$3$fog+&*C}hYcpQhbFPiD
ze;dyc_lnt9VEfItYWpH{Lq9C_+V|)|a!=|3c7+t?n3c+_7U#y!vG4t3{@`r((SnNd
z$N4>Z7uU>l*}ms$>ybc>2~77>_ubfN@Yp&m$jGWN?kxYCyDKv0$(Y~gHx;>}x7bqL
z>aarR#Xcv=<deM}2l+St;_0h+Tx0o=zo%--e})g;S=ZPuNiIr{{BrZ{R$aSb3HIc}
z1?HU|zZ;Humzkb^{hxvF-9NqiC&G_@U%mSF+m74EHMh@GoV&n#=_!VoiQlK0e0?st
zR%ywX9do|z|HFK>RG#Vhf(o(6NA63!dsosLX?NVfdv^ARN3QZFMmL(34itad+^WTH
zUHv1xwPbzcJgIBS*K8zLXKfG5otj-SPkMEE(GDT)4Z^&Ow|!!;H?ZN_{FuL4UaE#O
zGk<MG)hXX3iNzt)jsN!j@-$+$F|-uiweg?qsU!9LjuB$trF`4EIe#=)%;VqrQ9zn!
zk*;-cd54fgg2<MxJ?26w$rD3Qi<X>8nfKy_X}#<puN@ct+qUX+XI{6`TjeD>=V*D}
zpSjC2^8V}$`N9<@+}H3}^gz~s2GM_@ZW+tAU+Eon=S!C^x^<SVzf`hKU~%iTlgB4T
z)C*ciOFRi*@IyQF!XMt%S&NVUQ@&CYnljC!q&xG=vh7!F{=SKndnfMkR7f+_y-;f1
zrHDBnKZ_r!@4dzPpP~1S$$tikKN_+8vF*8cr`|m@e~U(MOS5^wj4RFCC%ik*+&t&O
zRjcr_ZA(qAz4>A<Tygr*z3GcOOaC+Q$NX4!K`;GN?xU#&J6Lb&SnoV1oh8%wCsr$#
z`RG60>wB!zSKPRD>*kBeOxr%3($ihsJ*mu{W%e9V#fIPuC8r)-KU}{>{;l)ltMguY
z`%Cfa-r)#47~*$Prl{sAw?*Nka^dq5%o6tVqmCcl-}!4_duIOX*X!56EbzEoJNHTT
z>x$S;zJuzipS&5{K243jw_Edp%%dk?ET4Bgz3{JL&DXz)V%BG!{kLr1(dN!yaUh0y
z>$c-h^%&(fe}4Zwk5Sb5sJ+l0`3KpIt4`Y9zwy@X+4iQ2uv<=!KSQNFm-X}rx2E24
zW7Gbu{ZPKK&gf6bhc~~jAC5@a+Vs;f+xF>~>17vZ91OoH&3k}}LxYd;Vdv3|h=1qg
zx2Rs*S!jN2_Uhf0COdd0zS>p#c6Zbst)dev4p}#Z*5$UD$xcXb_Gb6BJ+ri9_NC*O
z@2URX{6|%M&OY%EYv(QGIXm}c&Wj(<^JmK~Qf56bU$Uvxa=pmM_ivXz+#B~dJbv5$
z3+W*dlXR_~%FfXEXI-zkw#fhYav3&-@Ch&OZ{B`re#i7<vi!$3#oRq0nxCt;R4A*k
z)6!9Q%Z1x94zK4iD?dr-`}*DfQ2mYmhkxI<s{M{{d$P}vjsM#eW6fK2K^yb=I3G9c
zl(cD#s+JPCB9(j3{ZR0~oB2zQoL-bEoVER3h4{H?i}NK|b)7X+znp5S{8bg-Xp{Tf
z`;XhkD|zos?rI+l6J`~@Z@Q=KQbF_SMC<9jCt2Pm?YkrOoBjCw4c9vM$+v#-KJwwn
zMBa`Ix7elI%2prkRDCS#toVKX)TNj9RDTdTT3!1n|E(!slsC6zkl9pDX{M$B?*5Qu
z^|lOt?Yqmj?rrw7RPK9czRczS$NBPO^3hvOKbAkT@1A^QSLzYf2fxE-%DiEe<}u=|
zS;ObfwWjzApY{bC``@yE)U3|#>;Gtc@YlJC#k#i+^IR{REbX}@O)h@=ifGS5{&R(`
zlU%+B#>5}m|3lOM(Ej#&ieh!LA5yPPUvpRQFi%|4JH4OPZM_$wRaRB<Z4`3Up0Ky>
z`o_OI*GsPbT3dYdmQC2Mj=;j~N1n>tcX!I$TdA(BNYg6(G?71Ma?I9wiqYP(8v<_5
zO|jop-uB0Kjprj-wcl>rTIHW@zN$Mppik}b)5rx%9ugBL-JHNs5$CYp<73^#5C2|!
zZ|DyG(0N^7rE}KDlGXX!52rjxXKpNc&=<P6!|=G))=&G7#ov<umeTamG+!`dyFgZv
zMe+K~eQ9&Hvu8+O`*wD!YV309_zK(OOnVN;{AXxt`H?4`?fN5h_1?K>TX!kn>9t+|
z=j`J28JBNQ)Y?~>e&f`U$)B3Lo<3P^y2vWj<7@hjdqO|7ANb2vgk{=EX1&eXc;?x|
zr)9g^E@d2=oOdDC$XAf7SVi^9N=pXesBhEWfB5(N%|GLhZgY|^Uq82X-mzB+XSF8q
zxSfmNA;A=~<dfp>B`MGLtJ!4!j;ksCIAO=dvv=E;%N#b+z4GXbhvBD*d1j|~`r9P7
zWj~GeKC<c6<X-cm;n%;dV!X@j^YNHl-J8JJpObi!74mK|d|UhSf!f!+W5P#Pzo<L&
z<NddzKO7%OywlG$`RjH#U}yRS(`zNi>J6T&ikWr(usnCq+N|o&?RE7BUAF$MkDBJ+
zF18^vXXTUW6=^$+*d%kme^}YdX1Fz_r}@O)dD@Tcc`E9@2lT~SA3S9JEMw0>=G~l<
zMVxjq_jlxcJyTuRw(Igk+o-3xi+?m{i>~otT70@t#YpL^bkg?7z>W8-n*3QBV+{^C
zS(&fw*%-91O})=P)4n&(WJ9+0!R7mAXZ&Z-G4R&5iF{n+bagR@=uYb?>lfTTTk&*#
zi%sN5tM_lC+`rvh<iK@^v*)9>+>-sLF6y}}%(Kw#`py3ENImzK>gAlt<?G^BYUk;#
z`Lnxj=4lg8vpWwy1r)IRZT+J3??Tl37KL4xb?ao0bHyy$ve^6f#-%;7n|`j{qR23D
zXVXJ}pKI&y{!soUb1w7Lr}XDeH9SAoOXpqt(!KlHXY(~H_U9<~O|oe}8&EB9)IB(6
z?)QWL8ARQc_ikN!cFkQb<-dy@V&?8%q_QHW`A@R^+PWE0byqLM+){q^$va(Ul4f;j
z#e22eJ&(_B=juLr;@;7{=c7LLciL}pnWwUOvd5)8HnZ05>EQOSRhau}Pw%!<E?re}
zD)9?V_uBYIXA5ht_+oGP$1(ZuOpWe{;F^c~D;Zr{83TLwMNjg#xFh(zIy9nAEqj);
z-u#ErGfi%{{FAOu)ag3BEiZJc$8nh^i)VYgk8ax@r?RvBx83#MYYS7kI`}yLGt6H&
zq3Z8Vi{~rW+5KmD_-`#o#<OX+Ua>07zbAQfZ`lDhH_H?EviIL|UGk*IFaAiqc%4nf
z_Cw)y+#mI}+Mb(OD`8&XtM}RNlEGv*mpS^et4{5C@GHDy^-HslI>x7Ur|i_Z7ihNe
z#ExV9Gk3DfUTJ>W_4WLwAD(54WAEHP)pabT%`uBZr7wB1-r{YcQ{+!=EXn3xx_#bt
z=WXWSP8@R7I+0R#;*DPH)Q02MDUUDDx@72?(KTiEozHWP9ysgYtT9WR8I!9sd#O$F
z_ow%zi|-h`urA44n!eJvYP+1`<TvY#UaePp%#!d>K;o0*33kc#4wdgzukx;Wv8(pp
z1OM3t^YS>(pXORKQK;gC-qx&7=fgc7{jT{OH?7oVo5wVU-#4^YJW5Yba^R9J7jBh#
zH228FC*iYFq(T>5&3~_!;*i3WDRfF{@tmI>5pzmUD$81|T|J+#;!<h$?z;>xC!7~L
zz31S!NcHZt&`BSr-do34B%QA?r~EJb-#Pn}*LTQS|LE3Rx%P*dFQ>`vj>q$2^TaRq
z=x*^?*Ik;cInluJ?;U+<!L5Bo+P@@z82(m$HMwFI>yOhbZ&l28nUX8yyv#ehZgPT=
zLRs(HB|Sa=J|_0dB>Gi+`dB$d;U~XSpIF(If6;aP70d_A%_mk&J}NeA-TLMC4kcCF
z+MSD@EPBqd=kKcXCAnhE+DtEsZt6BRe@j0+zagI8rf>z@kDVXhhg|&fJ5<FpdHLx|
zDQz=zpKAtNFKIjwo7~E7-EmU>(*2hDH2<6Chwqtez2@GWzejjQWDNJzX;0s+)y*@j
zS^I4=v)ybXqsgCqjL$o`%SZiK{6M}p=;~L0p4h0nFLe$@Y}q~0ZeD|ofbx#*nIU}-
zwr;oW5PfvzjQ%QXQC0Cw`4&0GAIcxhAIcxD_@`LI^P_oX1($Bnz3A>(xzB#FuFbV)
zuZxvmyd8JUT$9aW9m`(306*>L^SkRm1WC`_qq3iOpXiS=`ObS9O`_YbuJdiVb}MIc
z<I~eBVd7~)8?BpyY`hNoaSNaP8}@hQKIVU?&CRaa>HOIH;To@BqRhMRVc+yuO6RUy
z{rT?ABcG3X#=ca$ddvO8)*9L6KQ2Fb-&C^J+5PWa{kKaS(jEzYQrlUa^Kqq`rt0o=
zf!h<>i@caM?ruq$^}IFv)mK@s>_zqxN*|sd+usqz`fcW;j)y;LGZW2kOZ#oOlxH$y
zarI1THiI__$@BLGXQ#Z=TJZU+{hQyv+5TO6`$(fEuzXc)+>5n>Q|F19UEaXhlj5JR
zz3ftjLW9SXgzGQ!51;>`kyFoq@4m;6=4BaH^V^?poA`9k1>Ju)D|s*6O74obPMc!1
zPhM~4rxQOXtM`k2Wd9@D|DdN%zwh_M_`}lm+^@Pz*6r$Bud>V8FCc~U(dAE@7P7yK
zb-z7vg7(@ZE$_QcY9^+;-EaM8;ItEXUB&xu>Z9|W_I&To{%2@k(pN2;WX)0fQmM|N
zVym{>q<1{!X{~;oZ+Go`klz-yy~Wg+`Hy4Ur7vugv}NloN|*PhsJ2~L%X&-EzGTfi
zh6j9x@%?ogKUV)|V0Hd+y)b)i1^-d8DAi?)7FAa}=IUHD5nA`-o@B1mot#vK)hCu1
z*c4>%_|X35Kf~|v*HWR|wtl>1y<UWK#?qtfCyL$)J7oUwQNV_KiN}mvcxFB*-1Fg7
zv)}WOp!$s8(cd~g>Zl(Qcv=2WZrjJ$Kc^<1mljD8Qj5IBt$kVS#oa!)h<*1sO@GvX
zO!xY`WRJJ;58(%C3m@q->2}6m`xJe8$s(0EWpk%bu(sWq({Sz0i3J4?2iD*7Z@I_n
zvSI&+{6lkNZfD)<mY&`m^gHzG)fqi{U!#2^|6QAQ*PP*B)JAoMd6oOSqRNl|XK3$E
zf7mZ~_F?v4p-8ism`I;*;Tv5ZtKRmXn%-0@%aio7sJbfO@zY)bi`NVP{Q6P<P4GWM
zQ{!uM`CHd--M;^F-BH(%SJbzc=j4S3UG{#~_T<yV73aOa`g7GC{`G9)N`ApVS=aV>
zFFu>|@$aHseJ}F~4u@52&%T>>J!?Ww&9P@9+}D@+rvAII&*DnL$KG>OA6Dwws7%-~
zv9z`CyI=3OKJ%EHDpiGUDjy4^ZL4~&-<rR<y?OtGMf3DN{GGS=fp78QPZd!?s?o(Z
zAEJHd^c$91sFsEvQ21GB&3ur3LiO^fnmK2=OzwV7pIx#2o7LaVlU~V2KYV{I^L@$h
zgU=$Pe8Qd{-Eu;uchSF7Vn>d-tDHLf>gLgk#dXK!KZLE6*m3dCgF8Q){_)SYKl(X(
zbMf^_{wqy?Pk!j%Adq!S^?TR;toK~b#xHvoU9**#TbJD(In~)WwNxZ9=D6IS)ypSL
z%46+RX5037``^AlThG2fqMh9Md-}CK$-?gc4)*`x`l5Y%Y2|5A-dXN0srs+(KkNU0
z;ZraFKMu|R46LqO_LpD&Be~$k#>&KX`bqoS{vN5VFIlOy_wf2a&J5?0&y1Gqx0Le#
zP}G0(^uvFKhZjCBe;fEa@Rc2(hiKHN>c9Ga7uIkdixt(s7d`ctWW>iS-~aIbIQcuX
z?#BHsI-fy@hIYp(?dy7b%W?VbSK?w)brK)Bq9RQ9#Ci2Gd2Qldkf-vgE_wTh{|q<Z
z+i!W7kf|rlx>RHBJj2!^BasGn9_uQu+pl(X-umSI>$Bb5<dsKb?RVDC{m-EMEAoTe
z#QzLz5C5Is-gNlLt#i#E@7(d-rW+l6@#}fPQ(d8spKe`}EIILr#VkssNB)uOl*wPd
zcl>8~u+IL2NB+&r9`%g>&fMooueCen@owRje=@rJCU=UfD9-ZKN$1&Vmy=#n^H}$s
z{ltzh(Y`LyYm<bZ?__CDdR6$wQ@f|QYtyZ=<!LT&lD2H0@=+nou;q)<1oq2Hn<H(a
z_dGfCbcUtw?4SP`rcV6pUw_13>e^J>y~`Wz1hdPdd}g<v&W`$$z0!q4QA(_j`*vDg
zyO8hp{afpb{<!{UXnOsh;h=X-@LFH<<~_~}Dzd#N&P;Y(=xF+V`i{58clMkW*(_?2
z=3Oyi;)EHG_N)D2eb_Ho6Z(n$FfV)TM<1gT%HH$&GsSQ9r1J!{%{!-=B$2pfT7t-j
z%Jmyd<bSAsfBSUpT}6BDbv5?O-bXySZWCT8Hhsx~HwVkkTAO@6aOcU!ZMO=W4qWxt
zKYY1-`lIx>YS$*Z+3o+&z-s=Vp{eur_wrlyJ#}WU&98<3Zn;%6Eh?}}rQl99#~YSw
zYZwnq;tcXhes20PZtJo;H4f9V`#YWoebh5F+TQVA@2l%ccJ{J`x`*``U+p!j^{x9-
zWB;F_xz0YrUgU88%8J*I#hbqzHi_($=YP5VpHk0>15>%n)GseCc~PXq(oo<Y__h6z
z{tt!pL-s7M!nW<-vZqex$MWRTtxtD;*tSxyS#-(lrjxt<BX51m=qvxT-G5_|XpvFz
z%I-s#e%Ld#XqoQ(voiBrSe?{m`^{f0a!s-gH7BResf+Q8NiOU)<a@wo{^rhMhB=H8
zRsNlI66aUU6?Uk2enq$Z=f_M|o=awxLXLbf8}j#ldTvu4{yj1AKLbnOe}*QPio<Sp
zav#zUpH7XnOY!c$`PF;I*HFW4H8b;hAMWFltjjo^`0>R0eRb0RPTdpy!JViwpJlCR
z$!+e4q{}7RH*=FcwmmWE`g82Nk)p(b8IyO^uQ~2lnYJZ-uSoWrxmzcHu|Ic<zx_Xh
zknY!NTfOUtZarOkZSBU~g;z{&pXTno+2_!uy(6(wgvl<|LS~YK<ob*9ZS@~K?0;xH
zKl)bfcHo6S@=IQRyRP!&^{=aIcm(FjiXAN#-oRI>b^7m}C;V?OyMLS`US)Kz;@GKt
z-mHn|a_-5-w3H?7-WI)kOLw8P=BX)Z!ROo_ION_xJfHvdO0l_1Jgb+ub8#$`3SPM}
z_K2bJ%M)T^>gu{%WEVHjk$S#*j`y2ID=&AIXaD-c|77{Y<9`IWzx7|S@%uJke(PTS
z!~f*nr`la#63bhBHsaXRVv&^@7gyIDW;0JH`?EyI{Z>5aYOdz_8}qg%T|WFV`{+Lv
zmKlF`<bKJu)Q!$pIIP>T!})U2$&-(}{`LKFez=~m!vDAJmW*|3+vfgR-M&4{qxk_t
zP45cjn6HOrG*2^Gu9v?0Pv(!&wXfOtJL;tN#o9+-(K$C?Z~a2eX)hM!wLS{(oXMfE
zx#qESIoI>P<T!sf%c8iK5q~-^*gt5j-?*&vLG@auTlT^g-=n5%-g|HJTHi$y3nnCR
zTbjJC$Z2`u<~UPel3U6FiLdtU^&i~wf2gZBeUbPQFZjo9U-aEL@znmKQty_Q*9*q1
z%=lQ6<Tx+%p`!o2AlKTb5BT{jejo0wTu>8pZQY-UO`f9b=G$(a6?NBZ@v}*pij}HG
zq8q2hp1;z-F8ZSWLw7cRO37b!$L4@bPju9)J5R<gd3Z8iF*&DjLUSIQ@rgC6y=%+Q
zD$P~7Z)|7&L-{`g%lyC1`&jSZj;k^L(A#?C;?Cc}KiX73DhnKWn!NK0&-Ah*2~$JL
zdP)uFT)%Ywfq(0?OLMu8&*v#Qt9R*<B*QdYqhpVKW^sJ-sGjQTVqM_nvvD*3E@|F=
z_p5dC6>aY$F1t7Fam~(_DO_TIv%GLg*UH}A(>^hn3oKShnWjAXyy%zp9R)wk!=@kH
zpS$0xb8^kZJ4*~)wTzm4;*#duGUORf;%C3Mp)_4@*`1ZId>2#{AN(hA;r8MAJh_WL
zR88~jeqrFq;+}DPa>nA*8V7o&aGkwg_-v2;aeKy+^&Ru%Yt<k1n8ypfomX63rTcu6
z#NtjFs{`N67Ku;0QJ~WEb6$dK%&y7vi#B{X-!An!^h%B8Lf41ct50m_Ua71mdaPz!
zADdm!Mw^pcD__oQ+qAB9zTA&uuie+}w6=&HI@*%-+;^6<>=nh3*^5>zUHHmeIkk;F
zFwn24JJ*`?<;J-S|0w=QTzD||kv!KA_rtqH?^Nrh&%1ZD<o47^%O1g$x=RbEq=p6T
zv<;XyS9a@`YqQ>-Tk=o)>Q`@x#KdphcUFFG{Le5g{E1pPyZpWYHv{R(J^O`U{%7F)
zr+F)~Vs_Z}+^CO7d~;W2ewJ9@q}&#;`8Myl*#}i+CZ1$TxNQ1+e&;vyX>T9S*3jE>
zb2-<?+vgOn<SN}^n6YHdz8vpKaR$yM2@*1aR+rxStE9AN+G*_CAGyW<hx__1ulLSN
zy&|X7l)Zz;vFmBtgsq#~k`MOYU~p6x?SJIY8I>KSy1do2H|V_k_6v*EZk>xz+;dr?
z$I4{drbCfllL`{2R-9v(DU<rQa>0*#(f=8kE4EG#XvuBLHG9T;;jWg3T{8D1(Vr*T
z>{?1C)>R+A&t>wS<>tM}A57J)(JL=5zPwd($rYWo6ZGE;2}GHN7WTAHJtQ~R(Chsp
zZSSm_yC2IR@V{w&JjMHb?|%la5_z$xySJ9?>f4#U_*PtGW!Dmqw29vLv=;R+U2G63
zD2^BY@%$gh+24FW?!9{+dnwoSKL5=apXmYa%U>z#h^dDj5pXT(J1NaS<86VPABU`c
zSjpS!m=9C*SN(BntkLJ)b5_8>TR8g8yWc&N-1tveoT%4no=|*k&+FrM!XKu0E%?vS
zGVSAYsn!4fyqe|m@t{qsNAND8ILj$|7ld3b;~1GIUiB6Xw3R)$RWx<shj0D=8CW*_
zXJ{(@V`t8DpYv^LNA3d8$FrUXT{YEIOG|v_qWdmSBBl0`a<b$T28Q*k{_)pH{q6rJ
z=x?)s^Y+7ctq+@Da+`Qstutd*?U~%(Q%fKCo0%$h-g=&C^Z9I2#o<ThJto{UOLN)%
zn}av1D)l`Olj=$Jke(-=+Ih9?<5MB_n3V9dQTN}*f2{Vq@-Fvne&sENX*S~1vz~MA
z($}AQr)=JW=kvA(mu9WrURZqFd;W^))2f=IY8S~XT@5qUDOK#8+gDdQQFeP#C7a2~
zCvsQIBkK7wepQHP=uV61ntk$-UcA=M+MBnQ9z684F|K{$`G@O3#mIX9YiIkGnX0$<
zww{<;bNtwwEm@Zu9FAEP&bgktsP5W*!5YH?ljvw^w{2I%vz?!t{Hw69GHVLgIV1l5
zPXj}x#iO0C6V$%z%~RucsXH0{^1G0~-qMG2L-U0=4!dXCv`)RF&|6>Csl7nrXTRmS
z2%fYZtNR6Sy*7;hk^We}RekeT0h7zRU(B}eigvTw?6>6j_Jyb4B;L(_oX`L7qMh#b
zFHifPy{ctY?x=h0+pE6)kVcG+zf2K>o5-f~{fV)!|72g<;;V4*k#+X^%`t9D;=-+B
zMussDrQ{6++`>;yY_2T~+wkpjvgNgM+oa!dmvVJ<Z$Hf2D%PFP!=znZ%oQ7P^8D!;
zw{wm&w;G-)V88n^On*;-^5t2vah9eQW^Uhommf&m7GC7Y&n3U5<Ji6OV{RVj93MZI
zEqA<}n=tG5LBZQE#ETyMU3WpV#X|nmCC&2H^B?MTN$?rZ`uXeA=i_EC3+=m1BbWCn
ziO%+$`mVgE=#gl!N`$Q&N8kz5B?jkWJ-#h}F|VVJxx(uHKOtSMf5%<3Pe=<oTI)FM
z=A9%hTD#`(oCM9c6GL<UGi2y9{wR_@YaViK|CYI-8*-RluGgL?n0xI}qD)KA<elvo
zu0Nf&kp1v^iQTVfm7a<@)n2i?&)s|Dmc*b;PaSs#*3`%H^EubQu+z9wbK;MwO!4g<
zJV`Y(i$YS`?j)x@-gmiAyMBf1*Z&O4=CP-pU-x&#Z(Dx&=Q=4_^~1BK&0ZVP`f16$
zr_-Jq*!kaeIV~BMS5V%=(|l{svDe?u{#~%A(q`Izp66G#u%_HpcG<8bnDP7Vw*rgq
zY8I6noQ(6ov@dSc2f3{)vra$E^-ZdLqG5NsRHL_}aDphKP5rJ4({JpD|1;eD{;0iW
zjqAJl)~*u1C-Xl2dte^3+<L>2(vxyc+kWk}sL?ojB|lQ|NA|%>cd`O+|B1h%CuY5=
z@m>BS&7@Dh-?!a)laikE_?f2SvEulW+jS?Up3QzR<IDWkUuUEkwomd@+R<mav&&gs
z#ZOhWYyFaH&l9#A<9r|dzTX{{y7uk%o`?S#TFP!o9GQIQjKZW#PJUOkmGi=MZ&<Le
zH@%*<=CXuM@P7twwp_V?F-kGF&j0H*$ysK*mf3!S*^`t7K}E(fQ<ZLA{$O?G($;g^
z{xdjT|0n*(zB}f}L783WmWy7#Re4Wp+dSV1HAhot3WmA*?tD;C5n~>Fu0r}?{O0;D
z(^&gQ=bN|G+Wq@?bxCL5mkHn2ya~?co)YG9_ln%4bx&2~_;_>T{}j!4-oACiW#Qjx
z+97hKM~qhAGh<Mlb^nQVk)O@B361?z1Y`93>WpecukSJbJNwbibtYf-%uJu4dvZh3
z?}D`*GgXu4Kb$C8WK=1tWwifmq1Lppt$X=iAGVYE(U|_|c6RpMWXF$kjVsRi9*SH1
z^82;GNf8o%_M6=*Si|(ZNG4rn9v^?dP2>mWWB1haTj$wbUN}Ff^PaS{Z<eI)w9JUl
z-z?Q{>&)J@+N~~$k>UEp4138h`J5TETH?g7zpF{DxZJk6J!q14(Z*b^kF$Fx<ttAz
zU$t5OG1Fe-L-t#G->qts7tAPp`62V%<QZEzgfbE*$gEy+x$eCTUvR#<eW2d_8D3e}
z|MbpY-!f0((jM`|hx%=rxr=S5eA;ZbU1!!JPl=?{(snPNb&AZ<l>WfR#_(*3lv73h
z!QhJhkHTi=FXVVHb?NbMCF$Nk?sfOSG+bC%$SG-;tiau4EEBBvPrJtKa!sImua2F<
z-Hh_>;cU^fS#Pg>8Qgp@e)ApkcTDSDn-Ui8<h=34&hYQ9Kl~5-g?(34*n9TJTz-3q
z|E;v;qDd7K9&4-iB=`%QcmB+L<?*%)z3v|-JeR)xPv+?#(ccDtWIujeocXxF^@F?Z
z65+g^yDz?9*u~k*Gj$egvb0P!o2}usrMv!4`;)u)$2?iL$37Rgo|Ss^P$~3t-N6-6
zIz3F*&Nj;|uQL9esT!8RcjKgly=leue_YNFw>5`f{A0hUSC2RLTK4L@wu>(6_jEXf
z3+tcrm#!<xJ$+DpX~nj=ze5ifmRFm|sa`RSF6Kzxy0^*Vz3i_Uf4)~N*kO|xn=H3u
z-BQ1G-~Rf{ZhloaB|DzWK2<mT$l4FfkCjg_+nW-zbdslO&#5Q%YqpntI@2PP`Z!It
z^Vx0*8_w#7@$Eqs#SeYYM19*Vds6#9183;DrxCFg9Vhd}93_5AUg#@2x-ovn>EA^^
zl8@TS^*=n`Sz|8xM)KaYS$E=Z*+uJ_ZSh(mCRbn=CTm-{dcNTP%=)f-x_ff756S5^
zADZSV6HuS}ic@xP&m@h5@|nH7C-m-?_wX@IY@X38)m+s3^^gBW$wzxWtZ!BSn15`y
zhK+poVk^m|SM+rE9cui~aCLU()h5w2i(^-dj!PHEYh+o4ANpM{;QGkF{nodo>7qvt
zJ$s~~F8<BDGUxQa{xX+lh36$kd>)VX`Fw0Y-p~KXY**X&qfu*bY~RzVvS;7rgy{j7
zFZN68sh*#3(^B5bfLZdO>9LpcTh1Spwg2t8PcYN)cFgO5Rl4`)ME+SRZol7KGy2W$
zO=pi?m0K`D+avMGSEC}&n7=GruI~xXF0?-SuzPQ|N2d6x-4|y@c|1xxU~a}Y?emJ~
z^Yza;_HA7%-)tvy`my$W-i&=p?T3Cn3Hmu*Dn&SI@sdf5zprm(*yZuMdE(REOq}P6
z<7cx!Hh-&F7bfc+u<5Evif2mn^0sK{r<y(5Hx^FPWR!fS{8_F$-t@=zZ`(eU_iTAt
z65q+0`iT2>>}l3*JF`uD|E_%eeL~E(+c%`=Pn~)^u$5`Ia?9+FsTp_vwVBLb{hlLp
zdsz8|h#$uTE2rGpdiDN|L_<D?2^>r6O$+=jgD-Zxs>)~k@jLX#?8hs0x9(>;{_t+_
zAw%6KylZYKyJpF3Nz3+iES6rZ_Q546FC-~O&#iuLJk!4`_FL?aaC6&AKbW^P`{Bbh
zQ7P%w#TDuys-b<09(gKTJA~;9s$1&M%YLg_pW*+**-p}Z&A)5qt5cU{J<B!wBt3I>
zbYmyGw*Aek52MTb)r~r?^N8+TS9xLXoBs@FvKHMe{kP5DxhC-8eA&qCPZiG}o<G{H
zy|J=H?z#8XHTGNH97%0R-Mn*~z-jKcCjt&$5S&ys`BD8=`M1I!%pZQ-`QiN$d*&=V
zl@D8{o!%e4|MJ;q-8*-!-l8~9wjuq@RAq+0*DTcbd4Etp5`Uxn!Tg>#`>bn>=RG=g
zDBtk;<t=yftyHfR9SQN+m27hD!iM5KCRxpuFHf$YZ&Uc6fwknvPrKDCj(>Rd-0@lo
zqcL}d$qGH4cghWu#4Lrrc&HsXklxv}@g!qaXwadMT&3k5tzWNyNWW3V-e%+RpMib8
z*WbAbm;V?q%@$Hynz+i-=GPQ$kyq<%b}XH;qxA~Y!ia|DPXl;s*76_z&u~lq{B?ah
zv$$x-<R!QBx9`5NWK#O>z};sAZ_L?sa*JkYpIEtWU*Y5r$B&%9oqgP1Vr#F_^+%KZ
zm;Yx-S#~>OjcIhZ_3D}j&&(UvuwIv8?>%Q1bUQoU_wSCpf1(u?d-mslOj|1R;HG)U
zv+dhE6)YsuyU%1w8WadR=DjhF>(x;W-DIgAC1ka}W&g(G2mUkM+JE%Y%^K5>Yg^Z?
z&2hOt%SmVB>sM>rbxYGrHhRl3o@N$!J?HbRU)MhW<NW>G{SWJ`&qw|<@Y`@_KK`p`
zaq_qAv~}BNon$DD&^uDLX%aj4a|KzB_wgdp{}~QO{4;%3XK=BmWS4on+s>tHrd<;c
z%Frx2#Chy`r(RtA7LL0P{4<?C*hRfwZ=d5^_dam?vGDnlUpe&Ot$Q@<yZi1<^N)n-
zwYeI*=c_JKx#r{c)TvmcrlwuO>RfNx&iV&a^;65P-}%pQHsWv6kIoO?-zq-LZ?Dn)
z@cVK95#<N7`-P2OS-H*9e|TZt^PQ=um(S$s+H7Pz^~UeTY3v!MUYEbgeca#lM}0M~
z_)+IaZp*^YTzG5R-Lclo;Lb70_qoYaxi%{9xw<WB$AP%7pTdvi|IlPV+{>D`M|trN
z!+#1H)5A_}KE2v)fAZ|ArxV}gg)S?Nd7JdndGegXlRqw9{>K&j=swdQ^VtvHzxnvk
z+P^I-{MM44ef~V|pCe7yKJ(-;j9+_p(c+Cin{ra02ImJJ{wnpU?$ux3<c?*F_CNg3
zAbauG`48V8ge`siUhZX7`my<~x8Aq?abM)|eV5zv6}NA^`c;<LqkCkU)!hDB2`XME
zlxG~&UiQY#A*W{bZ<ov}{<g2H|HdDfFR#>>Z~C9%QGETk+Nfi^z3sipTQkyndPII7
z&pfE*H0Pi5kK>Q$zvchPAG+<z*Z7XACD&E*KQGz8XUj~luVH;RryAWokg%lSCcEfi
z|Lk?IrU##Y>|)h>^q676NB6Af77AN7Xg#0D_GX@?>5HJ#s<P3RS&tt56RCavD8IW-
zfAe0$8q1HiUw^I1IG2;!FO;sZ{N|0$CC6=krhK`T{cOE}pJ{c+*Ygr5dG1@k<=b@Z
zKST9`t~3<`h38LCd|4CA|1fWP&1&7X7hJ*v<-UbWe?FF?W!6yrj-lN4^^5gfHM|#e
z61$Ju3$06T({2)f%UQ^?i8G+6nEh6YhLxnmisvlXLu3@o3a@NgQyIFx`^~(w3oquV
zOcQ10+LzeDJi*~7V_t=Y#PO&;UGszD*Ct0FeRzKJxgI{9D;+hP52~v2o+~^xaq@Z5
zZ{h8G41Zfx)SuUXbZpYEXGSZ9)6+iP^xbUY!}ljQN#ub{Lt)pK{|s%{<9Xh^nI5wH
zLrc_?)e61ubWPKD8j4v2ee_!KV(&RdnUXc?9iA^N0(0f%EBGIr?^$QI|FDJ4(uwsI
zYE7|kuQaUP;X40xf7CDM!}gn|AIW@^o3p31G&_@T!H+iXj+SsEL(3H3Ns6bQTS#yI
zb^V3^;ko&T1>-%JypR%^E@ag19kB7dh;N^>N}{Sp_2m6>Q@_sZd~B=l{NW8Rd&5@U
zw9h<g8#Zm}U3AjkX#c#BoCgg7CBF}t7K9u-A1!<3!)fQw-w*8n;5(mf>BgIhg{8vs
zCc3Y44jwN*EqdVC-HXp(WxtaL9S~}>`0CqS-L3K5HZT6TT-TT`Heb*0#XIpQ0Sy0a
zTP8N_Jh1M%(~rL&S9!ck{!#y7Ysu@}HBRmZ;$m->Kh+jl;KpWoOVT;H$z#31kN%IF
zzx~=AaBJ$<rAtyz-qbnEGI5z_{1l<SiYK4@s~&yZny&lrTZyTJZvV<s`5XEV>sz)Q
zF1K5|_@>p${EhdR%jMiE?#fTqdcH&Pz?VmRo<9<A2VKv`7-j!QX&3(=l?4h$TX%LG
z7YvaMWZqM3C|k5qz<NUV=ln<VZ&^PsQlIfBc9!<cJOQ`7oHzH*-VpLXTenO#$?)8l
z<X71TqmN(Pb!;<lU)TBcRehW9Gq0F*Q$k_=nI+$pjO?{8nPjV$eKA}aCG;a~`DLm1
z$Ir9gi#xyYNAcm@6sKu!EoUY-d9vEfOv>Rio_=fJyse+h`}9nA&))5JagTfYvhzm!
zgoAffN4}l%$yju^$D};vrbw$VZ@ug8Z>e2-<|6lw_iw*VwvIV1vaO}QWJ#f9!*N!Z
zgg(pnF}9a$jCOJ_J$KzKyzFS$&n+H@Zwu7rXx)7}g`xiGthsv{&->j92*3Z;BHQzJ
zu<(&-8(f!2@0VJ$Ywel7mEYFuL{vIo%~MF5c({bgd49atXOsU7EkVzoF8WcFw0UQN
z_&KxpwPxQebiUu;Q_5raGQq$)d}BqxjgzZme$+o)dOJ?}`MH)D+as@q3#V<_c~jCB
zR8SS|TGHa2nY;dFxtLDGsyjA|jx74mz^x*AK%p$-nE%$YgEJ3mXH~r0ys%=^w|fz$
zD;DnEzEy{N&;DEbN-0I#UU0gecQTuN<+11)Z}H~0_fPeG3g6NzU_aGxbMx6(2QN8m
z9}(%vHDW#<^({92V7mX#Pr0S1I};pOQUh~mFfD8}=YFQ=R^+wfc@J}_DR-`S(AKv5
zM{fB<&2rqCuy59l*xiQ5IZMh@9&bDx*5})@F!@O8W~&*!HrBGsR_62USLmGf@shiW
zR<owM`a%tl_Y;i!$^$+;+r09XQE$MV%*)yWuM4$eG_5@tqTkgnsNZz*$Mr4QVZWx{
z?OD4-n05d3&nmAb|7<gRFjdk}<N2KR7p`Bc-~9fK>!bOdv%D(yKQ>!k{@^_85oYI=
z%Vw!<-Qgp|6~i{eq05ikYnAkNpAc_BsjN2z3pK5kKPMml&%nK>{G;-bZTC1YESMiO
z>#c~1RPG`JuJ-l`K9^2zoh{w<!Pd3jv3|q%H`2c~{^**?+3w%B<C;xnqKaMWvBl{U
zn=UOsnBK)L>t#Qg;qlod6^1{34c9NsXRm)SbCzHKhkYFXWGa6DuJ^p^d{1p<wd#uM
zC1r<NCY=;h?=!I3@t>g}V#Q&@oQ+RP?SH8Hws(Aaz5j>D*1xriZRw})-H~oRG<lPE
z=B%*Pj>(@E{j7GEi&$?g-1~f&--$0PF7%Y!NAHndQxP3@C2x=UW5I`O(@w69-Sb!T
z{`skmOdiiR%<z=3u&FE;dS}BTc{ct>srs9Xiz+6T>~G`!+g!7$y;dXU{L;?wiCedv
zUfRo{zV1Zh`(67bY%KpXu<ZD8dFiXL?fV#hOfKb{;FR0+DPrA)Z+E2^xHHS%ozJ|s
zw)esL#{Ue`f3zP4FRqEYyj5QC_RDoV#xHr<){5wI=k+~s)CmO5aW)H`IPhtW)qJsn
z@{4!g&5A!$*Hbb3SiM+{*5xdz)OoXO(-mtcIF|mMTP3(NguCQ@zVZC`l^dB~Xdl_9
zT@(Cw+8)h(_P%|V6>a|9_s_E=F5A9q9`}lK3=zxc-3!iJv*hj1O)Y(#GS^#v+<)LZ
zIcr+g+UG}fvkz_G?y>prEX~C;Q+O66u37h)NoIolsl#j!CKP3#+NW?*|M2{__p4u7
zsl=II>pikiy+hWFbM1{uyVtH$n;Ls)j%C@WCpHTL4@~#XEw)P)E#7hcKSQ>ElT>=U
z%7uTDS?eFwriJNdSFY-KH*;~}goSUCOB3e2O>HlHccka~k$S;}KkPsDA35&zcYzI`
z+VrsAx9?0>tZ%)$g;(mGW6_43{oTvoU3~i?qJeAU$v<^JK0m(SmwvQrU+;tSOfUDb
z`j#o^9lyEnoO+kQxt`6pZOZJ`^%$L-JZ~LosJEzpsP%E{ycMrYSMNPjxI##}?Y9e~
zcRfqsn*!TYb&~6&+G3ur{m&3QE24Fi``hQ;b-Mo!)ialR?$P|v{D^N&{@WCz(+h7o
z@~xLEmpu{n!Lyigf@bL1GhY0Po@_hUOV!=pCvr7!{X3KR)+axTZWrwKbqr&dzQMc6
z^w4QJXN}nVnLKCzXkXgraiu<c|IK5yeENK^|1<Efv58{fdmgmOd%M$ug#Im71`2;p
zT|8p=`e?D#`M2I5)Wh0+FPrSuiq*UC7ShFS#$DmWrn7PB+&jjaJwk<B7XD|*Z(w`P
zZk;t#Z%u6fmHMXr^7~WXcT}aW@7@~u)t)UnGc}>_t^T{5FxCl7HJu4lCkpy&1%<?X
zv)vzSCtP=-s=wjO?ziCwe!c$VxTWIEt(sq3CMzHKsnr&}q%UH*sz2+~6SC53`<3cb
z<!`$`Sl;?J_t}r>dQ<JXOSAX5=Po**STQ-VW=BfvwO3ak9n3v1$-A3Dk5hT=)&C3+
zR@iUwZ`hNXTlvtxC48UIm7I5C^=~!as%`IjINdtReRDF)igLr77A*2J7CqYY>WXT$
z%DGiBYa{<N%=~q9{lA;_5)UuFDc#?-k7;kVL`p>8!X@WyX0$wU<L10%s@eRxGT8I@
zhk07l)-L>a<d)y6YqO>wDO{BGy?W1TU;Uu4pcKgi-Var0PoDF@ZMnpG_W3<~cz?&c
z{&vdteU#t!Pp#?JJtvWMYg6>sCIp{!nRH?8ovb^&XHs6zN!mAmi$7z<{sXi3)Iazg
z8yvD@;-!c!>C@h9dVj=-A-Ty}?vAmWlYx5PGiK9si#2{myz<P<<zMkdR_fNZ(|+52
zc;_#Vy`OW_WLFboaj^meC(pHy-ZGIgb2sL&GbDs<sz{FdXu9Q=c~6bTKjA*v?Z;l+
zQxWUk{<r$juauSg^NL~?bDR(UT%>*ApHPj!huYqC3m@jUiHG0g%q=R-o~^OSES%G#
zM`PM8=_^wuyPgQyTsdL$eSPZ2ACA8rY7F;u{f^w<eO#(0P09TBe}*IXL{+E!tn=LN
zCSBloqu}teI}>Nm-aF&Tq)SiVbI1I#xvI8((}(u{^?O1^XaD=p;AKAToW$Hyd-mOa
z(N`O}J@@6Es2v|$rwH#6yqU3T#Zjk?JIWYj61H3SuY7-P@+18t{w?$5uc&<3e{_BO
z_m`>4t8TrHx;J0-=;UqY^=n)+A5Ao#dqCsC)EcJjr#tsQSigUReY<KtKmRTMhkti$
zP`iIh_()l0yxRR)PIWQKlYEn<_a-?tS1bR&_~STeHG_WLeX*jL`+wp-xc||P<+~&r
zJ-0Y)lJtwkWr}Wzm-O_Om$3AnxfjGE6vH^{ui+2R{|sy|Us^41SKR-j|Kp)&?;aIx
zc2sXG@lf1a6x>pFW!WC1qkaC<xAq5i{hMkd`8YcJgsv&Skj|~N?JJ@x-!8x7v*B)=
z+u`ZWdSweAY<d^(rqFYI-48C`q;J=c$O&E7-($M!_93M<Ycunzl8sL$sb0R3<0sK?
zq%?`IF7eWymCs9O*)4x{<=vz(d(nN8^#^zTXV?@rbxHUB-g^ok-TO>A&(D5xGoF{p
z;zM16;%37$7Z{4qocZxe`wc(qe};n^{}~?4_@!bPUs3*0ytP#0t)95}^?>uM?rfP@
z65ZWio}Q}wR9EeSgRN`r`SSG@v+f_ueV8v&QS^yhx`B7yqDiV(x15@pAX&cnz;l+j
zleH>-em+_?t$*=raqcJQ#b!TwW2k@g;m?UrPO_L}iTTKRSV}%$xK3;4(#qAvQbk3(
z@0~yKd9Sp`mJd@`zldYJq93c=XR_tOdsS}_hqx$<b&s9O-u~WrqP+0?#wf9<ryH)^
zkDTs1-|Nb{xo_ubU+FVXXpmjS)3dq9oL92+_BrFDsTIc`<+Xo^_r0{{pZVS+Ne^q5
zUDMThr*!$AD;KxlIXP~pCl7->xxPyON?(1YbglRiDa*_EE?th=Sn8?JR<v2<fyk%1
zY|4pOL>}MXTXb~$s&ci!Z7)9mtv-A`%64zx+=pk2^toeRp15>8JwIpC%gM*yojdgG
z!WtK|XDXh|%hlf*{LI{E@bSclBTbKgYyA%1zROj+o_)IP#sZ^P%L_6p9}9~}9zPpn
zwt2yifA0gj4j;JH+I?fk@f&&EuJt)03Hxt}&hcVb=do)kS<iD-{^9qwt;=(r<M#e8
z&hze0o0cfOlF_pwFM=(|ugEd%t=}B|B}}=x=Zmh?sr`|WQ|><cPieY;-?w{e4KYhP
zN-eHVXJwiAKC<ljlAZ^G$1T<y=lAULiK>0Ka$(l=c@|v;Vj6FCA8)=gmGjv3&vF(^
zLM2c3vpf)JxqdES{XtpdkUh-@!_0o^Ew%~bj%YT1$zM44;1dtF*OfB8OIE$LJgMU#
zdOq`>#kLPucSYZSF|AG}qVV^7Td@mgiXs=6MVxx_pJC(VA0PK*-d;NYf%D|O*H-+R
z?)7)YnwsK8^=ZBj<F{n`Pn~o>uqk^9n^9n6SH5PDgX8la!K1}e*N^cF>dj1FTx0T)
zb$a{bEv)kHSDx7?&yD=&Dqc8k*S5*o2`2MODj0H@S!zB%_TJC_<C1mo<I^|2Z*Q1%
zt=clZcX7J3XJ?4khQ||6JXYJ2|46L$0k8gH?X`FAd9S~5^Vt2IY=6zXDKayq-<;iE
zc<|@O&vIqWm$vuGn(dPKop1cMUgF=4dX9erS^5vxOJz^GT`=+Xmd}-Cn?9IJ<UP$)
zNu0N!_qe>)#2DG>Zx?@<_U+U6kPm(H%d=PAbJpFlcU$K3&3Aqr`7Tu~UGZFD#leIg
zMtgI0`{|k=>%WEk$gky=4K!8plnTH6r1Rz@`^qpAkCW^y2C8lxl4=`F`)}`maJ2W$
zwRrxm+Ow^-?;fkJ4HEeF(tt(N)9tfd@!WMzRV+5)B?Up#I?bP@>$oIu{B`!>`&;iH
z_4dtH{^OEsrJ;DrvwE?~>iiPUTRdff$4x#O{ywwJ{f6=9Iccl1<hS)Vtoia|Yj1t%
z{J`JbV%w&_Rl0oA^5=xgzI#dXkGet%{6DlElyCfJ`ggnX#r*KV?VZ!y?P7{=%(wNs
z`ex#$W#{II9ABxnFMs~Gb~(kp6Ygb95B4m$ow|4G<36WX7R7?O%axa(o?xL<*!6bl
zWUuJ8eE#cI-qm{s{%1HCV8?gk<@~hGTej@ZD7bvS(puS5Gs&2DA4@7*@kGM|&zX0x
z{m<}Vtyr9oaqV)~wnOF`6VEtmz6yL8KFN&PLd(Hc`{&}z=a2G>`kT&g*Gt^d8?Lu<
z!#NIlgH){r2@@|Q%gnPd{bT(wyZiR<X|-XW?tP5WJ(wN2l*eCM#idt-@w|?Q?2eb4
zPb|DT<+Hx>FV=nk8Jaf!JO6&|+P`hvSKXSlG-a#VrN8qsrz>!*%WJmDJ|{83xm4oW
zp8A;o3{5-#IA6AL(cLHiBgo_7E@`EGzn$+LReIj^v?ZgVoYlj2^{0F156%<3__lZN
z`I~RIO4j9WJ}Lb!vGHls({JyN-<3G{XnVd5|Kobzn}1ga%+yIZ)vtT=ol??&hEmU;
zNi1KiJ^#E|KIKBw=G$k2j(fhUo0Cz$J#Ox!)781kkN9@xKUm$iv${2wHz|BtIZtZk
zo3)|S68!HS=Bwp5{o)Q93VnUh`Ovj}Dwj>I`(@YooUHw3adfl83Xkwvm(tC5M-=Vf
zT~IjZvE-kSOZ()1#K&CIb-mkrZ|aHz51VhVnI1O#&Zd8VT&HihynFrWu_AZ2UBMr!
zkJ@owue-k_CUVJyV^P+txo5IZyOB6|!RD1({$Y~LYh6Cwvj6n<#?%?!Z?ozh?4<tg
zDXEuUy5!fq{%qUcDV?S1whwMU^_j1st+HmeN`Sw$r%V&S^Umzw(LeM~2lu@W_|c!E
z^X^IhoopucX=W!+-HyAhWA-U!s%vD3+|0b4|El%=DZKoZbKL(&>&nBACD%H6w0Yb*
z_v(H_;dA$0ZZZEEstlrcz7P3#d{Oo;rL29@(~kWPRXu&<uDj0WW1EB=dVJL`G2G(j
zIQNOI>~qZKlaJ>9XHfdL@8(~Q*Yex%%}$Z_-*zECcb!Cn?isI*=Vm<Zy7_aXm*MgI
z7Vodmx4!((?&j-h*Q3IwX4L59#hi;fs(Vds?vKw>7dt1GGgyT6Pw<cWqjB+1?c=*#
z%(*LX%~;esJ$2bKo7G`?MZUZCWM3$3mHA}*x6Hqz%5GtDe(B%!YOU5Q%(>IneLEuH
zckP^t&%B-!r~951hX(6Btv$|@*Z%U_>W@bMKKo31AG34Em9>g|KHpX(HAWf~tIxXR
zx8%v=Ct8*Vzy2(LB!5hnKV<WK_se>@*FsJmx7oJVWW!3veUYhCgboz3o!$AQr!Zcr
zV)D^A^-H3r8TR$et)KGVF3ViXRT<l6wD|RvgvYY4Ic*Xj)k~iK78~ulbDm_M%C1kB
zt|hE0n-uDB|D1tG%zp;XwJQ@%c8h!rzwvJQ^+(rAb}Za-^}W76lLvQJk7CaTdySNy
z<9v_jPe0|uz@eqR_;Q^_^pCP&ww;-*M=z~ZKGi6sv*PCzkK@WV51Ke_E!P{{vzOZ1
zy^HmdOx@jLKl@3mra=tvncJUYzQ|gI{;rp}^HO70#)kQUX*yC@*3aL}o^fY)z_J2^
zkoB@3!@p*n_SnqnyEd=ZapAu!6QW$7zKrs{yIY)9Wyg_Mt2awnZ`;gdaWbjWwlMbY
z@wdJoV;A?lxNtI```>2+9k1Q}%2k{8JwEQlFTea~**)D2S1!F`<bEOCsw-oz)zA0w
zQ-h0SD)XIm_G^o-eCZdBynXc1?6+ajQ#<V<*DSiVV)2i_4W2UP&t+XhHW=R6zjnUI
zkLi!*Ev&cBo~K#)_T9VA&ri0Le|mEF`d`^6Hx@6n3p>B?Y<fh+#jkspyG?(~#?z{G
z#KY`UQ8S<AJ5Kqx;pZk*ta~2Nq;8e|ZP}yHB{8ctRD}Gzjvd)v+*HN&GUx5GJv)Mz
zta4R;cc<r&(#{7;?m`=N=lSu=p7YD}<`!8qVej7Wb{9YVz2B~{U@oUO|MaX>=V#kb
z8mLch*IF|180X!W&G+x@5&fwDu)pomjtx7n%?`=e@yyLOVd8EtoYSnSE&28&hyQ-Z
z4|ekx{<t5!W7^>(j9zvE)0{<G3!920b{>~xDe{kckyFR?>U-INo6%>B*0gT-IpVon
zu0^NTTI})bn7m29eeU1(x~0p%p{DeAXho2B;IdcqM7PiIU`yP+{qxk=DpsyLa~`us
z%YHD7QGNb)>iVorOJ@1JUFa@V$#gNmGwszX#-J9RR~2vG|0r2MH~){Yc~eAm)^yE$
zg?2laPq|J@z6h@SJU=Gk`#J5NU6=nDT|0j6O3n13nA#~~f%6O2RDD$ue(QATa^4ef
zVbu%2*}i{k`Z!}(tefO5mjaucYmXi6XXe^@cn)9Hid+19i-rGqUU|PX`z_xgi(C17
zK0GM$zn{XO_ObD#<NT<f*8Uf_N=t8E^-{dIY`&IT(%czsIq!5t1S*c7-dfn?$6D(4
zJz&Sg98>L;X>-)iKlMnKc3|y4!8M2Z%KB}NYvbgkCu)6qQ}y-bNA)hf3GuIz0uI#l
zDm!_`NpzeKzAj-i@6b-`*>Bk%%=Y%~c&Dd3`?Qj$v4Sj@khjH?au&XMS0DdVxxQtu
z)bY2|t_OSU-qw*a<5=kQIXU{5|1L1Hx;`uVPvXbgxo0L$>C8Po?eKRdSB4&;a}PE!
zuMhAqjul*V>%#e4uZv$++W7vRX?1d8)bXrWvu~W)muENWsTt#SX%D+Yd+rB)Tz=F$
zx-+Rg&^hHsB#)k+kkes>U5^uOPcSni6y84n_~Y4q3#<RGuC}s0a`<$crP8E_95xN}
z0?KZAsLUz+5&GBr(ciwwQqfzCPH&!iLsUu6ufTYk=E+-p#xI=?zh0$zH9xKRdYs<X
zueS?!P2IGH>pz3(5p5N%8$UfudmCz=7X)!J6*u3WWAJj>)rBAS=%wgzhH1(?E$&MT
z5^P`b)8e>H(#jvxAF*v+;gM)%VsFX&EZSM+l5+Zl7oJXqcLe*~wA-((ukrpnXOrZ@
ziuU)x=XGTo8W?|y8F?zCH!-|ETIS3*>B7vb`<|W7x~C~V@m6-2*tBog{<L;H%js*d
zU^4r9;{3He=cD$2C|kcmR_<}gu06YEIsa=fwJ@A?<ljp{hA{49=9c+c2ljrn-TNg?
zx9-iIThq==d$TaPOy&Wr%J00#^1X$VD<<9co|I`)tzG#jaMFg=t+98v9WpSSx4ZMa
z>6Q$OnU>qW*iN$Vt{3^k%6WN@k^Y*uKDoJ@(gkmCNomWtI{&$b0iQ6d$AJWQ8Rj3e
z&u-DK*SRHn_zd&OwD&5hRZnfsE|!0v$MEFI_s?hD>P2*4Y`F53yVlM$VX1QKyKha#
z6IGTv$QFsD-?^6G@uo&;T4#2-`RtMt9I5v{%FHX|5|d24vh7W{OQzaa<y$9Z%Nid?
zujhP~e&kop<~Z)MLgm}%QtsIA);d;Zkn{IiO!0yB_1k`|Eqt_B>$<B{>bFkWZq8}G
zRxe9_Pp!23yd`io=Q)1Q2@KYKTR*o=UG-zP|EBD}*3R3T?j}aEOx#njCTo7_lituJ
zug@`Uv_0@LHmx&xVa37!4BPbInY`4G)_$I8mtrh-Lizgwro#ENOKP6aTHe~TT{krB
z#xMQA9~(b1dt97#+5OsA+q$P|A=?@sv>nUW-1+xQo4b2Ll|g|20?{)+l5F!Iu`M`!
zEbx?m$@j>V%Uh+*<{q>1l-Z>D_j=4!>w4$7`XxWKUeyaZ*ci&rTWw?{sk>GCn34V2
zX}8s+RL}bu@ys)4JX`B;wr&=C%cAy2bKIRSZ&m%RGR<o0lR9Vl$DLy4b7S2T8rCmg
zny4~)6USb@T)onK9@}fH7gel#?Uu<uE9d<s+hE`6b9eShG@WIXFUi$uUdOrSy>#6r
ztNU%TOFmqAyV6s|E9%+FNfwUIb9>fA<xhEBv?pUpnX;+b<i&O8?+IL4F#qtcX{$w>
z7teg7`@HGV#h%4^LfTtCiyS=|*0JilM)vdQyK<MFA2pX#n(Wl|aiPw|*qgC?Z@bDB
z%uCVRV3ICh+fwa$ep^wm_PeH1vF8)A{xgW_mfrRH#Cq9ecJ^71*=@0M2N&&3cVa$u
zdiQBQZ{GJ?Me<~ggI;d4`f@5SX@9Fw&LsWM&(vjGTpRO~3bN~ueY~;yaQ2#?x>E0N
zO*$cXXyZZa5TTpLIF)6>ZPw>*KYi)_vxXI18{hUi%hbL%Se+yJc;jQ+k8v$Z+q(>k
z^21VeZ>P>bvQD*!X^C`6pYc3K8$<if<2Kh)e$}_EdzX9NdwT>=h4dMxPd8_L-g#s}
ztL#2E2CmE7W=C9JR9!vMz%$Z|Svs~oXVU8a*~~i+z0EUzf9Y1H{u=*h70WokTsqEF
za$}X_%Z}n_h5t@9Y)yD{hS&dh)+^0554+BJByyQKJuP4FfA`?r9kL&)O4xRkT`oCY
zxp{T_rjmmNkqh`{zHl?Bossfwef8yiqOq@T=jkk)9wB&qU!ss_j-YMy(@Higp@r^y
zYxzIie>nfhe+Jp(Ec>J`<*wIFIup30K~l`)<4(c-m1cirgq#y*9jZ80SoO+2(K@Fl
z@F73r%kQ&h?)osx{MPL1+C_!RW`-xDw;xU^d41wRvgkF(2j^vPM;}jI=hn%+GGFgm
z`s}A^me$EhjCo7mv9<>vty>!T@5DZ%OK%rkTl@5iiRG*m{p=OdCkq8wCY5dQeP+YA
zG<;6@g3}M@@;}_SJG=PNU!~u{m*#qHeH^hm^QOwmu#6*{8Tfrq?D+M`a$dq3Q`c=Z
z;t%X^${&dr+OxyPRQC5tC9SPX`(6s(Y;*QH$k}Ur;OF)AD&aTgGwy#d`@Trt9`F1Q
zzmJDWU2mBk7(T)J=GwQjJ1*>#d+K{>^)@3Bxw@AMv;H>yP=6?9&&xOWgXtR+%TmtP
zC+5?>y)VsCp75^p)AOmFX^Bk-g!bQ+&3={NdMo{SwY@;hi+a&_I*MDGuC81AHP$-d
z<})MtnZ8TbO5dIuykk=Dfdi7y_N@9j)zey+-$_Jaaqaoj67~-!7XH|F%GccCTJn|r
z+`Er==!<v@iT=LmGtqa4;Bi(q_Q2S_&i@Q7moMyN%P6aww)~;z)|K}}f7iZmQ|S7X
z!KEj8&r;RXugJsWaRR$ff%dI^3O_D?%bOm$=gK|_rKs!+)7b+rzE8inUS(>hn!k$E
z2EUf4eJ}py2W6k!Qx4kj^W$iG$~@s8h4qUol7m0nOfFw_+w@7^e}+OIBV}i%eeR4`
zeqZz38mTQ>mAUw(KF5ECgO>jp((F5}WRKo&e!9Ck(4%$BrubWDS?})Iv|yUiui7IX
zqT38gPfa-GcyitChvIMgAKN$Fy1KmO>q{HeNB;b=ULQSIwEjDD_3iXb&3)o(+C4i$
z)1<wc=g1`Om$vc#o%o;Opo`x7t@C+*%s+CgZTYhMmD$BY$5S&iUZ2pqd^`H~sg7`F
zZoN-?1l-x@fB4VvR()MX+PQnzovy#Pv94BG%X&oYwB7n;y*E$(yeeDQefdh)`qkH8
z{CiN*@jBQ4_WaH&`!~9Uk0kfVf7Cl>s~ohgtWke)-+NzOquwJ2>z^KHIZ`68$u1+L
zeX35i{-D!7wm+(uw$wBIvHTdiZEg87{hNCC1I^8gd=%vsD|3QOBc)gGZa-ZjadQ31
z)BhQ|{xis%_FIQs+~aHCm9xaHt-3PLeagotr5jQ>8Uz?DKeIdBnf3F#%g24qx=WAE
zFI?i(tan~*lGM#JJ#~qnC-vOkd@$wq?O6c_tgFvG+2gl*s{CsC4|nHFJ@bAYQL;K^
z^G>;v;7lW7nT^{j=BmDU{`&^YH_7#FbqfEk=s#Y`Rq-@+<E`g4W~@ug!zBMcI=?-e
zxw-ZAb%{rN);oSE>)WS2@Au(*>RSZ-b0&Lj@;F($=kJY~21mOZua}>mSM_XN^dHY{
zANF3{{xQDo_L1-jcUDK8T<Iw#v90z{o65u`cdz6X6druX_NqmB)BXo1N@w5smd|6?
zmm<~Pnz#14-|m(ZpW@?Ae_P(^e=d3B1Xr0Jeu>yK{-@8Ty%IOu)l(St(n@dn@=URt
zy<4THZ@cj4Ql;JmufGg0cRI`GT%TIed`xQk(YOA;gT1e$UVb;rwDZ9{i>2*PRo-^J
zGMr+m&M;M$&9>$mXpCHU>yGKpGZU`r=H6Lgwdd7E-jydh_Whhbx%cJC<EJ<*#ifF>
zgKZ^Wmdz9Y(EGjT+4U{+WsXd`wMZxJhJ<>h@%Orm+DkXyVY5_`DY6cCU-#<Qmy1!+
z755Jbz1nyzcHtG%r0u~cCI3Cy=G8d0-NKTkEKmEuvRcKp_y5X0;`R*SRBr9LAhhS{
zOs5#5<tjCM`Z&M7_@n#yzEqU{jXj)YyXKvA`a9c4@UDiUyO6uS2E)G(557yR6?)gR
zT6LGL(=Cb8)uor;=?A-S>M>Sbz3Onz8pBVl-KQozk$Kuy``Nci`Y)S6(w^*YC!cwt
zi<X}8Sx~bxvwQNylLuJjt3I!lKV~&`%Y~?{>Gn4--8GpsQTp$qQmq@jDrxpQ@0k^J
z+Mi0;%;B4qxs}&XJ5%-gyl=VB&$#%%`EtPKf$(&@mhH^Tv#Q@EXN%<7#6Bo#{_VQu
zx3u+S1<vO)^*C=H6T5jsYw|0RFE&+QtBfnwyga$~N6|I!iyBj>>OS>m@_w+=;OutI
zgU7BM&%Js&+fMt!m+Wh0mrlp-JAdCXOX}&Bvd@ck$~L|z+W9`xAk+NU*RA)~3jRC2
zztX64#k!YfV$ajg{;oL5-1hZ&y1mll(8Vv_H`sI6iT?5an2>)<{^%|9rY}3xd>@$n
zXUN}?@bgnbuQF58;iqZL48lE+_AgxjBQu`IzJ+)CoBI#`MhAWP&(QvsMKfP)=8Bhk
zujNlAH!k1m?HSCxWO7q2Z@uoWvh|PVbKN?>Dr@`YYyp;(NoL;Vn`5@~bU!^^EHjhg
zosized2_SZb$>hZWAdV#&JTI*kJ>3-a$0|;<n;7?WjaNTk9R~y3d^vDNxXjH&Zo?;
z)p<MlLa)d1;&1Lp?d9tXYTQ4pxfkA~vxoWNU%e+D!4X&UORP_tJw3eo=HH1zN|k9w
zR`1Rw=WV@R!Ts(2hx-j{r-yyaKT>NP)Vt=p*;KXVyniNmaol|J%3$fvS-Lw9Oj9^A
z!CUZXz2!gUkM(_fJmtR~z5DSa??csDuY=|#>Nv<~R;24IZMSwfep&SBt%@c0<7y|p
z%J4m)v-|Cg=xxs>R3yzcA1g1gT(fxkYL(vSo!wy@e=~oq|HsY!vF&)M{)2d~Oe_0a
z@n*C7mMspP_~`DZJq3rKxUIUO>h}Hlijzkxc;EjKef@39$GRmY=LKWWuTebyu4Hw@
zmldHMl7F9kI<`cEW#Z1wbBg1qR;}+a(dUTo-*7g&us||Ad*`GNt&gP-lu6kBV7|8M
z$NS?^Vk?t{U+>bH7^ltpyY%hx37szj7wJ6>scKc-e9mIstIArHt?t@KtY6f7#Piu_
zoo^0)G2QC;k?h~v>ix|;Qg^Io6mFTUeB@N8(C6NTo%bhR2%lJ!|KsO}*@w-{ceywG
zNq@MX@oaToU;UP^0c|3^GM$P|j{-KXX5##G(|Ll`1nm#b5g*R?mCk3`djH#(OVO;q
zH$3xra^RfZ#m!Ycf>T*N-}h~O@Zy)%&sp{DCATx)O>^5Z>)x5w2I=ScB(}^EZZbZ<
zbLrnXbJiE07pT3w;*Zpi{>OiH|0J*flYD7U;9|9#4egP>##t-vEyLnxXB<>~%HFfC
zNc&lR=RUE&^Y=(rmM1RC-t^<pqY^E>oTfd2lN?XXQ*Q3tZ*#8l2~)*~==1#9k1D?M
zi@&@!El~5G>Yj?DCjyLjsm2>@XG!$x_qpb~ba}h!?wLuE%O^dIn8Nq$l3LJViQ7Bo
zJ1oy+UY31zd3$#GcbQQ2@&$MGJ|8s5n!j($6eqqPkLM-4J|3zfaW10pT!DYpFaE>z
zqBW+gGB3U4{P65lbX~;a)6aghrKZI0t`>;Cw#TSqPjPOc=&qO7zI`&5xShMNVDY>8
z7G}?MtYmu1UkAO2T9xrn$9s14OV<ne${JFSlr9yptl7b}^PkdB`GDfkyst{S>MP&K
zNnL-VR~jNGxW}J&(*||FwpX4-huP&q&!1S~@N>`B*XQ0`&wSL+TXE*@^6o#Ww%gV&
zTX{d9_3rD)-n$-+(S}|>9){=@9;;lj^z!<z(#<PtoG$0hcMF%8?z6qG;xS{>^huuf
zHJ0k{`l_2O*6z*nZ;X@aG=1L|r?vmGX@&6jg6L?yB@y;^u}6##+za!N{CTzEg~Ph)
zwS6bN{F4`N{PCE*<;#iu`pt5ZqAmq%4}5yuUtyv2>Q-usZIRnGiRTmJ3u~-FM-9|n
zz9+I}%k@2)nM<<7$_jo4IaU|iZO%(&t=YNn;_sEyGg!;EY~r8&o;iO0xA_A5EPqUP
z&3OAqJ?WFuq|d%04O5;=Y>$kMmUR?j;O9NKUh~8Kwm-Tn<Gk&Aze;YI{qn=Qw(D;U
zSH9w$!!SFdz%l0+-`AcOE2TBPH2(U2EdL|+`P+x~*ncN>U-|N$=QKC(wq3GwmmU!i
z@MF?>lo|4|iLLn8^)vNC`yVW>-)4V2*Zbu5kJr{dd{%JYbYFMLFWoISEk4IxlZ-sm
zW0Ay@Rn-za=g)kVee6G?D?a|v4!%^nQeukOMVIU5h9?*gd`?tZUSs^>_{*5<U8QS_
zkFtvYmO7-yy*G8IUCr*32XBhqxXo;7Sx~FdC&azb_{h2MomYRHx_*3~VWNHC*16tC
zxVhgYRu|ixT5dgc=JLuJyXHBb`gmFN=-&D5fv0LGvhi7||7Q@7y2tw?ckQ3xX}R17
z-j+Yg{vGgEcWtxzq!#|!HTnu#t8Am^&8=AP;eTWQw^bZ0_1w=(kMrcNy)yAt=(=W}
zUjiKOv_oBO8<XU3mD&Hl^lzJu?~)4kV~aTcDMT(k(iL*BknKg<mQo8(#nO61``ZVl
zH#Sc^T5M3U{n$S7O;_^&1QuuiZB7;1V)b_Ql<vF_>n0y^G&nskwCLjo)^7gY@jMmr
z-}ZixZ!@(GdwsypI$!j~NuKY_F1uUvOgqx=ad>CXSrl`GQGxxiCbN!PcI$`Ze?-*}
z%v0O)@8-ql_e&xtWxEO0E;XF`>DhL!veddyMiZ)qEZ5KcW^_;E*RwC1tK?VgN?ZG|
zUh>7on^_M{=W4xlKCX~p-gZvKbMtQY<tGg47A=^SFYv?Jx9#$wl`AUNUAq=m-r}+G
z{u%}z6Q9SqH-ZcpOKbP7vHWxRVts~pZu#Nwiy!FCUtVDyv~NfBCcUH`xpvRlb0#jS
zo|r4=I4!-$sQGh_%I8=AB!BFGv^3jR`;nN5Y<+0>CzBiN7U^q8KQEbZZk?2i_GjJ&
zX7?i9I3#xEZoi=a+5J}kM|r=G>Fvw6UdheVD_Q*{W!kxC4BcAxr%rwQ&OLccQ=bI$
z%j5AA>I`da|1MhaQLXo}|IO7$GV_<an(p0uzU7ajgq7#U7M&tlz3LRt-1H8C7n3EE
zlg#EWXp4{Darw)C2AO-y|EOMPlfG?nAu_9M(xxnd9o9WXC+F*B{0(z(lzdewEBkEw
z%8aNs(;IsETQv8qP}+Y<O!EAU8@}5o=+xyX%-{8Jmhs87sIq^FPGvtzzuL)Mu`~D)
zeQdw@`+Ypw=G*7Ve00%$c02M_fwXq#H8aaeH<)K`a!yzl>2R8XL+yC~KUwvT$6fOB
zufvUEqS*v1vv@iuHo2d8Zei=m8(&><`p|s#KLNV^J!|9x%q~mjE}s;zUF^AZ^r_j3
zQ~N(EvU;4bTz`IT`9t>(JI248E+06(^7Sp&yL-Rh2{>MM`KP&E`mC-;mGATx_GhNb
zr+Fr`OZ2H8Sa(!4zv6k(whb44o)76desDsPq@L;RYK_k_pHE!8lg`Zjbmy^0?)Rh_
z9``NVC;nsN?~0f|wpXRywq05uofhP+>Furb{8|3QtJ|I{<jHH-ZT%MBZKwLfJZ#&n
z&w&^768AUjD$YFe?cE*TZ=YB1vN(A#jpOvirVUE_c&^uYFQ~YG<ohfcE7xw9hJU~A
zJu!Wu-h1SbbRqk)hsT-MR^5ooTpN1vc+l#-zve6bSpTi-N9!YRPsI;c`xZaAd+DU+
zq`UJh=El$6F+pB^&K%cIPv!_-+Gq07uJNPVx36E%R)<|#r+oi8d*wTQL#26=jA|CQ
z_pkW6{^H#D1E0*M>TOJ3b@y%*Czr&d(54*2Ti$IvZ|*us8x(lFj^Ug6;d0=m<m$bw
zYT0gK`PN2LQ`z55?47+k&#%@$>-&b!%URzkpIUkD?#+*9r)^*Vy6nS`;;^03UlraM
zdvsc;q*zY);Ad?p^Tl+D9sjz$lCuwH8pjGuuATO^=*;eIGr3Q<9>|aR7#|(|Vpd|C
zrj2My&brtJv5uyQsG!0LF9e&-C3T$oo`jocKCtiLUZ*zy@t%zCf|PvSvaLt@_B^aB
zcUW$DB9A?9>rJW7Y+0VKuPWKwx18LgTvhVc?bEeuzYJ<#Ygef3=$N<UF;~Oq3C_9S
zO<y=4jOQ<X>n=4}we@!Hjg2Rt9@pM(Z_+S#-kjul=7n8vzUs?X_<PN?(R{RHQbeNT
z=gmJS&to{P^tkBjsfOrVTi@3tKU(dpXMLVW#oQ{p_&<Z(>Aa2|2UN?B{@O14TJxOe
zT?OMW=i9BGH*FQ0cG{!woGatPJ$(0)7OHfLJ-pfHU))z~7`Mzcm#?08Q;o;G^WnOm
zm2Y;s-q1akQZV7@{GfuW()IS2_Y|+p+I~3umTJ$-=}n$$vy8-lG;7>hy77;Z=y8Vd
z<r!i1oL_JM?zMNB7d?Atg!RkKkM0=sFw~v54AbFM5Y<`UH&b$5rTLzQXW|d9H80H&
z+o$khjqt0JGONCeU5Z&4ubqEaNz`{~@#JYb_EHx<%s={{LCBT;#vl7dv(L&fO?vs!
z>ATq3`$i@QH+Zs_Nt7IvExsC+{r<sQKbK22#%eP)^|}@AJ+No(mW)uD$-wg@d7Xc?
z_SzdiZgJ|>Bqy0%V>XP-+$4T4LX`2%?2-f~x0gy&`3qkJm50q+xZHW^j=lST?AZA7
zVtha6nODo-m|y44O}pI@pp>0Z_dZ~g(i7pXho=4f70Vy$?fG!na?_0ie%D-s%y`WD
z4Ng8&X?XnfOtSj>+*MWU8}r}1zaJ&A^^PX9YoTsWoJW}QvwQ1OXGUx7H{Qg<e5$$Y
zosDk!>X*Ah!alrk`|Ufs`0wN}#)Ui)Y$=&uyl33PPo+yfUu#<W;Z?%{PaEmSueVsU
zoPB1jdv=enQhpA5rczk!k++8v3hZ92yZle|dPj+M+Lh(~{=a4NcUhnCKCvo(pK`yU
z-0?Do7nSQKeT!udo5t;}J)_37+-7&m_8mtyte3Fg7wS<^zz}q>@%NqLnDSnec*zRC
zN4F!czTfJ|;=SqKBhE#AS5lfcwpgEF`SMw&?d6HrhEu;VUHucs<+S0)x_{cwdjwTF
z)u%Ddk7Ul%vQBS~s48#SC-rKcQgl4)nps<3h_vrayCcGr6ILc@c&uy%OTXXO#p(6Q
ztKMIE|An*rglKfY*3I5!y_To#X9UVis%y6?o3h+v+j;eEY>oEnm%o;_F1YjgHs?CM
zkk<SO2V?`oEv#qmd^wLVcKWRg{C?*D#6PeI+<Gnc>1Ft3A=U6o$!)u97DXuC6$oH_
zea_P2nD&lKHsv3@uKkmK{qtSUUB~{~8J`nul9LywEKpw&rowmiGuzZh(fS-tyTaC%
zsx4CGO5Sia`5xQjp5rpE&m8z2CgrO4l&|+{cmGhg+`^7;LoI)b&eN^dZe8cx<SQyC
z2^;)zGrYrf^3YM&8()3Hk3IVC+V`K~@HeqrQ}icnFEiR0w95a?$8#$_vL4s+ka;pE
ze46{Z8prEfJs*7(`8NHR;{>;jE&?a!>z}!owNIWwz(BIF=kZ$KNBp8$QDO5ECq27%
zW(sR>OMFh^c9t#1yIiFn@EC-rF*nb8w&i|Tlz%s0o=NxY<DvJyi@la9Ix*M2@~OPG
z`h^GcTDr~#Rxin0x^Q{%hsTE|N7~GjX{zu&)Vu9FA4^S<S<QXTyxHX%c3-Q#KA3m@
zQC;O-xctVQo9?As<SpD~9JbjxNbavb@Jf8%%yp}Mwth@opI=mCbm0!mt+%{~eij{D
zWfxXIyW-ZK4{zF6uI*Ki-IFoxkoNCfzZ-eRtDQF8Zac<q^kmZB4(99oG`$u_89en4
z?*3@}GJM+U@<%)NH0|Hh`}PTo_VEL^W!fA2-)%Urz_s+@Un_30+~mUs>y~a1ww&fH
z>^dppKf~e`tVTr+cl`HPy)<3V{v-WJ(b`?z-rjfrGicp;Z}wcKp~qP?p-No3nkQWK
z(Qki=ig5qx)i=~HD{alGoNjzHpPgYskaNdU_VuSE9xqs{@UG?YxBkeB^%?rI83D8Z
zGl)3nOzRWVc(hMjW;f@9BQK%~4?fN^PH*BhdjHsM`lGjHvGyKU(l=yWjZ-VKuX<w{
zb9(C({ST8w<`pgI`cWSCWA{VZpz_Og3f`$E6E^s7&%AglHSorXnk@~j2M!*vNw>K^
z<;U^k@%&qQXZ5$}zN-n|!}NLP&DqNDD<{e}Xgp?QmSbdFWg)6tmU39&{O%gpkMYN?
zY(Cw1J-ysBd#Br7hqY(Q86NXY;Bh}@p*ZFH*#hx-`dhD=B<-3K{IX%Q`K^UV3bx1O
zyIW64|Gl)m>SwUe--R{awRvk7WUfxm6}xdn$V@?@M|NK(gZXdIAH|bHRX?8Fxw`Vy
zKiAgN`qR!leWzTocFt;#@XXhJ9+K}YYy}Qxt`uH-=KLzXlxtsR&JMg>%CfbosB6<L
zum22txGc)#wU*0P8#4D5$E;iXvF=)Q%IuimwwKyiJU;)O_F9EcRyi~@k5lnnRq^EG
zlQYeCotg0S`^J0jdHah}3%`|HDzq3pm^_bbPT$oV`fb<4cROZg<i3l}nV;QvN4dGl
z+;C#qhV#qqey$Et{C4!*sq>FtbHARsRhCI(-I9z*u2TzkZ^&86Z<ut>GQd3d+ZtQz
zBbQ!FJ&rn`zA1W<!KM?blP@Su+-mV;&YY_7?Jwk+{`iabp4+|hR&SC=+0V@7w|4I2
z`di4(Z1?b2%A<V~e}sPse#qXRbLz(u550%S=ch|?<gLByXW+H#tmHXPmHwRTrd}KR
zI_@Suxq4paLwrNrb+7r+Td(?*OE~F1PiCp^bL3UYR_U^Q(E8ZsW8CG37Bz~?y-k;Q
z?@=sW9&>P;`^4o|y)7FTvPishu1ud$QR;l<Ez{opfj=Z_Ox~~jp%rWOR;lCt)@w=?
zSAVjw><d%1keL>Iz4_Xn<j3+y=5tmQ-S*pXO-I+pym0N!W{q8QVqQK<C=(Iqo|;s=
zgNMo8QdYbBw%NH>w-e86imN|_anCIM&%l!%zRUDVV*qz_$2;XIrAMZ1s@%x){g&f#
z8>ye>kNSHqrEO1|6mwu=!*{7Fcfm-G=YM5y-k<-?QMPhj{1JQhI{7%0>G2;X-njYm
z%$ab%))vLx$I4Iq{JDFb;Twzf)*se4ZrLmL&vN-?-9Ij(|1#IUyZN-&@t|Eu3*(lr
zTK<>z%GgS4?>(nAEyeuS{Z{?lGi4jrEtvSp`M`S%`*+*59G~#;RUS>vyydreMQ7Nx
zN8TZ`d#7*gj4dkuw8iT;*Vohf+p;%)6x;Y9`t`zPcVD)Nw{AF<?~^N^;6BBBQvEJB
z_s<ubk4>A!)~wpz@@`$4(9YD)ks=S8ce31zHk1$iaeblNY-5|NYjkt+UHf+1o;q}-
z=AT2Kk;j1}>mnUrUeB%$+xxv~?E{ZF9<gpBS_|%;|9*{?VdCFU#&;US9{$*$zwD&R
zW#@v)E0`RMSQe}I@kN<G-VpQa(azWJWh+)k?)@D)VfSU-B^s%jDuPE9)bm(3s<z7-
zZV|pd>&4c4EBGECx^`_>+N8X-OZS*(yj#n-<+p(YpOH$sw!(46$z{bS;-*etogF78
zURV3AIbHkBY0r(5Vi+&Z5*El?GN(;$=X%pUzIi8G5AL6GSUGRv+T2T)!Rj`PjUP;X
z{FGgJ{eHt$KdKK#^=&R(yXSKJX|v;oCX;Nm!r7~C^C;~+Zj-$7fXcJfr#n5>_qBV<
zEv~s}A}7B;StMb~_FG1lPc$2At(e%VXFV4`VyAE+W!fdrWm|gNQu=Hp&MRB?)|VZ5
zJjqdcPPn6e%bw6e*<Cko`t$al%JZHU7ICri4%56HwhRYOzCJFY>~(36{UdqhBUOEi
zt&U&u-Ee!#$^Q(~k_(SnzH)du>!jY1I}3}~yo~a>pSyWa)3xw}&Jr^AVTscDC;u?W
zO*IkQXL3E+`>d&Sn7isEPc;D%+1o;*2jm(UUlfMv1s{r<d+$EW?JeOwXFtFEmgK0s
zzr27`eVw_P)r0WL<$vsc9JD&LZQHd^$5!or*127)aSnUO+{Y3>H}LW21O_g7yWx@r
zFVnrtM}9rJRk7{eaU;>*2|sUdXYAQ}IoHYXm9)j9efuufC*1BWyYIK}!<uPTpJJz#
zZ@r=~#nF`aGfY`(O=`PJr_tHhjm;-2>K{H`+R|VDm^<Yo%VRaoh}y}S!MhdKsahU)
zOJlyY@8yL*nX9~4-OiZDab36M*$pMv%d&Z1r#Gv_#A=;b`ZvU?@xX&;d+x+$>bJb?
z*Shg5`9b&_>krRPA1MFyC+0)Weg3z9ERCb@`r6${oXWNO?;`GPDcj9134ao^-r#X-
zdE@(8;(vtMzh&o^9Y1!D>!a+uxoMl7Z6^MlkaexxbFXLkomD4#FF%>M`})y+JRket
zx-ULnoVzyGyL|DJwTI3=y??ZX@tE(ro1xcbT9u!kXWtw8!Thc2hv|pq1=glqwh>(w
zbzh}T`szhhZ|O*$291;rbDyLn9aqWst9$h1(Vnh}Yc*r7f5}dH%Cc_z@AKEz#vf3B
zaKGc-bl(py|CBz|&U)kPe%Rd5aC=zbWWCv3ho2t5{*>p3%;uB_)pmP7eE(MeWA2AT
zH`gtg>~^VCwC(G%EkZBF6&rrq{0uoJ^6`|%`8hnzU4LG+KU)8m@o~kvt?OHEUH_Kl
z(DU(NYR2hWIpeKMCe@sre7Wd>eBQmuOMi$T+o!at+4t|#J>jKmj!oQpL@a!_>!D7D
zu#CkCpZJPDvnEuRpXc8^b={MF)w54|-Zb8O$tLo{_J{lS{c>CXF^sp~WtN)3!BvNR
zkMIjK?cCM!Q)n@t*=DWhlE?V!a(`_6?f&CH<o#?rnGgRNrUk~xZ;^O%XNLNjLV*yK
zIWjtZ3#z)l@8y25{=j{{&g=fWt&aYgxN=KVbO?`(=1-nW^YzSB<Y!K-lwiJo)TZ{a
z`H#wFr`5Z@XwSB7Had|Uy`oc{dwbDT>&{yR3muQI&G%KiRNvWiZMM9r{#*Z#(#PYZ
zxBMviCHt&5XOht8imJ#QF;m+(kBd_bo;+lp`pWC-$uIIfN&n10tnX6Z-F@=@x9*M4
z;@X`IpSUc}He{b9AvdRdopa2Orw{K7+;vs&Uz57gd&V`9DW|4ASk$9;+pKu*-eNw^
zH~dWds+$kY6Zp7qXSsaKpLEsF&W739tmSPlCKw%%ZgrDTc$^k3dYj8TQZ@BOv6tUB
z+wXBdnjb|=d#>42Ewby*Ox<sDi%gp`rdrzhO#3m>y-4=9tiyWM`N!?~_7tx>yzu4m
z-%9^n?{2!pwxe0%;gTKld-~NUc{jf9o7%bdkH<&#7Tw@OaTXV!?ArLupw#%=WW~G<
zoq~IgNjykk`(}C}(<;BECZA_*HS6;xIg!u8ZwqYqPHAnlzFZJ?fXkUJj^XvSZ7r3d
z_wOZK&YiRK!}p`LT>rA?+IhTP6ucvT?}MGK$I2#MIF^!k<4Biull$qWa?^bNAJs>0
zg>JFa5w2aO&Tso~QkcB)?*ogc{q%V9tCS&pc4m}+Z~a51{nHO$7u!{SBlfX*S;uuw
zEj>%!XD+SPkCT6;+k`JTocQp5$K@NbKPJ87&^I}7aqWR^1=EErZ=HK&DW==q^Y)2Q
z6@y{a?t9-&daAa#F0OEQ+Ir=k+7I_a&VAec?@P?sw@}Kgtkc}kB1cAsapHkT8`kVo
zte76$6Z!g<QTDdhjWSV<(P;s8AGtR!nb@ABc+Oq@^2YxREn)tAhe7FK`nAAQ$;KH^
z&U0@To>IE~FjIYpx!l*AH!6z#KC0d+`=@hh&6XD`De+sQ&-1QZU{n{N^EN6_(Y~Co
zv+wP!qgP%XmyPWgzfxmq-m!4!&L5`P)h5{z`I|kzmF(309-+Cjd`F7xHirT?=VYc8
zw<@Mp{JG10boSHB!ZUTBtG}Inh4IMs=!<p<-uxQ;KH=;787lO{(*K>ju9yFA<_y=I
zmvYlyOU<(@H`=|A;hDMr@?~M0ALmO{xK&%nmb-UpUf2@$=+)Krs`ZcTLJym45<BkZ
zcH+y?OtvS-?oOOu_|TraV)@~F?(NUb%r?HY^Zhlu<ng4M8`s}_DkxYWqT^?HZ~NN$
zN9s5>v>lGw(Zuc2;m*5e+JA-|>Bz#C8I|6gS_Pr$$E>9mi~h=*pPespo0sX`Go_3B
zHguQu?_NHoao=_6?>tH`JXrd)=C-%}iG6r`_gZ(SEALD*@4C+vn>YLIR6lNZaekfF
z9k-0Ra^?N9qN+Fj+m~Wh_2OJ@-ag4YlKK0Nm#3Y1;xgT+d$%da^0F_^JWJ9iPA^#8
zR~4qW_kp}v#mdK5w&*Gy4%!+PvVG?zm$FB)4}_K;pK2f<X4mrT?e-oUX}RUa_T4u2
ziMbW$7OHGd?|Wv(F5$7%GdcN~N5qB6&6BL$*JV`A@BDIkZDx3Jyz>r~<S6~+XQiKW
zB~Lu*7J81;$=2}J?E1^9m$z-#JihE!=Jd_c*|U0kw?3OIS+StW+3>TGoztb1_Sc`*
z?B4wL`Xo7-4{NUo-HVIn3{{!hGHK8B?9WV&9)4$ACY9$#S|#7xZM`=<^26Uh+K;~c
zyMOu7XVJ&Idv6)sc*%QZ@tN;Dl3ouIl0|#h{J4K`miAE&c9;D+D)(0={Z5widXyyV
zoUV1MrLnm$D<tKMzvHr{tGW3Fv%>^j7yiiDw^V%EeciREbObeG9+gg5KV?A)kNsV_
zt+}QrYn)k+w=dt)?Xz1l_FMG3)MFMCFS$7O6t~=+cut%7$c8@-&7rYbKT~(kvvBD9
z6j`&a&4!KjT8Vq;F-Zm|t~o1gKmBoh^q+y}$F5tIrjKUrJ=~i7%|gyHfI+;wv&Y?r
zN7Qka?d%ufo5Od`uUYwUt<$})TO-%2I<0Db*SaCea0|!uEDQO&Pc}SwwE1g)r*`hQ
z-I;Go)r)6J+=|u_s9fiEH8XOtD@!_yn6j<q*~)usAL=r@?aj@0>DAeH&MtMo>$GyC
zp1jPvpXb##Tc|Hhj;%O;tZ3$z`)@W@Oi-FB_3oq4RgvFz&*e^Sob#*eZg8yUtY=oe
z&cVBOU9Ne{_R!?z=Fi<T{#_AyGV$rp9MRbpuL>;Hmlg#5=z4VYOq|K&z$=L*0>`cg
zs!!fn^=I2D!=4AmOqC~-udU3SrL$|=jPtU8X4U@rlplK8<I~~}{+-(%SEoF;Zt5vv
z+S$FH*K<L|Jn7q~y?g!2EV?{P*{2omsM(!3ahlBse=cp8Nz$J0viEoVvD*~G&vIU6
z)5haBx4bqk<a>C5lYy&!j?nq*mTQ+^-IG@Ge%`4&b#M8eyUla*v~<onDj;~@$l!~}
z-!fmJM;v*2I`8&fR9eSjpI$L%{w}{iJaT?)ywMlG=*vXE{BYafTKDX+r@`h^Et%)8
zog%$cre_j+@jMOVO&*hdHhh@2a;bmzx>#S`Gri9}Sx?PoO%i`M<MF5D`X7SDeM=sM
z&wlwi;(W%plf_SNH#zBqJ#b-{Jbip~;c=Pg%#%FV$6b2!l~>I<^Reij4B4qRCqsOt
z87DaeEbK3CaZ{+eKH<l%dxvaO?o>qGd-aJuHFToLEv3eTY?e-witi|#)&8P)cJ*eX
z^IkifGN*BF%+&iZaTRC48_R>9&AI3O#O?mRZo6Lko?mU*cd53?nYk+3TQvEW%wv1n
z&1ht;%)2LS-pXZn?!`^tvp-`Y^Yb>2LmvK?Y+)xHFFejrzY=b_^3|rp3l2=%(5bL#
z!tT>$y*2mZec0-!db}x5HoeJlKYYbffA0zR@4S{%-kN=6R?;bt=C>NUj{_E$T}eGs
zz44FbIjdQduF3jE$gX?FD{%YwG)@cWD-*S*+~WAE+qZZ1?GpW_@Oic$OzJE?rY%o=
zcvtw0F8BR?+_Ja*UTpvOeu1TqaUU~JxcurGqaT$IxAeU~v`=r#)pZf}^Z(9^43In7
z8D`+jBlG9UR|(Nc>v@xsCCoRzyU$xE@BMM|;j(49k)`b0_49H{#djKfC~Qb(Q*2<A
z?A%=(zpPI5KSNXb?H}(CpSq{rW@~kIk*DG`?edC`JuIJZg}mZ8a8vSJb@<c&3~z2e
z+N*c^=;?*$pT1mMa&f_qdx|@Bcb`sY?d<GgI}x;8i$6~LYq;Bw=^wWroLryw!~UpL
zc-NW-9lN5kj(KbLmj%}5O>!`>WVp>=9H*wY<nk8(Ai*$$Kfb?Neq260VatA&J=H60
zIJs3ezVghj%;m`W&#<C|?P<AQ-Jb>PEKZ1il<(f3{<i*L)$j8kjh;t*RB{nH_HBA)
z61R{;!?6yLGOpUH$?+@gMeH;4`6{fcqvJcwwi}pUacsRm)jE2m`n%a30ZJ2ZPw;%j
zaI|LQqx~ILv1cw<>^@kh^5N+n1E)#Cg*L6z3l$W0@NSIQW|?4AHSf`iu-O;8z2}>$
zxBL@0Y-3zu?DmmIYTDdw;awU}HVg8-JNB?gkFB6COlJPl+T;(PA3bm1ClPs6zgv0t
z?hO;m|IXBzbSrboF@f2uO|?FL)$N$rAK<Wl4*%Qsg+CTamU#E-yxOdI<F|cf*1z4V
z$EStcI@<izKJj(F%<EsLJ+qCYe$*<RY}3_ycz1#jCr=OW%9GEZcH6%VPuH2(?~tXL
zRV)2C|MvEn>M7el)HmyzJiGMn)~j=$K3%g^?JD3?<;}BsaClvugPXssYt7Qq-@X;+
zem(QPeYW1u*yre-*+E5TiYk*lpYK%pHS745t&Ph(c1=CwRz9J!SM}~;CyD<Im0_kg
z7?tPD5x&wGCj2<}phL|J;r`uE9BzC&KmVL<R;m-{tB&6A3;!?wIlTG9{3G6njStM4
zers(CkJ3~X?N5DD_Nopi-h}rV&ieK{`aeUTfyBC{AC9e-`J}Y-T3GRNPfmu!S(>RC
z&m`nar-(6M+xPOv;@@t6EUzz|et6T5B3rj(;gw1!rrGPWvn<&yy7-oxv!=SO_EUa|
zn)s`a+H}ni@tb@*<9XL+@mme!387|>QiCV%V5lw1-evc1a_4m&=XlQ3>)&SncCE3~
zUzQdA>=7%wzKZM21BnM^)UQwO+xq5L{U4G3N4IXAURW{f*yW>Asi!!eZoRTm#d(5b
zXUNLV#)CYI3zU`bKe=gopR;!F`}O(j*3X@BF0t!g=JyAs`7@K>H(4lrUB$aj_uF=s
zT|D{AJmu|T4;_A5<gS{mvhujfG^M#dqL!;o_$BSyU-`G~&-WLKx%u*19OF&ZrHf|F
zce`5iq;LcOk8k^C&Q#;6;5ya&j^X)jll?z5`MMt#t>#;sxhVFAfq9}TZ%Nu?Lt&wP
zM*{oze%ih~`N!VEWhUPZj<3tg)_Rw8Bi=HC{rrj84M(aNjNe90$f{$wwC+sNE9PJ!
z@&1%)Pi2+QhgC4kn3u48KEAhb&9b>)qC~&Gj1K;KD*pE4hvycqb6;6ecRlFx`?Sh=
zWtWrL&OPi<Ia$nj!oAFT&+7!~-v?G6t-O2x?ZuDmQQD^GW?fwEb1%4d?M(NC!<>S*
z-0ct5x>x;qy{+5ln#s@QAEwTVy}MrUZKiHZ){=MnGCK}^J$}l6X?|38(48fLx7W_y
zdqrVpqj8MRs<VyT%s)L2K4zg~{BqWc1kK|f3(rg4dwxlLzGRL3x*tuC9v?9@zomLO
z=GMWyv$@3zHqt9p0$F;z`sXVJusN5n*~|9&f!OAizK{HQUVeBfr`TV7c<E`?BVuoF
zpXr^gb+GZAvVPBl#)EQ}>$kV(zg4*S^oqFOZb@GDTSvFgxbd^iY4b5F0g;|s&741m
z4;5Fq%)c=&_oMua@50A*4=FM$Y`wBCsj2YOyy#_YY}pGF7hiTu*~oWm-p%}v{~5wQ
zsLW6P@SmYYH|6T-)jm0oW@yAMFz$0yDGmMg@!GrPAOACWeau~zdC&avbf*k8UD=~^
z4@o@!Y?t;~;pd%sMTPC^TPyn7*Z*kySFe3^!tCt8IZ>z8@*I6?PE8aIjgjjM-SMP2
z=s&|D?g#NA-j%Cf?D}RZ{j&0Mp3DK3-5wGF+#Y_?e9M`)`&?aPs`B^gXQj~o*vU~%
z(#GXWC$4gwdp~<ylX;ih-R~ar3t6k?EO=77-f;hqPLtJU(|Pn)-#Bl6R_24J{gehd
zWsU{P={p`P@2z|`Kl8CXYy8>dg)cuv-E~y(OzSTBV8B>m<Ub|P;`LPfspW$4S$68#
zvvWgul>;KYOg^6QadlK#t!FT=oxSJUsVRX|W>@uWxxA!v=9kxj%kLa1P~Lq+wRz&4
zRZZ1j6F6VSX|BuswXJtu{``<#o&oPY7I*n}F$*8QYsj-Fx%C*olg0Y-oj<fQ%elNC
z?G4I~xYL|-Ezm7-2TQtUNo?bRf5M*&FUWAc+@jA|qd&{KmOpyh=h*Fcr``EvKh3K4
zOSpaP4TcX6Oxs&scHNoRe!42ZZ=YCvTz&eFSI*1*CvU1aZ6zMWVB{=z$njNS<J-84
z`QPSq-%|ZDt*T~L-g%RIi(T`xRea~JpHsPUpZguHJM)&Wt=;@#_k;6?ZKb38^x3kl
z%oa<yO}TMrPe7KyrU$(*xvb9Z*E3tCoxZ}<x~A+$YI=R~(%UDW#zq|~ch{XhK}P=+
zbLD;em_O$l7|;7@cP&$mzuS3XWw}lI!C!jIS7(ZC_^~>_!{qdnI~(lOBOa+YOnxGw
z{YPO%o{_`3>`m>yALcbod|A(<6#29={;gEm*2<^eO3z!jR2VFs{=?;l%43zJt$fQr
z{5~=<R=+vn(wE!6H_A*p&o%Rb<imN@5i=F}91hNO{OQJF@kr8+^=B35b<^_8xm#XW
z9QLixHuz*d$!v3Li<RE_hlk~!Jm7j>8urQbZp7Km*W?fS+pRR4b<6ik-!bp*lSy5X
zOdrJT4Kyc9NN<y5=Gk5o#<%vP@Zo)CZriSZS@F(P(n#vlfsU971xqKM$#}xY=p?<&
zK>NztKY}0b$x2DAU%&RNwY+-Kp);4=USF{Z*H;UfSLqVq&QN%sv-H9I)?I%m-TJ{+
z9bw8TIW>3vx_RL<IT*t<T{=WJA24#eQ&p7lZQ`q*Q1grP0!tqp-Fbh-52F`9x{f;6
zF8+S6Sa}}9tb1&29y?D>c-r{x*y@+}tUo^MT@vM=nzc_Z!)M~{H7i9I={?@wI$6!%
zm~q4IUHr#aUonw?^LzS*tr~n&i}M>6pO3ifH22Jop7)7&ChkdRk-B+tt3TshC*SyE
z-!I+qc(Jj2uc=RwOL4zZqLRjBW=Tbfz6B|>-uU~5p7~k2Su0EGddr@A_CLOPk1m<A
zP58Oa`E=GMxfxS0@;zgis_L}zvE2@--X(SN+V$DRdTUMhPZ5jG6mnXwpgChnS7;T_
z3Wfg+72)-(4nFYCwYl@+^8QYp+ii1Wm(SQF$MR8qO31gT9(IfNqz8O-?Y;VO_ThVC
z*{|J#CA+-c`qZ^NQ~8dDZ2G-3@TDK;TiKS!x#wf{|2Y3B`dYm$bL7k@!%`NfTjik)
zn^qs4H@hu##$W%a<5x^{{bH3K#p-4Ezgg>LV}5Jx!bv&J|2E3bKI_2e_V%FhN%o$C
zUuQm7wEJwGb=rH!#gv$LJx+RyQ&pO`zj?}>Zm*!TcFxyz><|Alv~SIquV}R~e8^iJ
zcxfw3<;MI~I={TPPcwRUPgBt5zyaajx2>lQ9?eOZbnoz!>ctmyQZ8??oWfbAvQ9Mg
zX?6RAjX%p3PdxwIdTY_%+g?9niyv)^esffEvb5CS7EN{E)4~%Lx>Ydlu+3JE`a7jg
z`^PGdqz})#<NdEB1*z=VvXNJ%QE;aCnNFV8A`8y%GkPXY_PJ!o_$T#8{=@3?0)L$J
zS9XMkS?`X{zI}UHN7K1aQTj8D4D1iBabuTI7wrw(?sLiH%g)zQVN*Xmei+_a@}Ggb
z;@>w}@sOQzrHfB|Hb_gJki0uh?Dywm=PhSvNCYq(zg%45{qWrSYV{7&9oMSQF1__o
zwM5vuPb$=5rDBp1=RuVegV*t#8RGY(w_jY+?)q_R+wR3NGO?MP4^4_}Q<yvH)|t0T
z2Fm|tZmW8>GuQw4bmNH3c``rpA8FL+ip}MAmhFlV+c29Y!Sq0IAv5y?v(p>+j>~*3
zGJ99LTy*LA+P345wso$T_6<7hf2}0@WQ_aD4A&ghZO%JdcW#+`+TwO=dRMq=-y;Um
zPxp`Li~nFhy6w81@Rq9zS9IULlRvXD`sy5QAwJdLPmF%G-LcKwr~2deBYxhBEY5!l
zvA17NzkVk4nfd;V-cuhto^`RGcwCS_b>l&X=Kk4#3fKIx|2X${_B`EcU$^g1ro`M9
z+qygABx7;G8t44SihnDQmR(rzJ<T*_?%RbA?pc3OZ(q~%@kesN;dK#CpMP$cBa{1C
zT8N21AaY}0*80XjijQ6-O%B{~@!y#XPxe02($SOdQN1kCwW>n#j?A}bdxc%+JNOHE
zuKZ(nspLO{(5Z%Jw;r)c&EdWxx?@si@_crS+fRS7T0Vbm&-3qsy=eMgd4AnDYZ50U
znD(rdpSj7wa?%x@B`f9iH7EC^Twk_aW3_Vcyx@oLZ@hnW|EM+F^{u6sxBQ6E==v1h
zta>oWkEuK1#Z87eHZAp9w|4*Ssi}V0>&E?`;jQRL-#I#KO_wfxarvDi`;x*K&CU}q
zw=Ru6tXj?Wy`oOu`C;|*Yc|%)Z~usTJGJN9H}Rn3%dPjT-aGT&rJz#Hw%tbbyz;39
zTRxu3es=%3+2<^?>&3bKL6<o8HhO>P`nd1)jOtG(!vAiJ`LtI3!;83Xm+JS2PwtaH
zytw1f?AP|XOPe0?2HG9dT^b~~_|ucy(r+!*9Go^B)>NML^@L67Z_5g~XWD1wqbB?8
zGPhp(TXpySmv1V<g^p`-tZ|oqI6-FO6|SG$As?<E=FQ>e7manU+we(g-##Nx>2&r4
zw@EGvd|ndgB_4~OwQsLcT@rDA*&n+r&-SO*Uc0va(uS>02iih*dMusjZaw8h%e=SE
zF~JL#YM-2?d9!-?{Wz<?yX>TXcs+gap>)dhZzq`6eDIWduVwjJF?O>apWEXJg|mKM
z5B|^4)K#(hh_SDDbB$G;=VOD;r9JM7J`XC(J=Q8su{S^Sw<>90!KE+1HA>qqnx18g
zH4mC}_xAaTw_aItO;~a9)Y7RJ@)$G@zC2oXeIECZ+>)+)hI_M(GX>-`()(mLi5)i-
zvy?5I%5LkX^{{Q(KGniiZ*$UK?&?4OUg*xrReF01bNT)=+|xbNl)31zki?md+dh9z
zes;^hKzr}S5^vkQ$NvQTJO7#O-LPv??y_U=ZfM17-kvP%cb4aj<MY$!E}pw{{mieo
z*XGO4xwebHBkYf>CS&eIoA14C4?ayhaq{;<C;7mhM>~Gh>11tqap^{M*7xaRpSGRM
zEoJxgwko+Ty)a@1U$0c#c_;1FH#6V;bG4d&asJ|2@8A4q_`qguxbz2i<hDzu5*^l0
zI%1cxm5YUGxBh1+oxYyE>q+{D?+sget-kI_O<b5I7{QuYzU+?ar77natCQL?{3;bz
zClv89ntmwVH~aB@@!QHjimb0}&EqNhxjK8d^!{rGTowl{*{}S%_ICf_`yFB76Yaac
za_q59E4X;~XHe{+#s7BoZe+9haOANquZzard*6)my=C*eO!}LDUA>(peD6lb1+m^Q
z?@gag=v!d+U_s*niN~MU&o6yzen@wPR_4UB)r_(Ce4i|pkgJTi+LGINCHLg{;CP4E
z^SS;BWGwRiHD%V;t4EUDcH6~d96fl)kRvqlJj48T)jvxTAMePuKO7Vle|yD|`^o-F
z8OO@jR9m<mkWewJ&AzbY(xqqV_G$Z+FKy(Tzc|KKSjfI=<87BCeU6zCDP=!H_iC^C
z;C`^a<DaVMbg%7gH&t_-CZ5V$?8ZLlsc`1O6WkN5KStjZ_$W4i<?F&9(GgoWxlV0y
z)Qh=ug3m%<XpX+5jK{vMzZU;Ct<nFGQzd)Gj%8MasiniG;E+j?Ic=B9Yc@_U6*_q{
z^bT{AaTC9py7=j}-AlPo9e>*W@BDtDJ&L7l3qLZuUtP30hJV{z<J(O|4)$rG8rDx1
zO2}4U-xdGwoV<wo#cB5sE7caJ^lYk6jrQRTKE*acOW$wzZT1VZ{{Hw8oL|5E$8z5f
z{~3DhBz%+W&1aonb>pty^2H}MHhGG#{{3SH>r?ecX?5=1EZ6fN@4xx^L404S>qoyG
zn{WPTX%)z-lh{4!(o-Sba~<ieAB~npJWJ8Kdpzs&(^;OYBfi)z7kP93>G#;bv;H$=
z-skuc^*QvTOHk%DBahaHvmP2fHJ3PiRC<k(RdMf~zQQ=mWxQ63vi+Srn|crA?TS|^
zIe5GE=5d>M%2%$xKmOM6VQ;3Lz`1SfOCR}WT{4e+m$GT=wkyy3)srL>{WW&@Brr;C
zJS@BOY#nRAP(}ISUAJFGZTW7t*|YHXi}!)I0?L!wj8fRyo1gXw&-${#^zV{*!=pj-
zwJ-c?KJ-ue!}IQzvU0&Yr&(O*nfGhUD`;|je3Po)Q~Py&;Km=qD}Oq@J|uN!pV#(j
z+n#?9cUW;UQgsT)l}UbP&z0GgcGtJen%my-<;J{R<Dktgi*tA1n#j1lamKPl&Eqm!
zE8b~eeN$sxT`s(@yC{F&?PnQp?aLk-e-<-ZEp+3UgWujC>&>>hEnU{gaX+j=^!pzb
zIXUlI?qmDpwp>{|Ep%#dSh30^4g1=qJuMaoZ%<9NTef$%&!!K{Hb2bno;k~(KPGw+
zceSpY!n8>`XFpf^t54@z)XH9VRb5%SW8Hhdk2crjLQmbcx)<Yd@n~vU*ryLO4)A?2
zT9I*>`H$hM<^w0$W<KU`tCPK!lk$;u+x-6w9B;m7DHX3gwNmEBK_2Iy(;3!(n7hN)
zLpGZ;r2En}vt={Oc-g}~=*`Ss=M!bgQkVCa%}~dknK3H(_cWUaPb`l+dM^3#`Qi5d
z(%-hh$E0|-Ocz+Dw7V<tdEdi(VqATp)1UsFo_XT9>0$3B6}KPiERWsfz1HiT{XPG}
zWSz`qDMh|VGB$gJ^gS~<@w`B3%OCxZ$=>^}tozEbB`~?Z=J5G_7ao3AcRkK5w5COo
zA@Amv?>5giPm!H7ZSn3Pd#8WWf0#dBy|+5WM0)+(yK>($E}YuT9r^Z{x!&u-r(%c8
zV<!3Y_suPT%l~opH`5=w+!^&-gtF|^u0=|5JiM&CblOvu?aYRAoeU-%H%OD$xvnlZ
zN9xatkNIsj(QD#fZa=w7Uienb&gjAwrU&PVKRmSQL%{lbryeg?-diFrXZ_K<G3H10
zBesp-UYEr7XV$YUV@mnyV0`M}4W5Ti+tpWH*FOBVym(<)EPoN`5}XNtOs5}Q`=FmW
z^Vavayt_{YU)5<$x*Rag;^t{3uWS4}-m+)06-xCzpY_xJ5#R3LUYWo4L_M4T==Sd4
z(%<wmN|tswti6)IHQ?ihytg|))P1v9X=D80KLgtq^J(`K%(k5^w6^k_IJHS6C&8dn
zB}sJm<i@{um}AR3zQ}h;1zytoBRKoTfsD7MvKFh49A5od?uz4q(;IJJk$2t{*z#`r
z{gqQ*ea<To|EIO@s>$KpkLS)^i&&JzdUm6Hz7T_XP3Nb)gi7fN-<3s=R^&f?-(Hiv
zY;t~KV)ZIxPpKO*XLQpi-Ix^Kan0WFz!QbpEPWp5vM+9x)cGoF6lrH39Tj8tcVFIg
zqmy-MHcTH6@4BsQamP#Wg51?-Vf*?1Xc|OY%f`R`^rU|Aef67>&cdy7aUT^A9At`l
zJa@6hx*g|ESKA*r<sChH`aP{HHnQt(ypU7axPRKalPS>=rWT@!i5FH$F#D@??Rb7(
zv4UaV*1fBKq#xR+VN|jCXxQRIn@>vH&n?%>eWtVHsY-IW)aSdBg?FwS+xOV1{wOM3
z8W-iaK40ucf{?pTY7w`Nw6O(C0^5V;IbV*NyKTK>%6+=m|47z6sY$U5d=7YhI(^QY
zRW6S`_RNxbZW$rB!d>($UuE5{v67SA+<(-HZLNNXcw*2mt%ItY%<i6+pKENrdfrUK
z^n8V~HS2%)Ep_+4xn;I?<eXxWrOT&Qm(E~3S9zx5ykpe$IQ}bNmT$fO$G%i=Nn}{z
zH*>KQp^Z-r&-B%PSn%a-RAEiZwWJ-pHtyTfa>vGdX7X0Uc!9+o7q6JKH$^M(%$f6j
z(fQibzWOC|<_l+Eds&@YTAI%}S<v?N)+s)V7i;r&Z>d@(Q?lsa`Pkik5qm<*lUHa@
zcbl1*sK%WBWLH>=-~mgmpN~z?)Tg?xjPhNZDdeAOdQQya>p`Vy;m@o5Ei27F6)_x;
z-MLz7-OM!=iIXf@wlB{R(%tF0Eou3J%I)S_m0B~tD6QOUBJKCw&~$p^m)q+%-o2%_
z?A6<6c1sHmT{87+aO;)vWB)$KlKs{${vV!O*Q(}j<>$Du_hjuohs|4h*P12sgg!2o
zNq8*X$7eW6TT5Q}hts)omrIv@=Y?g8J(X3NW+v-ZyEN8W?zTYK*{|O_^|tKR|KX~W
zGU=k=zN<CgS*6N@j#%rQ+81z;agxHTBY6xZi=v_)2l+hFoqafb`{w%<vps#4Dif59
zS(={f6d9{{a5Y{Q;w<N1uFiG(aMjBl+pd3E8)>TE{x|Bj=im97I(A7bCBqNRv%fay
zt7+EnBVp60wcS1v_P)3(VAb9wY4;+oZ<v&6#>Vhf&YMk^W4-qE1s_^A+>UWi<ayV!
z*leTyjI)jNr|UjZU{~jq_-=ZUWtLL$w)TzuUH8l{uUnEYvf0;UcJ4jZtrhQP$vLFV
z)4#VumfNJI<Xly_a`mbg({Je>=6rtf-7~Fa(vP;Ua4S;PWi)!~R<OS3D@*v?*KxL2
z7GM5%c6IHBp9`6y)~MVzakjVEnHF8j{FIUNPLan6wjJ5MMW22NbtpGkOlVM=s#nBr
zc_M(#I$^_6i^OZsgs0wo_4!BJZO;nbEjRV@-abC|Qph4{OZs!Z3;nhyZ2f1PzI|!O
z-T32j;@tt0yd@uR-^cseJI&_gQ<VpXKV{FKZe=hyz`)$VTFL!N@1k^V;nv6ntvlzL
z+!x9C&u~v*%0J~l>5`8dkEY#!J*)OXw8gS1XE;-%HOfvOXYmkpQ0O~X@p{(HpsqVH
zJzse1k4jyAGHLH_?wgXQ)=b}*Bb4LZa75nlgTnz9%{LBAJ6@VzzcNqa>+dOZAMkEt
zSfsSD&1lo4%ejw#-)}WKcRFf*N?m5Vt=&}#i<lyBH;2c4`{%lgEw7hh-MX5sInV9)
z?9$Sl$)^lYt@!uyxbi$-pII+BtzQ_Q-m-C~-j->7cfU=jIr!X=onh`fpYC}_>b6#@
z&-1oiwri8{nuLeWYc3hSY*<=(-u{U8#E<43e^j%xXIJ-czN?iOcIn2so(H8VahwO9
zybF9Awe9$^U48vLyL`evw6ku%vwCLJ+jC(o|31F_%u_D1CSPLjP0_XY+e)*iH@jEp
zK5uxd73gx9dE&+cDcWxw<>p*m($D?kvfb1L_go8C?BrE3c)EPT<VmrMB?8YEvFALS
zz4U0d{ap4gQ%U`}kM)%@A6$8|YJ;=bWPhfoJ^!>V{P3+1x9f+tpXOc>;+^f$dfexM
zL9aB+^OcErX1U5vpQ)2+Hou%FN%i=Q&6c5-lE*Iay_>hgZfm;xr7xB57&q}|y)g<q
z7v8YqxDC^hzMltduEp+s-j{S~>F%v<2Wz(6RXP3K>wuvJ+g%ZvkN+8LInHO5^_ums
z&oP&3nDnePRZCG!SEjjXwK&WAnokn*wg{ij?LBF-*Zk1;%oSOMH%{vOa1|HU2^UKF
zGv8$P+=CBf>eyD)c(waqQQNjt?BXqn={fr{Lt=6d+}^UYX5Jj0#!1Doq3>E(yzp4R
zWRFt$!(3JO&+8m5m_*vlCTuU_E`PLd!iW2BUVgNGB;G#v*@fpHzP{qO(v-DxmtZfu
zqtpHAKLew5r@dZPSn+C!cV`!S?#`&I$c~fyki#aCw`AY09JWc(G0xIF^6!leg7`T2
zC%^7mUM#|yx&Ptkn>QOcTv~GGo?zINJHN2(n8nHUD{B%z@SQvCH|?_1?wwck1wU&a
zR9d`e$#Xj|1un)n!F5($KhuNS<T*Wl<u)H(a@Q~+F5<MOBs<H@+XZ1KUKD;2HCVND
z!>Xf;o3G^9#6Eg7IeS;dJc+U+s#lt$H$85je6~!hwN}*fZP#l1raH0cxZ`Z=*W9^t
zB)nov@Gi9}P0P(K3^fiMVC4R;F0r;Y*yrP)mrw8AiSf@1J`<^0T$uN82alY)0^jeD
zo-&D}G21WK*e*GB-F!RG^=6Lee(@99e;+T|?P&ilb@QcND^I>DJ~sDD#`*=XzsHGP
zeXx7;g@v>Ix*R^K7|p(>$RNS@`je2QV#t@rreC)A*|<Mk&y&6X)_;c0{~3B~JXgL7
z-qkxlt@6zx8}?7@)-{B2IRtE2e)^9~c%!Rb`{J0{_xXN?hvyx<x_siL2YMU_g%Z81
znJ>@!{#HNYgMN>V`SNXR)7RXsSa-=#e)=+(N3L8<t2>`g%$=~~+`GEOW7<-iuZNTb
zFV8*q_*k6f-z_!156iv3dz2g&ocjFomqp)$wVP&tELL8m&E#0>Biytk+4S)}!4LKa
zVxzrw?ECm^r|Gt(+`P>pTl*}%Hz;m9^Egra-CoX@@qvFVe$@Uhe*H^0wjw7>N{3B$
zg6XTM^QAHhOk$iW+HDfj+m%;H9Jg36vgJeF+=u)!F`mEuqJAvZ(@*)iF2&>h+jV}A
zpNVH|+jlj7rb}|2mA=<=Ki!P83%TW-Y;toyd=4@CWAu^Zqe<armyfpHyA*2pr=@;6
zp)SFY(lduA)L%ARUhv(Th4UjW>h7^mKmGILL6b?MC(i6Fk>K7v=gBw8b-$0z`hIw>
zb@2AxKXf0(24qh&+H`DMK_h2pxb{BD30Ct8n<q9m&(oT=`0@PyU+0>0vscDBr=43D
z7rnb^d(D%cx#xQ4%#q<Uu;RLBlpihO?dvmF?D50+Z%(hQ+B?_QxE8EBC9v;?z&6iB
zmW58cdDwm$*zQ~>yHEFzRcB9q?hfDO(t(M$3~v?`Hr^Hu(r5colzF3KRsGgDJHeJ~
z2ZLqiXeW9w?_i%-*mXnu;SB#Nvs62|4=9|yP#bN!YPtAs<y)rPmjA!<=faQH#Xq(m
z_%)?Uz4t52u1y|GG&7ejj^OYssxMdhY#4Zexj@TW=DJ||BYQTLHh=CPMY&OrgqUME
zo)#?W3qLb=YLS2GgMX#(>r8(<f8Z@$sr<pc@y~XJ4QI+W{yBehmj8_BKQ<YESwC}r
z(6zj+k?WUi^fmKzJGAXPzeSSe&qkNHIfavKvtMK$-tp9W`@(xK?<wrwy|a3DweUjY
zrl%*}drv(`a&g>X_{Q_Rgs6zr-oHm)XRgZ<);jad;Ny~jg}mp=C%o;up~G9bhT~W3
zr<*@I-?`83sqERdVfwKL<qGQC>e5cWj6J%pF*RBF=F6(stB<_8?i{wc-7eEM{ps`V
z7GGYvELikK?Roj~iunhu%KG)1&utgCUVBw#|I?icTe3op?`-A?_g->#)vK_evk#X{
zlhoa2bvvdxe`EZ@Tg|M6$12q&*3|0Ri<-8aTyo&r?Ev+g?<RU{<or4Pbh;4ZmOqQ1
zN!VI0`%!&ZPUWNMmCo!ns-2s)b=ps4EbY%f#o*~Psd&!%lTW{YTbHh4lKbKp{}J81
zuS+hLaz{trJ@m6I;Ad;BpJ$<hTzuXh!Pl2|SLW83P1riW?~n5`*LnuMb1D^!D}#Te
zwTU_XtqgF;TUvP3b=}P$Nxm{as*gln3E$PVFp@?3>6~}J7o}_saqi<daqD<by6Egh
zui^!2Bp0u_E+x8W+O;Pe_D1;473Oo=(ws2SZ1NvV9yi`Z%~=*|>-yeARyZHBV$L@B
zQ6~LtqO)gd#<vgAdwg#4<)t6HB7fJq^X<IbVshFa)n|XJSNFL5wm?>{`uQ}U?fyDz
z3N@09?_AejT;csVy>sp2k9>>Qy$riHz32459^PALIL`FEI;OxNfA{1aev8)=AN^-w
z_)&Ip?b_*aTj$PcZ@X~nTj8m?cj756Pdg6;9cN!*`DoJRdt!I}mPhRUaBj2xP5rI6
zJ5-O)n3i#Iajd|7gXm>p_th){k5x~+w(zpvmR!!KTQ8SHubzFTfg$a)0`J^4mrl0a
zS-e5H@NJ))c)N|_!?!}OH1+rBU5q^;=`r&m>y4s)A?r2I*R5gvb$!>%U3!bxZz;R=
zv_;t`JlxQ~Ozffi8ecBY&zkn-73X~(Z3**s@~!8J`*HY~mHW5yBi`&{(+(`%dgrNF
zQiUZihsJ|GPFuqhHc~Iw*73Qs2*0+^-Enn|de5E>H@4Jgy4oKKfA*Q-ebe&gr(a%;
ztI@iW#;H5?>baG9uf)8w)w?8_m_M!P{k~=2Te-^zA1m#7Fx#Ii%70}=u={V-2a`f(
z6&rV6&g9-!K4X>Ae+GeI1s0wSqG#@Z;`qFlDPP1f-S&Eu(ry9o)?Az0CLg_a@2fra
z!>9Npi|pa`$s6@nC)QS5epKE!z54s3_Tc(2VZVOnoac~9NoOcomml}z^n<shb!Q*f
zI!T-eIC$-C`W_)=RyTnKC9Vojv=ghFv`_vC{OEn)p7ckFCR@K}U)=k@yslV#?=r)j
z^{38HJI2kXeSXEd6-W0qN3EW>ef1A5S*41Uj|+DwMWkj&>Z*9?Jek`UdZa6T!W5aB
zR=YUP_t91HJ<G+W-6~tWJo?8b30aTN#>E9o9`I|qxThudu$C&wR24q1lmEN+5A(xK
zzf|t!ZB4H^cu#5lCc$%J7K;PS`8>6o_`{T!FL3?s>6lq-GM_Jf+B2i)rSo<iy5|=2
zL2;VEeXaU3kJAY}a$BBz`9^toxks*edFxNPKz5aITxEH&;lJ}&LiZfyJislJy>W`&
z<yIfzV|<<~xA^zk3z|ssEq?f3=<lQ_{Ij&9E7mF}wRDP3=%45FAhFH!mBso=d%{0%
zepI$k>Q?p5FCur&=d+XvABtz5EPD0SsuPAMwD`9#t=zW!W3i9Nt;5H|SC^d-wY&1s
zRrIt#mDj@XGq>lgC}rMnx%OdGZkF8j*z*^7^B>QfY8A7+qiyEHyK%1fwhP=o@bTP{
zCzTi5xFk1ER$9;A!}rgA-5;NiPAa#iceG4jB9L5dnJjkOeaY;{PWC*{H?E)jcK&gx
zZL{=DxZSSi`t)?F1pJ-M+t;^7=>YSzV{ab!%+sE=arW`5y;ElSZrHx5&5g-*dwK2M
z8Ri__O_jfo&$+hoz#*$6s!`9c`+t0Ybka-v8&$jhZubwj4)dO=wxi|oe685sQyy=7
zw0~`7duL5>rpbj@VlQo98?Ux8Iyb?OA^t%~YWVkChb4dSG<`Px7u&?ew@+sMOI>@I
zVb%F!EvF~)vrA4q3T0j=x`Fda(uObE-rl^vYxPQA@XTZj&PblKCilvk-P_))ub*+^
zNW#RfYbHwjgeuQ3{UiOj`k~oxU(GGs8n=0xa9vw>a8roQJ7;6IgUXYtnfS7=)IZev
zpnLUC)w|6rUzyF?^~kl<f7{KU?OTsdX+EjtudCuWY2v+o-cn|3SDk&DRaG(R)}0hd
z)j$(1Pc3J@aOMs9mv&j}x6j(QoM-=s-aGz9w@*nYYq@;lsafiAcSqv|rj}oyXPsKg
z^4;Wl`itVat5y0frW~cZY-zi;^ggQ0+w#?O>RrdrO26&TsxZsst8A2HSZ5qJd&z%>
zgT5tqO|Lz6{V=EMP1zeSosG;=$xrX8P7rLqUXXb3z_b0<b+UEm^&jm%b}dCX^Sj}+
zu9A|Szk>`E68Bt9SKOi5+$N#r@cO%YdwpU&f5kbLUHhzNRy1#pThQ}XbArpZH)T)K
z8(uAu({9?UWwyE8bm`f`S?X`kKB|q5pZ5BY@T&_qUj@tlD!n;9ID*aF^PBd@nF4wF
z(<CLYhU79ZXixcQfBb!Co#C~%>C5BdUu;+AX4#%G&2j$v6Q}n!TClJx%xkUc`u+L9
ze}>Iwtq<(Eqg+=mJ-0PGZ&CE>UZH!IJQgo^9gT{dA~^qR;dbT8$Fg6n)^Cd6{JndR
zz3P^2{~2zZnKd-!CG~|SE!otN93Xml{*3uE{n;fLD*xS^6Tho(*T(7_e}q0hoBHVF
zlU*PAJJv6p^>yu)m@N79o;#_0@x?Z&(U~tIE#Jml->)cttUIM#{5;FA)}EzH`ksAF
z@0E41H&QPAlHwzLx$EzXAM+os_HQ>ly}m;2pLQnaq|gmlpESQ|*0L{`UJ<!S>kiw`
zjgzM)xY_CanEUb2C27$e*WUe^-KmgpIy>ijmOI~xv>u)K3jP_BFHd4z_r|pP_eFQz
zsPZy<O{J?}f0kU^)*LqF*5lLF(h=UPwdXmnZrt(p#qQ(5F}u_cKaJmf{~+tuS5ME+
zmX2|f?01&1WcjVh@RcEaf5okAdBO8yYyZwuaqHnXN^j!~m7Y`gI3quJ(ve@+r<u2G
z`7~YVN9LnFy%DFM9u{cn;XA{@KX3LXi{qkiE*ECUo->=3Uc0O&`r04ijPB(xuI+Pb
z?0kDiCugxlSkMmk>x;vq)!(u{%omD`KKi(xKPu~9aFWJi9kqsJyOeOApoo(ehc#6M
zI7B}?v>y?>-geGn?V2OX#cSSAdr~B4%C%tPAJ@LB>g$33890tj6<u_4)r_}y?EW*@
zDJAxHzSzyv^6`4}{6ot^Cf||SHShh3x(i0PBcmcK!tPnuPV6qYHKkYQ(p2Ut6T24g
zPkyH6`7V3%jvxCU?a*H`?YZ~v$UFh{*)nf)jx-)*v`G8Lu+FM6&U&%$vW(B?|Mn(|
zUU_j}_vntyrq6w5Pn#3|GYHESpIFzq?CRHSL(zM)bJ?c^NT%%wzVoCqFz;aDag~Jc
zB2y(4i#O)2E%g_Pk2$~ohGX_~!;&4_6D4^#RZcmr@&EMq+3h)xCkIM<pH*Bi@5pJB
z6vMLYPVb!xxrtI!<E&DdQ%Xfsw}iC4|1DRUUw2zTTDi3`jQ567{uGUuO~qeCJ#*fh
zNMFwTR;}lq8!|Wkyid<l^VOD?%B`<M#YHz3`d|5?{Fq<RbMejSOruxgOs1N;s~mO2
zzWuINIlD=cyJ!B?#u$MEa@rGiZ@VnHI3;ECGy~4w<j-M72j=9d7QDWrEl_-YZ*_e8
z{`B+x@?tt`->umr|A;;OKSOZ6Mz%_Db8pkbsdGIQ1Vnm1WnWJJ+xwp(^DVdMzY8Bl
z=igS)5-Yv@xOLq&2BU?`Zwha)Eo(jTGSc#L-*(fGrx$*Fd+yV^F3>c4_V%p`0>A%k
zO|w7TA-+QL;eDpP{fGZ4eaO929DUqy&kpv}N>@|(7-aNkOPreEAgN<%*R<E%;Ya8L
zUax15eJ_6HzIye|)ZVjO4^*sM8(J50mi5pAm$VZ)jKPf?CS^B&R6lGl`1;nIGC84b
zSM%4^?A>r!bfdvk-qQ-!j=vTpR6e&9HCnO6%kNvprENbt*G1ep{w+2tIis9mlS#gk
z2xHm57ylW`nI|mW>#_P;yu{U{>0Vd$o^RheqhqeBOW)mt51twBnRi6yL3Q}VADbVR
zAMxirD3#Tzx`fG4>9h>LQj7AWOBx(I-%hGL@vF2>`UBg1y_Q{ze{{r|++IA%Qc$JC
z&9981F?_rAu?JQ`g?%qOUf6i9_@N%O@!#POe^xJ#JvzyE)3I0Fr4w8~Z|eEndhprC
zdFSIcUXFY9GU(NX6{VBR*_GG77i^qZc%^2^V|%Zq%a%1<Pdk2a^O6l7kx{A*vqK(B
zd{$yk7CwLPv3<#N(^qExiAx+aX0@)}!doO>vgD+R^Y$}O+`2DwoqJ_3x9Q7`^vN%^
zQy<&<pSjAr<pXDU`82OnPM<txzpuSl_ddSrugj0<kK*AM_82EF{G+$~QqJ;?{ii3{
zR!OQw&wtp{ebu6~@v%|#gzD|<8!Lhj{%7FbYOfuB<?Wj}N2h;&JTdTQVgKEq5=M+W
zgx2riyJ2cw5q~5qZK2xY2i>!Mqwcf+<&3y_@7R)eX`XX$X-Z2-*hMqG%5E2%GV!A0
z&G~ER@%&w|bv{=`p^f`T*C!ubI*o4ayrRD-x{|wb!=Vo+wq05?^P$yq<%IQ`KYAa>
zHyn%HdY|=1{L5b(5_gAuc+hvm;)G60vtiU7p2p8gl`|w%8sq1yJwJR;{#w|n7g4fF
z?+o?7<(_>$LA7IE=)>OFn+y+5-LQO;@S%#IyT<H;+Jw|SmrO%0c<b4n&$?{7@b1MH
zo_BuyPP41NoGthp_3p)+Z+qGQ6#v-#_&<YK*5~M#-?oR}lB=(OdM9^Rk^B9O3rc_A
zz0~Qc`ps|jq5Pn&+Pgd10WY`b3N0+_7UEs^{2A+Q#@aJI-03}E)^Dv*{qUdR;4a@O
zv-)Q9ws(Bx7Cmgbq-Be*)YCI7H9jXDeBG*Az?MB%Ug)37$=S7fmx7m>bbR7I8Mw$T
zxiz76R{YHVQ{fC%Uqts>z0<m2nVJ@GQR#zGM)CTt((p^E8bbHHRkFW5d944m^~UL!
z&&;Y4q+Z%MKG>cAX2-ifyv6$6xeV#O4|jB`2<I|(N4qIc^>bsWWV`(1IbXCs`;UFk
zuKRD<(d~Ujs*+_}TWG6V%7dSI;fmb_yRXPCwtcnrTK9hjuAeH`(%deTT4zKYw{cuL
z)v3YUU1xdPbsNJ_8@?iKz1oud8{A#&U49(@Xnn-!^orU(&6Mp8k*8GK-}Fm3Zk=%V
zn2^WKN|k8|hb`IHrp9OPW4}_G@%HHTZ*`lxW!xl|Y~R&5=kr#*?`w*R>WbEQeKMRi
z+xO%0_I;{1dyS9A$?v?%Qk3`a@+F-o4D;SwPWd~{_s+XQCE=djFYA*Z%>HOT^TYdy
z%gS9hkGvLOdiRd?!~wH5LrE?M_F}8_>ms_QH_FWCz5D*~vdy;(_x>*R2;VjJ=oa5e
zkxe>2zYn}v=4Up^!(^W1kH!blztb+*_%1&3J=}U0_gu4tO%4)&dbV9`?LQO5SLgfV
zpyk=bjH-LvA8y;*A1c1Rs-%Ci*_sKaGuZ8m?p;k0(6@c^xTmnoBwjpY*4EQMvJaQV
z-_$vAvC|}Wedg9(h76oL|1)F=@D;hHYOJn4{VZ&K@tTkFhj^o7#lB1NZTvRn=gjLt
zb0<9#Je+cTn)N2*PYsUW)@b}GUsYqn|Il9GWbq^2iyIBH0+;SFeD|Q^U0&?-Ji9#O
z`wZcn`iJ{PqT~HdcirSJDOS0j6LEK=R(+e$<w<TvhRr=6L)Ct4FJD$s_4q(kxA!9t
zrZp8;l{~JB^grN{%bAm4ylFz=$(K=Dx$B}oE7}|H+Wyi0kn~w2{Wphm7rgRI&fj+L
z*!Q)P_6KDqP3u!V`QQyp;bnE3ZTt4iY*}07DVF{Eb!D?ncvx}Uwu}%S!<nC%R-D(o
z|2nv$qC);?@lo-XchQG-EnyMNuIVn6Idhz)^6m68l^%x2jo+(-OV2aZB!5U-ZF*-`
zcBI?t&2Q6cC-^-*7=G_udGfkTJ7pOTtZH3!>(7~Iw=c@rK0o5J_tTd1(yn~VcBHyp
z<}lWl5qJ}wlESxNzi!Ug+1?vIm@U&?Q=?dxpVxTbblvJbCn6^9I4+R!@LYX|&fE^u
z%de*26TNQob4z_k*@xJ8<vjCQDZ0$JS1Q-^U3z56AoGF4;)LV_cm0+>ij~U_CVqJI
z?$E2^CgF(2c`tujgx+(Bw0Qj8$ErBWE%4>?C!8m3-F+YXcg&O9mn-$@QuOYQ>rXdF
zocuJsEI57Qgg|!*9bQ|7OL<!|kACrAc*m{rvApgHp0_<S9-Ud`uFgC0LUUlIoY9ZT
zDf%_WD{kF;6>c!!EOcjM)Fm6n8B1o~vtT%`u<(QhgW#<7t6%+-y`tlKZEdA^yD9(A
zlneP+bT5iDy}Rdes9e6{@%3DLmGtn%vii+iUo7iB@=I;et@}5xD4ow%zbVR7qc}~2
zp~&L3qPoqTtKRmV=JDA(`olME+OhA>h7-D?4|aZ<Zj<Qj*_!jXJZ4gM(S5(mUpf|l
zw3}^vy>s4OpR(&pKmI+jx1J{95X1Ilp~}Rb4eRWKejF58t2cGcqt9n|9Qk-NYTE3q
zugY(Jdy5`CP;}tSiDQ`uE%R5FmWI2YP4?Pu;JrF?v+Lr!=U#W$`n^oPCoh@AJV`X9
zEM|T}Hd}P9^TA)M<FclUhj+xLc~`U)-14|z-E>;pD)~Lz?TH6up6$#RIs135Nd1SN
zyUxq*`n=wDKQy?_@%x-NWe1O!*}s{<Z~82E{VO@1owrxqJ8z^t;i1jyYH|K^VX8uw
zl8>KH;P=a}ICkn-Ub*eG{|t}Jn^-n^ZMu~i6tl5x=eEX)eVjinc@=qk_wPPtyK^1a
z=g^O;PY-;|o3ei8Y2AY-W}e;BIiYa=7KUd!kKZvLe35<reVyWupj!#wpUG<da{lbQ
zeA!6}gF8EXcF!|n<B<D$Dr@_#sY_SCvMT+!XSO=mG4JYy&GTnQh$~N?yYswP+{t%c
z;oi<$c6=1uE4NYm$F*nHk&L0gO_#8^f7U<ad_tJ}g&?25<?}w{BXSCxE|$EQ?bfAj
zDIp-|<7u2MQ8p{!{D~)`ip95f-rVExYk^qRoO@MzVHVGwS_%&`1w481puzCxbzR-1
zeKX71exC?>b3#QaNM)Muf(MN41&b|jEzWq|bM=tyiKzV*FU5}=-o0})No88~>l49-
zuJZ3@=y_(Q)K85Nycja=m4UVuuWsHo&%DNsli~_99JJ4$dlOqW$%ya50=bz>W(QoC
zI$XPNmb%ciGU-1%4oz@B*SCAR{aw!aOS4~0zqM>7`{WgSr%YU9AsDS)xuW=<vs&St
z#!s_u&)>N8Qd#Hmm_OEgKKFh)UAoqFe@V`DHt|n89<H69ll%F5P*uU!G;J6A>`j|5
zt-JS-t0|$!@#$_k(Wg^Zy|Z}yY`xEviqw*crt_vL?(1yyp7~5@(R%Caxd(nm%dCtM
zJkP#1@lLk*tglVCXIE~m_W9YM#hG~G$)*#(1IvCrS6=ITXWpW@-_zJ;F8MJt_et<7
z(_K8dkrVZ09VHWYMw#;XJ9+bGor-w7HgD0tJKe$a^NLkANd~sB?33N7AUE58rONea
zvBvtMXWr2lmm0ruabx=E$F7|8Ho)Ca=AY@g^AETDyVO^k<{R`jdFqTan>Tha9+TqO
zvy?^7@}%X_=uJs2Ta~Vu-fw>??VN7X_A;V%`{k)iN^A1|KJjAeJ@Bi^!B%_o<&yaw
z|CG0G+i-cU?wVz(9?JY|dGac6lST9ndHNN8o_fxpD&^9StA8Ym^JaxEpR2RsM5@>|
zfelmVvxrY%T3GS!Z-w;E_0b>B%}>lu=b5#=W8Yz6J>K3wg{Mnaoj!J1*zTT(in-&&
z#)E6JeDm@}m$kQL+41c5Zrk|r>bK=NPoB>Dbn$J%_5u$@FQ#URlS!VEx944b8T3cf
z(%aTNwn8OE$fa9hcGX6ipBY^#!4sQ|YR{H@`f=&|Av?{!Z{LHjtSf0b_}j^0H8XQV
zk!R5=euiy#K2MB$oBnuzyTOmb(k6uqxr=^2x?-}sW$OgvjSNrLtk&~XPgdi6rL9+f
zW2<Pf^@HheR{wUb=nkEBJM{8fwn?k^X-`V&3*&AoWC+%iG(ISK_qeS8m3bUL*njIs
z-F1JszF$u1(%Y{)Rc`amtz14=>UB=hQ*Z7g`kL%Kn~rP7IX<5CGwVOYxA{MM<>oCu
z`0Gxb#^pPDC-rlmZrtfm@pDPP!Pz^LI`+shzObwLsDEsIN1gKZ+#2<d(MOG5ngv^J
z%KQ|iv1y8#)5CYk6aVGN&&c6Dzj2-BZ_oUNTcWm3vaj7^ytwYve+J$?zM1tOejnMG
zv1{)MgN*`FucqDp6e&5$MO=4JU(L#cujhQo{v!XdbbXKMUb%nIk9>;?`6w|dBHyIg
zdh3Cpa`A1GOlGN_cvxumv3JSD_;c3}%D3BZ{(k7kqmOlyA1Ob~_4O#OPRU8%K0}X#
zpZ7>nnjKq^rE>D$2Y%UKraxT%_Up>XR|OFj>w`a>+navMvv%p0UpY_Gwcck|?kub4
zG>kbF^04Xg^2r@7m%sa7_S3pG@9szKL;o2z#~;19WXlz`OUth4vd>gqY<h0~%3C{v
zc=}~li(c9p^Z1D?3zKozpP0WZ{^{57U;LVOY3q?D@4uG&&h!?iZ2xEzs1b4Mkj+Zv
zn%d``ku#n=-4%ZC{uceWKYz<ryiNI#->0*7>sL>nT;8K|w$J8x!jYGEM5E=)T_N+|
zSAVYlc=!?fn~Me4>@<JmKm2Lpe(7<>l6lW0o=tK*bZoc!#HY2Z?1F_?vdn4XTy=2e
zwskZ0w2Pm;@A&0@RKH8$W=xINhgtV6`ZOloI`AUG^4P<@iw-dVh<Nw5DJ#Bh|HkyU
zq93gT=6hXJxb$XugUAl&VyS!4LY77@^Y{3a>nyFXNRFHT;QsCUN6(u~<lpS)j=XUv
zYR|zlmuD(WUSV+RrNOb_6<l0R2Ib*PU+mw;-}}$_wb?(BADdaCW_K!^{c~~6U-Kl$
z>rPaBZc|2N$UMOrxhh&8&#zh@BzU1+<nGP>2l7AE?0fRImRz<m_!ZvuWUIo~y-zMh
zo-{mhezIckqoe|-$}W+~Cy&;x{-gJIs-2{M+rl5=A7?-Kdw1!p=%3%YS7wH77w}?c
zJt7_!6dN_&sfe-Swq))CeVOYA^Ly-=f4D!$?w)-%D0*+$leWnL*Y~`BZ+M-1Uq+Ct
zYS-U4Mm?WIzO0|SPwhX$!I09o{GoP|mlssNS=@hSN@lTe#tCmdvAc`gJT{-y`uLss
z*)e}n&#=|nVozDN*iGH_gXy1ecI)5yU*85F3Uh4ybZoKQ(u|Zip4{BRZ!;eC^ey8|
zDyV$kQ&;jQ`-lIk(~oYSzTY=7YoF@oCKs`{%VS+$=B;s@vUfwugoXtyTxSlXJZEQr
zHuF#Y<NaOn0#C2kr_JZh+9$qmXVB+v=_MPJ`dce`_gE+2a=82Z#*Zh@d)jLJKfHg-
zn3CRpeAd0?t8Q;@*}r-7ERj-&!-W%$Esea|X53Sv@@UtFAC~H6XI6!}dp>&jK}w@_
zS>x(B)mu)f5mQsTUMX4h?6P7z_`WG@UtRqV&#i?fQpMgXsS+mNul)|4A;fTxBTe3K
zuJO@w!R&hO9FvYemZ@@!muz5sQtNv!l2KWOvoYhq>&r6948?KDW?NUi-h6b)558yr
z-W@F3ICu9#*SwSy)1N-v;3;w9c-5Cn8_%n3bF*FAv&d!tN8Tq(4fibJ=$0!e>MJ@^
z_@ANXmv9v4(jR%DLcMk;+9dxoM2gq{&e7aHkN+c&UE)XHze@t&1wV~)JFhdlw#aFP
ztOxt#%Y9mnm%dE>8TIPN#A7~%=^sxC|D2`g9De8j)jz%QE%TJOZOg3=ZqoKKyYOx8
z-X+?Tw_a%dBQ5hg^gcsI9Pj0=?ahy-f9st#t5~J3dei!|C;2w!hMbR?`triFjeA@_
z>c{Le7s%fJwqUL11S8LmQ_1$Vq2==|)#rRWTA6a|e8;rscGB@*%7auJRyg)mCf(*|
z_$t4?esN2x>as>%bGrv0rmg?5?AFVY^Bnd!-Y!q_nbg*$<XymWx$euxw_D7=tPlI3
zy1wa;`6J`fhx<j`iyl}`_Px@$TV>9KZ<`BFPd;``L2zR0`g76T@xpgsu9j;o$=#Ob
zu`uU^U?<C)1c$@(=6t-~b?w3*(X|z)BWg8HuK2s?hVq@`oS!6>rfx{J_A3)U_B3zr
z=Q)}eyUTaHIe+2w{#&aLUpMevYWw$EYaw^rvs<@hciRQdWIC^A_C)V`==XJ=^%?v(
zyM5c<oeg{R>)q356SCND+>2F?k$tl6#oY+y65d1WT`ks&c0UO3Ha+c8GCR8dZF2sU
z-nA^Z)|_BG=Dq0T^_@laTz9wromFT4BiU!?_52!J>s#(}&nwN9-2@(g-*$Re==m6y
zm)CaQwa8Ud6~FL)%lljQ$K%94Jbk-ox%btQ$}sy)uk8H4g<e{;&L{Xl*TIeFxHQz)
zv6lT4`f>3i|Ix6pTl@M~-juHVE+nS5Gc?pXf_=(cW!rF;u8-RM%~stn9>-p(abK=F
z^;FOC<qj%|J%74&o~*FmVXyI6xk-D{l^Wp>N9_M7|8l*tYj@I`3xCdSI(_`C?v@Dm
zBsNCoo|2<J3uPyozpK99Z7ScseQibhG+FaN{+)}P9vo!(WWc@8W8p*zLs_psJI=XA
zUQD`N!;r*&_}h77g^H97zx8jboH#LcT};z~z9Z9qHOC33F7<wR*Z7T9ZjUa@)4r!E
ztsxd)RsCv1o^-u4;pfQS-Xv@8@mqFEt^{{pTx6r}$$EXmW$)_p{QR`tS##NDzP#|q
z=USf0d;P$Tm-WAF%e~~TmS?`$%)>MIl;Fhg_1&2=a@uFU_V-4`wey~?vA>+BI_>G6
zEt_}FbKTA&zxUbVW2x`VrUf`YxW4(t{>>LYrp@MU*{<>Fn1pKg-K|S_98U%+H8@YI
zdo85>QosE_17n?V6sJ!8Lk{og-$fH+OmAr>q;PrVmsi{{db0AfLDg4@HL+QR_k*TH
z-}rNX<B!&l_m3A#_jBAjx%_O-QO`}=y6&Giz_RMR+Oy#MMJLY}$A&HcZU67`e3^G9
zH}*s(<lnn$G3(zi%{(UK1gm2W{f?6-Rc#hNT6aG4p2+2kPq$q8VlA)cds_5Jr}(Y4
z4L=(?SZZW<FnR{|xn)iL-kw_{|Ipgj`H(?O#iC1=dN$9ub{&!plGvAf(!^)+TWKQ)
zE#_pFCzG<W(#$RyZp>;g{&+p+Z@ZmQ<RS4R)6bc_kp8}Q>58cjPaM?g=v8Ev;FVM<
zRS5T9TzBl2QO3u^>Fe)hUHiU~d3MUAhw_;Z3{U?|wyiH)Q{DA@pM38;rk(nwi={jB
zAI!YCXji4^LJhaKA2;WPGkjVt!0`R+r+&#F*N@1Vc3G@>aAnKtt4SN~zWmRS>7CGf
zGP|SibY<l+&!Fl&$+gNeu5MkzH$C~ln*R)`x$KVD^zzpwU1^`TLL~m!#%P;%MyDmI
zsVdJKH!#?JG<{HKcyY^qzKXMZjCpTf%u`b}*PZZbY3NBN>CPL9%FApvetj9Y^&@l8
zkEsu;OLu%MI=jumIV&J)&xD_q|4iAlnAnO$8;<MF`ox>{_{jCBob7@YeYYO_?+J>s
zd}I`9WyklFx0Uz82j;3L;h|b*XIyD^)eZLi@TTms=e4c%+c-{^bp3iF$e~d4agA5U
z(ofE;lFB`^o~<!iEzL6Hhd^YEN}%@E-BGm@AF>n#cC9*9&fMhic<1Y|xZ}s~DNfC)
z(dRug?Zb-mH`e}H?YM!VzCwgm^7*u!dF@+EqQqOa-gS@ecD}08rRx{5XaDANs_B*o
znF|FM%M|zCJf3xV{%Xa`WjoJAR5Ty`b@WlB+T!$VOY3DqZ0fQ-9k;{#W^eAR`c%AB
z^zF8l%ASv;GuFlxDNp)!rnbNQL%%gk)8ch++KzkudVffM)AeqfxaWZ%<$Ax}xaj1r
z^|Ne}ated<JHAy#4zm0)QeW5de^dQ<Z~h9;N51^do3H2Gc$c9f_@5!uNkqscu6j?g
zOzr)7#y_qJA9vEfrzfJS8~Ahj@*fVatG$(P-^?~^Y`gi!b9ypEL9FaOpC^pFi}lxO
zB`(YUc(Y?mx5fITJBu9kRJJ)@Y}QF~@ce$<&vyTUUj1*CAO16Rlv=Mf_G`QIYFD7!
z-mTf)5wlE=g`DQQHr1R>{?kdnYPqe4D^7oN`XGAd{;m3?X3r~qD$}Y3k}GZYyftb&
zQY7HcutH%@-xp_t?&P`B*2W(;y+8OVHh;sV$Foj(%#2;M^|V7z5u5kw8IH#+PJCgS
zcItK9hd*odO|JHa_T4>}X>K5YSmEB1d8Y*Zx7Ip-oP0n$j{RDx^nIyYvrpXIb0SY^
z>N8Je$NvnvYtK(R5m2x^c`@VMJ0BnVK7JjmchkMiWaiTrrgc3{*VONx=Q~ofr0~;9
zb=$(&u9#CVxxU$6K3KoSzkA>L+z0O^UtWyM=sJ_?eQcVfTk-D`%R2vE6ke&EeXKd-
zn1R21{vVsa%l}9}%+_qKm>hKF0mr6g6IZM$^pcp{HSv|Xw$!<WZsHY2^VU2!{c*7B
z`+tU8LS8Fw#k`sAQaEjQj}YVChQN@*o|F}~uRCU0Yvjen3-4Q4vZ-OC_!N!;%iM<?
z(*CKu2Vc**ZX3gDnZ4PpPwn^@f%*qa?{Qtsm-gAYZNA66+m_xFj`{u(oUc2{oMrN7
zwf70dak(Fv|8X(aK2F)bX>;2rmDXFXJ1(hCJE3j#pwso(iM;K?r%nnt_N+X?v|sLR
zjn}Ojv0dryYTmCa735zf&s^ek##?>HDcO|wJ0(`U@jP2nRodV4v~0THG@}M>!MdB1
z6}~IR%;7tdersc7tjVd0W3}@i>vzU!T#tJmIX~2D>fW81E@jhH&MiImyv(h(@ss7`
zYNj)O7kDd*Yho{+y%T<2^<8dAZd#?Fe4)w|Zkf!U(!;`UCmyY2DL7hLwDHdCJiSDf
z*%fc=&YXylJtOzLLZPgbIj?{<>Z5Rl(G8PdC$?|h;h^l@IahUV=i{RH66*6F_ub82
zCgHJ`XSvzmXQkaAnGemHHfvX1YrgH&Geu9lc?!?1kx1!`Q%&RUGkaS2<BFWthxbR0
zUuN4{yj=dx?b;=A(}I~+*Isa9SJ3y_cW<w6(X^=N9lW!h#pc|a)%M7{R6y<Cza#_Z
z1+SK0S9rE6bJD%|d(x}JHo7>ioZ%c}HSt1f*|MuL>FQtBbp&}Q%jI&s-|{l(o`h+o
za6r%esV+I?$vu^4-s-tk95arvYMCe19Br7}6xs32`sAE*>o151Z*=lJpr9eUW4*)G
zuku{CV@;Q>&w1UN`Z+mM?&=-JPMaOyro{*De#IMdX=}>`DfSO*=a?Ja+4*VGIhHf6
zp6n9w2Dvt$3ivHoZ{4nT*YEYi{|v3A_Cn`MZme0SFwLDusw6s<fq!=1vw(xO4i=)n
zxF6{MQ2*BZXlBAk_Re)|vn6xST+6$(Gf8yHE{Q`4>4lOfU-0?Xm_C%3sCf0NVvp^L
zifsR@xw2P0c1_kfv-8!Vh&?BjC)NgDo?zS){;K}X-G})y#~0qozR$0xc6Cke(#+f~
zx6e9G;PmI&_I*32O%K!LPx}fy0v@_n%=i=Xc$M{rDeu1A`CcphP33}({7Th-s~>v5
z7yY5C`_c42L;L%v=o>2MF01ScDRkHASYnvwxva>|OwQx4+Yj5{8h<$cGqj}pee^$c
zmg&q(^9esEZohfM<Y4=WH+{=oC-iyEZ80l8FZ%R9!)E;>l7IYHnYTv!UEL$O{t)kx
zUu7%vg6j3HBOmTcRuNWE5xC${IB||}*I&+$^ADV7{^NUb%kTLe{VOtWt($WEP1M!a
zFW<^1<i9!?u_kx&RY{dF8NojOGgptEUu_%bv3y<osbBZs^e>El75G}7O)vbg@XUq2
zt})whs<}?C+4xhk;;=_U>kO8O(mdXL+S7kb+0Xw+_L22j`^VenuK7`Zc*Dxn>q;K+
zKGX9IpWSu1ZWP@(@$B)b2hSN~zsZ$8T&MFR`T?)k=_AIcKRS75pZ#X|^1{LFx^K6`
z)hg2FaaS(&nR{N4aXMr2-GdMI82<LJNIu>kdU>BbcdprEe`&ohJ0E@eDiOLb;PMTx
zWG(I#!%uS<Pg+{6i(liNv3X(ev+rw5`Zf0do%D~rV*BBVSy8@|V~!T*#o0Q)WqqEp
z>@a)V%NZw5oo<q|Gj6h2KhZS*=J|jhlB-{q1y}sK9RFdH*O6O4)`se@ZT`6Hcwnng
z_^rZEv3YmrNeG@_Qg?aQ`>wBd^;9o>UA>?8-i>7^^h!=f=0+*(yji?lG&@}8v4wj~
z!QrKKqJIiM{%1Jux%TPhJ@J+K1-UUx!o`@9j+s9{lfjtAQ_0gfh3D@h?MsJ_6<6(6
zp0(ym=yto;Ki+@*{BT-xrFrYxhqL{5bVw}vUAyvAx`q6nwoh+;@|x#NiTi7P{h9lb
z{vY91lVV?+Pcw-0wG0)X*pWPOLy-&{FHfJ9Ub1?=*UyXlG_t0JEk7I<)&FgdQSYV0
z6->9*-FeF-vzv|GR<ig`$UNDtKUyFEUR1*HE9p>Zgx<ICoCG;@|J^bS(it)n;~m=%
zTNUo<*IPP!OW^dPc{+RcbEd9Zw=_|bE6z#xDa$;M){T<v%+DMzZ!OvOpF!}C;NoM`
zqTXDN*`<F@sdvsY`wp+OObdhO<Oc2AQy3qp|7QQ<9|?}?9ipYyncFts_vkN3D*Ne^
z@$$2P;UtInGWM>wU*dUc)IXGW3q5=7zU5lf&5hHyi#-fkez$k#jMY4k=k&kl%l5q9
zx}Mj`<kpp+)`w^P2?JeFz!5g<^YIlPsjcs7cB*vFC=Kz~yW1&YaVTN_p6Xx!85(T_
zKYAZC^th+c*}BT^c;<~mYx^9z4(EA3&T+kd-_~xYReH;xP-gW*w>xz7osDg`Eo7YK
zd*g)1%^B+s82?)?Q+Ujv(jwo^#C4V5G=sCrxoOYXPIKsP^7l6?SheCnkJj_`#a)j|
zZ~N-n`sQrkD7vh7aRzrL-~L6)sxt%L9Qc{g6kSj$Bl}Zk#wUh1e%V3)86N&;XsHQG
zxstZ)@|W1GkB1H}kCAjN{w$JO{^{YYFlK85KI_TO70<n{uX*>!{IRFP<#ktmf}~B0
zxi)PGW3haA<-vsZNgNi-=C{>J?!LJ1<^#vvN1Dmjw|{%3x7Znf)-n4T`1YCD*YjD=
zujVgYTr2o=p4#Rg?H`^;UtYI0JG^tz$%f^E@6@$ymIg?6SZ~~T-0_6ywfaNR<&T%e
zazEPF6sx!4;@w7>;CZXOU6mCJ3@3yJ{0e=`{b>CWUGcztPUq}ziv_Zim#v9R;k|rX
zW0TKbx4Sb>ybrH&UtZxJw5j5cSO4Ny{4Je%b2i>H5_s=$X%Ul0=|raQHeYte`=x%D
zbc*GxJO9wEzeGCx!`Cm<?>Sp^U6pV-oNqBJ>~jZC)zps1w$<03O?}+0-+n79vZ6WX
zR?UvjYrm$<dZwt<(>vkxvsH@>WEOVL;CaKmj`K(T+81GBw~lT(9x?g-o^3%Y0xM3i
z3pJ{&aeUWUome$%edb50=q+9Ek4`f)Uv|nf;gd?_w2Tc4YtC;yJ#p{3ii}STk~SAr
zp69KoyF4}G%jw_$8MtfmF5M2irn_Y0j&P$bv!Cv~Ea~*&#Ab;<lkYaQGp`pt8TBJS
z{^AzJ(nYVt&Mv<_S$5S+*VIhr<chLW$Hkd{pNU?^n)UM5f{$kHHdO*fcNT3)@XT{g
z3)mT`t>MY6)xaggGpXvj(y#iy67BatJZxMwE=wG36q_%7Z*Ic`^M)|i^EK0CPgty3
zTs!@ac-hWr^F^P1mOeb|X#2Odn>JL|Z<WwFE9ZW)!)b*>wb`G>6HBMPcl|hRq3ZsY
z^?nm8ZIbjAS`1s9{FHmyj;hPnxoN+$SU216BY#s(@Cs-7&MzmD!u~S^>r7$|FFtIu
z;mAUd<9>ekmQ>|OSC~6r+oJ32_2JC2-{<;-nWif$avhm-T!{B=Ps_<ubDnG~(DOPU
znry1Kyyqb3Xv?5Swsp}nO}eWc&z@cI_sQuUPmYT)xu>Wz%;aFUDU99wZu|1rQW|@%
zf7!h@P21C4_oH^Iy|T7YtLjd6i8O|Jdp<`uyM3JBocvoTChBFk8b@EkC6gI46B&Zs
zcQr{owh4_F-GBJymao^g%Jce{8yV?rjyf$nr^tHpj!niUx7|1;RFYSUE-J5j74Nik
z?!Jj-7rj5+4vls*+8C|Gy7k`M9l4u$POCY-i>!Fiw`lFMm5=y&Zd6{5I-jcfQ>xZ4
z&106U#R<OWXH~x3k@)o~J0QdO)(i3J_oQ|=c}przxqW<zN}x^Fjl}2E_?2`2=`Jl=
z-oRVA^w{#p(X!XKcMH9Iz#hCJw@;OQ&Wee9E^)jH5e)j87VP&+ZoAGrnU5w#{}~QN
ztrb0`)xYJ%$A?{fUPcDD4tzPap4sAP!fQFX%Ud4l*U2BvtxCQTvr*`kV8e1Xi+6UR
ziC0W2^4J~YoL9Z7lfJrq+rG^E=S$CgxUv1+jK>P?Gx9>2SAP0*C%Nm{d((>#f7Wj`
ziRMhpE{d~mEi^tpp<HlJ&64k_0k$hY*)_FHJM(2_o%tV!`M$Z5Z}Llb2WqmK+9h|S
zFhpgBI+@2F5WoH7x^i*t!`h$+S-C6J`fENJ-O;gs*|F+ycB4XQsH&T|y`IO}0`dP0
z;-<Z2cU5+_emxy=s8M=FN$h^ZBX3r3p679=xQFrH&VGTjA0E6Ylj`eVci(+gob;4^
zmnLb<yLVT)#_8j|6D)a`dNy+P1@!J@NqOz3o0<Dt++tnNJH3*R4_CTve7IY<w!q<2
zzUt1(vN?a2pWgoI(F^;h3nx@1@0YLqm=!en<*f&i?^uqXZ8|HO$Ej>zCx3UN<?(a%
zUY}&ekB7_2Uy=P|t21q_od0aqBip5Cmq|>xoy5?5!HwbV*|cms>&vCq_bq#`eD7L*
zQcO^2xlVQO#&ny>2i|3G4J^MNlx~{s^3{6xTDx4C<4dzV^DD}C-HJUDyU>PrRZ_jS
z?Z@4d=RDeZS3dfR(v?Zq{=JJ-pTUvb^*DdpnF{7p{~1EqEdtI|uCseku`0v&i21fv
zJ9um!q|S{gl@8ptk)>RD-o6h}TbFGtWZky7()P3Q)QWdCTY9In7p+OqtCBPRr+R8?
zPvDiTdx{^5V@<-XnxgKlX1kdx&#U-ymxMFhIevS+$_GjF@@=BkW{O-3+cxPy=&5^N
z{X7Snck_$iFMGMA@c8qX$)_L6^S+v}t+h5Yu`vJh+P;H&?_Sj`4NJdc)mP7#ooU)H
zadesL7cr;j6`y%}p50~Ies*8P&6*4RAKsj>wGO?#aLLl86E`k;b-FTZ+dt)9QeAo<
zayj}qwwr%!ICV+L`r)r{XXCEDsWE-9^X#$C^326sww*|0NSt`CsLiwN%=rrwdQQ)q
z`?_UY)9+*3bqiN*-FtjW&#`-#E@*1a_1-;w;s*YEkD1qJy(-<`{%d-}p_ro?yJY@(
z?6_OBdgtS*<=V5SrCTJPu#|Y;e6i?D&Y82@uKn@al_f1}S}HNO_q6}ih)v<FH<!v~
z)$HAH^GSb|RKT|D>Cty9bNNKH9g`+$uPZziW2~;c>CG|sy=lukw%(qZv}^OmT35BZ
zGR3z}trgB;`19#Rc*cK*>b{$5+e~7uojz{)IA7|1R7A(IfQZWJ=F*#cBpE#}d_5_>
zw^e4Pu6NL-qtf@=Zu#WtuYK@4>d@0^vCiN7o2uTcEJ>MoBJj_vr^nV8uQL0&Wo1h1
zgx23SaVa{=(lOJVx7MD1`&@GU%3K@P4_X<z(uZFruk)H=991#z+oQX8dU8L_<M?;B
zZ~yCtpBpD>-+lOZjeYujh8KZ9#N$3NY}o5@#_5*D!d+cymRh23{~XPI(C7JFZtL{z
zv0VkzWBt#`T04Bqy>s#23j=QNh}$J?k-R6lDx{m5HcqH~c&;jWYw4}9{^I3X#d@og
z^|msc6#Ch#c6c7wfhPTBeziyQD)t|l<=$CpZ+~!}WIgxIv*vT2-FoK1(pur9oAf#P
z)RPDMIG$8p=PZ7>UMTk6;k(&tJ`1`srwOrdauGkHP^xoyp1a9X?O8XKU))tcER}ym
z+f%pq@j;$*8+WO_xUVp8H$%>P=1i8txVI1TZ?Z1f5&fTmKkI?Sw(V2bMW?a%7bGRl
zj8$RXRPa`M#dGa>^Ce&07fksOx+lzRyZJux1FX4o@7caN&?%=oN9fN4#yf?t<GLSq
z*i^4O#NNEdbY_Uhx=pbb-aZ!AGhJ_YIy~;3uU9;8YpYk$U1N{a8^0_+vR)vwo;zjN
z#jhQCVh1eQJ{>!!sdHoEB&nxyo(Cij{=Jg$XrJT9W!pc@kC^3Kbne}~i^~~Km*zh`
zbmH!bbe6e?uNEEuxW0PwVS9<SUp7~-%v`Cu>Vem<oa~~q$ycW^E81>aad_u?#(fv}
z$eb=MUh1Bw=TIW9F>%d?9V(L|uN!XqJmH4&>&Q!5ZtiV+ct0i|tGv2Lyqs@)!Wqfb
z{oz}kr8Za!>tyuYuHR+gpBT4x9e>9zA@kNh@qgz&T+Jesw`b?}NzvsePPp%@IHh^u
zK|;^R$#MG2|HOT)Z<(iI5-)iB$0Y6K4aZH4JWlV{@!4Le=@2l7DPm4SuIaTb`z^<h
ztW=J!7nxlv>{H+-$F}ctyYr-16E&VIY{;`(D=ISk#%xJ5dEPxnzmiWbxF2!jTz&Q5
zh3wNVe*Ubf<>AV{;6U)KX3rm+SN^b%{LR+CI^&;FsL#>DB$d_)&zH|h`ZVLWrseUt
ztM`8xKTJQ^-w~E=qpkAEYvGY^b}_ws$};|i9ILz)tbA?P?eqNE_ZgRWefFPzI8I?>
z*(;};S*r>pY*v{o%DfHQQ`mOAGUV;j-o>iba=EK(d_IVGZMDvR-~Dl2_a@nE-vnKC
z&%W7Md-syJmJUO@GJ_er?B>|jKia>!UiwnK@{4tJzgdcryPDm#k0%eN^;tJuTrOi~
z#(bmeS)JLx3sv)v%4*#{-1*>kYm>>X>s5Qt=n74f*S~qotWrc<eiv8s<f*pV&ufhj
z*-4ufyRNd_y}Ob7#J4lKkCK}Vn0ht~H&~Uu41J@&S}i(z;mz0gbU)nh-1?EdJ*VWX
zn}V@yN9)?9Gri`|d@#*Z%*i~Zb+&Ya@}(_X?7QYEU(oHbGrGJ+$7D-F;+9?8dpeVu
zdALrT*UT%5(h;cd2%qdJw|%+$H-Fwkx=AxDejB}=d`5OQ%WeUyIX$z^Zu_vm-zI&f
z)3>_Z2fhc7EWNv3k-4?N;e5>m{+w@j1N_X=^lEjgpZES}$e7RiBR^_y`vEhfbE-Ec
z#yXbTtdv?c_nyZNwui~5r`qrF5h&|noIkD9HaPZrso|=qdq<69%x83RrdBlP9*{12
zd*OlcB+ozEw-tWKuD#PKAM2Tu-pF%IRQ?c$eD%BM_J<_?g)XZTt=Q~$`Pk|Qf7z^W
zdnZkry=KjJ!^RUuI~?WwnV;G%o~L<es_BP!e7tj#Uw`|jv}Jq$;d{bYt{?5ze^;t4
znV0h~kL|o>z`HV*FR6)>7~aN5{mA|n_jk+tJsP{(d-dOKVJ)kebgg=}rQQ=;r`FFZ
zi90J#_gR&)aM-a`<a_;?`tWR!zm#<Ljy0*CD%q>2_r1D)Civ;ff)x)ovM9K!JotKC
ztmJn6En&B7c{Y|GK4kZ2<{$9&sa<wAIj3OL8L^0iT$RZ^MeHKJTiyz->kB@7pL37l
z1717Bk50#9w_jh%EAzf2=+TKM+a8JCuDo@6`%DoA&nG48t*^g5@?HNw1IOR1N1u2t
zGn#hB>`ly+*sii)3|y1%?X`~m=(qi0yzuQiHHllVE#DfT?D<eS`Hn-4LQw31;0Ypj
z?m40FrE9W&L~B>piS3T&U^pzqBD~Em_cuc%<J(VPZCBNPd!KmYL+XeB3`cU~{i9b$
zXS@xZa;)wq_i>|Sd!sk^);PXlVE?^r)8#{U)*KA;gOAxa`%cdP!#?r&(%SY1*}LC&
zNQM0B>#f*k7gK#GOKX7@;~%4E#!YSoj!B;D%eOQis88*GYp2|0X{Prz;;Dj}C9}E(
z+s?b;wO#=`|6lv*{V@Fv`^V@bw<OxVE}2G$>i_<rb4;|XY4*Mse2?e6KX-4(`t^HM
z|1+>m|M<Q6YebFjH@A<hEvM9`JCwOzQB4ig+30Jg&^v=+aiu~^-3KA<uZ<;p!@nhd
z@Y}rZM|8kP_O2S;oC$Ys{3u)~F12^shsY~uO<v_GXgRw{7jp5Peb5;BpMn3M{`rsh
zoo65W&%pD3iFazo)kkxCgbox={~Wl@lV`{IQ^zIb%eSWgU1{lFd^<vw{meGIf**w+
zoWI3fOPPJ>mR;9Bv5#!?MZ~Sz=9hWw+}>5HWID-c)1+t~mzg)pCU7W=?tJ{8p;dm9
zNmNdnt?`?UF}J+A?;kXusA6Qvb(Uw6z^m%j>&`ruHH^Fc_&wu~+mF`uuBb?Re$+U#
z>hYl<-FW{#|E(%o{?nRLT5o>%amT^7xbfP)m@R*2{4@R`e<1w2{nk&nVl&0$y#F)g
z)?BPza^i`w)+(>i3Avv+Ir=<oinM1Y&E5M_YLDsF2j@k)zb&|I$9TiOW$8z``H#J2
z#qR1pxYA(oy85E~J3Yk>Esn*lhpmq(J%4|^f6fn;`CI*u_V-+OI{onM(j#f^hiwYo
zTJmgd_Rm>&k5lKS?1A;ybIrdQeOP`}pEa{;-TK<aSyrk`7j&I)Qm$Cs@$f^>sWnUf
zGl*O7V73X1+y7hdhx{R{*k>C*e3OpW&HAMAXnNR|ZH-TFa-QhD^ekSl;08m}i!<#{
zCK!lbl*#JaedXy~4%_ecX6x#c^d<iIUiCfRyEWUpdaoO!&US&L!qX>uoY>`YqvrMQ
zPP3+Pi}l_=N`JFu%wxDX?fYZROD4TSM{l^VtX*VXoyl_e=}m2oq<4?A-3=6r%;tUl
zy1vcM%)aT%^?e_wO<$h*KHch2dN^mMwGY$6igz{L-IX`pc#M^%<}{p}9lJAM_}|U*
z4^M98uFlp-zcX{^_Jqw&7oXIAnS6S?q^#p}SxtAz(DfzfUww!dvXowbBmJOI=IJHf
z)zShYvASnEj?R@~yW^2@@oGrZ8ky&|pSwQxI)9VCTypZ><A>*#CRVTN^vM?a<SjdS
zg8kFk4&`ot_k9ewd52Tx#rC(%4_<EJ-15HZSM0Rb)xPTUvzNWn)x0!yr!jZD#?)<@
zjEocN-pCm6o~_jV{x<R>b9AK1>b+L4o%VL9gojOcO=wd3sjXt{w7_GHQQ(mya^{Su
zu7~Pp>wYm<>1TLVcFRA8%O)1@a<|s=oP1b*`Ih}wy_K5xVy`shE_ZqqG3V3rio>N0
z*IQrzXOLR=c1!X@d%>4s|8y@-ji`)jJ+<29MOk}O{;ZPe>`gb>WpdZgtJAN^-1Jeb
zUH|aknCRD43X<OJeU?d)ft^N`6aReN_n%>=*MrHQ!%tmbsrq)~{!97m@*Yic)n>Wz
zSt*nu*K@w&RR0fC?-=)7PnFR(KUTDBTDixs>ybasKjxmTx!y*4Wo)dwplh`C?AB?&
zERLVBIhn4i!rZV#GtVNqv0wl4K3o6dmFpIoe0Pr6s?fS)QgP9m-cM7xoSrb>EeJ`L
zx!(0+*U`R(CGC-!PyT*W@m?vB=>A(h?UGgBjpw)a{&v`Z!NxhSq_+Ot_6-kR|EMNR
zf2zRa^}~&|h-;(e@x7(LB@Qn=D%HE&c*mxzHJ%@P&$rjO?dlQ#zDZ}|-OPz=jJ7PD
zdCkqp;GO}~ru8g!p<nK|*D(Heu26sYb$>^VXL@<<GFQ7}J1>_!pI5K?>ttb`%m(>;
z)^m8CXuLH)aMt^fJ+}$3`;lArU2koYm*4p5n!Dw6;@<@#{4-(>t!+9{7yIg7B>R;0
zoBqkxA9UEq`LcY%-AwUC_cE1ACN3%1F8EeuO^#t>({YV62Fshz%Y`Xz-u=XVv4oqa
zrmXmzpTBu4%pbe8vLCsteC%V^wW5hKA8(&h>{!*4Qz)g~)UG(O@2O>s)R*@H^#_f<
z{54YTe^9o6*$b&tGh@6>C*O<w`G&Fg-W{#>4)gnLE-EtGY(H0@Gm*bN{XyBz#QKN%
zJaH!<_-2Rgi~d<!&wI<^yzP+${n_>Dg)-ewb_7haQH|X9%~5gn(&_)WG#~4?|C9Ul
zPd%&3bNd~ItykB)Q=RO;myh3LZsgl1EQyQK3aky++rKuwzkB1wH;TLo=TolQa8`au
zKd?=F{}#8Yi(eL>wvLi@I{bFJ*(CA&X--1-TwN2J*6MVG%$+y$X-)iZ^%{;Jw;ycj
zKC-K|`QVC$yZU_XB>p`7^k=Dhy@__?VL8XgtxEgi{xh^sdU@TvNLD{$d#=I$iRD~}
zpB>b?!#wH2J*&#*@_UL_#doBBp1S<_{9z9LbzkyXe#-IJ1_w_1^iR4Xb;tHQAK$9o
zm3yYhbW*9`G&z)EV`|T&BX^Qx?JN0gIx`pkGUh+L!$web+S~`R{?1q4lx*p(-@Nt4
z)89FtG#ykuXPgp!+#|ek;^WDZfs(H;%)b?UK<Yn3+n4)7j-q{Y^S^b^Fh6ziNZhl#
zw=`Y%XbGPUIQ@NMOzr`7)1Rtq{#_L>j_9@*%&eL=cjayE&bLpS%x){#Yim0n`8ctu
zU2)et$p<yZALY88e^j>8^lk6fYcs1$wI-Km?@gQJ!qs?B$EL{a0^6S@3oGt7u$H*9
z2kzdMsI}_X{Ppo7^;!3u<WzP>mcF*%cK78<^_%%?mTRs!<j=TZSMS7zx@Bso9@HF`
zSl_u%_un<EXREnh&XbzCb+6^))VZy{qhG~kFtbGnhN`eS>OS2T@%J7d`}1q-m;9-@
zR4QR(TAR2!F52y%@19>?#zz#(b!P@>6soIyxnbO_TD|_j`<p`b-Pb3*wsKihzgfk=
z_ZidVTjz{^q|AQiY4!Plg~c81UDM<QuKAqG-7B=qCjE%LxQ+grJN|0TGHZSqp5&do
zdCTejb55LE6EgAdH}-ki=bm2tT3a6LJy+d%zWe7Bx;FjX;x?@5E!I!cCGT$OkK6IL
zd)t48rks1(zeJc`{rl{<r+vySmC1!F^7DLFIo&+*vo0Zf<$s1Yo9+ki8^eQtObh#T
zPrE^R=cSxwJ4+iHl6UUd;^Wb`T(KqZa2`iY3g6P1m-{*nCZ?P}QXBs8KSTGrb!YBb
z?cA|-i^FNzvs(h+JfFK>{k{CFvK23zqrdIrx%kKU;f}Ay^|FV~tZTD$J||Jn$FieE
zJLT`W+ST9gABx}XelTCGV~^*e*ZFHQedJ5ewoke6AVqZYsWT1lSp=dBo;P+q|5|^u
z{?LST@ej{T$PnMSdzIz(zF()@Wb|i??3i0%zf<Y)`l!IOLerMk`p)kYtFqg?+Gu-Q
zSmi|iv$-a5F$|9vOcc*}<5px{7;ai}UH7ZW#Zu0<Iq4I(Yvf+?*crRV(LqGG@9eC<
zX4gdbiM^QQ{W0#?ardrk@p{&aZS?aCcHE0%E8JT(vE9j$rR3oH2{qLpiw}use>2|_
z8>gl<FQ)8})2pJ}Ethg{?Xa|Fe>m&auk+@IioK?5Z?@qM{%}M}=b>rG{IIPO(UofU
z>682SZwxkSJRw<Td5k^I^4o=_m)9-b^`S)2J+F7_r^V6-Z8?qFiue_NT~983sA1Z#
z_xx~}(5XJZ+u1Mgwq)4lHf~~M5psJor?Bhm`&KK~X<L_`UK+dhjPCLio?EBJc1+yl
zw0L!5xU$0Yz8Oou?h6Umn{F2-zR%oTK5f^gX`Y*eOD;<!hCSxp%yWia;!xS^m)DLz
z*e~Q;ap}h<<;0@ESg9*BQW(CJ3JJsro;a2Jcx`Rq${*#2b&C=|+P0lYbJI22`P;#<
z!Rw@0d9HHraf?^gVN*_i_;%d2@AaXN_kQ%fV!yfRqmcB{j-mx8l{~&%7nMyo-TG+u
z(d`%F&Yk$N@BPElyRGkUFW9i-%9<lPDz|U>>9>3XSLOLrEmdJ(TdI0{GBY3g@@21J
zI^lhgWwPSkD>IFy@+DvI@AupKa(lew;!FCi$7bfsO|RshK4C+~o(XQ^`kFG6?^ZDP
zTxWlz-@8xk<Lu7TXl9eer~BW2SlF=P*u`fvmqg58A5(nYwzoRcbd{phkto$`YqLvv
z?`^8zxU})GwZp4_iNO;tt(q+He!}v3Gev*dKj6Q0==#GM|87qA*m+g=QGv?twuecd
z4)yeI+jgR_y^LSa;rzXWmVb6%eP8;1v&;0VB|%XI|8loDJ#ykyX0h}*)OUuPIrjeH
z`1bk2{}d{kZijy;pTEL-Qg^Y<#*XP3FFv|$T***1P5t^MLyL&Bk-KF>v@~{a{-yFm
z`#%G#_vVjRe^<nNG<koYA`!;S*w67J$mP|u<m=OVr%rE@xPJRSZ%uOb!k_#P_+@3q
zBvak?et6&UUOdF1=XrJ1{gb=iiP;9`nIE6Hok8~S&rcuf-{gOEK4KN)lv{N8@V%fd
z-{WF>^SP{gHcVj;G&pZFvCkp#+P-H$ygzLA{BXTRVc*C7U0e3XiI=L?^HolYwmVSp
z*6`EC$PNXz1pW`3pY014ZC^Hb^2XPf*Js=>{^tKk{%zog{D*xTe)%7Hk#CZyt+4${
zDTfrV*^`Y2#IAd(bj}c-V6f&t!y!J-HFxtLy>GJ#U&UMPw|UD|eW7a)mG^duiyIy~
zv+CmElH@YgQwtBUat0KXJ=<@k_T#`mmJdEv=}lieO6OW7y*FLAc-QlSI~9{|F8(zA
ziom(z+e|xT^B?DT+bL%T{-}1}z2`&82ba`XvunblGkK&8&uB~AtCwBX2zlJJ^|*|6
zypZ&YU9!`Udh_>IiC#YaaBu3KaM9-{O77M;^R1Tg^Q&p!?$-5iLV})xr-5b7^{4X3
z?sL~TU;5+oZP${;hrfMd6<l@LcuGv}p-r0>om*wR;q&~pW%pEmL_U5i^zKn?R9VH_
z$K7wG`W86pOiGyhZIhz#GLgm!vD=w!SJxk&FDhHo`N#UB*tdG|%<J(=dk=Zcwpque
za;asK&&mT~J=-eJS+37&)$>jG*>AQsuCmOo<^y{}9nY=%uB&Qdeci)@_<pYr7W-OM
zAeHerehwd}<lXC*FYKmV*&~%}W6QVp!>;Jse7Dcdr}Hy59iB2dYmMHt-O*X|XG^$C
zSSDGl+GZ#4BlFQ+p<DLt(k3fKR#t3X@$X`hq@$uzW#ogN-oyG*+fNzxeEBTv?DwO8
zVa35W54}IHxHWZZ-C2_v6~Ee*Y&R}RZHy6E<yK^Qw8ZlB{<5&znY~YC%dMkxvya5{
zzgu)^Yi`ta-_H^!a`RZG`@Nhv>D$HW+`Fxvr};GqU$^DiXYwQbF|X6vtxtAd(i39{
zu)Co+yO_^tnP+&We6hvxkA*(}8CqMHzbde6{a6xl$6X^Nw8LHZ#bnDH-#+B~ah^yx
z*=No(YvYm{-4FK`FN=A-Pw>jQ{rjKnaGU3?@qsh7E491icv{`#ZFjob9$kI5=1;Gp
z$w?dMhx3IiM2~l`(ObLt(glIdw+>71*RxA5II@Fz8S}%=!weQ{=UP9~KWeKMsrO#3
zJ?z4KvzLWykACwM6L56z%e=G2hl9~4x;>PgZPOn0^*@>)Zd)w6<#cYc$h9J$k`u}k
zlZ`zhlZ{VLx|g+y?bvtT-8$7A_d_n#scez|uw{$kGH<Q9yIOiSy!}~FpmJNyjZ-ds
z#{RWl^Nqew{c~it-_zbC|CW6^*OdD12jnWfSY7#=L(Zk|x%Re)?Nel)O!8peWOa3}
zyMO;d@%y*MW~JR%$!&X9|K(&?D}&jeHGyqORc?mIO&gcgs5d)Ze!ulRXWZdO9M6MR
zeUl5h&NaKyI(2^5f!}puH+r6W#uZ1*lJBp7$aPue(!Mj(!mg*z3#`<R>Dbm3tLDkH
zB9rmllTZnX=Su5zx4zrG?x=b3p38NL6^o<iywuJvUDdAGQ&uQCRit?T*`DNr99Ese
z_t&NN8Gkr7`BC+0&o9zHOm6;}$n)*<rlVTS(+>ZvZr*ubW%BMTX`4&Vi@&^Q&+OyB
zEz;wlPti?n+dYL1W_i7w9MblcP4oD?deWAye;_Xs{XDGo;r2~iKHHq`E}itwd+m|h
zA4x@v6HYJ}&08|bVa1mG(#5QLq1iHf*KM!;@a$#6tYbg@XH9rNanY9TGxTFbjg5Jj
zZb!4rP0ih>QDb~Hf6sgI%xk9$D>%fr&B$CFV75Ya#?FKV2}g?i3ZtUb`;>Coa(Q#!
znI4(C<lw%FOQxYJMu#R&n_4`7%4t2vW9$+uw=_RkJ)gJN`Ox)=KfD8H`ETY(O|9H>
zUN<^n#(e8!;q65a#2#mweA_+g%5=7K?LHr#ZCw;$xBS7(W!H608N77w-TgS{iMTkM
zrDTYZIgiCTKG#BlS8^(swsNd_w14w<L6-2%+gs=CkjdBAI}&Dlv&iE2-j~~di67PH
zKX1Bia<<N9FTwO(4r*aqx3A3J*(BhuptWh^IY|$tRpv+TI_joh+>>6ISpVexoo=1_
zOs>`K+<H&kCYLi-Dm>x);-=^KI^ecjW|sQHbIVu8?Ax00!IRtOfn8c-5{p<tmqYyQ
z_e?VLc09OLG1=*3-}Gfm?}V%UV^lWDUw+0X)-K}Dj`OFAn>=iuOFKN<8M5Qzo@AEX
zhqbOtc5Ih(TDOU(&EUv}hzTMspD#21l(alrAa%dLPO&05UaV?&Y~>Pm%{(#HiH)}#
zMK>uKFgM*U?nzr^?suYdY4+mVHoA}Bi@Y?u_~O@=3p*+~#kO~(&-rthwal_+Lcz{o
zNt^ZruB;F~Qq{6C&b8q4oBO<5uRP6t6e5w_lJtQ2s^jD9TPt(!3vam__snvSd)hUv
z$mebyj3z#O%1ov_pXByT=)KRjBi8qwsj$sAtJU$dH#9!zopiUWufD30r}s9CQRDlY
ztFpdl%+SoMid+1s^~0R^MLB&FRDIhXds_r}JxHC?X{r8WzI<<*=cE4&f<L<Sts^)1
zI^A_Q7k5pZzuY4Au<*nSiYK0%K4w1l`0%!WDdK^V2iy8Gp2eF+thBT!3MoFo%zkNS
z_IlZ<tdA=$-7CqQ&y=tGcw10~?k*oD<LlBLN6V~q-*lHMuRXtTYc;ppWtDu6dmah~
zD}I}tmff=S`2C+ZV+;-+NHD6^KAF46eZ{Ri=hJ#hel}?8Pu-b%!!D<?ry!(6fq`HB
z-kzxMK_7L@mZe|uS;-dqbW^ax&)MvSg&Wx{AJ+ajn;GT3=FUygEq%6e_uQ=a-PXS)
zJC$95oofNV<D9<?tH1HuzDw5Bevw(xeN;-m>q56h>~kUcdFO;peES&h*q2_ZdLVpl
zz3Ye7k6gY9ysDC&eoJ6MMM}5P9RoLoM=a+V8`)P^X-b$L%aSvg5U1N>t|@xu2xD%W
z=7BdGSKj`av|Zt2fA=5twe^Qwvw7R5mOP!h?)-Gc2`5$=t(2)e!DZlfhi~TF<=W9)
z-|zg+ez5(G>4)c!9CF=be$3j{*=8F3+e3HX(Qj_kSIn~BJ6X}~MAFIo&2f((`~Of+
zKYYJ^!?KMJ?hD@bSKaxap+7dt;@uk6(1h~kQ#R}pd%(Q+<0PjE+K*=Y-;xfQ|J&;G
zk!u%zGzV<;n0Gs17h`&dyV`@@56kBEh0l04S;A%=AHVfS_Q%JM*o&O`)iUc;=C%1&
z+!+#4$9A_{&yhFnkV)<LYufqLYxAA^ccbp?|0sV%@P+W!9;?#cmQ(xur}d~c2rOam
z7F^PQu5bd!V_V1dbJxCkZ(3IQwfo4viN`KWADgfu=0AgA=)Gu}^n%w>x7PHlsNBlj
zE-rkE*`&>*bvOUFrA3TiSyH|{+OXv=bNJOKbLYM_xgFxam*<kd#@$nooETI-&t1$N
zTj;CnSDyXCr)01BA&u)*Cf}rDynM<9PrMYIc<PB>^!J{l?&}_3TQd3Bt<|^GHuEk$
zww$w5nKed-ld1Nqk=K1K^%Snk7p%pXe;B+tpII;~E7s+4Q_bo2oOy2F@6O|zH-~S>
z>sXOG(~DbP+i$6z_%2Ukf<pW0bXk#~?babxLYbO(Z(QO&@xsJ^^N($k+?i&Zj_-c{
z?^Jr<!){GRm)pnKELDSTiz=V5xpJm6Z~lk28;9-gu*Z5-UdlUQ*_9M#^4%`Z^Q21J
zo<or}j*mQS7B7o_DWJ%*>BOZNkG+i?i%b+AtIzoudEK7BRM&IyzH5^n$8;I*TrjQn
z62p>$Z3je^C69%E?wJ^R<?L$d#mDnkaGd#Ny^v**YsSKhcjO8jj;mkq_qqC({g9P=
zPrm2XTk`z376$x|UA9|hQq7hYR+gSQ@0e{8uI1d?fB3JM(ZrLgQ+K`NQ0YHaIFD&+
zVDE7m9)a5I-nP=KOK0v8<y)A`Joz(c&D7cJPbAx0^Zj^vZ}Z$6>dEiUv%UP!!1d)k
zcjm;*r8fSnmrQak%wChFzjU<|=dF)c(I<H>89mn2*{GS=aQF3%l)p>tQ{T7oS3i96
zqdqs`)B4GUqHos-8A=>`sH3U0&0p))@k{&l-+g&6cratScWt%)dnS&A(4O2p`7@<q
zGu!Tbm~k{O<JR&<C66~H{%RNAo<0<@Sv+ti-*eU(!WTDR-!FPzBfdC4Ywpzkl8@)R
zY<M4Azu3y(ZYL)vb>l{4vd5c*2^&?r-NKC~SOkQGbFX+|^=DFIsinSR@tLx$Y3&*R
z{xnSDwB-^#u#W3LL*R#P(^q*`F3vLNu4PaZ_q|yv=kfZPAy<*@?H3+vnb%faI`8NG
zgVDpy*kF75l;_KmlQ$&qJZ8%p<n~r}e_KubgR^2^le^@Vf~OhAi5q!1Sg?ibc=PQo
zDvUe);r8S9!~HC;FPzP+ToHB0>xlJ@+<luTE|p-5j^2Mawd$#)L<tY)*_!VU?ce-o
z5Q^P1`PJs^B6ntg9iH9yG?JCir2S+&D4Dpkow?xW#;gBqwtqO+vvyrY@lk`9-?jWo
zem8l`e@jliXT?{ZeB;`_lb#V?Uf=8!zP!KH?6B*@^m(^L>eR00Zk)ZIH!{Xyx1U}8
z#yeK~ichmna%FGaaea0~1^c&(zw1h~XZs8Pm~`y>5nc&%F`bPsr+-`ZB=_@zsbLX^
zMHGZ~dowXwSpMLCIRDuGj(NP>W25e!x))*ADIGBL&sGQN^~LW$^@VR-zh(Nj<sama
z*>l~r?=Oi}J`%pIXl8C+&m-y6nE|O@u}st1?3i;ueVp9&>A71#-OE)^GbjE@{M%UL
z|6#FLy!;RTqh`0-=E~$GZMync`g=;Q*muF78OQU_?C|;ZY@g`vA1fc%O8ZTB+xg+t
zeU*+=Co5ijvz~uD@1>i4d*kJa@jicYe%$|<etg%NdrBXktzCBe<{_5Phn!|FI^4;y
zYnO7JTiKGjh`2qE_T^r(Gs`N9>XrRs`PH#l;r0{Ond&+7r)+$zAQb)l>ldb78K0x?
zDMe-VB_EV$S-&T+pmeWScCMZE98ZZ$v%Jf;ryVonxI05@TZQg%i?^}4`wzxT|B;>-
z-|_z8TIHj+To;s0@hpFKGRHgjvwH6>v(uB-?6x`JDEW?kVTJxf`y=@s)5~s6Z`otd
z-tM!>e5UT+Kl7?J<+b)?J<{l4R#}mz@SwRd`kvX}DSrZM(=%6PMVZ_)N}YJ1>)d~a
z^K*oZe9AttGCY_g>Qs0@=FzI+u#1x=Z@vq<wm(z9Y1jJ0r|UUi$uZ9R9Z+cO%o4V7
z^D%iIF5ljcRR`)<r|R(WEA6ZNP}cuY`n9H>jcc)byIereYVMPTipPBp&0&6ZdrIHe
zZ(^P6{+$rBlh}2k^sJsQqwa^z&TBXq?Cn|fHg#J@q>$R(2`?7>5<TZzqhI*&u5kGE
zb?HB1b4zm<AA8^VEM2qr-zL!@cAq)c{Cik6jz;8P__gYC+>d1TiEO>g9Up0Pr)H`*
zWgppeMYNGCCi2wAnIg&W*R1pNW3M{#@%h`x533%#%kf;Q(Yc?xUAZRw#2F4r7KtZM
zSY;Nke184<LDPC(>Aym@%typm)<2Dz$-8cPcFv{Ethe_*QIN?!esbsZhJ)oi*R5Co
z*ml~#jaxe6nznY4!}I{Rd8rZy7;mdGzFT1!%H{cDtNN__f;Ucov_2|zWxAAoYusnA
zi+xX9_dK6>$A$e=U|xW))YqS(T|Fgh{W&U*AKoXBQM#A&*y5Gm3iV%@%-Z{ZoLR^H
z+-B~|;~%<yo{#>h-d^Lo(tY`>w9jw39%<a-y?prXjLmyAPpIb=_RP9_@t^3AsqfFu
z&I&xAHN)2JyPxr=93$rAA13&(;}pHJ!d1WWM%?9%UsCtKwf?AoMCw1o+{c*<FP1!3
z3A;Z1JBPw2<(XYeCf&FD8CpC?pum>B_@7wbPQFd|1b%pbWDdHjvuvhvXL{y)of9gp
z%;$t2GUhz9;Ss(u>*uf6$KvF-m`kzVoqKF0Pf_cH*w#*Q6`2(dX%_D%8TZuI*1LTy
z`6tk%FaJY4bkikowWHg2ZQnjiN63QfU<`AEr#qjU+XLgkp!r(6T#HwKT71(^?c_(U
z(}$<MUKhWvll8FOYip(JDcWY-$}B+wbN<|j5#G)&dZeQGa6ISN)umfLy#4-1Md}Hk
zs;3@P^v}8|vB`!pZ&mljo^UQ@NtmSdZ2!mW$LbV5{M|cep8WPJ@72o$&dMIhR@hy6
zJL|!Y0yj^iT%|pS5B=lym;bvgU+7-u#DmgXd~=!gXUn}^^;Ycqy>{Co2lj<4_D$0?
z+O~R4#VOYO&DlNICVPBr*%3OyFlS@z#fION3`GuatU>}Ssvn)`b-biI<3W*x%<m@~
z>}QB>*|yD&wJ-UB=ff^-Q#I#;RhL9r8jhY<c>9<^=GUw<a@rriJU-v{?abmor)s`R
zvQIpwX*KD^g!rBRum5ZOC;QS)ZfBppXy!cSwolRBMGvAll3N=kc-C+8GjMpWAb4rv
z$Ndd9?DflEWq!EjYyR+i*H`Hk>(`a`Z*nhZ{e6r{>)uL_yN4Ax&h4=Hr&Id#{891p
z)gSI1cm6wNi?u%QE30aM-G5WdX9@>St1O?KabE9s8CP^3<CmWf&&3bT7cw<m7Jc&Z
zZq7aCrN$<8ZcB8798J=5x|U3M!)LUHG0F05MPbZ8pI_~I;T5~*`~C=i+}~Zp_+b8~
zf0uX{RU`+BYi1`Gvfgq}FMHG2?XdirP5P6Vi6`x*zO2eWdN=H#_fe&L?uAloE}qzz
zBXrD>Wu4P%o_YUf+TG*Tz25Rqv!e2k{o~UdU;o-Ut=RUxt7}n!U3lwb|EUd666Tb?
zj(NMjVckEW8uj1y2c)y-OS)#4s(i01J^Ju>>DJ8?_i2Y#d^Vqc?&2Q4Jwk=y*)?gL
zn%S}^Z4z>8_#d7vj{G~@WUkWns4MYr&Bes83$2})dg4r0yPzbeN)rb|pT*G{<28TE
ze>6XSt?Qa+!u_86)vT26%<4of&fF){93-{~X>fcrdwZZKdBOS%_RaIue$;<Fe(3NK
zIf={5Z=CrMQ@ib&$2!G%hW}Q%PM1tksl5<V*!LizCi3sRI>~<*<=Eu7e{`qH-Vys`
z*%6&)y+bcpOHN>^!K=F0CF=XE-g-|{2`Mj|*ZxSof6IS{u3hgIuDH9eQN^2g&jjyc
z6KlPx5i&a68;?vhu>6z~*15ytgv5{I5$z#Aj2HW^x_9ILf|)JTzUzHHyu|5&VX-mm
zG;akrk4lN#A4I%b8sqmzwI6u++a7dD*>zLf=ts+Xm)zG8^UvqV_4dE~IFx5H`}D#a
z5B6P({h?T3vED#lU?1O)^WK6#%mcU0y5=!cukK2ergCqaN>jvcnSzs_h36z(Pt|&9
z%cJgh>e?=QG1FN8<Ga?)-t4<&@1=JF$Ml$$G~z8}TfCJv8=a_oGjU_jx4Y+T&d1mb
zO!k<3_@CL;zOBo)^h}EKEl@K^ZW38}%HTM|ob(N*-`RVY{;+-E8}$C+_0~oEF6^;7
zD`huvna%3u$2a8mMMtP><Qy|9&bYWhz1Z!i!XNR+`#Xx<>sP+06NxO9NS>JN{WxoB
z*Rk3Db3UpR`YIeNS8D8^p5|IDqGg#^c{THPlC(ZM#~ZoFE<37k>PCt<d|WV>KVXlY
z1Y_@VN#(7PTR*;=p<q?tyOn!|>z<>EZbf!=<!ymmG)^8kXXIC_eR@ree*S8wc}lZG
zn;u?yF0|>`i|X8m{@Z1m`wv%n?$PA=aQcy~Tj@>*pJ2CFM~fD)rf_&azOv7?s-Sgh
zkJQe~ujY$<IsH2Q@}kT4IJ%~^J-e<{u-qcwps#G+f%$&f=f7_G(O<fJ>5o~jvOPZj
zKHjn5apNwtAU3N>i|=3Cs`4@CpWHU?{A|`Y3HjcgeAhyAa(^H7npC$$-s@{U&r5mP
z(ht+`iEY}lefwOtoAE+<VUi5i8-(W6v0E&PvTo|#W+U(SL2Ywk#;&vbJEfw3^3Q6!
zrODE{{l}4u8@LMi*dNtyDfO;3yY`>qZJqknMYXO;F+OK@p8uV*XOiQS4d=37%=P~k
z`{Vbc%GqZxEV@)G&R*iGviY;1LHSRGggLT@pFOwz6>j-3zS(S^;79Kl_QECJr)!;b
zJf+sztaO?q?pgMnq4ue=<uQlX!8$H>m#^%&Ja@~DkC~;lQMV4oZ{K?MKf?^}HA#=Z
z^RW9EPgtz}cS81>59eF{Gi1aI9B19%RN~%tt|aN>PJNM6cf>4j&H2^#U2^@>FZVfr
zc*z@N)k$stEu(WoYNcGlI}RUC>HWX9+LV4>zpRey$L5D|&E=&lYAmj;-_l(@+q~yT
z+M5|~^PcMNGtMq7Zsv?#BPm<h#CLD%@nGo_YqRH?yxbl4{OBz8H~GKaf3)2=z3@lX
zqiau_bf%p)h&au7uyezk1HahTFZjpx@A&)=Q(m2ZU@w33)hxC3**R&uHt%U^o65{;
zbWm&V=2e@up2{oCpIKxWAM+#sAD8??>xh&Ke^M9R%c$C8J>%tOk4bGY0xF#sAGZZg
zoVca*^<~k!nfBY;|LCyp{Lu1GTxxs!`-Rhl`Ddzby*}mj&Rf>Ao%%%@>PuQ>il?6Z
z{Cq}Ol}hQMx!;wW|8ahQFgNemai=S9(xyh1tx)`P_Hgg3^n&91f8!WmXup`xP<L>;
zJ<pb2ug8bq7e899-s73SxMQvFoghWKgzdA^y3d5kA9^z3E~l)?KK2^xYxNJc+Cx6{
zcdvWDN8WV)lv`!n{xjT?dOLs8sxXOCrt_w6ybdd>>MBj1aJ<3p_>cULn;-ah?r~pH
z5$-*=ZTE7wn%lC;XPf?MM)|O2XBKNM+3{Jq<j&6XPFJ5^JLdaRtkkJ(*Q<W>AJQLo
zKM3#Gs@*GhAzp9e@^{l-d+t{E-@CQWV%n|yr}d2Lexy0ilb-c`zCaD%htDrB+bqk~
zd-j9h>a~ZO^-ftn0gG1ew{c6SUOjLkxu^L{YkRMa?4!A!rn31ift8urg`)dbKh?Oh
zptq|{(C6bG$GX6sF;kNk_h}zrH2v}XhCQjd4`;{LU4CTVuD48A_2|RC>k*d|CQLKB
zdu(2a@S%oWo~|_x?7W|)p8UFUZ<1NT);s<T7yfX5+<(~WbkvVu(Xq*nUDDl+EAPxy
z*zX$VoG)`>#`QBo?)z)H1gEqf@{q5(_Tk*-B{d#W({_G%ny`EK)+t9WL<{qLn{2?f
zvXE!hW^E0IxAP2cD6}c<yZT}MG5dBqgDsQv8DIY@TW>pg58Hj;isc7+PB_2OxtMtH
z?(}1!Z43|6DkdMi$Mn&@d&_?Yxw{qhC$E?s3CLfwtj#h`e%FTGe}4w<l6aEd!#_i7
z1541V?|d#_vd;YZ`jP$3*Xp`o&(=RUE$z#Gboz?br7Mqe?A(4={MSyswGSs*ESapk
zz0UZ?cBVbtZa<tq{@mLC!==t7)2?u5=QQ15=ia`Fc2`vo-+r=nx6$Wq@dh#vQ*`53
zT;Heqv9G<{_Ibx2{d~K&PhxGay+7-zNBqmN*=D44;*s&`8B#f=8mp(tZCy|ieI%-P
z?b*9)XRU3SXi~WK+{uKAe%xy&F1U4CK{+FVLy~=RC{OTRmX*7s+&}+*y#B`X_-kSn
zHJZ!Tp545TgI7e*&RWge(2_-<tM<I<hxZ-(ljJ2U^8Wn}{_t*=$7OTnsGAm?Hl1^i
ziKQHrd@wa|k`ZgY$F2EqCVzN-xK3%?)qVWg*X20(ObVH}M%VAJS^gZ8MHbP8ja?f9
zE_!f1E#im?pI4K<^TYgx8h6qCM`Eo5E}GnsoRPixcIB+<_v{us-6o$Zs_%=P@8?<?
zbmq;QGg%KUx43`W|7fn)??XZ77r(AjnWg*1SS4qA&YPF_nd?vQc&;E*U}PL4*ZxuY
z5!+syd(u}_YlD4f7tDS;$6cn@?pq)myJDy5U->^lKZGCl3*3##dZln>-=($NyiY9J
z;VGaOax7l8JGo)`v*Ui+pUNK{f7AIf_*k9J@ASier6eC5e8!Z!$W208RDwmNzLL+c
zQuNKmV+YqoDmO)>S08w=Px@sX|Hj?ThraEz-MoF<WL>%G<%)AVpG<8k3R5`pDe3<F
z!b`h+i;vjzZOQ(a{K&g{u2F^Cck{k!GeYuYOn4rCXFK-b4Ljow(YX)hf2dzSnlGC5
z`A6}w>xG%-f(>%)tT*}^lY6^3J0z`}ACw+vwom(G@wdILd9gQpZ|O->UCr5VI-eWm
z^EGT<)v(F;>EoUUJYVekLKU|5taIP|eec(mA9$a4Z;6e&ayUP0dJxN@^E^dcy4F2W
z|K-(o<A)4;LJL!IL-sM9e^RgQG<WU3{KvHFR{M<;`Z--`ds5XW*ahu&|FC=0iuITC
zCF;&qmACFOul>)!5z<?l@Tqc<w0C>g>-^R0oV~g)ygO*SyX!~s5j*+odn6x8+xk85
zUhJ}FU+kUhPMpdz4|v}{lPR$1X?{65D(I-$d}ZUcp3Bx%s;-;3yu$5Gbk?qrPj^>q
zExPBma(lLbnUdIpcc*z)ywLt){owks_pRHCBVN=CulH+ad#`t|R_%nujySeu9+hPu
zr%p1IS}BoK#QCZ0<F&>|d&M66{^*kqj%=TD{hL_Fx*aFjoZhuL@%wK4b9{T&8<YD@
z!pGBQtv`Iac;)S5jklt&Ov`+Hr+7-(Z2@*mEw+kB8;*oN3tPQls@l}YE5DU3FRgy?
ztpDgN_8WgP6IC|MP}w|5GBHN}u5t9HbM5);S;q?89#7I<zvbid_LAt3$;W@aoi^=a
zdudyx&F>Y=vi})&<)yryyv1=#^LK{VpRXV0Z=I)oT}U?lka)OL#VJOe{HM+njz;JR
z9CL2sRIxZ9ag0N4--?gy2mP62qWx1pN<EUcZt5ur@G$EW?aBWArugJf|Cp-lb5%tb
zr^hJQ_E_vwtq^uMiawjS>Gmtbg}-a0-(1~rbffAji-2Wn%xAh>?m7NFag0xG`<gBH
zWTrhk_ABkuNrlr(8nq_eFEM+6U%BkI0#6m+*Vp&-f7man(DvI}S+cV<R`-%X{zBK^
zTviOL)^G7t2&lgq{C?I)U*Ft6_PMfOSIJ6V;Y``FrDS){RQ9L+MQe7m$FNBpcMj%s
zfAh*^_SSy3%X|DE^K+jx5x%o`>3Y3s*FULUVB-uHIK9sEp8$XH<fG9$cl@Y-ynXwm
z?}4>S5198VP3TZDn!l@8|IW|0@*IX|+u9rcXnu_P_N!jtCDWZ4_x}uvAG5Z_94ps4
zsoX65WK!_*nmN}e$v0S)?wikh#HwZ1o{i$p`Aa3DGXCsIF`ucBCTlK{JX!MhvR#Tn
z{N-tBFSo4At5|+8>UztGE4gcf9*Io<p40x;NJL%9#YpYIV+o4@ZaF^9c``qiK7Q~z
zH9zm3!sR8>v&_58I9{xK#npT~?5DeezUb+f_cTBHx2=Ev;eP8Hma=CL6AkX_Y%knd
zDjQa>p<(&6qc>c6Ud8&d%TF%WsVaW>`*iNP=GxrfOAW=dQ!I~hxwpzaY>Y|PsaQQ_
zt$b~4xuV<oyEfY+KFn{fDK-(0<8Hg`e<knfr{|a6=_NPm&MvQPSU5pQhPN@qFz@iJ
zwEYjd^V{`V|1Hg|E;aG$P@VK3>cH-Ux}Tl6r^I>Q3lT7!IEU9a`vH5`7e>>we>SMi
z<@{`S>vpV4n9U-m#=DI#uNG95tXqCyo_%+y{~JkDwSDbeHFIP4EJ<wMeX7;vlYrT$
zwMz45i28+X*WP6o`08TkqCaI<)_!@R^6^-c+V*LJ;<wf&7rc>H7WB1LoO<QY3a;OV
z?54Zd)tK!1xNJ6m$3EWf88YfqzTKKRiSwPxXY+TuWe2Yu>2X?RJ}smq`D}H1la2ZV
zU$2PAA4)&Hu<A&ZX!B8yX_Xav<vR6Hk--v0S=-kaY-E2MpDCTa*ZHVa{zR1^mGkvQ
zPu;oa8_r8pykNj%sIR`lVojWq;MB(py^L<o7w}!GfB0|Iy~jt(C%+62U^e>Ckh<iy
zv!18>j=8hcc<-3cTCCh)RT>^IZo*sk-v5eC>_dyKB@Qm(ha&Qxwss!Q>oehaTD^|V
zn%{rF>WAfrty{Ve|7u$>>rC-8lWiN_cZMAges+S#_oT$>?U$S5;@8y({HRr1TQiUM
zN^ab*w~wOd8V99rbAD34y2mjuX`9drd;M8UKiyQ^e0Z9weJA(CuXfQN&6{eXAJy~6
zcz*aC-yPF+Pu}p$i8%II4u_{C3ncLI-JKD;<DlfTof>OP&$q1E{?G7=?jCKMiJK4e
zOtwf5x#g`oceB^~J~mkgTS>R<^&i6<_o>Sk>GQ=z#xBt=yL31+K~CTVpMAONE}gn0
z{og7*O~qX=zSJ5&y8C)x<HyZjo34DBYOhi?_l*Bam))C|*l2khFiYkbDl4tO{pr|s
z-#V3QweJ@Bq80ZKHivlgcWj&0bWeN5j-6Y!<=P0jJ$!a(6Q=`1Q%K@Zb_ols0R2vd
zCV#;{YPHHifis?1l}PI|^&LMu@y-reX3?)K&qYuF*#5A-O?l7s_z!#co?E|CQ%g5L
zf8HhU7WTa7Q^n8BSX9$hB%SfJkIk;~ik(qK^TAv5zh&Kc`A;^IGkwdpE{}`bChg8k
zcT%0MlCE#a&R{gpHOR~Rdwr*u*sjUeYmJZF*<E`7&a@+aj&p(R_1~TiZJs{Ob_r9v
zpR$S0VpX>|AE#My{z#nY$JVdMrwT?cYplOya!}cAQ_9Ssi07Ru6GM2~do9%`R9&CO
z-#x3oU-ZF8zv+dmJ#%&|?!T;{-L!`7n)Wu)_(v*6eQfTgr?S4)neW@-n|vs0@04j_
z1q+4U^L%f!CU5_4C^-FiWX#iDhU=z!$ClK&oH`x6eebq?UDqs2%$kpE<2v7Y=54_Q
z{g0EGema@4tII`NeqU#H|8dNwn<p3euHcQkBCwk0^cDja2E~wgQ-+wtXl7ftBLC^;
zJ^HF2d*akLTz$XptHdm4lX91+ev^-%4|ASldagKoUo}_T>m&10m!5sM)OK5=%F??>
zx9Q&Ulu6k<LDC~{xw_@sd%KjqPTzAAmA%)#_4Ve8`k)Jaiyz#`+tPhuY45ysp=;xH
zKU-NGR(!{H@pVISoaKt8*V{@po?dw`$0XuDo8!-lo1NB$CavcfZ70-bcWm3YtD0l0
zESKh1i#+EylZ>Cf)9{+CF?CAWgEobp<mTvm(z`!;ztUQ%H}|Q?kqMiA{@}jZGh12q
zbKAKJwsi(x)?FUo?D=n0>_1lMwjuLh$;PG)u|Mll7BkzN_;=h=*(PnTz`t{LcANK^
z&ze8=QFn#Y<|V?mdtdWE_LvrM+t1JTL)ll+b3fvbMLnCi@ce%Uu3g8jU2~sWK6^@K
zqe|+`5D^K9W3qk52TYG<#Y@zw%X;2E`fKjny^9U|O9WSRi2W1j*e&pUC;K|%ON&0e
zusA5!{wSX3MIHB*W!raO&E4|)^d!|u7niV=@Yu!QRX?*>^5BGZwc4#aHvGuhuDDKj
z*}h$2Hpj$FlB$f|CNbWZxPL<CbENpK`A72QULMl!uI>#wrSmBIgI)Z$#nLu+gfH79
zZTJ!^?)c%hx7fb#AANd{PU77#Ex=%3&Ek@pQftE>*EX#9H91JkWb0Y;W3zZxn$DY<
zZ`xdQ$T}nHev$C}8QNmf8;bj?pY8n5@MgVWyszxN_GO-#&z`pAD@IH(RAIU_XTsjk
z(@gK2{h0Ua<bQ@sB^h6~*y<%FYbDzlOg(IoAEWSfjc1+Wt%{3#Ca2wc?9|N9C2&!|
zLvqK7Ade?<?U%b&?6lr3DfVT4%Xh0iL7CspIkRovEOSg@I9K`f$)SCZc1XL6D*sX6
zvvGH3$y$vp4(X?}EM2a1HqO~~%HqJkSHHt*&rN@%>lu;p-RXMW9p^IFbE3PZXc_rc
z_4EkF_O-6dn5DL2;vYxvFI|#Trk7<j1~y1pOq^bzQZM{?Ud3y}*&geHxlUd7z4GOF
zqx#Nizv~X?De)dS=gq&zu(8QX=1IxA@PH4!?{5Y9TBU94ozidQ?v`HUc}uB7=x+bn
z<9lm63)j|2T`7@&^IkejV`Kb@wbHKU6BT*q-(%~XI%CCSnWm~o8`u5O*Kgmm*Z<-9
z&bM1_)oOH)RIL;%&Uwsac}R4!#n0+V`=%^4x!Y?y+2_aoun+H6X6*i&sh9V*T)<3N
z#PatYotnn$mWlIzDs8W^Us&NCa7pjpse9K{wq)F#a))D%xVoZa?xzBS0=|1j+SmT6
zR!l!^CwFb}ho`L{vuC6#eTZHpP_A)nb-{^K$LD#a)>g`-XUZvjSe5x*%<$!h1Mjzs
zZxA#+5MX)dhW3@`%WQ3D^+yXld7Dys`j7EP*F(<hDwwW)3Ran;WTcfKXR~bL70-E$
zcSL05XJ1}?eUIjv7rptZABEmWZrX0p@P4^U*?$IOA+DdVj+{9Dx9xdjllIo_AFp@q
z;a;7$;aaYZldA7Z(FZpb!W1-wj+L!^{O+q=bJxl>|1Qo`xh7Q4_oLh`dUumc@tQS4
zX1NVhlO8Af6)?-sUY<4W$+gyH_trfB^4I)fdi%uv8}rq+hTA1`UwZV=zmjvRV^Hzj
zohQ^;u1}21+9!Ou=lehDYw1ciJ11BaO1=C2<jzWtg_i0CHsx#mg?<<xvoqW@%h&7K
ztusukf*A5*1$Tz}+eT?zk(<Ha!yv*Kv8%js%X`kOfLGyS^|`9ktSj>;=1CeK=6G6j
zOm^e<0QU<#VH^FfsRf4Jx%Z!;wKH|;?c=#QKAW~V`Lpor&)$-!rs<_6!1(6KyqoK~
zs@L;Y^hZwA|0=qF##DYq>rEaHoi{!2-*teG&&^M}>-rw|WvA}n_`a)P?<|M2x_e&L
z^v+?utFJkUQ9)n3XOeO7%?ghnvu=5NPZY_Nu}s@GvHOq_hqm&ZDZ$4)PJUUan{(!L
z)T4}j+(xg=qRx~pJXd$xSVLvv0iRO#%gxcpkJ$@u;g(o>A@|6&>mS$j8q{mCO1{)K
z;IS>>IKMYFV;}eI!{On=FReoNE#>B2R`YW*i^a)%MF;mku$lL0`}=?DKazdiE^l42
zY~m8GMZ!|2&aGkNl+-@(e8r!aw{A-xwa)6%mgl?w<9NW1Js)|d1v@Ienf#{gpToVo
z_7&}_8?S6UoltnRWS0M-ztIjm#qIfZa!oZ3=S@;FEb>>KIV<es<6Yb8t&VJJvKPL8
zxcs55-goEi1;zIBTEv)tBul<Oe@}VV!u1ux;eB`Zcb~oA@pf{~N{$H!bGUkHZWr%(
zzN~<+@R-KrvMV=t=ar;C`eKzLB<pnSo9CU5hu$TTV!@MSn4*<4WO!sgpBFtJ8}%wq
zZ-3^~4{xGUxGFQBIa*I{T7J5{_4vkf#V3y2$~8Zl-(F?A|6A<3`T5H_Ht`s}Ym{}k
zdw8Wqs-$Gt_qQ?gHrGE`S$cHOkIc$)&e?@iLnH%Lo-3*-KMOFtlK$G$?bREll3(W!
z*+$x&ej9Y{@e!q4uD7{8w@FO+d*=|hS7f{7)2iol(sz7lKW5MI!|M2N!!0YmEIk-3
z%_<;!lfQ-geE!}h!<c!yAI<Nn>YJUITVF9NwQW}K)7Z$Uj&;xYoaK#A>s+=_ZqMBz
zt2Mv%;Rm;En{V8U^<NtkTfe^RWz4A*n`wvjW4;{tHOo&cx+{3&!nHLnKWeMjxc+D0
z+IKy4%YLoKcP2>_qpg`w3p_G8an6sCU42gY;vY?)zcp<8Fzc20t-D9hPC2Zxt9D`b
zGp*ZQ`=>2V2tN0q_OR5a_aaN=g!*nreW>qTv`xVLbZWIs%^P;bvV}pGZ@2bKs%`&L
zf6M;Sx~^@XU+l^W_IR`V`S!V!#8PBq?5g?-mQ>FP%agh(>ACz_mH2`8eE-hLsa#E;
zemv^v)px6nI-hL6qNfshW96-K$r)ST?AK$T#reuV>sfuqeYOhzhf6>B^HsDxdUmhk
zV$iW?E@_H0-V0PZE15DcUcghqGH=Ts+v3Of`>K9LRlE+osM2IOeQT3SuiGCUp@vgu
zmiJG2P<p50eCVU|H=mt9&}I6b@lNLEIcf1*j=V2?Cfp!$S}~J7ezsQiqs>pR2R%32
zo_^-^;vZd~4{!S(B_y42Y5M1PDq<@-+)uY2pZP3(vEtW9%QjxhS@TwH!$;niSI?|k
zk)#zGIzymP`|0gh`{S0)estD7ZpWp?lm0U}ww1TJCD-QboQq(d%CmbWXW)TDOvdNe
z23*{dFQhwj*VUT6YS&zoR$Bf2z~?7Y<YuA6_=`EV(=PhXA-{J|rrW7}2;CC+GEP$e
z;UD#BygP)84A$>U*q3>yc<$aE=Vcyc*~x#5o4Y*k!=3djP4;Nt&Y4-LUiRcfU*UCy
z#^Y?;O`iTR&n`E5IqmZ+p#$zyE-jgO^O!W_jAKhvHFrE&X<K==B=DuZQ0`j2XA|f9
zU-r<Ll<^|bVU?#u>E8zv>IEhj*cxfAoBl^=v22N@rJmZ>8+Mv^4)R3kU28HfE_vz@
zbR)<^rEg|}z191Y{p=NH@7=avw-L@2x#Y7y^Hcs@xp>u1#wgX=3v)h%Zg8_oTN_;w
z?tESM!So|$^K&{{Ri@?}My&Jvdy)OwamCr}pVr(Jet5NU60h^aymg=MiDk;E9LeQo
zZn%B&=ZptW0}}Z7Rl<TZ*YdSWZ@#w0zEAL`P94j&Kf2kAUAgQ2c~_TAOi9>Xe(wFu
zVC#a&2IhNv;)BzFbgnw_PwK<nqZg8P=cy*G>#<a^yZgKFfaEd5bJ_Ry7(Uc*k`oJ`
ze<b*o@aw#zOLHA>D)4xQ-Pt&yMWBdV%<^^f<)$Ca#UJ*&UJ-hIIBMqheT`F-ypt|X
zSde?@jZETB>FqrqzZ_IZmtOP7==z&ESyD~i?b{!}Id56;ME?CT$>Mj#m$w#sS1yZY
z%++hISu20a>3j}@a&tpL;a7&=VQcqy?^Atc=KiKwrQw;urQ1JK+>DIMRs<E#`L0qN
z6FKcEr~5U1b3Q)Z+v^|wT(!SQ=hx={7e2*z%-_;}WW9)y-E`Bdk1c-g-*hSB(6%bc
zq=+j5R=o#)ebV0L-(9Ekqw(QtUG8tKmwEp#@sT?n9oh7{s=|rw#h;c5+nFs-B<*Ck
zJX`bhw|KVr{w@C*4qm;oW{>CJ=8we(tR}tK{(8kx(PLBB99pHeeRs8={FzDYjJI?f
zJdC%jyY)?9>{T4s<*l*K2kO*5+Mf8RH+k#2oJSio67DLke%F?LUdLZdS}w;U&@W(;
zv&MEWy_iW+i!X=HDNDcj{XfH&#vkGz-W^<a<^7-h#mA-JU0oX`F^SbuE4?$ha_U45
z-j23{N=b{CI`t2h?24P8oVz0OHFwgbB<qlkJ!cD!^t|(#reenC(BJp<=h<}?n-9<D
zc``lv!?&fiD_w3+IbK_^mP3ax{LR0ZLUWd{VYXAceq29lFRFOu9Zx*pJDn{vm4tMr
ziJ5IUu!+;}CFdlOr|10miodLV`LuIynNq}DlMDaaY_k6|u(E!5e>9%^#*6zB^3fks
zPF#w~yr;Uc<g)v$(_6d?(=7$>RLkqO*I8XZA7}cXp{Xx(AN!>*f7Or5Dg0+>S$fJ_
zD)!~J^uI<1#nPKRwH#$maj*+{@NwQ^7ya}7@T2uY_u@^bO-=u1d75=n_VSn$<^}sd
zU+AmMNx#tb<vnkO@{#cO+V{NJZ>1b|m0fA@#%80j@s{Sif*o=5D_5sZywvtd=(y)<
zle)=2+W&DCKAz9-|Lr{U4b#;&(z)y2=bPIZPr9GpD9ZOHwXsa5aNgF>{eAx#a_zh0
zCBA&i-*S9m)^wh>cfZ|xA7uB=sr%?rcDuPL$ko2x-|}*O>V1hHn-0bLAByrR|9EWn
z+~{Jj`*%Z6{A9CWpHqIcw*0r<zZ2nhW)~Ljt>=q<x#8AM&&PYWS7-JdRz2+YN_6rv
z`Jy(NmCMarmtGF=TYYu@eDir0KiUreR?BrPx8yCf-rZiiB=^3~noEi8iPslC26?td
z{m0oyyrwq(Cf7dPN<P)#s<dU&q6eEkv0aV5>-Ii*p7yu<2mdo{*nar;Be%_qkFPkk
zdgGGqoyuJPVQJ^0o13`h?w9TB`w;#{k^j(quGd!m2YZe3#j^4e=G}MSzw487n|WF0
z<F+TR#;!`jQ#%hta&T>Gl}Qb^ST=Q%o&{fSUY%m*e};|okH`zI;jGNqc0KsO=G%At
zIXpZHBG$b(U~;qjEpYa-!u6eh)c$t<aZcKP%l(Kwf834poI=}Hb2LSBcZhD>n>MxE
z>9B%H(4yx*B(JOOFScWg{2_d7p3Jmo2YeT0eG})DecO9SXZyCJ<<r{&3nv&k-c)J}
zZg6ws{1tcq&^(TOp4bZGqh-kv7xg&BHCIlpxTP+k6kNtXXG#5OBUz3&R()DCkE~r}
zmE78NajpN!c*cK6=gDsGG+A<C?YrD3w^b&_u!O2k`EoLiwc&YoaRbLO?fd_v{~f6l
z`OuXWr~V^4x2)8(^WXW0uWwJ3ZJ*~+s1jt7r*!{2N6ZJlkhFcreiVOL{;<AjtMv09
z*^j*UCLf-*&F5nVFUOvWd4{|HsebZSvI%@{*wMXr7w^9KX^Yucez^bE`@`-dQD>&v
zi81?Lty!q^%k_hYX=sqyk~WURl^b`mxSRN^<Th_T$7l0v#__<L#*0iW%fj7{-DAE~
z;@=^s`k$di{t;X2iWmFzyenn5@H(l7C`xC3TF0y-t|`Yd`$7-XP6iqI^pE0id_VLb
zjS_v{ZsWPgwLI5SC{}XLOm{}NyUV$cGvqP!-F^MqR{8j@wjI}hg?DZFJ|X7d(_8mk
zgsi(Oo=OzT9`h7RC~P~SB6KIbDJ%D5_MxgbQt8d5J4(;<dT|+C-4`3|-Fy6er%ER8
zE#Z^;N><y?^c-$HZxi$AXO7T9@m2O#TjYPJUEBEK{jsyzAAZN}yi#MxK3nIO?3=or
zhh6fTi8I+}oZvH-IGrwO@%qX6-&QqxKNhdO|3mkW<9`N@dE0Y*wp-ck3eLQ~Qt(B@
z-KNXUTi#Y&y;7pCZ2F6L<-Z&9Jfe9vR{NB!zAapG`sv-jJsnSa&r8SbR#s!<7T~iu
zmVM%%Lfxf%Odr>GZ#iL;zA&<4O2%|f-M$6W-J*ARC~)RJ{d8dp!=F<}9VL0+U*+-j
z7PK<lwtK!p#r1C{KMEga8?j8cTDNHSp3YLAO~=g+Id3{~Q7m@(L<#mCYWs@B=2`xT
z&dpx^L+Z=xUA2eYuHTaVwf5?@nMKEQPA<<XI4ZeklVe-=`R!e~JB6C6>Snz9)qXTO
z`sW^pi|dc@vq|>ec3-rnDsOEvpM${3gurQ^l(;)pJujs&h;#)N?OSLz|ADR8KiQ)H
z48N`YGn$U9UE#IKFD!8G>PhGN7Hqq`xj%4n_}A`NGpBESdO!Hn=Y#V_>WpgKud83O
zQ8tpkZNsm{9-+6O{M@x$Ham@e*qfhfV2)oFCErk!{#f&it@pQ{3va(h_w(5V-N-6W
zt>5xk&*?wI;?o;tk6WbPo#uO!MXo0Kar{yJ8~Y-3OZhuC#?QVh=N@fa@7?EZecSxF
z|F+%7pRW_2;kE1Jg@vLI?9Bf&G;NLkk@YFo`dj6t9MiR0x9+-BHI$p5`k~N0+fq!#
z`P1aN@8`%d9xGgVK2Y1`#o~-?vAQ+M-@1OJeg5OSyH8&HM`m24XpL#gHLIl)Uh#ap
zE)-*Wkh{Sv_Z+uO?XBO=hpXJ%{#fcx{j;n6=DT}r^S^&O@+p6!@h(SA?Y`!BbIc3l
zPn_?rf3WU9!`5>Xlk-<(#?|~<v&rq%x9frtncr4DXNtb=u|!kCg1sPNzhRMxa7_O3
z^SAoH&Hd5;=&bnBc)=RQ2fO)&JbCwo&oldQZGW-qBS&f3ZPUXpEZtL{vs`bX--RWc
zrs_Dhx2=>cI&*c$DVy8!SLKiVXK4G+z+|VEW%ldXLeqEskF=v(C+X(9@9aD0@uW32
zbjc%&v@oYrzZ>uD;d3pRFZiD!GdKLeuTAmG+h)go;Oz-~d-Y57;T5sbF>~(~?7Z}-
zHMLJiE6Gu3>C8<h8dCl<SpPHpG5urs;aj$A?;p*LdLPK@eY`N=elpv^GdT{E$~uhZ
zF$SM}Ec#+UzkSC1u6^?RwqDtzzSeHOmh+bLQd`gT&D58vOF7!D%w!a0(|n#GY&E-f
z#>t4K*Mom)e{er0&;R4S@7Aj}+_IN%Wo@Y37^5ZHoYLM_d$x6gKoNIdd~(!3<@Q5X
zZ?A~|Q~c;-_G{a$W!J7{+q%q*GClX=o~2lJdBUCCoeg~v`OfX~Q$B9*`e&B$vHp<Z
zs#j8Sd%1pIoPB!cyEkgnJPzdFVcMAR=XjNt$4(vIYVnpW@?B<9iu-=dmEGR{sI~62
z-QvPR?r5Q<E=8`&8zwfYYi&}tI4OGEN^`fZ<l1}BUxxhCy=*66k#*?$qpg3ZuKAo6
z((dQVm^-&g`DEu)k2yVx+}hffw;Ed`uI<yTNV@OpYpRr-TI9R;jQFHeE$k-(r3Ies
zbUYEWY7P@?P3e+~+Yk0Po(bEhd*%5@-lsRjPO=326nHRk_nXgmIXJ>fV}J0ioxqV8
zQ?~G<_`y1X3sKh(SjF~DUg2xAE<AFA-}#*<xN|moY@CxgHMHZnbU^d0xU+xPdQ6To
zsk+{6;;~?^^tYO;iQ6ydEbxdvwEe>xHq}n2CDW#NEDG*hv&s0$V^*v1bMtI}bgqod
zG(7uJa?yo{lb+s-NS%JVwB#peN8ao@50;-^Mf?ugC${eI{m&rr)#0A#{-%GQ9tC~!
z%w2Y1+QheMw_2r)7GCLjE^k)ESFzsUqwo78+%wg>k442Uxb*40>b~VAo4jT!Xhh!8
zUcgYZ%K7`x9qV3&$oOSV4!SF96ZkvfkM68P`79ONuDw4tEij!SnkB=H{k-Uv_rlNB
zn-<Qf)fNx@aqic#e%AE|vvnu0-7xjxRjIHmlZ*bePM9d&#K=`}>c)e4TZ8@oPQ832
zs`u!BhPL<5OSX4-m~<Bk?vUP>{PeuB(o}^90-Um+W7qb#ztPE0_^@nxVs83scexvD
zzgFtqdzcnbxVwl$b_V~Hg<9@K73-G1xwIv2x#_$&KgE6b|2X=Q@7pVT(L48!mWv*Y
ze7xPgKiz3zpxL5b6DLo}>3eRu>T(6srF)m&>30boEaG5^nf6J&u&H=U&6)6hB62rO
zzx-SLD8FOZx0&W`HR)-2I?GFXTNj(I{j`upT<y-fx69}2G%(HMJjQ>1pWYAI^{ytF
zOYYvj8>y40()HcYV@2_#$MSYhPuyWE{_(gxNcWcCy_T#BxycXgS?<Qi|CoKas`2Xg
zhSm8T5zjfq(>$jfW3yD;Ce!EU8`1r(=XwoyweX8?-iu<~goMAfO?vvBDb%ScNX$PV
zi9vXN)yMh5-b;Vfz00*b9J_n#>@vIK39Yh+<QOXX{;n$C+4T0{i>rC(kMlm-se3u%
zqUu$#>rag=^>vB_oIO4sTd}s)reU$<Ipf&<VL_Xxt>`QLFh8{-`rGk~`xIVsK6o#8
zuza~cCok){W(jW1!Y#)O^IDT~c=kOyyd!YOgI~*fAN^+#&)no$xa2%{=C!VM(=&x!
zwf-}R$=$8_DcK?M)Zw`G=F5-H>Obu7Gd*o-+AF1L8f$g8zC1JM)iT-BPamJ^me+XQ
zeDZkJmCOGGDxM$SuATkR*Q-`JiZ5C%CDJSR?qngozdMh4FJt;Q<8Rcgy2l%{@~%z%
z`l;?p{fDlT-{y11#horSNYl#;I;(R0ton(6$)e{iG7j1#uT8pBcPXm&?5|rtKFP|R
zd_Pey?6Y&)%!NXIVx?1RHf#K6h<sXmZm0H%PxnP@^gi16d^x!6kDpcA#yW}mWiRi)
zxGZEi?VQ=<`R{nrw`KRsGyF+h5@Y+krKEO)lVHkRMRD<sC-xsYmUO48)m43|i^k=x
z^PYK?RZ0C*xo8?&<neVq@2gKgE_?6Ukr(*y!jqm=n@(%*s(bVO!0o=N#okvHKlE+e
zE~kA(XU(3Qf<l)biv0_C#a!Ub685w1!_<O`v&B()^B+&ypJ_7tuY1rGfeU+gZA`eS
zWv&qBqJ1tP`LgJ%U;dr@Bz`pe<+49E{oA_d)f1O*PM&&w;nOm5r##R6eMG=;p2hP;
zYp>*7z1TH*@4Kpd>wmlbG5V-Bm&eZL((+yh?)+8v4vQX$w658>WkzuS&&)lHll<7S
zJ3q=zf5aQ?P@DU8##UR|e?iwS=lahm?ohfZ$L~MAr>~(oWcmaC_SuIGUdsv3vX|Ss
zCGl~W_vECm-UDX@S9_EvGoLm5^7_`EBQ>rc=S|NqUXpP+x}x;KBt_G;djyYb8*O8f
zw@sOPs&KkW0pszkXUpB>KfV6=Z(XKV?^=JK4_E#(2->I$XG!_3PhFh(Q%`Ys#U=4@
zhPmHX@11#@Ig?9b&V%dKsgKv+JRERc$MkRD@{6SzF+SU`g?);O_AC%-Sa?Hnf?QoH
zv%=iF*;6mnBrd5q?Auvq@gsHO!VaVCjz`x%o;azywdq~zgOpSbi(7_grR$kq8dOxh
z4!xKkAG3W^aecaI!{*=KyOZ;8rOYk}W#Qp%bwAs;V`<R!Enm_$mPN@uFMf1i_D8bs
zzq>zbm)>$+vO~yy#Y>&(pXM2rpEoFHkt<tOP}Mhe{saA6&X02MUcHi=S^G#<>AS8@
z)P?)Y*DTJ9@GZJ{T=1Vz$TFh><D)h03v0YS>NlDCIz2vAZDXlZzkeQQxyhz&?*bo9
z;pp?X3~>s#sGGX;(SHWH8oeLy6hHiD=t<mNy{_(fdCGQPh9b6S)w!2cB9&WzUS^)8
z>DBCgzi;lZDa&r(`E69+BhO;vyKJtp$JK`)+!o55*dCVj%X+QpooPY3y_YHzcOKN-
z8NOfQy!s<~@t5+v$@9*AKJ-ah<Zk+!I4@J}%=vBipSVADVq;+3eDL|&y82i9S@#4k
z$SVIXb@cDX%Wn^KrpFtVeJYS=x@YkA8DEe1(-%dI3RT|^EKbi(tk_kyv$8gciEZ0F
z*X`X#DQw<lch$rtbaz%BD-N_WXsNwk9C7-@cVGE$i$7*NeY1Lcwr^!>xny64xSFCw
zkeOTVJ@X#pWZlU<May=cbv`0~t4DLiALVK9J$G!A%MqKt?z7t@KAYW@e#|Q@k3F2g
zDRHzmbWz=zf**YxYyU~bMpo2^_lUEuUA+79x|BE(+aq3Yc6Z7fZM%BT>iYHl%r)X`
zGcRp#_@`ZCZ6|Zx<cCmpY+yuIRP3$YMHga{&+x22=*jkAx%I}&vqCkGzFru()VkcB
zZ|iFLj;M3n^D`g$21L~^J#~<ENs*ReQKh)>gynaWU-mG@oi%^+aqa!v$Cvy#cj(kt
z<r$tl*B^QBoE3bkW05tdig4qWc{`6s{oVbe{gM66w#Nr=wYUE>Sk}Jg<+Y23d$vza
z+7aY_Z(@+_yGfcV$rapJlJ*;}|Id(Bf3y7I@ix<Z{(tAEPv36NZG0y(GJDe<=al^l
zY!>PbzS?elkx6<D8!ZwqWcmv|T@reFrQ1ofn$3^mZ@zwXzxB)4kG#EiqUH$wIlas)
zd0Xz<Ih7elD`Xi`Sw8GkUq3yTd#}Fh)>>zm@>yRCzJ2f8rpD8=V#+pE75P0P1s1$9
zpkayZ`JHkaA9<|eyVtHYNtw|ax~cO~<J}no_tJdM?rv3_F|X=#e147UkLZW>ol!pX
z<bTZ0|Ifgw60kF=KV4_GV55civYB%1ZohZOPIWkGH}}t_mb`N%ldI-iIR7^J(S3Z|
z{Pd5h>*lL`<k7sGTv*<GUYw`k?g2iwDu%4B)BgzHezd)H?w{Z#f9&eTGtVt@6T5U$
z_v&uOy?;)mlt*?*+)-kA-moD2)$@b$t@6D4m?}R1)4VTrzI4Hz+g_71s&3!*wF&oH
zl_2)r@RZ~y<BnyClN|3^h+aPbpMllvgM6Fm(;wxJbmfo8G40Geb<A{iVQRkS?VY}R
zzVWKgIofCW`HA}6BVX1e_U3!2X$Je=oiAD=^>@lX$(r;JwO7AS{5$Vf&7))gE_s_r
z??~s8IFhqxvnG>y@Pr*tQkpLx{by2lq@Jy$GT7%wy59Q4RogDA6p73dOH1tCw(e8R
zq3CySg*vXt?<k!3z5aOpt@Z=|8ANTA>mRO{&JO2Z{3@IKY;khcujG|Z>?d_+FFAa}
zdQ1A{b@sZY?`7}(NUr*$^Ks_K)Rx@;405yX2vr_ZxZTk9<!xV`fn-F};r%gp)x+Y&
z+Dw(E)LuSVr&wb&`=HfC-@5GIt4r>!+bEdLwW;8=+TAxE=dHJCK7ScCpDS;VaB9u1
z5{_*v8$Y!ss#K_~Hkva%$d6OE!S8Wg{zv~u{M|K<t366%LrYqx?4GeEVOq@Q$={ch
z-IO?-ob^G3@tje1#;(@oZ94z%KP>$nvm*Yl)&tICDiTRm3XJ>P8H-<E+w0-vXTJAL
zs_0_71Dk%xFZj`?{?Wd9tN#!8(q+CMPv#fAWqbGRp=g|qT#N9$x)<wSM}8>1H}^sJ
zOFNDDi0tsPW<8T`_1!x@dG+>PXx@{OvW?UE!11gf0e^yjOfF4%eq_2~mY{Kq+a$N!
z0(To0v7~YtRVo=-o^!2bf4E|g`=hnOejn32Qh&?euGz>qbK0qM=8{?~jg5`veuOEj
zcRdN;xqA7+Q;zu`%6?tT-YXx?_DE#{M{2${^W5ieo`y2A6fBwcMf60>k9>zow<^x9
zHk)*0rT=CRAu*i-Zs+gO1+qKWFW39W{UbbXXY_xDj!m~>e4nXL`}S$d#JQF{ss|%u
ztsnYJoLAauFO`}3@U7GHh!0=)^%tkDSo_2;rSD}RpUlsmNIu7tDl3>3c)s5BU)b~V
zcJPUkFW0}=K4o2cbhdKd%#=^(93^#S8e{ntK5(3uUEOufPBHVt`z^sL_X^G(YD}{B
z|7f%G#JA8DruSuQ%&wZuT)%YFynA2$bZt75c7$2C{W(#**YLZ|HVONRM>}H8j~G_;
zz0H09<!H3XOr=TXX`c)3NQ$~$xXq~Y=jLNB&vhLK_ok$t&F$UsWv|iGv&W{Vip{i4
zEuC7dpwRQDDe0iQP3{SWuWQc6y*?Hvm^nM9S1(tAb@{Y=9#1*;Or0!fDPj4Xx#!WU
z=nB1O=bm}*ExPe~SD2hd?zC?aHfx@rPXBaa^MiWEq~$x;^7B?WAAZks>E?~-pSv=I
z(%d|bWE`KSsd%gM#qo)k_giJmYuxwTWWM0!qZhbi<(<6mOj4fpWXBEvk7c)ZKJ}m3
ze2npBKtI!uRj-a{3P%0RlhJKi*fS$Yx^kjO!h>8c58kuo;z2iF&zjMEI4OItYf6aW
zEw*{aH+GwG6)-;jAh&gG*{r`UhB2NiB9Al6Y?-Jy>*<W1O)RGxkIOvYv3TYi&KsZq
zGw|H_VSRXefUoSF3$ZCDHr-uqdB;<|*g)p_kEsp^&X!xv@BAnGW8PckE2_Kq?kn7V
z=5qMivf@cBeQy*G{`)-1eZ$&bF<qla&)<p*#by;-v1nI4S*2aV$$rQ2^*@`iqtE&m
zM7-Pm@3Nh2#?PRGL5zEn)9!JtWNBisby)KBDj)CXm`5e@{58S5E~U47Ow66esUjD8
z>8Q<Zv&p;E!V;b{x9V@V-FWi(e78$)^{@XE=G@AeFS45b%Ir*rqTNo7LUPqiZiW-%
z<7>=5obNRK&#?JUynFuY%mwmaZVT}pk=JJPoTX#`z1(R1!d0{0tzMXQ%l(_hj!RGb
zu3lZzCldYgaPg-tJr5m@v%3BB{I(`GJFj<6{>o4HJO3CavUsk#b0$ZzV|w^!#+I4x
z(hrND?0a`ZdUq4&*}}4GxBfnu<ZUg#^?-2JD}!Svg(op8pDg=qwBuw-n(TqIwXSP_
z=pWeiuf4SVVXoe7zg?S;JeY9L|IASbmz*`xGh`BK-&tR0UlM<p-;7`Q##xQ69GqLY
zwO867N#@--T~bBk<d?OIPkb$w%lgY)$tjuZ_AqJB)ul6g5>xyA?=_iePu?5xv-^gD
z278@V_=b#I;Z3@4r=351T~{VRp~dI2=2X55GD{jm8aypz9bWlqul?w{Z1zfp-jXR3
zSdQ*J`qDeCGo~n{*gnrL@Lh%I(+@S8%>lDi_Rh17^f-M~v!dqQ4z`RBv4uAee9sB>
zie;HHYj?6rv(JYw3u{;(>2L9Smptj@W<@S5ZBbR}azC%n(ck4Pf1FQc+3+gp)(b&n
z{(Bz1Hk;<;S_exUjDMeZ`)9cM;yZB_Mlav8O_rN0=G8IHUN<!4sY_AQtDEn)o;;rK
zx6Z%opFF4B-16nNM~*ODkl1se_=N%2_TLUqz8-a+l<wVn+K&B0+Vr(9+wJuC_zND^
zS(dvmXtj1qfuz^egHIY3ls($JJLpI4BYxi7Cm+3M&$23=yN2;bgm2#JPwMyX{5)+|
z#e3X#^?_Wa9oKnwE!{R>z4ZyR*+1Vq^YSYHGeop7gnaOOJg<6QR&HRatkkQkU*DSL
zdYLl#7hG1}l(@-E<EQlP;*`SokzTqRi*47HRJ9*_-x27mH#zg+O}+K{5!x!|yedHg
z2PQqyU}RKis9W$P+<a+;@X>vydn3R8t~I*+UT9m9k%<pq{k7>2JAOKS-0{I6d++6c
z>VFLSeRAz0k~j4-8mT-#$+LXjgS8Fydz-sH{dJH3QK)++xJE11OS?1W=hMqqPBO$5
zN$kAY*k9-8_}1^*3$xz)Khn)Es>S*{Zf=g-86Xup%~@skZl)bv4(|*cY^%b<vp=do
z{NBEH-`U5#oFx@5`P@1mY8TztDLQJF%ADS_jp0ex=kvmu{~3gXuElyi58Ku6Q_d~_
ztt4l%HDeR^L$|8uyyq;|=C@s_U{lLBF8l6Zb}#pi@W#)4R;<E#hx3#tESc}@_5FU}
zz1PkyAAO%U{YkF=Hoy6w=w2gr>1%FHcLNgG+Uw8n{=0DVa%P!JS@k?yf6ukax@U9U
zRQfl=L9w%Hx|57Q{ha?=x{O28cCYsBn&^k!*_!YE`097&mQ+`W2G-p!yVe(YtZd@;
zlL~xudY&(H<DdJV;n3mT(+{7S<u*Ng<+H$lGo@|p;!lMev#M6S@;GQy*q3$X?i!cL
zFDi3>t^cF2>T`v;M=h%=gYi3KuOBa`J#}YinfUs=(q>cHq~k~Ov#vXC<$TsCm+3U)
zuH>egJ%^R^4=CI4eDdmgmE+}I{p~-4mG{n+z<n&Cg7d0a3nDZv8RnF%Uc_OlaqHHp
z8<~?%c>SDq%+C9JqSCU<^TUqs&F9Wfp0}j*&V%D^O7&`%OG-G;PdaSL@YGRK;<$r$
z-sPj$=gDuIWV(^#-5Tk)tj8SAF=!O*IOi@~B~{m-z4lemX&s&IWgmqmnQk&Ya^ir1
zeen*th@#sYjOWcQSij)<m)(>9?$r?sJiTR8jQ*_K(JO8(X`Xx|S?=m$uPBeR);X%z
zyC3biob#VyTa0IFuH4<03GZ&6n&h20BUw^;-kz{~%>@(hnQeWbHuHUQ$Rvf-QbC!A
zH@B^m<WLYOC@`EOb!yk_Lzm8R-JZEo>P^L_jX6)|xK23zIYn-#t$)=d(<@s~e>QQt
z_UV%7soS?aCQflX=5%Z^V|(qtJJ*U9?aC+*o*iX;!^GF?Kf}>qt8Ujgew4}hSoh50
zai4k6({}DHjC$-oyBaSSyr>O6GN0oQ^8%Hs{)YE)m!53ev7@@;YD(J4bRKS&pA8bS
z2W>ycng3nBIR1t#|KWdfJFls4F;e-i)0@k|z?PD9FycYs4xV(0N87*nH~-VPT4U8)
zci4OTodwROXC~?#NqO6?c(>1Zj?&84yEaV`J+r<x;Pw3utG8=!Tq@1()=dkQ5Su8v
zb$Vm(4Iky)hYiPV|7M?=edN||!~7raU)j!EeoC_Z&v5+p?v7hEHlN>qjpvD4dgP4k
zx(4H2+NI3$nkT-h?sz$CrTWpetSTwK&I&?|V&^P=iJthAS#5W8Rr$5!|1bWL`{Df2
z{@8r3^`-AcGfv8+N9}XzXeiUV=_>JABv;w`+#NZ)s9)BBAJ-qZ@7pL*Q=DYuSawEb
z``(?Mi90%%oIkT>hZg5KgVht~ElAoo`|3Z|jIuhVEtgGJ&)9OhR#?bv*6f%wJu@<{
z-ktuv%dI?h(~&31v#$N9|5*Nz_3FFD3t#>c{kv~7i{q{9L8)6Z!t4ypw%ttn*;kf-
zx+EujrA<icn&je@!ISfzAKN~E^Yx>rwLh--@%Zp{|0SmmF4?iEbNS2y!|C_d6wZId
z@Sv1w-}Mjre}oTxdgj0FeDVs@J(1ZN&u%3Z6gW=#_sUrEyiJ>}f%c3446XAe>{Naf
z2W_0YR#EJG>pE%wCesO%>>Ok!PWkozyc27!t9|QMd6^#*?bK@|KZg91ytY0iLw}F`
zTCrW*cd=+Ha!fY-d*Sq!+?Y>`EoDSEOHB-mQqGE~cvn-s^gqKv{V)C<Qn&5aK6!cY
zKtj_iRgNRAb|D@-9jmG<d)Vr7X8kgH|IKmwx5y7=t%V=i9d}(X(Jp2Be#DGZeq#3L
z`t>{8E9b0?i*jKVmw6C=c^CWf{|qfs;vH%q)H`f~CRH?h`F<}G`_ZFTVAQYBt9nAY
z?pjVt3X^NC;)D0MrXRk?yX)Wii;BNPm!5u?q1Q6q$>IKM{u2_+x7i!tS*$k}>|d>I
zv3uTBj@7?UJhc<~!|@~g(d=k@nF`rly)Cns94Y_iD>G?_V{7WHn4Wn{da77OzliPr
zt?|eD$L@y*m;UkceyekESFU;Rrl||&u`zHw(c<WHW9I$5cyUR}y6BjX{+*`h*)yMi
zi`l#J!_=?S=c-uoOo*1XdSCpGDN%}Z(dj-jgBU|yNzs)L*UMD=XLzLAoh>h*5YO@I
zJHLtlGQXsT6W<;zw%r)p_&E7<o`c^dt0vaUODnbde#_dOo>;72F#qAX?%!55Cb7|v
z?e^VMyx4m9sNBlzM4OMbU9R#k%|ALm%Sn+G+Vqg)aBiH#>5uJig+KfgsZD<P_UgLj
z*%m!(&#qZ7vCHM$^`NC(jn`LCV3fIfd%e()?t`B#F20Yet_$)m37>a&i3X=z&x)WQ
z|GxP@JX%*?<MtzX&8rPr6Ka?)m;7houjmh(s{d|{p5UcRkrE<zg${+O&I@5zNl9m&
zFzfQo`;Ts%E!tYQeA%C<{|rt2e~dTokdyhbZC3N_naZE@YiujFiTiCZC=}Sm;-PGD
zQ(gMw?k1}m&Gj`kKQ^!Vu{!Ky^{Ydl4`qG!PhRnEitZ9!wI|zl{&qImB$1rZmN@Bm
zxd7+U%JuDatUvA_y{EhX!}*Rq=H-iDiv{LS5|3=M%voV@@~KXcruw8chJPHSez`v^
zKRCDk;hN8JuU0bl-7-+`ofSSo{6J(%piaY7dyOO6^V%)eop|{2c!aTO=$rFFKXm?C
ze=M7s`B+!)ec<&qPo~_t9TR!#81H8W=f%e=Y8P|8;b&kxTi5iW>Ug`2<D*)s=f};$
z{Oc2CR_9i0xfZMFsy)=0;NrBxQuRsC>Xbh(uKs-g(4X}W*N6H2&p-M%=;wXW{^7mm
zn%HC;tK2W247D5*TPN80y<KeiG-`$VTjs~I#z(pzSk}nrKK$#IZm?#%@!rpZa}U2s
z^SEYyXJ?Ylk~)i+PnKGjf~vDJ&ujl)^H=cdyMKl+s$N{yU#IrbZhEnjXJ+ZrMUGmB
z;^pF}GOaOJNdDd`W%<ZSa$y2@Sladvmyg&fe(Z{R876=8*X$FDeYfttUA%V+i)x7Z
zdzGnIYHsuR7+%~s=i@Ec_ir^8oenFB%uU(m-PV-2>ts^NPoLST5sT|MB$ynpOpLNq
zy}XD0(YEH84}EKM7ya0l-Z6Q3%%0xj?eDugPP@y#S|QE+R8QHVQ2CR#_9-jrW%E})
zxG!d({MY=^zol%OKL(xh_D#BTH1F0Pq1tIhfuBC^3=KNkkdR!WW%(f7l>g1whw;sq
zV}C3TzWm5eK3p|FEOcj~(3i=llRA&NJ(haM!;w&ReO-<J$GEv47Q6NPel&giZ%0pE
zg)WOX<Ae{%!h3pZJ)I}9TbO?M-nl=gU!X!fXkwlCk7U0s+iKV91pBI77k1V9^SWWx
ziikgplcqfoK6teBa`5~QUoE4zt@)MuPxob!b^Rg!VjW(d6BE6ZZa<xT>OaHklyDZ=
z!)Xurc{tBjsvnKcXRp}xv~<1fe}=Rl#nGH9VgD38-{$J)8BSWMyF)dNr@*5iM6SZZ
z^mEF7`St%9GPupQeVDhsc43^B1nA0%8OlvIOdRpbEat%z94()Vep1-@W3~MJC0Q4F
zmF_0b5>~x((B(w*^Sj4V+!E(5^-g(idYwo2`^ClcN-G1?zcu{e{n&Th?ee3KEpKi2
zEU%7@n%ZUDe*XN1Gy4+Rl_wsw`L=#)seS7`jSt?pD%xH5Zs^nQH&EHgKJO`CmDjo>
zZ5Fnoo-&X2z4^d@wEKSRt(2(TbL)QHn`v<K@4RWJRrloH|EpHUWZdV#(8DKwecwg#
zhk9E@cAY=$Ev<S@#V&K}RmR#G5BE&beLD46Wx(NEd$}T3Uhda<Tzco(6w7_$$q!?l
z56h{4e6?=!0>MJn%^GQ&jTlwdpMSr2LSOVYkH=llzRKSWf2_Oo&$LS~#MUY&)_mL3
zW^u5%fqy0Yv@d^*<1=5~7yMImYgI+ivyW@@b8jvZ+je2sF{LT&_f`v7pP9?(=XTHG
z{qp5M4nGQS;@JPO#_YNGRGXDbS5iFGPW4RVd0zDK<}uq%*&dHp>9^{7mL%Qs`EmN;
z^d_792i&_Ss(#&KmZ|LYZ6dQtnyYlgvEzMKOnV*KC&p*hur(iy%8dMDSJKU!^ei$p
zqBL~o<4M7d+f=wFDqDQ9uq~T>v{?J$e}>k7%2$FTFMhSxIu|l=-l_Z3gf{bt@;Mzd
z;ILpYzsD|m_<oj|o%mJ0sjDioPih&o2ko4AJ<l=xHrJBe<|c-Toi7|-2L`$=>vpqC
zmzDhX_x$nsx3pdN*7Ln8E6O~`nbF!A@%E14F~LO)8{<|<)bHW15B{M3mi^=FhkIMD
z?bD8U|Hp8p@y{}=m2DBzjJi1b&lDRltUSrNUH8<ZecT_WAKl;a<m4jH%D>yQ4kxW~
zjB;>1T$wBRSy^^}<-8jT#c_>=zwORHy8mNEovg{X?f1=e)=RuEvaHjSFq%`M*!7)V
z^tg>l{z=n(=d9wgXYSYS<bL#jSoA%7T0VEy%FM(nxm&RYZ(Pz@te1Eetvj)xz-Dd3
zH`(m7HiaJ_$9{Ob_T<Gs#>q>Z_1_8oii~=D><+`(seQ6X(it?BnP0|hX5R{HeYiJp
zi+o3JWo^+h6AzQ$ft}rUW;$z}jPo9IdD=&Par?XU3xB(nPvM=63$ZM_e_Or$Zobm?
z?Uumjh10~G0>3|CoE~_$T{N5X)OEELE5q_@`4`)WK9;{_9KCt>)sk)duIuE7+>*F=
z`^`oLr^Pk765A8bm}>~GPQJdh)c(U#Q;B?&+uGb$E*)EJWqWn$m4$jX2U<3{E9WJJ
zlqVeTX`J<Qd*qM5#UCee<kv}8+<JA(h5g*cRJJ>c+&x<g8rW^v@4Tv)`lRhIRTFhF
zZPKT2@6MfL-fMTcs^N^;17V>Df*adUz5Fb<Q{h2ZbN&X)mkYnw9`D>I^&>v6PqsMf
z>ek&qo&}18Z9K8^86TgX%BLF*Mn%j`Y}L;;Y_-2V`{1VRZ`1y%f4Dm5blw5S;_}jG
zar}m6?}N8EE8L!NN@h;+<XJzH57mqA34UbHclzPmV85$1)oE`o9BTF{ow8ZBCF-n3
z=hL2@Ts2z~Bpz4jc6~X|`p5dimu-c&Dzpz3`LA*>NZz&a+S1u?&AtovoaxP#bV&=a
z2vcTXaaP?){?oT7#hy7Oc6O5=^&egFZja}O^+(Lh%{n#pQ-$5rj+*_w$~EEriDMUj
z-r;kW`=`3LM*7F`N48G)k5p~)mf7d0RQbds@4^n2KWCJ3^!ToZe6xHq|5AL@EwPOs
z<?dy3B;;z{l62|XRg>tG8rapDCLN(sBgXQ{?b7nKwcV+|b^qvpJT}k&m`NA+lF(14
zUzq)OyE*TWee=L*@xx8)+y1=}wU7Gd9r)W~`^q1gsUMUd>34nc_;Ow}Iyz3}-PwE%
zqv$(Ngg<NBU9mXNP+fXrO~-$RH2&^?Y?t0{wdblxd-dKgEUofcpZDpuve%m!TV5Es
zna}t8`j_{`KFQrb{2$1M9}|8ZT=9ufTPOL@#dotxlzCOY{b$G!T(gtCm_6bg+Yz>X
zK_AuMeti(jf4E%E;z#^~qiMURU2@+a8TR_@jp$R=71vD5UF9u5%kQwXEn426@1Z^G
z%3`?{Kb}80{^s{b_G7`ByOy__-rOp|@+tZ}%SPKN2Aj-|2TC26OX-+<Zgz~~?;~>B
zZ*#-HiGIl2YqRO~GhVxYGAHxv6PCm*=3A*eNh-i1O=pJff%S7s>TfR&{xS1uhMehT
zm95?@T`%taux8TDd(H+diaR>w^->e;UQfNla6(=5OL=Qay@W*4N4=SkEVk;hNj%*-
z?dO!pS7mRv7jy6E<S8(2YWU=Ts%mP~k~!-)+N|CgRNr`u|4=@2=C1bcp#Ka<51o4<
zxqi!S*6Qwvdyd;O6Zv;%JrOJEogzQuVdktk_xVk0_2PwVjIJHqD-u1mb>YONT>-y6
zCK+#k7JStwdEzncD>dSe_L@h`v<ZHoy}MpuOQ5#xN$Yu6m~MPF-{P`C@~4vwAJ^o#
z#z*mde=OP$f48%_vZ(3&k@9PkRAx<^m@R#h#r2@juH(<$9!%J?M>)Ut#)@yB_U)Q%
zWter>|BS!vt%~N*k3Lnt@22aBU49#(_h$K2y)z3PKgZp>b82^^WD<w=yn>4L(``b3
z>;G~7?f>n4<5n}Pyz)(6OP6%Te27wIF|$0GVsT#K%ld0)1OHk6&^wkd@T1zV{aBRA
zZI!O-V43hho>gtL?k5?Y;Lg)oxnYHlXqDWm!UcZ}DoxKzyb7xd*<7=pPr1v%;b)8M
zlrwJ_&$(0_Gdx;y@#v>lGv~a}6?T8<-(DwP@!Rcs%8rfGidRIQSQ2M)Zg!EmL88!+
zbItZzf}1xoe2n+W6#u6&%k$ly;^ppZOxnClu9k#E=v}iZkd=5BllS|<%5xrZ+VAwm
zD$YMJ?|QuLqg96a_4_vp|89!)_H0ur>y2<bZzQBLvAl4@k%iqti+lR}_nFoNe7th2
z<=6DXl_uXWBuzfk_wBOqS#JI*OAno%%qG6#Q>eRS*3~3cYu97<QvA4!k8SO5jJh{>
z&GAS1tj>S8n00KA*S@p+!IxQ{{_l;iwC6nAGdtkg9>WLw1srS3*ZpTmd=<w1Z({C}
z_wy>H7qW^>RrqpycY@?QZ8v^_iuK3#srkAc4%)wSj_;E_3zsE{mq{$~d0-&x^g!R|
zW875xgSY=PNJgHOKeDxtd&)FJxfKU>ReM7O=PsPCxZ`evUxCP@U6oH|)xP}kta`K6
z=F;!S?+^cHkcc^S>pw$l)Q2@X-Q`6a&Z^|@$UVDCcrROV?~}H3;<Fz82~K>x;_~mf
z`vJ3qFRo*ZuHWo1L2ILpQ=piERj$g)#Ks98rZ2_sGjCbnDwW#awe|j6ei7X_Z#ilO
z1zl8~x24^Y%b6m*X`<ExfoO~M7xkNW)gPSSQDsve$2w2*k;BA0@B7mCH6?HxofT<5
z!?RrC5YH0<+rp_C$A6@*%3WXa=k<@|53i5TD%;4mFgx%1gr~P$*ql@Dx=GZuPTv>)
zT!n|HFmC4BKYAaYY~T3f**)R>(wtZ4zCCO)GI}u4?yG~5o8Q%wva7#{ADO>7z4?!0
z_wI`2m$ojw^{uMwj>o3OJXUKurR%=wH11QH@#O7|J6EpRaqazJet53ee}-=j^G;dk
zitai1%`^V=RP)@=WgWKyHt}f2?w(Sr@Hu8{cCq#5QeG2#GaKjMWq%xh#MbN+`ykhx
zn6A3&-@|uHr+qeDVgKraj^T`hPnh^GZw<U)pY{Is_D8c%|DF73zPaPhySzvDd^nUd
z&uIB~Z_ZGs7V|SAc?XZZ`fc_*@CWlpWtYjmm*!m#yR0@x`L;&yG=a09x|<a$``8Pd
z1+R;q%8C*{oX_`Cpa1aR+!{lZ9n;R`+MScW?NWAt$z$7|)506>9IwdRZ}8llm1W)H
z`dFu;@7p(i$UXjM`J>t@%k_IKOY;|5=9{HtNZt2K=RIh+xlt{Kxz$bC(n3=Ca*hAP
zTH^=XCNEijgnPBA_ll;NxX8@@av669>%GSf7pi>VGQ54GF>0RLkINsW58V3s;eJQ7
z@3qLKjHcNIQkKpO6(m}gB(_ViM$}$@9amfa+x5q3$1Be-KA8Vzf4bxEZ4I8n(OyUY
zEN?U1<~ZTbZgIIC>sA%bR;$|Uck7yebA6gr+w@iIb{A_YJB!TL7j2qnut0x$bMLy4
zx`=h<$2L@)KC;hm^|FfDK_7mrG=?4f6{t2>QJqz}v25bY-I9{O@4jyQ;rUqp=DvK{
z`2rQkr2lGVPsw<`b4#1Wnw!n}VTO4|%iP4j$Zh@ly5iL515tC&?fECZ;bVJqUSRU(
zYbF7kYp0g2d%hzmWuj^ri@eDSzndnZMa`azlD=$wP*vZ#Pvb|j%j|%UIm&(+G4FN?
zbytUn1&AJ*w9@92+0)J^P1^3^-QPMt?ms+Z>yAg4_XIz*URkqjd&H!FcO#2DrpC<I
zm}JD~kl6S2*X|E)`V19^J-2-nv5NVSIjd>OW!snHll*yB$T~LJetRwECwfPl@y4uU
zyZ+AEpW4s+$9c=g`a}M5{ER=ANq0!S;?;Yax_xJ73eQX1HEhoL(!D3nct|84uvjCf
zeQ&o+X4!>5E<66tw9oVxc<EjH;rd~5rgLY03fy+PJyU$r#%RfdT&w3PpL)FDz|p)K
z;~(xHy+f`|e)#^lv~T)h^Z0$!uD;JzGuVBgxoY1dpS;zVrMH*F=f7xw^!%tl`ybP5
z(y<>!+t!vov}pD$T$3T^GAo49YR`p8>(~u`Juz)x;<jG+WBKFmhwS)EiF<y8o6hfe
zt6tRf>`)|^$4$knM^+s(k1N_Fns{mJ(!R;Ny`7e~Z7H>9+T-|J{*UL!9OKM+f*-Ce
zT=o9Y?3K6Q6g2;_&?^_Ru<1#be6;6w@PCG;(m(zm>f4rlEbo4|<@L&(r=Ol&PPk&T
zsK>7O`GiFdv#kvJGnFM-y8gcZ*niNz^%ig2+K>DX!#37F;1@9Rw)?H?x$eu&Wp}5G
zhxI;pYutJ6-eU%?ALozX-=?<u0YCTc?MG#!J+Ex#JhE}=e}?u)zkO$RdVV_9)GcHf
zzxP`^gIQ=1Yo@ofWu~l8s_Saw&&v<4TwbFTJ$t{{56>+Tf|2oITRru1FD#O@xxVAZ
z6P5bP84p8>j{2K^3Gdt|nR$H|S6oHYE3<zWwtW`6#?gA_vdew5l!nC%!zB-vp0_DJ
zTQP0%@2LIXCTG?0ZxhbrYh5SdEqq+9d~x*cj)$oQb)~1Z3+FsY-m~jR@5kU{QQ?2o
z0;BI`+NY;<ztLIv<(bn=o{5{*Z20)S?UCgP)78uEw=SHrXx>J<ijV4zbqW>A-|IM<
z-oBMCQqk10xV<Iebmq578wKtk6|_DeJt4e3=8xjXd&})_?I|z$Rl~37Q^~L7ao|70
z`GnJX?UK^6-k-0O|0=5Qj2FnsT^?bh@o}-@k(+MY3g_&MbYv{N{Jn?&N|<Q-F@CWZ
zVrTA|Zt3%mUVL=#3ZX3%=9x|ZnIygQm?!fNTec|=RsP=fEcSnFx!S(*A73BG^DBRT
zubuXvAtij8r=irmc@exDxl64>i{JZCf6%tucH`9=$(mVr_s+XIO?uKvb>`N{2CYBx
zyF88;hu?pkx~_lG-OM=d4^OAgtn`_-`QE}}vBx_aSyB~hmp5LPcu^dex%!Xe$L-x}
zzx6wp@7mENaCEWOi=LS>KMPy^I8IHCv&~*TZFwxu9Fx88l3wk<earOGe}>%qjt_S{
zo}yEDyScFBdFBm9>qji#)f<2Db=~sidUQ(v?TqOGwMRPND~8RD+}|yzrN;iDCw;k1
znBUY@XV<zZU*6*Rb++?Po12FY=PW5cGdZ<CiEDAv7V(Gsx>p_Qms`8y#VYZf50N?5
zp}HqRcT8ksD?Y)zQa0N!<ZJSiTF$52Kbm!>Ja)bMc739a>YN49cJXtLtvF?T;6d{w
z*23#n{~3B7sQ;Efd~43<#kq4T<9sp-FPu~qoccXxCHuOHwUss2%YG<5xc{U7P<DMP
zcWVASRq^yZ{&QZR<&5X=sCZS7z4t#uYxBe3ugx$2iB&1Ou{$Tdvh65CK}gB3gzB(4
z+r#giGuyYE<(|})(s=WLk7e`ICaq%WT=QgVN_WAlchS;qRvOIr)<@T9?Yg8Q^{jDu
zZ$b3i%6Z|L>t@U=SFAl`xcj2NW8CJYHELFGd{_N3-MwSub|JQ#E00}>Jkxzkz4Wu=
zaY>&QU*1OFYMZ#A!l`2Ip7d4sqGQDL=HCq1Gwq>qL)4pPSG4b!8Cf3pI(Ws~<!suT
zFYbNjM>1?|ckYQ*+2x)0bJEuohe-Di8)fDcww}MV^Q`~Tuzk9BrrqP-J(oElOEuU(
zVGX1H&MRJS><ig@K6d@CJ}fTJvo)4aVvFXrfA{WobiUKGyCC}Uu%!AO=Y;uw`=&mL
zv-%Jd<$C7Uzt(kszO$<x`<{A2v5hm}jeLUqojhxv!pLK*{6mDZyq%xtdLNLww|iQ5
z+?D(-U;i_NCg*)Ts9`IyWsOTqUvnbE*JD}pTi=xAGag9XvgzNEeV$TkQ*W$U|KeEE
zk)7((p06$cevAD`_K|tNbk&agHJP5-UKAs~mBa9JTke{|tJ5d(uT6RxcF0q8-@Yqv
zYut7-nK-dVFxc>aJE^?5-s(m1F5~d6Gtd9%kN?28yvDsJZ<cRRn1kHixax_0Y=X{)
z55C9;X=(FX9~BSW^g_Is+wHeg)&!IMrxWU{R!LZ>Fqmz4ecSZKv?!PGX@ME>d@WVH
zw<ft59A>-OaL|5Fg0#drgH!(NvM21kTI2b!Q0JaflXr(|&dI_IXHBhw-P5fPo|pKW
zrT0E1@6y(3%W4X5?EQIZPyWjIJBKPVp2_(xW_{SurayJJ%&CYk>jUMaKm5I!cG30R
zoXJylmF#Ekb$DK=Ec5lm?LM~x?Z(-0*Y|klT-)|b#PF~YPt5&ONmD&+Dl_HJS*1T?
z5xl*(RLZ}(q$A)^%)(=Foa(7tD=m*bapHV3i7~Hw-qk684(YDdPo8&Wa>R%0UBR9o
zzCPWyQQAp$Vo<$R#BCL$JxazK{fySA)O<OxN~*onPC0Ay&%l_QKZ>qTNe}Vv?({Bf
z?fJ7}`HB<j`&X>@yr{Fj#<o{I;Ns)W9UFDNP2^cqw^Vf7Uru$4*Rx(Pxx7#IwUYna
zl>T6&m9ZPwsh$s2ayT(@hus>c?<+!s-6l2Xe3X@c*w<a8oG)<KY}LUdZJx?KOyU!k
ziZe?-Y5w!NbdTzz*G9Mc+w<0zF*r5_uw?B#!O&yW?{xFo-u6TCo2DP<E&KL7_`}Yw
z%U%`V9gA1qao+L4K*srMTjA#wkDuMS)Aj8?1K+=6n=54ZZ~xDbv7<El+IGf=^W7@e
z<%E8+^GxVZJ>Vl`o?BFTs`0bT@;J?yrGCCQx76%h^2hUvjp6cBvyRO#Rk^$%bbF`E
z##6#i?`)P?lx(T4@L0?E(#G2l{xckT-|2Mc=z`2&rppc`oAZ4>bAHadL!w*^mIsvW
zuKwD%;D`7Fx4Da5`CHz6u{1f<{3IihV->sG9c~`|fWykN+E42xU&V8OnH%@)^Mfn5
z-p%=VCMYmhcFi|o1qHFTdyjlCt}mS1(l_J88MhT~TEFDgV(ZRE{av<_WmjFlc$e7K
z&$e?mZ7Fx{Gdd}3kYspFWFLE|=_{j}IM4~>$qTZqbf339>G2djI%69z*M5ZuN0z(~
z{O+u@A<rtT{7Cow&RIuN*O!`ay8M2_;WyLHCKlUdo@9NJdMo7dj3)~7+SlqIj_0V+
z-M%Ao@veDKZwtjZSDH+W+1+H`l&Tgp@A<qrrR(|ww=P?L#%k)e<tyXPnr@pbx^J%F
zvA2#qJe7B39TcxO&SQM?MRe|(s2baySK_>@SD#+lQeQgph+@Oj?L7Oerrj}om3_@l
zJyVWp^VN4IGxPGKEqR}KtqGnue`be{<74iBrq83MA3AC3t7d(lKlZSS(L;e#%QV^i
zB6j9+p7_V}{L-$MA^o??EM?8+E?SqAU8nX@Zu-*3oThsxudI8`;NxuTKT}$W|H{A6
zv#yVMlY^V?ox6E%hq{_!rjFv%NJfT-Kg+(Ue0isxb=dRrKAHQno9|`)Y8HIzC_H0f
zcmX#n%iA2rIjnClo8Gwpx?Ujla^BYNvy3_=Kc}Cc_UwA<o>T3ApWDaGooQ*gZeHoP
zQbp(ZYUgRYKdhUSxMkNz)tetyJJcL&OOFiQIH#3)fyF-sN68cKU1r6%?~%^6z2EjF
zy0`3A#&+%%%X&jo><fNooZ>iX$+}(eXQ=jlwpZW93~Rgol}$c#Dmp7uB{}~$&tabB
zvJMJg)D~X+!}(F@dI0|_FO%7YJ8xcW$=zt&!#K%-Vd8naxmv<u*W#7^_Pw&2&;Q5&
z($*i-5B+Bl_SvxRvBor^q!LMmhaR^M^gJ-oDm<6<ZTk9(X}M*OJ%5C*iMyNmo#&AL
zw%cNj2P96a{Co4UXJLT*f=9c$_1TU--fML3)lKESlg|ap-npogI^#=t&s*t==gTbY
z7VTXgv*Ba<VO_4;_`|>AR<7_AKA!*0UhA00OqmrERKC3xxu8?C;Vw_h<GeSMW2S1k
z+V&><{ZcQhx&KI>|HrQD!HFN61E>3KC=WMyX<*Znbe?yPkl~zd<uZbS=IwP1$BvnN
z6g?*1_^-eG_6PY>d&Q6J7g62ey*m72zRRc83Qa%qB@>EHJ)ExU@8@Qf@MXPZw!P#+
zO}X~GkOIzK9WrH)ZNgnriv5Ci{=f9Q+UJMr!&q)ttABG>{atE$BxBwyOTi-_&oJI@
z{j_0r;jv4F7oP3ed|aNrPQ;z%Qbp6fqg$<oR5$IJbkDk9@q%2@!B{swzeC1<BG>1C
zIR0m1K4-1&e}*q!;r%rUzi+kwEu8(I!NGK@YVpN6x6+?|@2*p=SpTqEp6kaf?OZqM
zoj2E(?p5rcu9B{D)OOn8CkYR<*R10>=XAZ_^U?i|UDsz8KG-W&SYB{u_f3(BjT26J
zmY;gQ%~Gc1@$w%B|1&7ewSJL(aUcJGh7)d=|Ng9>u<mOrUrKMnyREkR2j(-{sn--q
z<<39;<7r`{l60(_dFs5obKM-K3Od{=+#y$69KY}%>xcP&v~RC`vnM>coNe~<<1D%r
z$~y#i`AAguE4fWrq|>$VoAuihY1)(6&L7_YQ}o$?hV>o$=hiBIT>Q_&yrce&l>L{Y
z>z%Q8)wWo#cz>$Aj`hQ|sg+AIcWs-Ro|$*yM8EtL+3gI>;<q;o<+CflXMTNeuk`W%
z47~efYkV)>yZq?tj9Hg1-dwAH#XEP!ZEM++DttSp**RLo2v|J{vp?AXQ`E-#KSSJx
z{|qmttoQk`@IQmX%ldo${}~*r9<AEVCz>i7`1$F#?sb1ufB0vw$hx&}<40z%t{2C)
zmjx_7oym4VdDgpIMoUi4pBCOHRCzDZ%{M*bNBhI)y(YKAKh!Pex$Jf3*(cA3vqXCo
z^Cy`^#GZOEiTmASY1iugt^1$cvvK|R=0C$P-nyWFr|mzfzStk#|5sSmRdTm+eA=v?
z-;S+)DC>QEp6u=q_dAvLT(_~VTIzbyK2`DrYw<qi?FFYAqQ4ycxbcH{?2l5(Yta$j
z?>TNQY29~a)1Ggc^XKwU>zb@?W1M*XYUAT~`rP#=`8WM%SU3N7&<_31`=9dawEi=!
zkKX@8)63Un;@mGAKijo`nD6*;S+CR&w`<pYH6tI*<nhjwR$@pNyOdj+Ge=A)eS6h+
zX@CA7$*$44<}r<;6P34feHZjEW$Z1`E4tVc!^9xTTJ`7V(UgDZ;y=0N*uUOfud?c%
z&3}eTjVtP}oBs>E9^I53JS{Y;X2oZJ@qU>f`oZF96*ZxYW8Xz*AD!8IL^YiA`E8Zz
zl!NEbII!QC9IsR3{bOsL;&kWBLYE{HCsYbPGtDR$ij-yJo_2fcy#>sdm)1`D&+tjp
z`9A~me})Uab-{l;{xeKkzPkSU)%~BQZ8<!v*lb<tEcqk+A}^<zN9lJ7yt+1Pi*%az
zeWmi7(xTk@)1q?vf2OG_XV@#=%F2F!GyTx5X<gIjF>I7te8Sv>@67j$Tbc_p78fZc
z_AzMKc9%bz|Ic~*e};GJpGAMM{<iziaN;5R-=eMm87`)6owL)lv$_1vpR*tH+iC(I
z?KL`lxF{xD&^KSBFXXcBpRK)tT{F(^2{<Z0i-Bd*l0J8z>+`bW6h1z0c_Q}D^zyr8
z2ica%o81ey8tmk8+MFO$!uz5+`~`dSe}*TEUe$jS-~FHA!mWL&e>d7cv1I>Sxa&W|
z#qL<G@TonEzNDYrexI-8#M-C6>>+!7P3KB(S@9(4S=`QvskII3ip<?&-S57QD->I%
zQ!2LMa?aGai{~d?U%E8)#LuqPMhYkXy$`-IG45~Te+K2S#s3-Nlm9cgEUn<%`JX|#
zWPbantS=dM*~<z~E%tW4QDgdX^^sk30$<Kk-yXdp)I~0Li_)zJZuK1!cXmn~%<WtI
zXVumJ3<ut-zMUWSp=0}XrQNlC)B9X5PU2&p$#in+E8~-|C&vXp_|Nd;KST4MZ|m3n
zVgJt{XFmVye+Kz~4cS&3zZHEqF<)qIdrsK<!_&P>H^*@5+&Ia9GtZPeV%a>8KL^%a
zJg$1`$VRIKg_4+c27MuuYJWR?$f+}(TJoPk_+@kGmflMq*WQI>w`-NN-4bvUmpFOs
zksq6H#k0o$3@WFC{xfWt`Oj(J&L64&8I(o$|E*sCDeC#;eak%`$65Z!{AhgGs%F=*
zc4gni8;ZYam_`58p7`nCQ|GDiPF00npZ2Oh5I-s}cJK7s%&L%W6PusuynC7w!o`?x
zcp|~^=jN9OzOKKRFHwJ@v-Uqj%sTs}W&areGfXsk{clh7e+GxBu8OwFP8&a})HCiW
zHE-23nJ*c0D{I;+$BDDVGs~Ea7$uwv4`?|zpE!A7&06(u;(IUV>i$Vwc*AV_@?$n9
zi+(?ESATjthv5Xnb3Mj)N5b!3m;a;{_n+aq|KC~r+J89yXHW`T`JW-~{%@a<Q(G2q
zHeKpxR5gF@JdwY%O!mt=L_d5TxBX_ftC57*-Gqq|g3=zljn3_P&RTf>j8XRWrGNXk
z=$iZKf3(V&rg5^%GEZJ;LE!GfGQq{o^SGWb4~}>HccT6i_s96Zt&jdQTok?W@0$E4
z)#Lx(|GRA3>f^J;X*H{4MqTCW{|pRo{}|_1uX;I8dv@HVF9(FUW367EJ>sb~t<=!C
zwY$1VVw>R{Cco^b=Y{@VtN*YpXW_*f=7oos#weC-&HnJI)vwJ}>}bHo{FzhdKa-hM
zxqfR6_kRXCIkW!^WtaamIIKT*|5pA#r(6DixBh3ikiDH{@8Ybg86lT+7r$HIKL11D
ze}=BhYp%s<Uwrdq`&{PPXC<e5@8UTaVCAZGs;`K9Qc93jLSfvl{|s9~kN1=Wulvz`
zq&cGP>S@&}J)2^VU*PHNdOy`u;q8qc1J191CVZIxYjysw2lG!{U-?7+ef)oh>&gEa
z7A}=IBcrr);ldK_lS_+V#@2sZd)-ETweHicch5~Xz3i#t?%nxto@>X`S&<u794s%|
z-PPCVTY2{VTkD7YopF|v_{CpNyDpjVpCP|D>h5+sr=Qc7<R<N4oau2|ZtA0WvHjOy
z#D9Ics@`Nh!-f4%3hNiuzc}@BVSBq)*_HONpvm1g{-(>Z{+RgiJb%AfM3mjqho=|R
z>@@jsQby%L?`f&LbM~#*C11ER?Yr}VuXpJWIqBGJM~CTbcV$k>_!gX04BTD(vq|HL
zrA1oNlIKq!GyY@#&oJ5E{_EBHFRW|lv(=wyt^fC={+Dq0{OXfOXL-AH$r*fD-c+Zb
zCGhIoh10o@BqZmS*7I-LdU2BCOx81jE(w#h%(lOmobid{LHMjc(LdHddf&2Zc2=02
z@a%vK%Rc@2o20qzXSj4l=G%l2MdALh>zw(P@LXT>@A!X)Pa-@1GpwI|{_m`v_P3P(
z`F=hoAM&5!f>yexdUDC_sQJe7J@#TX-Zt0g^X>_>I+&}`FJ`oMM(3f`E2h6WdGcqQ
zQEXLn#INsdU;i_7i?_%A*qAL-wRK0pt#$LvJnh_-9)_@%Nt~axq$(kNdfjRHPmCY+
z|F%5-&u~%j`gODUpY-qkXV_K$ML1ShWm>z{<lM#2YSRyw-RJpZZ{P7Jx0Y>lzR6md
z;Fmp@&IB1Yak&WO-K(oNY+7l-GWm==U%G#n_@>u(TpQ+jSC=FmiK*nVd)2JNv9xKU
z!kl+Jbvsx6v;EI7$yEMt`4#&wOSS92vHsqt_Mc(B$$y567q4yXy?Qh5n9ZK!mvcWj
z{8)d8GehjN@2(wlT&~YzNivO`!h5#phNO?+lm|WY3}e*~^Ed97vXOjz*8EWUw2RqN
z&MN!-b}!rg#&^M{<62CC^JVf*HQjA^wr>rn08shQ5b&R2!_w>jy88Bhez5#c$FKCi
zrIUY}R{mJ|DR!|}LCl(;^WCo0SU>!+{KC3Dj!RB#ywh;(+}jlEM?vc*9nM(5=KFB7
zNo(W7>RBJH^Lykse{cDdVUwKr@TB5L&bDX9t8SiADi<<foX4>=EMrOP$%3cHEM8?l
z=Vz@yaq-dl-@LEvPg#AEb^qt)QU69_{x8GTF=}!~em;kmW@@Wc_wD}e{_n~ylj4dt
zi`+fo3%9g|)bnlFYPQOF>aLCT_ib|6btEP@Dr}E>RO&DH+D_@i<BI7AgYO?yeZ@U}
zmZe%4x5DW>9+zs)Hy-w_W%jK98J@U()c;%YpTRTx+&+o=lT!J=SzP}!EZCZ_Rp{-K
z9=19CM4axn4^P+aHrx8h*W*U4NSJ(*(<aZ!je8T1WSnt76Y}umsR_oBaw<QzmM?iN
z7?m0JpCNbqr^z+fi%cdp8DG-)u&TQ0xw@@w<@)aZpJb>1+Yw#=A}E}7)qjQ)S?^!U
ze-eFhxoM-9@4J|f`bYkTJ$wE;EqXHlbdA<dC6&G)PS=PJ+<9^3t%>uN2*&6*=}TIl
z%}*@UUYs{6p;cgWX<BAvk$X*(t#;p!_WukDEBC)q%>U1@sJA-*aQsiP_5b!ij1BIJ
zR+fu5?!9Uw{wUfzY~Q|}E?ejMHtIe$z9TsC`<~5D8?UpM`(1r2&t_9*Bb-@W{NZ;%
zwQr{2qY0-xRU?`L7pOXG>$6*aIcoWz;R(z9_x(@fBtP8#=cTs#KSQkCvOljbS<ac0
zT5^8Xp4yL(!#~!yKDxY5_eWE;W2%aGZvOH$*S=kL`N?yhh4+b|e2|Ls9EL@ECI^4)
zKawl%(HwKJ^vCl{%hPVWx}QAN!{W{>VRea<ibjWDPkg#xvi|Y0`~P;Tf6lu4QU1>)
zTl3ed-b*F^XxzVLsWS6@J?DRhjQ7$t)>oH)WS!ojw{*`Wp-U$=t=&`f_JPyB^4ZUJ
zvOJ8lF<_Z^O#9~bZ!14MTfFN2D>?bgIeX04WW~8`uj-qd(U<<);t+Rt8k1_x=ETLJ
z>?;nM{#>vAr+H2N>lgLv>y96;|0J{TKf}6A?^jcvzBh?kwPUsNoBh%?K_8#@GRIU*
z@}8S^&2^$u#k%Lyt{N4|MRX^6s4sM2U+e$iKSSGgJB`HJRY@^MZpR`GvjoiVOmf$1
zbn|2o?wQ=T_0$jPf1Xdj|K0MR;b!)Weun=HCpE6rzuvfF^3#iornQl8=JV92`rpj<
zop$-i_FuPe#;j>LvCZi3D$b&UgSR4@669wK&NIBy_3PY!h6nH4ZH)9w<Hah1UWZ&*
z>t(ub<FYfqR&iWu;yt@EV#&7LJ##0Xl#u+nw@&SY_@BwQ<-afa=e9rFME<9_ylDOP
z$^RK%npTEpd0OAOH_7McbMFu32kr~K=w4kB^xprY?vjNf-pggb^+a3to=Ek$StQaH
z_t!yk{al;;-z*jS;aBqX?WALSnci$P<PP|JbArc-S!&jy+Y4&8sXQo-l>gv&{->GQ
ze})Z>|I+rm*{J_#klQZ*e*3>Rjk%T14^vNR#>!9q_5ICE`@_9_{K9`+E-%@~cRzj4
zt`Fa4>t5{NKHF%cno8dLO%BUfhuv@8pL)Jk&TNZs`XO_(Uzd1$WsmN?e(Rp;6VZw#
zA%-5udsu@w6rSymuqpn}ppt#G{_E5K44cEBng0>)|L1D!{coT0e}+q)+F2EydvEsK
z-(AvIeJp;%(r^2h9IxfQ`faw&I~U$^&aOkU4NdcEW=dC_)R9np5dPe~_a8@%|A(U&
zCe<4FvdpPGR@QefXa?`r6W>o*8~3?o|C;{e{C@@&x#RzK#r|h_;kI94pI!Y)vrG2(
z>i@E4J&f}T(+j!Od;Zju-5+_3az56rFD!j(<t{pP=^i)Hi0Mg-@7$TJz_njboXg?&
z;;w7E{27lIKmEb)-S4t@&W1_<v@@a#o;3d6tUhDa-jfH^x33MnUjO*f^MCv1|GFy8
z|KqR!uNT>urxz=WM{oRizx``w>PO?VYu`BC&*+qkoX|X{c80i$e8joh9cz1~ADQ<i
zcK<f_x%^~DQ^oO_e;37_(-Ca`y=hs(o=-QJZ9d1H1{FxR&HontTejzV{C|cC9se2D
zEB`r~SpDK;Ptc8%+dup<J9IhX%AMPPm+aoL@xDwD-|TV=xrE>YHR&r)oK4TN7ZE=k
zH7Pp#p4b*|n>|G_?mClBHyNy3b;^9o!$zTP|61J)s_*9ibD7WcpW*tN`@f9#m_Pdd
zr!uP6{a=&Tl6EdH-<bXENA_w7Y>v(P&+uZ>JlB&tM>jbBy<Kx~|4ruomv+_~dt4~p
zebBBovo>QA)9HF+okT|!+2yPCgH{z))n-3CFY@<v{;yy8&$Qp<^ZaKx(YX9S!*#>I
zS@RvH2wjv(+x~E+uy@2C*V^(`(QaNxS$7Dyg_KV{aoWCy&)s6(?gQKJNp`7i|L`Vz
zSzGA6E^}e^vfQ&fK3Lj&UAVUYNlg5&_v-%|<6<Ak|KvXVCI6{Q*pg%6w)%l~qWgD!
z+A3O+$EkQvQvR%t;i0!b+b?|Je9qi8&BF9ZXUSi+hf0pybFORdKE?8Rr||T=BL(bP
zkDmQ!n0WI)!|N^cf9qCFssD8O@5eu{qSzN{tp9ed)295N)wD;CIQdTGy^(y<D!lUV
z5p78Z#>sQ<7G&S~WB-x=f!*|n$>}vEXVVV7{H(k7mdSgi#?KqKv(A|x_V%mj^Ihlv
zbcoIOtpCFGBmc1dC#fy}8P->?|I4-TQn#kro4VsaLjQ2&@-6?+e&kmFp|XlSKNel(
z%9fMcF`;1R<##FGzjOL`ek%`^P-eJ(p<d)aL*}y&Y@N%p!&X<XeHqoe(>V4=8SA9G
zW^;_rs+|3{X8VVhz@C~T$?TtxAG`laD>MG<OZI;)U*B>5XHZ+4`tQyDU((n6-rb#T
zYjSz(MV&f@AE6)5ovQd_xUP2E@8CP{_LWTgUYGRb%@n(9$^GxwU2<35p#8kRv*1Vj
z!-5F$hz(Z`35lJ0p(EZR$H*)9ptdN~ec^hgzccnfSug+Vz5b`FSM}NUKebQ(XNbA{
zlk3%@wF{3u`MX^Ai}@efkGEcjZp_ZL_S!W+XlGiFbGg2B1xx<qf`_|`Za%*7`1O6J
ze`ohg*jf1e)A)G!#_gLvTr(cD`tDHRk$t%9Kf{g&u|Kar?|!)aPj6WL*Q@)#7{*^*
z{^t6B29+@R<Nq0)*7aw-3w1xe@e|wZ{|qeWF6yOpCSHI0<@HY`eSs@FPiJX13-R5w
zId8~#{N7=PYN>C3_5X1;KDZsLd;R#WkWZGO@izW{mo67O$F1$!ne<pf$ZdwoC)e7Y
z>+4TcAFlt#Z~x11^;_=xpDNe?GX(!<*c5K3E^Ki!BILf&l|S3A{AYMDeI8@CUrgkI
z4{l3SH@O&f+69QroUx#1ec+aP*-!iB>rVY=;Hu-(z4~pw@T%KK-fURieRoaaCr6c6
z@1=zsZs@S*aQ*9&|L3^fzWvksqy4vn|Jmr<zuvO{Z1yyXnJ0H|_H<QE{`sHb??Riv
z$JejStLMuIxDlQ6b6w5h(&7ydH1GUSp0kqC!lqCA89)CY*XwUg-FN?e`tQJrggNi}
zJo&Y!rt0kfAY{w2eutg@e}>~rkN>Ua|0{L%=krDNCzA4i{gOYmZ?&FR$gPaehP=nB
zjKADJASeB!_OU+OvbC#B{&8Gg?lW2RkoWRW`>nOkKb@L%SVjN(tS|CH71s}nO)JaH
zUUBwOcE&9W*)2Oowj{b8er|Javw_9$Rcsa9^R_<t)&6JFUHiW`?Wb0rKcxSY{gwRJ
z-}3+3u0Hb<&oy6UoywYg<B$L2`^{2)(~B2m-l{#j<#yNez{=zaeLaB^8gYf&S!Z9F
z_4CdT>4z!*8TMCl>VKALNuGROWrF{e2H)TxYyUGSpZ?Eq-T6PmLa9UTe}n$AmN-rF
KIO{q8|4jfOWC#BM

literal 0
HcmV?d00001

diff --git a/src/yolov5/data/images/zidane.jpg b/src/yolov5/data/images/zidane.jpg
new file mode 100644
index 0000000000000000000000000000000000000000..92d72ea124760ce5dbf9425e3aa8f371e7481328
GIT binary patch
literal 168949
zcmex=<NpH&0WUXCHwH#V1_nk3Mh1rew;7xnn3<SBh?$w0g_)U!m4lU)g@u)iot=$?
zhl_`Yn~R&9mrqE5mrsz7n_ECkKu}mjR8*9QUtB^=L_$bJR0L!QBQpyND+?<pD=Vi6
zFE_6U$>9G120;#{3#<&xj7khlf{e_9jQ@`?$TKi7vND1J0~9baF|)9;v2$>8asNNU
zuvLJ8iIJI^iG>;DY6b?zT1F;j1{Oh9Aw@$+HsQcTcBMiQqsEB~Ih36?9uy6__(8=u
zsi=vQOH5osQc6`#T|-mL#MI2(!qUpw#nsK-!_zA`Bs45MA~GsDB{eNQBQvYGq_nKO
zqOz*FrM0cSqqA$$<SA39O`kDy)}qBrmM&YqV&$q$o40J;wtdIWU55@IIeP5)iIb-;
zUA}Vl+VvYZZ#{hU_{q~}&tJTJ_3_i^FJHfX|MBw|$X|>M%wS)E2#Ckf{3Xc1#K^?L
z!py?X%EH3H$W+e2$iytj!m4P<Cgd2%o>(ZXWYowZ;xuvL#)F*7#z7xMlZq~KiK&=8
zRQ(9@8rWyVd8~;npTRwb@YgK{9%e=cCP8LF2787de-rdxv0J{qE}F*?nUrSJ^Y-;w
zZ_(YG@;)8NyYqGRhT98&Zfx2iVf*@|`vuinuTE|uiFFtFEN!l=&WV`!^SSM+OVJx9
zb~3CFJf>CBoy_}_`#keHt<+^JE@>~E|Fm(AkjDWAzRdf{2Twgo_+*<Mxb~m~JG*?Z
znZ(WT>}CGTs<@sMm+i6=$xR8Y7P@bl=lHnrNp*0_R)vS*DqmHei!N8n3ukm!Ug~yX
zyRK4-o?WW!#|XbQ)1HTFWzG=4c1P@7@ximHdl##Dp5r)RxAk(I%j(HjCeB^9S+&7P
zaC?Jse{kfX+`O_+YCUF+o_E+dzkXfXXYM>jxj*>NswW$!-ePl9R*~v(yZI#7;>6kN
zEz-FXCpmUsSi!PUT|vIyYwGl@KReUT@!N!GacJ*WZLgZ+QugsM+e!7k)g=#ZS;}nP
zu*t(~+QZ_W!V?QSZ!MTmU_8k%DCaXr*fFb1J6J22E#F_-^)sjN<jouXiQ)E!vj3(k
zq^VclImKr6!F{dZpI64$7jj>a3URwtw%>2DXm^>r?(Myu!j|Xk-lyht&9!s;y_kJY
zZI;9ZtyO;y_$yZY$*S;}I>ngbu%*Nc>u^zDudaPhZ$vZtF(w~p7cDX=OK|sdTvhgB
ztzLnJ!nRuL&>5ee6fvIjWbe<@KC@CSCh^Wr=FJMRPu3N=S(+*fRm7NCeK!?K6)j+V
zE_vK*^X`)cq0Yhw&Q?yIwo7(m*DJrtf0i(bHn4ZCdN_OfLFWC}_j;rRJ=o0fe8D-Z
z(6A}f6*g^OVK?<`Y1yKjYtxhFC>sQD3so||50=?;+hf8?_64Hqlh*8=TJ<(6jLFF2
z^#RHEVNYwFr`_UIiIm%ud$<4Gl+=mGIBtLH4-9Ha<7?gLXBS`9R$6fLY1N;dF9X+X
z@i~=Ibm~>J0^?=%1<P!f6-hox({7DDzHq6=S*bR~_Ml}8(pUsKoA|TZCZ}b)ra2cH
z>2X-HB>cJ-`ezaoM{yIw^GoY|-aJWpQdK2&diRVca~{i=GcPR-4vUuXbE`c)fBwq9
z#u3~7&lUH46J1?AlmE<}WVOv{+FRx=`PldMg`;&w<<;1WQ*GR(KNyBO=&Kp_FI?-X
zsIzYY*Sc*_EOK{W+x6(u#$#Wl*;yLrRs9azIxk$6|CAet&8)6lx4Ep-zpOsVwVHu3
zQhalv^TfjDJG-+5+=J)5wc-D_wPYG!I74FL`BN66=Oh0#8W_Kh6`jnl&Mem~>uaj(
zyR&5D{#3<Jho&7CzP~j;GWHWEi-Cl7pT)OzQI`VTgbNrx)oO>`dKoft-YU+xtrwOS
zo6WlO^6k6o)eHyz%y{|LwCdj1ZBHJ2J-IH5`^={OP8KKL{|Mc3#f<k(YjOj_lYgRX
z&un#f)4%db*+Pc-_19&4Z!Jo<ueMa)u*R^u<#FN3gU=RC`d}}SWZbtmGpBvw)^CrL
z*_Ust4z=!nATr5Qec^GIu$b=^Q%_hp_pair=eZ($*NjtH$6eX>cgU8ROMi)eb&o8%
z-6?A}@9McTPukeuHTSQL-?__ZrSwUiJHi*L!)h;8HhieCH|lymY3CZfEoruwl(#+n
zzB}cE7RO^{ONm<*=h;n{<u*;8;AwxTIwa_J+k{Dy{bg^oWJ;_=rhe68;XBR~T3hvO
z)`#6}mb$xt)Mh0MrX5<rz&x+ep)odEyJybV*D;s6bx$li<tAcq>(1j}L2gS#t=rEO
zgznY)b|kDn>r2doc~)11jMD4w&yXq5mOLKIwlp^~Ny*K@_lD)c$ENFZJbMc#FrKUB
zO+DtR7tMN}d296c((pT+pV?(A&enXbu-<k)Xv(&X7r7^Xuep7m*>=^<=@|^q?CM@T
zx9?3pY@NgYd%=_RmETs{UGY{=sIV}75VGt}f0Xd8XLBaEDeF%NFJMVu8a(R>%Lz5p
z)bs3Jjq55cj#(a;;aYb+x?7yVAkM7MIGn4jYOc*)&a@q|ukSzo`rOp_PVe%C=M}#F
z$xN9cu<F1x8JRDpoLq04dzU0I-rCC*a_OR=W@Lotb}{w3Hy@8Wt5l}NKG^a8LfYCb
z%s+03+H%OUT4@&@e)sNqpK;tXskvKic6}9kl{&%k<cSrtZf<)lulP^Z;@K|7<;-G|
z{$~n|3TH)_B&+#Vu)q7Ze&KRny^7LR@ySfumSxL=pPgf~T+Qr%WaVzf0}78D`?Fp?
zxHK~|L{rD|ScR$P#cr!S#j<&IG4rzS1f^@u?Q@7som;8p|M!!Y{+negZ`JdC7-J7y
z{I)^X;}ydzO=;Jk-*dDKJeYPq<$jSZd3)tyvstedlo!gcwYqn9!fxx7zI#(|%F0(Q
zKiS-LzcqNWSB9L=@lPA%e#(1&UUhikb-(f}hqFrqxO(4I9<beitgXd`;nNMCWXt!_
z-OCz&$|&=++0C2E@?q}9)r#_O!-f6dY+mYlKUns$;qwgDewC}q9QQWPnGkMW+#EIe
z_GZtvCx++G9u1nN$aCXoxB1FPTl^P%zp+BVEz~)oe(!lv^=X%O8w;2-Hdt3*o@dJ1
z#lZ1CXhvO3-T{eMm8*8$d-A%-B+an(PFbJvD_3`w87xczpA6py8{AkR_VPkiC}+gP
z>oT9`eO;sU<jkElYfju*cTKh5uX%4sSW=}z@ws~iTA7{`w|#7txU*Pt)w|n{+6~JW
zir(j#6Fk}9acQHpQ%~9VCCpDw7r#7f>cNuEki0$SQiENPIP<2-_qIKKm9~7v0eSU(
zmXCWb&oB&dJie~#$|4;z;}bF;=ViJ$tE<o3A@cpsRc~(|VR_X}XZW+`DKYi*Y%6a5
z^K#>g9&w!li*r^|J2nW*MS6Tmytk$Az_T|_;?IA22Gv%qc(N_Q&B)^5d9OV>Kh)d~
z3%>RfJJ^3}_pgHNjmFc0Jx*jhH=op<XZbQjy<y8H9>G4tSn1oEx60&Kz6@EHTiDyM
zUFJd9iYJqOo~~QV(XBG~@C4W7yV2=?*Dc!hdv*e65XXs=Yi4)b?-8ww%0BaS+H%oS
z;bTVx54;cEX3Y28W`g$OeVdf*MEI_D>u&VpXTB0@yDt4nc*yN@{+HIcN}J5k@vz&n
z@dzKkO4ZdLN<Yg*Bwt?InXb!wNyws1pxz<tP2h9}InI~oG{1ew=Q{npaGusHr&UY7
z+ghwkS1CDWt`wqGz?XH$%m0k0<lA{uHXf0f`;&o>^L?0N!vmS(=KiHgPj9^F(J@gx
zm{<GR?aih+6D*Fs+A=XOc#A+mrLD17?s>-D{9dPL#)p-z_@?CW?sy)bwW-^|hGTaU
zO5gGN1^2Wn@cmq7@Azr%{&QQNyG`u98F|%TW|Ae#*Yj(YH*2yp&fqCs?$x!*>)lD4
zey_$GIxPup?`$<!#_}GWB(Bb|?SeJeBy)D=#pTadZdpCgs`0$6X3)dXPaf<REc3Q*
zx*Ah{<*IjE>j@P@Ww||}C*JX0@KpIK+BIpy)9oqGC00(WU9!^dLHg2c@m!zia?_|M
z>UR}{ihN!2PB-s(@_fRw71E2Go;)ZyXZb6{zkoT#Ao=CX@YJ0x%c6Gd;N!E9c$c+i
z`ivgF#n)EZJT7?q<BHH-{u${##f>3Tw_B!%eo@bE3Xu`w4W9O7nr)kr@trHa=B!g5
z_wfc!`^;5&^2@R_Q{FC2io9)kM?~-(Z%C!HoG0_fRi9#Zmq~nC!E@tD-P9@T`gVj~
z*>-t~CBp>k3+X3$qSprNl^5Nq3cltL|MYFlW%rF<OW#b^-7<Rz`{e5;Kjy4FXvw^A
z)$GHD$}44<gO5sYUh(C9%%?E-)qYF6y}S#KmtWuNyFv89W6@X(OSwH)TNyMJCi&-k
z9b7H9L@TC1+OYBK`Kn^${Fr}|%S5dUj$6JAVhD9ezVLb0*~Ke;bC@Tcs$%|i`Sjez
z&eQUKSLL|AyzpgtAotutWbRqpl@=Dqr2Aj{@LBhTTuGg=QhJlSg={7_<2;5p{%cLS
z+qdp(zURcK(#HN}#dfhLa(^`qJhhMixZ?6Ar?JVx=GvTXZo+GGBaL@RC>Gzi?3^GY
zBz@U5;uNEG@jK0Z6~{}@7e_5QXEk+V;ydZ)ElicBEd4uVwu>BktS-}cm2u9yV+`yo
z);^l~G<0=|pUS-@DGk*@+9_|77@w`yej~|}%eF*lCZFSzx~;q1`@=G)Jx=0K-5B;*
zfuX$c{=Lm_|0Nyx^>}SuYiPSq<E@q1I}bdIY3=;V@OWbQ+k+GP{HkT<Em{?=aCd4P
zpJmp?t?j!R8!w9}_nvzCLoqG*1lQg6s9RgRx!Ru<X-(~6f2zRT*jF8PY%WJn;*~^q
zn=h-3bFOY}Vc02g;)LAPI*D!`(Ua<yQMo<pS*$)ODb?4G2rwD!yu*0THGAiD!&x8L
zo##Ae?spE75LprPxMxDO)V^&wKf+?t_h<FKJ(1)W{-eU?(bQeD9bcvE=tS7-_)DJm
z32u?!qjPqPnepqcEs7jv%iho4Tq<%h;Si6^1S>($rP=eAsxJ(BB$6b-bhwVucJFJs
zZ+Dwz%<C3hcT`$maN~{p+N8VsQzti`v|*l?;c4q1H0!4E<oyl1j5R-t%;WqQdiGV=
zbCr}iACE`9EoC`jBY6H)t@hk~?Nu8XKAtdbxnI09Xy5Y1w-+fS9WJ<grIc;Hlq5Ir
z>J366eH^A-9t-B{G_9(dc;!DstGCR5hCR18Y-2cEc`{PY-?TfxCFIWob4l4(w?q@l
z=G|cEbAKEf=G)Hlr{#%;ti9Bx_TSIB*c`vFi|Rk|s%PChl~oHnEYvetG@sA=a<pSL
zlP62aCWFrs0^G^v%xxx@B^dVw+&_BoLAc41YtKVMzex*(8>L1(-MHaDgO!wyLC|lJ
zzYqMqM2kNQPGy+HF0oQjbjs7n+3)#mS5FGsZ1rHv&S@7q=lL!vC|FZ<)l*qtu_mRl
z=i{}l&)pbyq(~$l)0%v2l|-)0Ri{74w!4`eSS;jlJh^YGbHc<8ksIb(u01_tUrf)J
zCxW*&J=rEB!}_>CINq^sSJli@cexH3{IuS@WvcDwV5J!WGBW8aBv;%K4>JDD!)IIj
z@)gt1EH-=NS>G3&w_7vGr^bKB=ZP;oUi(a#8Q5TP^7W;q2}SMmW28FfHna3RpZGHR
zvz*VecN!fJiYMPlo6}d|pP!ZXXotiB<(_hpqdM<*Y%@F{DwMM9o35hHlTPO3g~#l<
zHuS8RZy!8o{W`5CR=YKh&u8sw-4}SQ>gzGq%CEEbJ@*m5bFm{~HRH}`_NT8e?~UoR
zxEnEX&*LVGHCL2`j!T|6a62mSjIyf*7sKtwvz4Z*YtQX)-<ir;YI!nYzu__VhhCGC
ztvL@$9DMtA1<w-R1y6Ttep%*OP;~SP&&2N)OnX-KF5YAq>n)#g{zTb>61yu6?uvY;
zqVwf7o{P%lFk7U#zyHkFe5oaAjcD;^n{W1itIpZI6uPpRCn+>WNO<Fmtk7Er4;~Zw
z{^XJyyY#mezYmz&PHp0!tS+fC=kdHLPxY0As(5al;%al8_w$8jYwV2OMa#DphdsWx
zgJ;!Z83wB>{=#gE@hV@~nMD>qd8e5Zk}6~wIA`j)YW}RYpo@KOGCc`gdjux%aZRd>
zDgD0iVGqL&OB?<uzpymDmlD$rSXg>CzGGZ-dd5cqH_5bjR<mB{B}R%roiM3FS#Ij|
za<OBoI}{jq@GaV{c`qzKxv9L|^5zAtw+A2h`38B2`FvnzZhRjt&ap1mkF73u@2bs5
z);-V@VLq|m(d@EC%FMY>#3xLg`gY5u<5|_u^Neg)$LC!;;nS2E#t`y0Vc!|6faj@s
zO;0`VobwJ?IbnBS#d#5{mfE!^6VKaRYdsQ?Q#_C3_MOno#W#K?UMa|$eEq~-m*`6I
zqIGQl=EyZ|UAshM@5VV#s={In=PsEVRMo_r5q+j+!x^LED*<!wwcg&jIoq12Z>J>7
z*Q0Tf&Th+fB6!+@d#>4NZt{J_@8@A!VKw7l>IutNg}1ks9E&|ysrRf!{HO$j!E%O4
z*1tm=S7-_B{+{spY;xscjhVFvtK{ZKCGXVnR7swvz0l)%mGt5ep5v0N73VCTO|rhI
zFUitWmueHHb(djr!NEMQ?OBtor-sUuzn*6pb>Au2<GQ&sgIx3WwPBN`J3>$Ge3EXl
zs?clwG0*d^Z-ezBgl01QlA4*LeYdw#vhkkT8*BF+Z-Z1~{VvWsWfeN5Wfzl&O5d{O
zpW07P-11@Z>(`M*cP@rxoSSxK<w=KXo~xQVcN7&1ZoayD$#nZ{g@m~~^6rG_CLBHY
z!RxsN+pMq)S<9ANT}yC#!ozsF@ZRd5{GZ-wPd<M-dUCYIy{<jYljj-PYH{lP*>Nr;
z@3^#U+M}#hkuxqSt;sxI)1<X$LLVo~ljpCa&gZS-6Q6jlR%`B|)*@!nyXOk8?OZA}
z<<v?;o~p0MZC4$Uxcg}W!<%EPL{pPEWIiyOsua9sNtkZS9~kGSG`;xZ@~~U8CY*BS
zY4EW8qvbX;bYGsiJ@c*Aw-h8<CihvI7Ahp&;bY^_y|%9?r1q_U+}!BZ8+j7U)e|g_
zn+oqMo^tXSTm8({i<JH|=uh9BareB>rEar1YRar1&sE6J_0ia>msYm&MPP5u@z5vf
z*Ox{`$H<;yGqU`;`r0??8S`YGZ+!eR?9qmhgnf}gYy0+UUtR1y_pb81rKz%KzHXJM
zy>C|4@3ot4wn|sm#gt{z3Uymo^G)OC(X-22zBlXk%dGBmj_f`1m-fCAc{6F_qwA~B
zmL)qbe;+fIC7sJ(A#}x;Wj6gY9bfI$&bxO-%Z)+f=Q(%f{-~|IZSFb(MTPHYebZda
zuNJhe&Bdzhor}Bty|1QOvZgbP-rNYec6HqhzOOg8v%I}k@h9tzRMC+xK8JG;|1(@)
zJI6=nc9qQU%q+n&CZ}!DPnS$ODEz&P@7$g8bqjND1(-Eh{_J>X9pt;rAWg=o<ja9|
znGTkHdcL|d<P6v?WsmO-n(l9C=J!0Oz<+7k^)Rmm4a>9oAH1mB+FP8tqxJlmyUcv-
z*LE!Do*S~PSU7T{Vw0$BbMoZK?Pk>y)9+3)Y(925*7VWasneDF`u~{ro1{JoiWZ#Y
z7xP?QZtK%szA;}DLuI~Pdlw<J;H`v8ao4H6&T@}dMOG+oj1~Qq=3wAfdBS$J-bYTE
zB6hE{>y~|gm&(Qwx%;t%?Z2tYb)TFM95bHmH%X}PIG5wQYN_OnsV5HHF>JoIr6;)V
z<$SYgIV)9GCI1X~F!}t~RYp&LY04Ca<#EO^c(SD1a)`3bwB^vf-M96opT?sVUv~z^
zN){PO@I1e^dh<I8dky)u{)J7P3@c;{L%ZJwm~}F~Y(BAW$=a3Yp4M_sGkQ=j$ZT<p
zmE-0C<>acaw2PA*f7&uWTk2Vtd&6c<Lh-DnE9F`)u26Xz(o^96u{P_HL!|%d!=)=0
z`3O1Os?~Pm_^#A^tXl4?@0Kp#caFTfmd6;VPhDMbyQgt?S$#{%%1bN>3pY-C-?cqI
zXO+_m6^+;LU;C`fUdvH;c7ov*Ifmt`GgB1wF1bs-bFaF(ZF8DJ^5pxM=6_>gKXbe(
ze4TcNu8*p&kEG6xxjW+AC7#b(t-3JaPt6~>`AbXUQ#l1we|r8?{PT))!LgV*RXyP$
zr57GeF1NH^&D?vw$>I0jqp5c@A7?#QsCulnTk_2{CkJ+x4;;@{_-C*^ay;(9a7?>m
zY4)6TVd>oU%b8mEc6?b^_ulV7z?lfX%JnY0E`M4ssk|<m>DTe>32tx7k9)P(PjC+}
z?(gH>Y4P#~pVreoG0)d!y}l_@RCv%<bE2D1hX+GC+n%3${Z72{&6&Y$uOZv8dc*BW
z2M^r+y6pB5+2$ff)8#xa#!ODl2U)^Zo|GSwmC|la*D2#kDGaVu=I&#(sm=OyL!(>a
zoysTitx?`45<iP<e_c0O*7xGzy`vm&xAm|dIQGc+%H`I50fxcHv#yD?G&tPukBZ;;
zGbd)wydBK;t;LpW&)v9u;b;aMr^3XyA*r47xjX~xUVdHsbCFTX+e3YeMd#b@4Ao%d
zDW3Cvq3@RH<+(lCQ<a+!#y>hAwcLRFgoN$!wOO$)P7fBmjx1hy@@HM#kzdzSEpv*`
z7EPVyJZEx4b&xpwqCV?cZAF3|Urh9hI9O)AZ{BV3<g`-qGldfeUp8K9n<0GV7uUK?
z6PEfpyzjemZ34%MdklX*M<11$JauCJTiuB#BwtmB2*>8$v3lNfHB!Zzse$8c*rYHS
zx#LT-CLYy%6_MG{&ob%oUWe~I{JA?GzYe{Zrn>Xgw^f^VrpjEKW*Kvuzx>l2p?az1
zss~doC67C4%66QPX|jA9FkS9(#`}O%eh(s6my5J^sI#w64BUClc#^~0OSAVk6ck5p
zu6S{hdxOdo{+i&6eU7qOg3}WC?Y*Y575TGo)1K$P&?{H$qUWpK4llzVSUasVDxQ02
z_2EN|C!cLm3NWbtzOHQdysKK%HySD2p8EdUvWO4dJX4vMsyJ+FD!%?QY(e*8w#S!t
z&g*-=oU4Un`Rc-B#r_c=s>GhJT%E=cBE03-@4#=Rl6i|IUq{}1?vr-ysawaBr^WLs
zR?KCP;gR>+@$rMj!^#!&)IM{k%OtgR6>Cp>veCM>Ju1<{^1R~8OAP1R9y5Pl^+~qj
ztxaF$%dp8ir>tJ0eYWWYBTx0L^~x&>WQ6;SXZ7BBAGBP3ulqB>IbS9JWY<N%Dm*QC
zp=6T4<MLBhX^W<IoV@EZDfe+E+alv!=jO@tjH8Z5Je^y;$$fSfPY=%(UAu_M{drlO
zdFH>HuSm7I->OQH`?{;GeRkM>mzd8*g*QSr?0Zus@3mn4Nrrh<QoD1^<#yPvj_o%p
zwcKX1FnCTMYsRgGLK^A{UFWv(6ux{JEp~Cz=@SR+d&S($O>_g^%CH^$tL?@T-0ytc
zCTVrFhLfiR``(<WBMX?qUj}a8Ik`McH=?F*Vck2cS@$=%C@Y%Vf8RXuXPEC22hVBD
zee<sFP1+s3ELze+G%fAk{Ct&`rkkve5)#L>lddugc(8h$F77(Hsep~MP*FMKyoB=d
zt=R`&Ey-hEE+NZny6j*!yWsl7J}0iGl>3Uu_!pX{F3nxo&3oLECA4%xicQJ{e;#+y
zD5J&Nf<_!CBwyKmT=gks?v7K9bMN;0KTChY-CukzYq!8T=Yr-rU!HBwUu0{=yRB<-
z&Et%i?cX<F+MKtTe~TtV@rAG{CqzRxo-6EHTo&neMMmcFUZ-c#^3HDNQ8UC7L#D|X
zyuGzSpH1dT`g*^s7w#S^{w!eYAiG*Rpqt_Cu}hVvE%S>nw?togsl0<{zUEUmr&(J?
zk9}8RTHM#R^Xd*RhP#ayrmmiFS1Cd4vE}PaJ4G*kTDy3u`>DzE44eJB0(QRQw3&Bf
zP0600mXB>YUKIw<UYc<`|D4AQ-oo=UGkO<mEX!JYNY881x;sql@^ej7G9F7PJnor%
zZS&$8Z?zj6iqA%PdTa8qU9yk6dN}A+n9uvgcBy3<%VeD`4zf$w@>)gi*<yX-NdnJf
zQQuT)2K8rg?hD@fccsqb`Llk<6Mmm?lUX}o9KFk}oflBJWBrP^KC@JNdhhxx%Un78
z`;d6kjbrYTzb+a0?mWTp)o$t@)8uK#axd?@#^L6!Ao}u+wpEJmq)P3^ISI^B*I9j1
z>N#Gqvu(~(W#IFBQ(Liq!QnT>o-d1L^Bdk2Ncr}7vY*Qx2Hoa94#{V;!lx<r%Nm9W
zbGSVU-OI2(%~~!ra_dfko{qypobsnu-$~#-y61qqgXP)S#4UPPZy8jck6#<SGkC{J
zW#$#KuDNF_-``73FIecvB9m;nY!b84J9cGDljR&OsSf8^zI|J@RytWhZt9$;Dftr7
zF8<u_5;z~sNeJsv(0uYFd19o;5*GGr>yI3;U=fvDK2Q6^TD=u-m&@<CyxrRA=@0qC
zUAub9YabZinK$3-eD6QU&kV))FD?6QP?@v3_<euYr&V6hmvS7{7CV1#iICM_U(4rd
zWdS1k?9ZO}gv$PB*eM;cI`4o=*{{%zhJq6~(iC{M7R5Wq#c~U7bBL4pA``OlgluE+
z+|ygCdO|Y}WLhP&_Y@TOZOv8sIkWrE9wv9M>N#&sR~Fs$?9p>PZgXWv>I4CglP|2F
zE$Ywe-R-o^@udBwWrDKzHLW{r0&f45T=Chw@U+~e({mm?)+usaz?#Z)cJlScgDcr2
zm=5PNE0iyjc)~JSBKZ4G+bo$NxosOIC&sB2EnzS|9yR+^5dW!z8!zwG+AMpZr@(@F
zvhM_&oV7ja@&=ZsnXxwxW&8TvZtJ^h#CTHXNjlr6Jo}pCPb_86J87r=^_e6o&ck@{
z*~WFE;aV0sC8jt1%%hagta$gu=%!=YftME^Evl$1I^Fg)?mt7+UOj0Q(U&KgRyPD}
zxB2p2^lo0e%1p6qdE(c3cZAF?Kf)PwdfuTqB6E@_S^d6pQGKS`wFwQjmd78u>$N)G
z707-3ETH%xdrz&FFhi&%>!!M$Yt<M}Xqht<Hs86T&3?wyVfo5bQ+?;sol*DX7Ux?$
zkh_{@dTWgYkFZOgRmpexxG4vo8E>C<tN8rVl-beJUpyzv9@nu9ye<=R?bDj<h645v
z+q0JSTryNi?R-4XUaRxjjdJ6Jl4sjnX0}XE_FNvy(Ej`I1b6$na#a&7f}79zS*-c-
zOq$`O_FLyOqMP_^9oMydwOGEeE>rYLVB_VD|4Q}#Gw5^Q-pFh^Pc=xQf9k=Pee=C0
zpZUxrS|ELITlc=_#usPVWt@8OoOyEJysJx7X4JGvBp%Q{`E|_<#)4I6w?_PDm>kPC
zKX=bt20lmC)!D^dPj^=b>lt6S(Ujp|o252)l854w1iq&)k1w^mc3;x4L0a~F)%C8^
zX9Cz+WOvxUnzZRkxLfMp{%PE~K^zAUp3^+LTqCHwck%q`8`s`gWAr#Dxjshls5kGl
z1E-XAC-<>e&DK3$JYo0cS!O>Q6MLrKzVbKQ?9oYO=Dq?C^#$M7-TLg$^M>#5-45B;
zX3tLUnI|I3ZgEs>hgxB|SgT!;$U6J>ZME4(v35?fA=6k=(soB~IdAB-!QSvrk%g$A
zuU>#OgYcE#Tn7)`>YwrG-T{W+jX6aeaakU^4fZ7uE00;Oo0hAe&Biz*eS4L#&jIVu
zhMXt!7KDptWkne;6P28ppTo05%j_|0MCn@B%N-78;yE(?FN2R~K4p?+t9vQ&r25K-
zNir*Sn+i{T?)s>8!7JS3>x-+G&a9cXa6;~>=l>$-En3odUGdS+rUwbn_xio+a;_?#
z?;Lb^?u=XBjK`Nh4p_Ndw(ol6@>3lTwph!0NN+G$Rd_b*Afr}~@g#>-=GGMgV!a}Y
zKMOyH&0XVlYSm$8g@2~60+(NTygGPc(WT=m+In2Y$E)`9E;_L^WNMPVRO;%U`7_>}
zGiN-Tb(?8@W6wO!#4A<TH~LA<3wd5N{f2$nZT_nLyfYQpP98XEx3x^8;>7W@m&?8O
zvM!i;bw;kN-@UJQ7T$O?rE5ZjHp9_=brn9tw^0Hwy|uPIJ^k3?_0O=i^JZ|h9zW%O
zPv+XubyIaJ4)do4-r81h;pCZTll}O1YD6>lS%~;9-!hTGxM^WwU(~KEml*;KJWsy9
zwaPn%#c=hL1@d0c3#BF=Ik`;4^7e-9401cxc)!-2v?JvhYq|Nidh0%Zo4m)O=d%KH
z(xfBUEY1~AjJe#nCq23SitdyTo-uP8s-zC@>YZL@P*8l}LD{3-+`mgFJWqSHeE*03
ztOI)*6!|Ci71?U{1@x{dJy!mzXnMi)f{4EtTkW>?mpHBGop-zA$zScISDbUse-yl|
zEU_-{Wn_@=at4`?w{|RLzbHFlMarER_8ca!$E^KcYu@bcdOD+uPxHHul*4Xsjpq^%
zeqXKBW8TJi=<$4qY*)F4XEP?9SfZJ5`q-W36QWV>3d!uv7yeDvX<60N;2*>9)m#^&
zAo19Gb;+7U_1a@*Oz9H;KCW8V(cXH{_En~59kXcMkst;MjXZ`2X2wysUOh8^=d^J}
zs={+o9f3I$nDf+`H!gdkc#>uE@$+E|-EI_ko;;UvN!2xGn(V@>(K0;6ucN~X*owCZ
zZ(-nk85!Vs?3vFBTjR4OQT1F)c;?NJb#;BSCjY`bZlyJi5f-w}<!oElz72J_!z}i?
z&oDSLdLj3r={5y??$@^JuG!?~_Gt0to>2F&RE=-i&UyVD+*ke_&=35&%#)$DL1yEV
z!a3I-9h9Hh&=_q!W4+&8R;O=Sk!9NhC)C>Z=Ch|2pUq6>t2lH@Lh193KD()`S9DH1
z^m}-{LPBz_Wnj_i!-h{-Z4E=#1=LqtyEz<Ow`21pPl?N}pPy{B2yE_=T4}q}_x7gK
zyRD0FZF$NOAs)k1P<@rNL(TD7&Eh^Q;aIL%zHnKe>J#S*3RYC}wQbZ-I+4F?LGh1p
z=VD3U0~$&E#Rp9L%Nhiy-g@$+`TXn1lS^X4i|5U{GSBm;yM?G{5=&2+<%zY`4F`4v
zar|`+5o~ZwZoIC%aUG}i+`_6Q?pZDSE>BwUD{SkALv1S4*c)5}+YG8EMet0#wN>Xz
zkJy2)?_*3QUj<(-`nz>^&Yi-hD#3eeIkwL@VUhMY^JU;IFX<ot3(t!dnFjwp^x)&M
zi`VB(eeU(=_*%cSJQ*i$t!|UvcwXhgwTG1!=N;#5O-W?G%ieo8bJHp2nkCG4W<Ae5
z`Km;1(H0F~v1eKa4DT<SIz2MI=fPt5e%7@zX}_{3ADcs-1qJ?;_Fta0<rm-gaLd;n
zoBSMdgbcFPo~Z^no^$y6GFJDDl7U|l!+GVkNq3zb?r$-)nf0#k)Nz^n#Y`cVmNLyh
zulPi|>o}aN__8*72GdSv?fI8h%=qxc;N|^myC17x_?)G*TlUYlFDp1zJqlK7-RbOk
z-eesjw9?|#$JoG$&re29oxymnLX>$<(PGJ0oX?iebZ}yiJGA=5niEEr$1T3DYw7d6
z)8>A<z(`Aty^KMbx$D~2i+ZMF0TU<j8E9YFqy0hrh@H~p6sgi9n*?{MM4bHWzFk(^
zebJRCb9Tnhd~!bTgt<_q<ja8BWnAT&48@bQ-=1%g-|+U`$`x++OlRFbELPOF-C;}f
z<tH-#N^iy09f%W?Q{L8f`e;y=n34asOuG|KE$8!!BR{+SZr?JcG|=8k<>|(&EB8fD
zV&iy!Y2V|I<$r|thh8p?KEF9z%<%SmJ14(`Dw=be!tJJB%DBJbeY4433A3G#PA=b_
z!0o&&^ODEv`_ktnS4?iYJL}liU-I+od^$ozl*^s_v@#xAK9SRYyEplp(}#0gCOR+8
zvYHYX7Rq~f$LXFAeEg!%?pgfp+LQTErFwUCV13G7d5f}l7Pi{fnl(DF+LR3IzO|n(
zP?{rCr1i%urh(1C>gwzJ9QQN6`?H>5(-eQNU-K)Nb<OJSz5Dirt6bOX`IZ^#|1f34
zk%R7*vc)gM7O`0zWY_bL2~KL4>G{pImFr1D>GyS>Kjo%q*|JH@c&uLZ{PNE$O)6Xk
zI}(g+4TBVp85DUw3Enf|m50il0*;rFxjV1EUGr6IOX7@4#&5JVl}<iye0w(Lpo>DE
zmDmckTSklr)kVXUZ>>FZb80}sw&HVIQ%=Zk=RK$$^~lChLfXA1lrx;a!NBtE(R^ML
zgSpY~(!37(x!XNjX}nV6`IT#}*PQ0wuqpYr=2(DnU-JUdi=wsscBMHdX4M|<nZG`&
z^|p@ZS-aGj6e0eoHRmE^9z0)~Gil?QSKD|s0vu&RQoCiCM3UN)&NeX~cpcclZz=hG
zZQx1Gn9YJZZWhY7wyZrM!P5LTa@$_Vf2C_P<sM(3_vO}w0~a?lOuRn--1fD}iqo}E
zK6$(}<%W~0R%H<X^H|ZI+=(xPt~FiRn=bcAL_av%z)A8{<Agn5UcU`l^VpU@pyFuG
z@jRy|{RN!IvhtInH>O>>ot>L{Qdv?aY0KM?Nvk}MuV3rRq^;=GvOe+J7RCOZK77p=
zF7G{=^;=xw6iZB=?2PZGE3*r?B+j-;VK6?M<|h4qUBGjNFWhgm-Uu!!T$%dmQ{jo1
z??Z(mZTc3dF~k`isJdF+$($D>_<~jY)WyltITJKbJnmX+vc}=}?#6Q(d%K(uCw^eO
z!^W|y=UMo}K3l{0zL`u<I~6@&|IOT&b&63Zu#)RQ;Vj=9UpBnn;dScF`Q9^o7~BdY
zzxTGsaj48;wF%uRVUopp>&JuV&2J+=ZAj;O-na7|Z}IlJ<yQhOom_18fc4ZnmU#u%
zVXUwIbcr+>ReW9h`|?)Fc7^_98`e)&E#Nbp;4V73{K{9QN!OnEDzG{*KYMWHqko%p
zM_^z3-n5w;LY`ZE6%~$o+GxX5d->kRa68RY&wW!Xmeia*<}Z6Re%n-KOO-jF&lZJE
zPh{$uRP{Oh=ugR?$E<R{uD4omwzpU5?P@DWi)l)p7PiL=|7zA<DO*2n>GVk+dA<p}
z9xVzokDF(0<$d;4b9V-d%=PISv3KQq)$5jh5pOeERXpddOv;1LVLY>^e7SqwR$I>U
z%+k6X!Rzy`=7}*(C}*;a>Dy}Z;9XVWbgj)M<zi*IOZF8QRQ$TUbYi&9ImY7>FK0Db
ziaG2*z|Z=<WZ_~yk@W3hvUO8m2KIheTC&@4QsM@7p2I61tvo5ytFGSoX-;9+WzJ{(
zyNb4)OcGY(PrQC5e5-5Gi$cFeQIfs+I~`?`CwabgsW3KInf9XUUufoH)&?#oIm?%q
z=4?#SUU7TsgY>;s6SG%7_lr5Z&ACvjl{LKRvE@0fDQoxMR%m{~rgi1woQMB%czWhd
z^$NQEDV|;8<jbh-xjxBHLZ>n{@9bcB!jmGk?zyDplMn7o<0`&u<t6W5U>dsEuJFXI
z`}ago2Sv$F^yzi1UH&xQYo6@^=1G@?`?egIJ-2NB1fF?Tvo>^I$y1-lv0iG+)}1ec
zqJ*68rS$ppPClNsVX~NxOo5e5*$PGph1yqhN|{-D3h(WB@_yw_j_9CNjkj}eC?q@y
zS@HYCXRAIoe~A@gW==bPw%wU{-{i-!2lq8)H(&2M?iRDf^~d(JN}J}SH@^>?o>6ge
z4il&D#A}-qPiooatXJ=|o4Ppb=$${ayS^-Wysq7P>a}GpmFm)mCjPN_rS-(2_9<iI
zbCpk8JxtD9CLg!8x_b3U=T4`Ex2%(wCac`qpl#-roV#=}!-m%r4~V$)J+toj<FEOB
zIbfRalFfWAkCud<>M=N0z#ws8$)bzAt6y$tbVy|^ig>GDRyU=ug@1Qb#rdTc8vQCI
z$rnP5{nkY=1Wy0>XnW7xFYY#9-C_?t-FaHhLGoyt-_MhwlJ7X4gl#>{qPSh?^ttNK
zk<&TuCFiNElvF8<TdT{jx5#)I<6*rz$8(QwEt)49u;g9h6`u0dd9y_}9*p^7`%1G>
z$5VyLGN3qCvsh-6r><AmYsosVjqm)jGE^#?o-hQIz5lvws&v0hIZL{!i39IKvyFCh
zU)_3<v~H_w!?`Xu^AsV@$D&b@EVC<=um5LQAEuJlF@-^<|M1Iz$rCCMzG7d$HR(~`
zij!;IoQ!%rB+oH^UFLRL>fM7<2H_wb6}bg@PZGYYNa>hjy>YjFxy0Gx%}Wj2a+nTE
zRQ1jHel}$4_sMOR>MF^mDaXuePG2e5`8rf3h|lrBIm1v{Qy2drwjBy)ckeaN3GGn(
z++g{8@nuu5h|a_vdF(r1@J4UxIkLNKp2fN1*ucy=p(Z+Ql`20E9A^=IJ!^kHWA0pz
zFUoVSgl)*PY4Ui$c;nifLSd~^`!|jE@9k15^qlrqw}Y{fuU7h3c<9m_;;unUUFMgo
zFW<Rlt=>^*zQSY9LRQy(m)&N5`ta(vo`x#^te4)-W^XcIZc}u3oOn=q&b2*aj?pFQ
zmX<6Z>iMH$?Gz8QDkmJ{51zMU?eFM{W0K+%jQ0N9ntkT%iSunoR)+oTlr1Ve>bI*h
z;+*k8^`cp~nyy$##va^pta7zrL}lSN_p|dJcg3vip7C^@$sP-B#pgQSa!<lyrl~0y
z*u8h0^K7^FT-%vH<M<d?nM>8(pRs5|Tnk^J-&x_e`im@n=9n$~S*~ucT`Kuy)uxEm
z&wCngw#Tn6y&O5sL4v`-*8PcA%df&v-ibRH3bbMZes0}lX_-^r5HdBuR*UmZ^ZHXo
z?t!yjJl$$7YnM><`9dhC;;p`oPqwd=-J3mWiQf!ku8^BkZx!9I_|G8tD<q#YOu92X
z@OX09#p;AY#fO`F%q3T-vpnr*w|3)mt-Px6cHzt5sa^Zi!h*O{4Bk|z1ZjNgQfe|U
zo_j;&cW-M&?9x6DS&hhpIp%*@<Q*fA&HZj=`CCl6<*DNXK6aaHQ><HN#Bud4+q^b5
zg5gfz?#=V&ZOyxt#L07{$?a10v)wD*y=AVdp2@p8)xp3q?MdUG*HQPMS<l@*@31Uu
z;;rT9xSmFo$SvBo=0m8I&pY)6FTbpJ(s(?%+)OuFI&{MgnH9&}pT?@LUEsj2fA$Lh
z%gCsb>cZ=Zw%RK<HEz=uIbC|Vlxg?nO_nNezU$tITt96`OiIdpuiINMZ|W#)wP6mt
zd3c|}nf9!?3-qh5yF7GvT5hR4|Jdv+PoG~8nt#(~?=hnpx7_@zmKUaVe{L|aE?s+5
zG+grd86)YfsrTI^`7TaaJ4xX2`l@5z8#Cu@Tgvv+aKi?M(y!~113EUoY)cAx-n4AD
zteaZr{HH$~S>}9Ommkux+vv%p!xl%2PsY6HSywoHf^j<wtM;egb){!tiOmr>Ue&jJ
zYgze)HTgY%jtDt^S(hE$eMWa@-vzUYe^jcPV?K3Wl#CDVzmj|Lae^?9Rhj9jR|Tge
z>)uuO{M&l#o=fDF^$Insj_s5U3f||goSDZE`0KiLZ(qmxou^~PB&GeHvd>z!X59_>
zk~uPco~y5C9jdf^EXlT6vaO&l_)5>0HEa61@4I-Ue(IN5@wRKN^3U{VlDxN;>Ty_C
ze>or3=4nu&(33F1@>f`Ad{A_(TVB`+*(wIHnfp}_3m9I|cl^(AeW^}}P&ohVIfa2@
zG4slkZ>_p!xT{JyFL-+~+naK(?SiKa53n@$gi5g8U7UaVI{Tcft;#ArxylRP2CH7V
zBpyAh?0NQt!|bxh3Zu8_ZVa~ePG0|?A!_I8%KFMC$H#NNujS63#1_qc{$-?T@>09@
z{AFiWE!oUd^0@hJbXl-LhdRUKX|meAm){-WD&8sn?wxIR*0nzy1I*U(TfX;`VwrhK
zyX97>vw*=-cjapfE9EN`a%C$-Lt@xMSvw2Qvp4<->h4+R=YEDc-08}*$v$f}0*;?%
z=y`6-n|61bw?<BX@Vza1cRhmltg~Pjoo{ewr^L?+hIv~r%{;D>>US^Z^!BIf*OvyC
zMM^dXFj^{K+oInvVS~&H$*{orhc>JA<guvTyLo<XiQ3F_U+yd{TU=@R^=!&r`MvYl
z?#*}~b)7@tghgJ}HJgVsQ*83oCum7uSaI)J><Lz9{u$qnFAZf7eNa$6YqQcy)<}=z
z`xsVT77buf(0DAndRpzo%hE9=@yaQ`9#mhw@myoyp3iS1pEey^zCd=b=4-ucmNvh+
z9#087UTP^_c3sP@T&7BDuk4{+3ERT$HR3qeNT^9L?hF3<I!tlLz2CE+zS(+QD|_LK
z;1%D@nQMBSc^bF8Tj0Hg;en9*Io34O+cn3_3@`8Xl9}f&DeE6|P0!3Mc=tw=Nqy#e
zY!%0|lK1r72$f*y^N{?bx$tM;9<kSbSI+hwdD2(OP-1EpJ!_@y#Gsc(%mR+;uluvk
z?ARVqX(75%CAGfaZmXNe!J^%6(mk{8St)DYUfFNM>UfULDl}4w_l5t;wU$#kRD|69
zkFA<vZe3q3dtCIU-}~UEg>yb=p7XSLw8~rXxh=cTwcUreRtbN3AFflQU%vW|(}Y8B
zpVeLvH@zyad~W3;%aV<g9u-VnEtcFMlD7Bq1MxT8*Vn{fd%U$xt?wp>@tqkbZ|toL
zyt{Yx&HoH(_iudi7t7kFyW*(!#`<}-Z6=P_b&g-D3V*5JZYP&{Pk2MD_~F2)7h#<o
z+l6kczxVv7etzZGwM#=?Gb%Ud`Jedl`@nyOP35hBWJ@`AY@YW%z@3|Q%7&ktcFKBd
zec0byeJ6_bd0T#5@Jh#rKQG-;2@4B*aha7_fi=KG<$B?xwYqiE8LMW69;r$(KK-9T
zn78WZcdylV+~;{qeZKN{fr+iX=QZ(zx2m_T=9(~T-}3zV#<KCU9_uPYcW>4*dArKc
zWW5MK`{~M+6{|gG{d`y1^gL#Y%bDT}>cKz50~h_f9M74v#bLUATCD3y{@moOGs=lK
zw$@x<{UbT{$HKMCR<C<iF17W^3-7yDW}==Cl=>Kcg^1s0>2LZvn|sQKZ>!fuYH`Y$
z&3^MQXXeZK{?8*mo!nn~WA!oX`3_n0x7fF-?P>b@HCJ%Wv1DJX>V&0!75dtI*)u-+
z_r2Gj=eqIAm+sx%d#r9pOgLooO(lHpk7idny~|O@9zXor*3WJ9C^En1?!LQLSO021
zIJR+VMcKVqS4$#t9~AG>HnaZr?c|E9OIOT_-t2!^EKYy(p5IlO+rAsJ{k=2MK;c)4
z+}A4+6_ca3WiG#7BVM}tpx&eJ+*@bouVC)s`usb-qg+m2KY7Ku9le`Y3#ageFRx&J
zT;9I^Nt^1tROY`~MsG!BUh*E?GRxw;=)d#vT>Gq-Ugmgmp|o?6w#Xx6nTh)>?*6!b
z^q>9Tseh_JoR6G!tX6jGX`$mMuIOIuI?=pZxKI1b>#&dJjenf0wwe8EojPsV@|u=^
zZ`LPHd*QLJ`|v)AYbI;$GIeW0`Bux_ah5q?_weO;iM3ZlRWq#@v^@8HQD^vi9-CR%
zX`4)yU~Q3Ux00Ck*aNH{?F?-V`QRM>djE0z=6f<9pY__z+Si)7EbCm0+VTWZBZn6b
zud+XHek_0RM2%qGrI+8kE18b&U92pm`F?_yy2RFs%~uaU*87=K$=SY)<G}02vsy<S
zYMM_Tzqb6AM30*FoGYE2G3G3NSC4ONUtO29Sd)wGp8tv!J@#s5J<ZoeYgRKzl$;Hn
zBU+Y|cmC(ujL9j*svBn;P2Mr}<$c?1y9Wi*nKH?uD+?C3u`^qo%Qku#>G95P>z1(P
zHqX8rssHTrJZ5pc>g*iDR0#>om$$Yo51!M1ZnOH`Ej=k!;W2@SE%z;rEPL>u!D`*v
zlaJ?T%?mIvs_L7{oEqI2y`*^iN<j(9XR|^?kJo%zZsyOfzRy<k#Pa=7TRL~z?znSc
z+RK+w*H$(eXq&Ne_wb+F@>X1CgZ0K6S8n*+-em1HCs}Ul#T!Pu*bd&E$G?4VLgWMo
zxjplv?rw<DxP9=%L7OY@q@}kpaGLeVOuW7|=fL83Z4b7~gz3)I^Sr}vtDSZGd&7$0
zIUnXtS)c2facx^~geJSa*M26$!V6lHLfz}vrr%nA#^^}$oX{WAt5dd1$`l7zPpmt-
z;t^N5;gflHK8Cr>_N)3}u;bB!zEFi8;WwIR?gc6^h<x(PYQEy#x&Im)W6@ssPe;?w
zZcUC|b6h6>ov*LKLEfGxMOriU=N`_mHETZ0zu{5KB&VY@+x&xH`c!%`l&8;Oyw0}z
z?&OOptOeYRw{NXB?wxs3dBL;Ene(QKOkY_R-QaPzlWF_%;E?aE^42_)4<65IT@q<9
z^8oK0srq?7DLa089*|g<{-jn+E><$`G0*MB1Lt+$zQ~sQ>CC`j?f56_@0A5dJd##b
zJ=?TiU3=n{a?@EpUzL6ti!M8;oT<Fwtiz>NTes><+n5E`&M7^<*4es5cH?zX^Kd)!
zsb6IDm?qqrq;;lTv4OSi)j6Ye4?J(NCpt(Lglsr&BezwkCvsJ|>CuZ85|(yzuC<sm
zb5Gtfhsple)$_-WcyX#$_efpra|@G8xKow4F7tx#UFplywap*z<~XqNW}n4#)8+Yv
zJJ^JZ5B$-dvwec`JZ}DnrpviMEx+>DKwCd)+U>c4EAQNCY+#+~sdIzn%cFIN6<Mp(
z=X^czKH}TMnGxDw^CU{vMyKVjvQB1Uj1_sbYx<eD3o|1WSwrT`$%}s-Y~r%g+9B~|
z;!B@~2V#%qTCVg-Ms}R{d)^bi+&ALslzDHu0z%t39#5Xt<jIn8?!MCZ<V&3?Ke;ys
zobqbeo7J-EE6<I%8K$@TENx3AF6G@R7rXoGYK@`p_o50BnZ{33fAxFCo+xZ?ejWBU
zQH??G>cQK$)fbwI9@3h6l40WHW}icw1-DPCWcjz%*lkkr;oQe|QxDsoJK?!?WvmCg
z<getV7Fyc+)}Hbuvs{=fBvi^CujOw#lC1qg`}B&f7rv}K?R{gOQOz1Yt9K`#T={L*
zqP=?=$J?J*1do4rbgDS!8W+N=;1|wS^`AlO(d;nmq~D!#jO^;`S)``8G1r{)kd64h
zv?n)ye!2Ww>-1@iDsp$N!@^@3w|Inf9Pn9P;9X|1n&ZF&1BT}+>z%YT1m}kTtNbeY
zHh5L<PL<}%jR#leJ-6N!EuMSK+fY5vncwHv)gLP9N&eCm=d|sNM2@X8xHt2awxi0O
zGm9rx$$ZkZzMl}KJx%oRx=%Z}k6(Woxap_B)Co^YrQIyPtma~BVm5l%c<b&ePPUlU
zV#@2)mRi5?-MN)LK}6uTgLKFHSu0Ck9d+tm-RH$u?0;(R+n#j=h5??O3~x^s8JK-B
z-Kv^iY&GlHiPd&0(kEGXQf4)UB+0hf^4Dp-3}aZ-AfZ>6*KYgDymvACGxl<s@YR0r
z!z#Cm&h7auwSlFv-{)#sXPFt>z2bSt)}LrR_U_-l8LK9HKT`<#x$Tpq=#{=mrxz=f
zZUy8%-7n}Z5SFu&B|Y!)v0EI{o$L%Be_R$k=QM|T&ZO+PHa)W|a~}toHTl&?`K#mx
zN!uNp(Q{huPP$B!JNvC=4MJRVQogKtGPkR(?@TbmM2_2ySGZPd)r+~k56b!^)aCKi
z^SEhLC`0RW)8l2ccV5oz^38jodE%WxrSiSSlkTMFJ5)<u=ri7tC-HoN<XH=+i0!Ai
z^qKn%z1MbUd(T{*Jb@|q_N0Ql`=%D%I_S(eXJXTyqO2DU%#-YXJXW^OdJ>R(yVbT$
zJGFG<(ZHCtYe$Z@Cq#Uec+9p%=Pg71Y~}JetKhe5k9matZ1Y#|32WV=xGmK)@R*V1
zuj@G`Ha}PAMQ&;3Ud^y(^|9)tU9olsA|emuDxQnZ&t+Q2RCBRa=CRGMaL45bW-r!0
zpgh0oO|(pKUE1A_+`|Pr=7qCfyjdI?w9q4`wqi}K1#8BYZJaiI`{yq$x%RQ+{`+mQ
zg*$kz-gut-CZg?XXqiUP56QeAt7qJm+IGS3?sDb+_19+0cuu^&&dB1#Y9ob+lk5tG
z+g7`&s%_0VnUc=q^l<aBTI<Q7saqN6w5p_}%d%$gkv_&?YgD=Fy;T3~Gujg;|G0Fc
zu)JzUc-X4v?@}6jCLdf?9L?&Z$hF4s`tobrX7N7JcYQwj&aZ2wmrUx7<}PMmo)21R
zbv$~8xWS)4Z&gYy4tzVB=AS?30kh(l$EJHL+k1;v?cUsWH1&?_1ZTZ_R;%l_o>yL`
zCVR#5B(rYw@x5ujLaP}J%0Bnk)J@%6EaMtkZZ*M(>*M*QX>raylUwVSo1Ro&#k*Mc
zg7&+Ip3hk~dnNF2ocquq^IbG8x=`ihJcpN!T^-9O6_lrZY<&53&9|tznwug#Viqk>
z_$I^nDyxEPy2|9;c>&Gmv?k6zkx;;)&TRS8SG-}WDxckpU*WE{om2X{E;+1Q<(;Q{
zKyK>pq}3{o4nGZ#Z(J92%2l1K+%RtEanXyJ;i~Ot3=Dhtw%%n=De?~9wlTI@`aeUv
zr0C^HnMKA7MMmajc3+Rb6zANM7vy($hq~mtY3E+-%2#=(lCC^CcH-tRi)CeILK{1|
zYx;I39QYXZ(JL+J__Lp$I@;5kKAE-($S&=)JfC%C>%P#Qgr3|3Cs+F~Jn^SDCCM(~
zl>5DdUw(y^K09g7yL9)Qva_Dw7Cv3A%xdkSe5LwY?U}=w0XNP&Xyx9hx#pI(BuweX
z9k!~x=Sz#H``J7__pW_{RoK&;#XI!w-u?cos_W=p8*>E>ndbYluO*c;jOXk>=BagR
z=YhQErf1`wq|BX)_>*79x-AL4_@R<}!jbFdRbg&-dxZOUU)p)g>dKm;SzT|Pmdw3h
zk^6+}$<_`>bp?S6(d(}QPd^h45Z2vYXuI*!&bgtI6DD-+`SpE`s@$@R>5?n*_{3GV
z7ijZ6*f?QMZt|<_#a9HhHnV7*{^RgvT~UGTzO*Ng=Y(7PZ@ehJp(!9@dR<{p{k$(H
zJCZn5G@jdSxqP45;<3eRUxiHx1?&#2UYC>Rtw~wGW1X9$#rdTc4<jDb?0Lt2`PK|!
zoBr7^?=4~c6j8u=;^f-Al-(>jbwMIe`WiwHa#+STPyO|5vH#3XH`y(Dw9Yu_ByOC1
zUGiwE_Uwa-Cxwj?ChXp^I)GnUyY~oBO5c?e6*f!^PbQv?X5eJFdxeSdg>S;mYl};Z
z&Mx^~w!-<sW82kn*PaH;n|TH}%5ClIeJXnL@Vo+k|EPKQ0-y2BNuQAIVOq=cv~Ia4
z>#ba7W%V`lzGisN3z1#Gbm!U5A9K6K?zZJwef$~LBF?R#=aDG!=En1T+x=Hg_6|8~
zuJy(<XL(58e+DP5sh1m`Fz%MWyVP^$_7t%%k40H-C$UVpmuM;TfIm5GdGgHFQ}gB<
zJ~9ePmU!8pb!>NfSgQI8N#%+2*JhkMul7vUS+LLDIkG%vvb2EJ*GF5QZJe%qO8AuE
zjlw1a%QdricBI`XFuYQA_4S2SA^lT?uM|fHul#gAu=$*I$Y(V!)#%Pm28`!xzOKr<
zy=}e3`TD4ur87QN7f%ei^*EoMq3YMHwzGmMn{v+IQ}2-vbl!imEy1uS;i|sP4z1()
zHgzWR(k|a%eUm-+cr4#kU7f5oJBu6+%kB4?C;Vyh#GdbOBMW1SICDOqjcj_d&Oy<w
z$l`URAJ2=HFIO(}xG~x^-rgJS_E}_7#W4eIEA6I>^JfTOTC1}vAn`|>huzkmspnSg
zJG#X6085@u0mJJbR~9+kuDEsg;6JJLqK7>=SXRw@wCv{%#=`=I5nJA`+%$DsOWy7$
z_V%)?T2HWUI55E~X`T0Og`9Kz3UX6fucT<)D(q{J+OaxP;Omv8PoM5&b$oMtugiwY
zmemDzTdmdJPuZ?Kzv}9RJ(h*5&Pqiei=EkU?9SJ3>sILcS@oUBZ?CcZyS!8+_tUh*
z?Fw_Q-`US#$941O?a00J=8IlibgAjQRlaiH>03MM8~!tJ=WbbBbS^WYdgX)jGY%Of
zhkf~O`c3?>_Q@JUoo~D3CYt=(dSzb9^l%rBg+9OjGYBUy5M8o7w_j<=yEoP0jaxcR
z&WbUvbQTexabt(WPP+raHHnY!^ZsD>{~floUScBuX_oArcXu-^-Wz$5Z9VUjOCA$_
ziw+med%A&J?%sj$_CG#9YSmV3?_K+9!yS|7B?S?SQxZNE-{6lrdiG^*&zipYNB<d)
zMgM2$h^i5IVP&;B#`Ec#?aJq;G4`#L_!+wQyw}bT)4!GO*me2V>zI$yxArt}=H60x
z=l=V6U+wDfhx$!xO!oR|`&zO0T~mBkxydp!rTDt+>KA9t9iy|8KmGJOY?quc@#nP(
z<x$M#mez0OZXc|Zh_(0I6lV5<W6zG>vcBr;6DpQH`_B+@TWi(*%{&jh8w_8@Er0B3
zvRgaTZ}IAFE0uS~Z<Z`u=kP$l>aX^*{*GTu3jA{muFopT)x5Rwpx(8>_ve?oEW52f
z?e~m(T9beC2^W_q+StaQ?8&zeU=6&yPd#JTn%>OZif=j|{48Ceo$s{e>ifRONoD4i
z*xFqd(qq}xB{}0kQE`ml+=s94%f<K>s;&MzM`g;1i)%OZ8698AdtG$uovn?Fwyrt1
z{dhcgNo3?#ZSS2+uBjc&F11&TcdE_2&zUSI{?RAt{ULwd#Rf((cYJqzyrUt%G_9ik
z(6*?wouW&2{XSbL^<3F5Lhk4L_fc|cwZZQDyw{qCTvco3kV{=U{S^DgfBI{Ki?Ysi
zXP1=kQ`oWZW7$@n3qQQhX(uX7%`?>~SlxG!ef{2?{+?Oe8y0-t%2^`oDCSe!cXvaG
z{6j9QP=CI<OVj>IY}wczcJZsNAJgG8J9qU8$QfSfxm@G?puf#t#?=2UKfAYT-*)ly
z#hDpTR8PKJB4_;m*21l-r*$RE3d`MH?cXXs)R$JVid(y6+q6sTp3YSHS^P%(=s)us
zy-PLjnZ;{gY!AFAkx<z2BVFRfy*=Mo|5|?dJpYUDLQ&bX?)5LsD%^JUa_jTCMtwJr
zJHPeW^kMI}S(DD>&HB&aKhKF}g#m*so845+9hudeqWABa+TXN3_n!82&*`TU3Ih0d
z)oQjG9%?@!yZX(2v41Bv{y6vctE|#L3Dw!}5BPD|7WY(zpWiP~$MI?(^CXWa+y*Rj
zPu#Srx4M3F+s=uv1CJi^be)%Ual*_Oj;3xUDy0V>{JJ)0BJb^piC@01ny$r^$f3N`
zZtIlTz1PaO%v*7C7jriM@jh*>m)<E)a^7eM)z2=l2`fD`mB)|M@<CO2Ox~M9-`mMz
z4}`1)?+8X-ZjEW4Gw<Kj^#%K~1uyQk)z&MOu(Y(>dR6W?&+MIZ9w;Zj7khkb^@h`e
zyXT}WpZ-MUtEfbr5uba_wd+@obQ&4XE5352V^0s?mf1!H9N(57<FMOdoB2k2n(lEG
zc|UExJ8b^WuU|%9)M{*=)Ax08)|tXS+f1I@8*2<?t5Rm&-kRfKrdNAD>)=+Mn1`D@
z)~<Ft)aPNlG3fZp{aMFtIoNx?nQqTGa7^^v!`pL`cCL=xvx)B=$3fZbsA~x?xK`-#
zNBL&1)Oqpt$%)rn_-2?c%r}o+kpIe-xA?;y0mmG@`rVhd=&lQ|U_5^1i_%0hlSf6e
z5|b5=-Q982d+(B@ic_D;`S>439(p@f)InYD$8E24A%ojJaz=cGA@`HkMC{(dkgOt;
zZoAqnyDe0;f~RomTi;nl;?FE4&a-WPzDuXbt?)wH;#t3Wg-#nf_U-Pse9W|RcH<6K
znXeKrL)E4jSUe~{`7bnd$&H5h7R>9T{FB#BzV>Y54vvZ-<2g^#ySls&EoOekQ2Zim
za!eCbn*}q&Whp1-6_(5wuIYy--&}6?Hp#p5OjnVJ;@imYMhy|kS_cYeMW*qz$jzUo
z)q3=tQN@ABT~_lZ&AvO;Q{@R?GfRkHM2}2LRaMYNON--iUu9;V|GMVZi;4@&PE0M|
zUGFtZA%=;KzrHGUXMho-gvD8ZuBjH1CvCIU-jr&wTxdA8glD^d)^3@E-qUmMt;yPx
zFild@?$G)phC7OmRE7C=-!!U@eg2F&<GiHkVwSpig?a3fwpnWoYnJwLD9d~87OCmi
z$!93uajklC%G5P+o2N8?YI1z=e8IQ1-KKnebsyeGeA{f2Y|Xq<Qsv*&mDyUo2b%a8
zAADW=VC&wFT^^S`!{1xYJ0MW0er?|SZDNln_;Gw$C1CdUNb{EM_g<dgYWq~>P4EQk
zq}>abEi;-PwDs_b@OedcFCWi3UvOled4FK|y3m<7nnL;tUx%g!Uf^lIw_9ZGYNK3R
zu7&1oG8@jv&0NNNSlY<IQZ}nt(24VfdsK7Ywb+@@m+v*ZeBq!r7l$QxL+#4YDG#ff
zugku4aWOpgcwbdlkwc)nh04d)M?2FlTO|h_$(!+edFC-AUyly2r+(M|)ouCODlMV&
zq~yS(WnBsjR<LZesc+Lhz2Z$($<opi-9223D;$hZ)_h$pcqIOP-gybxjltb%AzG`J
z_cbqAdF_G#^Ap1-jkor^wB9}Ub+$ldO3A6`@0tBV?iAJSJGADfg0?~K8*8~M?-l(j
zbf=y?F0rz#O0-DDiD~nP=y%Vz`gBS27#S2!zBE^a=aggY39E#Xm8aeWt!izMExi75
zRafp!2`^7wC!wPUa(CXTOR^4qvE3-w;{5l9qai`NEn=FCPbhS4&UvywD4>MpbNK0{
zJv;xLUS4@<cY_h1$4LuO(bMJjma<&43gpe-U70+q$Bprp<6~1TX_auh>Dnh=ty>^h
zcwT;~fzV>cZx7_BUt2oYvxm=1?!f1e+w5h=pLr5jFBABr6jaN(shi9Eo>uWR`vof^
z|2$}|c-_^@Y3(e~Sf#&k$!Ep`JZC5OY&cqew8T>C*_E!EhEoBl)z4OVh)Y-URL$C1
zu(-@$Lh^vA)6?&4%1;>{OvqlSB;$4NjI8^qy5y7Z`@Nji9`Ttq{|ZiFex|M<$1HsP
zrAK3mqBINRoY0#Rrn#JJ3yL_UZ*Fd=4&5YTCT=O~DH_S(yQInE<+io%r#33HTQXcL
zN-26}B~*LzAdBFy%Tv9#J*o>nX8UsftL~!vcGg#07!N8xJuk_;wBSm*OYjRL4l`r(
z^$Mj&qneDB--f9?E@N16k%Q6Ef_Ylv^?PfSTMoTrdCbnVJoecABtr>h$tN-&gEb<~
zhdq}0ZgOm*BeTk!Ql@65#JVsY%M)kwMT@(Z?=6e$ShX_esr9dGy}OTvyz94rD|n%7
z&5nqlw=MgXEswKpSsTN|`Iueay!d78hj5#lcV&4eFe<6`U9w7+6utEF)Na9cSq|l%
zaNT6}DZ<(fd-^KRmRRK+oLDI5X)AI)C-mxhtEKBo&4OBQakD4+pW6Fx>xF2u1oj34
z{+PPZ(-EhiCAN9KVD}08y63mQj)aCJOZu$Mvgg_~V-K8^Hry?HG_tbbNfU?s+O&g3
z!HV+vGrynKXMY*I<dh?0g9GR3!r-DQR>Foi?&#-CoVDCC%(~<8g>NgRLagT&G4;H&
zJ-#-0(o4A#7TzUdEXA`<p1Ei8dt%Jo(>uc}4l)RLo!rr)m3ynVaq@ZPmv6(DPOdWF
zXu-BQwUo=@sXIgZ(sWJf6()f@d|&UK-P6NlRVO;P^vKNQNsKvMm*)0e-g-#zdf(LE
zYMsEg^Xj&YYv!!WS@dh7_XM}6s{WzM3%{=UIWd);WrMmz-BsPEKU30pPdwI*_-@s9
zG_{O}^Mq_`@yYwiA-fFbOx(g`w7AUu$F<tGhursPi`vatb$!=jcR|h5=^GzyDCJF9
zvp_S3q2hdSWc<R*VsA3NSFk2TTf6%gzYcX<z@3mfV;<+ay4XO^J9c3*Umu&YR4q1X
zex}eL_w}-`r0<>gYu4{s!1q;wk3H(umhNMvTpU7G*Jr)7>Q~M#o>#H%u-6U=#`!#M
zo?q6T*!`~9`^1-M?Jd3w-u6u3$lH1`B3?}6>51c~8>)U^XHB%!msVz;*uS=9Te#wN
zYf;a~Dvx$gws?N)czo`PB!@qYa}qvB3&u<hJhf`x)RVVj^r!5%He_Kw9vB_QdrtZp
zi(J*?y&1FiPduyAyLFaRt9QDshsaY;Q8q7g3FUhWI*YnLKXhPu(0tZsMy17}$;Z$7
zotQSSRr+e|D@jJ?9X3)&uS7rPFgVUK&Hnk){MeM8D#^?i?<2%lt(tL?`*OLHwq!;|
zUw&YrLQ)Z95YywI;ie@FjNEgVTS&Z&)msu?_~`?Oh2^^9pp+otv}jBAopM{7%hHq5
zZC4$c<mQw*MUOdsa?I5~KFMyqn>Q=ZyLu&-mA8S5d1B-Jml5F;8D{c?Y<%G^u_ns2
z^Vlmv$%zdr$Napm+ZSi{-pQ3U$lkWAF}Td*bOFcP2&>i^Mi2Mpl;lS}nYP@gdd}@5
zOw;5R-|lj1t#cAro=_ac&zOGVg;h_ApigvYTAFr${D*aAzoc&N?c(MZirud9w(rYD
zxp;-i%|Anb=Kh+n#`5*s(4Od+6q#u!?6xj@?P!|KEqLQG_YUT{%a(ic{b$hOGn}yH
z#bU-HzsGOvy{0j({meMQlf7Wg(;K(UJ*Jr!Z_hZPymB>%*@gg1=1JC45lKl){T$>=
z(w1i@GzfY2^!;^Q8J&?|UZmv0FiqX!xw2`RLf4Bm!pt)N8CtcJ*;FQRzOxSEI3X?F
zRC%{=-jw_evo<Puth&SJXmRr8`>@2ja_%hEzpAdV+3P-L=i!j~HLE7xa<b0BMrHNB
zxvPH8cQ)I4<x=!g!}lle@cG^I)3RL0SkAq(-9h^2thLj6-u|8`dE$ku({<|!Z}0BD
zyj0z2s@<XUdgq+h`A41FpHyy;KV6dH*VUQpzA=S7o;d5=o*kbB8%~~gunJkZ`%b&3
zNcx0n&l~Uj3Uj^u-e!mL<!kHw^)48HmZ|!{8!$JbaZdV5rL}(VoowgM^m|&Yc;a}1
z=j)KPgSHH^ouYYxyCn`+6^5p>Hyv-hwbm{v#_N-zOcU4duFiFA#uMlK3%S{GnDO?U
zQ1{v;nv%A@QSZ{eq~3UEaO0Tmt1o;@uWmeXjx}*j^LF+9wpn+#91%Ku(Dt*-<QJK2
z@AB3hSn>MA^RC@IOWP{Ht?^i<Qv1*GebfZMh-Ar_TEm!4;psJIrV5jvgj%wEW!@XZ
zZ1X(xedM$^qIMru_`cQ%72LQJz20{9EU!yei`Gqe-SaL-&i`X*y2A|}N81ytb9RRa
zSTfJ|2~KXXtE&2ZG|20^Qr5ep8M<+9#|-WoS%<IxBmTi}`Px?#os&fmpD(Cck<`C>
z-jjKUcG@#mRPnlpwCY=QF5y-?dRpUresFx{AGr@#<hZYtWR%>F-F5f=d*v1lwR=Jp
zI@QA0MK8*V-h7g@?E0?$h#%S?a<|;y9G!Jw^^sNgLImF)d_T?feYu_d_AQgoZ{51Z
zT_XNo%>s>;Pv(}qwl26HcEN+`=XyhCyR8rQOXP0l_`10`ecdamp5jT}nfYSLJrhs7
zGWIHZ`lHn5tEha(m$xZ*PHP=aUln!i{K<&^naAtwy*}0p{c+mAci)anYkbTOnQPiy
z5-krspJ3c`eeS*bL&rDm4bA7@x+QCoVPUaFi`DZ6(aLq-56u&kliF4<Sh01>U%qp9
zwj8=EqcEfI$^5xz6IFLl(k|KQ_xZs0S@DPeYHqDfdvxuHsG{7<?ikOPPmkaKAnJW|
zzI18#Y0FEO-D~yzB4+t-e{H;Wx1V*6-;Tf8=Stsq2E6jGew3^2wOQ#-<;GXLPUh>n
zJ1F1%#VY!EmVfKl_5Js3=KT))$a8B+<o!aO?v2V0cCY$6v?{NL=CySeEu5$HWBsH5
z44qbI*G+u5yL6tSVz}7MPmj-sS6a<Kx8x&xlg=K~M5E)f%NDM7mHU1B<%}7RC7xLv
ztIYXs`c5p|j^o3%+3Za=+SSV=j^y5Y9C{_rVLcO{U-X7!Ro74L7q`!x&-2QB*1XOK
zy%w>VVmudl!%|P(+4*2<+}g>1+*Zw5dEDcbbI<pQ{{DUE!}g@_*!?;80he-@koeg$
z>rnBX&-SJrljpw?ANR8S*WGzj<z_PG24&1XV^BC>(^`__@vVJ1KfIT`4xjbMPT|Vo
zn=i$r-!Gl_$aeJ}%^Qp_d%lUDJigL(;m_^6)-BMB`}FkP(n{k^X)5!NO?jRYk~DAm
z{#W(Fa=8Zk+e%z7));e(T1|b$wriK=>+=jr3%ZZXX>F@0)!177`iH=OhT~gub{F<B
z23`nfUS5;2^`p$TZ{OFlglWuh)T(<^e<1tHAH&>g)sB51cD)Qw-7qP7QUAR;=@PFm
zZ3<0PFN;^cDZ9R5pK<K#?_txVzRk_J_Nj1Fg|l(W<8>D6v#-{uFUhcz+`aw7`Kb%C
z%=_eiz4pJA+EFUV|L*yZjd9!`RzJGmu4|K8oc_3%$yV&y31iOWlO6|N9(;ZN)4KT{
zSNPli_^yf1usXAA-sDxgV@$R?<XP`(o;UC6l-Cw!lYgHM*}2_a{^R8Xm+nS7uFh%A
zFZm?)I6-<Dk6oC$sQ1Bp3cI#$-M($+JP-dfEBv{SS6#ZMw_bh2KJS^`l{@3-ZsKY_
z@JG96TJ&mP+ruJG?DyoRp0)8ej*=BTY${%SbC2fZ6>GPO_CCIK?&m!T2JwBi^-^E{
zGj!Z%*>b+aj&)w-mnBo1W+v_K^07GaZGE@i*4MA4Z=`mG%$#P>wY1_`QTB`Xjqx(+
zE$->7yaM{XCpa-wCtupF7(Y=nuTS#Q`-LC-kG*dUk7LQqOPZ%SlOr_Zq@;XrMabno
zhnSRq`@a4<`EmBc)b&SZbLzdRSv^BvLF+YF-lrMG`)}>nvdLfU`|!NTtE!l;+i#aC
zY<?o7z3tw`V&&!BQQmi^Jrh05GwDW7;qj_-J0v8nH&y+<dUHu$#i=hR-iE{!xa+>C
zT^(`n*r&A6g9mlDOsaVBxa-^;rpgC=*<Oh|HUyr(w)uI`P1}lfE4CD#I6wF2i&};i
zW{+7u7++d*!a`=^+khQ$9M4}zX>XREV3gAHoNZZW**q)0DR+|9CBJ=HDKKZ^tc}qN
zljLTet1b>-dn1pf`0cHgF3TCpM9U0B)?GYi=)9S=B<q&^jE7Yvrt9-Oxa@aF6j~RA
zJSaJ)?RT$G&2ZxJs%c@*zOEK(n0#QZ#<EYdo4>BHka)mQz#d<9p(&_n37dS>^xDQZ
zdACk2DEaAetT<dKc}K2vqYU${je+}OG?`7)j1?S=n}2mx3+~*seU-?uknQU&M1}8a
zO|$l6cws5(aB_QoP+^mn@+YBF5dv0K7p67u%!>TbSY*Yw*wpP&l1jpw)ssAASE^3g
zex`Wdf?roPB^y(dIF7$|^2tyu<6^9l&&%35r75E3$g{~syGtz?`j4%iZowEm@5hph
zTdMohwag}8zclL-!vm(O;#n#EyID5q-oCc#+`%8`9KWoYweh~!(lwn+CM-Cp*!U!E
zrLRWXLB-<xTZMK=SV+ol4)FLrrHO(0^3wEm&sVHcU!HXM7{B9L=cXq-N$WgzSKhw9
zVbz-%u?G^{l}*pxYmd?7;i%@B?-<m3W^aLep{E3kP_)DsQI+iD5(>OGY{GPJCtqCd
z_F|sInK?|S=Vkrf-6LwrFn8ydRTr6*B^3%Ugw6<zWOK9aO)mMav{gE%d)t48*IaW%
zW!|!{%~-6!*p#?S-s}7}o-Ss=v(YWBX^%6GOFUb3;^VABU5AG=mfhX?@5Sm1-kUW%
zxaTn4bxl+LnYv5xHv6m%8$Zr@`~3ReT;6x*(sJDG>|*k6-4&a!bAw;uXW`9Co2wcE
z5B?l^e0i_Gq`C!r^L5kP+!4<*ze*}EW@?%C{6*H9ANjklTXI>5=6U>Q=;@hi$xys&
z@s6H7T?Gs$9)vqho36O*)a{e6TkYe%s3<q_-6>%8N<KXOR)k!!Cr_eXP{Ccth5MdW
zZ+z405oYblEU{eTThGMJHi>&P4>|ojVevQX_%sRqGpZ_i2W{=Po(?KAYuXv9^n}IQ
z_Q2|}hYo7NpM`sVU)U&Y^p<7b139fXfd=Zjr{$+4?WvlSd*f@yu~Uy9HZ&}GIA`vS
zs*MVXleZYkntfXmF^A)N*`LzKOC#GfS!_PPGVBT0&R=*}eBIIz=N*$88y{R+#rku;
z<qP(#slwTB{UUlAd?TWBKW<|?s;+M9e`%FrP|CTQ)j@l--kdtpFqh+<R;i<+mUt%1
zC-(TYk!`wXxF(3YNf<o2a#A|w!AglQPr_3&x4bFzTeS65klRZMhJ^JopA3VekM7a1
znNU<<koBN*U(RzD-sLhOA8*d|d(vH5_}Q#5dROeZ`s}NsE_vQ9iXvuj(i^lww@q1p
zM^)rQ?Z#PGx=x%HpSCB_&9-i8P3BseET#v7S9&H!SF7%Fsg8bEwCT2S+kuA_+TT6?
zGe|A8olxn_$}rVl^KI<vmn-Um#2e4u+v=6gaI_<UL3#4=sH?%IJ#W^WbGU7&T(xTA
zxrb*B*YfO(WapiGgg@&3bpHt}d3O30iLYGo@8}k$5IF;pYpcwv#J0MdmgjjKt9VhH
zZ54Y_FVvm=8QU)J-Rha*6~|>ZeOuE#<HBZbo}RwNld|3x-1=sumU`O!?(q*_kA@#&
zSDpRzo#V@+aeEtFmP}*TVVCtyGwJd4IA(mp;>7W)@SRhpo=#>xz|!Ex8GK-+?3qBp
zJ$-dCJy#`Ea}Q7OtCZWCV94cnc~aH$<y%v(7t0E%XKoPeVEiRt|6z6DJtIMh8jH8D
ze_Tu4dG3;%TakmT?W&ZSUXvIfJeF-O^3wV>ZRu61Tr*|X+0Rm6Ul*xexNT13?%xak
zGej*(y=AaigW>f#R;IKv6^5g`=3O=Pnf4~;bGO0EV@2+tR)@Wx!WZ3N9J#@Jhv1=q
zw!AUh1AbfO9X#-T-Hxg`!DS|oSd3?Ky?re4D|B|K^-1jsc5zkud(+*1hw$D!ANqcN
z)WvSSrQKpr_}GkNuUve7CG%Zwbi!20Cm)QD=G{D@l*)C#qSPkbHnVMN$ov@vJKu-r
zK9^zR?s+^fd#f(LRqpcQb(?o6860>llk$CC+o7_6^K-P5x7Bk!T9bEt>f|k~3i9!%
zw(G2)%FVNZrRY%GmW{G`rI}S>Au<W2^4HdJUu8&G)4uM`*L6|6PL>|Mr-ekODir>>
z@-e1q_2e!6Q#VF<ez8gv%m2GL>ur*|ENjp#*NF@VRjXFmTs7OxwQ#~DtCT*i#rHH4
z_{t6L?)mn8U8TpX9$)U6p<I*au@$hU#ojYc6?q%;HSoYHqxj7{({&iF{eN7w{L0(0
zL}ucF=kjwCHBE9B7FBoOH<V;NR>Uv!{MyF#>%%kqo2;roSY0tM-#K;4hPXf1?dyy9
z9;{j8_;X)gwqA0cn{V}s6|p;Wo~z&6dDb~J;YgzU@5tA0y;sC=m&(XIZt#~}SM}|)
zdJmuFvKuO@?>78ruwdys@ZI!${HrA!)9Tz8p3^MlUa;dt-cQR%8`GX_vr3-#b46F$
zY~houG+8v&b?49i6}nn`vC0yQlW}Jwc+V`{)}~Qld?RdaPfnv7qvW}Wu#<~o@>kx<
zEH+v+)#mHV*tV%fhb5l&8SxhU3P`xv<QF};F}7{idZ}p#BpwLWeal|N?=5pF*6+7p
zL7S3SLj_}m{ITt8)3|pC?&iI7T|GfSC&IDki;T>5_vHc)C2IdY+BG@dX5y8|Q|o0?
znqN3Px%PKSql2Wv{Bt|I)x!gJHz-e>7=3M0nu}_2-^<srS~1IYCa1gS8r-sSD{QFW
z+qGepc-w(8%e!}Go!zoC;(E61fhYZeUq!8BJ;I;n9_g9Wmz}z3m*rR4iht4Tp51ah
zSN;3Cd2I<x&+fKE$0wgOU0hvy;^gV|rsv}B8YKCoGnC5qrhPYwl9cK>bzf`U*)@zg
zrE8>j+B^%t!*PsJwlK<k(#$&>f4UV;(w2MXrt-neK)ukGe`)clvvUpKq{p7~Jg5`t
zAR%kdb!>0!?j;FJr~lY>?ab?Qk=Kh0mM>gW{o>oya%CM3(VpJx$x6=*l!8JSUtjsF
zt@e@q)Io1c+kUpK@Azl+@8&YFjF0yTD}8?EK%aH<1+Itl+I>vZOeV6cmKE*wkO>J?
z2(zyGSDO0i&2a|(wMq+vPgqw8zm3VwE-O8H+o|PalG2?g-&ahs?O3o<LGJ5PrB+sV
z+k>kvttjBUJ(VT-(pqb=uL|)qibN8wY&g8l=Yc@AoU3tW?3&Zf*X6e6Ng6ACSm=0s
zU#8jVt}q=pi&QSpud8)A?JaD0n55aitjIlB;P&{+{267dxm*qi6+9`E&D7Za!uo|`
z?AlY);%Z->7AOlls8V*`<UfP%h9wIb{xb;LO!Pl($?CzZ-e9TJzU;u{>ZxV2_pJ=s
z=geEQ{9ujX=Y*mi2Y!W2a;iDx_rUr$SAOsm#VI{9^RKP?>)DlJ?BOJ;{7jb7QX!Ok
z@;>9qJLHyM+wv{9?9P&^zGs`?P1ZTJU*pTyHEM4+ZYg!My;v5ss>tz$baP1RXSQc4
zTvij7o0h$jon$QF7}%#ZWx|u`x_t%?k0#aLOx2!tLc3LV<J-`i9v0^uMN21mEht#L
ztag=n^JzE9yL~f7182E-&AoeZc2QB+;ylAckMFMyo{^{OW;`$3>8Xcgd}4Em3QyPL
z#lmxbhsQ*DJeiYs=4O+2dimM=UFUZc&E&Ft=bPd8u;@;mt#8_$P19{^vlpq`Ok0wA
zm0z{fG)q%<w#tJq$FwFF9ci+gYP)OF50*zOS5N8fF8^s^sZfyZb@jWRW6sxSn{~nq
zEsj;EZCms9#yW`y!dJqCdi!4F#BJ^^oVVlopRP-NmZ~KQeuwPhr;Em26MezJzVT($
zw$AOVMPwOXcOCpWx6t1)smGAZQ$ems+u8T>v{$cBhuk|-bJ%uorcz^@TX9ce-`A~6
zA|>?&SWkaDo^vf`<%?{UOFQ4pXQ@%n<^6FbFZ@h|N5YPC9x~xK>N&o!Usl`sQS`CP
z_37&0Eq>0<vrs7$eI&nmee=9er;eRDZt(euuCdYItMAV*tqomyKeEEyYf{GAYw??x
zozCz$FtML|R=%&~r>)DLn`Kv&on7yGX4jK%-;2cbx<3AASQWR}{&9r7$UlvYdvcp2
z60R)VH*w>}INk?UZ<T*umt6H@e{`+hvqRb<O`qPZj=j6PG|28z*8>~xhp)SrPWt&c
z`*nwcg0{e_#XlKia?dV5z2Gs&{owO;Ds>mFo|yBNe7~1sU@5k(kY|JXk4~HGlVAO3
z5X<{&`S9u=N0rSCHzU+1Ot^PLefg!uAGbdF&v47UFw&znB4?6IOwV^N-^#Sj$!4op
zx};59+9t{<`g{J;<c#&f`$T46l<Thln0#cvsOfB5&85@sd-c{V?G?yv(*Ne};J<R+
z{p0h+^lgk6IzG&2yJI_v)luu%g44$Rdp>!-d>a?L@Th+KmoFQ)+}b|fGE?nEXf>DG
zMzITjXWcjQ*A|~u^JMZo29qy0?c<I9PJNm!X{U6>biF|4`9%&X-kvG<D^*l}Zttt#
zS2b1EFgCu`hJ9I$>E)8Q!ABEJf<5=$_6;)k5}#Kqes9-W>xhj%av$t0)zr;du%EGJ
z=X%Rb`Ax^He_uamr~lDz`{Tc{Ut^O4rw8mP2()h$t>3lEf@#b1Xji7in)_AC?^*wN
zzouf<@4#u<-HF_aUDv(0#%|m8a-I?UJ&W~nJ9f_x-ubyy^6HGj9eg5Hj5osOPH#`Q
z-_0RnZgI>oT;YSuv)CnK&liYTE_-+L(uVcfd>7Y5WlYQV{&CacfbZVdJ3h>Qtyw8D
ztLE6LPpaDc*pv(3_%F3SD9`6}+2OOxNy)^Ca|*w#UsuEUVY$!0bMBK&Lyx_m!Qj91
z+j^_59%hTqy|R!rx%o6s^h4?Qj(@R{bvH||pDVj_WZvSJ@eUQi2PPh0=GJG`CoUsk
z@$zN#Klu;6+h(qqsnF;oQ@~nPHkU>4XMpK0kvJo9cJ_Nam#W<TCA;z93gu&^`HbG>
zoV~g`WDh+4w2nFc!|F_ynTqAC+nQF!CwMNsefyYffsu8%>|=SRTNPa=7l(X0q1t!(
z<ezLyl^eBjFK_&4j=hlD=5HjTGn3)H&12Iy^^D3F^-WFs{{6YV`9WoBc|wT1z#g7o
zItxQ18mB!-3BBLAF=~J3+qLfm1)nAec76JH@9I^zs!uUL|M<#9Z>hR}WJUfS-i%q>
z+h<;4b&JfM@HTSFSDWjH>$g5_?eEdQ9=~l%zwbT)y&sEXDi>e3+xjc;WAMYR$F@JX
zyIMic;j`$K=h}U3`)%wqeR<c~=vP)1Omb9k3zwPrHtvwGsp=w|s-P`zzS|jd`91K|
zog;IFS2{;~PVSf0p9GF?NWQhGlyMhx-?F_DTazzNx^QBW?9KzntRJsUJ1?lt+!OAs
zly7n1<kv52e$UR`X<cdCnkjx&!s46d&+F{$msbC*-h5nc>sr$VY4RG6R(Z@&sprj_
zou(VHV26b4%h0m^!aE`7=6-CRw`E?$d0W@)A|ZJRo0K`TcC<4$H)u_gE4<#dQ98BZ
zaetJ+U+!z0autM6uGKE`W;~%&)pfi>sGLvQ;%HX%zDu08tYSOP&MsKm@m%(Gm>SnA
zHj(E|R@YQ_=x=$a@b$o24plABSN^ZPld7aXoSuF|<Uw_D*u^W04J2$0?no`<ymdh4
zUEHFzZl@1ES9$*0?a8J)-dlJ+d7P_1*2cTFSw?Qrj7|A>ESxxg7T#*lpRmHx;>qN&
z=|Se&K1=Ea8F~tDt@L8M9>iUE@SN708#<on>bpgwLY_BH{rW!ig79YJn{AJz`>t}U
zt4lKP%X-o|i9teX)d{C}x{c?bM{YTr<YcK>++Y<P!)opMd_}Mqr<0qJ@ukISCvD1~
z%$hE|Na*R6mBw<#$0c6|h&g#!+OCS+_wt0Ly3MTB%BAQ3Gpt*7m+xxGy(#813=E3T
zhSz8-CU~CD+HI4==I6;SdDKzO^MUZhW4x6zr<31hUfy)2wJ5TadEShbfewMY8^10S
z5LYO;+rHGw-1_rrb3ZNV^pu2&MKYTi!sY&5%?vP*e0ky7$|VOqo)_AbtoFDat*&Eu
zYeV_o6RWvbi%pp3*x10nHY#Yv?hS?a?e<Nb|4e?L|I;8>g=2qGCZAB3@68vv_xx;l
zzjnDvXoC%3b>X#jM-?XqdgRZ3#x4`)W7Pbo((=GskC;UZ6E8eT+qUyr#Gc7{0i4el
za%J6d^fOwX)HA{VY2*d7M@|gJSEnrxS9zBd()h>b`HgEICTATn*{*9mfBI8vfAv|(
z=avX=VJe;+dhcn+ts^{z{U27GSC`)ZKyBMj-uR%<q$NCwg-1;UB+};{zqF7~UcdSB
za=$5@AD9{3Ys~#Jy~0%8j@}Sec`|p&=Pg%GnLlqZs61b_WYUUM>Fo@bmhbPaWeX2g
zd9dE@>(L<JE%_WO-4_m>d)+^^@`d%)-xc5bmb89-9r8Ah@wBn{$;ayKOC!Cfo?vKv
zWi|1~b)NNSlXn?)_4VwPdTZUBGH<`R$j!MIa^u34ZBH(9HJ;NW@NP+gb<jJV(-XHI
zI8YocaVu)}XV)W>)Rg&{p4(P4hA-?mb+=ro`kQDJ<8z}1E{*3Ik4@KdxgB19{#e-@
zskh60^ZK-=<}SLCW48Na>&>>ee?qOIa+4%GnCI?z8MbiyXOU?yERQdZ>f)apDXejP
zT~&CA=DeC!O8qzGTv)!pj4Hd<s_gdZc3J_~oU5m^4H~D+J;fjMTy*8~%r=vk6Qb7@
z#%j%a)tBje-)ZT(xjh0$r_N@+{W_{Jg3Y1j&H1}_%eKDVawOvM!Mk_5E^OO$e{u`&
zAB*R?84vuoWIIot@6EZfDdG8hu5-IDb52-y_wi1p-P1Q5>EXENA2Uy@_22AmA&H+R
zSyf$Fn7sJbHw()(e2+H@PIWk8d1}_Fc^B5W&g3}w^199Sg=d$G_CNKJE3e;T`&um5
z)JyCb=Sl4@OTo)h)59#fZ>N?Wcws!rn(yklS7x^*CZDjW)!wt~^5PrE+3X!$i>20X
z2y7~QV-fS6Y3Y*ebA{hGKJ_!aZmG0!N&UUnV|V1-vdcq!%tB|F=X*VScl?x}o4d+2
zn?*%VoYRCS>^GW|QamfL<X}hg`J8!+Hut=qWM25QFmU!pl{savvUH2ZwWVHKy<;eO
zm*uh}NAS?|^`_mTA7Y;C6yI7VuIPU6r^l18C)T`qUsSnfO?KtO5JeT4bfr0Y7D*8k
z?2>P7s=Fn<@Nj9I=KLHTt9QvKkD7{nGkkvGZuHbX+b7e*lpC~e#fU%1laQJELVI@C
z2L=%t^}zX2TX`=EX-(c4-DKQ#OJLh^o#(ZE>ux=7@Kouqo4TI$)HA!f;9EPrEvM&s
z#vb^3HooaY{=+_hWz+j2lPs2;n-OQUIHgVE(BpN*VMlKr>1_{Byv)2WduH^11{ED=
zo8tLVGxN<_8J-CD`T1oh_b#uVyL8`zw1ao}tR^3S8UAR$?~=BI>MAlHvb(olab|EU
z@3Sgd%c0*adR}LFx!TfwOAoxc^s_6q$f&UST*c~%S=y7Q9hON+U%yX#;+B1uj1djB
z{$88DAC&AfZawB-^=!)8owp@qtzSiVFwW%oePABrDx+8W!lF5wYb%Z>^m=P8U_11m
zL95Suo0i+tTWkgXD&Zo}Cf?-Aoh_8rF7e>q3)|IJk3-MoF*TlN`IN2Xz0L5+gaS{S
zZ(mkj^6zt=%D!sWvr@h9R#(mDUd+p0HnCjuKyuI5myzb>NfvjzWcPCG2Y>mt;>?*%
zLcOh$538ik?3+15YonI&G5(i<b;nl8Mn?Vn*dKQHoN+|BdFs>;9Dj?$-`zNQLW1F%
z&+o-2b$8oL6<t(bmKHPZ%Hl%xSqp?BeubKBE7NV_-@klo>}0;XhJ96Em%B=8HgQV6
zVvkyvtq^!+(X=HS-`u;pG%@37$J2hVny@F&8;oCRd)>Rsq$Yk_t>bLW&S2A$9YqC<
zK_Wa=*P|09`*c#BmMg4ykv;da?m=dicec^Cua|9bC}6)UlOk6fTaYgDIHhD(M$oE#
z8InIYxt53}pPXc1C3qv;Iw8#TSdrnC@}s$j^-o!*vd`(e-&%Tfx6G!_OHqCX3vyY$
zy^j_v*9uA4H1E!1(^FBgtB*;`>)T9yZn`wPOhijVJ>SWi>!sIomA+k?J?{Mz>?LJ;
zE$+VId-X!H;`_4=kN5D1^BuSC{Ib0J;qK`Yc?H=EbBb=qa!)U2mSmT2uR646YBK+c
z+&gbq3!Qz&bmk|s%A|__3}3@^zuwT@&9ykcaPq9SD4)dzPyH>JZ8Xk%o!*%ryJylF
zt*b|VCM@hOzHV!`b-vmGqa#Zi9v9eV&x%WT%DW|^C$W=P(SrM`|6S9Gl|^fI>QqQa
zEA(akee*Q!@P?eio&L<1O&eFniT3D~PvAe{?{iJA?c(bq^@PxGbCMU@8b^i~uT0+A
zHTeMZgiN(PCyzz82RWS6TC$z%om)uq-oh(c)^iQE9n#(`#PmME^1MvQ+8*XZ-w(VD
zx#ke@q=7%bYNsII1L57=J<JEbud~cvd2Ny~<G#?R8$*9;d2$(595{K@=grcT8{S&;
z?xZc!TIGMvdUD@Z!Pmv1E4sHVJa}jEmC_{<9f><59W76ntz5f^W#0X$sSchN7QEN(
zk7T>t{bI89+L8$k6U;6|I-Wf1$<^~<?t-4)#b1`W?er;C-d3@iTWG?nx&U^I*Y2i`
zt{anY>0V@H`FiX4oRHO@eO4(SJZ8>(Yc_|+&jd#Kd$Nuzrz^N`NG_Lt6@2e#^h)8W
zF@N9Qwe2-H!nIAL_>ZktrScuOJ8iEIKKOk(#dp>61v1H!$1;4*o!z9`owX*X`uk&1
zzmEo$%=VYoPd<@9W5?^p3GRD?=9z_`S9O;)(3Z5mYrKe4m&bc{(M}oO<B~RyR_;kW
zdGNr$k1uE4*xjO^zci#`dLhS>^bKFv?7Vd4MaXSqDIF#*9=V<GLzkXNSn^hV!CG+*
ziJINN1@F{m+dZ8auH~UT@!l%FOE>()T)8K#iGKRC-KK2K>`BfBZ!C{y#q5`qIQd-p
z*EQcebIg<6S-z}$m9FzB)pycOWm6|7H#e*AwyT~VP%viR!FTh0$Wqm!=pE~Byk7YH
zl+{H3S&runk3S4wEB;JI&f;jW@43?roU(;c-wNw|-$q9}H090;n~?WS;gfOnG_ylK
zvO5_bvu$4UAWY`F1=}uZ=>kS&>5ij`dS|{Qir0F+%{?r3SmQaf-PY~7Y006FSDZL;
zPHW#>xdTfNO|Uq*_J$%)#OgL?+3b0q@5<c_GgaI(v-b$BC<<Tkb=~;`Q4YJWKJvWN
zIB}*`LYU|lyO<tlQTvj@W7(Jg3H%6p9(OhO)+NzhjBQWVWuAXsvgX3-B`depzWgxx
z(1ai9hpmd1rSI6;BGJs(@Tn;4+lJ$@*QYLWEKFV2yYaZhqwMCpd#CNZ&+y~gxBm=5
zwX(^Ys!Lco<v*QCW|w=mxA@R5*Qx7f$^>e?=ZU?&QhlZAnZM7=YD(6vD-yHkO>+^x
zXE`s%WV>G7gQSYk^NDfpAB)|tsNY|5Kskev_3hh(w`SVpCw}kz@-pu3NA9CW_oI$3
z%d9J(bAHQD=LV~kU$Y+D8U2`b`r-W6q_#UQrH2K$X5M|WkzLQd?8}#>6)W}~`?BEY
z)a`b9AD6fFO)gg5d!R4-^V}0N<br-T9<aOm^jCfB^5_%Y&kWB0K6Gb-?dq!u`*-Z-
z%QM(?=INXbCoR9PIT?IzuI_|KzBkL1mtWcw85-NadTC2R>&-K-tSoo#o>tPE)N9au
zWu2v|XQ{@P({s<W<ZS$uoM%*cv~2R4FsZcVJ3XfcJec?VLiqgH8(C6E=S<gRI&#kL
zWzH;Rz1qMjnm0c8OTMZ)-n;c@DfcxVkvC0>M+#QFS-h=!*5b^?ahlGX8RQ;!y?s+7
zyy{fXCAZZZH<X(@M^C7+y5{5Y(Lv96PRD(V<5@4~yqP+4ua;lbW_E`Qc}9~ZW`&<;
z^mzU{)@(UX*+iX3Hy;-m-ITSLn(ceZw3>VE`b3?q#qZvpe;TW{wl?EdoL*z+26K0X
zW5#i{o~!3A(OexXc~AEG+l9B*IjwU%_;2c0^+T&4u5{+zld@_9!<HE~W$UM_eR$jY
zc8T%r6O8BFr(gK1eeWN4{H6m7rHl3KejNN2ZtAur<IS?!e!B8*rhEIQiq9|j&tULi
zg7L297fmH>oLA1S2t2in@x<{<)BgP3?Yh14mi`2$8x|^;Dy+P-Z5{P&eoSWA5OjC-
zLNDzLPiAH5E?xPu@Q25p=+(*0GF&IG)fnpbWc*N&<I`Sw!Su)bD~u+ojt7|5y|zy6
zDAB&RSKP1HtLCCzk;NWYtvj3SihoRhc)2{`dAi1uw*L%LAJ;Seo$dcIb?1(sT&G(L
zZ#>(#=32>$t+^jPb{wlJU9W$sPQX!YW6`=z-rOg5svI+$^Fh05l2?@U<F^_s<()Pu
zemH+~-4dZC8y=>}avZHItGi|=vwiQsn_DOBinw)q&%!D5XT`1H-&*@~@#-JdPP6^@
z-?dV_EzRe4C;X)SHu=_B`7E!)%k<6)9e*afT=)7s?OXn#!cSGM+nzsdsP=aD$7h0V
zc3<xB?y$H!?`l<by|$K{^yJHPo-H&xy0NE4eNJEYUQ=1gSJ^5-le6a}%llpRi*N{6
z5UT3S4qPPNW?*|_g=$AilLPyYjlL#)W_ONPY;R-Xsg_z?n6vTue%rs=rEj+>#uT{+
zXib@RM&zmIbI~O!_m&C8@^~tTCY61E8Q`&cn#Eer+)oAmeug1W9F{y+2zz<w*ioZB
zPfFeg9pAk|p(@}(x`I$u(rk(6vRdB-tvtL-Pps9>G<(Z?akZ{hIg8ZpydynAwXMu%
zZ=SL%$jBYvn|WN3M_l53)S<2Qx}Pl9dc+s9e4MxZ(zJ!yo0BBl?g*ZE@cByU36;l;
z?(BP0kG<|GoK*3B^|f^o6Uv$AZMhshbIVzd^QWiDYdkQo>Rpm_r15yn#4DGbWe+#+
zmY=HaQJ4DEt-APZ)K$qh+SW!Bj2o;P|GZKQD4c(6Nzjprhk4TTi~R!Ui9cO7_h{Zy
z_1<Jj=BDcMRg)Gy?R1r!y3{1Wg^%IHiK9VN3JfP%UCP;-Z05o;$v$eOb{_kCjw?O$
zqb^S~Vzgy^erxm7{(`*!3|`?oSCwh{{CsX{u}bLlJU_|y<x69C1T1)a;y8Ox@~zG3
z5;>X&zpmW0bLq{yzT(qvN~Xx9f$FAX3~!@?+!*ejl+okQYB;iHZ(A*E&F@<OtC#j2
zWo?)wF{km`5<#}4P!HvKTFIRE3eWpx-j?LzU9wR{_|~RpJ9lkzahSrzXHXwilNZ{@
z#_;vI$l|hl4))L2nkzi5@4hzcx?9oJtXo1$`of>4-fr#>4qhf@)G+P+`>s{XPurVY
z{?+nWZYVSPz(0Mjm(h{(rX5?q>K!@NoWb(#W%%2JDNoWb&k3vXE8=s%658=jx;Sxz
zM1p|DTB*y<r>cy-ZniTs`c*3L^^lzz^G;IsKf@l|RZHr1Z2jJ($ds;T$o1L$?TKK>
z+^uSN*_Bz{xHw`;)D~u1#vWI<37&14+oEXO8=iaSj5AN}LFefBm9y0*JuuEyXTQB*
zMayYp#wN=HKX<I~JZ!+A!91z@a#-S=xw|_ad=Z^oE@fhKQT`OiPk)BKWox5Po_Ol<
zO{VLV@JvZZ1~W^otcbhLOh$gjlVjd}`)n3fCB5zZ=bAGXUsrb*9hk$oThemP>fpxf
zg|<ajp;wfD?0RmwF8l7?*(#Sz9?i*-xMO_m;q8~f?0kzetldw~y<7WgijVjl=EhcK
zl}Bq7B_w<L4$n#3-jerKEyz<!tYt^o9d12#+lsZnIS#j3`_G(b_#%7$Hk$?!J%1KH
z?Io9weY?dNrjVXn6|#8Yv(U+Y$F|Phm{jC1BV-k}b?GuLGqaVF-%O(p=^UHg##LW(
z?FfSq|0#*WhU{IMx_yyeN4vfGIAb*OiW{TNcGXWg{FKk@gYl)wzRg(^LMvo6Uu9=q
zySc==sg)t2>#9nRWm{B~Rx+2gtwHhmsw=)Wd9f?FlePRMR-3I@CDMAj-|^(v)u%Xq
zmTk!0U(!{^mn|tA$#1yH?AOQ0@Nd7>xbEaXm)m;9vv<J;og0>4)<nOUD8VDN<D9?O
zyruV^v0hO$-uYp7dG%jyp^u?YjB<ZE{EYbeCwt+}mbL)P-hLg{q%1DyIqA9w)t8Gz
zzRMR+D>i>6YZ1d_{c+Y~)2$v;XNm~!o)ey16Xbi$sbI<HOFLo{>b^EAJm2mZ^fo!-
z<ea<>YoC5NWqDq<Fy`#<bnV?-Y;{{NW^Lj$fAHsk%;Q;)zIysSGCrG_uIwHd9n^aD
z{=MUY$3>mIH@rH(JM*0JthR5-yOrewBPYeoc`$F@mbW*a&Gk#kcdhNowMaZy9n$t)
zy}AE&%#-qzl=S91S7*F4my^!3d^TOn_<7pPJ;yjKRRW*$alF3Iwz2ixh5BxhhZboM
z=0^!_Ry?_vcg3^AV!@yL_^LxsyekR?ttm=yE?HVU|M<N%hl|d*@!d~8mhH0D*s8nw
z64&;?mtA}E%h#1pvMM>oTU-z$!*KkW&D9<6Zcm(}zc#O@+)CrC(2rx69G=W;nrA9F
zxqpvUzkk&s@3t6?KN2M?uk@LjUA|M*wclAUc*)j1X#s0)1{pRU{B^Cze7V-nwD+%U
zSI=zx&fwEtX5jfk+lzH#pqJU737*PZi%*4_w}d+{YkM1J`*_+rc8irqKO3<<-Ff`F
zX*<ih`30qtDy4r`-3ixP!C}$A({AhGps;XTu7KTJdpWl<EYEt*ebDyRp6P9>Cv(_r
z`PT*-=hr^y-Ki|MRZ?+bO8ykh$8uYrpIdtIRq)c4<!{w;-b>s*)Og`<mU7A2-W!jv
z|ENE<y3;ejLE7<W`&QFucbwKM%gBVAq?D}CYn~OXWGz%F@o2M}b>F>UyFH)7?z!Iz
zR?vLmU$xNir{N^d$97lOq@G=5G)3sn^5Q8!t5ZJsJBFx+Pi|PU;_aQQJ5z$X=g*&0
z9N=jYc5C&9$Lw}nFP2Tc*t%8or=$vFb5D_0MTP(6u8f+UGIs6`m7+?*GR<?6mwK07
zDC|sA*eT0?ZSCzpYm6_1@=QyTDEX`HbSQCq=Dml-lMb)tG+minoRNFO!>qwkMdnG#
z+S{CcpWJn-cnV{#ZfW#tDqy$!x{>wd3CV;%2`go__s!XAkuIxK8kRFJQeoQ31HL!7
z-$#{Q*I8os_6T45-eR-u)>AgB7#u(4R?l^D`}7P2gX4BruS?1Vwe~e>uf6d1(F_a4
z_WG>-qE|W=dED5{Cn0)3^qlH70dto1EW&eYGZXhFJ$e7U!E@b?ea}@M7q9X44OkH5
zs4$N`%Js^h^HT&r%iTR%tR7@27GhJb{*x;?>y&}HXy9ehOKZMaN_o!JzOUI|HHlq0
zeQ)Z$_(Zk}mA?-v*OXs1oGdT%U|Jq)P;Q`?MVVZJh4RLgleRToeU)*#Lb}Z8K(gKP
zdz;tm^HdkP{bzV|@UiH0y;U2hIlPki_CB)sm9Ns|2~2%{+4H>KJ7?_WmA>nk7%8zq
z)j#>#&bdxMXWmKgd1Cn7a>e@6fZN^4g-<3%gwN`W&p38(@jTa}(;F|WIcupOBy#TW
zk^c-F|E9WS?>&+%GwW>ioK16Y%C#-5<V*@#f2Qi$&Xk?o&3$h7#WAM{)mp54v{U<B
z*}R=!MO$SLvohyZKAtsk-7K4?8wbwY7RQ`3i;@kTbm`gRSoW}2o)(smyGqIxdJl@v
zJN)Zf;GX0jgV;MgmnVIg=ENpZdh&qj<jLEPhs4fX_9vX@@Ko-}CuOr9`E(s<oKt7o
z&id&c%Z^+AcaNK<#3e>NV6c*pnp&2Vt<8IaLA|g2(%OWdtNVBN&3qysb*AlknUNdA
zlUZ9?FP&67BdStRc)5#h>zzHb&E`y%WM<sCa*}O>hT;YeWm&taPR84_KDe__oVClt
z^&mU*<nwY@ynS01*B;4Em5!fyuE3W?h(kqarzP`>rR74C#I+XG-1)LxCCN1RlBh~y
z|HBni-fYz~x%=ftd)5-4vK{JM-L>Aw2vs~*p5PmqDV1@7X9AnKoZ<V>RQ0^8Cjw6>
z{3|`Kxl{JSvPEg<C6hlJa_vbd4oMB#WL~?!T>jeDxlYEO-`fn2SDoI~+m-S_$jyC!
z)>PGMvog22*N*uf>52Ftz~pFmb++-F1WrlY-(hRdr1KemPM7(%X7*C{b>cGV*LE$q
z;5F&a**z0BXzU2^SDCkUcHtyGj}wn=SAD(oXEE;q3-(K!muol9i(Y8EdY9B3(Tv?M
z($5v}UHR$GvNm`IlkM-&=PG%}%qCu1Y1Mnvw%_Y*m(9<Mn}u!~_}!7K3cK5q@<ix3
zbDtI0x$RC%gxLKGqpNBvgS>?dUq&xqsWolc(mB;k&7XxY&w8no%-8Z*;uUN1%a7Yc
zdU(o@mTWT=-oC8%Kf_#~d(*97IvRalyDQi6=5!0?iP2%x*0elfkg0wDG9;(LNNeHG
zj)S%pYj;b;db6o^D6>?BYwxz!yzJVs@YZc3!#TO^J%6*W?i0vTce$pU8v6Ok{nog~
z+Sg|nc3E<5()0ZKuk`jGyU4cnoZUR;jFXl#JPGl3Dhzq=x%eGFcjh-MzRvnp2Y&9|
zt*bLh^Z>&*xn;X-wIg?3{<3VxXTB(dRV~F$mZqnoUYCniX*pMHoSA00(Bh}lyd82=
z<AXmkNzcrEyEH7ccDBH$J>fD-Yx#Quzi(B#VpCEgy=B(Tn!663`_GmAOb)Q$edqew
z`9l8`?*5qe>UB_NT+rn$yJ!4;cjtQL<Jm72=LeP@=#x0XTz=2uIolrfBf_<7a~Fkb
z?5}lr+4X3x=z3$@8kvwKU7Xd`)|=at_*H~2+qPyMRBrFqGFtHGz|~wk-iwQppMI0+
zdhx|pbji+M<sK{H$-CD-jB{D#c1u21Vs}>RE93KJJb@0!)Gc-9%sM5<d3~#f=$X^Y
zZ>M*rvE<9XzWwZ?i9hd)plqovr*m@|?wr1IqFU?v{A@YH{U1{|#osx|H}T<%J8SGR
zj%?PywDs_nE??tGYt?1L+Gl0$lW03C#_=aqW%5+k#vn$O{|x$7lU**BdaDPfu08PT
zc%#ZvPkX1VzTJ=b`IlT0Z4_Z{OL$()|1z@p^(@&dIlAASmHF&)9(B!Gn~~|cV_#ZT
zkNK~AGqtupojFsWDN3)%dd{`AchAo6DCxX$lxO1;9<Lpxe_o&aqx$$}u3CiD-{%?&
z_|2I=t=sPRv2T9a=I9u=NsG6+G&k91H{R2CzSgqXVpddrTh6|t(k?2^nLnKpr_6d|
zW1nf>o~JlVd!};Bg9Lq*$r0PcqG~3(<)lqhP5#dOeBPg`@ZgoN+|K)L?tOPXae7w6
zoG)Kj=DiPGdg^@irBdnWwU$BYQ=d98wdFsL6>neD@}1-GDX!<r6DQcdK3!v(%zDQu
zZ0b`_ar=s%Szp$-mzhnndwY9Ix|-XQ%bwd)gg15D_B#l;W-W7AbKuXOM_cvZtMuJH
zliQmAzHD95jhB~1dZSEJAGB7bEq?CE{C8UIla$s8Pvo<{%-Jd0KWD0F&~oEHp1OH^
zZZGF5GH#C5Z%gp*UfH~8Q{w^ly#;2|^(40RY&>C^7(2biR7s7wN#>Jlap0=OCikw(
zB|83APxg-5C>V9BdG5|*)m=Z{e_QZTCQj_b+b88Y&u;zo;oLlb@3DHmt>311o>rY~
zrT6TX8~ZZt&&}U%e(b;ftlKHWWx|r^Jy$Ife($Oa{bDok^X3abw#sELsc~KT^3bVI
z-WB)H^!l-^z1kXFT~x5-&()o_(^M7qz1{O`;@bf3P!2u|nH0XO`)#+_o^Vu2vWc#9
zSgy9(biqLx#(AvyTjxo<V_Esw;$?vCvS-Q}Tzj}gwrrADJ;NzD`6-J)6_eJQ3vwQk
za&6m}Znev|kx9?93e}!nP{n68>z2`t=OveRr<<2E#5{HUzGkQ5g9pX$V^yDUu<@A-
z6lse+Qe|yd;QP1rqFAw~-m;j#1`g~SMcJK<=aj83TIW`H<+1In)f!>U7p|S0ne)ar
zUS9L%wdFkxr_V>Vvd6V8>1@dPP^)#BTk6`|$;~%PzpnoFc242M_m?&b?vlHCK5pyM
zoZn@iPgpKr5plE6FZ!8Q)zufODtRnS)$&nCJUMhHUtgMW`-G#c;RT+My&f62-0m?a
zZ{ySaV^m=L<I5_+GaTv@7Oz~b^`J-d_QW|?Rcm`@sj=jpE}X}nH9>HL#<}oym1iBL
z&Cbl9xhtjE&rPL&c2Dx__o2!5is$7->k<t3j4!_oNe$jEle}JiZS<@(_V+w|3$9uo
zi?_7=%djjkC`h7#{S^E2P}P9-TiN3;t&cH3d-Cy(;t*BK*Wb_Y&zh3a^ZLSL=BAxr
zPp+9gr*E$3Kdoy!k`{c++tbIJ8msQ)|1juc#+OQ^dq>^l>!Z5mwV3J!v_7;O$uPND
z%?i7<c;aU{#^Y5#r?33ARx(!dm;uL$r#o-4N99kE;a#|Q)tjsXe;)e3D)h9Gj#eyS
zIPo^Pq}Q_NvBYW3Q_sJyn90ZRPoThZ^<?MC_dl%QI3B9-)pYF{ZO@3tCC3~sR32QA
z&%C`^S=RH>;wf4(Z6{Vtc{rm<qV)XottCezU)8)*3O9K$xq4kh1H0p;bt*>}Yw_K$
z`#Lf2IKy|-Dxre1WZRRbi#)T=Yi=)2y5y$g&V57p&#NQzE4MQ(XW&1#S?oQ7GHXtO
zVOZG1yXFaum)Cmb{p#HPBC24&Ig?Y>gOa0RpQaw3IKhfXZj0@~kOxnMdzddxEZd<X
zBY0`v?&fO;98OxQwg(*E8>ZD>Jby-dUvaRXN5awV={r^&sS)17R4u2ecDS}9tcGa`
zgX4LnwTCSfCM_ttV||5N?vs)6#LKo?Zl@R+AFpHORbO!RY;`6#|CD@{sz>WOZ8nrm
z@O*nCOn1+Yaz;;vl;>MB4mYiyW)Zi1Z_2}U%l_PoxYm~HKZA+gPwT-HgNQ3)$`iZJ
zHkiy|;F@~k@x-&4x3^?1;4!n5cpL3zR&Ja>GgAER%m$sqa~ce+!X20SG?x|KlsLIY
zI%d`1yJy&(<=VDwx%S!M3>V`KzO64Wbw0VW_uQ(3XF3c*3yKbunC?szlG*3I@VNv7
z*R$Lh7s0ZYAS1>n&$s4Bo;v!d=D}BGTmMVD9?LD)PLE%{?r)3SVuq^g&bdN!SJ(v}
zJRqAr`|^`p;!`aw75$lZ_1gUG{+z4lz_MPYzBMY$>5J)_hd0G8F(&!@%~*LSSt4hG
z^}H;VN+rj0wYz$*oNeN~z2)&UmC}{Fl0DWJFg+16D(opS?OmbKS@5JOTDh-n>pO$h
zJKkA74VTrndok6I%`@inIc>8yQEsvigr@&=$)3k3|9sZ-_lLGg6knIQ_Vrbo(~|d+
zcc;F--1U4bTL|yubKXUU^N%fh*7aO-jrUfS<lY(Q*aKtKc9m;}Fld|%zEfv<Cu{xA
zqVAqPhZotM*OWtpTNHoZoqTZR{;<q#$9Y%v_8dspF=Dg2F1|{EeI3V>o|1KkLw?R|
zU=cica-DTR{MXrig>(46tiREjRdlO+!up=lSK6{qetxJt@oei?hQmJ!=X)KRQJM02
z=U#2sw1lgjk7u(q8L>w9e%d2bA9d30bgoS3j%Qj7k0suRUDTXDDWPbm!tdZ~NuCE^
zRrPzVn)K`Y%Hnw~AG`VkcI!FnnZ149Bj6g_+SHoFEc0c}iKh&0CnO(KUA@5>x8unN
zR}-~f?@Ti$1FLe=BA!j(B`qc2Mt*zfXI}nb)_(4vedY!^A75VTO9<3Ec6;YJhqtf8
zlDezk*|5H=UmDh0ao|+fPN}!4Zx(#?Jzr)j^mj+Xiv0&F&R1R9uG6(x;qit43|8mc
zpT+SxeQ;Rq^@MjpUxAx%;i+1`6~Q}~%O2)*PRWybZn5&u1>+s>^A2Cy+^C$*WNY!{
z>fAFArXFWu@Gp!JO{toaaN5aFAerIwB<moL8>xYl?#y94>d-Rxz@N2!Y?&-;71%A4
zjIx`;iflPnYx7UM=@*{$j(N_9EKc>mw~e;F`FLq&L6LPr--7a0lVb7$l!N<T&ztw<
z(YH_1VJXXAe3M`(Ra%tBCd1^%F1gIJ;gz`DPg9mN2ZRnh;PZI4Eo@(#Z>-?%gmsUn
z{d=Fa)@t=;AwTw~vnHp{U<|V<;;(9p;5xy^DeJNJ?l;RjCEDg`D(m<z2Q4;W$y4Do
zejVh?SU4w_d85d@XuS)D*DrVJmb9)?X=JdGz4N4TUftFrh4uz7#v8x>W-Ytc+Zktk
z%-w6Anp}kR410C;rP?=^^lE!IS?2F!m+#GrKDjv~%`)HdoHmzv#xHY)l=QtZeGfd6
z5+uWSu&*sSdgtiDypn0#(=JXiU@=slcXg3|5hI_`y}PR?___!&GkMtSv3u>9by)uH
zW+ry$zT(&k>8c*f`j*5ms8Kf5eS2+IKG$lo-wQW3zKr=&HK8oVjN_c2g~;_Q2jq<l
zCm*Yt^}5?aRd~scJ$gI(0=KVY4X$<m-ZJsiI^&4uz?L2CivD5ezpR)Ys8wL_^i#!`
zx3jK#-8L5Yd$#1(q<52_o%3Js81nqe-Gi*#z6bX|k2KD*ncy@%-uc>QJyQj{n2r99
zF3WZazIl@s^J=*y3zMa?%(dEUi_ApASe{SVyISmV(4hwt94u6>O6Hq2EqMGQTU@>9
zs&!8M?kkdRmyX*lsGB-d^_VAPgXDvBQ|3F<4xCrsxI*^S=VP2})NbofJKAXdRz<+`
z`D?#$>&-hWo}@1g5EfXvz3{D1^&*dhPd*ezyk8hCwJByJ<Bl({-ET!RPguHJ>U8G!
zzKY|{{*lrJzn9<nYT8}PJ9*=h?W!|`>;f!T^6c(B^q6_)xopcc9;T_!Uw2KitO&e*
z<=N(}<1r~SmrUp5`oPs!UhlO(zof7y`QmC(cS}j-70=c<+HszitI~KIvE^LLxi0SJ
zIc*R4986cIJy9sCT4z*!-7>v+5~GE}$79)Hx1QI9Cs<hbXPw=aDRJj|SM2J87Qx3V
zO>@(%+vPPap8vd7W5ju;W|eh;`~GWdmGiWgFrT-NI`_@QbMNWs+1hi=?k(S!dGKcF
zY{v4wzpI!(i?Fx-Dhv}dY;b%qvFlj=&YK)}C;9AGQvAJ!tyXKbGJD|`*5JmMUAr#K
zWIXXerl(%3=W$JC9OL1X>&8=m&6}cGDf!v0DA4bc+dnJ8$m={z8zp2pxvFMen`h*m
zkm`8wyQtd-mP2op85*~*ztr)f+|AC7_0#ToYnbNw`_->aiJiMVnQ6!S=<NYdw@;qK
zyFhS4w$$^YNztse+N;Fw>`z_TZ6`6oz^(9Tz|^YwySuLJc36Jn<CaiKMa%jr4eX*X
zE|-N{rn{XuF-uS}$IP$DZYtNo-`CVXtbWhu`LnuY>8EeY{A~NQS9&f@K0j5odgHVY
z?KV7&*KJ>?oiPlYATp0rbS{$sySn9<M_b>DXB?0`zd!4u*Ri~*y}6d|r`lD@k5|21
zv-q=_0B0&gLf?F^=W8OGmS_aWn$7Sw`kwsyz_Pm+mnclWymD(I2gB5`vd|OUjnUUu
z-A+m{ywiMZ(;J4=(AXtBPdDG&z9vy$YVKm?$<1@F*u8nv6PR_$%&=(ol+VZWmzLY}
zpKK4`CS5-1^!9?+pG($7Nr*V_mYyL$c@9JNvJXpgW^Kt8vO0BxnSJHgby1tPT6)|v
z*}FO9e(;<1!kOLTZ7SEcynbEX>+avn9c_4LvE1E%Qy<Oa{%Cr>d+Y2M7dGEJ@z!`v
zcF&|L#(4Xe^Mz`B7gel}5xjHao8TS8ner<77DsDEKeQjc6&w@w>e{OLx0FH)mKsQ0
zKa=pWciF3)%Af1}c})M#-W@fiPWOj%<fUbs`kq}%6Do@6pXw>gTk&UB$o%|?X#t)5
zr}oEt{gwNebo<pW@o#-A^O=t%9AdJ#=bj%NFaO8=!`8Vy+)v(3a+|m$L45h+*vQrh
zjis_TAE%lux9a!pH{8Z45g?wtIa%UmY}nLQ5fMsEuT+zNZ*UKluk7EjjyZJKH1&v!
z{<EwM&of`!@m}=DrEKZ!+u7l2k(b}R)v#Gre*D@Vjpgd8JHLraEnCxf{`h?{ojv|5
zeTz#ZYb+P9pPrw?cezxr?x);L(a-+<|FpB_>0Wt~KFuRH@zg<~?OfJ{K|dykM|YcU
z?yT9d`MjmduUVgW&u&&ewZh!!``7i+yzQP_&a;b0o{Tio{?8y8pRaY~?XTw_mu22F
zpCnmyuBbxUbbevZD|3$-ch7OI5{}a5ea!GXe7#i2&&sHc4|ZPh`)+IR`ms93qTakv
z*1`VTZdvUky*8~ay*>TYO&^Gz*WJw2clwLzjSM-}NxVCg-_QGcIGpe59e;n`?rhI_
z_xX>!p3i&dz`<t%Y7q-8pIonfw7=`otNVwaGPqPaZ_cwgDQoyT-g4gxQ|*=xbJ+sk
zj352cX5V&&NIy|yH%czADHlEXX4*8{*6uw08NY8ojPF_dKKJ;o*&KW3&z^WZ>#IEX
zk9NN;_IdM6stYGb>=TjtbLDcKS=<Y=oN1p0-d>qk{5tUHZ|5H~oJ(_A|1?>;g*v5+
z&RQIvv0!!gvi>V?tsjdwCtsO$&NI0$t^V$`V<OdC%gp8}T{ab|G<m%v)?HmFPxQy-
zWfj|xTAh8FTwZK_>V7HvGwoOP&GEut`T3TJNwowYYtOLD67YW<d2VV}_N=nBh#Xg~
zO`9+L?tNc(S)hK$kxz#AcG)v$>CEc8en8;^Yh_>aBa>@7LL~_Yk2&j>?i1Nva^<m>
zM?#UuvpwrGF8hABjR`f?5{h$QUGY5FDy{Fk-y;p46zh4-m-b8Tv-+{gU-FOF^{tGR
zsz=g_d9tFP1}taKSbu5$t?!Q_K1@I4S!{Ol-R%?Y@)dK69KNkT)#-HSj`peFOYV3U
z9(yydUh4NPUq3CMKi^vIYfqf_PEG#fGOu2$X4?AAJUeAM<EGYW8}2-If5M!mt3}$O
z@lzIBO5X1(nyzh|ad^h_vzs~gx$y1XyK2p}<9TmtZvNi)^_m3J<WIeO+m{CH+#Yex
zli{nq*ZEtqS@tQDEpK;+X-{L>@Xq?GX6{T+cE!Dp>)ITc1vhL^mz&?48h5n!=TDCp
zg|qG%rQ0mpJ!kLPW!%#wZ617I<GtFk!JmC=>2<SLCvF_HJ)3ynx%c0^sn@yZn2OFl
z7xqjnOntqrYf#FK3U#$@@0E|M7S3Z$iBY>Q`+D)hzM}<Y8x&f<nfzg>kdd!S+Q7m*
z^|{RDgOVqeC6C%p^g0`}p}&v)Y~R-^%@Yq8{8z5oG3OH_OSROdNpFwmTxIr@7C2L2
z!7~5S`sfp(oq5%K*;1Ap*e>6;nYBA#Q)b%Zm26F_!ex@X=M))k`OjdrX;Pj~)19x+
ze}<V9H#q0ry|w1J#R=yA^;zX_icd<N)@tCpv|K{w!sSVOIaF#dM?QLNU(rAPQp>KG
zb(b$B?mU<E-RP;FG0$U*1ILPwx?C0r`L^oWi;W7o%)fW6nDs)y<KWw#OZ$@^buOD4
zkv?yR?5gI|Cr&)SzgJ~4-}9BLdhMPk`BgmYE!WL5dKY@|bn35vrc<rOlKi4=wXS>;
zmpt)!<NJ`AoBUPkz0PjB+8-OL%((OXQmy09?YRUPJnvqaH9hb0mcI{fo~!D+YCcUg
z+}5aK{p?A#{ueaEvYlovJg)wXT|)NXRM{hrQ$A1f<ILN-=!0lV&;nLVh7kTd$qwdu
zhc>#0+ipv9`MCMS-v;@)Vbj#^FiM;_&$d;yb!MON`ofoymo;>E%kZ(5s1%3HzH@$-
z(!!5@ZhWpGsft}2B-ToXXU$nJ*S7kkB=6h>W>&wr-nYJ~u;?r{oOZU!(!%cQ!aT`u
zee;%!#z`DFXw%qyK5IYMgHlV|SGS*9Ok3mX^du*FhfLZ!z2He}mhZ@a=^OE_gu9{e
zoo~$c#t`8-&nJ04+f<~f;=H+#JyU)DbcvNLdTb&haeG2%EK>AfZIm~VIB)V|V$GrG
z0v!kDdsBalW=~ZM)mzdt=dtYPz%#Siwfw9fPY%DQ_T>BB>w8_bra8#&ORCKIvhr1s
z&&sE(8jklFzyD&girGM6-NS<nA(z%YFuId2$+Vy#QP#rt<<eTWPUi`AG08T+uHNVt
zd+?v(fWN4ti0qu=8(&Np=Biy$k(vLkuP|(S!q)F5Z`(pxPvm?uytOUY^Hjr3mB)=;
z&)?j!&O514X1luRUd0vunH#Dm+<CMsS$wzQ-rkCa-tC55dmG>1+M=715wp5~a>luP
z$2Y8bZPpiAa3g`?(5&q{+@3bqzALEso4t-#CRA$gxo-c2vz-#}oVTpA-Ep);Olaz@
zg%f1TU;hYKO;>h%(EQBJ-=X^2x%n2UwmvgYo|jlRRj*xT;+@P*?{n-5j_1d@Wv|$@
zTTnFkk2152ko(#KtK56sya(jW<)&VajDPT8#fj(Y6Eb#cnOR$Va&TW}Ntsl{8ntb{
zVH?Bb?K;K>EZ0@tdMPBhbqeDPe*4y#ZM(P%%zigt+gxPgvEPulHSDC!oX@k)?KrjY
zX5)F+mAoGf7u>r&zsy6{Fmn6$t`+6H3;r{RW$Trk4k*8}zQiH@oV&#1o^aDuI}HB4
zVeT`iJTJPwwrC?;(DB0OWmVypwPkEyw0Fx&d@=1=*4G!;ZoJC;UDxC-$&Gzek7W1l
zj-R{l$GZK2J0?7NSeIvbTl7fwlAm^wF)|YhomQ-i*Dvn5T5df@h~uA<rRnMWht8b4
z{cGNiC)MHpEB~D1v^-&7@kx97mDy?UJQHt7iEQ0CyRY4J1<R+|k`}hB=kDkcIzB(^
zW&Wlo%spS%WbZikcFBV(u6um9WG1`WD@?o)yjXYIlX<q8msjvk;P|qld4s}K9{2pH
zdw<V(cj~h|Ua<1wzSx_(UsicMdBR|Pz3*z464wVl&zCO)u6F4iI@~<(u50|Zlc^_;
zi@LD}>|j^EerbyWyMiHu)Vyr5#YKOlXRLc9+U|9!VRh+)$4#v1F0(scS)Q=1Sj%0p
zFTl+~zFKM1l+yv5^$+mJ@E_aqwt3T&1SX@}RZACG#FeeIDZIAMrL{3|^6tHfTC3Aa
z4oy~%aB8@{Vg8w`C)}q_I3?+E^6Szj-h+$>Wp}RZ;P}s=!QcEcrc`Umnks>X*@hd}
zPYKUBsLq^kYP9qAq;Q5O1|~+6`}p47eE((n8kL$QvU`t5J(_Z7l6#F}ZiCRouey^b
z6yE-$*{PXl*1PxAmzAkbr<@)X_b{GVD!}3-*!Jw@@u;JVSGpZ#D>%Dxa)u>$e^kR6
zZ~fFK!d;uLJ!MqA|M&8(MHMN>&U}4w^H}zBXK`s;bL|G_9+{7Q_H%8g#0YUHZod6>
zW$V6(4-$``9kr9-*5KecX58nwHYCs6&w9!&*3){ImNPK1@ju84*`{?|LC$#c^_Ss1
z^82l?v>iXQZ{CcRtQ*qKd7O8ib$!CYrK^q9x&^ltaY{bku#7uUvFFe3{)bWi9FrUj
zdt_4TqdXH&YqDpsPqLD_=yuv!Gj`Lg+f!4+)NQ>rPRL#H&TXES6j8vQ9K~o<7k1*!
zq1mNb&Xw&l>)GwgKdhN`bGqn-^EY;|_Mh$P2|1Q55T?G2@xZ@OnI}ym$qWgTU%m}h
zov<T}p@msObWtr+Vf3QUF-#I{T8`&U4%RH!vHL9dw_=sB*E%~V&%m>;Do@25oaTMK
z&c19p%fl;IvoC+&UUTEA!wTR33=(?xeXcpj2)JE7Y5U54i-4zk<H<+67QNruy!7nK
z9oy#{+I;M3s#rSfyWsaHUxNGU4{f|w&aBvQRw!oM8R7FuT01A1waIRY+_B@%4#|V>
zY_shiJ)P)gHMyy{D`h%s)92=pC90cutH1v9%JQ9j*wbr=({?1dTc~_K8d`aJf`e)m
za~Rjp-X^!gfEfnO>m}DLHM%GHK574qle_2n`}9qbWVHPDPdKQfaK{8ryJa&ji25|X
zJ??*OL-D&*Eu9W?nRNCI|F&FU%=a_=x>C$&&5{os2eX0?JShIMc-C*3b93h{$>Q4h
z;=sHqdDeZE%SG<?`xLkud=e44<zE$j=iK$=BTxMdPreU6ZndiQoc-F6gPq&i)J>k0
z=q-8N$5tKUnYnUF?97EC3+6Cnon5W9Q{kb%4c9`M*%3lT^>ZV7Po67md>Qj=>&ly)
z5x2G#$tyPSREn<UY2kg$P;#s==8f)FX0``k&t^GmTEua!IB)Z8>D%IEIxlk5tgp;t
zkI~I^-eSSLJkH(g@a6Qcto?qhxzQ`N4t~#5N$y*;Q_H+~-6UVJJ#9`#X6-+xv#*U7
z<diPEyqTe?TB=Lpqe7acLNfb;)r_I13cveZoP2FV-uvK7OQkb9n^tXP*v7}mzF)+|
z`(%vVoa!s5r8dMqS;5{@d{%$zGd&3*%O}jYHh9PKNA>WWeCsvOnW6a59G<J(R}W3P
znN!@?a_!B^=?O-PGEDBlk>(td5h;`IE!*xMlev1%-5bA;Pn3|fkUYLMCFW@B$%8q`
z%*(VFUeURuXTV|eKrUPB*>&w5OiOxid|CVGi+j|vHRq~Axu>2elbN5j;-lWhrs6ph
z=Uh8_CM$GjKt%d-wUr$QV*cLYDOq<S-tU<3vYAs=EGJtW`+RG0M&BEr2j7&tE@T{<
zxP9KgFUOzoXeM8ln|hmVy7Q^kEL|5DYdn^)?Tv4KW}(Gq-8VIMiuNRF^#xy-A3QwC
z>Q~>^_0H!edlwh`A7_yHJ?mwTnoekJle&Y`b=_2rd*Q4RA17W3``YtFNU}S*Cw*<`
zx~-~Z?$L=RS#PB#-0m~(%P#kyGh<sy9&?Mj<o9)M=Uyzkz<$QkLVjsp#3}!C(Uz9C
z=cH|Xw(%loWW<|XHLX);M7`D-UN^n{L+_=+6_)d#IUc7;$lXc4x98re*Q&BJ^pmvL
zf4ID7yU>va%T!gbzuM=HZF}LVcf3yY-k!)CKfDj`vc2D^r+(!|wC~ziEYjWWjN4Ye
zveoiuxRvos{b<LQxyr%5K?l9&94lIN^JSdv$LB}beJ|SBE{%@KDcNqc!KZh3zs;}f
zOY08Gb3gfL-t*41x-EV4mL6}-<jXSsXRaT6xHx$7#@n+kJa=w>AK%Th;fK|=q_r}h
zLMuZ533vT;Kk{qi)#bA?{ZH-D7H;sf{vCelKZAr#rp&CEFm9>8^9(8yuRQMhvHIw&
zBa>czuDP9j$1%WwwIoSPt5;+5iBl`ALhdYETO9T1)U{7Kr#5cV`gHo!M*Fz0kK_ga
z*z*MVn0)6i_#|*ICF1do>uY~h2W{UwQE85mqom?Dx#-Vp&xRim_|bRaWH!@5AtvXY
z=U(lxnOrt;nPGHD4f`XP-P`&cUY&T{JTb;(yZE$;`<NN-MvHzETl-<(tz55?-JfnJ
zKAgQ=^r@W9hnliS!MRzI_PhI<_I2}zNt@Jc%?edpFMM#(?j5@)Xa1ahZ%e+(>TZvz
zAFN8&1}}-a6{FL!Zpq|NQ*DAxy}!+}*I;beaZY>Nl6O~<`prz1?NcjudwoW_h*37{
z-L$hhv)$R3Wo?lvoK<JZlHM45ywyfkXWb?d3tPiLbBRR@mTJnnAI|5p+q~vrR&qj$
zb?C<lwy*d9c>F;-<VW$t+qHGy*t&hEUNfELWS3^k@IF@kkgdSWs<Ue@yX{~ps!-e4
z@ps!F$>NXV-?A>OUn72IzUN-gCx?r|^DY&>jkmY73=gbQt2JJnqi=QP&$Ye#+U~M_
zVqcc+e>hI<;+u8K)g9B4_<bHLU)x~1pZ%3*dFR?E92KmquDAY^k9{RI$t5vC;*-DE
zw|R2&RiA3h$*ewQ<Y%z+oBcuE-~;n?4d<FY;?{Nbvzd8-b?@t!KWeO(y`B|*<Gt?V
zX^&KHZE9iY2|w^p_V2tuZhDG)KD^9$<|ON2GyhZe>-tvlc}ClIZ@X;cp71T4i@|8+
zBggyetA5@IwLDnt6z+cE;Zwgoxj{CYY_$(c)n4nB+4lR!?e_<Cs=}B3u=;Dib>Rse
z^9MarXS!W_bz63Oge%PHnUwXuY3mM?`6Bg87i4<~KC4tYa7#pZ)<+R#tBL-*tkZTD
zT>4_?_;<%Y{pcU>kB9w}zN~jEI+yXLs^)~6XTR^q6lg#9uDJU2j(C|xPS5A)f5tnc
z?)TL=RxNq6<BIxJ$#$JJNBZifhFJ$Vs60rYV150?#HN;zaObBlg7@SZM7JK$-jS^6
z_&{pQ2F3~IwVW##wkIbiCi!};@P3k_`D(|@NdH)VFM~}NMV55TIH+azc-~jH?3^~<
zo>CSbsaqvl2hyLuY`(X7-D5sah33C^zN~0Zb6Hrr?73|rA7{>lyRPZ4xSad^42%k+
z%MBAY${J3pW{eDv-gC%Xj3Gf!dy#gu@%c%YotfUL=Kgpvd7ie=FP=%&^DNiRdn6aX
zsO!{@Z4aLJ9oqG1O~E<ab3yM|LXT-n{kow&Eq?ko`$M}<-}d8YmwbP3qh79OO`YkL
zt(I|p&rS70J7oTeN>0z0ef9Q@&ZH;Fxq*poCnYV9ioH|0>^$|u&j5q!q~)Hwp7e07
zZd%;uzAiJ!uOPhds@aRM_rYGA?UIs`=S4GOp2#i{zTJ0qLjTsH<&$rOtXAZ4I1wfH
zU3K^DfIHI<t&n^<Yxdix4!q5M+PrG1KN%0cD)cjcP}o%KYkfOeQ<f>NcZP~kt%iAo
zgSgD+2&LEBTc>|ARf?H($Ba={>$dU6EqTY>E!fwZpXWH9XK-)X=CJ40tO`PwcY~NB
zdT$)74%ue1^}?3-pUn&^pNk5rr(5t|zj3MOi!$@J%-hn%iREP{MQx5Q2`y}#+)zK&
z<)e1;zFMvS3=_BTJ&{|ySFwG;1GztCYkqcn-JZ8+gVG6a-W!kmzN$>jbKF|k^H_PU
zFV{*LP22Y3FqQ-tra9#b{~5e~-n1>XJEm4YO)#`A<oO(_WVf#9N#T~KOGV2(ERT7_
z8P5C4vbtfx#48`Fub38x1|5q%z!P24T6tWi>)c%S51J3k*Un62&b)Q7U-Fo1&@3g{
zPU*_`XY*x!mTIr{iCmQXoO{RPWm#gKj}ts3WV5|o+1zaYti4ef_)~Q|&*XWJb|<Qz
zPN^&v{jPaf^0Qrl{Jdpb7W95kNSA8}x^<IDvhC{E_fgZz7ArhpsMS1`X3$>5k#NNE
zl$@VI))}!=2mV&go0^%(!?i9(Ut!+VJZ?8h_10q!wy)LoLb4@RPw8UO3dymxdJ?j6
z^|X6zG4-PHlP(wDa<g?<{&zNW0z3ER*O5D8rB=L3-MYb&<!^1)<b`)noKAl?IqG}i
z!>(4=#^<(Lb0$o<W5)Sv@dT}hm06mrb-8l+XGA>QAzxB&)%o_=ha+NvufuLOy5^pd
zUM?S%efl(C#ILfo$)yXX?wT^Sd=Bd^<Ab)nJ~FpkpQJBjUdq?CGe>Y|<$=GNyWOsG
z?C$zxd~19EM1H43F|Db0IPRX)4!iV(Vdqcp!n4IM&Ckx6dwhXy*4wSePFykbl-o1w
zrLW9cyXAqoc6Ffzvpp2jCr8B<o<H>?ZlP~+*!L8^mY($crYrLcmNwk~Jn@)Yebg;p
zUB1dCXHR=?@JKtg&f%2I#AvhW6|oD<nVbBxp1fUml`}3xj)Qq=R&?yD5}gNnhFAV(
z?45by@{Ko&S7uCQZ5CpBAjg~k@>lmBpXTSm2bEW>x9@w<V{nU;;h}Zd(RB+F4-4)2
zWPJT)u;q<Qf;(SKe6>RQZ(<rl!PJ6R9V>Un3zf%xJ#;IJ_tRzpgUau#yH^P9EMs`i
z@O@o+_`)kIOWh+%lbiQ`XR~0qk{lpkvU!E<@v3K&{xdw2F5JH2PF3*jaOL{#mT$Dh
zLv8yyE^J$K;mZ2&#(9!qPu{)Co`2>2wMeeVg6sG$RGLhenlLG58e`d~<8x*m-MfcJ
zrhodrhu1cg<}Td6Q8P>2=Y#{RbA4}-)s;7AiaZpaKQ&!nS-QRK%(Q<W^0a5}$$eh@
z@chchB3iR1y?l|FHECLG4`*ufR)4?h>-x1j51ZXdd9-V-liHkyCE~~39(Ns`cPHoI
zF%J9QOsQEjt*T_!o^cJCFh@AzyJy?&D-Y%`Ee$Vx{Pg8KN73eT&Yzt@4(~6U-t;TC
z`86@)`O}^Tf0fW+LC51P*XCRlJ;u(q+LQ5w!uNGowPm*L3^d*`ufXcjx?>e5o>Z5v
zxXO~_ch5NNQP7Rsx34YT_w<;#`u4yb%#-IW7G27d`XlwH@wu!u-1qb2cGzmWT`^;b
zEBtkh&+C?~V3Y1)$y?ExNtVa5gIMpiKe6^;S-C3g1%t(tCxU0QqLjq~{45W$T-SM4
zc5If3&I1Ll2RtRu*JeZ?pS)vb&>nvOL$g!!M5h?4Og^Z#_3gsD4Cf_n$`$@*H{ZH@
z<BOuV<Ft<q{HM1b|M_SwcVS=nB&`Sq4#}SfAFKCVUD{yg$C02tEqJrFqW|oo3GEW<
zt?$ozZQP)eYyZB?v~W>xDCddCbAoNQg#>ZNdEBa>n>O#P^onRFdCmT_bC)x-T;eXd
z#rdv6d0o~8r<3|;%(mHcO|pm#&swkE#~*d+?7N_@=$V(Ij%y1UZmHSd>vF5=fjG;C
zSNzMfZvHl84Ja+1^Pi#o*2FjGXGCsrGwWYlddP~|>z2gDTOGH1racj;4!Ic3FuQ4=
zyQ{4K-pqY7RxzG4zRqr{Q`RYQ?pf~ZCjY26J)&DI?<b3{?Poq?aXkFV6+1_Xq`Fj#
z_t&rOl6-q%Pim#bo2)(8R;_O0dr&>=_O#>1ecz32rfNB|<UQH&b;X~FT&ZqP)!A=t
zmE!o$v_?X1rmfbR2?7;$h3BdRPhU88cC)QR{;r|}UzoQFEk9ND^@;HDt&z7kHmJ+)
zUAgIq3d2f<d0TlSW=ni8%(d?L*&mRtmu`LhyTdudYuofDE|$FGd5&4`YIg~r-{W&t
zT+eRYE^)iOQMH^^{ocy+1&+%0`s=ce9d6)C__k`Z^GP1}xT#Czo}8OK?MT+|LzBu`
z?dE1K3$pv>Y0JLWD>35$D+lkZ!ay5mh1TO+^On~NZq+gUB62Re+}_M^R<?Bl+jH5^
z9*6T)co#1?>Q?w!RN{S8Rd8|Hg|90gns}J^K6w7ptFCZT#N<0)R<wD|J@U?$Lndj>
zLCJ%4g%_?^E?F0T)s4ezPJ!{O%(r<SPZFxjR|_8Bv*K|2jdasA>$HM1#jWyllU`N!
zznbQj9KpstdCR=^OS8TmbUgUjW`5NDwi~DH-dV8E%i>&fAYs)4na4{L-v(ctvvtF+
zjKsYQnAh>WbKmN6q2>&~#e=Xj6If~rD(oEt|ISDea^n{bTroZP@LJDhNhdjDcf?uA
z$nXT$EahV3{B}0WgiC(e#r{Vx17{al@_3%FYuZ|T;qz0UGu6fOX0mU~Y?3))VEt{a
z<bu;OA8fNU0~#0(eP3F>VDJ2*T?=0=`4|=&Ib%+%%H!LjQtIn1Y>UH{V~o}@K32Xr
z@5BzZ&fJ4Ri)E|2E^Sj`+Ffzt_>NVYViE}nldo-Ad*Q9ThU5deseQ*oOm1A;!oJ%u
z=I_O0+I9C-k3F1l^We!7C)Riy&evJhyYq0~m$k1;QyG|dq))1vls(Jq&AX-A%3c!2
zpB~%tMXhrc624yc@cvTgjM>RN4)*s}f4jIccL!^g2J@FSs?xGwp5I~dx*Z@Cul!WD
z*YBd$pVj9$)!EiWuU`DNfPcYpr6n$R<%;LX&9&zWY~Fd7bIbc;ZH88^UZu%bq)zW^
zuiB`!Z+7){*MjAzQyAnE3?s`0G+ocL@YH6<Ma#{#{A#)S#<@pN861ztJ=?6_^5^vF
z^xne@*51C#wa}A6<_l=oNsfq6(NE?5rWYlwWnV2a$V;kdWOQVCyfk2k|K5phvaUI&
zKkqK=&v~{vkIDVhTXmb_ST5ZXk>w((CyZ`N^0~2wY9+sknB4q2e0g^!1Ml)nt0ox4
z{8>`UytmXf;zOa(zQYogl_$<s_ib_67qgRLexdh{w~`Xcw^~n6(?0P2eJp3JoXzv3
zzpLI&;Jv}}$v^7W=H&ea))J-4dlL_eRVQ{l;9Gug>)U{JmbdP5vQG@w-c-A^_jlyR
z-o^VomA2)oYb)sYCuz^!&RW>y@#P%n+Guwp1_qe~zRI)3o-guNt!ocVF6?BepL(3j
zUEzA=hkt*fUsccC8F7QvR{p7l=(Dn*XD^G4P9DhlS9+tut)MjH`h-ie``UJV6f9nH
z@oL-ZlYt(SkJ|IU-=`Q6F<Ufp-9t8gO}}@>6SQB{-}vr*#YXty-ZJU#?C#82F1;6j
zJht82n)&bCJ?{SuE&500Z<T-RElgy4-Q<4uLfYQ=L;q|(#P_OSvEQ(EX>HUaH+`Ng
zw>xs))#0blPj#O9t}1k?W=Q_DkFOH``0Y#FA(p1GSf%9IzMSh1TGv0f%-Nlvbf>{~
z_3eL(_bb;I^eVe<nZRHp6F#}uBKG#QiA52A|IM)XdgwjjWt4LJ=H1=?yYlsX{xb+O
zUlzTYanHU>W3K9s(yh!AY46{@jG5kTV_BT?WNME53|8sQvp)3;?^~I<;y{4F?#(YO
zWRI2}ns2<zQtKSI=e&=r*G^k5J~K5{<=~acnuXitdn?_0m9OL+d;g|%l3wcsCa1?e
z*Tw%ca8BEG_TSEbK2N7^u$!^k@W=BbLeX!N<b(=4-FdWkx-E&ym8<?{w9DsFjpHL;
zvq$1#mrr@kl=&FLd&lWl?z9hcQc}ZbeVLo@(;cxZQ@t^O@8kCsZ%SrcyWZ+BXjhrH
z<a({;Z`<fApS3QP%5@z6u)QJfS!(5#2lJ|V!Z&8#lkCz?5m+J3uEid8Wb@8W5tl}h
z^$z@Md-)G>%YKQA=?jagS?XpS<+tC8t0K=g?Ad>YHr)s9p3yT|v@VLC^FLEm-?ne<
zkMbqAD=t4=`fX<Q-nFScE1is_FMnM>Tlj#H+PwU^e|7{gg?wN<@Ab?2LCN;b73FWf
z1^(P9%Gy^ED*EJ+=u)xj9i?a83MYPie|&zEagD{tn4&DRbGJnQ*>oOfl)kk7NBIMj
zS-pGr-s`NJ7i_eB+KrrvSHkbw3;YpWUgPvZ<yP8q!P!~cryVJ3`M$pM{=t9xKa?MZ
zcB_4MjpTOKn&j1Y_~Ys+x0fyFjk+rn^75FetmU7XU&0TqZ{Ia-qD|1f6`um#?shPq
zuli;icj-`Z*0P&Xu?IzO)EtoWH+}q%>&MwLlM`p(PSiMk<KgNHdn{L+T^HkQShV2D
znw+{9>+NrO-rsGl6_B0VH#xpfR_~w(dqT`g+p`ts{aaV+{Ly@Ld&iO+_iui7>+%2I
zX8iWr-st1E?uA5)-`<i3I(_3~ewWX*{|sC<{v~f}uC*$0u=B)z>_4^hrCyFtP_%Jo
z@YBPd=Qn=*I=7o);hdc}%<YqEvxB%@HAEv=&)pF`XsQy(afiu~`TDhWw~ih7bJ+HS
z{oJ~St5+|6F4=OSS4ZWZgecGQDeUYL%a7)rkc`kMvXZ(I#&dh7#e<Zue_na!GW5<6
zFg(Ff@@(f*vG3N87g?TMlyBH1%96sf&Ntn5c3YZyeSz)k6}z|dDqH@H-1p)bYrw3d
z$ttbI^E|&So_g<~%Dm&+wP~+BQnl|hJW1N{e4EV)Bex>kjj>1XZYa4sm9u}Lebn*Y
zm&^6eaq}%PWB9hNV@bc!n$io8^OTcfHka6!FrN5zE%b?`Op)>Vt);>@ws;iw2>!Sh
zdUZw68phOD!M3Yc>B{9?-C~)&;|AM-ld|W%j?LpSmubEd9$cH}@jxcIhyT*XbxJA^
zG!8zQ^`h%dfoFd5<SV(8=a_G2+Nd{q1(#LfIqh}3xAPbtvr6H5zW$-D2Ls>VV&^d9
zXvyqp@BP@*ii|Wjt-IXA_+`aG>)Kw|u4k%lhimrCJ5avTrKRzhZ9#FsF^}`t=1Hu4
z{PL(>(=)ZtlG_^l>Zh7Nvv}J#rCZueI?v;=X{w?G%ab};t(u-&JGqz~tv4BWZ5Hu6
z!_T8tp>tT~vC<ZWt?CVXCf=Hz<Z5v_K_>lm@KMf~dCivR3*SZw-e}(P=A`<k)rJvo
zC0}{|)i%4GHZj)AqpQGcp2bmbncR6hP8>6i3cQiJ^VH)xQc`CYr^|P)iQafo;<My2
zF+Z#REQfZ+0{;5hT^G%EyZNf!pCK$E`FP&dS(EiAd@al<-w|Z4ae^V_kg|jY1Mh+d
zpC^akyZ*hWLZ^B1yk#?z4<|fe?5oW_F(s!~ru5FaN#?1cVO&+u*M?L~Zsjs6VpQH&
zeQnFP-%orLWF1w$n6g~tX+2=`gsF1PS1YM7qotiqk5~0yxhmZn<gPw>o^{yTOYhFf
z^e*1MHgKx*e!rW_vf81GuRNRj=Hj%IyJ`#%$P`~%oYAAsGEL>nYGM8N9JdVT2>MEV
z`uU$B`nKKFt97S~C$8?>)|=Q}^m+0e#<Q8Xl#ExiCNUnf3YBoylz3))^L$O%-o>j<
z?O@N4-n(CF`ny*e>(Y~+u3bJWAepPWzBf+nsh?d;3G-SbBNgTZcI9WX7ON+&2-qFM
zU|{+7eayOW_oyys*A01PpKr(+2hJ{(alGC$KkjSF@z&huWgN%&v(^_GJyAR~uluEo
zyUK3K^7Q9+J6>el>~rqPNw5+=8ogKR(%XcHTuFs%HSf-No(Q!OoHz9<do5q4HSZ*U
z8>2jnHx5S~^)7A^idXo=W{|m7+v5mNfAUc?-`&UWCiijJYL}!hU3aoOzbAEv?5;Xf
zk0*u)m2DVmv&wgz(y(=WQWaYHjBAajGV}VN><aY@=VDJRJ(9n(U7^&(-SDvNe+G?%
z=L%dyXMW!v#AkhZ;xy+r#%&KCZ!OW-QtWx>p66*%jfZ=U?B_;p+pW2iEkyXTO!M1_
zY2U4z^I~|OBrT6_Vixjye5~-q+Wh1hFBa}}^1OR|!K3xA6+y1Ij!XX4p5eXEje|Mg
z!76mc`hBHglFlbASEj}K?YbOrd;W|DPf6KVpYF|ZpQiKkj>8Mr!Vh;hI9RI4G%cRL
zG~-sRR^pY7vPM<UcD%Bd-7?AQ=#|40Rvo|o@@;tX-ieNSmh39bbHepm4jwCzcy8Yt
z-}PCw>q+5ve)fAi)Xio4!{!LPyUHy&+Q6cD%yNnOLnSTF!rdy*n`3^*Z7K=cujg*L
z)ckjHf^)*hH@pdVws_pS=y7@07wetDljks499Z*v^}_8>S(h+R`qLbG?}Y-Fr{z1X
zjWai#x|8r+`O?B|+l9Q27<>G5`_B;F*jKS;^;6aU`a|nto{F%jY>z23bqY`5S9y@a
zc;i=Cr`fthO^wx((<2-_R1AMQX#ZKQ_S12~P8Km)!?)4qIR=%sZT@RhVm<d)X!m(a
zzKsodSA6c;#@1>vk($=dC+Q2;R4=(H8Tj>RUaZiOp1I4f&pNrILnG%?af7XE*>Tr}
z$2E#2iVrb9e%YV3<m1E61OFMyuWd~WabppRwyD)xa<R!zB=`I4SeY{iFZ-O&-(#t~
z)}O0Qz06UTKP#wZf}5>D{aj0dostKhZ#6sB!yS+^Rr^Az`ra&uvbWleH?DF_NS=51
zwb#|qxuMpd9A&fFReG;fNo{)}Ex{mEeXY04u=YsFV^ODbX1~uipJ%8F+q;N|P2pG4
zj^)Pd40o<(yP|#W-Hk85uI*i*l4lvPx4*vX#I~ZdJ7ky0&sJWW<>L2w%RBWsa#v64
z9nYyb{c(kh+lf?miFfR4qx2T%iOzYx;L)l`&jaZ>=64VGZB6w{EM-XDakx0b_N&#S
ztLr*_ByV|2?-r<(yQ*~TaIygNuVjl~S0Y&__qo^SdrjjD`I)@m=iACc)BeIBedDsq
z#}n9CqdP^`YdI%#A6J^0&9xz1rS10tx#Az8KNhD2L`u~2dAxofTj2RdJilmH^qW)(
z*3TE_O|>aoGI<Y^gG&0Wog&dQ64=yNFn?XSsKxTLpx2}dmhfDQ<qPh0teKV(VzeU6
z_E%4k?JD(CH-zLG__EWi8BG++dY62)Nt))Zpc-(-DuKc3pXrsU+brJ}GesM$GGI`i
zcs#0cZA4Qv-<;HjSB0_cH;py<cE(gan6<h%T_wX{mARaIa?}^YDLG#(SFRPdVUTzt
znzg)ClFMB7NSRDs>BX2^6FdWMyMHv4)#|-EO{DSnp&MKkPpYn%o?dxcTfHQql6$9{
z!OthpO(nThR2~`J`OBJVyYG^N%H-zn1;(LEw^~|<<h?rb`DpRZ>_pF^S7)kUl=HMO
zE5GOa+Nz_oCS+Yv#mU#PwRf~0@U+UZRbTzjz*?j7G5pBhK;1vq3u9m9_#L{a$i?w4
z;sa~S*KpQA*WYJ8PY;S<o_K<Rt8i12xz-cmYx^#J$p0hUA3e!pT}|R6ZC^37liAjZ
z&rh*mDbT+9<^2u$hpJr)yLMeSHCISIbI5Rhf^|60$CAuUO{s&YqFpzCPV;t~@UT&(
z$U`(N!(AfrXR_(9M)fy_A4+%pJ9kz2g#8}zCv$#XS6*9x(Dn~wh5xtu4%5@DFSma4
z&=#HX@IS+hFE6eXRvn!`$Jj}7=A5?{@2W4`oo$@A<n!6ug^%9<P&eC~wqCz&Pw4X3
zf&9Dq7PLuvetF#W^Y`)i&DW3kxASUTw=pc0G2H&A=H~jjg7GnH%XC~V{}|bxis&-F
z?;m`+g+<P=e`##f?PmcNJQcF9A|7#DHt_2n4=Hf`v+9l54`rQuJ57ToWd~nc?j;=V
zEOcXw%bdLPANtzXscsBqow7n%xogw5mjV(p+kMg}hdmAt2%Yid+uN=uQ`W_-xb2p{
zc15~G{EDwDp7raU-P6GCV0=F7qQGjin+66|&u6VRNhn~K|6A4eu5#+i$Zb8Di%zFA
zJoy~xEum7}e4A;Digb60gw2Bxp2p6bpZepj22L-2W+?J&ijQN1df^}Iz^9rFd^=1R
zZJ5cxtnlT;i_BwZ_}tI9XWhK=)a&`Qg)1j0oZxS$PL{1*wdUHKjiDAVyY7AB3=*w+
z()MMQar7rPhU6<<D?)Z(kyS}rlboH-x?6wcYJ=N5c{l?vEAO>jC~$_u+OJBgE=1_S
zq~~+OE=`*yc}(l^qTf#)?2el*PG(eCq2=+eer|As*yLhOhf0~Sy}c_+QWK=v?T$?@
zyRtjx#^tqU8Z0ss=XBlOwEd2Vq0D#rbDQ5J@i9o)YckJa$PPMPqA<;WW`TKfo9Hah
z-HY}y{oRwuR^HRx#Bna`i(ylNb3&OcuPcjBW3=+KmyO|O65oW(CKVJ_{JMDR*KD^X
z-rQMd4#+tw2>AP-TI0sYHH~Lgf!R8Hs}2F90QsQ#*OuQBb$l37x>lJxqs(nltcO}}
z(y>DkhAKT_p^tKTmRcOEw0&LpFs=5exyEz#p0K#3>}U9`Cx1G)Dll61%Iip(vv0gr
z;t~S4*8U3PeQ<-TJ&b)q_R_sf7Ppg{_B2`5nV!rtYVc}ovf}xWy=YEenY&<apj+*Z
zmvfTm-hH*?_-er^HdR-8)h=&!e7x?xSL2Oo63p}bFYQ|FD;aXsWL@Y48Tr{N^N+3c
zzqoPo``6)Wg**FwzOO1a)ZDu7#d)u*PA5KPJreEuv@e9|$HCXHY&Abv#u*+@u)Z28
z8!@NsO?B|12|ELpvu_kJ>DRq_y*TS;q`wv$8@uJ&?wG{#+@CwnRbP{x($GIc=<&Yn
zI8NsiyBnA#8Lk=Ca(&x=<z~YJfdwn$EZ>Ibo@!$-(6PGaCA5m;@Vv$IrdC}`wG3l0
zuvC`0ZqxhNTKZSogPXiPC3nxcmd=xFi(cy{){*2=@M`hi!hmx=S>p4TmdCMNU3j_l
zcji)Sg)m8#QrXv<_otnZO__V~yI%9Edl7$(wr_~Fef!>2V$agK?e`wD=Rc2WYhUI3
zA^k|09oxnT^^a^DPL*;VIDJ&|iC%U3-YW6VecBcAN9S{xJh`MUf2*pZ_wCi`*?Dn0
z*7Gz!T;Ek={&BnW$K##q{^}96ADVv8SP_5u*1mjEuX|t3FTb;`*)Ps@y*G7z-us1{
zKT2$w)q3jVC(nk(+t(J|s%^PGX`P#LT;ZQK?ZrPDPJN&5$N8B%FY&_Lb6N5n3-=2d
zEeu#ar}WS3lanueUo4j#b=qS?C-2!efyR4WLzleR_n_)}_mA5LH{8uSRIhkXy=c|K
zB8T&$Z+5lqO<okM6U10{L$x8MWnEEilJtT947=TIwnZ-rU))yrZu!iv-lZv(vgZ%I
zjxH^qq~bWQ_{-Pzx*t=guA6X%Wq!G(!p9%sOKZG8u9+stouORre)3Lq*U!sGs_tyQ
zGiAagiODBVoUP&t%62~gwAVJ}#QM@XXKFT`X!vHk+AOwkkp+*34bQBTyY}CS^*Fyb
z@oY^>DT8dwgXcf5U2Na-qUhYNzBAwUx7-ui|FQJ4pXk4n{QT;U^L?)G&XD7qr0b;K
zF?UJp!T4)?iVyu~*dn_A(0q=U*Q_GCB5M|Z>x?t_ee&0}HTSoML@n!5X`E!e@%rf)
znQ)W$wF*@tKb5x5+WAGi|EtS~r&IUM`|jpGpJzdVXsyTkioes=FW!A2eVb3^c}cFo
zPZGsv>k{pcu6`RGZoYkc@g1MHO_%Li$|Tk=|Id)VzPEpoH&0W&ftb8T4uf^qlhvBR
zSwYd#mkL%(1~*@wAM|Rzc*$SpBjQ%9cMfTudg#5~aZbs);NWWsA5|CMIC023p(4pL
z`Ns8W|E`!{3*RR$XLk8%geiCC^fQ6q=kf<=pRbdy@tYnrNm1pJx1xeU^1)x>dTWc1
zzBnHx^5E*St+vMx%;(QPw(V@b$)p9d<)XhFPduOX?dE#*%Oy7+OuCsor)OtRLf@Ux
z_?GzeeH**V9AxH9TK@d}%5~F^EfVmEIM3zIJ~`B6igffG;oQ(bo8u94*QNdapx^gw
z&+*4`3svVIUhW#Nckfe4FSA~`f$ip(ahq30tFE0s>p;)fyq4<l^YOA<J56<+eJ{<O
z`F3r<IVQUhV?K+oOQ!{Yo3Z4+)5fco878~t1&Yp@VQ<vLR+kvQcEa3M?ayytm%lbQ
zSJ>_4&V4}z9x{*Cs#H#qvpIBc@9Otb{?5-e*P5zynF?+^cF6MQ@2dwTCD>QWytN6*
z<h<pb8>-%VHnvIT&w{=JtxB=yNo5xn7iTTkxe<J4UcJ=9!W@q~lH1E=+y65}?c(1w
zx3$vALaTDcy`w#edp4hVXJJ~{d#_C|md`C(A+Ybtgn~PBCP$WklS|Z}F#q1aw`IXM
zwLa}PNNivb?JrE+$-&uRX}#*P+;UmZ7X{_lc$RE>{QS7(Ic=d&N{tQbwnkOq<@HHn
z;<Y<io=Y5*|C{xE-I^}>9R_}0{a&{WeI88lb9;9^OK!=ESN_Ej<z>5N_;(+aJX%&>
zmdwL>ck-cGNB3;j^Jg%7r|tTzz*ps*-lsdFwwA99W1cO{+}N+4TOK}bN&6k+D>8jw
z&%P>adGOBS4X=<J-*1`RE7tKA?50945yF>6SC(gl%$Z<(LNqp))550k+M;V$TuU0Z
zRUY5#H&G;2-PV9LuIcP1v)<G1!yjBevc#Ba-;I~Sxh9%31EY-1*!-+Rzidc55I6VW
z+U{Hv0j>`V3d3_tE<Kg0Ia2y))ty_y8z=Ji-QitQeXXag;+TcqvMtBvZ#62o-|w|)
zS9ab3=?V1`Hfam*9q75CRKoo!@3@8O!d!;LNk;z4va9Zx8RZ>#Ah&zxA8oJO-U>{?
z&)->x`5I?TQQl}|FoA!Hc~)f3X|bP$Z*T3AF!|h?lc27)wmxm)>%-d>`n?XtrTfIr
zYZp~rwEa{t`+C#RHJgr1Vyk;8yL$c3OP|gji<b5GI=l1ok;D+a$Mcsu-FHs8eBsMf
zR~_zT<wcMCk1d*H{OqyT33rv!wPGE|#Xjsv@R0u9)n0#Q&Fbwv^NeHs*e@<g_h>TH
zx+C@^p;YeKsu&0JrWTE3MR!-HJu*}{(KF$&`s<K9C8vdzI@ZZs`OL0z`JFhiJ1jI&
znm?wmI5K#}G4rCTm1{c{Pn=|yIB;Gj%xu9Tp@^CV^A-d>$-MDw%JiV#(_eDloezE)
zdS?FN9WvjS$Lx!kDz9dF)>-g|UDA#Nj1Di~N2w-H+`V7fN$9A%CG&-{wcJI5Mw~GT
zO;y*7&Q9La$M~jlt+nH`xeL<wJ-oMh)+QOLw69wZEZS{mR5opOXTkjPY25Ry!fbQ`
zMfACw3SVUv8l{}v^4`{CP42p7-_zP}8MUw|HoScOK6KfHx2IFvowoXUPg4;($X5_D
z|J2OAjXGxxPaLa~5=t(r<yg;UWp0spLbNZ1rE%{1d2=0ChZn8$$e%H9>-1v%(+zHS
zQu?c2E>G#R>fL7b$ieaMjt#cGA@e>YbaZgPzBg0#P=g19;p@qfmt%XFUtiiCqE~Fy
zcg-Yur%}SZ#g`W@J8AV!eovaM$D6H_rnkoQ-rudxd})n$!McWZPLG%7izcgEi^~Nn
z^*pwC#UJbw8R^JT_TWMDy%nnGRPrAMzp4suJzcc()USzAH*Y+f^6p(GCu2^D?53<h
zYyK&+%dc&cDi;6kzRlIj@;lpC^^eQ$J6dKw%hf%vA|!2_mGRDd+LK(rhA=D79S<hC
zm%Th2-BxtmQbJi$v}d+y?AaT7MThyX6!vL-U3<-dF{iJHU9?G$#iLpI*YD8Rku!Lv
zvCDk0s=98{HzTiP<6T47pAK<5f}6ux-zDEkIjO>Qq&nP^_tFWDyAAexvVu#zR`Ph-
zJgkWN{CwT=#hj6{47(15Ge1}O<ZHTar^>!}vm4e-tP7Ig+jKbpr^&~%Q~bZ3^H{yQ
zwSwF>OxP^odHBl$Z>h#<KO3HCoK1JP)MC`(u=sv_t(_%HPv!kNO+St~tbD3IGso{!
zXS1=PMlGARQPG)&6Q;i6u-m%0wS?W0%kEuO*IJX*z|Mog{Zp&1s^&7jN{QLCv}W^X
zv#RPa+aon6B>UJn*!PwQFLd6WozS=M>(tsj$qnIl55hi7ic)6hes#vXqsvTW+V{6z
zXLmlBc3iok@M!McquXr_tgeOLZZN1~K4*RHRd~Y6yAem`nVq!dPjC&{(KFTJ>E?Oa
zeucY#RM;;K+|jVXW`fmquPVt?b9=tCM*IpoDj7UY;=HNef#P}9SGvXgIPVl54Skb(
z;=Ag0_PGn1UsZ)|UE`!F%sj89Z)(sjh1unr?2^B(?Onwd7b5dTC0yrOZ!&w)*IkTT
zdY&)emK`OUsy&H0d4=eFhJf9b&zD(;wP+t??aq5{H}%-}-R?nQH}-RA?J<vgQoj1y
zV}(DvC%UUtUG?Dh+~~%~X7N5ef#pxT#0$qYw=X?A9dwJiEogVA#cDo@RR+hZl5I6Q
zat|AQ-10D_ROEHV#t9-{UuE-_cW&!;JGt<#KoG+@%k!o-3OmCbw>*9pCMj|vaDq^X
zLC#nEQ|oUXoW>%&C9%(%-)qa)bf^7#t*axt9&_!kGJN?nZ0_C-%+F*k9$#9xX<Nnt
zp5K#Iwz(B)hiN!(&|+qJv|DM*F6FfF2yTl5zwZ=>=e)IxtD4traZIZ)Pn=n?<HZUi
z-uO1z9XfpPeain$y)diecJ73~vrCvIxSJ<b2S46&{?v}!Jx_jJYbm?^-MA$9pzQf&
zT4nKuZhtfmJm`8EHd*>&RtmSw$$6ZQC0_^JiG0|g(7=DjU*Wpjgyl0L+@BfEk&*jy
zGncc-J-|Zc<BzLrCFk6mH7EAm9GhbY9+b)byE@Z$-x*~=iQ}h_mQ5Fv4t=70=RxWD
znrm_klcmjV`R^W04)RW(XmaypOtkEYRScFkrRVp0F0ZJ19k$myI>qRu;Y}&GrQO??
zvF6@*VVoU4G0HJlW%3D^jE(CeJ57H{|JJWN^DUlt%jw$e$WFbjKShkRHE!o{ys*FZ
zeO=1WC5w7iU+>k}c3$)E{QnFIrz>+7T(hZL+PrE@RFaI)UboM;U&e<YU66T?_tJIW
zi(7uz8vBPHI-Dut*k62achUl`CwtQCwiO5+XWqXzdB*xw_s=#}!c(J8&v;xq`%AZC
zv6}tv2;UW&%8gq-Uzad-5B;dSB`3sdrox{!g)x`2UY2T1K6himV}=je4^|Z|t7~mv
z%qkms<LpYkgBw2;ey`Qoesy7LNSVfwiRZl@<(cmPl78#Okqt*0o-l^4{hImkr`qkQ
zc^l<8-bQ?mjFmmj&$iuG$UU^^@%R2eioW`{-KV^GB^%w_W5oX;``m-;>$bdjmp1S5
z+rZVSL8gZl&ihwg>_76>Xy+{l?N5fbbyEW;Z=8L2`QmczANL>BAD-XAYX4B-!_}3$
zv;typ_NzJYuZ&x^ulVEfH?sNZ#{LiX3vKy0p)4Znbo0Ce7XQ-r{`-E^O<!H%+}Xo=
z1@1qtbUrfMF4R_98lsYuGa-A^w8SX!-ghpVR{pc*%&Kqv`So#rYn;}PychcvFFxNC
z^HzAleQpDb--o-NrSw~bCb$>RYufK89<}XyuG`#|2U(x?G=IPLStF(J$Mtjn8Kmn|
z_S(JTv~m7$E182~%PrnJGw;8Cvi;ww?3)X_m&f0&^4@rz=aBc^bz9!;4}Nm9&W-u0
zf^bvSe}-SH?Fu%@JmHbcb`Rb@-*5k{bH6xs@*d`Hias|x&iI|ST}<T~{!`WSu3o)%
zBz&dhYw?BdJsVt==S=Q-H2p-uk0eIs>&;<{Vpq8txI4cN;yAp|(c-(P=grmfwox|M
zUE<T9GaBxexzthA(#P<Cb#*3pg3v;TbCxGfHZBY*ThIHs__~StnS!FF$z~O1s}0W;
zHfUQtQd(?rQ1)!z*$K}zPufSF-qGh+@SMA+r})>kRo5@fi{<I$pWDVz^`y^p1=G`=
zzYkBc)p~O6m|ObYbJhPDyw>I3l-R~B_VQ)4ruNM_f7aA!rA-j>Kjp??dO6CCO`hSM
z#Iv2RJ-SXTStn5%^|EBer}B9Pb}wIKyL`D2HS60%1~<<D3zchY7wGWMaG%C^L4Jb!
zR`=w*^`AEj&XL{mI_la7vG^JKGyJ*x?p^hGKB;=)MW&_2JEt@2*w$*@UA4J2^rXz>
zd3P>FAAGt&XNf>T?a}C7$@v)!El<1VJh}Et_f^l&p8*Rcy!<NbmhPYGw=~vSgK_7}
ze<DvDdUrN|dCaVC^4i1Tn1fy3gKw(?FFjb*JJDxi@0#cp2W(f{{W808WRkyw!^^16
z%~DLa!+)<@wCSt4!Lj2EjOVPctzvgNl2x>81)I9!Ny+2Od<&!2EL{3Tfbn49t=+mY
zdG1`|1<#omtkVuXsk)2#<l{-%6)L^clun&EJ9Cqf#NzaMUj?T;k!#+$B4z4fgJXqP
zuK4a~KF1!z9IY#OHeBeoSfs&`rX}fX)9>tic6Sn=ZN<v;2^$Vrs4qMkG-n=L@$0^?
zxiZ0PYdM_X<`uYCO}kcOY4e|<HDpSgLJEJPH&1ipoZ`#Z7OtN2@9KT$teYQ>F!@!>
zU0t1DB<fcAbzPOF(>i{?`CgZ|On!DNYD3m_(^kJ{Z})WdPW_YZrupaiorp<R9}lkK
zNPAjW;Q08~mIphnr%x!-p5?vrI_KWLcK_LDVvn>wU+_9=!`+`b96I3=?3Z@Vu8e;A
zdqMuw#)I;$S&k)~3Xkj4@}CB#WS=cfzG)|zwLkMCZ|~Z(_g+Xn3|U~|xApt|WAgk_
zahX=GPh2K0b!jtWZ)MH?Y<yt4-mE9OQrkYg2;Xn{%2xY}@{y{mU*8`(tM}`hCQJCl
z4uN@gsWSCipADxhKV7kU@p|?kzBM6p=bjh*cy87HTMk0!K0RJ|PCNf#!O?u?e_v!z
zPGVed_0euk?v0JAOLds7<=ptaUi{Hs({kD7nxoW&kV%C<uAlPU9r3#&de)f}KN{D&
zE{$yznR)NG1NZBDJ9q3!WL>)Zq{gkT9d_$uzW48mxSuyGe5SOKz+wp%zOPTJ?)S_Q
z-gvu0<+%m3>3ui8lgiz~s%59|3)v)W-)#LZ{h)R7%MIZjud14Twawl?QenQe&BlG*
z=`!hRW1-5Nuj{n_{T9lVIPdsAZm-4N8$V-wtL=hv&zCFonv1DRuKRpAj;ZY#<F_>~
z$LF3sA=<p)czz~N@mZyxy|*vz+8rBF$s^|5Jtw7f-Emd<GV3`LV$RP>%kQk?-+OiC
zq*D*&Wdp)zpM0=3*muUimmTaZ>wK%X&0eFzvBbyEUE#~wn2lF-AMfce2|TfUlE)iM
z)4(GZt4-2_`Ic%QomcrlzFq2g*ZXOgE}g3GZn0Sq=f2<cZT*My_JVuNS@)D(<4?-#
zt9j&{P|NQ1CI4pm@onb&#r0>EbS6(yloDcKX1=uV+K%0qmkXXR=u`;*DN@4xI>vOP
z$edeKd^3J~<$4-FSTFZS>SOHmL(jHP4w&?H#+vQcn<7@cShOejVAPshY%3<3y;#zF
z;K@ApOZ!9i)Muuy%J}EHM`NRhxk2EZUupX-_Gj|*u0Q;~V?)ew$*x-;`yAvo5^S?)
zPvf(hXxs7V*^*`VCw_B(^Pl0da&b0O{%tk8kNJDMzO4-p=nwk)x?zo<vs}|YrN8t3
zByG=?N)2tiC1Gy*wRY<3O2gx7UvDk=bC<VL??ZP_f6?r3lb@@9Ox6h#Tr7LBD4N-R
z!usB=y{@Kn>jQQg<=r*bnpDAM!L)Db$9wB?zi{t-lH<;z_kfS{@z$E=<>#U#u5McQ
zGx7M!^QP}ozDz2b`Sh8oxJg2$Q|JT%W+8)!5>XpLi95NB=hsynb(dN4Hs_t?xr={Z
z{hd>J?Aa^h%U{;7*ktp<Gde7)>HgWnOl};u7N)tnhs6>OJXg21*UH`F+FY~KMqtUu
zFKam#Cit=6|5?E9zch4<?zvy<S^{p(Ti+UdK;G}GarFG+#vcBcVQ&`*J)Ga^UsT)}
zmfW)?wd2IwiPyGtMN59pEGxb)Rkcyk!>Mq)^8BSKcV3=Vm{^uB_x0N8oRmCajjHE!
zxYm_i3zv52;d9fPQf4@L*B6^#pZ!jzzBrQ1zHyE8TjLeX$;>Z%t}lyu>6%j9{Ao^`
z>}#&qo<hc&oijJ@Fnk;3npOFE;`8!ZZXqj}dGCa=zMB$yj?KW*{$bqg!sWtKcy<OA
zG0i%5#UyM34^y=Cw(p`#*HwO=l=Ip8uZBqOl1|RYT~AGI)!FrqJYT`w^>y`G)uzUS
zCyv>&?=8BuY)Xrz=7eLDqa<QJ#X6mtZoBceXqdIz2?eIwzuLR6d?{co;P|#Cc*%}D
zw)e@ACe~AO*W75bc)m9`>IP$z1G~hdwUH5qGRtgPb0c3a*>K`i-|EO$Ut~{}Rk@$y
zdgy7oY?qXBN@7D?fu-oy)MbmBr>5omd|9ipCS(VTk?_gT*P+=)e6b}tP0Ern=_<uR
zhnJZdiTBN5-dkq)a$kmZ-K!1fCDhirFP_QH(4UjQr88r8x^n&^IScDHyO-y(<8J#f
zJkE<KU=9z@efVCdO;E0C=X1LstH13MFxqWs@$%GH+f_2YBC{;BYZaat_VgJxURq<;
z_AgEPDSOYnrd?kzx-4|Rt5wAuu5{rsm%uTviC3-}b(;mbGZrrrkWOlsE@Jwwv~k@Z
z+fTBGtH0V^eJ%9Dvps2*WO$Ri(q{b<)1*6%JCa*p)V_+z%UF8jkb_eLAD^GM9IM;S
z?hMWymi9*T?4{(KrN3)9GTX8*4Vm=twgtPw=ks1qHoITbd(yT0j&RSDNscS>7RJu6
zQLx*8X=$YAo#Y#9`|RdNrA%6R=Uk(o!wJiycF{Q@OP9`^T+FF)lPjdB`1ZY>e_fb1
zG57nPei^ItCQ424ap5`h5~ZDQ1DT)X9AKY!KPIF|MmX%svvq#gj(Lh`FFd~9ulmxR
z)|d@ROLxk9t$oh3B2N1Ejh6veFSh=g6<~1i`0FS!mDTbO;})Av%z5gxGO<7S+InY=
zBuP(Y_U6FT%NF^)d$xW4VVT1IW6O9VIestB55ADLdD6pJN#ps`Ex!E8e5tjNa~{KS
zbyJ&l*ER-DoqIARS?bT@GVA{gQ7a3rbyPG@GArBq@AbCXDP4HXfo0axvLhbHC4vkm
zhD_eus#&HLbN77`yRvMpwq9mvNDfPK&$G3$b`q`m6F$^)o!MFN^U$BWg)g+%x;yvo
zE!93<R&!uUQ>|<8j`<nNmd8b9KD|k^Jiatw){FFMhlTI$N-Fd#Q=9fc&%h&Y$62rG
zzmpkce)qL)ihGhWxq)#>U*XBS^8>V9pCzC9ZZ7o1m}!Ywz1QTomORTBKDN8sopm#@
zxyjZyK9Zez^3k|6v+wMEp06<HN$InxD(PP(A6!jQE~{_({yt2Jx5@b0!i~pkxhHIV
ze|?+Qk)XG67T><C%6KZFUGnv9Sd!%nPg!lV-E#wDeN`q{#yoU*XPb4!_~CIIh9cvG
zYfk)N*vuMKu{tT|Ns3+--`8%BSH0JkO$nOFHKFLa#p5rgHs%a!Y{vI3l{WtQ7W1*^
z^I3n^<6N9FGOg=87cUbEH*IPCDE)Lw$$`IGCnkUII=Rz7pm5gdNC|x%kN0PzJv|ua
zJl-M8>g;z*Tw5wvn|H?v)_qCtQS;RJZUk7@oc<H)B+hTt#&fDtv`i(Hb^6o5pU*aD
zMi<<j=Jei&Nt}Jf*F`A@Z*bl?k}UJtd%xidl`lWL3p5X$a5$jl@VKX^Ds54Cl(e>O
zmoS^;t=r$27~e*27i@D=Jm;X&b#q5^LcM;5zw7f^XQnAPth4<gv1EGC8Sfb<+*lo^
zTb?dCrY)4wH7R=5%dHX}7J<`_%T4XnalP5KBIoOIrd`UqdS+`kwpI$KFnGuoz6^Ql
zGx?nV+ALr8Sx;o|l&w(NZnxhtR&eSTqpfH5YZS3N-}$;)!0}W{@yp;D#~co*6rWga
z;Cy3Flkt47p!rFQS+=WgYha#xVE@wiR<;Krg7f39iWq3Uu`asHD0B5`%h3r{rGK&~
zZpnDm`M6()&){&M_0`)YTEC~HtF!lMaU7FYcw+GWY+R#<%^Y)yK-V{047M$uT`}J#
zeZ9<=wGkne$(G9Rdish(bT6MdaGEu5`K2w2iXjV<4=@)zpTD+vZ(Q5QOJ}y{^hi1<
zH@Mq`o~b$LuDs8>I<!LkY(j+4Im_e=f3@8Nr`j~O9^*LXztr_j?}WEqXZVafRD^GY
zo(^H0u+HN+%RGCjwUR6hs}BBtzBD7!?X!``Vuk_+8?F^gcdj>nk#$=%<6n-5t=YA;
zYqy_TlAJ9w|HCS=LiSJ|OLa^2{zKbx74L=cls@@&J=MIHXU@9LwQre}bAvc7*=4n!
zWH~djRh;)K-DRZ_Gwr~^l~Mw$r=8>H-o7_ida5M<_PW9*{<PquwnZ`z=I%In==tXr
zi(9Wup1h;{xV+cyY~e-1b06?k9Mdj&yW;jMEyq21=i?fBlCLf8W8OZ2x%Bzo$gUeF
z4BjkZuzSyP<-Pp7k8@}KDUMopv1O|p?=5Wu{T@xr;PaO@<gMLv?b8jhn5K$#>t2~=
z%(qui-f*_Wo_mjqX>7zRal_-Pi;_<X$?tKGU$M@|*W+^coW7Esg0Jsy`p<CiM~Pd!
z;A>9dETNQWw;O*iC9jlQwr|JfuNu0KTqYjkDOK<Kx$XY3jW6f#YMp#Wb9?3s{`^au
zO6$9W6PGeBV*Z|W$fwESjdl20XYs($Zxbz69}V?1e%+b>u#ewl$IY9Yk5;TdI$y+-
zckRcfkV7(a<~8l<sj1l$&7r$=2gkY}I(H51JF1`UINvE}V>PYgd)d46N#-|g`u^;&
zyW3i2y4ofs^qf~=Na~s5UH=*SRHnT=F#pUQ!-*$szMM~v{8;fQBKbc<#H+U#_#D@p
zU9WNENk8G~eZud}djCT!Z&$P~XiuNJfw}qKzPgA^^ORaSX^BVMZFl>9ygcKhb!$w`
z>dSUtRqiR*dPZrivsuT;@>TRv*gwt48;e(l1s<NpJTdy(KGj%9!Lt{_72X|u&b+iB
zWYL4_3CE64`TCn*KqYXC(cS##&mMnSsr*r;AkE@wzJ6K2<euvAN&gvgy=8nhT1bEX
zELZt$)$}^0J)5?>N4FKuy)BbGubpkvH{Z3aZ-36~`TBak$kM|rd3R3u`0~dE8&94f
zZTDlJ7!SUl_iRts{UfJKLe{iK@a&LD+p^{NPt_MjCphj|$X2K=48C$V<XQjBH)6Bi
zFzzciJRu?U^Zdiuu$hlI+NU_GY_ygTynJm>(EU)2l{<Qb+c>O$UHvN`Gclo{{dDZ{
zH2dAb8rc<dKF`{AJoaP%gZXWB7B4?8wzy;y!T8&3-GZFto2p;guWzkUeeBQnx}M+0
zwQ#|YNk`Y1N|$S~)kU_aJOA;j&3>n`C-~W6p`X1^lh+y4P31qbo+ndY(njQ$-G=VJ
zOLJPcto3bwpL?gCGjFN?!u5*}CadPB#y>g7Y8h0%e0%bPtIiFElW))3EWqeBd4g5*
z?OW?!$I0#eaBXAhvMj-lbqgjed?Qho_;uAr9==NE^;KU~mo*m!UlnRP(~x&up}#6(
z)0@ca8N6H4rrA$03|H8`tuXjaXpe?;<8$?`oHu3OiabkoRdxI&w{^ZvWw`dI#~Wp{
zLl&~6=N&%B8anMx4nsQYPUfw#Z!SvBSkHFwj_|n)7N+qhb#`xi@cCF(*pUhE;@CLe
zz79B@6<Q@D_<glsZeHrCHGx}OZ}7IX<^4TcVim(Hz3REezYl9(S0_(wyL~f)M}BS2
z%>y9~N1kpxe`#0d%{isg;Z`03h12da$d}K$)$y~q_ThmCjki{0zF5~KIGN>%R^Q*(
zK^p%V%9!OiA1lv#(-Um5-0sLnm$lQ&PBl(gzSdUxC)WZ7!4vFk(<dBAX6X@fmv7%|
zWwC9WNCNW&|KP7{FKxQ;bjns)x$D1|XB=aA^7v)23`d9S&*J9E=eK1UEuF!zoVlkt
zjE6C%=Jxd8%eyW;^K$iW6-wqi{PdVL*Fvi;tBO2hcb-q~x;9m+erl1|*E`l>H4nEn
zaJ>y|p0#Moedoznk6l$fcPV^r!LKFJi|<OZGM-SGxApF89$C?*KF^mY&aW+;HEE8)
z<ix!F`V3N;)*`E9<~*Fa!;<}rsmR(^mUR-PO6y}pd*-nfpVOMjc$(oR`~Ic*+Zr`@
zOP*Iuwf!lfQgSq8uGgP~m1<j4H{UrR^PnebwRf6>0`tLRRgHe%E<8(fp1eEH_)gHm
zlNQpAZ{LSK-K==v$;Ymw+X+*T$32=dJt?et?QK48ndB>_Yb8`UPTfD;w|M)tmATAK
zoXT7M<ry01e=Cgily;ppVdF7Bj$=+&Pb|H&=Lws{n%!xJ3C4mqo~?K9T{5XUA)MFy
zP1(Vh3m3EAUaWcC@k-g+=<v^1j8hsMkAGcb5|%ijGH!<HtslyV-><qO6f$w{?h^;s
ztUNyR#!la$?wp$+-d_J^`*rS{meuYGNyQUf>t@vGUDdTS{ll{B!h`8n%VsTnaL2BW
z?MdR-C*jY}_tcp4O<t;_<s2jW)bSjfcKElPzf0Ed<EglGDSM{Mq?6JoXK8ZU<*@v@
z-|@<B>Z{)tD{jgOt<?;DzVqrI_su&x*C|)rvYs)YXXn%CeVH}N&-YC?GWcv4d#d=v
zfoFTYzb)E$DSuCV@}sp}70WODan9P#sZ@LS$CJW)dmbOYmMG*=b9bYNHM?U^iQU!@
z6|dxuE$+JU*PgZW*HMWpudn<({V2S1l5EyXPlY2-%{Dw&UR!CmaNW;$PwXCfTAnS7
zms>d9=cDW;rh>N<CttbVxAx@yNgj!}ukE!lmDr(H@#BrpVsqw@J0|Nq&#}Lb*tKNM
zbj60Z2UkzKE`5Ucb9HELN_u+YWz*}dr)~Y`t<+vCDH8tKbE~_>lk1*K?@iZQuXlcR
znB44)-9>ia^Q&H!ypERs+gT{#WO2_zX;-|quZdOQ<hyhICKo20kn;Y*=<r~k|JJJW
zO?wm<S4?-C_0*K(-qVm4*C)^K?U4@rQOUQU{N?723@Ph=?R}`<9%mN4!Q^;Rw8gC-
z=PX~w6fe2A<yqC2N!xW6{PoZJk^8`Vw!PGvX`dCQsr^3saejjKs~77^yLn}kr=_V(
zaM`^*X`lGT8ugD#&mN|1i*A{*(dpF<)y)^eFUB$L`mu0{+lII$<`<8-WQ+8fPww0L
zG)cqn&-vhWCYd{K#v0##_+#3|=%3=Qvs`?VE!I!{&ycsb>U`vfbB)EB2119+82fvV
z+xk}VAN_qd*!#oMqrdlveec+p+**6oe_8g!wbe(WmiN5B_*J@X=dGI|C$+SBWHooK
zT3q+a=GXekcc#7hy8h<pqy5WYZ*;rVado!N@wxZzNBzEiIBIuH#9@tl7p&5GPp&_A
zzjao~w_jIRGtRNFP+nU5^nvF2Z!s*>G&<N0-?^@*yRN=?<rmAES*=gf|6Qn4>i7C!
zxV3fvrTml#Zo}Ull@@Y)S3iHvwD{CP$$uYZS<CEY_xP3G7hgJsMcP{A?*rQ?r;6hj
z!W9!*M76g!&)Hhr7wdlWLino+i(B`u?U`ks`yqtYdRy^sS=X$aN1r8jXf2+=_~cq`
z|A(hjwtq}s_-*ZMlaK_b_3D%34n@git=*FPJ2m56nOKooL-n;a8V=0ziZbN~SCxIt
zJN)P7F-KX}9LJ1>4#5YXOne<G@zwO(`UOY&PtK5C&?dp-XZRy@Ysa3{hJz11gV<ks
zO?%|@^xvoLqE*_pjSl@1#|*UAyz^OQ(xscJv}+#Q<@1*o{T8c8O}SOX5!1Hz%2w9n
zC#NZ|kY5`SE&OTSpH*MZSKTta@O*06H_Pm~*1F1zepdJ0N&dQK_FltHZ`>qOieJb6
zxmC4m)l}8?50g)>GRjQZ7SnrEeVJkCsiJea^YRN9Pm$jCmZvT)uxHkpeV4f26&!7R
zuu|rq=!?%UpO&ZZd@%9W#`Rm?yt7bfzAn0S_NH`^r7NFKuZoy>l3}^z?aQX;UhUF*
zTFM%{uW;5^?Y$~;k)DsGSMz;#H)2{Cdgy6`<)4>D%NL4Q&vRXo(UWvoATpwVYNhhF
zY$;!kBi@xMbC_RfUwv<qcK6e2&-vdhA8pFpV>M|5ub>m(o0MmpvJU5OJbXLTXH$Y^
zngmPo(!7_mvV0!S=h*WhyN*|c^@-WL9mkBra=&bGwFvUJI9_$^ny%3ltBTP0DFXg1
zTvxVTy!tepK|4LOEbeO6rIU+qZ&nd7SiWFg*Li<+F0NgC-h4Y(eihC*)a|Dj&Utm$
ze+I1^8!tA$J@sk1&Kj$Krn~c(F@#vHyLiI!&+EAJ9$~y&N*N|)ewuK%hhvM6i@D6_
z`P27rjp_FcRsLT6@#^Zu+c&7|Fg#wKHTA85Nbl{C+ygH%%5I3yY?SL;AuYK0<ZjEC
z;mVuC)EfldosVXoOuNK0anAf}b5#`EB$%ohUq;%Nn))28HYrJH5lg%i=K5^jB0h21
za{j1Svuyi6HTE?;{&}rzF-Ms~Uo%5rrK#Dg*z+uV_Az=bdM>Z=e8Jac$5m3+bDvk;
zn{5y)({#MJv448kG;`$%k?x@}W$RqFUisaglDT^d!<rdE#yxdYPKFkRwuQe>DgU<W
z_Q}G=1~*IFmy&l*aVkIky5vjJ<Syr%$xn*busdlphxAM>Ru(vW;^Yfk?V?AHJ2Yz=
zuk>y0UE?Jw(<JGjWn{UsO0G6sHt@tNnFe<)KI5(hmr_<9<13taYt1XZ+eUm5Uzt{E
z2Jv~`?dmSEcyfAzNb-)FCw#7%?%FEJ8Pd_8Mdzosr!sD;{us5<`Ap5UKbn~v)-FA{
zm`j+aJ&*Cxl2pSLr>5HbWnRnJ_+;YN#*@#R!%{5bC)VYpt8WcmbA0ucWzpq2ryO5+
zybN6z>KGth^xbyVn@d_u2g~LCrusc-T6G{-Azf*b!<$_*%jcUb2;VntuUZo_!Jl2>
z+SkWIZj1+CWQ+Z5cAsR}w<kQN#9ig?xw5DCCwM4relmGd0mtg^H~4N>Un}gF?l|Xe
zu~uxw<0&08zbDHy`}9A{DgUz4X7cTiM?HD0J@Xu8K51PKwl+I{i0{vaXIm0;wn-HC
zN3E6NkuR_@PYz$)=v{c-zG~s_X^T!ilHT@>S)psLg~GNXHqDK$PaEeL3!jY%32>G@
zZYjg3745dM`G!l+#(&>8tmbHCIFz!@LgZ`bo(;(d>e&7EZB4V_tE(w8FvwOnDP5J!
zlAu<3()K9VjR}+IPw$x+v~}lsr{X!Ey;iK1`g)w%boSJ<A<;?w_cZPl)onFNmg%3J
zpXKq0A<@0gcGVZLd2xJ<C!Xz`v!+zT%r%cw^6_$~s;f6R(=Fdw^<BB~kU>+DtK!$y
z6UwI^&c4sQ*WKc-ZMOlBS@=|YZN}@b!wzb=T{yRRy@ch8w~G%oFtC4J{ZjIV!Qn~1
z>DwJYnOWW7kv(pCQsF;?)?B~B#>S?Kx86@#dt_3cE#qLR4&C5j@!hm%?%Bm`TQtsc
z&Exa1y}mVMXM;z<{&I_x@1t{>4J26F7z)p4EmzvpAzg0yr(@-_O*=O=p1<c(aHOxe
zhw+@Y-m?qq6HmOldg&}j;+BTvHgm4k9<fvqJn%kj`GPx9S7o+bOO@E%d!XmpqH6m`
zTFl8>w%J9`?q@P9HvW5Wxq^2G$0-KZw!(W`i}yVa`C|EPtIpET8|FPJS*f@s_lWTB
zmr=cG9PIgi4kr7&Se^(xC}K6Wbv&4v#IcxzAuim)Vx>^d69#F?gGx&bTMq<SKH2#G
zZJ@E%4i!=M#(PV%-d*gCHPdn3`Oo)2@!SQard2ocn2QpgPx3eQQ{K|XuJYuutkxC&
z-OqTpOnWf#&x^@<FJ)eP8%Ny`VbSN}v-%kR_R2A%8Bg2Fu4=pRPk6m&JHvX3KU#lx
zwH5yQcKq7T+1r)}#qx5nPwT1+Vk_d0U$HvuxU{#Bcj?)XKApL%jOSlk=VmSxGvRpu
zw9RGv4Oi{HD4yJ9d%N=-U*WvE`CeO7fA60-<K64a3|$L0?t4GAF<j>J=g{8<$~X5+
zk$)@m;M&Tjsv9qKlY`qNq$`gv&5vAI>a=8`vV45ismqa}1;0HX%M?dXn|5l_n#P+E
zJjs&mrdN4+mb_n?Cv)udxu^De{GV6O5W5j>!QC*`beHyog`T#>uiu6V32$wXI9hTv
zOZ#?NP?MPUj-ulWMHgM1aYgosfx;xskC7s$7;dW6vijwoa`O^!4}KrLw9I?b2A6lO
zes2EO9w(LN97!;XSi$n=u2B}J-~*jY+V2kBI`F}6(dw*OJyo{dF=uBg%WEB(8@Zb&
zDDT#^Nzt3OyxY~bJa@SQ``N^2t@cLCi?lCX4&8b=C->2&Q_>|jgk>1`wA(&pt!#?*
z3i$BKcq6ZLPi{{M^QD#9w_dv!s$H{7Ja>0F^Lo?I6(@Inej2UZcxB&;S6}zb{GBZP
zbGP)nH#W`hV`|@bd&d}w=^X83<c}#|CmnQs>AqR%leNV|c?x5`EnL4xqrCR(3&!^m
zmls_;_vB6a^f=uL(WpncuO+SH*^8cE+O+;pl-}dC$ho3BQ`DcCK0p6x*|adX$z^X+
z<ex@{m%mp2aMaEJ>^#@<L%NyS%Cmf>r%UbJz4M;v)Ek?M>fSF6x0>_qlv%?i#yQ)o
zp67inRcwe0m-(I?Ae;L1Ryk9Z=)Wme)uuZOr}nj$?wNG%z-B|s<I1<T=-9*rhAD3n
zRnWYBzP{?wy*Ea09eeK<-?$+A@b?Xy0@vb@_Tr@>Q%ZNfx|QB>^@_Xn?!?Z7zk4~p
zitZ?tT<7F!5ILpx(w^l13~S?D6Kf4Je(zr&<XawP`{%Ro^!zDBjJDcm*2;Otd^7l5
z9JX^i*Gb-EOcN(hu$EuBZk0vr#$NF=lh~P`6~Dg1e{AK;3rCBkwggT+Abt9~-PS9I
zmrmPuPrM?Aca`z>dpq^T*53KD*e{k<Y?09-vm0&<vS;&dYu#3ANe!O=Scb7{vF!e-
zg?k02C^PQ*@@=iemmlxf&OVoxBj;eDEaDn{*J$mT?rRyF54TH5vYwET__jLm)|vEV
z>BLH{<?p#BdvA`+d$|4N+$H@*4Mq;Kj_Wq*vPrT;OF4-MxEUDLX0Hq^y7qj!)j7N6
zXa6(E*(jE;jO4!JI_=qo{5#>#Cf4tspSSe^$3lr!PbOr)pD$ctk`*@TwioN6O^+Gt
zQlfseACD89f1u84_a(J3@5&kHGi*aXxn*Bi7<%f<lWl6EmT_~vI36%We6V`7rnl>W
z%&(6j4;4-<;E%nUDX~Fbqxf>Bgz3fV7iCMY6d&Hx`ZHvmg>2#Lz`t`ZOZLp$p}g?>
z>gLn;xA63o9yJx`D;GXB@8(gJF5}cKr%xE4FVZsG#>1)Osm#Ui+_hh6Ly799`fi)F
z35`#CPdW2FDfy#awti*nrJb{RSnodzT2QvuT0>Ut&O5I4A}5Z|=n>tXXS30?>XLbQ
zXlNR9-yErTOJ+U~&CDyY$_VHX=kofzedXE+2JQXqO?>`qlcH8~tl{L5US}9}db$%g
z<Lh(A?_;&t=bBefSK^$Oyv43Oard)%N}oa)-YjU`!91&#Pm)>B@80T{ud<FrhlL$H
zG_Rcb+Sa{aEVrwMh1lr*t7`6%2|2@e>Gsv=eCLzruPyB5Vpr`yV?42|fXP&)t+3DW
zmDZK58_fhx`R-b5&OGP&-qhGLmy{D7Pab&w^Xl!MsjOAWQ)PYAV~uubxk-GUko8VG
zt2k=MF>fKmpInbiU0E#86*tCC{h_}{aDw~U$!Ckjr`<~yDZRbDr~KQhXPVkFOQtPz
zOIR>XUF1bh*UD45$7T4w?%KxsBw>!|WA&aZua_~(2?*Uin=wmX_YB(x_T|>QucmF1
zE?|3C_s;Uy^_W@Vb5_q;$h<&gxi^FSbcGK_TI(-z9^BkvRi;w2PK9~yy{Tc*Y5@iX
zg)d_-zvz+9=AZJbr_MC!x#vBvpDC=5mq+Pc<TJZFC#Gy^Bm1;>zLvThihCX;Fvf}=
z>k`&!R{pxG>5dzNRz&kLO)tH3N8Oz*T(^{{Y<OVq7_3*^crxy9Z(hWYxc9*m{?6q#
zkmO=bI+>}uq;FD_!3|}0<$2jt4{i<(bziyt;aStK+E*J&iwqX;tuAlfa^!+a_+&Y!
z{(ELcj560}{@@S1_~z?rgUu^v-eBC3%)T%CQk~ALi<x!OyS8tcEpDvXpOL?N;`h~A
zB|l56=Y+oY^1I7#_Obq`qJ77@n(o#~rbT<^Z9S7^b^qH*bB$AzHBSVdI3W7u`bWF@
zMYo^di?%#?HuuGLqczo!a&JhyjxM!abH4I}`f={R)`t%t+BK(JZ^op`Ym>Z+a&LSM
zoOktA6ni(zB?nKP7AE)nwKdr*;>C0)o>=ejqx>U>h1qA1lSX{r=Io-Mf6f!XrD`!h
zeDdQ^^*5<kUjApu)RuU+^>C>`(k8vC0zU2MCv#QYRQ{E|tF!s2WA%4Qkk`BO@+|X;
zthqjK&SyR6P%8PlF=mFP#pS?^SH~|0ueg=2wCY6hugmK4850y39<Qsu_VwAsCk9$p
z&$l|}FRfgz{%PHhz5U`-*Gfre^4++?%JA*mvh&Jr(b)-Ix4e~Q5(KBqq+AKiIP|E1
z&++T)v(~HcynMQAlR?5YeVzMH=DGf7NcE3;yGQe5c*Mm#<w<H5am?xLvaj||Z(6i}
zN5tul1Fv^{{gZv)PO|RoEV=dH!uRe>i)4EwlA>3A-83?|%H#Dyo{-oFUnD==ew^jM
z^04R=KF*|Y-ut)q^<CKGpTBC6r;IN%>$!gmeuve~{jK$Kp8OWioTWmmcpu&~@Hbt#
z{D=3OViS&@d2vP_k3X#E7TWqfuKhy5)X4Ss<N|;DW_d6FV|6vnaFU92ur24e^%M5+
zE}XrSTX45UQuY_=N6!!2|M0UBFHYS2Onb`7S5+V5wJXveF8$BY{&aWOJM-Sf57H-9
zu3Q{t^5T@{t4fPqMWK_Y9lPGJMRxi{y{o4tco#SRxV|@gpIQGQIkC)x@mq2^C7dsw
zIAHN*z5R!Iv(@J3e_P%9>0(`4@eTgxG4&mP-1R%ZMyeLM?vkCbXilEolCT>-_Se$S
z{1Vi0UhY55dg`P{neUd(dKPSRS?JyKmBm-C?QPk=hvDS3V-Cl?PHov9lGAj9-R5)G
z%}t>vl%H~0B~QwJyD()<zu>y%j#*s?CN0o>^6{kI)eDhFeqY@<g;`yB{no_DeglSc
z5qw?l{#7q^t{(h3M}W;;CT&;pD&yU+a$intD)Ml#X*k|>Yip~z>w{c&#m+Tr4VVg~
zb@m$`k9x6IbV=}p)pL?%i=*DiykGETv&KTtnE7>Ai=-3fH3BbQUm&X$u~0AYTT9?M
zj_0PS0*ZHTJIH*D;yt~QMW9vt(>$yBQ5X6ys@ys#Fz>L<-^|43?{oS%C7ISc=R`Dk
zFqGJS^fgvH!Mn&HK}1o$+~%t0mIvNq&$pIz=cso-jcF+0b^GR3zSH5p8FSdi3r~wI
zR-ZL3C^BCm!}qnnbXk+7N=aVTKht~nZt$2h-{8|$dUfJyx!${*wyUFKWv*WjKL73w
z-zP?e0zUSrqq{Dv=#{6sakB+B*e%-2_wT^O)*#CRDq*R|W<2d<NW6UCWNmKynaZd4
zrU_fHOFX`};_RYkr3c!%(%bdx|1*SE@gAGPaeMBX%9oLsUgpeHU}8KjbIsW6u+O9a
z44cX(PvEd=TUMXGqG#8NTNUh=c1z|2IzKGyTYl%N^RgKq%2x2yEs%Pi^{g{GS?JP{
zRfddyPhT9Dx$d02{4HlIi}~`ks%twwZ#orGQ1<)U*Qq;%G}CVPKYSZ-?5kwv^0y3A
zc-TKQUfa6xGUulgG9Nt7zYNP+6c)ztr0BN$hgny*Y%$t3Pt-!ye=kRSS%9xe0|U$C
z7Zyvi<#j7qwkxyLZQakiO|<Nj_`)v>AF`KyKKTAsruPo@JI`m`&U&y~rl<Ji`5&R4
zNuT;SSp<7`ypO&v_G)9F-=_lcjeoMHY+IF<dQ0My+3(+B{y`HPRjk8#TTY%UynJuP
z9XAnyjbaJLyLM%6`KHL#!0u#xVwG@I>kMt)6O}4*O_L|4A7AnGSa{p{Q(6_B@iXQ;
z{=sQ!I-TW`OGN+VU60pBHaT0eJTQ1{+Wf9|^@=%pryrbhdXTuA%|@zz-U>dW=pE;>
zG#o#huTGh`U42gQO_tQU;K>Jal9on1o$I}p$$yU6gT^b*Hk3x5(0f(b$6&g$SbxfK
z=~#Ew_Vs&<e>J~X+3&>X@iyS*@$%{!;i~r+NZ4(ec45AWcJp<)FCV4NuAOt2`4zTw
z?xyFe%)&Rm{mB-4BN%h5Z`)RvRF@!!=kva<W!=eRWMR|u>tbfssUx3ziu<;%n7Ej?
zCBfkJouIHQHA{_lGfErJdl39*zoCOhv`j(a&nt7<xR05a+SazZD^!X(g~%>{_t-RM
zSBA{ly<Wj?3;GUxa!tQebMWJ&YOagZRs9}ZWR=m3n;MoD+Ob1=<8iiC=1~Hd>fBU6
z^CU|iFO2x!<t5<BWqob!?>RD`@60+mWBT1bH{<3@yB4h}_FYoEJ;U?&5xG6zSKad#
zS}yZ=PFU}e`aPBwa_vi9``RszS8XfuGz<6Gc(v+kqul%H>(^=>-g~@wUSZgSz^20s
zENntz?g=P)Y_O1AeZk>}lS2TXqujo)DupW*cyi;GgdS~}up_z8IMOT3JS0AG;;o72
z7%fklCRvy0R6UkSTX&c<UE2M^^R-^O`(h?<dA>L4Y3XXSUiA`Jo_d4hANoJfs-Lp-
z!kmq-%I2|ewQ)MSv0=wM>#H3Pbc)OxU%!rd=bKaZ+qAah8mqd!S@?>qiAr2IZnxPw
zuJ)MCQgK?Y<+0_;X{JiH$J^gk&5?RuT<bUE(yLQ1nOaozAO15<R4A%TJRy1D%W7{i
zY4+_3p&hz6PpYyc%et!D@`l=aT|6eP+@l}!Z8c~9*6Z2%i6<FCma&H4y0eW_^5xO!
zZOq9V8DnHu&)X{V?mB1izUH?N91bu~3ZLBP8ntbkYS#t{n}lEduU!H}xto?Z*q;2l
z`oqcu5v?ZU9rLyd&7Jq~&5empBCWS4_)D&I-K}hFHI;YLq9uL03-Z`MybYS<v_4EB
z!8GmZy0$sfJXXDK>S=f`$s)IC)xLnnE&4G}!djNrY*<y+`bB=Ob17%UVVTD(7FthD
zPZlakE#ux^@VxQX=4H;xLa(2RK1nI4o4UU|XH#23@x+5NVZKMyoF_NFFb-d6mT`QN
z!I3usOZR(qxw2;@6fIfrw{@wGSFhS19s|pGugo^zJ-vr5k7k}-$iH#MhK*@2x~!`{
z`f_<~keOiMo3X|#aDIVp(c%RwraG{5G1z)8)LUX%Vw@U#xJSF>Xt<^_6UQxg=6hSx
zI*wIUe_7#^xHRmQ$1#VO(dv2aB6IJ~6bamzvxDWkEu-ktbk0iSh6PMj-&U--V0g^1
z@5VW8r&~-hDNh)x%D=Cey!oQAXzfkgMbm4h9(+0LdXuQ7PRMFLew$fqr4~I_*xWyZ
z@odIzJ#W1bo+muvw(r)R+p*f~@U=T{1Lo@$&iUAQZ>@^Xs!&fZtMrwoMp|!wRwh{n
z8Sh%NcDHqUo;&k1S#7(tb1hT9D0Hc%^Ht=O*scz`#Hhg1^LfsrnX)@dIm))xTV2|^
z#fbH1$LZS3x7KDSMP;vCoGG>Oj+Of9<14?en|4lT(Q}nP%Qex_h4N>cQl2;dIhyx!
z<<?Noq~(&fKiB>8dhuj-VOo!&SIgTNx!oNvY_<OG-S#YYVPE))7gtr+RCM&D$l2w6
zU7not@z{zV(i=Qq7`~02(0$`+v6geT+9f~3KMp0UxpP+b?^Q11&q>>=xRt%APekzg
zr8UcD$=<LySGd*v^SbUVuh~^Hf3_`rto39=9{={O#n-J8uYB#_eB4UQ!CB(|&bMFI
zeGlDecB}Mssz_sN+P{wv!ffQ^e7P*rcgTevzcay*z4CnQ-NLv$vqj6f%e9ue{XJ|R
zH#KRaO2>lPijICuzW=JaJ}vIF(!EokPVU`!P`y=d>ZKpMBolY;?d;mpcjMfff0pa)
zBIXrL`>2?%RlIwF<$A7J`N=b1FPyygpz@(LUAvv8eLKIl@YmtDPN#m(X0~hEy*9=(
zHCuK|{|?O)TzlqOrR|LTvVGs}@0SaYaXk2&UE!(zM96ow%&KU%DJe`R$~OyNxEek4
z%;Yx5<9F3}eqXocN9D5)4Fy9BNsH(AZ>@;AaWG@G%%`Kz=e$e(C!h7+k9W?dZjYy>
z5@Bl2JC_6*PqjE2%#{>weeOYVQ+Clmi$$rH_xM%59p9Q18>7?vsWsnuo~w7}%vY`V
zt@pEQ+&FG?ZS5R!pXKrv=OtxVYh8P!ZlT+LuAt&*N!auyqKZz(YF|&=vNOm^^Y{6p
zr#<&mi|PW+4BKqDUTv{{#>4$^sf7gd*EJHexO=p=RQ^7&eQosC-PxJn_M8aq|L|?S
z+T!56=NA)ekFBe!o4Im}m-pX0HHWv^W?%fHy7pjgTJlesWb6L56+Tjp%1`G!XtMmW
zuKjS;lUXU<QeFzNhv$4Kjw|(ccYc{@u{`hjj<qd0%&Xe9=j2+5az`FbE$3Oa<k;~i
zcaBW6J-=hkUgpTpYYla}mP+*S8NYYD>U>W0cF{4vd;TxIgg0N=c`4ZTy3@tA`gw}G
zxA&+Xb`#k&ch%zkqSuZ;d>UFRXvTTKQhsj5_rv>zU5i)UKK9Adr(pd>|F7$pZ>f&<
zK5Of{>t~Nh-IqDcKf+f!70ucc`Pt%+R`+fT$v-C3HmzQ=;#@`HmB+HYH9vnx{t=yg
zB#LKO-&C&KcW<n}CFr3#L*pdFFR5S4<1erM^5NYpWrZhiADD~w7Z>N&XQ=Gzi8=J2
zVaF{$_cI(P*UI`uevVH*-z#=~;!kVQ!#0Myk3KbCao(0UuD2s*)x#?c<)zQ}meoty
z2;JlQ(OIARWOAzdd&L?2Q+HY(EehN|{kt1`&h?VibCYBJe%w1U-&%n4#4+Q(D{IcR
z-kkhB;?NF@lS{)@TCAG|C-$|?Rx99Mf2!W`ebmvc;7Ljone*JF`-~@5U&_64V46bu
zoLRj~^9?)f4wvth44*h*LS*H)wU6c<H<@*(iv8A7hx;d#Wy01@dY*Zbe|{Xh=xl*|
zKLU#Tm*zxi@NQLMZ0GTK9ed?!pVqXCcP?&D*z_jn9Yax-V3ar0qMB7Qf8WSuP2DHK
zICsY@e&?uy`L>}EjN5lusDz#TYVl;dkI1$wI!96(ca+GtM)cY2^tAh^F7d))SqD$<
z)Ewc1c{i4JsnwJUEx#-I`fTi^8_%<Di7Rn&KMY|!z&@wyl91%-2ETg-Rf4a*44-M|
z9KTYsOtPH8YFlOCF<Z+ubFUqZcG`0z!c#*3ob6t1sn@Fgy3IXrMb`+QQD;cszjD=d
zfi*6&H~d<vuXVfFMSrn8z1v~6Cc`xOqkX=~v4^)z+L2WEeZ{Zqp_SrO4m#d_|8<pp
z(p^PG2ljRB!M?UR@tgM@lbtu^63@0GONM&UoXCttuCX2Gq~E9aRA2iyf7v^(C1zig
z8T3D|n{?h?MLE&qeBrt5MchGq=Wen1u|?EiUGf9Izn*8=4?lVQy)x92H?C!u!Ni|V
zDq+tvUVm9S-Pz;1mgIMH=Udw@>G<idd@l4-M%3^re~{I+&|{O7?lB1&_Wb&*edWG$
z#KOZG{FC2zo!x(tC3?;((c|~Nd>2_ab8_$0n@^21ey~Q`S6_c>ztr6C!{yl6HHkc}
z9id!CMb+WS)j6AcqK-ckDEL$s_$uq@yse23S8UFhpLM0|f!|_o$(KiCCq>N>&C+-i
z<t-iGzDxI%hsdkV4YKTiHv2ojk5hkC8>qT-<^^@zhWD}k9jW`SzT=s+JNKOTM$4qC
z>)Q3Hxl#<5m}-wozdGl=?Hu3JrIjobriBMjY`nMr{*V0u`&*)8Jyq6;x2bRST@|k+
z{8U51jFI{4x}x_1S~o1tZ}r`}GwZqT+BItpb$%**Uu`FKHIC`T{gOE~SLL?UT(dYR
zapGvQtMbAV7710)R#x)<oICZS(;7z}j+3U-Sx?`L<y>s>_!-036>CbBb*d#kSzq#L
zXu2bKscp)Zge8yO^_}}1Fn7y~XUb;p`{&==q`S3KY0BTb%a@DZ{KI*5ORd{4f3Auq
z6JPU?BbsIZ8LI9D)rHAjo%(V9L$!?`l8;_`SvAx6mPgI$=q>UpC#nRpyDB_xp5l1l
zW)>cEX6@f)>YY<WRlZvM3)P!lA`~d+DDhz8tS3TmuP{j4{#<?S`jUN*KTW)C`fNwh
z-Obxf^WL31_Q@rqL4onke+I4GsVCg-A9~!UJ*zfaLGkg|CB80;9xpuSZkwg-yES?F
z?W3EwZrk7GIdz)vB(~=lu3x;*@hA0L#adl&_QNahSjl`_Khfl_=aTu)6F<v57kyjL
zYpUMnU9a2D!>%q<b)8R1SJyw9J<7Oj=P$#D>jfNFMVRh6)5Fx%Zej6d&FL*ox{fCu
zpPF0GZs1>9F}=km<b&0;2`2?l9NNYyxAo4;e=3uMx7qJCIwG&G{_}c!*s{LoJ0%WU
zFU!66>f+Y(p&kc+`qf8$`p+Qx@?)0NgNg$Y(TX#YRcf;reoWo_^z4S;`lrqxQ2u(f
zXu9F~B`?d(qk85=xk?`D^UOQ8XN9`v-BOz~E>o6f%VmFbK5A&aY;xLt9cLqh!uj7T
z)|nj?&dg-wop}7(O7Egut#2l8Ge6;1WSzDpH&CU_$b9+*uD`;ZekKXigAcCNKJ~11
zja>A@jR*fTSgx&3Ih>&P-obj-x$PZqkI$U?j`MZYwFNH8%zTE2nJ-*lEp2>0=kBGe
z)6+uQZa2lYzl`Nwm?9Cgn#sstq3e0>GRG!ngLiyvc2n20K4Mi!SKMo{ZpPb%&6#t}
z=G<Nybb8M7!t)G|yKZkto5WJQWplaR)zi^&3}w?8WD?5Nw(Gu|(zxaCJ^zJkg?DUq
z_s>-fY`w+q(|jd#hlI84f_(O8yk`?{-{qgKK5x&}D|6hAxhiKctJ_?C<9ok2OYByI
zPP5LPd0Us}Z@t>U!>OJjdo<Cp;7IRM1H11sT{kxG3J7UFXzFp!f8qYjt&igh4iqik
zv06yu7S{?1ONQc*wNG8^r?&aqS~9Ku**&4Sr{}Tgs$0*kFDx$3{j|9tqHp=q^q9zv
zX+2ZYxs3a(E={ZPc-14p$F<=_)|NE|XTN(MP^}8vaN$sHiD6!@&7so=xR2Yqrr*hY
zpq_f*n8TCb*WEt0sq_f2`v-?C-8SLx5#1f1mV6PpcgR0@%Dl6&b42XbjHf>6T3NWf
z<0O;m^Ofoo-*&y6!+Otf?%w{Y)ujxD)8l7+o|HW=?PI!T@$zG<PBrsbUzL1#XLq@|
zgtW)Hrf&x2q85oS?}WwN4wz$Dz;5wq=geilMRVWo3*~OOd*kcboLkXvxjc?<tDl?B
zDLK`v$?W3`-<-^+DKWgS=La4%mFn1^p5wIQmUwZ3{QIz`hYm99&o<A~ObEExc6+x3
z^Bk%0{^HbaqQ@<5dF^J++<s%Onp_&6S>LKXY3&mvxgImy_PGW|PgoODtoVfa+LSvT
zpHHw~TI6@Y?qO`irnd(r56jKF>Q^(#i$SvER`KO4mzVDft6_VvjxoV<Md0@-52_lf
zL-v;G8bvClTRYx;b@tvutBTa5<La_jX<Kp^r-d3ZFg}@(6`5PkrjQ~x(^lK8SMcX&
zkw;F;%g^>SWc`s2W-0QwT+_iA=6h<fOs(zfpgWU{_>52dx-M_{Wz&kgr&lUAg`VR`
z{__0NlJd;(f~n=jpEj=GIm3DT@H)<4zpey(Z^?hK(USf0wK+>t78lLEb3FTDx7k0(
zw{IiO`TX8_$osKo#!M?ekv#o;oz_G@34N8GKX*CT{Cu}n(_u9a<4)!q@=;ee`fgg0
z!(<&IaBRaQY01}LOl@~7vdrl#;&>Z*C+pO8(}n#>)7YErlB^yr?OA#FL0jC7qs}?M
zr)+$zENSvtBZm2$n^A4;>X25o3GAtsdS)9B@a*YI7E5eAsLV3o%e|nvj9o${{mU|w
z1r3sp;ZOK}td4q-bd&X%O8o3+j~TCAi@mL*5h_yh{KnOrPZ_&fe>yy7Uz>c_d)mQ+
z>T{CU#sozRtEJyL<!MtQI^AS0x6pE%s;k}0H5CJnG!>uE&pNwnr|O0RKkM?f(^fp0
z?C&)9RPULe=WVViBsMZ@J5M?j@|^k8QdYN%+dr<<(q62y#PXH{m(|4AVF|td@&+f4
z%dXm@$J}@Gh1TD7Pb?2A+xMocm0a%a4p`7x)@0mwwT|QDtw@KH#~A)*?Xmd1m;cgM
z-9-uaHPm~aTvvIT8~Nhc+;6&v*$f-%8G~&%y=8Sj<!4*?-fvU4<lz#V=4)GcSXS^h
z6*u`;JukM7Rn3<4WxFozc~W9&o9;S?*H>1`*1it%aN1#CozJYcFynx-_VszJiJDnn
zO?yv$=rP*VJjrn0)gld}C#!@{SejhjcHpp`utkvd)v2kmrxtS+ZV|q;xoBT|jKcP0
zDWy%kN4~zjx7J01e`+K1iZ3f#yzUsPI=+1!w8FYi+9r9Kre%rg)6Xi*r)AAozP$fB
zY+-7oI75jnd(?_e^UOCKcVLa#Uf}gWj?YteWz0I)+U|>P3wl>w>VF#cKryy#rNy^Z
z7v8FK-QIaFd~3Y((?#!UYS}GTL^U_dtvi0_oh3^GzfbUO6%8i?HjaN=w0duz;NkzW
z@Md7&C2yY6NAnM*o-RChTf#EbhH*>no8MQ&<7@c!Rogt?XnwN0vngScrAo@ImZszD
z*lQ1)WErhy|I~1xxAA9#<m0XBG0}PFE{QZ1dHg<nYnzl>8gql;oUiAXx<2*X=X}}T
zT>WR*#_P#qZx=SJXfX!vXee$zYx@1jjwG(_asL^nX8UJPeZsr;T=BJ)whICeyr10n
zXqIPA@j0Kf20I)ZEYCTt`sBK0!eaH6cW?X-o9&dMqRF-3-S_V+YPMA}wSJZ9zqTcM
z&ZXS7T#N=DI?JzoXPfzS^}{J`b@#p&F3Q<)YdO2j*A>OhZ2?Q`5|3uAuingd;%#C^
zc`gH6{H`kIsDMXC?DrmMCY}vxGD%Bg(0G+~cS~Z-r}8g$En%giXEk4CDhO^&Zt`H@
zNj9yz+mK+e^X<H^PO3U(+qo~+y6??cVtwGe7KgeGL*cERv2QnCmOabi>?6*s+Q%=G
zwk43m(xyJ}-b&}GLB&m0$;+~x4o-Pevxc8x-WBb*YgW5rw&n|Mu33HXd4WyR*0+m#
zXLzs~9ysvis&#h0P7m+tJIM>yR$I6@x<xS5#bqxNeASb_NWIT^-ofAUj?ud+0!|c9
zK5uIn^46jDcVpuG*~%=}miF)-SLQlyDf4)1mC4jC7OTv&XGaz1CmHQ{XElFq&LN|g
z4F}GNBwMcWwe>7ZocO9<ZtC8g!v(48%&Q*lezc}w+q<*Ur8=`WEZ|#GzSg_M&++8_
zL)#2oLpEz_uVnCA+{1YAY-Y5ZPmO^4-L<(3DwXD~T&B0^+q56nE=}%^=RVkGOCP)F
zU0kcJQaB?iaQjB~4eK`j%U8Nv^rFq;G~4ZIfiZR~OHHqCFkZA_=7F@BKK81gF~|IG
zM=vzY^Lsuw`&Mz>eb0jV8Z2x9RWhY()GqS~ONyH9{&0r>b*$O?yyF3aKbtI=Q=TN7
z`X6C9J~N3`Jj3<h%lwydMK!CPe#RS~$@*Y>V0)`upt$PBo_T++xqj^tD{}cW^;~Ss
z2aosBRr`Kdr<LX&W)S@IF=p!5%R0F`nymAlT<Y1f^RiUV^RKr*P0xAcsBrhwTN}oh
zHIq*lSDm?UXVrM+>e@J$(~}B&o>p}|SHIfgy~(JEL1q2Dbtk+uE9aCd-OLV|(*E<*
zqFqhQa@kT3W~wvty|ZErQQKFUl6$VK&%tEED>aUTEa|q@*FIj1cs|KL@RD)o)J@FK
zS-!3|&gK^~VmsAfX_Ndi)aJ>Q)vFuNJ74)dEBbZFB!k<H=NJ4d<<(Rz^9hdX+kQPg
zd51@6yN{f9y5Dux$SEGXo0)gc__8iG*<c+L6T79z;=oCU2W;eci~U;SR>}sfdUW;X
zt1_wo3{x5P4dnIgT<^Fq&C9s;_=%S!*Cf7|{LU}CKK{;4nX@o~^L?N8!b@K*8V-x4
z*|OC|Jy_{=YxDiZ-M+g13rzgQoNX3L#aOR*d*AQ%S~~jP3RREC+<)w^n?C#}c5Tt5
zh$ELBdiE$!p8Vtb(w9*waVk@t@4hYk?vr~^ZtJs<u<{qRyjJrrnfD!EQXzfx+q7A$
z++O+daSKjhUt3%JP&eDxs<icV?CLphIMz0PG5y%v->m*&--6FcktZC&*$eZ&ewlxm
z*V*?YTYJ7#ZrdlrEl1oq{xiJ3+#2fbdgb|gjjO#gU&X0Th;No*P3=i}vYlzq^9ZBc
zC-bwPPSH8#5KwmARj<=*uFhuZV=2MCa~;n|ZO={TTdumMr~c~x^ZzdW3YuGAf6wB1
zd)!%zz5NsR=lo~jTH2gpwWV;z%(RS%m3O!e&hggVI#`!*yqux*fZD!8e|P4d`6tly
z#L~4puyd+tT}(n#_T!@|oQJ-yuV>b)3jb`m%Jp*DCzVJ`?uK>jvL9@<_FNKEetNFr
zgr$71&g&*w;o@Y;bG+_4^P=X|UcR>1q|fb(aBo9T^OcRSgQL}+<sMh~`k#Soz4Xk&
z3(fa0t#g!|u<}Ic%gbHYI2UsoMSHZYd9z^hJocs82f5zm2=^DB4Qo?uJ+IE*yF})9
z*xbE~_3jzj`j)$96rH{>>Go8~uP1^Ju9Z$xJjPagUTwj4-_vt%D%-lh4w{st;dn~!
z#@d`jy`yiBG%aWgKFlTSIDz4J;~Vy>HIo(@YJd8C(r&B5gr1TF_A}u-S8bi!k@a-P
zQp1fl=@KVxS6MO&ZOQ%YKJjYh%hv(62i!Q8Ygq}0F~4)wE8>)S-gBksl~+`chJZ|J
zkrDgau-r|GB^K<<YO~6A+&O3Vq_1MtqMB`YcstMWJ7`5`W@U2}+j4!<P-bLvJdyK#
zby*m{O;;+z=RdZd%WfS=nHaI|3VV;7Z|N+#>ANM9+^wBU&&G(JyXrnwTR3x<$GL(%
zpU(FAFIfBA*K{en3X|Kz#y_v_O<nq7ozptLhyO(PZIfQC%HXv3<E>qjH(i)6cT7Y~
z>*P*%o?65C$L8D3o8Z1LKvcL{(c);_)jiJ3Uz)9nthpXIX+eSZsjdGRr0!--ni7y2
zX5n!mf$_al-Zzg&>*GYG&Nls8FB}<d(kWzmX2El=y?cve%C<fV+dVaTW?aM#p$QH~
zj9=8|KJ(c5J7jh4tIm^lSG{tJuKUGadnM-QP*WUrRL(TU=jkFncb(4*iZgkaNd9LC
z|L)EAbIt9WYaU7l%0*8&K6l5u;;@fX`efal8S3h8uG0_r=z8?XO#OLxt3vNQ_TFvf
zTO8xLwAB4>pTzu^FJnsoUU>4P!HOr8b8Gs<4|kgH@4s@D^WEK;&y%X9<d${Ep4!!L
zS}geBlNF+kwfU3h-uAH7F7lq!cBi&A<&L%C!32H>U)@taPq#9CoP17e_QQh-9I~&A
zeqBuovUo6W-`4I8N6xeq&fBq2w1{=;)E}0|mu5uYZT_@f;j8FW4TF<SyDL{FPtksE
zu{<#^)8>7;l~2!umF!vt?xx?KAKDx2`FGVmzB@ncqi6DWmb9GhS@P$d;qkcahX*aD
z*+tKKT_;%Mx&KG><8Ikx{~Z;lEQDD9nV#47^*nl4;L*J1J?Rg4!w>BGdT(ZJzS2qN
z3DGk0g%N>v67N|(9_@G9r}D$z{m1hM+4^Fcn(}jXS4_%nUR=(8C;aF<)gSeROJjGP
z7Q4pV5K{Q#x^0!`x{S5l%j2hh@-Oa9-p%{n&swS=;egoVzO6;MQrYDNr##MkbwtTL
zoVsn^obZ{at{q>nY}T&S)f#Of@6KP^eV_A{c~qv8UE*$w^H~qq=*)Z<z)&{HD*S>y
zS4plZ3x9dmB)bRY!gFMP)oQnkn{wQ`J$FW^rT3kxx$O;KSO0#!BEchu-Djmu>Eo{N
zxm=fG^^WpvDl(Ay*nez;NvxWr-qADGQaY&)5|6gNlUz4riPw!|9LGgJO?|R_(S=`K
zd4c`=-km#lsdB5*#@nk-6!y%k7mO4A?e=3;uHB>Shwu4pn-rt5Gxt^KOvYpGSFT@`
zXZXYM-RkJlV@r1Ho_J<1^H;0=kI3YQKH>k^F4~kYzrA3(%Y^8dDKTkxf5}-h$DIqE
zekk`!e(uC4$%VyBRi!h|pZ}r8RZy^a=k1fCo0Bg~oUUS?P`7MD!kiNex6R%0U}Dd;
zxpN+fs<}O9W++*|XxW+~-#fRu4OvxcZmO-1j$t|_)AD5Ejj-5_Ws|MH8>r6-ZJV*0
z_l<#vW#Z9t_gH?ryyMQfMh3^uo-w??HY+-2|FqLPJzv<a?%%rK&^kSjUqXFthGV6&
z*scEzZB<+^y^h<P&Rd?Gy~1eK=Bc+Yypvy>b30D7x4^4S#(r<XhPcKF1xqGRsP4LX
z`TgB4W441b+ErCom;CDWcHXn`ip|B7G3oMA`&kc*o=%o!yY@P!b?(DgM|gMM@;q^H
zt#+*=+ch3DeU<e}TW(BWdHrz75{8xsUoFpOMa3=>eR?>hfX)5dj@7olQBI*7W>+43
zwq<Q8r<FL1T#Fg!D*s@$FFWtuif3x*dH2G9YrOcv#SA-GcO0+z9WI``(&O&IxTQf`
zrUwRjo=}ldc;~-=Y1YgsQ_udMc`_kH>^QsH%!3L{W%HV^ZDw20zul(E|3Aa3W!397
z4V*TzE3>ViDd}Y;zKP$4??8Rj>MExN3VrM>a#zJ~+iVD!;CSF}=)3jJ+6%N6{8@Os
zYF^@suiAIdEcL&q!o$0G`L)f@W?p%0Z5NaGb-C^N8Fo2+mI+1vThs5v<h3w29C)m>
zDd(cz((IevZ?*U?Ue7$5d?$v-=tJT4zO8A$(mKqHjNBQ@)|GvG{;c9ysK3*4wv9R0
zj%^9IX?;~KP_cHcS?ud(g@dxjC)ep&FOA97^5#3X^~>+W9E>pueKVd&o%$|qo$cMD
z$>E)wlQdtYJ&CpUmA_4i-PcC3B?moD`2B9xnRV$&&C%lHOtWh_FI<@R-6(}ez>o9o
z+mO^NA|Bpy{EqKmM^1{Ha%bVT&2xI@Exxwt`TpalpZ#elRad#<<?J22u-4UT<;|Y*
z)dBZrdiNeKe2~1gpg8MB{*>P1J&eb%t$7)B+ngnDO5x<l?S;34FRxV(6hCw7l*M5=
z-w5-%gkxM!QuwZ(c3j2V_4Zs<@%3Bti&q)ts5I<2XB==d?8=X{BZ6XFlXe_e+ww5+
zsaDNy|D3B4x!<P!?369+o0=q=RJ6PC<O%z8d$tG1@-OcZQaR1UUH+g}OEc1d>FxO-
ztuuww;%85LJu&bk!;K@NDo=#FV!oH_Pdduh>D0ubQXkc4QJLf)cegO?j1I#K{vd`W
zhTAv;Cm&bezt;M0mdgC3c>w}^5np7!n0&ppuHlor<oT%R89g$|5^qCPW^>#)dGg@e
zM^n}&&+}cL)@zX$@uykKQu)%_pEo6x6>F`-OvI(9)ZEdHYI?gpFMhhR%=fk7VQ21b
z+gPw6_3oU6PlbOqyB-ES?Reg``dd@~+yg@U4NZBj+hv@1!gwrmN!rsDF?aQC-r8;L
zuPxs3lwa03_|B=2CxV~(+_JUaThCa@FmKM6wLv@2Yi5P)*vWfP;_LCMld~RdRH;)b
zUtMmQ^Hyd~%2j!lw+cL;`}V%tW)Su2M0w@xraxP4v<~QhufB9Je`|-$#xJs2CEHSK
zzRG6Wez!{6DlepMX5h!qzBRs8`u72z(3GBI1#U$}2G*e)mhdp{o_BY(WTfnsM;TF~
zuZ;WVbY0n2yJTt-qfGO?O>buxu<$e$urJNLt(f}u=ht<b^I9!V-a58-VS->ly4~Kk
zY(G=3$A!9mZmy}fChe}cRd~R(#EY}X;Lgr>h1+&4z4Lazn_a=ZKnVuRS5>n*FDy_f
zIp$WIc`VgZ-gw31zGI7@S1`YOyu#*+ZP=qIKBL_nClqoe{``Fv5-{WL_j6WVoxw)w
z+ZTRa?XmREZpPgUWDmUW>b`MRdt*nJBiE9eJB`=o?5yK^kd-RiAnDlW$GKdEHH2wN
z`ucU5%gZvR&OPQV_Q+rX1LsMbS=+fb8w4=&Sf%gPI^fLbF4NqXbtJIn@j~V~^PXRt
z*Y0Dg=KORK@6n>l<5fHJ6<lLv9z1wHDQjcw3_at|GCz}TLN;!6Si+OOe4VCB^sO^H
zCM!NY&r;-S`i<p4{fv2>F9VM(?NF#$@bQJ#kwBF_4}|<{K88)&w@j$tNwsHFOZ@CP
z#Ro)IatOJdc^bL-oP|wjTlW*q*5uxsU%ste+?rA(YPhxHouPA8#IeA4VYlK8w>s@B
zaxOh;<8nLX`Md_kUspE@6uG^5Eb&cl%BE${&m^?HsJ^)9qJ*d9u?r$WevkP4w}$N8
ze(SmRj{d4!72TpXEAD=Gc(gj^nAx`TQ-4jq{W5gXMVa$w4o*5>^+a~|j^kBb(X~BH
zJq=dBt}Qts%Ci1sT!D3no1yaOt97p?H&raJEj64}X83fQ%1TCeo1V{KS43T@)LJs>
z=&sz8e_kgh3u~msFxWkK{9#Fn$^$j8j|bmI-FKPTy6#<1Y47BzGV}P@*<S}A7iN__
z?`NCsd_sFm<L7zvW_(||y>oG>W)r8vyaOS-ZJorU1aBP>lvi00*mY&A1JjD1-}wqM
zx4oR$WNG)O`E~f(V>eE1_<qOwn(oazZ(2%KwyE?UNLF9@!ZrJ*i)6#8ro%mtdqN`)
zL_7}K8DP{bT6D*wE;Tf+S<ApRZSLKRH>OTo`r@$V?=u`0x_wjEXEdoX6!(>vpWm@c
z?CsQ^5|t;ve_xxsr%Oi2@jSCk+HQqnKPzdm69>Ip&$+)2e|zd@syCZT&-%4NTPCn*
zZ=GUzz}C$*cDr?~bIozfmj~9n&9YebW}E36CU5n#pA;pT<)*I8mQs**)Ux_~PTTC5
z!Ey!}nYU_N--=FQJe*S4e70PdPjj_#(xD<}hT8#6ZtTjJwqESwJ=?IPi9=H5``N-@
z*Skve*`iJsuY2_^%EZfD`(BJr%3tx7>*TI~+x??@WkuI*hYx>`t$egM>gADw+nHvq
z)7<P@H+r5r^(?QzJFM#7O69D{K1ws6c%*#VHsjl>2SvvBcJhneUpse;=MLq^Ey36C
z^j*FFqw3N-ex5rgi}Q8FubWRY*;Xt+i_L<O^Xq#4AM<O=m%h4g{L?i=?HJ1^>0A4}
zh3#`Ki@K!jgVwEl6rHi$$fnQpVYtk*ou~K9aK24xR?gaRr{ej?^=4Q1c$coc+izIL
zaMa;-_!sYF(<=dQbUq~tiWbH0X0Xlf64-w1ZStkX;<kO?jyaZR8^;(3?2wM^w2=3D
zxb^2-#m|$jJ@D!(JZP_7&bDvIhAVY!HT)NHa_SVkcKv7QR%=bGmY6bQ?MX?F+kT8+
z&sMs3|I?_jKYCV2D!t7l{>{p0!Q<(CCq=5Jy~>u_su|?vd3RsOw}Kg5SJ%H)J}uY#
z^^0BXN8ZB*))Iv$Rm#?x{d;_Rvi1pE57W2%jDKWJmx{f&`r$#-yIT~_7Bfm#gx}sN
z`cV85v!X)59RWAPxM^aAYj#e2`1r%8!+wWmx0b3~vXm_Qshpwkn7uL3?Ow*Ih61bS
zYppDoCM7Fqr7N!9<n7C^TpOvP6>NFlR;%Lu9oe-FbG24CdH&qad`$Dji{DdL{;cn;
zzNTBEX|_duj>*QA{?o6E@_bvZy=nC(-kpbjUE4OBe^wVy_4F0LLbgjeP1s%Mx7<|b
zq_y}-^^Io_a_gBJ-ko(JdvDJI;p_6PMz78%oZ41=d#Ueocd1RgHHw=jWT{M<Zn#D1
z@xrA`ycXo^{E=av^-KQ2kG<iZx+cG8Ix{TUl)!wsDf_sMb)iAV5vjyE>egi`@+(ch
ztUt70<h5A2z~4o@+kO`uc#xZSSoFc8CAZ4lFFu%k>-p;AkL^V>rVG}tKfJ*^Q>o+V
z!4e}DS<k4i@vN_Ax$S1YBkjNOKEsULpFYpqT6`c*;?h3l7rDGo%)Wna`MvbR%i}pE
zM+^69e0Wr&dv(zy$x>gnn@d7?E9@@k-F$gIlxgQ<&r>!RZ`=wEw_dJ$KEwOQ+Jvck
zQ_JU-^UUfy_v?nC;3lodDwD6Rc=7pu_AaBC+gVa(YdI9e+ML!{JXiQ?s&vama{Eo!
zts77EUGd{I73(`?HYMs+CHvdZMe;H~m;?LHJ#f=W5@(!Pw8?1BqkUpcW)sC(+O>CQ
z^T&JrHU4q%;j(M{q+f5FX7*P4Z<7;Cg!F6~u0M~rZaPx9nE#$y@Wdv=E8#n*|1pZ?
zHy78~E*Fw&x>Ku&>-pRzA)fiak81BQ;}_jsoc&Dw6yL?uG7qjA=7qLJv-00NRv-0M
zY}V$^B|%*$3_@Srb*}37+RM7|q!05PKDNT(Lw&cmJ>i@Ab**#+W09DS;APvot#_qw
z2T$C+;WtNk!0yf%IrnE;zw+(~x`p&ieCgN3{xsCvxQF-n*Okf*LTk4?;oWJ=TI#4Q
zX?LWMchv!=<tn+R8hj6)Zu`%$iLKZx>GqDE++UwPLMM7!ck_IGJL|4Wvi6O}HjyXI
z=O6Y*r3HrP*#-6pWLX}tHn0m~XTG+mlFey@P2avpD;L`<-8y$^LPh@UiF3HN#F$v`
zVyZZ?=13VIgG0FVjPIh>C%T#Pa(A3#%h)zebi(9wsi_R>4jG?yxvmz@b!6u;roNf0
z^a~Dlm;C$GJZp2-8-LAdU*h&hom^HP)Ok5mIqON1PjXL6*SnJF(7QV~9cXTFSGdl*
zY|acv8Rp&dv)&|LIXWdSdD=-y#;A^4>dDilrDuz5h;ryS82E9AcHyj(S85U#1+&lE
zaP%a*ZQa!8^E7`nip@^c`F!^{M~Gt0<w^BiA9I5rOL^M-3!Zsjnq~cg?+4aS+P~*K
zyJ&Cu)1}|%9egY=Ub}Vq<t-EP)I(3p)EmbYm#?`Wy=ML{g~n+~#pkk{rax-Ey2bct
zl8=#pzfpi)a^&_nt7#U_zG}tSWnY)9=@+~gb>eNF>FWa#qBZ8{yzA#pomu}#_hZja
zKF1vXs0Z)s6!t!8&%Cj?&-zky#Z<i~XAb1P<F5+O$<nz#KTgP4+3bzX+b?I+eM{Dz
zop$?ta_G8QoKsASv_8*WwsF~v#krCy<zH7zU7S@M*L$=-J}@+8kB;=@-Jrps_8A8~
zbEM1#9Dm<Q&scPLr^$2%o}OCcYco6^^x3jXhnE>nz9QwOd{&|7<CXGdYqamX1<x`%
zz_;YtCjCVTcX(tzxaLpXGRcoWC)9g((o^@c?=PLMxar>A6sz}CVXCA;)wPs~yCz6_
zm@Y3(RNXvNS(eY^>uR&YgRAr|e>(f}y~7#Tv>-PAYct-RdeGct`+DK*!?zi8rXH_4
zJKI;`N%4Ev8SBex9e+#KWY@9>)^lft^W@~u&hb@F4eig7kNT$H`HySsm3K?!yqcm{
zNc>s-V6N=)OY0ZxYPVig@R)s0*Kh8J-;bRC;bWqmTs&<@C({Y@)Xnc_S?&y-*_yF3
z@~efc{{jD{-dZfW!sU7X{~4mzzL4j7{E=HFTcqPn*_`zstHbwKg!^CqI{U<;T^@&w
zQ<~3<e#<}jzIi{d>W1w*Dy}{I(tF?H7UQ=ywOxDPFPxL*_s#vluJAXpk9hr9cW>U7
zd06w->f>H--u`2{^F!aWcdK-z?h*&iq&<0G&O67ioTcAp(yMmEJvm#Z;6KCWbD8s0
zK7{o?IxF|s`^uLec{<Nx*R&S6@38H4%`w%w_%ywiYwF6=vtImp`=P&`{pQ6<56dPM
zO6EMczT!vt!E4h#Nv;#Gmt?-S%_j1<@tr?L*La^bs9q__j4r#$nchCH{rc<R8w&+k
zCqGGLUwQ0eJY(;nkV99WRxRIb?|f?SJUyB3S4*_-|2X-_a@DQlSx$4<6wIxw3gb>b
zQq2Ci{6Tq_iDR?swb?q+(v$i(Og;aIwPtl@O-=mzSl^6)C7kM0c31H(XaBl>jh)~N
z{fGVRuf)x}HaKlCo;?2{m#4bv7s(h^?uZBH_RjA1FaEgg<Sh*|5C6H+Mh5ctf<pSw
zgw5U3Vl~Y|$NG!t^vqh(yZ4rw7<DR7`c;|qc-5AktY2>Dcg*BFctUpd&8$o5&Egem
zSqCepCU`pkQJ0b0G3hBs&g7nJQX2z5^G~fZc%yYIW<$w|QyY%Q-Cey%w$F31ud36L
zx0c#}oOi5zu*<+}$)BATDqW|=B_z`Y`x*-ak5_SR7K+|rdTEQB-f@4~cPBgbtR5uK
zy0H05%`~pqIfe=XR<+svU4K>=g@{UiJ^4k{{@ctJ#d`-B|E<3;?`y1HM_l@X=vS|1
zi&z9y9+U~aQOd|=)fe*Q@rA1Jxwl_yo!zq`rmra5O*YRhOra&+-r(O?xur4hA74p!
z-jj2~;rIL#*QRdU(6Zp1<C8~wUSv0Dr8iVODBz83kG$R6b5mx5{ZhMZfvP1^i<GrF
zJ!}~G7p~3FKdk+r;qLD688=@$?%-Qe^7@47*34CDf|ESe7usqTmv9?jNV+m*s(W7X
z{HV?OD<(-WPqAbP7tO5SIL-I*dYk8_^}hq2M$UNhJd+{W<Y(*Y+H-T?Z`0(QQd9cc
zXWG{?R>=oN#g}$|xpF#PrTCXra{Q{tll%jZRW5m6^jKQiD|@rFG3%*~PeL`<yFKEI
zt&%BQm0wXVpu#Z8TlkNuSN2Si{0EcINqiNZJuznS`e%1I)yw!5!bI;(6o}!O^HntI
z*LyCHggp-)6!<S#Q$2g~6DCi^=zN<5`R4&o!ZjxOgx<W;yydy<=C@I1*AFSr$yMpm
zEB<-i<nsPm9m^RTmCLytRzALB5MCIXeC*Yf>j9gsL$0t)6nw@v(<Vi#@70%@<y9*s
z?!JwAQoicM!e|ygj#b~KCUSAhOg?TiD|2FU+VilG*@_=dIh?b+{em}O?>?T;2@k6T
zj%`?H>b&Fcn_v3Hk;PfoojOODte6A7N^M+ew#3}S@k!x?%x_VbwYA$AWO}L|?Tqd|
zcxv@S&y%vofw%6pO)*rhHI8`~W*!)}%QoEmBbWScJ^na<(af)A%F^GzG4@uzn_S%*
z;GsTe&b2S*3`Y-FHt)M<{AJC%t847jQ_CunZomE6G~rBzj-lUg!{i;cpO34r%{-YC
zIltk4zgHlipW)>DeN!J7-}p7pd#cdoBn$QhFE2cQ9cbcsP_^v+>!{Pro(I+E)t(L6
zxt*o2ph_mVXUmn#H}73DoRh1b_mrp7ZrRMO8{T*)Z+m=ceXI+Ie9Q#@s`I-imX|8-
zI3UwkecdI!gm3D!*6hvuj87bR&b&6&+e}4WB_$>F_A$dF<>|^R+1IA|Jb0YRl0576
z(i@LfvmFh;wLs3V_}UuhqEk#?xKFU8ZHhei_V82tX<4q56D3&6Rpwj|cIOT=nU(wV
z=f+u$@7U~u=iSZP?IC;l+3n^pO0(6N8V;16E534Nd$OhL?SSHEhG7=E$1kn)E55wl
z=gOs1A%6~Rt6e1)Z#*^Nz~^hTYkg!&HTSqYsJUUg_eIymliFLD??_#4yJ8r7SlK3R
zjeGKr=Bex(*p{BU>nbw)%K4`2SqyHM{6$kT&(5FnRdjuBg4wDa$G6vnHDw<4IA%7_
zDok%_ztbGEbQ2vJg*!W+EAH+p3EO!<@>o&fmFup$?UT56+&#{krI@mOLWQ!j>2%ZY
z){CZ|=}=5z-=5%Zx;$MvFL<8Ci^5qGA{BZxR6cRUB&|Kl<<`ZaQhq+`P|&WOxA_(w
zb7sxicJRXYm97VMn+oU1xw>vmF8kScsN#Hpq5Bz;rt-r6V>@&2<asZ&oVe#0OM$zE
zt*>QhAHyq4m3dmr9`zXA-NkrqS!iT<vA|+xOWQ1|S6ty2Hg$J0eik#l{W|Oem!1Th
zI&a_BFqOM<Zx2g8mR)t?xJB-P@+D95g-TomzuqgJKWka1H(zUv+>$4Z0ot9?yeDOt
zUx$gX#;~#eXSnrk$;?%|tHczhc<f~0U2bn49OlV$+mBPZjNxU-<1>rv9GRQ64n8br
zRWzJaZkm~0T(LXLueHg}qhDG5!j;wPj62oeO?(;PIy1O;zri2F;HCRQ3Y&@;WnVqo
za^>plRjU0;24|uzZEdx#X#eh+e$Hy%%w^FoK3Ns#o#wSIZ!cor*><TYTy#ysyf(eC
zgw?y4p7-=TkeTyr?QQ-EBDr%uZ(qLG(50w(PJ_jhuS-9(xM(Od?zOr!N8Tmv*{t2E
zt*)O=Jl*m3N-%f7p$zkm&j%mdeOawEe@fBejgJ;hJ!KeF7xtp~(#9v5%MzZ<y4bH;
zeDaRR6FJuKX-22cxCu+HUe&U!aJTHQEBwve=@QH=hHpdD`YcbXubi*J!&V?I)B3_S
zq~iOk3EewAo?i*;KHMX-^5ij*;3(FKonf&zxk5@svU>7n&g<Nt5O8|lnZolwf-lL4
zz2LL@HEX*{bjl5OmK1BQjV$S_--O;h^?3cIt-1T!s??L!-@NNs*T*e<;=J>F|E|kt
zq@|ypIDY!_2h(-a8mBgup0xQD@;a?&d74+_<x2}s-ne9NJ*an!Vz9Jl@<Ej%tzRx4
z@|x!i)*hE{^%aR0b$Hs(ti0B1n{}mvv8KY~Ibmi+R*z2$b_#wvv|EU|<ZP_qo*j}J
z><kl6n7l|h#c<H^n1ija*Qvx_$5Kn{4ZMQO)wLt8UTq26<kBtS8aQF?_V;}Iz4m6G
zYPFv7^?cO|1*66tt?Y~CqxK6Q=gE0*C9i8PynFrDs*;z!B^Fu92Cv<<XKnKc3s`zO
zg@5|a?`ylwq7#(Lp74qG`4(#y7BHPxJ#{0>;6%B+buD|=UbW@2bM#dVrxfil7TkGn
zuc%+FKi9To*-(>w|3}%nVt3yy*WXx?aG0S^eQC|skJG>1y`~%Y-Q|O~W4b`?`jxDF
zKi&yUJbrDb|E=i9rB^0zZ!4ME#b8`suzZ^R9eJ;x3qD7!i1~asYtq%t{;?nBRz8~R
zxxTd4>3Q((;%T#<IlcXL{YC#Dq3(w+^0#KaKjQ0lH~P12-O=S@{y(!GKQE|lW38*I
z2tO><-c>ro<gMAY=+h@>=oGr_dGf{d_udcI4@2zP>$rbpADVV?jk(#kZreNiKVN!y
zz4-Zyia**X&uagcirIK~ZiH6ct#!MV?su+PvtaM8%IiXY_Ywmt)vx@%er~?l9$wX-
zJLd`cc<Q<RNxiyz&h-ryx8rtft(5w9S1I}X)uPbjep{bLo$oLC&3X8~Pn%inx%DTx
z_8P`ZbM<LG-}vUr(&QuaAG+>ca_Hrv+#}N`7+Skk$^YA0V#jgu%^vY3uj35&^?0gv
zOG}$hWV>w5r2ODl>6-WAH6eYU17>M(ZQ<G(7CecqV!hpunUAx(*SAE~HqJaV{nqT$
z3bsvp3>Lq>EDBl~cIU4D($gO<^jxmG@u~8wtoI}R&Uf$iQnNdsPh2uD$f$1SD)Zd(
zhsSl9cd=UVENS9jTK<pWQvHTKCY&zSuOCGhedV$atMA|X*V=!p*y&uJ?RiB9iUO);
zy?E9&X}M@g`J<0Qo@X~5Km4DeC!DingWoa9Ko1>up_Q+e?d<Q^mAd@ftk@`}j^#Ei
zIj!f_c09cj<?G-vag7)MhpTV>1FE}IVsG{o_j}z9oT{}d<cohv%{+DCw~wxTRkiZi
z>?6vu;k<2Y*rYp^ZH6x=SYOPo{<b=(=F(b$2Zra~XYEWin53vE-S0ea!S$jk`z}7V
z%6fHF<IBsKHpfqo_eT2Kc|1{B7xLKRW%RdjLykHJ?#Jp~7q`1k3|zt((epO$YRjtX
zGcT9By%i~$9oFjh^k?*P*;RkGy_g_+sNuP?^2FC+j@$|%HeW23pAw7C^E0^f*7kK%
z?!A}u)+;sbvRt|4KZ8-wswKzgq^-O8;=|1&Y6?PDnoq9WKH_)kpxgW1=cAe)E(u_K
zAl%sZb@!@AYj({s^7^iKd_}zV#^_~RxAX8Fk>IHgJ2(4r^<OnjfjDn%!*h|l1Ybsq
z3BGI5IsJQqxtvw#{U5$I$`5ylnmVjI6cEbvE-misu}O1whUC8pN!6<RZrXcVzW3L^
zhKqM^WM7K7``n_*X~~2N-CO%s{D}OW=f6H<(vRw6*QV`L?26dA!@|>EZ|VpC?mgiT
z&I{${%A96iEk9-1J^mlzW}D(~-ck8hp2H=x&iYq){neZ;-{WV>N6oJL&#<Te`g!I*
zo<C|uHoK<Ed=nQINbKpq`&ib<V(ssEF^;V>6p#I`?s+?*MCQx-)9+jCh5q>KE$0!A
z)pWSs_i*m&`%L?u{cwF0@yA=FIQAUFw)neq=4_VF`t&;Sj@r7fcI#QAL>2DWJzx3n
z(tVLH{~222c~vH5PPv!0|HZad$DgLzp1-t@aqg1r$%=<IoB5q-jGO;ErsCe^N99Ll
z)em3WWOGZr^#QNR$?tM6cWUw1l&se_nsjuRoX5d)*>?|JdfNMYo~)-{b(!j^6OJq!
zZ4W+MZN&S8xk*~pm*c6^G<Eg4`=%<3PPJmV%U@H=Tc$F5>zU}+Nfi&>0wP3$FX)>t
z&lZ;4z<7&Ybywr-$Zr?l27l&bm-+hZ+S3)0GuCk=?3o;E_{ngh(&}|)ZQ2*MRmx4Z
zpAg8Q{aN#Qsb?<p%9yDEj1THXBR$-wIIy0YH}h`n#v8}38{g2$-ZJ;jho}WR&V9F)
zzihkeG0(=JpNbv|$!mjmTb|4jIUsr7>xIY3*NZhy@jdViSWv{C9J-YI)01}gKI_n*
zcLWY@K5^p2%aFTF8fk}xia*VN9_^$#V|y-#x5(`V|K!P`^U@NkCRoeOZ}lxTI#N9M
z6<gVQmTS6KUM*%265V0>By7+2D>2`0%v_c>aoe^F{w!BldosybKbaTN9P`PioK<%c
z`}1&xJxs1#_YEyXr!21Zo$}?*+b_SL_K7k~;%B&S`Dneo+QhsIJ>Ck>pIIE=oAhJy
zk&iD0CdllWe?WL?#r4h_SDjCreV&}C_4R7~C1Wus_WI`bGxLwu>C6wB`~6JJ&R70f
z&z0vKm$poN-F3Qp{uZC3GbYbz(9Bckmb-hqc5}4GlFBmOZ41f`RUYr-O}l&Fw^-qD
zs(7E4zG0;0`%8<1M9gi{=1+L%|LkYxBm?`oidT9pxypKK>$#SfmhE`OX7MYmWb$;$
zCzD+-yeTRBwc9vXWn$mo>>$n7Q+X<U7SAWg_yoxw_$nW_b^DTgsSU};9p~M<s`*X%
z%Ds^LpL^!aNx0PUfj{PNmPezi|A%?^rWzmJ*wj$#xJo_OgXwL|gWkI@FRk<QQ19EC
zebPemSLw1DMaQ)YtV301@hy#btYh53`7SGLtHnu%glB7`4o;r8*iu<^+cd3@{CAn}
zceR+E^L^{AC(%%SP50UCryHj6-#uZ=TPD>yp=E;vk9D|uVVUoLhMRZZGS6Qdwy^qL
z<mJ5O^Z2z=B+qfr`?B4v+VY>^{cG#oHnuVdzij;T%5#cc^<^icM~?H@muJ1$WBJIl
z#(0HuLC^j4GESX@$IRC@vM5Y4K5KI<N?BT<;{BgjVQXf(z4*<2FzSnO)ZucLgHswp
z=575_emK5ESF+LOzRnSLmd9%Q?f-H7IHPlRiNE=K@u$AepB}AMfB5_6my;I{Pg>5-
z+;u7N@?D!}x2Deg?$-LT>-XVFZfDk(E<fd%GiQqW`iF6cANF_7vhP%qi#_D7|J^(M
zn4G}%b8GXT?*8|p$LRa7u(XA1UfHpHRH*ipxo!QP+2VDCd9GhaNWq2Q&X4`O^=ecf
zWSUlUw|Fj`ry#h&Wx+PCiSOf;e(Zl_UGX~Ts?Huu9?4nGJeS?>t5`}T`9E*adfvaM
zeAORcU-pB)bidyC$g)X#XYc0K9FJ~qVcLK1SYe#<$K#J}``@H4kN#0~-F^F2oA9D#
z5o_LUs@XID>!!!^{2gN~dd#oop50{oht2X~%#!UHzYaf0KitcISc>^x)^*M7<&iz7
zE3H|a?tbzup1)=P+uY1$fAl`iUEap!oG90A<5}}q$Yzb1`m}xR>g%I^<Ude9#xM8p
z;(TF|isNz9o}Da6y!0?$>zvFsi=NuY?~3E*{%2s-`%!6r=&$j^U5*9sm%iF`_S@CK
z*2<|N$M`p}e2gtw@hPJ(#!snqX<1G7!@G`KZhI)CDKHp+eIM7nIBRu9n{mUv#d|B~
z?3uI7)8^S0le3`@Q-i!7l(H`kdHGr2DD!H`n|a5VSI)S_<~48ma*>m&pE?*m-gS@9
zI<WcrqJ#-&9-j^H$&qg2&$>9RM&n6=kzaA3EZ=dBv#~i5;yUs=M-q2E|FYb(`k<D(
zOjTjTb#unK(Umbg&#$etTYCOf^`EP|CZ4!@_UisgYRY|kYc(GS=!MQ~eBL-udye=i
znRSmp^DtFimJaxNkc(@@yF%wlcc!c<)m~}hQ9f0B&Y!Cp*{KW`K@uhG%`t&jW^O#m
z?HlWHjNy(s^JP<;r#I(*%69*eqTKhFHEQ#<Z(b2QZyk}{`QZBeb?Yab-|^t%wzcl7
zc5mQ%B_dbxe5t#|mB^Rdtj_p__nz<%s(V}Vt8R-*{M|_lCU6{&Us|a*zj}LS?i!C1
z%73)iT;A%m)aa=DJuZId$X(N~N@*BhdU!>p%wcU`h1=`CXX}oxc;<V1TWg-<<AV1w
zuJabX|D4ZvxAL)QMb?{#(F%5!2OnH~YbB+X`>Kq)e#3^2=j;=GbA7`tY)aH^p6zVA
z=4Qavba>^8{|wvAn^ueQS(?msT$T4c;MZ#975Z~}o?ly38#sfBL;J+}y+t2i`P`N~
z;5=v2o{zz`8#k4044m^=Cd_Z$vVW(3%`y*97GhfR{lM36Yj)4%mgLki<9RDHD`k7$
zk30^01KZZXoijG7pHZF{P$sw4?&99Al1t7@r#id2m;OHT<=KjD3nv}6wVHgdduF+I
zy4I49_j|%(o)_r${*Za{VAdrggQ=!Fx9ysey>-Ut-rf7=YMEVidFPN&#IJDODE~m}
zW5#F;_S@GM{=1}*k|OuqG%aS?lV4q%T7!3dd3<T}vps>I7|e3NzKry(-^uNEd$;hN
ztL}T*j2!Y8iWsWIPx@JxxA@sP<3B4Cb{%u`41004(e&g5*_-U^_eO1>Iydm&gBOf8
z^Q#VJJ$LcD?6-qqfeQ06?K;b_vb%dbUNFrG7fmg2aewx@fA6JjZ_{rvJy^j|bGJ8T
zR#ePQ=S@bwvo)0&-oBr=zrTvB<B67taq{GOQx{#7U10d4aQj{%x2F+$+<e;4f3Dy8
zwXpR}k(rr5x@}RVXjJO0$o5m5FRW)>oTsql!6XlfH7A$6I^(JEL}PW(t_yE^b#+qx
z4xVO{T(f(^!hOjb!g?=F@ZfW_`5bxOVWaMe#1pc;B?n*Rf2}oft9h=qhVR+C<4aTT
zbo_f)Hu>Hb)qC%oFU)INaYuG>=0VH1_jV@+C-<!rz4erN+C2|t_O-01-~BXO!Tix=
z$plCC^5Eu|o<eQ6+zj0O?Y3T9wx*&q!(!7Vg_P%$-<~zyd1py2tKD6j%?$^q@89cp
zp;U{HeY@AWAWKW>i&Nxm7|M(1HSdksw9Ufe@omv0YX`{)`QxHxx9+O2FnRa+OROyV
zZ244BX%j>9;p(e9bQ*J%Sif4l4$ECrdFOG(d1hN}uWL7UF!1h~!|xbe^2K=j-n8Jh
zqii0w8>BC-<>2;Mb(5=bn&?W=E~ecR5_cS5xpLm^Jf<TydrH<URo!@#?c%g+{}~hl
ze;+b#sJ<Gh%Q0b!gMj>O`%Bw<S8tlIvGI85D_6H`Do*^<Bp461Jqa_aS)LO6-B9lS
znFKB~&KFia<tu!2*e+PS^EkP#QJ1r~?N}&tx!+ZuZI4f-KF^O4?9(>8ckJT3gp&fL
zcMK<0UE%T8+V1mJ)-dXlgQUcppVe|-XRGe6(kwFGBDd#Cytnu>Lj#Gn97D<TL0TSt
zpF|$Bq{z)QskC(cd+)mJ@x5Lfb8b)GdEP5ZDL7@r;>`*Vc+&f><_1n-QOK2<#9ozS
zAQbZP{Cd#^+n%grn)AGQUh}mLMOKgRG&sl>cTFu+j5rx!d|K{`$hpG9B`03gZM6yD
zS-nD$^Tpw{L0i^ji+M8rSvrNOD%XZ5^oIK+?_)b(*#*v#_tH%YV_2ymcShSyLd0kT
zW95@yfn|A1Pj7T%{rSUz<GJP87{iIZOExBcZ+Ia0Xx@j$q65swq@T*JYVX~8@Zo;`
zlco!e;&vWlu=6-xRQr0@RLhX8<96DjJf?P;w$-wxZ5^Mrer|HlS$iTgI`f#V){PGb
zCy7Vrx?QWBlB%3`;M@Ay!pDB~p8b7V^~#!033ks;9(Wt|P0n&(S82sN$ymPv=}UVv
zF7#B%OLv@keRb-iH~p?3=dE5}k;zjYRl3Xhdg(@W^;gx``SrV&PEs_AZQSy??d988
znR$kCsu%QfzB2Dza?okH4*!3KxIM;kvugQ66lE5zdvKAjCETg$MZf9QmFktAbKf36
z68$^7NA-1GZI;T9`Bffw3qPeR`bRx{m!~VH@zi;5taH;{$9LL#u~9~E%=C<Vp3T>(
z<_%e~Yx8yCN3n-Al<F3<dj8Gw*r(>L$l!g#rswOo^)lVTt+Uzf?tEEUzeUk;?%O$+
zz7<q$k-N6|RW<MVBihRXpPpJ(*u(el*}VAz?@lRoay*_qulRMGrP`|9&6P(!_EZIm
z?QnBGv1aF^`6^Y4#b@<9zAgU9Ri0ydSU|X;^5Dw-5ACPk5LVh(Dfw^f<IFXa@5mo(
zUUSOg{!#x;(M#km)t@<^*8WIZQSte?_YdRR*0?_Y&tR~k>&rrB+2XSm(XWk!cUR`!
z_saivYJqZv%onEVo4c<ae!gPgW!p=SkA0t!Fuln=vCq%=y^oyf&h666W?sC#GSa#_
zyv@90L*;}Ag~ugU#2;P5c2UhyZfi_uc2dZ)UGrUU{`hvuA#|%UKLfMo6M3KO<x4zs
z>qUwVmx^9<<5qt6EBvVO>wg*Sg)DN<_vZYFK5Dgg>7{P#or#5aB^qo$hNo>a&Ym51
zeoMao+qKFLsy`1L=(qJ>u)@?{@?{)Hqn^6qy;pflgKqRJs!G4NucrTz=$m;llVc^9
zwwf*cYI`<3H_taakXNT=-g0$Q&21;2Zo2dRJkRUz_jIq+U95BYFx8@^VD+7(RW*q}
zX3UfLu=Q|s%zT@p+YHzxUtYhp^DcXMw69`HSC}9BcGHLRWo%;gwy)++3UL>>y|I37
zbl450pL5Ua?V3~@RH?Uo;*wcmdhhN`@-4g1{*Uv=<j3;eZ*A-!zO~DKee-Vk_spri
zo=<0A;5zx?S!dz;EVHWG-i^EFl}Ai6u=}aLwC?C1wIBYA{~esaDZJB8A<N*<J%fLz
zGv_5)M#>~<Ouw&^wzVf$E;C1X?vs_r>rZ^Lzq$Ea>W6caKNjxcUbN|+dh67Do8UEb
z@^<ceuymK)DgKzM@Y}yOIqT11<~UWN@O}M^{|painXQ@6VHz*=YH8o*N8Ts(-=$A^
zvO}-%{L)&+N3~8CXC`S19Xs&0^hx#ggK1O$t_^=uJ1yS%rgPkJ^~V~CzXi>iBu}y{
z?w?z;{iE~2m&FD7xy=0L8W%NL1FE^cte32~l({ZX_t8|Z{DbN%n3rjvEA<y}t`umB
z4AT+by1B`>;>(hIZ@z@8o-N<``P=e`+^aS7^z!C~2HcEYENdMSwS{+0jpc?m-{)^`
z?O^g0msi%e)!z59Y%`D8Zk73O`);x@ewQd${&iiNZ(IH!)0OTzUaRwU%DF^-6<*r)
zRP&V0iLV=q0#;1v-OoNdd%a+mSeuRM-pQ3LMa;PmuAj5Iv&mQar185MoAZjQK403`
z{-Jiy+WJ+m%8I5{SBFhdP}ZGzS@!ia+w`FHd5#UMBKz(=cs|jeRowFA%rst&h#YaT
zZ<AC!KcCjly;B`}){AXpH@iytuU}zh%`C>R!;a+z%s;HWH225amcph5xp#Z6uMdnW
zY%hMAx+-^yPO*uP1BW$p*qb90)ILckzMa+V=9CnCOyc|6nTb3z?}+d<i#)B~B)2gt
z%Q=6ggv`9-eS5C;NbO#C$52_~beU*t!R#f<D$LCjqry(kbE|dVT6k9Xtj5`u8DFgC
z8r7S~?mYbG&b3{cpS)(?a<k;vQ&-x&=tEI~heFTwl|S;X>AJb3Dl_yb{M-60Y`XT&
z*X!%l#g|n?e)V;5TOw+y{Q7NJX*|ct<*y8*cB+a$FMHkiw(D!~BFBY-6=laRP6`#N
zy7=%lcW(5N)b2%Rq?t0SSii1w4SV;OFFxt}t4h1M4}R{+e>CHZ#5#HJrV?qjIX^4a
z7usFDRq>zUoBMx;*7S#4uB>04@ila^z}+J@H_WE~zG-=0eQ7Pf{6UL9amu^58gl=*
zZn&pi!{g=otS{_8R3EMN_VBe2+o5(<Tsh~-syPKhdu!};FK=r4IpaJ(*Qv`F=TG=9
zW&Be7yVx<aOvR*ikz9Z7?XcUrHeFkXxzdKGR{NcQ_x#PF)24kpWp{B^R`~Y`2UO;>
zexLSydBWB+br<C~r}aMA9lhg=(^}Ilfvv|RXH1;7?$wM{rFLeCU%jT>SMi@?BXDcS
zo=TG$au08M$u6F|d~2=Xhu=r#R6oS^eZLfSlI6W*AIHs&p9Op7{0f=Bv8;XRvTYx;
zK2)B%^fNWOUuWW#>-+!Ru;*X&;d<L2%QYDv^DZZ+ZQE`5rDwa=+c#C=OkHcEr+i(^
z`S9h+_~NHCE}syp+*CQ)<E+Xi;YsKGJWb{$Oqjst?%?sNHuI0#8v()d_n6o3brR=s
z*YWr#_5Dszn8oGII~r#^UYTIvrgg;n+f<L!THlzaIIR(tc=GnRUvcnp?u1VU6*~U$
zON-Zr&s@FZxBlE_@c@36<cV)%Syw!>y<w>`N9yF|H{UE(1E;G`sQQ~-cF+DD<8F!E
z{g-yVTo)^O($+idgj~2xuJZb-E%GTjd)j0e7$m=*H51&Vdq9u#z)`pK+md=~4$R4w
z_?f*+e51H`S?KP=t+%HrJo$JftYoucn%kl0tX>KI$F}4hC@9-@zNU1|&c%nU-@T}O
zytdR)b?5BMAz_)@jaO}IzAUlINMP0ZPtO+wp3K_*Jv=kWxp>DH)A`2J-E<q63vN8P
z9_4jh=IYf`!PZ)HSI(IuJkK>b?gZbXq65{B)wblln|)fRxPe1~FMHOk{HZf|Qoep&
zmG#<r=Bam&Q)V6rz29o7e*4zCo2NE1>+COe^X7jV=^+-TDAM3oUj1z2p5R9ki{#T9
zcl6ACJCF10n)DloN=-B?Hpg~VE}I#hnO9)R{4y?j&8vAeXN;qyzO8>|$9P_1U6fnq
zvI7iHzAio~vu&f*T~Wz94suhK@{;efq+eT;`O9ZApLjuX*G((!=vD7xl4U|8!rg?H
z`^@=x)X{pvaf`sq^S-XG5>g7OeYfMd*Xf;%zZwd!o9ZmxIbSbg-huBc9Bd7Y!@APz
zEY3P_Zhb8Is@Q#DG|&Cp^W(IxPHByAKJaWoo%oj}J@XdNskbr{yqhuE^wz3*5g$(;
zExC5fVy4Hddw*9qUDUUk8QA$GX|KHJP9YabKWCnl;;zhzswDyQP8<m3lb&~XWzy!F
zro&I3ORi;;erg%CFyhJMl`F+mR1yUHuk~&<_B*N_@y+{tInS51GZ=3$99q6&Rg;W>
z;ROD?uPNq}CC^{#j>wM<JpVeFJM%VkTh65HzK^QSm7c|%KifQymi*HRmI>TYblAE#
zDe7+bj(a*y{AseRVw-i%E`~c_Ir>D}``=G@=V(Q5Hra}kOgpSMs<p2+yAYCY@on9G
z&z;dP!V;=VC6+$n-?3(9VgGdIl`D4e*iVh0WqOc7ZfoEb2FCo^*H#)RbiMsz8+GZI
z*v*Xx_2ZLkOg_5UX<y7;#u|H*F?mO+?CK|$y2-m67pm}2dA!fJ%KXjqN6Rnn@tURj
zWL}7|-4*rU$Cp2kKKP>G+Va}|&3iPf&8F9E5@4xrdsJ(yedYa@yY}(Fl~3!WmN$5P
zI#5+N^+4vX<k}vW;|m_hU3EWRK5KpBKG7e?k4#*$sXjgP(u@s!HpiremoF=JS^3RU
zQF~vcJnxV5kLxy;f82ajPWi*Xt<{Sx_f}VX>ZBTOa+<I7`A7Q4HM-ehdq4KAR9m_3
z{+-uRJ&T|3-8bc=Ci8-m|3aT`us#-g`su#UhOa!IT#sJ(swu@KjpfU_vNi9jV|GQ#
zo&RlLG5w#w`i?5!qboeFKIK--+wu0-^}F{!guGb$C;7Kxh5ykBQ!{l;qa#C)=e`PU
zf5uvu{W6@5`-GZ1*T)SB$5$M!{rH$)#QkINKhEQiZTTw0-UnUMz4pzfsLq{t{%MoT
zg|pJaqmKOfdFh$>Hmz6AiIoSBn#L}ypCWehnD(p>d8=4DB_AXd+_hXE_Tm2Fwc*Fg
zHRUE|e4p(7J*l<a+^gMGw9+_Se3Rw3LLKV~>mI(pwCxLTM%>XS*1az(Y;WJ%u<Y{k
zOY5F(-QDG();m*DHE4}Q>4`P@+vXaF#opvNlJNV=i>ntyo?PDUd|}<UU2V)Z^NcTT
zN@v;jW;M@q+1FtwUB50mH`hbu?QynMC)0KxTB%y8Q+WScyLLutk^0KHd#0<FGu|#d
z>$-FL(^s4)RjzK^czc>;f+gFcX_qt7)KBLWzYn-^#d>N_i@Bvj`B_($Wxh8UlE18G
zyEAbD=X06MK_^?<8Q$7F7oEH-+$3<fq|7Ff!+h3)QPa*b9a|!NUZr%^hud?{6mE6+
zb2hq7U5Hgah<|CK+M5zLjhowNY&dX2ZtlnEvgz}6Qaxj8AKu$}J0xExp{Vv_*X@lz
zk9}oXzRsXxU8Miy;B_XGt*X8MoSb`h_cD)XTa$NcR0*uGxMRdyY<Q~N?e>nqu1mdV
z3ZK|LRo`E8-FnSstH<pZuJ^s1>-b>eANTDKgQO?QMVY0)eR(#Z^V`mQ<-+$bt+~CT
zsK+mY$<JNHYv1CCva6@N9<(NK7M^6>=u$N4&B-15ZgyKXI_(IH^OUfBrTI4RY?F~>
zHQ(cVn@Yc${@T}6x$_q1f#m)y8A&(U4<RyrGvv0c7nYP|6D^#d|DPe&@Irg+;vXKT
z`Rb-FQG0r&GuSgHe4g3uJ#&gDv0I8xESA(bb82UT14G#BLxIwn2iaBlj;->}*`%1n
zA3uA$=uN+{sLgE!``Yyjryk%~@OUwww%r4XrFTy?IX>QgX_xkDk*PCyZ=9=q8R|R1
zX=hCHb(yYrLD6%Hmftxrg{{M=ufO5IV^ik!=RD5&2l3{fUZ%D3?x$@P=Zizr8gBQV
zx|zWAr04m)b>EG@<^7V(WN=`R-d=b%rh%0~l(GHvoG;6zi}&^wPwq)t+Qi4i_~|Q4
z&oyJS9-TK4T`>uw=d4zqE1q?G^Gv75mX`9yQb#(un#>b-ob&fTwncY|y_WEf#!r(k
z-`a8W+M;V~?oBjsek<L0;>4;;r#~|l?%r`U+c(c?(gDM_jTb_>XP0t6GvwOwy6@}f
zzy2FqVz(GB`T3Y-s!F*H*U8;KXKb)wc-nT)|H8GWua5DF7V%r;eVtvh?)4--hZ7DJ
zYm*ngxU{r*{=Aw3X`MX{Vw<0zRF`1+eQoU>du`TJPl}2!t&Gvypm=B!18aNKC8MVo
zzGgmrzq7MgSe!*5vWjbQQM+P9t4hiH=x`+y>F=^TPXrjTrk-2<y=>Bvzi&#`&G37)
zx-HB&j!C4a;lP8m851|lwxl#!9*s&6NVd_pTW<1V!7V<<6Yr|8*QBSe{4BA@cAeEd
znPV2u?aNK;tj#C7-77qH?Y+<T9#-GOy4SC5c`SXixWPlY-#^N7?iahVC6<9KW=pqC
z*b%CdykjkQM)c_#0ZW;rrF}+@!Ke7j`5vvi&HIDP+l|fhcGvl{bA-1CG~JACnq+gP
z);Ox{+tSOesW}PHH!khE8>6ffm#k;^&G?;mv|pn$|CFBRma>|~wr3XYoVSECf9Hf;
zmcHdnqYYV|XB_%G=lS{#t0x{(=3!br?P0l8^&!sZJO}0!9#|u@b>~%%rK=3jZe}uU
z_|I^p_{5h-(@*{M@nN<zKAw1QOWegfY|QHU>-eL@F0}vN?VvFE3gi2r`$n71+LN_U
zemb@5%W;K}aD#VuYPNnm_{ugrGKpm)50g-Z%=3E-Cb1?+`icHH`B?o|nC`36V{bEx
zFGq{%E6X$$p7*m|wfNwPn@x*v?b6KYpTTf@-h+9pp}%z!x!#@@Q!uk!`tIIe?kwMk
zBLevkRt8ul&$%eN{@y7e_vGuMt8zoywY(m$JRa3&5nXY+r@C+7mD%AeGi3q|CugcN
z^ERK2mMml7nO9Y>71F!tiF)wlcUs4%7_ISpz#so{P2ZGRir%Fi4|?0@e1942DF41(
z>x-n^&t)dADf%0>c``81x%yh=vsX$UgMeS<e+H#F(cZP(cW>-XO_R`KayXV9Bx|#4
zTipxU-<L~%gu0)-@I~d@+pw>J-?AlRJ(F*SUz=<4+*BmnYT{CMOIyJcKc*im$P~{_
zm+4l0EZ~&;%<x6+%NqaE^c9&GqdG)+PM)7(mv}rd&h*ja+K2xcL}Z;lMo7x*aN5lO
z&k$PnPx+%r@Qs&IlRPH5DwQxiv`*T$XsW84S@it*j}3*6UMbG^YoC^FRh@aOXJb?N
zvj@L}4y(UAC|^+^eQo=mY?0zOdmEZI=~YN_)oRabb5>w)I=tc0u07|ZU*x_le<P!j
zBlBG4%ewkUQragbEws#AY?`Yk_GAN#Ox2e)^94Qh7M`qQIIccx`ig7Ijae@*5ZrlZ
z@8$p>#+;Q3a+xtd{Wv5=PNwke;J&|dd3Hv|++&hl>AYQ1Pn&w4^pw31*uav)d~L>Y
z<pn3cF5krK`RCA*bQQ*Xt-DT2zPu6|tjEZ{e#J6z73TYvOROU<N;RC1F_6{luklcf
z>GxW==d1es_$ZO)rlLas1rfWp2l323K5x(EeYXy}pWQ8cHZa}Nq_Ral*&{6V*uKh$
zCr{+A@@!&m-0B*ZroucYDDOdmpN4E_w^~Tay0%OCZ`PU^ZF`x=7*M}!@7dyM7vIe+
zp8R^&cH5J?rWCdWZgr~;u8!=wHJ5ejX8}%2=B4Fvg7I5pcn>Rl`M%!t^2F3q$phck
zdw+PQ`}Wv94w=cf=5@xLb1z(-t;shpph?K&P~&m?hw-+rx9hKXz3JrK+p`y}_x(6;
z!?s<~S|<){P?o#;tV+bUc%>LuY@fx-t0%H9hNs_?|KQz!^Pjx@A8$LYtGYFR&0Rug
z2JVcv`FsAf<oc!d4>tZYo9y^^o(Vsn(^J0vYZiHkZv4Gt%07-S=d^G9XLvAwKbQE!
z<p*r#A`?F4Z%q|1&XYG}e|P<4{D-LBpKjehG}m&|#oXOHv~ODmMqexY9`2If=I43#
zYufTR;UD94#UI?8m|C<ZNJX&YLc$7`$Mc@;?T-I=cirOUCfBxiYCbUu{Ij&SV?F=h
z34i!ASJW76+`3bx)9l2$lixXQKF95Rtbg;?Yp=`eOnKEq3{U>sp7JC|`R}Vgrv(;k
zZJK27(fo9|^f#N?N9XA@JzNs6qtoX(x#-LBh3l2Ce^rl^%zYLaY80Ve#2WK4WY@i!
zt7D>LBhN9)*RlmRzLQ?K&M2Gv^l{ab{S~j2RsNa0ymaZ=oR|8>Ge5F-N`<9<4o{lX
zQ~FCd;DxX1lQ*6doV6agGTZC#Shu6bJi1NTBP_J=fJV4!&|}wK7o$8LvN*9h_6T3T
zwku~*%bf3)oN8CML_gM@diY4Pz1p>7t_d+2W^#&?PweT{)xX>Md3r<fWu@J3J^nLf
zM?X`D`|9>Yx##gl(G#!5F8VIleG|lJWf-Y!BWmx}RaA2O>4ke+U#%^*@O3}9Yue;B
zwLK541j2m&ERk#L7qPnSEW-2RGLuojbJOI=t9g0>GgZ@5WrV83jgz7S_wc;o(ma1g
z``YreVVCDSKg*7q{Up|Jvv-H<@*{^gsx)7@dQ;ycV1|?7r{`-!VkABk6&dzj`MOOy
z{HbN&(L}S!J11Xu@%|QX>D=dE!0xr1CED=%ZM&^OydT~@XjMsgzH%)~g4yKW=j+~W
zJsTD!9hfPWo0q)3u<^6ubM>WF?hRk3_FkxL?0YlSCT&k&^rRTWn2C3)Lf@)Kn-wp9
z%(J}rc-MoKUcucN?-xfIR?QF7*_a)6J2HSRe(%ed-Vfh%)XsY5uX`(TLbR<t*C&3i
zKh8xHl}}FM*S>LmbA|HJ4~%l3&d-ZhpEy73^R3LNDCIjXis8X8>|3hR7DY)c>W$fW
zCgFKw+=InOCf#!7))8FCHEGY|OMCJk9zWu1cgN||!T`1lNssnkcK(<mb!vhCodxoh
zKhJL!`6;#a%<90o_SMr~9NhDvb>7sKk*{WTMsME~Hi;uz;xot7eOo`iKT^H>e8)bs
ztH~k1fA;3Kvl`y+`}_L!{jNCm?H9hxTzX4=qIf0mW%;Nd;Xyw-^OyZt_c?xh#^h|{
zP48a!&H2^!qOf;o_{wE+n);chtIcf$A0|GG=f8KiWY3lvVlfPV%9U^Jn|x{OS@p;I
zhkCOQ8Ev2UeHzb1kJURm9ZpUBqO{MT|B=c*qid$sx5EYhE`B~sgoWv^@t333=ii)s
zRQBO~r*b;;o3@AxTAz2!_dmB=X(^}XGE3Lc<r-UGzN*>Fy5z&c%{#-*%idi$v9Q2d
zQQ@CWNMpI|!R|6;iKEs0Z(|>Xd~iQLw~o7hvftIkzJ7P~B|lr#$lbX<<@U{%*d+`L
z9>{zZ{W5Leo1YnHqh9iMF`m2JQ#|iK!`zs*8<olSd-4hjPka-3;$pA$bjl|K{;aBL
z8K<V+-rZMyDRAG4t7mmjhgFw(1oMS6PriI@>q2||vs2%G`h0IiwCmmwCTB60M_ZL$
z1)oo1E1YMybKR{%&#YpzCnp=6X58GI@A@)e(*o9pa~#(G!9gn7#zHq0WOC0rN<4Tr
zTP0C=-QBzA)pjK{#<@nHm?|;ppc}vX+(nz!xQy70MAB`KXI<K*a!^TT-NP#aZgx{A
z>a^a`$h~`I;;miD`xZ@!46B?lY4zMQmh1~mrx)BVPkF5VRM!7#l=0gF38o$Svz6Ch
z+O&RI*a4O&DZGc5=I^ppXIGXFN%NRH{dw{~({=&j6QO?p{G2{FM_vCpbMry=?d!B8
zls!bBOzp{Nm{-AkZ}zPdPiJKZEnB*Lk5tX<0+or?d=BrjPyX>0ie!^MD7W+E+Wlfb
ze%{J7^S_WI@p9Xq%i-6g{>47|{3cs__Z)k%Wu<qPc^d7=`Fb?FqWJKqSH;H|RG!;v
z_03Gl*PFuNZFpSt-9FwATdMeGY~S1(u6-=r)Z>`Hw^Hl$)`gdKPJ4(LNHX+gPx)y2
zCG5<Lo+aPb-WRXfvTCYx(_#k3xY(6h@i`N>3;9*eny$TRG0Rq=%$_A1bDrN`8#<*&
zCT0FoGc%TiNp*9zEIVVqiCoez>^su)Sn_S)#Dli(!Tu6u><dg9nI;)ds!HqrCM2-#
z%iZlvb7c~zH_ksaHRL(-@~T-nIu-vyX33q<-R`QOkkTC2{xCMMhe?mm$l+)~!2)Fq
zg?U>q{HXi>CR}q;S@~nNzF9(7&mGuV6m4mFj`5{GkJ-CBm6mIME<18FepltQC7CV>
zlPX>}W$bpjSz_AKGUtI&ll7HJUWeCPS~A;6txVLITGrh2`P28+mt5N{k1-s#T{*cr
zuXvvEr(1`M`ga)=#_&xq-SnX6`_b}!2GU!$F%)q==}Fsj>|X5T{|sMW#xKmg@0@@1
zntaw4?~W^p;*<9JU)yA(yVkVjUtsdaJ`P*$6<cqw$b8E!P-Gp>z9QOeZq@58J#t#J
z-h{+`w2gI`XRP$eS}^o^!%CTwmv2LC1Xr*9x__c_)8Pi*{Ig<pNgPXN8ofz#*c~Ip
zD7&gMb=IXvvQ8)e>|Qa)YQuvkGF@FMpJwD8e;6edI^$}p*qeKisSnRPWFB`*4?3s*
zO8m{bmme=5luBF6<E?uoUiF;Snl8ih8`rO1_#=3seWR&9Z`QUz-^>**C#@{l3zYWj
z{AWnu@0|6Y;c$O<{fA!H0@t=>HT!kX3G8^`er<n5%9Upy-KLxFnw+`v@Kx(sFa5ml
zzA3bDe%$xwPw?OM^~t*V4_xn_+n<>8y-sA-!-?rVDUOp5ZLQgxX}D#MMV|4c{foW#
zbG(!n-Xp%Q!v2Wa#5=d+j$Ay=vwG4_i95CjpPT*={P>^Yq3-*G^4;@PKjc0#lq$Wf
z5@hi3k<H>dg|5<ElPBAw|1->7%6(8{d&#%|3`(-{5yFf99F~9H_5FV9e+FsY8pa3t
z;xDb*UU&QYd(OM1VYoBOO(O8u^^;}hZ__QF=UIGP_v~=6_g|akJP)g8J@LIOThz7n
z;;}ooJr}%kbYl{b^s~BtA)fJ{{;PdV*VdHEYLzzm-d0s*JSEuN^X1VV<|9FSPbp0*
zcPZHKb@fBo8l_pLM#-{;x0dbIxYFITEqSS?tJ-$=m+Z&oo9)DY9Q<G%`lJ2f>g4Q4
zyi$UN#ZpC^o-;g``SNVP&DR@Y)h4qowTvg;xqe|E<KLxqihnFW%v-pyqB>ynzY|xK
zv~|~>Vf^56?9JDgaiS{^e7fzWKH;?XyYw8!Y3gbl4<8FzxvJ>p=1;=mvu9Pme^pY)
zxaad)E<Mf!`Pc7bZI5;trzoed%RawP>ePoj$Cie$=C*pC7k$m2@-OX9Ti$#}FVCa%
z*2>qZTkCGK%%AEmu|jp@<ELTF+bT`3*v@;RI7O~NTK?QZGd<CL0XG;@u1KHa%qiwy
z#+oYg_2hHOg*uzg_OD>Rw5xHsc>GNB<lpx%P0}?KnAp2zt49{QmCmVkl7)T8mU_p}
znflb9C3$Jie}=R?ovPv!md{$ZXf~c&?-SxF?HI9|g<FDi`?EYgt+!huV_POH-eCLk
z;%$v0!+Edw$UhH%yFmKJ)F9@P_i?o@bI-jhf8i+-!&Yj+%%Z<G`?lkb6}DUr+{Gae
zTzV%z`+Ms@gK<=WS_QMBhw?_zXJ?CU9bf7nds66z;<1R0>izjq`!jRa6-jTac<I~F
zwB!L(h0M3r*UJ9z=!s9V+j{Qaw)7zHg-O@$DwoPvY<#SJZ;iKr%Fpc2OyvSq!IO(x
z4~9N&zLK=Gc4^b(wmi?k#=fg&yLa5{x@J5}=!Dm@3v89|16ldZSKe9P$D2{9d9#`M
znCFWuwMK`Ul(IW)_F8XR&Q%_E>ekc<=$ZIAUDh|Gf@fXh0m&Ct{KvNNSWC=gi1;{f
zEAyd+AKaeSImo`=rFZ5*LC}STwySgO;(6-ZR_&e1yR(5^X5y`FJ`NM77_OR=d~Nle
zBThf7o0{)@k-K_P@@2Ap%DgovvQ2I`_MX39a5iw~_Anm?#^cfz$A4VAGi{IPG5?)E
zSKCz_TA-}Ze1P5ZkJit*Z+fRn+)rkEB=$38HB&{<9w{k7Y1XIFlef#dW}atz{><ox
zrG&+^C4D+4%HNjVzVh{~rMIuozjZr%cC3xE=xR7_Z+`xq|JJx|+q9f>wI?<$_@H&A
ztapn{gX4M8t*JS20#1*M)7AU5`I7yU7g|qLYBFoH;VGURDDrvAN*{wKZL+QrsrNYV
zFvhV}2T$o_dwPf8>G(SBLxGtwzod%%+;opP2>-oMsbk#uGBUg%vD}br?PZw<;oeHq
z+|w9V^?ZFD@x6d&(kVt|_1iC_SM2Ri>)v=aCc3F$W4`I^vi`{(hw>yXpMO}_m%(=F
zu=?c2u5-J#PEbfYk#>TmhuOJ1eYfM{IdjD<X7|XoRE1@`Fup!+BY16_zCyzCh061)
zuX(;Ryde1FQtzWJR<GRj#5K=LXc#g5x*U>w?4IMxusEjI+m$EZTFkH@&+0?*t=%h6
zeY5kH<XiG>#cscAcWRBp*FJSrWD)W>@Ktn{?8L6WcY64P!xVQYY*1|f(DPVr*TdTL
zoky*$r49M-KDM`zVXFF@?RN1Kn@IJxY&q$Pd!02I<}hW)or|5sP~rHQxohT1l}e+k
z8#gzyMwBqy%=@}GpYI#rlDEH#Bg-<_RPGqwzqM^)(n2#)4#Ott$**Ik%5AsO44Qmr
zo@sF720jagqO3%YN<O<#n+AVJ&x|FLKg-@ccyjegsYwSL4lqw_o*Z#1TBUqd*p+45
z9&5jUANuYQhl<ut+i&x<6FuY&nN<>ain5j*RSDxVygB{aDji>qH_4}DR_Ac<-Wj#(
zV#4$jyca$m%{-eC@XnQ|e)px-2G)!RWCV<iT^4mUZ*+?&Z{mD>`|`C#pAM*Yz0Lnt
z9lBF+Vo}-iW$sJe3Ko}Z-8g8sbEWqp?fJ1jKc_~du$?PxJf^jM+Unhzij60pZCUOX
zKh4P_=F7jxRs5WXtL8sUzBJiWw7S=F!X!REiy+HiR~{E6Etn%X$>V+KNu5*DHboAr
z%|5N<WAjd!z#gD2HgiwZ&P1idjaSm!UbtpN9um+$wUd3r>%hpwUyMCP(LL2&mphnT
z5<{mtTFQOxnLD?yWA(HJJ#K+r+E)J=I8DR-KGtrrI`i$an~IC?(ugA82=hQko=x`B
z!3=zif3mx_ZZR*P?6=g7)22XbUo)fAe}+BjXVP{o`Oi=&Kl4(J*X1qerGI2S;?ND%
zdz7<yOGT2ySJBVU+tnt1dHtRzu9^4LGw-C+p9^p8eRVq6TY3wh?3~A1$Cnn)7q2m@
zxnbkH%#HQ#=E^>Sf(NB%tD}$nY`JCgpW(21=BlXEOV6H6a59v6C%5(dt7$<m!!PMO
z?bkf{GHk1M%f_q1f!pj=7MO|m$UWM!$GKE&w@i4FLJQ;k;-I-*UbiK<w;VD)X8GjV
zhOLsK&6>})=BaV+v^>8)>v{f@NXhNRU8ySRelz)ukA~kpE}^u>yTL<l-_}U?Ga)=x
zm+x#*^!Yr`YC@JJ`}&t*aYiD15pq{q7T=!eks5YVx9`d^OH-9SbCPFu&yo4IAj7Ee
zP38l$!sA~3mQ3^3p5MzPGQr}p#cQ8?{vtgF8G$FB&3L09c+?~%c~07rhgBB^?!B@<
zr>Wqw^v{kWyN?f&FHO^{JnE{+=G<4S`ElLj?;HG=N_Wnlm2m6ebcXB2OHXPa|K1Rw
z-FEr-B*7WY{nvI?l$sf=DO`5{*m{?qSv%Rg^NJaH4tBhZs%QA4^Uvr<@4}ZW>?_M_
zMY8yn-}7mAeiS`zawF~J8|@eW8Gfk0YyP|bw?jq1rlyH8l}rAzWv$e&l)P56<>v35
z4`a1-g&i+{`4N1&>l#Z3;~R$cXXJnAhVa+~eppq*G|%@+Z9!3F_E)uYIWC+h9`CIy
ztUs8x$L`kh!|$12zt|aT99WT>VBDziSpCC_S@|<A^*k08Nvk`(>r-@v(t*`7OR_()
zy*?iGZEpIb)u&}PPEZZ?-7QmcwkG|zWyOx$Ka@@yNUVBr%Hr{*-LKzEZP_I7&MBRp
zd6M?$sEuB0CjRo3{5^5ztLfsu*cOW1%MzKf@&QAbUB#mvxp9x3yVbwzy?T(qVEiMT
zf8~#!4wc)=3ljh6_arZ^+_v+P__Rmv*-fALzqVVPUm9b%ZO4*_)tmQzjN6}_E_-C-
zv5ttZkwzhXGbA7FDL*pLbkc_zf^#NL@X6o4ex0^{%txK=S|3-rD%szQwE9~db7G%e
zvZoZs<vx+?sTQ8^H=foyoiT6nL(g239}D(g;mKNIWG>`>S@dj;%Qcg=ML(Bce$%@4
zyr)XX1eITXQ%~N@_Ir`6-}v{=vz51Ee_rN!x~Woq)>7Bi+YT+$ve~oI_-l4$%JwM<
znsV)HlU{nQw2)Ajb$B1UZ(+7{^#1eHU-oA`6FU9o(q=w3<5_Q)n!dSZqxJSw%&|MX
z+e~k9zHM8{dss97Zo|$4&zGh}oH!t(FL^$yX7jeoH~oXM)wyj0c23=@zxPyM-AnoN
z*ZQ}!*%t9L^uLZ&3wXsJeEHTKJud;{i5D7gZ7zAY#%uM;75^D56h0YVt<4fY?K!Ec
zjCrltCCyL?$#b6Py>=_~pJdQD^>tm^n>V><&#q2fdjDi@;rAUUj`>#YZ#MmNYUQ&@
zZ;B_>dwrZ*yD5d|`ObCg4}H(s?qz&HAzV#q(xjbtn~zwWRr_Lh;z#OQ?QN+Or{wC0
z?w<8a{lKl?$;Bs*U92nW{nYyP**>oy=~W?G0+&7*urtglUGIGLpKA2WYnkahyB9g}
zUTK*l_alC3#fIJU+HX3oTFG?%t@X!UzmH7n=lYSC9r4Jgd*;lI%IQDcmuWw&7hSe0
zy+Zx7%BLF(jyb55{<_At_9N4?_m9-Juk<fE{8s#uk%on|@uz=HdyVcNm$F;E)M>L1
z&#N1U*E`;y^(*4yuT6el?{_{bcH8w`HM_)OKFg1NuMb!K2zt|aL#4x?)qiX4<KGq@
z`?NmB&CHjHW;w1^_K=OA{dU)n=A-?~;_kSYW=pN<I{aMrxKH@i_)YOWeEq6(&lu@^
zH+!%kZmC;wLsr(67F}!U#89`VUcbIr|7W<p?j8G&g9~msojP{kJG=JA>#c3|%JFsw
z!aTiZoUwdizxRDC``gJM+26*?)F`!{I{i&Db#`&_)*H#nAJ%9nl`HgYIAHVDZt53_
z`g@l{t>;^I{5|UKT01-b%66F?rU&Mh2W<JbdW!D5mc-P=?_}IHQTNcBpu>gdJYLWD
zns<+3598K;3uXJxbuTV&y72T_5qCyoXx-X#6$e%a>~mlcSTJ$^b5D^#H;2=jFW4$p
zrnsb9&sZmI$=;y7(Cu~N>Pc=+Pu`w-%rd$E&}=&?BY~dB68~N<HxLqNfBr=wg|Vym
z(ZtZ%tdVXWwnyWY-E)NY_MC2RD&nx6(PtQW`NKi)IqC8mPr~LNYT!K0eAVyXvd!-T
zjK#DM{1dY{|2RrLE$ij#*qM_xxtw{vv;WaHdn?&(^|*h^#9Q0m335soENAEPcYYb7
zr+Y2K&&|N`{N9Wu)7Cs$>G$4w_6~oYU-OFC17rA)+6(iV9W{C3`MLkhC(XAnvM-qm
zZ2RC{s4lo_dQP8%=;!`U{Usm8R-3He`RAId<Lkbgi{8$&)BN<J$b9<b*i#X6=D!Yp
z`OD_}B;KxQTaRaZ^$*<V(6{lnn%XesTv4Uy+g;)ZZS5UzsvbM0VQyAkU7NKtC~98t
zif<mD{oCSst~%Y1`!iADUV-JW(ET0vjQYg0GgNMM>}H6wi+Wk7^y8VX()r(ZCtQV=
zIg31A{&oGFuV>Sue@`n*@?ZHra{HN((5=c>zDDLPP1C7-z;|O!r_4t6<tDvm63<nt
zgV;}(TG(w-$yjr8Vuw??%&)R#8}A$_u`Tx8&G6N}m8I<*|JfVzUS@Z6E+lL?_@MdV
zLbq$T?D8JW3NmN=S2Fjw%zuV?S}nfYC!X^TS<NOadGHOdJ9FWL9n4!}!dROH=TryX
zFi8n`7u;lERhyme)#0i1q`~uDw#D%|bBb?^CMjI-Xena1_wwbw@G3uWZ9?xsl`p2z
zZxbHtaeiI4_wxDWMw1E~e_nHrduF1N@a1ntZq&og7v7jePth|v-1S1{*n@3%Z&;{&
zJX)|z_k`!RK1T()igg#47`bt9F+QmNeN|aAFS%l6_;15wMcOCcN$8%G`y&{)`O&mb
zUp6f%Vz+!B=UDbT&*S^EMaMRVS@rYBZb)dCFy-$xS-bxwhsCN{GPm;tet(Qzw=(1U
zudJTD6K72ex2G4Mv$0>XZEjuf<R*vpsZRPOKbHA09PSBkzvu8R+-FI`%13*nAHG|r
zzvaH}zGOK*+l*I2;o<7@gyyoxT{$f|OM9t8^0SjFAEU*m&HgT`(C78!>zd4fqmy==
zuzhuJm*lekfXjRQ^_o|`jCwcU+PR!rSy}PeNs*={b)mnGKd|qf_MbuMpKL|(Bfi<K
z`#g^BTb{R^RaN5d1ly{ArawRaR{q0zX@7>sR$H-GKceDvcTT#j{^NLHd`#VWd(Kk-
zrhj}Nr?-7|R;gN2Zn$gB@*;nZe<tf*IC^QFk6S)J$WM25#y7hS(JR*L>e@Iax3M}-
z(fEC;>iSduKVs~MCS=r0nABD(D4M>tGxMDOZhFszo8OOVe-(bPZt=JO4E!-s`wUrT
zJN5f}{rvuqtM~&$P0Zi9d8NK~V$&l&te)$1SFq^3xTpB1=O5POzTcH!+Z(!5Ie6KB
zhQ;>$Y0^^+9@{U?{t@?u^U&@m!hPBb+isjP3u)}~RyVlI#3v&2+%|jaYU91K<{fKn
zb{0!D$)qb>x6ih}kuS1-z0H?(r$VIKI@Asr9Y6mtrfn(zG)L|$X<J^doON;D!H3>o
z_iuDMzT%j>sNBkwfRl5~su*wI+p(W9TUA}qoXg+8>dWk>zkPS@c;09Kx3qWeaa~ix
zKk5nBcC9ulifDWA#q^!w%ijyyYC2_BoRpET`ozoUzd4I@ch);))m`D+UQRo$yGBjN
ztbp(Gfi<tb+v+H9%AB(A(3*3036?pJ_qzQGv$(bV%KS%iTQ924*Ev!+kK^B#FPl;o
z8V}n1t`j{qZ@cx|;`vfVjXM;NFMK|$E!MPq?&=AZ>dUlO^_`x(#LUs&;BDY+_0OBw
z6$|c^nr2Q-?*Dhbto-io^{4x;a=%<6du~tjob;t-!I@7zb(TgX_mr-XI$X86@w~d-
zzo}vS7WZB}wRSx_53eWhZb^?cc{7XSO54>o8?1ZOyv{?}CN#a#Stfz`&R5aHLArCV
zY}0m^d%N+i<22oAl8@FMa+(+YR7PlT*0#%snGV!@O_c4aRDS-PMe1{wTEElWUJn&E
zr{bwH$(Ob~p6HRl$uNhneriHx%ACfN3>&|!p7wpEjJ=sBZ;#-)>?ZHk*23mNu}ic?
z6%x`d|M>dL?EbJ*$;sdHmA2Bo$Myy+#Xql}Si-AedH(E#!e1drBQt`p-km<z@%*Xv
z%~z|hutvI{3w7FPVbi4f+VEkZlg8;(f6L{@lZ+1Vd~7};-<!|t^Q>#9j>iG6!`9n=
zeKU<dd1QzC&%*h~Uq|Um<|IqJoS@l!+D&GK<a6z}u^T6OJ5LMwHRWPo@z%(~a~Afk
zMh}$@8ucZf+n!t<v_Q+zm9_n2nP}u<z7RQwf8Voi>Bc?sI<ZhEf?X?SPR(78ReTNB
z9+5KJ7kycq-Qo05wp{<C=F7gTo|B)Qdg>_g@?3WIox83X=?d(Xk26n5EQzjZ5an}t
zGP#L0+At|-r;5gd4bMNWbV>1OU$i~YbGPW}yAy9YaBG%I$ZMQmnt$6>?ulRXiqi$z
zdIHOA4~j<Uv&h*^U7vFCm|OU>yg4OnChb-|cIv2xLx0(^J2y|*Ut6o7vv97%Eu-R)
z(8fBBTWpNyEY^C6i20SXJ!ZdrZ{xSHs96_RtP9w&<;)Bxj>P$smxj%|>tyH0J%`Dy
zFnYCs^Kn%+X2wga&vHymxzo~oO5?4&UZ>n!sqTfRPNpsIZQmBYaLw=4!OsK^>|mIx
zx=ZTSyWHE%<tzdPtm$V{nrv4~w20Z(M|C={e0zCyuAkbk<7avvGuu3v^(^mE#8b-v
zqaCbO;q|plD-sqMF>f*E3AbEvEAd0KboJxrh^^_>vVFU<gJ(}Na5HSY)Au#V?Q}xZ
z?wt(Z*J`imn4oZL-;%46$q^?VJhdv%SKXSmZ^h3$HETLH7?qdAHOzD6Hd6^ZHFxLh
z8<$mYH8eQQ_i9<~5#{*l<DAA@d#y4}YUEV!zR0<CwoOu@|I)TEx0k9GPqjT=vM%bz
zgqiHcrBAM{UGl)1Er88{FH3b<n@Fam@up3CRKs-)4)6aFc6IBeDO?hHIXsVlhD+xb
zl({gfHmsdpdCpKhj%i|y(B?Z|A36ozm35yNxi7)rrutgz&Paou2e^-4+qq*sPpY|)
zW5SNt{l!rqV^`eWT0XJK@|f*w>*$3SUTo<-`ZJv86ytH*{|sDRk8D@&Zs2#mw@_T`
zb@Sm33w+F;EAtt6t`6U~+%zgId}GwZPb=zzL<H{cSo5>&iOk121zBG%X|yykgj%rh
zWt*kx9eC=<yiB_;<g3k3b6yYCxr@>R7@xDtu3A1Pe1&Se&pgd@hs2Z>rahk@weGUS
z3^B$Jb`O8=k2-hgS<#i^os%=z%Pf^`wRX#%xKtz|lhW5VCB|e8gQV@0@>Rwj4!JjF
zK6@Vb<qeto?$`#UQ1xea3$C>;e%u<fKBx5in)3#0nk8fY&0Dr*ZTCCr4Gt30zQt#w
zldF6!r8cB;9K6%xaPTi{#!;g~d*<tW;?q{+IMX9o@L=NcrLOC<I#ZL%Pi{<A4exuj
zX}RyUNnKW2*Lu0~at?iT+pBwUl6Iw83rhpP#n;vM`L@QJUHh1>VV1l+NP9L%56>pK
z1z%*grdQMl|2wz+>f$@MJMS&pcWO$g#ZuwVx30=YT6(YC{m8a9`AWLL<mT_(#r;dI
zd<(bQ8Z4i=XUeUBFE3+EuWj4DZgSI_<?s3qtv<ZgGi}n`-%~z0zI_`u`Bi$hwxrdy
znYt6jrZY3eoMe=nx%9)Er4OcE$`L9G?kkQtxBgM&`mM2-PMqEHXQvH+*8bGm&P&fN
z>K`#&F3ZV!yj5C#OB%~_mHErJ7X4~wdXhXp>V4^q$9rApDW8-~UB?{l)>p)T`pc3_
zx;a7po$St&J>Iaay&zOozAV~{rMcj^O-P?}%(lxD=X-^3jN<S(sBZZ-(4#fv@ubRU
z%RYTN*!cSLt*ICKJnv-Qh?Xo`C#~}2SFl8KPty7rCy~!Ra#I64nP0y46zOO<s_*9>
z=zVqLm7tUWhKT3$ESK1AX_@cy`_jC^TXWkJi+6-<XjtX%W>Y6Bk;B*2n!C37tk^rI
z4F^xyT-mTueVeP{4c5o|3&To&ly6X((|qFVvd$M7Hxss>Iq?19TK_E_j}AU&R_HqM
znQ5D7UEEjEw=XK1R_7j<3Ea?ieY#xfv3Je(Q)_4cXJEOsu`j>RD)z{#vcu9R<Zb!$
zv>)|MIxN%md;UMpgBd43%4s(g2njdw85RFo?d5%c<LS;z>~Fp<Ju&Hw(Y6O}j-sFD
z{}Ew6nE8?Y0ee@;qkh#h2D4X)6n|c>aQ)&m@$<3^^me=1bA7(wSuS>~Z)T~;i*+ik
zj}MnvN~}8>ylLWdx0+2pe@gz&uklx@ldm=_bN6GgWwW}zG4jsdlMHijSDbuh9B&u<
z@_Ia1ozai>!#%qL^KLE*mksQ5WdFF{YwOigc7?YGY@WzX{rSzVT{ZmF*7TPVI{v02
z)16mdTkpH=#R=_s?Y7xxO7{j{^Hk;$jCeYG=jvV8_ErQQX@4Hvnoz`A`EGe(aY1aO
z?r!z9#fRohx^io6$X2y0`9TTMO$R<X9&=5JxxeT+_YQN}tf@yPy$hU^zT#{U<5P8p
z=L^@p2;RM?UutREy|xKE6hB43;*D&3k}H$T@G-K$SyP(x9RJd6*ECK>N8O%e(ZySP
z_AaiH%B<O};nE^xp*wHu{BrhbN48tau1Xe}@Q}?>W}2<$_TDE)oHtEVo;>TAr{hhj
z;#kQiZy6eD3w#xK2t8Jocq}TiT`na-lObK^N?cZh!}G4ymbyMMyM#<;oOqre=s79A
z=*jw}W(tw~F^?B6n6Nyr$d=tJ%y{p`x=VQrR-P|@9Uhgl(o(|WL0C{z_tpxF)fWX7
zgD>~(c(ief*o&p=8}lwPd}?4ceQ}TF!<<`NUaS_pJMs4X1J_j_-WC4s^pgGiuHt)p
z-5wvk@FU(gR^0E<Jx}>xKDRd|GjI65UTM#g`#R>fKBi`0)8kiGY`cEwTj$a!JM{zM
zGfLU_@j5Sk6_{mE$+c#N)0(B59KQZpeZ<sXDDO&~o66_ww!EeHn63pq4vRN(VrDR3
zZc}~j!l7fF#`l(Y#Ix|FKbn4E=bJ09eg#&(d2Zdb{T};1+tnu)UCy8OB3g5bn8l%a
zj_WVSx8CF2{IOfwv&T4k3s243mJP>0R)?8w|1JF^>-ez^*_ZC|+TBx9$+i(vRi1o4
zG2Yd0i|wrE)pDvay8c;z=f0^c|JxsU(Nt1bZ(XEM&7LCpnZ<EiKh!_^yZq4S($eB$
z(*vnLbr;!J{;t(l{<iIs@`e2w`NGF}vPJitWVz6C%xuPi^DpCkd3u&J@LA8>dR<3U
z$0c}r@R>fdZDNa`-j&Vot5bNj&*(?jKdq}WlIlmYR`@CP*1fuZc^>-}zSRpNW6iEl
z(D199BlT1K&7)tZD)@EW++|<C)W7*W*f;smYT<;R&U3z=caFVx(v8dTrcB^ktEn-|
z-ral^=d~h%?a^|bT8%Dqg@ift4Bv*?Oq)1iC0EE>iw8+lT$M!m74-PtXRUCQ&GQiw
zcT->SK<4VfoSIG143FP6UTbqJVLcI_e4|b@)xlx*X}ibU849oMx>DvgVU}w}VsZ1%
z0yZ{w<=3x+OkCRHqLnR`mu5uYJR)I|*en#;zSQH}(~C`i-~8F{Wf_#d(0BKp=kMOK
zT{>uF_Aw&pzzL(>bHlHsi(Ze9*49j5uwj^KBljmv^-Nrx)24|H-i-GzzYbWOURK2&
zQat(K9?ehx87kb_Z>_Rn40EcKEu1&?l4s5&(TNk@9aQd{>h<cPQp?Vh@sA|dESc{V
z!*BBO+e;h!LME%W8LQTDo|JqNmVWqrlWxI>xcj0__gUL#RQ}1VQ>j?Q%k-bYuVvLn
z)g=mi6)$H!OaF1dwCrN!VfE=k4XbuOTBUnbUa{9Nbk@!<o>xuw^F=J(+H|C6vGnv`
z*XRAX|A^%@%Z7yk{BFVD_ns}DSkYeEbzb#YL|@OHf1=Oq%szI`nb14uW51*4wsRUs
zU5<TB+o}5W^khw&>(aUh?$za0fA-nCzw&8O#N@7JDiZ9UmrUHcMLpA7xVfQvmU5Ee
zeNh1$p7NCodp7>%4R;h{W@3C*`18_(6>&yc5pPfF-Fr0afu=%=d|lgY+20&&2X}m`
zU1e{sW&LYb-TNtDSh{+dtrKS?^&6FDY!%dVPn`EPOR?2@6JN!u3)@d0F8;DwansIs
zwi!vUqPlq&l&)T}Y6lP7`=~S9rwASYV*A=j{0`fl;`c#+nw~95u-(jL<nVy&S<2k0
zcMMsYFJIa|DVZ;%c}v&RukIP^V?7S2cU47r-geIS+%33i;yiz)y?l~0GA~a2TzITH
zd`jkbSJ@(?;<$;+PCm<A;rLy0nfKmzJ@-Y<+)tVyP{dYg`s90$?_rtp^?o07j=#x2
zR{28vbXv`cyE_*h+h}Iu{QH4*O8D}ZOYTGp-j?Nf9T&M+XcO~1?Q1m_KGQrbndRs5
zOsjm}`(-jux7IR|?~5P4TW0b%(!6N>C((8Hk4XjHbvU^>gSo);>9lpf@|H+13_Hgw
zt*Bm_d@oNiz>}f)!rFxUj$7ML?^c+%Cv4yB(!YzBA2j-NWW|dt=@~|z%1spuBid{G
zJ^xOt(~J3|@MHPXtc}}ruaz1p+Us5Zw5^^g``hgBjT?VVf3W4M$+F((yS5lb-l^ZS
zlgs1ntbg@y?;JMZ+wpkS^;i9Wgin8K{CD%i96A20dEIxS^c3_Czx&0t)zZl;P<@)w
z9`(&u{Wp~#CtUyIy6VNOSxeWg%(cE5bIABe$C1MLKz|;q=KGoA8+E2#7ZlaF)8;0T
zP;d1^_^6ruhXwx`a(Ug}2ev(u=le13Y2Jf*Hyr|%OJzP@Ut4>0b=FC{iP`IJ3#`pO
z{r#tZa_rRybEaGmKEK#((L?=B{~35^{s{e@U3V_rp25x{JIcr@++%NY^)e6kQx^@-
z-TAfh(Z0%0_wH^utiIfD>hHO~YyYrs_`7HyTg>ZQUMlyLK78@5%t@9vULaZWXH)h^
zrFXim(?TE2N#9}G>Uw6X-|t^@L)1_Foqc=xEb~8F&z`BZuluL19=0iER>h5?<=XSM
z)*s4J*co8q(>Uw;$Flj~Dla{g5iM+!T|Mu+)!cOjQK^?RcQrB91=VKX`eR)&eOtt5
zBd;&A+Q+`mX5{7!Nk~?{w41+u*98@qr|t>9-oDm-r`)qk85sLK<o3S4Vki09{+8JO
z^oi%^i!<;o+w<&|!NJ|@i?(JTlG^`GZ?ni+#Xiye*?(`%n)s}5>BZU0Rg+&>tes^z
zhhgW}zrGP3#v43dIG4xqX<eJ8ylZQp$GNXl*w|l(&0~JH?P(n2LEF{mVgtWqom5Mg
zF#2Ti%=y5<e^WNz+L%9+S?tN<-hES-vgAn?%~$+=yl3*;ptbw%{^sL2=P4;4bx-SX
zrfuM)YqL9~9V{eIJ_*fSBO~N+n0Zo2$=aK`2cIyQ7f-&>pVj2yP;f*j<YRMq-ime6
z?>C;ge{)Sb=lwZhtamg%nLT2Zn|l3~_7(%b=4Zdsc2+;UdFb7_2)<=IS1DHoZoZt<
z-ILIG;_+>fo;EkdW0&mtmuj0SA4zFpUoGeA*5V;yey)Of-m*P6msJ`1X8Eb92yj?f
zNZ9)76bs09ms(2uE6Z(lUB>V{-}0c`zpY9qrFx86pUktm&T@6)p2)SiRx5*d7uq~u
zu$Dv5u}E~2yW?fi^HCnV@2ezMd|!RqAmXyT!O2_JT_;_oVs3cOaWm7qJjq+QA?v^t
zj;6P&zmjcNv-lJ?9AvBHz5Oz1Nn>LgtHawlP1+Ir0&UC8?JhrUXPL+6wEn}DT&<JJ
zyf-CIt-H6}=5yquP!6+Wc6n7_SBgD(f8#I@AG@q;iDs!$^o=b{y$81oUP)f7b4GT$
zj+^1xaN#^lnZ}EISDrZKaPYa^T-JQ)X^ZAPGO3vJv{L@)t<^R`C*IzeU$^gTLGA?E
zqZ{XOOQju($hWll<ePbB=9c85#(q|-jz)!fdoC+WPvvgAx7R;v&&M?htkMoo7%W6X
z@92kdc^B2zt~L)|xLkGajVGZDLT1ciy6+rIe>O6Fuu5BLbE<F}*Xrx+OpE*8DfszC
zzvuaK)F*ZAnOANvW?d|oUD8yZB6q(xFZ$iFKg`>k3?syZ7S5?zaLh{Z_@!;RGbb4t
zPvt(ot~jo1Nrg%F?PAZXhc-kUw3MG}<hUiZz^!o0w`DqwA~iSi1N@_mB3ke9OIoZb
z47>14OZ1X!^oj06ZkHlHf0{Sd>Dkqk;O~ur2V|c7njE!pneonOoyz1(6K?h%SzY)m
zOsLC!C6BYEcek0cP^<QhYqoE@rsgzmx8)bTdOq!tLk!b`c?=J(TJH{g`e2<~<$33r
zOWrFlye_qQ_U+)s0}RP`%GT_jZ4|8`vHsHTwN7U}Z42yPzRMPSbYes9V$Poaz=&hs
z$=$-ib7i`tQ#KnY^hY(Hy!W`Ad*0QHcV4av5xnq~<*H=P&B{=AS?y(}p=)YhFS*lm
zSnhJ`0p+z3ZBDBv?U6~TkDB=K_wj}-)1JmjmbSH;R<q>hNpq%`Wkz|uZ*@BI^=EZ$
zcGhvZq*k7gp80DNZZ8aw?1*zXVDmA$te9oOyh@4JG4I0NFI+mbI;*$BvtP%P_wCv2
z+c9(6R5l#rP+nTRD0Y?cC(Bp0tQnD~PAxLaJ!mz5t+%L;mB)+ZxjtI2Jazm}Rb9SS
zyyKlibW@kD{jn9%cZ8BzZ}aSqobvZ#SeTnzxboAJ=U0AN)tvdNV(ZGHPHiDZb(PQk
zSu3?x{5&ji+w$?8t26nepV_cJn6<*|#H#-cW+GCrmt6|CE8BHtWeIazz|Djr_jOr)
zaVEEzrX}}f{h3%fi7koaML|K<hR$tfkK1J#C6^T}El&xP*PhVMJIQFzv(;YhWsI>4
z{v6<$zcjkP(t795O6lq=#R^krFob-)V_VDXGPn2f%0LlC#w)v;51eN<tux{{p7U30
zrPJ+7#m0wcBir9S?O@@V+_&|tZtS#n7uktR^Lb{^Y^#uYyx@6rOnArp)GPVjCyutT
zwD_(5y6(}tf4atpFMB<8J=2`kc-4Jv<&x=@M#63C@2jrwY&l%5dRF)RtmBXFR(^7S
z=rSp8y)?f<@r~=+E8<Li>$k<vU93K_>%yduHP`MQvl5dyTl{P8!AzOQWsWh)TdTrt
zw!BNpteQFR=3;eeKUe3K@mmTutvu$&n{eaK&+ttPL08~hHGO)qW`dtp$h+8GGtG57
zyVI2~t-bk5O?SC%)wS9?J)U3wW{FH#oV?)c@)hTfWaoU;;Jqy&dNyl&ny07kZnjmm
z3!03Mug_|WH1ZbSJu8-N_oPDy@9;G(f109haq{KsP~B$?^QV-)4-<0uWO?H51-?VG
z*djUiD^Id|Qg~LUz0Q%{Rx`2Y1D|!sj?ZlODqlJax|JM|5$>BBmU>vYNBC#xwWQXz
zdakuvbDn&$U9qj9YiU_ezyGxv4iA0>-%0$b-sODZl54Mx{92`k!?R*|_slbNP?qVN
z@|Vrdlv!=gDGs(7^1Sc;c{nW|lr7(=l2ge%G5qb5Pm6NoXY_4#`KCTE^UV#J!men>
z<ZQ+rbL4)mP>G+tu5OCW(iuWUnvFXdN*4WU5>vf%VDi`X`|TghEwlJ2vT4KbjVst~
zE7vzXU|q`4XB@xqKf?#V4$-aF7aRgkH0xB!9SHkkr`#=G=gWWj%RJ|0<;hzL=ghf2
z{g0#PlI=6gHn1eK{F{0&I_}XqvwPA#h4*&Ki^M6f<}_O6D8W2A_H*WHxv({Vj{e<c
zBdFHDKBLZfTg-&}DZ8``xBp(_|1z%p;eQ5E-`Yf(OpW_JbN7Vbir>=Ty5>*qgW7U;
zE|p0h5r-$9+SRlEmG<ZL2Yxk2czg@jO5V|WCV%$|<tFW?8^27sdfoZer#sGZkJEG4
z-rr(ulEW;-TwVX`^{l;D+^4rb_|Kqq^Xl?Ur6h)g>hGeb?wUobE2QtOc$t}2ZK_`D
zF)N@h@yFzV!`gW&lef)y<>%B_e9l+dBh=xz<2h}Yb(NpWP1oi<zWd!#^2xQUdvCpC
zb(c7n-FwebMb7H$T4~N(j@v7hFG%I-t}anD$$3?E#j9&!QQbRtm05>&&pBn_aA&V?
zrf1g5@7sF59FJODn$`THNV>7BWn$6f8|QgK-n_G1DLla{-)^g7Gh@Z`m)B+`=cI1D
z(!?6pb7FGyyd#BvuIddtpYQkT4QW>?Ii7dbFeQmmC3%A5>%bR57v_ol?B6fCF*7M;
zn#G~_=WWW@oN%1{<UmYA_M%HCJlL)rPG46QuA6Bpy*R5ZKe%w+;tM8^lnb9vU^wv9
zx9Iz>$qs8iZ8WyjIal}5{$aSOu<7AE4ui$(SFV#k618LF&WdNb*BN-+_KLrbcvx_0
z{_OOWS6kM~cJtPKvbNbIIQiDD_582QXC-!3C>K@r^e}0k?EUh+nCbYOKMTSO7u?Sd
z+x9G3+jiG7ZZEq~`KYh26Q3+jNtN2%y(jXEc;kPD?7!|0zAetRxNz;w3i&;Kxyxmb
zS$F+ncmB`N)bPjhN4K>5BW=kVTMdVq1!epEElq#!T$P<$TM%6^S$W0FAEEM=OKcvq
zUz%cc)FR4vS-HE_RQ*0JpRea{?LHnQe#E|S*S56}yPJy_E!|^w;Z!)o)VRV|+9%tJ
zuPe=1@I<En(0nPTGe(8i_Wla^R?uTDZydIGZBVGx)|=ZG-jP_!+~;0*^$Y)-*Gaj@
z)-yVFE!RBHT<)a(+*>ou^1{Taj~nBoYxpm_NQqoe(1^SmZt=SB=Gym5dlWw|zOb<U
zG{d$?_nMSvOZzOYZr+jmg3a>R)y|{{C0@xK#*-q?+RxM;nA13??5xFFzTbV@wn*Q|
zXY|)%kJ>K8HsOJc#yiWSW|!YJ@T(*|xYoLLXZT5GTM@ahd%~SP%yj2yZDe9h%`4~o
z_ci@QCZmp<$FZvt#~+6&FisIN`_HhsYXSp9UbwBs)~&W)xihv;i(pt`@%Xu|*akh_
zDV=TwEz{0f&3c{J_Ttxs;!}O|j_rKwq?1~4{@%%VS<<hnO15T79OHSMG{L~)t0>#@
z)NMk}BEgsEX??N&zV7kCzgo6MGB>9MNjklgTvwN0I``A!l$!95^W(Gc%Vr7av>Z)a
z&D2x=D!b>y)!p~ACLFWWJHS*G@}EIKzxR6o)^F#W@0#2DX_l}>YozTe?$@mge0AlU
zz0KP4ptxoK8G1_JD`o0Fm~7}~R<pdP>+|o|&vqmonUq;7{kYKDGUwg16~a3v&$)EJ
z*qU?4Ta~ZN74EPXzjRud`1+03*QGNj^k|+9dz?}b{e*c^ag^D&mTe9vj%MD>c%t@b
zr`*?y+uR97Y_(c%Q<H7)o~cwcWGX1in$xU1-|NEODFR+|1gye>HyaC2>}oqU^~94R
zj|1v=E*;`f5q#&Xm_H?5<<gRr4}K4OE^hcGo_l<T!wH6}t_x;wl1_c{k2<$~GJj9a
z-m^JQCpSwTFnOmI^eK|##9`*2S8qGHG%shL=(1{0?(;cvRYBT%ZufY-u7t(<?YegC
z-n+X6Hx!b)KL2Nsh@Nfhqo`8&b=|CUP8%mmD)cm;b6l5v%<sL8&Jp45ESIFBrffNB
z?%ihlId0)1yOIw^91@TAbR9~X)O>Kg--kQ*^5!Z&$&pkkU3EkDoAICM0^il<p_YGm
zD|e^PncSDX`Qy}cN}Ri!=h<d=$6XN>O)ZXhmz>B}_I%~~$PcH*HgheuDen5TR@U1}
z@UrdeYc=LlYj-EVd;9p_++UJ=k7o;OYd&lY+|ItYa(PF|Va3Xce2(j#u3UX5Go8os
zm~Vhp;G7)8Y44;(v<26`^ZxMY$DPdcj1%(vSv0?_oA-=owS}ea0a@*q3sYXmsrO1u
zlsPWl?~r}bXSu}rn&LY_x1HwBTW(&^Gs!@`XyWm$<@OwPs#)?pe|)o7MecTgx<jw4
z?$h&$F|B_XRf-H=9hv;^{8ndy+X|KkUpBw=U)uB4KDl&0e@6Yb^aI(_yEVUMmu>uc
ztvsRkq=qb?RZ34-{bBvCUsKl~o*V4`QFhJSb(tIY&8^Lv_~$@l%VfDn`}F@d{%6Q+
z|Ka^n)JAtrOzs6!^+VR%e@(Z)wBPHW;t!_N!BcG_mz>ajo)W*!M0@vJ1G(k0=d7e&
z9X{)ICCk=ICiJ1ky)EXiU*7rr{^t8*6SHRZ9_ugr+4hfFe#&u$IfD0Z?U%IE_)&K2
z^ds}$lGg=1W>ROb7*2h;#iM|=ZbkOT^B=O0i{1LNLbqgl<T@Si`7>Mu9@~BWX<onP
z<jRWEQM+fJp6m23^Tx!!$dmuJyk73-zge4K)nfI#bx9cq->f^3IOA~fjYqrpdR^52
z;^`3-(Gb#?J;k8oU37tp{E_SFi%+C&_VASUIL4p#G<t4Pm0ZC`-Md>RS}0CeR@+z-
zz3ftH(3--w$EKIF#hx9GnBKU_xq*H8(qcJ<EuZvQ5Ajd8neQdHOPuX}@vV}V#}+PM
z((*v2z<zG{4yR4l`iZwM?Oe~8&GzVuOLX~0i$}X=A2H-%-0^sYsrjXYs_Dgd|MC7<
z^4dyq%f!#R8*gu4sokf2p=|Pw<jI$7Yp#CSA7>}`(Ra@zv(uS%o_tm5%d%e{JJLVl
z)JFq(qdw_NJD06_Q$54;v(uUAkmUW$%Az_>PJ9<nJbtB>A?Wm2I{dP!PS`=W5P_Qq
zj&cX@p829{(vh_d!3^Kk8Io3=736t1xnQm3W8DUa1b${&Ey={6(K-c{ccWH(bq*@u
zWI5NxZSDR!8(wKoxRM&NM5|$%P1DsIuL>JNRwS(86K$9LbzQQWS*`B1o}cA&`>1Ct
zruN;6n#m_+X|TNDypH`;r^`80a%A~FWL`QpbAotjfYAZ@*O6;ACH**#IjZg1`RYyI
ziM4teGdbC-#nk6q7Rs@_RhMMl^K8YI^9LjjKA7_{(DdB*yXQnEa6FKDI%!wpW|OH+
zcS>cRd<+x&Se_uJQe<7ro8Va!P_vvxhOg>Esi|hu!Ia~9g#n9;D*HO_C9tLaJXd7(
z`QEbTK$iJanpS_>X(6#L@GHMzNcwZ_bN7sW|6NQuuDbcaa}$g03$*s^nmZ?Iatfb_
zUQun`lppJEb_+dbe|qA{vmGzKrYb1Q|Jxe-@3P^3MvrrL!B?*BS--+<QO=v(cUMk`
z2%TCiH$!e~(!CER`CBG&zMS<~`D&MO?n#OB@fWV{j`ewWM_S@Z^L0`2LaRiRyXOv{
z(_4`Kqmq5A*O|$Or>Z<(W~)8BImF+{DCN+^b9|nw17967ldulY4?cKQ<I1+<DPhaz
z+}SiIrQ~&pUaaILrGxzzk0rjJP4{0RcCxqO<desyv+cI-C^-JqLV2mn(zO>aOnqGR
z_wKtV8pa2nYhVAkO0#x<+BMa}2L7zmyRJt0G&m;My({dQwdmJ8k>1}SMf`hn{nAAv
zZoK*OddVRLh3)ZcOT@}+MK%Pus}!Fts7n1c`E<$Km$9;2uLU%?tDAoDvx@nlaW!-H
z#k*#oBxe+V&XY;LwobcK((v*+@t$ic#_4tDf)~VBU-aJTm{hP_S(Y{J!Mx+k-33*$
zR(@7Zzq?2DpybP-T%HIf!|MulQ+a2%>KtX1<*O15a$0kVGn{Aff)|GOcB)Fpd|UY_
zcCyxap)GUf-I1F*w@@Uf#ZpD?*_L;9g>!h)8NM71n!s9ceA<&_(`Q%0(ickIdwZ_z
z+kKXlX<sDPeBUg@aO0L?le=^D<rO;0lJaJLS^A1>4wffv`o5l2Pw4r1F7DNVjXHIX
zS394iZC<|VkZ_OO4ACohj-6VwB!%&S^2+m3=XP(+J+gs8;rD`)vog1&E_dZUH!e+6
z&U0gz2`$d>ROZ=l?vu7ly1VvBo^*Bcj#d2(=lm+4Na?*zeo^qzQ*xq1^3340cYdC>
ztXa3CH^#g@$<83$m#N$=l$;=GKR15!_PdAX6rV`GH1$ojfTyDFgLLg3Z3@Zrrsmx;
z3#wF+W2*`|nY&dm)bPIj<6sW+XG+H<58l51Vad|ud0R?$%V&8j9N^+OCcQSAVU2<i
z!wGfuZB<vozU@$dFL<Fz>y$zsL-1wEm;Gz=&(xe#yy2N3F?HtVz5>>;I}SmscbA`@
zVEAL!g(>gU8RrN#zp2%l@~~gWlbJcw!g5`QX?DcVJ#OD!HH$tQ@ffl{J$P`{d~IWM
z#px3qpZ3P3u&m}0@-yt4-y1IYZc4*aPYae`q1#IrKEJ)<5>Ng!W0Bj92Y%m=N;x%Y
z#knWP1FD3>?g<1WOK<LZFw2oS_c+ht`BRcJ)<s&s>U}6|bA)+Cko)$;A0gMmo<+C1
zCB59OJMYo*j4SWdi#}iZYVwvzdClEd8(j|WJ1Llc@I@{A-qMFFKVP}N@MzD<H!E+J
zTJj6OZp&Vo(9fu>!q~U`*3Rt6eVGCq?)f|WT~!r)RqlCG-A0aMjp$C7y*GX`OP;M2
zidpsibnNyr$JKWw=58uHXH;FQZT0B&TeF|%Esi;^y7l$OtOpY~&sDCecqgUvJ#KDQ
z$np!<i-m*pH^0&gx3G2Js~od=;oG-ec^ir?6pAYCuEuE^>{K_+C>L`3d3z%}+ro)g
zKDc{DN=)*r-MK>M30JIJyYbwevbLE$9?$o3RNBp(vg5J(`n5c3TU$3hS`)Q0y}-6O
zG%?5X$JN#5w+$2L?RnI%X!J@?qHo5tWns3nC2gv%<n1*)zgO$@R<FLhnbu0>LMc2&
z#>eZPt+viPUi`9aezjcTr^YMaSIpom`)YDvwNjtIq-o4b+0S9$Qs#V-eZ?N!)99HI
zDD=UqPDHq=;*aLt6X!22F7B(k?8DBxByD=33?KVaLyPYsj}I;}EUKD+uIcv9^VeoL
zzW3snyTYiD!&k|^*IYTzu!&bQ_jHrJRK}P0zC6?J|IM0wKz(anOZ`E+JRhkg7umJe
ziOl&NKR;}Sx!~Wbq<vTac6{ButYVXkQ+>4r3*Viut6SEp6g&zl-1uuU?*XyQKU|g%
zzOIu$=Bs*Wqnly{OY_<6%&M8wj@DOj#83J4Wle46hraT3+rrmzZLgkBRn6s>`pCOv
zlCNQj*3v$XNBeF6Gi1bb@H77js6Op+D&p1rz2_74Kh~B0a(@(gO>JVhYRAFv>!;Ue
zu4n2OukiX*aov1c_Ok;aMI5hxrR_QOG0b|yR$0qsHT$NYEf>f=Fv*JR{LX|o)jikp
zW|p1IGq2fG@;>}pvPw#xgiT|gZ_V9^qEjz^E!RuwQ1uZ!E?XF2A>D5AZMAS}<4+IM
zh~DGxo;=^VRMszStJKA(5uY!AUa9k3VAu0ynKc_C`z?<r`%JpA$iPzN+P2t8v-DuL
zlN}RyZ^-tB>^wiOlChfS%bLA*FCY8%9<X7YwYy#S1WQ;@)Qim8wh4?DHe9RqjgqhY
zE4A(`>|qXl#@h9`xu+mY=!zA8TG#;wzAsl@GmS6zRs7XbI4#Ezdwk)u<xS=@4{#M#
zg{m|c{hP|{U$VlWw)5GpFPqIS$nbn_?)w_-aPdhi%cq6@1_Bl@tRGxEw!B_;>SVv)
z(OC~eKAtTIoxe9@_1uz`_rqd;)Gm-0sOU_bEEIkFxayUYJ&!CdY_wlm^SZw1*S)pn
zRh5~~(htb8Rme}Ro&H;`BJBH-S?yixN^ZODyW%%f$KVK~z46D!u>HC38?4+9*Yo``
zypn5DT`L^3+jH$#iQEn*hc1q!eLGdsc5j&a&@XTH-Fbb=-0D&>d;MqE3I4I3ee|Eg
z_Kq*Q2b7gf7k)f_R4lwsDW5+h@HpGlrHnk6oNkH-H-6rJL9S`9vgd~Whx-r879TBc
z6#cwn(*`ZCjnn*$_B&3FH#t15f0DQGwBjrCp1+P;CiOMtm3Qif&s_xvE-i2GKX&#0
zi{{L*;}W7)3bK6GA3YZE*?qLT@@csRv)s;?aWg;ha2MWx?cYDo@cO>0kjfy#?G063
z8}sG9Jm8WR+9kL4sa3AJZT8hVsXw7tY&h3u?0&cL;qT>!@otZmbiNk8?D{lmfrYK-
zqxG*0_xzJ9l&b8PZj!8OsJfWFXx%UQ1yZSR`!;i(U2^C6im0>SQ@0l!Y%`v>HDRLk
znic`8<X_jH+s$1YTaopOd$soI+0`fZU!7gq_2&5ocF`~CjrLjD88w<JcB;+iujRVG
zi&O01qWSOpVy+cu-HR8RoL{PY!TN)vPJzD@o7J_o%WaDo?KPMu$7O%m{U~ngN42Bx
zbndRrd;HAXat0^+j<2FG1!9<9o!=Qzv#>Bq^K(w=L9<?q;KK5dyT{dSHP0-KXW*al
zd3VEB8J-hs@0eSvH&}N~*80z2V98KqIOpoJ^5DH&v}2Ae?Xcv&tUNE9JE%qN%?6u~
zuVYmY@vH9m>2c2by7|fz@yyZ(UM%lFwqeeE=i7&^H|yQtH)vR}(egp*ia*Zz{~3fn
z)aA4u`)YCEX!PY|HK&CJPs*Oul@>>BHG0{?daFoU{o01AJ74ZhJN|5bui(Rv?>5WV
zZ?$;-I`Gx@?EF;G4G-3zsoT2yqp`2qevz$5C;zLSS!CVy*p$0}ON@1Lx#^-Ce{QY+
zsIuqO+s_-%ax9pi722_J?Ob!uNe{1Q<$aY{HuX%jN4Nim&m51t-jvK0VBtH(@b-Op
zi9Nr>6miDQ=arZGuFC3MzJ40Vy~PX@FKxN)Y`xQ3$$EPi$G5l48%^75YYaS#iq8h`
zy*jU`yxi9Db>wBAl)xKT?oQ1$QQkRYOV9B+zd~3)7<#=wXL#N#?b7mDQ<pu>(n#FB
zTw-a<=k4odE_*#Mvzuzd{h4`A^4Dc5zl7Z+CRuS^+@2J`+@rs|YK?NH_*3b^``6Ye
zXe?%GwDs)Cc`|`ReVvvWPs>}G=Q5$M^W1G7U*GGsE%AniicqopM7!2%?`bU$(nTje
z+V)wgcmJ(*UA~5og2Gkmrk?#Vy<>`jYU7_(xhpg0e6jJc+xlXk*e<1W5#MW{o)>-2
zeWiTe?Zd{aqAb~eREUOek~z~adVb#v&EvA!T&i~!R?j-}Ec^I*6`8aJn|n^Gu`=J3
z6>oog`s9gY26a>KxUY6zwj$`q@t{4|Rg-!%bNDWJ$hwB?-ccDb=lknf{wI3R-O3kn
zdhl`DvBFs$KNddu&k(|r{j%%P#guZHdF&2ae;f{Qs829<+V^<dH2FuouD3E&i|X9&
zFnwF^b;(q?e#t>I=D7=mSSx!^N$-$JX5g8poqQnb{bZhPLEF6KC*KHY&E-4vDaQT`
zqiuyu2-ki+F9Cjawbl3Uw#_WMY4P&1songUKjaN%dqdYR?B1pQN?bVex<K6Rrpa#Z
zXD?iTo&QJp`?qQBkG>zi{IE9bso(Zx$CQ-ZelBr7VEWT^<$*liCBf&!75Keg>`(vC
z(EV%r!TlXlX}c2*Lp_<!Ebe_d&vDuHgq^<@e(ZmE<)6U^^)4H$O<VRUZJDujg=OW^
zo-d*DcMks5{y6>EFV+7HO?z@Hm%K9AyZ7qS!%in2%QScWJ^ImX%YOy|8_~rzP9ORf
zs_wpjtK0hcHsuQ5%kv*9eE+`weE#j}-?DaJ$}918yWn2A{%%`!w{*F&pGflanv^G#
z<E}pLICOVw>Gpb)iVgeZg-=c1{CiLT)Uq|JMcP?AUjGx_y5yA7<fdrZ)z|8T{~fWH
zs8h%k`!4oRaM!kN#asL<JH+Sx$SeF2et91Ee}<;8_}e-{Keit$3*&8w;+BXC5Bs81
zpnYh{W7e|swZT*FF6uv@FP{0YcKw{4cUra;#_T=1^NLRKmif~sxYnJ|*#E(Iee*5X
z#iv)#O^!Zr=U&RcsNa89Y3)7#Ch@ny330#ahuh9YdfZmJcVg}2%PjL>#;liiwT-;W
zqno+DFsDwhBJAUqx1phJj26%K7V_T;G7?vEIVV2rZ_tPQKf=4e6-;{O{aT;@ZdSMO
zo*cdPb044jY9X;U^Gp2A!w-2bMfyIp6}#pU!LiUl@@c)_k}K!M-NYtW8AnyfxMm+R
z%w4bisoei!{yW*IbC({4g&i<(Iph9-wbt>&x9c(2|5&D_Tq@PydSqTObGlkg-;blU
zckPeMvs9>iUS8+cnYeiGqv_i&FWTx@yxoFz3jg$vYx244u3t01b!=g3`SRmZ2Ocb5
zD5?D;+~l(q=jwm%tJ_Z*PV@`xyO;5EzxR*AM}I?&+1pAzL)0R+uI9b(^=ixdo4=1&
zO=8$5wYx!x?Pb?G_D9(-JN9SU^X_rowlkIGO&tHznD1Tx8FJS1XNU=JDf{GYXJ5AS
z{d><eiRxJU1KS&po1Z?JKg(vVeae3Z`CU(<ZmfE2ow{54<R3Pzc?*AQ);J5y|1s_6
znf-UVJ{H;jJsURp9~W!MHxJ*nn~jXwwEoPi)t+^|{=vek-BEti%03);`Y*D0THrh0
zl+PMlOT|jpY!(&I^wMbh{w?#zoR3rFM0ONOv>w?w|M=RXUF+X${pcoibdPYghOCsh
z+h60LsQQCWHje3QE6;14mF!$}tN44r+X_?u+xw4JElIkky?o<oru5#n`jcy(_W5SB
zl{xFLnKxBAf9BJDIzK8Oo#)K|ck9Exjms5s@@Jj=)_i{g$I;5ampRL~q^4MEPrPc|
zTN}IJ-|af>?FG}NTB3Rsm`)ckKPhLo3HM(6$M!@2+suc);Q^Pwyte22@$T5ocL{qo
zI11gFVEpvN;<j^EUqxrF=RBz$Id}7+u*JSt%BF;UtNMHV$gu}My_jX>in8Wx-w{9M
z@it#>#Yr;Tf*hwzviW<RoyVR@+wAKGN0!1Hvx53|%LGrodf{ZLPJ-6t8`W2IS1o$}
z^jLM*nccH_3OLS3EqQZhF|*dbAM09uO)865T->p1<H1`uERXq1F10$G=*cC%!1iqM
zMPng<dwu44R}FMz%gb$^gs#d?o`2hOE=%|!*PMOE=VPwCUNJRASx4mC+n8TdoIkxw
z`+D4K6Ssh0)i>K$sbam!K`-vchHO+Wd-vm<K~{!om_<x~ef+td|GFnweK~7q$>%kB
z%ac;mvl`|rUk0t*Uc7qi)jK<Um|t$66S{GQ^$H>0f6X?}c3R9ms4MZ@f<;d2OSu1*
zr#oztE&pgwU2S}G+1Z)zXK=EgmAt)U;;j{T?ioLjv^XyJ<!Z5@_6g^n^c7#vx)$u$
zIP~~};I+vcub-KuZL(TAPhHaH(W2iTNtPDu@8*5ku8^#C+(xb{G|gH<kI(Sjy{l_P
zZ$7=YGJEzn^BjqHx0{R#@0(tH`Q2xMkaLlhTwz>gX3d4w?^u3Iz4-F_%@IyjPnq9U
z;g^oSsH;2o?cDcj<}JL-7t7U6U7T)hd7^0cdA}V>JAQLt<=$E)lk(;HwO!oYi@0Sp
zbMM;v@-EIQt~OrM<gcP}GA%B${bQY|)!FIkG4G4m7{7g4b984~yTsu+ld4NsdM}!$
z{aNFn>2Zs%wpO9>PDjt&_Be6!<;1ftDVZv)Q)Bq|@CRhB@eJrbEI3uyFX&CHybRAI
z+w7Ao7M)KLo;s1CznU#n*2Ctq(^n1KZS$jcC?xmvF5r2*%yZ?@{qL>_n3t~eT(Z@@
z)cnqKJ>9Mn=?<39a~^GezFo-kkHZF*>+Yo-&YvHc-&Mb~d3n3c!!t8}ZmJH;yz{R4
zdN5N2hn~kh3+BG8-M3dUZ;?-o4!XTMPkTy!@VTt1M;P5#p0GSBe&ySXt45Ezr%HQj
zU#}1TvU*$R=OQEf-S;NduDM^i<ALaV7oLj~H~Lwg^S4~{rds5c>ta7uZ3#xRjqEFr
z+8V`t+%A8Fo&Dnq-KY2372dv{_j9#DdIrnelTSS#JifH<o5e@d&@JkX%z1}JPM$pL
zC+hT+k3E6it3yw4#;$}i=Dl9K8&yRZDpvch^`Esic<v4Mlbh@BSte+4DxUf||A+<q
z*0?^S@OMn7C#;<_D`#S}(4=(>K9$SuZ_QYq>o2t=X5O)wjSmb8KW$g&>dbAHV^n5l
zw&B{X!rJ^HoaNJ<kZsr8Oz*ilKVJS((EpZoR^ppmsUhucZpl4)$Coel$~}2#LdbWO
zs}J)JoZ#SmXL0=68r?-3wIZ13tay_>eRk{@(;nG3XE@i2Ca34ISq4>IH+}FoGv}+m
z@Wx;cy=KiOJ~#FY*WP!&>s@-tX+e|7_EWXmC$`)TxSciYNRG_R$Ld+zKQbS!)ngOt
zwJX2!Gv`p|)hDqWHNoc7*PK~ml$TU)9vri5%`whPu6K$GKZo`0t$yw)dQRHn*3rJA
z+H9?FZadp66GEB_U%!o;lshl2O>BL^`4W!<ETyX^8+CM>S-jw{@^y2NR;jtMru+7$
zliMfM)@JRRVjU>`;YfnK*V*tJUZ0~3x6e;8K6g1}X3@>KEjiqQy`R3Gzc%Z>(U-^9
z<|~|ddE#xLeSq=A7aFNiZ#q8uA5@S^d~&I8##wRK2muCvQ`^;|b$hErt7_c&j4w5s
z<hUJAv*!EK!!^0D_}WbFX+Au`n>RD?tluk@=P<Y8MXj%^rk2HnM|0wppV^cy+n~dL
zhGXfrh7%ok7})u{`W&2!XU%gwG}YeJ;mK5+NvzWS%a-_5K4+WZ=9l?g;+*9&i{%?V
zvPzE?Wd2}Dn=Nr#K59BkihyRb<Z*>dGG)s}58R#Qa8uSGlR?aGr^s%H=S$VhnY}pK
zC;L6f$e8f+RuAXo(~Ldg7ymPC{<rZz1IPLP9FF9tHnaIH)a}phtNBo)t+z8vS|OiZ
zY42k1bJN$|ysOoFT0yH`>R9p9NfxU&e@#BLYvZg_0%f1}I?7a~T-}>ncY)L5_3^!x
z{fG1gc)cCA<{noSc_;fZZlcZn%rLHVM|gVg?wk6iCeT;T_v>bx??*J1Od8(a@>Euy
z7?=Ji*H%w=iF?q&D?Q0J;Ty6G+F1(sTd=>3k=vVbJNnG+mftg;%=-K~YfbNhH{b28
z_No2w{3H0d`*x}Pi|M-04;(BIkz4&$v}K*Fr%m5;(J$ZM3V!%eG2Jcm?FIMR^qGro
z&r2%&miifY?RC+E<_VUv9JZh1L~Bd!y19dIIh|jaG50XDP1Q%A8%5U7_u9@@`S|I=
z`%m)>`wX-v+AA*zXjb@QyD`YDX3xfx=c|@|_vk4%bC0uFk$Pq76p;yr=kLCrb<xdt
zwcy$8Y4T5s3g;Oa-rBO|^+p56<L9j9ELPp}n{Bqy#!x9?=P|#^^${PJAM7<hAkVS(
zPk3!*@!zf071P4XDy3CqV}5<mUS}dRb!PLbDU;l%pXz>Qezwha_oGD>H+a?=U$}JY
zwuhypvaNMU&%=jFbua$BZYnIfJM+@qQy*?mPd<0~{=IEmbPeCVn<OGVW8(3sGn)hM
ze0hI7>dXE1SxGZp&I%@9dAvdPb7V-KVcM0)=T*Y5te<r5t`g6h3w>qZL=R>E+I`>5
zTu^GBVe~xPoxgRTY*bFJ)N!-o_j;r<!>e8LxKH^Sji4y+;#H+FwTIu@|4_f*z4XJg
z-K);Z_^TA&t~_`9<M*lt&HWO&HsQZr{)A7Cy_)l+R_Ltn-n~mKQ=4S|z9~H|xAn<?
zhK=8kSlB3jbUUQIz0KOY=di~7h3s4FdNOZqZ{H_$a8<?WsB0y?=7*;>d9Q7}a?*?~
zP_+8<QH@Lg88R~8)qZ2zCT8KEZ(8Y^`Op2i{oBK;%iFfz=c-`#J{9#+jJv+9tH|!6
z#$&sO?yuvGpW7s>U)o*Y^`Ajl^~b@F_DAguc6T_L&b~fRqy5k3{zdu^3}Zs3-HSZ=
zNBgzL!QiIOpKbQSI%!Iw%f2Q`suW+}>vi_~acOt2-teafE$p`H@#n}Hp3P4w;4qxn
zQ1!_-BibdB<G}Hpuwr|M!_4-rC04cz<}mj8XR&<I@MTs?e{W{1^>FgZ4{twz+!?IC
zajo=krNvJr-(Fjh?SAUR)OX^Ox5#{ZwzN;3YkORjq-67nD$UhqZw`pto_jOvbd%cD
zgUm`>`2soqYUn2~{qSyo@shho3$u$=w;u7~Iw_p+{Ezm_`)%@D4fSQG_b3W2R16Pl
zs5v0V_VnBO{s+5K6dIef^Zl<xD4f48aaL`&xZje+8-L{{R<o^Nc6deRrKMMU<}A6m
zLE*Q&^V=ZfO(!Ss4C%coyZRx2+kUYc#}A*LF1fhwkh8kcZ6EVP|DIM$ef!VATX(fr
z`#9gug-4(4y!ZKrW$^rkZ|_atlI_+X)ThLmz1XhF_~%~no-&Iyt7n*d++@y|P~B-N
z-)<AXwBp)9y)W4}-c8*Z;m5rEO6atp69ON8Zz{0(72=oi?S<D%Pb2M&&)c(D)K|#z
zX55R?etB8IcuPvkmv1X{l=4l(lT!*OU)u66^zoMB1E=P#e(PE0UcIuG|J?msZr6XC
zKk8epq<7KAqbhmDdeyC)CcScH5c0R-`epridGmUk+>do0xsN^zS*J(`q^n=s_DAx!
z@%gOe`62O}kKA<+Vl8pAJ>PW9*KN<@XBB+y54vYR?^%;qE+fS5^<}N{fr&2zIQ8la
z7%bJ-W#2Zf_UHIxvuOhFbiVF}wV&qAwOBv5PO-*6H|UkeS^;N)fA2pnd$LQWW?fwK
z9{)!XIg{Uf+ad8}d)4RLe?8Z!sLZ_|b$<8W>g8%~Dw8kFa%Jt``Tb?EtZ#0vr}>s8
z0`^=%Go0_tn#AF>LS^Fnpgj)!eif!p_k(&?PCFkr=km`JCmH**ralgsap3stz-c`8
z!QLxwIdeSuTh%p_O<skksw=C(h~4?}UO)d+d-(m2O*<dpwrt*MC5Gzi(CH0%ho128
zO`X5I=VbFF|AlK;Jk-9BexccQGW)_HrqE5E+%Np2cJs8RKAE(9`Bs+?Ob2>)+PW`g
zGm?;zDLX378N0ad?!(f9H4{%ttdl=>W?3lbF~7p-i7{K$r8`W|RIKtha<Tk%Ib5dP
zfIaG!iRGWwlAIO_W$U80y}5tl^0FlBq_%Z2J>4^THe1>jN6j+bY`s#x({{C%sgeDa
z>yb-uOC;RyyQ|@-+Z~>#)WK?TV$Fk9&*!;{Z;wb?JjpL>N%15jf63(+&fWEmcpB=!
zp2zq;NYiM$|GCu;+>M_eZF$gtI<De;qNiTN)1;$IH$=>Nym6iHyW2k3W=`E;d}7_!
zb>;Fp7R;CTrbYhXkN?=WZrU!riRCNqoVww%y=AxMH>TN6-99fK?T-GTIC*~#&!a70
zGMmmZTCz`ac(!lS5AOdAEQfxqee9j_&c>0eBHVXE8*j~z>G{8#C&tJBQ2xj1{Xmz`
z;&#+Wv6ZX*#Irlhjx71N<Wi7_WxVresfw_O&bvFS%?y8p^0WT2|H$6I$NO*h!@Wk2
zL$9dRs0g@3^w%%nTX(?xk8t=y!Hfdagq1z(Z~goJ@@RGaVf!XIjvwZ^Dskc$6E@6p
z<<@=7d-(+W_c@<`gm^9L+Iwu}?pGDl-}wKw`*HhW{bA|1;>WiOY@N2CVcC?myF836
z?;LKZZLMWp^vB}E@z(nK^d+~B7IdGzvO;CL+`F5m&PVTyZmH*RtGimT@N;9lO-;z(
zbxHru&bsY6O;h#GVa1)=eKWqU*IJh7r@7))wM5OXrP0=ra-EOg-%7fDxa!F)y_r1a
zmyeX~W_#+M!x*dHurA^1+G876y!w6S$)=;qjhk<D{keFhPS<R5p?SyLOAq{&wYB^2
ztxn&Y?)*C_%h0D&WRub)4~7T*`BfiNJ67s<#{3FxTzdMn@28*h*PmRQ`H{6J#^q00
zLbm#mU;ZumCMWevyQ4XEAI3h*40V+FVw?S0{80Q>w?&_vWzRlooafppt}^M!w{`y+
z9+e;ao9?)2dvn0d*oiKSuDR;SJl68~wwxzr@sdTUfBQw=bM^e{JAYhGe*49|8rwz3
z^}16lB7-6#w%km<!hG5E<NG81?R6?Y#6SAg)*msS_@mqZin9GptJYgd+R69N#Q%K3
z?idx%YG>xSF6-E%XHKb;eBLQf{Z$pdv&L)3hxbSBGiS+(U6EL0F2ASgS&j8!gQxMI
z-^OfQUv|~~<&)|yFRXN}tZo1NOFy~&pWdbS@7|e4zdk-Iy77~Dp<?FqU;Gc_vmPaW
zl&(MIE%PhvBln~weT<^_e+Yl`yOJySKJ??a{rUOnENeE-4*M*ZdM-RaRbu%c_v?Es
zAD#%ierTWcyr(%AHsAGGu72lZtYPb=Yu`=hsTs_De0itBw(Gi)>+;nEk2u_DZ*qL+
zTPc4eUpUq+Pt3aE45wu9B-V0st9c6_?bZ<c9z6TadVxgV4craxGFQ3n87c}>+^5~j
zUM8ctYsxnN9kSUg6S8be+?#`qV$M&z^K)Ci;Qh*jA#;ocKQVdN#lCuy9<`6*@bY*+
ziLZTk&)ZL}4PTlm6*jRT>b&=+t#?lf9$HW>mz|m)>-~1lg5!7lTaQ<LQEpu>npSXb
zZ`Q1BH4Qa_k8aP`%doLu8IzaSEoNXZRkrw{zD(r0mo=uVl=O@a=`>WAn120yR%H`k
z>`nJ|yzVNWaujSDN^kF$UmL!0Sx4~dOYTRFPd=J$IW=YDm9_sFZhn&ZJb!7e=5O;q
zp;v1pb8Bl?sGePQTw2BPa^}QsbHXEQ_jIa+Ti936nf&9r^s3u4Z@KA|^&MXwuA5_O
zIj>J%FmCGQsqZTHUXcqvZ}`kJHFHk$#J!y=bz8fOPk-Ld@@?Jh*p7!E_vlr8Ia(Za
z<lOAC&$n$?>24O8opE}e(32)l$>)7pb0$2PaqL}n`P%;so1Qc`u>W>jA||1tC;p@J
znB%v#k5xB5z0#c~f8*Gt;_VWzJ#^=KmgSzF)A#j?<1%r#H0SM-4@#C;Ik(yC-TTwG
zwdSR<e9A3fnKuRk8z=esTQdK=y5h~Pa7ND)lIM)OF4fw|88|4-(>)h5&-gIoQB6<t
zl>yCe8Qbmlekd>bqj}HKdS=^I*%NE?)$@*Ol+B+q$tw8q#!60E@rCOmeN9uUOjg>S
z*^zsux{PP}_u|Vh!xdaDEDjf$_3iJC=sOx|<S4tB<5$4O8K;dVowB%9p|&&fO<=e4
zVxM<O9LG3ys)A0mxZHeFE;luaJK_Cy>1}<E@BJp-uTd-rkgHgl*S?VBZbq^<qn?9w
zh<?~}Q^$utn}trzJv7fZU)m|0$MJ2b-H8|jRR@MgTbtcyM|JPLdFp8KKIh#{m2yp6
z-n=&#;90_VwaF-2<>}{R>`_WPwa>X}zYu;?S9f*0_3rF{iwhJQ=N^|7y`1^0iN_!*
zU>?VMqYZlw#_l&?nSA}$u58(mp1C)|UNOGNN)LQvv2OXo==jbE8IL1#a)W!SuPxnk
zn8iZ1^X<JIy>>q(Y9CK1Jh=9@^`&sGCkD#J;jCW$5sNP`m7RI%XkWQz(&LT47lbY`
zoGNLl(qR2;<J&yXL!EWb*JWR)ojnocDf3Ns_1P8GAzSb4Qf3w8ymNfr!vm}JH!C+S
z-gx}esu#CI1Pafq%VySH+>s#rq_8o<v~=NZw)g9fN>A<WykYTv-u~X?voeK>jPn(~
zKbik;Yj(`pjm)Y3Wq)4ly-Q`BIYa1d<MFyft<Or1d8tZz`q(|3WO<&2ziMg0nU4jx
zCtq6c`?U9rU8Z#Nxq7aXb7xL%;4%E8wD`i?*0?Z7ZH=GhGU{suH%oM{l$mFIS>)yu
z9^=Vd3g2bzUYWyCd_LyOvPbtiZa$WgT+NsvFyAEi7N^C5)gQG^PM$NN;@}J0Y^|Gr
zj)mH+kT|$jqs~*zsZiogmQ?x1vo_&YdJab!&!1s@P{I;=kfG?#gowhgzd|!&Q>3Rn
zW>yjW6*^<;jD!gf+a+cA|LxU&x!NLT-AU!1b$0|O-rxS%aXWu&zzuc=;RAnOoe?`P
zrE%cFudkw&ik>27;)Sxm!vbfD?RPf0Rk=iV4dbigUtx_~omOs;UEFxwIb3Pet$-CQ
z!gIKGOqi+6abMrQWd7^mk~gz8oxL~9M4L}ymVIoYESss`n!8Ztp$OBNzZFNbxf4HY
zHJqwqstQ;A=pOd((1*7NgCw6YnFhY9|8?~$%X3p<skOn&p8Zm8Y7hE%_xe`O4J?6f
zVYcrl_LQzyzP3*4aGah5!<&$)7LRtx@<)l8Prs<au}OjF@T9HBf9!49zc-*fWkU9w
zg>n%q<mY?&Ex9vWGcHzg$&T%L)(hTto!+`Hw3w&2HRjQ3&$7#`6N(Nu8NZA)|70+6
zS#X12;j9g@-BG*d8{YMEd>iv;T`G$l*O#@HrSe;DB_tQTj1*cIt!!QU;%bv_<S7x+
z;;G6D-UgU7%D<Ph4#}$7#8<KGg!!bxE-v*$CqFYEU+S#X;CHbhv+Jp}sQIil{4$q!
z<b)qLS-e)ez+>4}(H(MAo<7et`LdjU%KD|gjnm(rkT~bQQq-9BXPf`^t&TYr$BJjo
z3%k=&!cev{_l?_hr8IVn*S_~S|IORd^EjVf{njkQ=5v}2ZyqlfIVmEhE+3caXV^FI
z%NyP$!asgp=3By7m+xn9)$(QK+^TsqR#*pY(Nw%BW3ifF*tqm{=mYybGHKgb5+Acm
z<Rk=pcHTHOLEuJS(_$@mzo~T*ZC51@my3pH##B9?HDRaR{iuKi|3uap_D3-=txglS
z+TUKbKl{3%2Yc4EKZS7%3uTXR^>6W5dH&K4|5md@*}rF+Jry#XALm=Oq1BJ!#eoNM
zUk}E4npA$Bzo*vqw@Jm}x3feSS=O7{mw)<dA*=mL*7VG^i|^$3*oekm{rUGp_>sql
ztsX^9E9r8-Bfi}B=lU%r_vJEvnYTULcePZy*6xzXnd#egTYAdbulx>Q+`eY6wOu>Q
z<f1Kp-A4p;0{8vVP_}rNePEwaP0WY$hi;orkG-P2eMgD4j_|V``92y?m|ta|s5AX{
z*Ieq%_9*?sC-$ApIh8p1h<QfMOLwOP=kM-2pY4;rUg~`}JbdS_EBb0z^zNSf-926J
z{a3X`#ozjlm+~0xeO7(FYk%hM^^!4O8(d8GS_lZ~@73-P%YPZOY;EbX>~D*nbiB<!
zZkJ-C-T$q9Z6%wZ)uW~2Mk^RRZv46~vSIbCmvdjqtovx)U9xwN^S5Zvb=G38YOC)=
zXIr1iTpsg_$Hlie?4Ht<H3tOZPIJhbnQ5K>qqghc(_?E(Ctm*E-nHW4W4X3Fm(srO
zZ~5B2omY3y3F~(;3E|F5D{KW8P49f7{!V*k;yZ_R9IvY0ZF;D(clVCu1Mvo5)=fVY
zrSeN`Desr1d!9VctNPU(@^IO+pjqDTE5D>4tZ)7F>ek+k5jHoPi<?i{U0wJ)`Hsqd
zfiLlFxAM&5#5S-w&S@?-KU4fpoM~VG-)TA}Gi%iD>C92Fs-3(0&bb>8S+XK`{?UG7
z8}u(<s-ivmqv=E4(lz%^Rvq2dn*2%s!H(5kPg`$3cZ=G&`MlbNS=BWw6xJDJ&)Iob
zWRlyF73}P`udnIpitwbY>SMabw)&yrTD_}3)hr}s4PQt2b*+6>7QE*1zT?`<y*9e<
z=GnU|ZSVVse6zDx-mpp6S7vaRIKQ>RZ~Md7?|IIOlxLNB*tyA<^nYCM@k8~|#pFlc
z7Ee;E6OI>cmw5a${9Kwyy2Oro&-m7;s@ywzzssI;tE_v(=Pk1%^*q@P-8k)A6Dy3r
z6@4u4+-foTx7M?BXExj~F4)b~_auF7ZRXP0W7`Dd9bV;mPq-KGc%9qjFKcb1AL)c?
z7nZKc;uUS(B3HdLeky}3`_45QkM3*rge~7}qsnPlm;AK<wzTiXeG;$kaegRo%UQT-
z$K{fTwbd03m7C70%NzbNj<^2Ne$485mtvc2aM-SW+dG~rPI3yYYudHH%g$uykNJ=1
zCLfuu+OVr&+Dr9&9^ozW)9rf;`o*Umd92;1{rcr4Kf@{4mY)e(tE%ZXJ4=6ovl<7(
z$1kg0yERVUxw|oBf=JEtrb@Oo?g}v*AJ(^vUe4unJAUj&{S4m2`!eI=IB$op>vW5>
z(7y0^tBcAp#-v(T?VkO@c{ws|Urb-j<J};int3O=vA^nbwWLem!rgLHU&YDYmYXJB
z7JcRN))P7F*Ek7<9nf2B8Bn<{`{?tNA8sE%kXCqL-SXhvQ+@{f_I*9}<5s|~B7Mty
zZ2r!#o%cJct~_;Ub-uu3-JZ*Ff$FyXdyU*!9V9I!e}!<X`CnQd9J(`6Lcq_!`sxkU
zb7tFR>!!}wRL=6)G*d+`s^?L|wdanBH6KqH9AQ4Dz3lS)DG3am=QwPxbLMK4ALEet
zeSE>{`?tAsm3}&G?*ExN&)DC=R_uOQJ^vlmTd}8;wamUwQrEiQAe&wH`rDF^yCc`G
zUA9#6z|C(f6M6Nl!aJpp@7z(DHg#T5-Dj!Gmlu7WBe!h%B;C7Hxh60Fuv<3v{t<hz
zS9xi>KFTe5SHIiPasGn!P9Nmo@;>^{z~%n*PMqED^xe9dH8&qi{ES}lC;Oz{QxBGm
zb)0z%!v6NR-TV^W8|8gM_wB-jo?eB|lKl>1)0MXN+HDN9OI53?nJ@Wf;m66Zr<LV3
zrG^-s*mJD<Z+86A`CG(vxLl`Bz4GL7^KrI4wp%3>C0g>1OWM|L4Xaez$9~rL!JL}o
zqA@FFKG%GDR<&9Dn4Qh;>+5DNnL59$_;X=Q&gMPucTDon`l7i<b=f`F!zL^|sg-M1
z)^Hc*JviceCjDKjgvq5VX70wUn@_M+K3|)0`{nN$#g}$@+jIJHI5JP3*HB_wcl(gJ
zn^Th#|Jv+R{^rHAqf@)|7!H^Qy*wZzpuJ`Cfn94J3p#k%&D-km$K)f+8pg{rR@&@)
zU|^eB)ah$Habf|VpXb*V2W0+5taomI$okv-{d-;AaK`PP8Wz8<Jb$>aJFWcg>l1f9
zBZO^jU+HYq`WyIM!tRDlXh*VQWf1?~D%<s~Hd+pxs%Ou%HU{os2;VQa_4beYho;MR
zTOD3rQIyHkyT#jj61&Xg8~kg7de6-D&Z|gWlGkosRD5mw!k#@@RU2jdqkhfz`;q?O
zJV)fI>A!ThZC;aeQ>w|wU{0ysvQ2O7q%*FE&rA8{IHMuzmgucjwtH9JQmOVVv&;L`
z<7GT?vTrC;jOfXi^R9l~Rb%tvNYE53-c2qoG7aT&mTWuTi~SHj{Cl3atga~IVFQz&
zUd7v{*%j?*VBVo=@nxNLZ0+ad4eOV$sgrcB-O(-3eUkqK+q%;qf)7t{l6rN@a=G@T
z4u6w1Yq-j)<&~oxpPgXMekEWcrjUH&(Y^&+esC_l8|!x1-@9T)ea(u;_qKm|-&7~M
z<+E6>Zho|7#FHd<|7)|ncUYa>EBJBU%*<zAOWQ=`YFDqC#L1&%5#%Ys$CBlj{ko$@
zeqm<EqU(om)$abpkkKr^-gM)#3fJfUh7Y%I?=z6xwn)p(dXmFS&zo8L8Bfl)Pd_y4
z*+K(>O!3cbFE`!otM~eLzBPWs@?-p6+fJ4)`4Lu~t^WMnu0n~w*{|bo>K}Cf*7IX-
zX(rp(4{j|7*QEtE79IF|p_Wth*UY7vX0!C>^G@yE6?N;-Lgg;Q*1%{@r&+suZ_HX5
z?Xg?$`IGYI{SPM07ktlClx_8I=CZ}LPs8+1*>inc&;Os{p!^?e(Ovb~KhAwz$Mx{+
z8ixMErFETxjR)57^S)+}_P%{I=l1OOHaUx1?JUplJX^NR@R;t3r7!lMdnhB5UwLx>
z{GSm&g%95U;FaHcPx{K^U01&P2FG-nu|%H;Q@H<L@Z|axe>gwPKN!#bR_Oj=IqAz=
zDlR0SX%gJ?H|F!N>+zE#zi-@fhoS7N>F3aoTje&|T9qu?qT{{VP2_EY(^t!N=>Z=%
z9eTIwRg4USZT8%c{~0=hoi-+MhKA}C-WGkx{Am9-^IKb`=g$&4up}jAdkxp8^tip=
z+s<e8i3wg^J>TtK#nm@oJ{H>?;(a6NXfy5G*LCSf=2`6gFugtQ-@mVUvG<D%e}-tj
z{j2@lJHNXsy#H(Y^tgGoQqq+z6W_7aamTfPjPox2QK6TjS-$w#fz|I$J}I0fvgGQL
zvQ>tC7u`?G%h#EEuFTrJVB*7!*;6DBs4xG|ux?-BHJh;OEgqL8*2R3!;}^|;+_#<g
z-gfQdhN(#gr+zB%HQQZ%TwZnAWC{BTS>xD=OU2f8eVf$1rLQ^qdY)<Q{EUe$C(6<n
zDBr)fbEhfy3W*i*#_C*-Poy%g*c{$6L9(B9^^5t<`!_yY_)+-b!;jzgKC<R#t*}i|
zvh@yj`V^Dg{M5~=q2lCPWiM;vjn|qy?+2gw@>V%~!=~+5_g&6SN>qx7@@&kre46!l
z{*jY^l2_jU&ye-XC^p{fc0<|;<z?(kt8M->u>NOA@3p&ApIPJcQM{vOk#jePki`6#
zb0%odz5Yk=gR)=9&JT}XO}xWUv-9b0o$@jjuIJf&|1`5o{X(w<_2le1!_WEZ`z^Os
z%PvNIvu3lpe(gSs{==r9!bb)EGi1c>xGTHnIJa2cYxy|q@PpxT3bPMKor`+<ZXwHz
zC+7p_8OJ?+7~f}Rwf66{1roPkDT%h#8y*PbvQXOb>QdKL#Y;!3_w2d1{3U;z()LTG
z)!EI<ZpFUz|75#c@3Dma5#wv?YrK9qFRhq#<JB*p!paYt`k59-iWTLJKE91({LuWZ
z`9k{TBh#m^EKy|H^!^Zo)suN&{xh`IZ*jfzpF!yTmfzRsJ$Kwcw?}Z=fj*l8@oSrx
z#x6Z|A*rCRD7a@=?LYTZ+b`d)@IF#5C%bb;$j-ipx30<Lo^kDC_<G#y*4CK}q3<U-
zs_!k7{}7mKcTT?l+sTD{wza<zjCE6ba4fR_M{u3YE32v3+jN#(Rr{RA!t@|v;;Zb}
zFD*|^DtcApGbb@DAXf6l%c46q55M!zV0{_pa#lcIljn}$9L9)(yFc@%9y6S~pj2+(
z)w)~ZnZ=V{6&P8|S1nt+@~Y(D$z}Idz22*Qyu5#_wc-rsy`q~OY~A>)R%fX&XC7j;
zv^{5kY>UleHKW_@F%u&^Z@lW+C3$_?X(bQigYUGbU(LB2dg7kH1xrfWZuRa{VaJU4
z8G0D!J=^?l?W0NwjiknXueLebUG1)tI`($)sjaa#Czct1`m?9;z_07JYIBryZk|wI
z_%?3-noQ}d`+^vse>huIHE#;{{JX9GLD@|~`OaG_=d9SmVtD)vzxuC`i_yDkZrm|2
zGXAqV;0Dvd88rve`yS2P#=GCT;#gs%X0)@U_N%sAQ96yY^CTY2d|i2L{uVYZ73PKP
zYvVU;6f|bLbzGA9(w4Vh=B@}`$m*Z-SoX8$saMY?cE2ey&ipN2$j(#6cw*JDgEu!+
z=9H?hSa<8O#}gq=X7zb(tIQ^GYcfo{%uw=m*|K{*)7h(4ikXfclz7EowL!Nfg)L@<
z#Hmlk(YnjE-m*_}GrV)<!pkEJx6e5|nHafkdwQzH?i+`r)l#$=neC5QrL8!fEj3NO
z!CG#|x_PgzIT@TY>tmMtI<Z`O+GL(33`VuDl(py05uMi-XSV9`cIE3LpOv*ACmS5A
zc<np)<Mv&Bo^o5|=k9;*WbwlIoVLr&`y9&@>+d$U@m}Y>5gaGb{KM1U;QO+6cgMyF
zi<wPkPp@ZRaNwP9Ou6Oj<13Hcjh>;BV9mGV;F{-2<%|day)FASZ|V-V1F}C}$9#P@
z<-)dy{j+cF?YQ!yt~6+N)J(HYChA(8k0pLxdpq^;RCdb)#~A*+YPxMSaSoGfW|YIJ
zQ(cA^CSQK-vMib7=Bxb7H>;R8+I(!N3ir$`ZhJ88#Or%Iqa(O96@Jb=ns?jx>9RKu
zr>_t_sT=#QN@Tj;a{p9o=bnaI-~1c*I2nGgGQ8jQC}C$<DCZ8D=96nR@^3Tj^xb*z
zJdc0YvnkT)C0Y@0T5nm&E^JC~Vq?pkbeG}JwyU-rUqzd<R~Uw=%-zcv=ayx?`?Ji>
z`{$FE_b<~n_5E%Y8okyxdgp=s8J{ZH*JZVQ7JIN!{bE(x=A~E8TYso#ytle`uY4iP
zM)sZ(kvp<`AN}1Dd||uEpIzGnDs2t4S~hFX+o4jbzSp&Qg%Z!Zyoy`(bAx7;sV_*L
z^ZBTK>LTeQi!M&`baXg8uUtS&VabG5Y!*DWnj3vv3wJB<%#WJIGfjpq-ubAvZ)UQ3
z{Oqu}t#T0zMMpmQ+mx-fQ2golz)ACj<vHK<TN8w>5AFZ%9~?e$iq%ThF1cEx?1?Au
zEDd{gtabUBGkawV{Qk9@F6C2U$<=yNX2W&7E3JodyQQUQs*1JUPaXbCo95KMOI|kj
zcFwh~(7A;>{i>R;B&}bv!k}k%wC#_#5uBE3K5B-ymz!2eZ!$7#JI<`WwAf<nDl6s1
z=8GmqbAJ!rEqwXjdPR53_?aQeSFW2(Pvo@T{Q8*x)9^*R6{oCtkWeS0vcA~+yV>;S
zEgM244;wt&qy6~W9<?iPzHD$)Jn~7v@_g3U*K<9hj~buU2ol*~T_Lf4+Meh&o@=th
zx34+!^OD@&h6nsht7n$#W$k&t@L}53zjH-dzx7B*|H&#^_Mlry^yHeoaZV>rRBADp
z@~yO=Sh6Ya@vUjEUgjx(=0CfqNc)xUl^<{WJm1-!SJv)hv|#SaS^2GF+s7uWuDZ2(
zMo$vmD!#AzUD@$7x~D+%hIFcDa)t3t&t;p%PqKUtf4BH^l7-FJN1JZ?r2Gm9x*^@u
zm2Gg;!{CUV|Fzjl4E2ZFj_o;?TvmK-_6eKI{lR@xmOQOo(j}G2p>pY>Z;$5F!tL^N
z4X*UuWL9Pg@Yad$pEBpU?5blA3|mjU)7qkAmMnAShhiVUSM&t8Kf=F)Bijr-*)L7)
zR5!U)RQorRr)ax_{ZuWb37HGKzQ6RlSH@Fk8rM{PBWDJe=c84^!G1SoKE4f*%gl>$
zcR#%T+AfaAyb>12Mb9%g@h>e2>+{iYPFG&IOml*_oV)zo;EZ1ni?X9!6pO+|y&Q@P
z3?1j)p5m2|&`|kkRtWQjkGIxXO>i`6EV?)Et7@68`-8tTvt^xXn=?{FldoUfo9(h~
z`!wC#H8-pJZfAG>a9pss!pw5+T;8LH6IRWi!T36^Gdp8ia?+7=WzTj0Y>t_#aA#fR
z<=wM4o_ighpS-eJOeyteBl}Y0NBsR;?WJ$txDn^Q-FK5i*u}cnJ6^qgmE|vZQ^a*%
z#;KW{ue7J^oud)jlWgmnDpeKr)Kz)%H6fEOPbbz}Mh1p)iN@knXUusrdDfSDQSom7
z$-1XYCD&V|+`hK!<!a?^b9cH;W#9@}y3)Tst0u$qoZ;W>;OL2OESWd1+kJ2!-{hD%
z)|#IJK6$);8}i5W;mNIU{iHJ<m+{<83p^0_Y+u`l=}k+o=qX+@spz|!>YiX!_{#9g
zmEBuYim$DBR224$rR-F~hDPS(Y!9oIUqpS^@Xvj!aUkqgw58>F)3@;=HtNg%=v*qf
z9Xj#c+LApEr$1M3w3~Y1NA%(Fs;e*hBqB7Gjpi|YUy~?)cIEN&rNwt^%pY_2bN)Lq
z>sn(@WZoa=m1?uv3r-#Ey=?I90Q1N7y4fyG*RvWW0z}LD4(+a&_&e>;Y1d1+ju~HG
zNY}KapP9OA`<HcQu9JRlo2ou<u2Htj&U=k#FTP3n+qrz^25vEhaQ|gL%4GFUzn$Lw
zbn^G|s$a8ie0bmbxQT7|&NChsj$hVgAFtEVi#o@|R%G!vW3H>0S#;;kUo!E%UtO*(
ztC(tYBK#S<{HZ;!vS;qGU!{LD`Z;sKukd^s>!tV4c^oT@+1|0Hr>bFUxZ#ci3gPS@
z?aYfSe2<5eMybCQS8q32n7BGR=B~(@i5&4+?~k$h7TnYOaeiHm%O~A;cXQVyJ%~O$
z@tJ(M?Q8ZUVoBBIx0V-uGQR&ZW|C!_PrAhFg)N5<em-QDzG(H8mC|NqO##0x)bH?V
zExFLtt~~4f#(g<Oe*BVaRVP?z-(Ht}acA?cw3G$M%qH*``qU`Iq-TCveVxPX!3I;`
zDf>_NE|JQ69D97R@w#L3nvYi6B~F~OK}9D0)-uaTw#Nrdwg=99e7AA0eUzlfY;Ohc
zNes{SrhDhS*s$-DInPw(h3geAr`Q$A6jdCpTH7<b#Nf#De620&$(Bk_PUI;Rc>Hv$
zDqU~;@p0~!R^#o@PkOx(4^|Se-f+&f@_x^Il^r`B?w1I;s%d2hv!*325%x)Y&NkaU
zs@!bDLq*qPStS!TeYz2!wQ8^C(cM)6*5bY=Us&|ZvTAumGsyAhef225yf&)wX7tn8
zH?_8zg2{<u(itt2g!~ilT)pjE`sCiWYY!L?nl`)&o;}mx@DIk5%a^S#d}1PKKAG|N
zsl6}XNYB;Td@$v-?vvT?W)>+q&Yd6C_%&JMaDw{|gC4nm%dcFw6+N!-;6H=a>~jYt
zfA4KrqPpzZ->na)l`(v}YZ!jRIe*KYn7PYWDV!8Nwf1zA*|eWK7~OnJ#MF+vy6n6v
z5*uTFXTy1hUpxOz$?@$yt99ww8}@DOCz}i6x7^vsekI($(60I6VVU6jc8gc=Y;OE?
zRN@QskJV?k%8SOo7T36RvLjjfRHKE*ffo#GI^R8;R92~?^QOpGd(-wi-!%3qWM15@
zrS;R{$%<FLj^;<ZtA%{b3U}Jxp7n`!>QqnmNtqW8t6pBob!6U;MQ2~!h?JXH|FJu8
zf|bKD(Y(frKiYHVACKDmJJ)!}`55_2(_KEOtz7Ff@o>(QZH7my`w#cutoj~YGCkmS
zra(e;y`}8O@RL_(?mVXNQn7A!>Y5*IsZFZ0ijGUf%z3tV^~3jX);_WqnL6#&wP+7F
z^U764*{}3DYD_+?KNKsL>-GB0MrW?P%ykB9Dqk7LnSSj4c1}?B*z^a7zm?Q1z9YQ5
zeAmT_<4NKsU-$MMy8hsLlbysK^{5@&ckD|!b(@WK*BAAzrRGvCMlTQDI;nX1?UJ8U
zbHi6nyfE+UNB?#k*UHruO}Wv*J0`t)`cq$9Y<;l3@VXX3S7ndYLJuS4wDOfIO>IA#
z=rUb8{WkpiiG3@3cK*rc5B|~nFjvxHb7cBt#iGKWf3=^z7yA>qb4R+zlJgQ_>c7Ix
z#depjj?tLpR9-y!b>RDL@md?d-25^B;qRH!HNnnTSbo;!{R!FCeq=uTok$a>dm)T&
zA41YUe0{dBs_)LZ`fiC=ys@*c=~`XcE&8%?$M@ASCu288nkQd;_G9+a?wiRQw#<@N
zoUqoMr=CmtQS2<8q)TE(3lCebt3R<`&U}8({2bo5^P}!vvN5k*VUzheSACw<^Lu?^
zUw2r$CtuqC&~DbtGPi{u=R)1@om{J{_BiOu=_Ot+J;u{ca-TImT+eTJR^YSJtpjZ8
zHjQyB7u>jc>+mMk-teq{AHJRq>gu|4_VnzO#2@tsw+pY1xih!HfOYnydpp)^{as<F
zEzMvjUr~D`=uYe8pn3B9MQRuSnzw9k{iFFuX2&yBn0=3$_RwV`PxOJ#f7_f7t@yX~
z<MaldJe$zRA^Wa8smyz?cP+a8d)mt{l1IHZYZ*KZPk;0NkMQ<~KK4BI>9I=A{L`yf
zZ`?Dr<Dm9M_NQlSon!J3%}}~r!@S_88`ILga|#=5r-UcO@GV=n^yl2OFLtcZmaNmg
za;*DdZPcHQ{+n-|)JVM1s#3SL{lm2jFYohjQK_Hgwk2}O`S0_esed+Y{O$Fl<%K<y
zO<^^gT!hI<37&5+<3+OV<@TvnY<IZyX3OiTmvvnCcu8IJzsGumLB6+g#!ZXMUbpA&
zs5rJ}*0Zhs`@i<fRMa27`0k2nwRgP3rv~2&^&|IhpFdE?wbv?d#^l%Ae`+0K{d-IB
zRrceXe`Hr=303Y>yuMDQvnWbaRps3p>D=@K`^2(4Z+lOVx?=u$La6)t$8o%?-rS1o
zj^Fc5^TI;$ve|zG-`1)9UGjB*$7ac=TYc@$etvpTKKNzKzSWPzd@U#Hw%&PjfVFPH
zuYaYFf4x8Y*YDRyw%H30Co&64Ee{L6Ab)DtU+Ku{K9|<z>Ce)5-=yeTKbx!i$|^5w
z*;A|L@9JD|?JKX-uebRZl^sO4?>Myl!ZrTm@wX(m%(dd@|B-z}?Vm<q-A$f7nl;J&
zhxZnKx6|8sef`$8X7`?Xo_^%C>du3Yjp2J-f1CCOdvB?(&eZ*CuV1q){q_X+kHR4f
zCGC~#%4N6Pcpuuuw)SK9ajEq7FE=E=%7#60WXb;SEw{8kfnDWy_~kf@zil<VAI@3i
z*7!c|O%J{Djo*%!?Vywff8nH}8#ZZsjz4(Tz4{OHkBzzO@7d^zZe4onsEUuoQDsGr
z!aLXEd;eLzlGC`p=&I_TnQ8*7iheNk?T?wa^|DsqtS3!sQzg8=Z=HYQ{g?ck@(<O!
z)GIDOW?Q)2r~YZ{yJ?NnZFhZLAM&H|<8J2*CY?2miAMJ_?IgBu-?X*=G`CEb__Nx5
zOFqX-`#;{jdTq!Zot{1pWp;*HCqCA9KE1j%e4oYdkX1rq=kFbOY<k)<bk)w(?O%7^
zSl+s1&dT@Cf64M6)%Et6_w`-L?~FB1ioA7{ndjYj8CSJy&Ke1A(Z|f}lYRT{Reul7
z(L7fvx^;O4bHr6;Bgf6m*ZaQi5xu%}=cCXg=Yn!`f-is3^$rhuvrhMucy)>Bi+KV+
z+@;lTE!!cqX#JVyrN!Uwab0_}PUuu^pw4&M+ny)v+V-w~V1Cf}qjKaGliBOV<09`k
z%@DfPxV=y&{bkJ8DUZubCW<V2<$c%hS$$W$--qw*Z`Zz2ZuV*w&*>|kZnyK-)%z{+
zqSJ0iZ`*$*Ptn)jH}=pAnFsUptA1%8w&%3b{h+7qZJYPn=cDf1H$rRgp6^iNmGPd_
z$)NsJfjM6APsYc#?#KCE`;_*6xVm-g^7bQ5*RJX={`7caaI->u@tklyu1QC)OtpS{
z<=Q^Ib$plV3s-;4KYsS(`A7ejKWg)x;I;8~)G`Af!w;O_)lF|^7IkN5Ocm!?xrOy@
z*JpjU%0i#m4Jm=2o|LTncBpWRfkJZc;%oaZ8GOrhl{c5_TXW~>ZmZosr=@BR=oviF
zk3Y6OSLXN@r3ri4thk<*{JyZ%u~6dmwq4%VYZ?x-Z1~xcXBen@?RiXE$+QlinJRO>
zN<Mxa<x#W4t?F^luQ1uQ4=PS1x5YdEd3FAFc^)g5#xX`q-k43{)`>x{o$gHf(>;Z!
z@U!6S8=+yrZ469B(H1W<#1+I?lI;xwDt=v<F8Th(q{7CoXOo{+%`GU864lSy^P_=T
z;lbpXzu)GmN^ptG2+z45l)}Nu(onTh{?w|N=!tqq6YlUX;i(gS9&$hU!m=+LkDp$A
z?3~9z`^(p6ZDW_7VkmjsZ|n7Cvv}H{vX>bh->P|eW{gOX;oECFo(8=;J6DTMblSAW
z?;1vO57sknOWgE1IVgnn<>Z5Fxoyo^#L5ml_&hQC+pVfC)n?iWPsH9H_d0u4_gpLc
zg{OU;Q!H+YeBQm{kJi#-Q-0{23T-d2Soiu(_J&-C+wON|LWD9GUbhT$s=Sr08CuP<
zQl;|Atw@$eDY1WI_7_4UbtUxPHnV?S_w2QwzriEJ27`#=$q`b$D|;sJpR$^D$$0n1
zB?*^yTdsU~=cq&c^l2;w_Q!U<zR{M#=)kVJZJqY2-9?L=w=zCSo*eUT>7Mt;8Fx>-
zaNR|6t9km$GqJ1G_*t48Pd@*!D%GRxL9R{8x3$toQ#&T@?tGBk7^&p6Tt?21!&3C}
z>L|Guxg&E}wLIj09MgR9^ol{?R(IWbZ3}YG+2x586y96juPV-1^=(!7E8mb=X-}Wc
zGux?k`bWC@r49NfOLG_Z9`6Y+tjyti!gtC%g`r4W>C?$66Sr3_x7Yu=cA?pKJFTTA
zg+-aCjtHJ$=biX6`1Y|?%@Qp0IA6Ku_~u<Qw@g~h`{~i5K2dkAfMiSdz42Qv7xSlG
z*`nOW#D8jc<8#p>4QXZV2~`h1XgTawWZ)5f-uLtC@?&qGE<X{y-ODRH%vIxdk?SGZ
z)%`Pml`ODY$go}VT&>p3J8QQ_%&U67RLJ}DMi!&*$9<C4X|GDLR1VBL^*H19``t}i
zYtMe}nU>_9b1nXs#D@c$C$O{kXQ@q2WUlwK3hPu|$me%^TJK{Y&-BL|&J|_8E{ZUo
z&b@ts?Q4ZQt;J26`?DB~wq5gK;|_UTnk-i~bJ=wj-e-;{e}-;6ztwG>YFb%RMCrj*
z`UVrH&dH1UvnQQxsi)IMOU4SBvK3R;c&)f~<x)paYwRi8T~a$G6kQJUo<FrDf$Mym
z;{lmDPadsVvg*FEkekC#*TS>g-U~0&`#n4C?R1x8F(2FhRj$_6;NP<0T#>ez_2g&0
zYhoVsRfuN3vwU3Uo|Cpiy{`JU^FFbR%ifdR-Y(>LJlWr<vN6OWxPNxxldfagz315P
zIaMA!C~80F$e;TL@z*wQ&U#*wo-4Rj_Lh>HW!cxS-&a1^7n1Y1tm63ky-912iL&3d
z?W>U6^5eZz&AKw?CjR{o15f<QDbcK)o%XX`a8={=0-LUR_r9!DF;G~q@;QQA@A;E=
zEJf~2%cAE_Vqnj^x?cBadEq~^>%DD_1+Nv|Q*Lm5s$4%WKUL%Sq|?{uZGBNMuyxsv
zz0t1LO1(ulUVmM0y<4&K9b4U!>g!h$GJji@*ZTLKd0m}#En1mBEZ#`TaJTZ(q{w>-
z5;G=PC12XM{#fzVV|UV*X-~f*x_HK}dDXMNOj|xxmUDf~8LxTTLK&y*C6%^3nh~oY
zvzqVU*0^_Uw;U|bKX-QC8Kima!II~<<`+s#VQOH08zN(6ZzJzjWBf*4ef?T#zQdAH
zX3F+a1&7zm2!=@+TAWZ`8k}mljX%)4sNE>{(TuE6#mn;+EmCMcFY<=NOXKb=&0gNP
zMN8{48xp#TpKRZ%&8%~K-L;tHd0P|P7>~zaxav{l?zO|nEqeJ<6;I)f2UUs#@}4&a
zowKl+QzabOVAf}ERhM+9KzW%}&^u;Jd&j_a%wOO7740}5<!~a^QfY?YMX&!1RWrZ0
zngrblj%Ay6_{|FrS*uyk8_(vwRFN)V{JHn#9hKPfJN`CuTAP<Ws^*)Tcp&`woDjb9
zWOj?Q-j|(iB|{gpZ1XGj<#PUFsx2e`I>=FezSgp`X$s6=O)kv*%6|B)ZO$I<CC59(
zOX?ECzOSwBZrR3jB-P_x@%*Kh^%qT6dsp0$*Scr1t<RFnIOf^zf^XmcOiC%<uKXjr
z%Xix?o43(ByC3m}dB1L2J+0S*wg1bS&@F<;KAr4OIKDP^>XF3na}4dKY?~!|Zr$ro
z`#4U>_J%0@Q+CzPt6bmPackp-Td|uPZ-fh%N-#X`ne}>~!ttj+W<{q=ub<G>F3X%e
z>uG9}d(4L;Wuliw-jp3r>WI14HaAiA%g5tFo2}=rvh`oEB4KOp0Rcx_i}g$E)A?K0
zm;YxF)&1gdRQk=<&gqu<@2{;AS6b`m68|IgL))iI=dRt;nEBOuS?q)2)_?DRT)#Vy
z>xcZ3KZ+l$v!t3<?4RhJ!oRC<M?>xEMSthjv8Z)s{%7En+bcfRq+yGu(Sucw`_Ju&
zzZL#y$vxGp$``kM`_JIq8fnbQp!uTSYUiy<yY767nd_TU;eJH&?Vij>l6v#bS(eRh
z@??upzqV=#)1~_-n^d}t8iW?`JifQ)c)IA8yi><@4Bp&%erv<l+5Z`goO$=G{me7T
zooPq1*w?gIRuX4-Jxbo0lAg2Dw&HB5ob-oX9}A1j7CdB@tJms3{L3;;@29GtLB*fF
zuJIqmw#)Trlx@i5`XIhyxz)sl(#=NuRDQJSnqAY5kXh35Heu`I&DM8!zhl|>vpekG
z&ee9yOFnzN^EP+Bm@PTII7MjnoT;Kuyq0e%PfWWc^`GHI*}cRE1_x~W*A`hF{q<hE
zdENo3s~`C`h=y@E8`?0=V=bD#BxUk^gU>xz9m`Gnj&dr0mTk1uoyWN@{D>IarPl@W
z+GVo6rK`7}yK|FyYwD{_OHX;Uq$@YSjJ<NZ+iJnvm8TsIdmdlfs<7*h+1K}TuGw@y
z-6_|$yvgt8v)xs)Y?r;(PQ3D+X_1bf@%44Cj?d;D$zxupRk0($lXc%zm$hu7Mg@*?
zZ7p}IKHvDORkWw{iQJW5J{8?b{9E-E@>lY1QR6<actT~=m(`ZrDk?pnOGqByTF{@l
zPh<*Hl%0{)qumlS>mSN1HdrJ!zsP*$ZM<~uVjpv#aNbAk`ZaD<T(9$%%UdQ-oM(J%
z$6P08-6w1ODvxD~Gi?<K;LEskf#JZ?B}<nvH#J^)d?RGh!;hP67T8VYdnfVL?#pUz
z#-q|*hmQyur!@cjxO~D2jxzO|S!y$HuNJb^GCp}$Uom1so`Knd1MlDa_PI}->TYwT
zaN)!T`OeiIVIsHoR&O=fr0?=NrDZkSe3|Xv>!$iHGcrue+4y8q)s@tf?++{ql5X<1
z)ryq*YVy{ybxG<08?KZ9+cO8lrzKxnp2D3j#df${^k$9a#kEVXOo~3RTBzp8#sf!9
zS~4owAM9KI=;vYQbY&O2&u=Z{p6!jPG5XNnC}eWAG(&w4Ltc}O!14>Tp6^qrsh;j}
z;kL(z-?~knQ_~tIcqKPvAB>LPwRdOcl9{u@Y<8+VYgfD0RJiZ?4LSLb*IV~kZQP<U
z`Bb!SPXgEO)&H)D&6C}nwy8BJcv4aVhuqXpoY(H%Vp{b^dgalid#{B24s15ekNLLd
zR?*$2E{`wsJO4Ate0|?BJ*akfz`Trd!Ka%O9o`sdpMUFoUgNRoyv{w3SDJ2Lb~~q3
zhl9Oq%Otsuw<bmtZlzl&ub0g%<&6qh8aPAU=Xp<v8Os}v<z-gMTO*r2W_>DiSTgN(
z*M;7^wCG6RQoVwh$;T?!eRlb9v(MmsL*blXVb@#j<aarLTlx5qhJ?y>&)Rg>xtkxX
z&@y1t*roRU#&czlw*r<it9mBS^Zd3>JMOCL)%-m>iZ`o2U0W~o>R<BD%*JyD%U1uW
zJ9JG`>e<WdyeH!JT=^X1#hX>SpT9<KS3~b|P67Y9drp1JmAmeBNjI=)e#XhW^Dpg@
z%9nFpJ}u&oQpx%4OH=RGc<q?lV9tJu-SQl-ySdX(y{&c|rH;<5=}|Ig$a{G_eramf
zJf)^Pn~z$mawxDpD7>~WWXF%y#nNfk?W*qIR~zMbSxr5(!`STd+#4@4wf9O)(aHOh
z`O)T{!N(Y>s&lDZHvWCAp`JN$|ADak2Y)DU`zYJ9yVCRV31yq~$#KaGCfB^To^Z)}
zy5)Mm4}qWb!aRPYq$;yZDs7yyGo@!$nSJU%p+Bx&&kt`CJn^*a7~7w(66;;(ANy8t
zWZiLv4-7W5et17P->>rTbi>ct1&g2ZUI^dp`Y2Oxiu<!kvnvvhWnbzJ3eR}7yKlNx
z{w?*Rf<Kl&c-~)f+hcalEYkx#?%~|?_P5qZKj4>j`^S4}U0g`uH;bzcmProBO~0jF
zm>ceYWzDk5HQ`~KZcp%Y&UZ5IKek`n#{7}=Uae!FU1s(aznnff^2Fkv)*{wQ$w_-n
zF5US0>E#N~d4C`A%N^98vFi8c&v~|WTc7>f-zoI=NyUfO*&j`h$7XHvH#2{G;>5E}
z=~w1imj65$%4Wcp{Ve9TU7P7-TY2v}ch79Tb7z(4`8YQ1c^|j;&wC!2v39wdsH4R5
zwT0W`6n7OUdxn|X)@Ca`*Yhm$Jg;t>_2|jfnR=VN@7nr55L>k2$ESzyY&P`^)V{r}
z@MV3}kBuKQ-`^~VOzue(jPK!p8LxKhm3UO{g`HccE|_VduKrA}ZL5FR)4gHY?MBuz
zGGA5|PB*=FJWO2N&#-XbbJsOLHhmAvk&Ia(lb3gI>QuSrW%o0pT0X~k%PkiS-_~c7
zoA}3Z^N+BcT~l&)@NVH-P-^m9Gsv~z?Dw6F^~bjTDBXGSyyV{4b7{}go1C|NKgJ((
zd2Lj7+pUZ5^7fRQZe3eZcQ?i}-+acCyb{~qpw0WFN;=-mI4J9yb0uZVmCsM+o6gjk
zc;}Y;GwH~Ue;>3w{;)RI{E_&#k~;TUr)pJL!WY-reEd8A_QUAi6?Z*vgkGsRwAbtJ
zKH1x6CS}c1UHU}#B%_n4?FQGvl|j>YTQBQX_REggz4-ZF)AxUhYnfiAuFt#iHsT>`
z|I_%?e`n-3&p(>av1ixb<85zmNw?jXnDtS)sMddLRrs5YkLI&w-uh$ZH+jj+TlMp#
zf=vR|XKvwpQ~5gH&-2l0i>03eLzY#fFfhh^wVk^5!k3ppt6e|47k}RWkBj>uzr+u7
z#}D_GufKoOI{W&hXy5cCz7vANTC;!8e;zLuso)gqcICvOzN_E)|A@SQEH?j9Zup`3
z{5g`Tv%RKn^>tXta_nf?BKacA^=)sT1()|3+&%DD`^BeU28&&bwBzH0pKQD|W%WtV
zJFoxP7F|2>dWVo-QLXmU%UcWkj0~(MA2dA_9V5}mkRW)aY;{!H#@3i=I{bk*!k6my
zd1Nkp9Tv6fX~e{a8Bfwbu6<qWa%9Er13Bpo1-9C!b4nF;RxuYD9yGla`Pz3w?{Vek
zSw~~;n$3K%A&bjA_k@no5gDeePjPDsH-47Z{vJ46X@{?QD6eGL&-z<$vg51|e)@Cs
zgy`&8-<M}zCG4xXGwCjS-A>btnAHnnCiq7j&w8%3H*byG<LkGUN1wmPGkHt%iC2X&
zQ<cwbwSMV8<%P|+{F&`{A1BSbchzW@!Tp`hg7+tXT@#@%AhfD*`#S0UOZ{_e_-BYt
zw|wDWzqWE~+4p|8DYLFhZ#ZT%Np#oeudB6%_4x1GFtvQpw&Ff0z~ndMNnhn!j&<zs
z4n1xD92fKGeYM<L%R861HOfB=VYiRExV`sk1@k1o=#AgkOxZ0FyP)~yJgrOd|2_sr
zFgdE({AY-IlDj>vv^eIHmUDaH?S6+W&SOT0nUyb#a^GiBVd9o+DDGNWTsKiOy{Ki5
z(D6?zw{DZ3`X!}2;#10Gp51Mi*sGqupRr5ipTL5vzfa0J94<DvCDD8LwN&*a;~fwF
zGjOv1ymr!7FQ}Hs*PrKMU6OzC>zHRtnMI1u)WvzOTlO?!pZl4+`;YBh>pOMo^nA<b
z^S0jQuTM64bIv<Jb$i0p^9rSFj`dD3`o;5HCT-jM0F%WG#~6;U%eD*UKGY-kJA0MJ
z+g|Uiu!vJnXBXQ2eRXy3zR%y?<=U6;RY>aKa1y^iA?xm<w}zj$$`loT+Wt6v-BZ6s
zo86;M2y;nT+8@bkJtU^nuJYJ=W3<qLa>4K6>#|zUxGqlmY4Ni8(sGwCc6m`VHbqM^
zsBZHA&{wf)W!@?76xn-oT{Af5i1M8iwlT9*>R5B-wA_u^Je<ll{VUe$Oulk-tzOrK
zLzna!QsigbT)Cg7({WSo@zPAkgye9ACzH=zY|tuPzGhv~>f=Gt8KUC;NvUi-lDbaq
zKm8v6seEiY-E^mmpK(KhwbZM1I-+$6YdqQC$?+z}I)%tg;#Z%1w&d8!jG~j##cb&s
zZf`WsS-kC9TU_Aq)32Im-c{3^9;Y|6S;|Kp-?=kIB|-SMt#-w-Tj?xMbGhv*Boueb
zJh#oro|^Mm_2ZQ=&%MXq@aX#_t##LCKWKU4T;c6YyJB)zPQ9&vyuhVGtHADss7cTo
z*BKx7`UZD)XdNzas;ZLOGVS(_)J>HSzML&SsrKgh>I)ZIPdB_PSlnRT(;sy~XzJ9$
zxie4L?FrRjeq0!OJT>q_SW7@kL2=`R@L8W%?anB@e08#0*|s8P(HB+0hc+Hmsgrp&
zJ8$-cl)RHKyJkyoaB7h?;E#F|RQBEP>mrw2X_d+#(cSgE-rUU>cQ7wAF!o7d+3s?C
zf}_plX-X4UhFQFkp4I8OHSf4f%C+X3_w(NI7oMxvstIR3#k+)mZ}WvZ(TIQVmp!N|
zyfmM$Xzh*-GIK6xy;NT4tGaNhAWzS6otr0^H?CAI=J9#vz_c=X@`bC82JB7Fa(g~T
z)@fgvcIotqFy;!ouUEaMTL-#@uGT6jN@sm!{dCX%U30JeIlS_HOwD&Cvm}XsrK?w4
zDo&|6Al#<5(|V?7T}1k|eaj5J%-oNh{Oo!1owv!u&eywl*lHU+WZC_@`j^zyC44v7
zS>60iHYR7Dd@?WFTX12sPCm<j2F*uHqA&PefATwQ>(yCrbhl6b8E$OTWO-jkpjPv%
z)RoP}JVg@@)+N8Zw^^-awfuC3&=+|Jf8RLqS1Y|WO-63ZcI{+M)r=i)gROo(E|<Ty
zY~G0m4_m8`A&nY$q`2<z1zehb&%oW({&dM40hMEhp-*}i9(*jq&^F60^T?%i6A`UX
znI0#XHFjyW_;NnKw)U9EgGr8}es+eJ);7<0708p*Q_J{$MW=e-;k_QG7+?42gzyy3
zktusNx%@(yjGvX@{3@rzEP|JpnsS_ENoz~|&v0$giIm*)7E467O!+0&aP3}~dGrKJ
z%Qemi*7gcN@0@(EyDM6%sCV_JiDyHn8lK;twY7*PLn3{hVb`j+TdIU_b<Z@~uUu~X
zQ*`Tt*Zgnw1z%n;V3m5vs8S+%HhEM3-jk-c{%CBD?iab$6v4t4#9mYKH)F?=Eq3j@
zcDiPI+}>`(d?jgTZ|S~^25t!+KQ|p;n(6sn;_c79w^y2;Qwh$NnzbP3n1yxa*&;Xd
zGMj&Cb5GBc`*8U6^b^7QlDP{K=KTJv{c?SKJmb_qmh~&+>)su@bSrvh%5kn$OFPal
zV-5N{f1mK_b@5Th6sHRr+%fE39q;+?nt%3($=_T*-o3h5V(Dc6Xi;0~n&k<{ANW>n
zT(;2f8Ta?8LH1&$-Vay3ntna8oAaH@L{Ixe5s$wd4GAqcz&H0}*qb%yC(9KSET|Jr
zPFmd4!&Epyd&W1toC^6v)9o~`tu;BFF>{^XlZYgS(liUv-|`=XzvXY=y5-WnU)NMN
zUwXT^yXB|K1pb)~zpfvx|KQ8ty6v9bkC*ATZ``7F)o#9@A^2&UjD~&Z`m6gTvp&AG
z3fVR-W1|bZwZ+{x+RJ!VDyKequCIKu&Z^?eOR3PKtvyY*cyd+Uj2Mow)_AYG!&qDp
zF~|6wq@~UEJ%3WJF58)~;>`)ZM;u>Y$J=KMY`NaA#JJ_F^4?_AGw)7B%RF0N^X6Vu
zp8CSLsqsFSub4fGN`F#v-gJNZ!<p;fT~3Q~v#{=~FkQXs<;999la7hc4HZK^IlhhX
zJvQlCYO(Ib^Ktj|dId8@DxV}2pR+ZLD_-|%a@@J|$`9m3*|T1ME&A@MnZ~azRQ|ZZ
z)^6+Ztgw@OpWgQ*JSktVw769E-r>C85|fWb6cyfP-@mu`*Sb{)rnK87JxQ$M+P&(P
zQsrEQb5>$6WBxqfpyT=Vb<D*#-}H2KC1+bt)E1tWWK|Vbdh7zHMe?uys>{19gP24m
zp6<<_b$u(xnuV#(?Y6#U2d!tjT4n_8zbbauPr`g}Ld>h4pMuZjmaV)Kv-k9*<9&w~
zsf)fi#+g@kOlHxfh)I<uPjlq`t8!&mM~j`6u5<{n`kQr2=;R60$;`Ql%~9VDpOdYW
zU9pkn1&77CTCGRNBABoIns;T|w}UeZCs|60F1VP>b;^z7pve1${IyPp6qRh!d3Oj-
zeH-N~*zS;Vzbv%fZ%?SN<dnD^i<rK@#?e;y4ll9kVtbZXP!;5|x%<jGrUOsr$a_7F
z+;rsGHq-72CmX81u8B!s%XaZb@QDRHfv&8rB66%E41um95lmAnO;}Gno4kIjiJH$Q
z))>a~Rax6lxhDrcpQWj=QR(aP`j{&#4yMXltoq%nQDl6UDeKwndqR(IcWv3Hu%ppt
z$DMVq32n-I^*&Y2(~NqUl=)s|M_GFAaa&(IO_zkKtHE8dPs*3^iaptx>CNQuE6A1a
z8Q1-}juK(Eg~6N-GV>UhZ&<r<ab^xv+kq43Mc1c1U_D*<GUoWLNPnJ+mAT8+t(O$p
zGA<NME8k}PEO47^jNI23by8PKav5v>dVP~jkvDL)%|6n5MDR%Dt-#~l`(>_$p1pOd
z%GltAciO_`7s_J&7n|<y-4(^wcFkc0JM-ScTgQ*qzh$_cYN5Q~(Vp5A-tW`xwkjGn
zcrXZiPj~Q?-T2XU=j=0;MTYbCW^S%nW+_|dB_OxMwsv)kv1syvFUt?zej;fZx78z8
z*7V=5v<Z4{_Z=fYXGL$XIa2mIvfo~IKUdl(_q@ubd5@yR>#q2@72M5~dOFQWu<vnb
zP>@^kk1G>>KMNFOHeYyeqp<YLj}LASuWzk#Z&&?vuF~4=apN4WPv==<CT4wXQ)z!7
zd~2`#;mv{;ffLr5&AWQkblq}Q*Og!S51vig6upA=itGZ$=2^eO9n)sn-?Io+?kPQ6
zll@_PkYJ3_JMFo9wB<bPrhfU)(6T2+=w@1HxzXG;(i3by#!gXRx}@Ng?wcyN_RPX>
zKMw7TIQ;ifRe#l=6F;sl@_xwQFE3#7cDKN*+=7MzF3-<gf0ZxqiMw!j{-#~ZR&!3=
zX;G;PKQ@1BdTZ<Zqy2Bs-d?<KQ?Fdoj(abU)$Le$wCLRI&YLZH#-8)-@7y`v=XQwC
zc;419x1SPo*lfPMj<vbPvR#N{?Ul2NcJroAd}M2t&%Jfht7)HZZ2jX_9c+_YbK~H_
zl=Fe}zJAW<*VH~L_jtbc)tSQDZbu$B8J`VTXGzK9F!FpL^?Yl-tb5im>k^|44>p&q
zvktuezEr(f<&5C|MnBe)po4zi_bv*&Dzo<WKDupNk(I`8mz~E1p70;rqVw#x@64GE
z0pSJl&T;W+o;%`<&sG`LJ@)6?aqiUD#J1(EDaBs-MN_OUOPWnN)%LJAragvvN8p^K
zo%4d6drzM)o){J|=?43~*@rGqdr`R7;*ZYj#aC`6e%e^}{%wG#{jA&OMf~fl&Rl*M
zXU?2|s=jO4p7!MFZU@erPALfJzOXYX<=UDTTX@w2udWl*)w>t{dhxV~g-`c$?W`<(
zBq6(2FE>ANp4rL1i0HC<t)m~#cf7aJugzW+<#F+3uGR?->#ADq7dQViWYoXy)w}h|
zQm%68e}+hr3~uvn9uLB6c~<jwUh+HhxlnSNGH*I-$tnBI`;SQM5r5RS|N7gsjofSp
zORYqlIL|qnzWL7}x<AiX{ji<v&g~zro{@Uqk>2yS&$@n=bn)Mx(ziE!T|Z|}_M^Mu
z$F>C>EVl{!aBjBi7S4Ib2cGSj9`xbuvF?U%{X7yUtT`lB94&Zb@F_H8z4(P!hd;{Z
zxYSPeG`zm+*ur(MX7z1ceb;XB>Q_RN>+(`9)9YW@u3EKO^@IY$@{L~?hODsmns%<9
zE3Lj}6+_x;uUksexp!xMlAZSMiOl1@NjKv~rt~~X-}r2++Tnu}s`?6JPE2%pA}6ih
zH)C<pgL0{|rJuDXA7A-8R&D-Dx!H~B&oAwHcI<UB^PK9h>$=W;Z9K@@XZ3AG!OpdB
z%CBud<`VXlQT=7t-3?bdT{%vzs=RZ2d)0$CUs>H4QiP2B17}^|yd$W4$CHUC*c$^L
z-pPu3QEm`#Z4h+o!2I)<)_321(t9*|gY3SkC!+6blpbbUAW*S3JM%>7ZH1qGj>ihL
z`wFY)7EC>R;+aOFbmJV87C!&AS<$i2T$QCAEtC5X?L4vM7V}Qt9kq|@mu9$@bUl98
zW}))<ljzYfn^$MPXq=zAtmI<s&q;=NCl!?QKU)2=WTWS&mFEMBe}(H!U+SSzwtMm<
z%axP9ZdjO_bjqkw()8KYwrTFm{kAO+mRk_yqVUe*_uS%e<$XzBZRaYi>m6fSiYJK9
z+~>Dsd({5S66RD-<*k)pHSf8XWG!E1rM9<RQboJZz&4BXU1)f5@$21lW}TZ9pmxrj
zf${FV#g`Umo?3CtwsOtd)5Y%Eo1#xQEibsm`Nm)QWu#Ed<{j2;#wS;*@05$4W_j?0
z`n<iXwVsuR9Aqd8c~By^wP5$16(^NE*EMOUtm?fZP#tFb=fwmAi#vDT+I$YY8?Uum
zC*|=zf6K2&6JCj*wVrXLOQI-Zo}c!GrR>F0Q+1QHzsJ5=z5OZka_0XG>m%RnOX)G5
zR3&(A;f}qL5fl5T_bzzSwf@^BuHsL^Q?*~mzM6Y!qkY7-WwR_ieob0XSMRkyS0Tb7
zaf+<?rHw&Bn*=-#7ti<FEAnuIXI{m#m4|K%>jX`{@@1!DYMMIx{Pm`OuWoqDb051u
zTPA6Xqg`^&T?xy;^I28yduQaHn!tG8=el%mmQ&`O@841q-m}i0c-A|AIiuRs`^STO
zCeM$$W%hG=-qn+~tDdf%=6U|qVHv^00k^m_Q__wvYqi_G*WL1LM6UTs>kS6}mTQ-^
z@Ge)F^Lg^6dDq@bS&IanKgd<YYLqH1v-Rk-E62|6nbY;$R9lVlTaUgC|HpNYzJJdW
z4PkP3DxP2UY^#Xg8naK8j~A{E$_}2CnZ59N`Nzr>CU%<-73;FT34JnFeCTiUb=~36
zhKAc70n3}W&pNnk3r|6PnZNU`y;fPLo=*(SE6$XRpHXByDSB)4_KCNx4=Uf^>-X)9
zbasQ|BGxpW9yfM{XS?RkJo9B^9>?~NO<iuq^BB)&-Z=7U*UF!b|Fo9p%Q?EM{OUWj
zU1z~9QIY1p8M4}w!aA?YdK*OAWEFYV)RksgOjDH>=W(z&#_KP&XsU$tl|M^nMNUnf
zl9w=FpQUfvp69+hE%QnpkLt2VCGuV1RQXWYped%W&)qX|4ujR-jL#w;)^6?3DGpM*
z@rl{Yligy?-dRCbk5#ixG`6K5R4`6fXbe2H({Y+kOA))o>c+Cwt4beys=8`fv}8r8
z%Ga1=(b=tArDk<<8@k0g%_%vTCAvGnBcST}t1RxB8;)nlJeX&(%F|M>fbCL!+x8ye
zFY32VzL<)|2t8<x`C{AuWu5hrThr%OHWf4o7+9!ndzTk>@8)eCPZ=i5^~Tq}mQRY5
zozd@?eeF<SVD7v$v&~aNJoHobpBb4|9@Cz&_eAoEJG>bOE4((Iw0!$Aa{D{k@AXz+
z1s`pi_n)E8*K1O1g7L}MT`N@@!~3#!osm5G#Ne^yGNW%R>y);ohFN#4i@mW~?40N7
z??vMFUduw}T{$-QM7>Z}M&3Pf7U9NQi#4~)wap6eY4n`FbH(&S2?rYvuG(Jqo1s)*
z^Mz~Z6Rw@<B@5n6e-?b;d=_i^PTz>d>3d_0mL6ddU};{sJm%%v-j5qn^4zp0=XGvy
zWNUn9KB02alsT6@k6KUBkO}nm^k8>0%DR%0doF8J-@UC$0(|_*_a+;stT`foX;A^k
zIqOTi6FwAsMB5hr2;fNizHGbf&!x5&%Vx2uiUj&>u+>gJ{6=)ii9gvgU)JXHZxGt%
zYT|w4&W`?~6q#?UgpQSO-)^fN`;b%OnB_aImKB~S)lIe=X}+;ZX0~mu3O{&Y+vP0r
zJR?ySFaMayxAuIpI4yXi>iVJzF~{sBI|9VdOkP*15OUhZ)xYIS{dSvok<*`YMXVHk
zQP1#C=1#@_$Q}vl({r0^7PGo#p9l(@I7#5C`3ARyN@mkv=D(%?Xte*9I`vO?kx6O)
zdiA|=Qi4U#(x--Qm3A+FvA?;Vb#0C4B4?ehMeaR$7SBaLvi}iX{7CCwg|z#JfAijL
zyB;-5XLkIPdL7|Q`<?%({y22|&^(!4u5*=VIJt2iWL{clQGd|E#x-?y#r}i8V&`0%
z=CO3oEVap1ZR%X^*LJ0<TYUC@QX0HesyMLU_x$v=4^l&|on?ysr6Uha)A@W%>xscT
z=6U@2Q8RNk9bhU?+xcs5{>ER9{~1_jU7U6IPw5J+RW7-T?R7?{yoGzNU%M~(wNNg(
zw}JaplU4YM_z%APqH5g>D?a;9atYSmBks_*V5OG(<ypU&kJ@Q;y-QCC`hA=^|8=au
zmCstMBR<=A=s!EG^2zY?<}Gpu!e`y6@OmD$`?gHZs=Ly8q1o3{FQ<QGz0z>B#lECZ
zbDsG}y@?;DyZ4GLnYHHiHtxc<33E#GvqDuRR-fq3UThH?blCq#{c@G<9V&Cy2^lz~
zTl@=sRCR89>8e*oad&c!EiHooFkf1F{f}$?BU?Z3(=TsDO3a^noWq(iB0QX1=;Y^=
z5}VI)s!@I6IZL<RIN5ZJd-tNAbje41E+3UTKEL9$bgoZ=f~Dlz`9j$TTrN2Mo-M&F
zlYISkOxA6aPn#!HK3Ccia@V)p@As5vN^TZ4DbJUi^rwVuKJ(!1%iEt<ujg{<Ik({P
zmvz~(S3mR!xkh|GUG+Pxi{ql(oAV#l*2`!elwhc|c%gl^RQvh9xt&QNa>ij_&nCWK
zmKtWwxMu3hxTP9Jt2bY2u?%QPo5QBTEW$kN<;E3^UB<2wOByO{{%ZUCO_|1gZ&UHD
zwUOrnucYtg6}ou$<;92W4pn_tA)jym*?D`OW!_bP*IlPp=Cya-%LsG4vg&bHtxnp-
z^UgEgeQ#i7SLnKaZP}+UPHqN%-suyMrrkY|J6~%L^PG_F>%Ld99?9BqNX+tWm($ZL
zpKo{eToS&$)otb8m7I@u%eUO}ZQK2Lt+D@=q|CMHMe9}-&g0dz)}FnzR`9s|^tGa2
z<U8xrt)o|}On2R#9Td~r^mq#M>$t=<f0RG!^+oKP_t}kKpZ$#C>xe^J)Hj<<)jV8M
zSW><^Tq^hMYSC%pz3l;~+&{0dS$?c+{;BOgrygr&mI+=-ntiEZ$CA&Ut|B}^8A}%L
zRpipJ2@0B*`GV0^Rj*=+xbR+flk!Ck8$MJh?=@d>Jj<$osceO828%`6_tg^^h0=SN
z&xVGuzYg*?;NI$Q`|{2-)ieJ}X8sereQBZkEQvX@a+%e8rm|1=o!Tz(WyQfSZyhZc
z7i`$Ea`DfACuJ+9Jo$X(^4yILoJSQ+^c-Z1z5E=GtFLwOGj<ZPJa2N$@2BH+<y$j%
z%ktS~w)s4s<$Lc6$Ndl27UbrO8n-6j-&-}Uv#RZt?2?V=mwSEGcxrfJosoyFYn6ZN
z*VJ7ex9cQ$1n0RHhxJ~Z^0=h>ebf7Sr~cgvI?Q!PrZDdD;);z*Er}mIZ6+V)`>}r7
z7k@#Q**u%qWZ6bAXfKcNz9;tKk5lwrPxYyMHXY~uU&fW&JT4U}_~dn4-a}rha;HI?
z-KpwpuGbGo&+jYpU374T+T2H>+b8*|>am|Jw(9BVv^D25ejRU}HGdml|ME4Ri(Xvz
za5!ZBFkG%h>cJn!-_aGvBd13DdYEL2Zg)4`spewaVcVPSC%WWvp-Hb*=Sp4v)pqRv
z&h2_t(e&v1u?;al@;xtJeSUrY`^l%<F0nklB7E35nfZ0R*1s$B<@D+^<a@sFQ`y@7
zW}fT@*UMYHbrPIY<xkD2+J4VIYWAb~Z^J(pKbCKMTVwv1U*`U+SvDN|QYW>xsw*#?
zvO+FV{%!cQMNM;7$RvxtQklHVJ@;1htHf7(?ilm6T$Q?bHAH2`G1m0Z>0%KZg02@f
zzK*@N*kJocp0nE<479s1F8rLonB_6M>Gns}>$NN{$UMI{QRup(bEj~VVX(u(8x6%>
z&lRt5@$TEp`8KL-`&<V5AnQxQZnqc=tQw;XUDUUy<nN!;94Yp>lOyr?+H6-vAyz*}
zS;tkK=Fx^7`?U{hJxN}ded(XrADNHm_U5fmU3{kG<;jvAy__)&ennOVyp>Nb{AV~F
zB9Z#`_N(kK=l^lO{vGni<Z=xwd$Wyqxmf!nvHDG$V;dA^`jrVBUsfD-dHoxe<;jx;
zU9b0RmDw>|vD3<olV!W_d3pcVtr{tZ?|9g`rrOQ@75<X_P(FW+$&d5Dbt}3<Kk8Uj
zUR`+c`L5|F4xP@L7pU;|6-Q#cRgKEuY3!~48M1h5ZGxAn9&diOe^Sb>R^|iAm3;T-
zFL=;X9QXWpb&cu8`t<zPTk|{quxF|+u4rTZ@b^gJw!}8eN~3gJ4;Dr@Wl<ZSOV4gR
zTiD*pdS>yy?|1&}*}(i}L(RJbE3NmsXSKfLdKI|L?$hV4?V>BTHHL4}yEFM^%-5xt
zW3zX%TUfi>YKbjhP-b6s<NNWYMa4WZhLYzBve)*!Ykq2Z!t%hnGVdfg$2ku-`A4<o
zvaa4KBP@G_e@frZbxp_KIyIcBTOHxm>eW+oXkE13Nq+xBYZXsBui3Iog4NIS#L?`V
zcZ>xXgO+?fZ+g<PbSneH<a=A!JP%{^xY^gfRb6h0X5@|63-_FipDpn^svwqiqQTj%
zyBe&*HF@tzG&k}4XYFTw(OdSM<x};u4F#spt+S)AOwO8oJg0B!(r+(rsorwh?mW*=
zyKVcGnzj2aZaF?$CiNloVf!-Pf-6hz9naC$Rw*-l#cKZG&yobuw_(axCpxfB^>|QX
zxlVTLenY|S&2M<+Z~bS`PIPA}VcPN3?d6@<%cG7jI$F0pF)heyQ{UCfQenZ=^L_=(
zXMN6&jcqI5J^8|%f1*qFDF~jpH2rf#Ps+!x&&%D8ul3uMX)XKy+k{&cDVmL2K2Lld
z5c9f2V(L$ab63^X<-Q)P&zoepXa4j#a(7>CxpnWs+8v^S&GUAw5tYvRYE`@IMQOOy
z##`ski6mQB|22&KUe&3!WTV0-j|bO{&DMoBDaw4jyf$cl*o3E!Ja>!d@6uZ6<ag%D
z)M{&~@4uRpC%2t9J$pB+f10IF$?=-2*?T>j$}R5H@+O`yi`liBp{nimwY^>;^Eww#
zTc&a``_0C33(1%BzPzq<>GE@UzVhGHrq3HJf<*W{UeCI)ZRU&*<?9Ui3}gRvX*~LM
z^yWpC*IJAl3a`jLTI*UMuF^Z>IZF!H@vUjMKU<zFytKYkc9Yed?_X9-5pu0guikt^
z=)q=9$y@x(1H&dZ7d=Syusp|FY?#Hfg7eNPzY9nH9NLommG}IoCkr0yRLw7pF<x}u
zYi`Dk7YS2-&fd1z_&)>3W9D01loBP?EiIlTTYNV?fBW7}`x=JjE8m7I>~uJ|Azbo(
z&#be7*Ul%WMz1yxa@3m6wdO$G++L?QN46bqa<n&h%95^bwfQ;Q|6^$8yEDtbS1|4p
zm$?-3wM=;RvZcB18vJJ@rvB42`yH-Xaa-wR?ishchqva(`uMy$o_F+3eb=US7mO@|
z_b^$+aJ_7`mMLB_JLl<prLZY;=FhA+Uw>%hdfj7}L^*>e`R9BWy?p0z+reY((*E&>
zHZ9+taD(}o%KX_&%QVyq&VETZv~kY25j<xlwf^bf3k%XE?^va6Tc7*qQNgMsaywp!
z99=)-KZDVy<#S{bu6s3}JoC=puP524;PBVAr%gEiGZ@&L@3UAXR`&K;k)_S!m7<&T
znv74UOrF?yj5pn?yxgScl6sLKqk~n6ZD#77<7aA;8@&09-}-kJtE8_pKL6wD{>^y@
zf*5|^RPH)@IlH(t=&5K&o^<2miN_fKGrSI2_@AL-X3jzxjhC~+8@t=@aWnQ+{ncD#
z(%ti+E~fg~=Be6Q;oFk-{oQ21>TrznMQzsBBd>(h{Mi-e@nuDRPwfb}VUaWM-c`4^
zQ)C1p9{<?iHYc-^^Qz|QX9kK9$;)jymN^Pr=bViD@nvObsOW~nSDJ%e^LlP~=T2Dn
zMsDi*O`Ftj&DixaBH`xTGdG#%WuG=Zoy>b=<<<U}@P$7X2YbAK`*yol>q*t!vmV<x
zt@zZ*oKmWoy{ac9@L=3>n>B?m4Lg7TD$3gXdYZzM2j4_ZAFq4l@G>NQdQp!IPnm3X
zb;ME8C$)F___8(|o-6M89OOH3Lh<pfp~>5O<}iDRC%$j;<Ft6|8*<`5L-vI$sePCG
z`0KK~i}&vO{NC4azml57gFeP(Px6>$LcSMFWtjZ-Xy{XqN7Ej(n^c~&T+yL@CFG;|
z_Z=&5DZF51tQLrh+ajdrfBKHprJdWGzR7;v5dJD#Eu&_W^_6RzYI>G#^tI+)w_??c
zz*D~h9e+RHD-yF|iOCkZ3`WPV&*oVw?^wn-KP!}ZUcDD*N{fKoJI9wkx(95Mn*0oX
z)n_qqKAZ4msq(#^w8qBQp04bT4u`gyupK>J+{5#1Q{&mJA2t6OmL)SxlXx~!KY6WS
zlE~|(s;ilgxqd!o-Wrn`nsmGO$UOF?0dpo_pX6(-dSj)f;HUjdtN7a&ne9s9aaxdi
zXR*wa>vPwo?{2e`E@p7}b$z+Z{@pGLZ(X@W%GPL^O=}ZXUAg<=g-uxo;!ob4Gn_Z|
z*X7@;H|}pgU~<(YnE%_9GtZ36oE9b+ET{^9vbC$WEh1*_q)A3g9x%q&{yVW>WbGcy
z2d^t^;%%<&lj@xnu`cx6nxa0B1Fw%-T$v)it4Abw`ktbB3V#>viGB2XZLr(k%L?-Y
z%-6GAJgv!Q)XtK&kL$<fN1Gq>_xw70AdtswN#t><Ijvll2Y)@=_w9=5`qpdvEUwrD
z^DVWxc($^*<bu)LQxiN)f3D|!mGw{MYW{Uqy>(A#a+fmBnfNO_c<aQyrn=E)Q;Ihv
z_OB56%BL1!wDP+8UQeN^%yXKrTz<Ru&+AEk#_uvSf<5I^>JFLv)da4&z3TB>DeE@o
z#SD+<X}`|@;U4$Qr}toFWlV|br{#ZykGRYiG}Tx-)r(i`!JG5`Go-%12Q8R8Hv3zz
z_TkwnJNzd_FO}D+l<hB$+SR4;d6lkry}&=Um+?GnrEVRP_$pg@nOm%2!+(Y?Uq3zD
zx#nK>t|`0P78YE;zG+(e+&-u0Kf*7Bz76tJ+c7P3d3N_oqq8P0laBnJ_4uo<`^iKR
z-@Tvb?a}!9eZA6}J9BTmn|HWW`o-GEpH*_#EY@1ILpJ@0@ST%d3S7H8PHn$;HYeL$
zx_lDLW`hUcL{Dw%ka)*9TT=VB?dx;1a&K~~*K$3&ewIhIM&YDRyUo?=otI3lJzTlm
z?me6K?T?F*c=H^+`l#c(r_M5&mcU`dJSS;o=E7CsnpxYQpGxq%a;(5#ZO`!|w_fg<
zxu~aMadX$@kL?}br*(;2z9@|GOrBS1`XXS-+q25Mrdn%n%;Y$$D|$D1g(k;YT@i-v
zYttGGU8Ng>7bmUZ-|v+xc~Hc_Dp%^q>L+s^FA%*IeMfRa%5#f9wX4s3`T1w3;hgZo
z#j(>vnc3$(YhBngacyb(w-x^HKDpPw49T5PY3y`g??L$TtQQZG6jUD1yV_rymptF_
z&w@|IcdA3}6<t29-ci#%Gx_D#j`hKR=i1m7uKMwcdy4$dt)0(`Z%Z7l{I)&!+3R2}
zK8fa8zjl8M_>kiLP}e^)q1?AXcj4o<P|3WyttUI@Z(erux~ryd%<J1ef^IW|+}u3g
zhAB5La!<J3zCdp4wU~?}=j=k6Wp~w;27dYRh?Pm`ajUFr&71Yw@}7Pk54Y;`XYQKx
zX4auwk8L(iWHdc_|Bw2IqZd!T%w@DZ*?Yo%YSo-?EUbrELoE(|`MM_icB-dDQA=6y
zoL`}bwp_hb&9WkR+FCi|m47%d>eWSOpYBe7zk^Nm@N0Xfuimj|Q!d_9kZCA5^1O%Z
zm)fHnZbt-cPrMKO+wt!WtJaNk?_;igI2zKo_C?`oX5ang&QD~c4_PhiHSBwLEW`h|
zM`2`c&WnP>>=x^{%sU&}Inm}$<B?U;Kd;Fx{P3T_@#^>Pxk>{5XD+#!8Crf7ec>!A
zw$<Wk<NTZHC(cU7%qdy+XkX7YJEj-kbCn}veKT(Up2T~~;?L`|e|$f52VPYE>@wjr
zds^7@PwRGswfeWtDP9^h|46^pG3yI%g<;D!O;S%uwVv|e(V`655TWHC*ZKr2Et(V1
zd{)iSXQ6dh;4DLTFV-Ek8SLy`nhTzrF#P>p6>u)H^XsyC8B4@OKKY6SUTfsKBjtG9
z;;dTb(zpJO-N%eHWu8xVPs(`kb<qO_wz(7MTrTcnP;0mo>|ndA`eNVR7cY-Wb3IzI
zT5S4uvDtg3YecVHb@QyOChNM$U3>OS>^g0{@yp%Ny1lhoPr?-^sLXl%ZcfQc*T$LK
zk861>_-<i8mFv*no_~wii!NMtyXjs@!`pcOs4W|!oaJ6l^_G7aAJzZXE=|mEli|h8
zjb{Gbk}=zpug}^y<M+<vqE0swe=+xaU28Hpec<HxRZ){So_}r0(`?hHtrNCx7t=Y0
zW45cc_p(jAap%Jx*Y(Vg6~fwfCR`6<veI>axb@S+X-;Jg7N%MEgCplo-4Je5?3tDJ
z-ST9~Pl0(BUynMrxAv=q$DEc~(7WHs`YPv^jd~Tgcta;lnICL)J*c$sbDi2QTe}Z-
z25t<mW1b$H@$HRQlfz5z%z|%EQa7;g^|<BpMdN8$i(cWxf3A);fnL3m*6xn4BX`9u
z>Xm9&m>+d@LjKQo>wfiX6Qw0?O+R8U>YgpvwNK^hbZ>XQZS^_zItDKsKxcBy?~$|p
zG5w(~`{6kAkD~9^Km2PHZ|=W&!pA)yBu_luIM4Xf9{(d{sVUx54ro=bzwn>o#_0ob
z3_qTJaE`c;zO74M;8x7>l3$Zo>TNrHy7BLwlJ9GtP5LCW{`A66=a2exy!a>hBXsHO
zz^n^%iv#vmxJ?lFx$#i*v#Ea>a~NO8Nk06cGVkMD%ly4ve}n%n`_GWt&v5cXt!YH5
z_uSyvE6HN_WV<A`O;cuh_n#q!=lY5HEdLo&=2kzFTUjkPHR-Z<`tG;6c0m@0o=oz1
zQ#R|8u9Nkh=fU}&+Qz38x6iu5I?-#ILxCHg)}AoC#NzGDE7q+(Zl~=pUa{h?<Fe?C
zZPUKJOlF&(<ry0BY3XS>Z$p;J?<2pJ{b$&fbb!g<Z_Bmo>9Oi{%WbYnM^FBoerZOo
z5vSz&OS?LC9N5d*Wn^k!ozE6pQ*rF^B;&BDGmGA&yDVjk_`a57&b#ybqp}VNubSu1
zyw+1jGOxJx<*Z95=LnTe%+)h6@MGVeH6#8_5kCu`Z?Nk@l~P;ddozA2KZ^-^s(mXX
zcG91>Je(&a|7gy?b-d5r>)gam$5|fku)E60>c?<G{)o1^=*~4M-%PKErZI@J@KvrB
z%(9$d=D%_cqvqY#^ET5&p3FUdb`pbya%r*Gta7Wxfs2>+2Xo!zaj=v;>oIG`?cM_q
z9-E$5y}?=;zpLtscZpNqyglJMD~^7#S{S*OZ_aC;2m#O79X6Nhvx*Gv$e-G|WX?2Y
zOSPrmliauk7#}Nb4zVn8TebDOmDrVT)|@8x_^7VzM;||antVR$sCmPJW0m&3?kaCL
z@I0TlHE_|iw%`@_p5E?0X7l0xTe+)2-iwu!8){u0&i71kRKB->FIu+vb!=g~^USl0
z?i5S%`+Vb#npPRgWpG%+=34A3v6y<n7ur!LW&5}u=&zT#y5oh@WYgTkdKXVTo{;Tj
zaYK~LYff?B*V#F-qEipenYZ)VmbIR4VFzu#zc{p^@Osddn>WwyE!!BoaC2Y9%CNT!
zYdSf6nA}&c3Xbh<5#mr*XuPyy?d^P4KaQ`fOV;JAy75YPeO+k55}D^bRn^z_ggd#0
z-Q8WN(0C<WmgRNJY32)$w_n<}<*$S0lXmA5%nM9sFIvBG)0*FNqfRYQRGr#yAvaa#
zh`GvJg^!bOZBp7DX|C;Y=DuJ1rOx*!14O3e7rJjUDGlvhrdxEoJUQc*QH5z(#<%TG
z?JK@0P1z_Te)70#yD9IP`C6-XSR`;9H(j-SVe_h>9d~!UJ%0E28LO(W+Djr_M^EQT
z9C(xM=Xz(8*?)!^a;!lWhfhR54^>Dm_dm3?*VeDx`dvzQ?nAo(BR{?hlkPOhlY&pa
zKmWS+#2e>1Dm8kJkC*R_YC57IA>CaNE%9hqh~RX~M%mf@Q$1Pa3=E^TO`O5@X70g#
z@4vTcyV=?Ze|oTLn}M}(*rUrH659LO=k)FOiaTSw$T;lGRF+h>qQYBCZU`6f+^w2d
z81*@7^G>eT4%y=V%X^KYV^=F42=fo_n(jMo>5Zc)tefoRi{FPX;htI6SDp7&ZtBWX
zfv3|mgRk`M`#Qa7>BKhCcE*CtYQ1gZRvIyWehdi`&+G0TTj8mH$}UEJZPc!UfK`o+
zrv;B++N?T5?~~uN0}OIaD+4b(#Rg?8;W#21Bt2*1<y%X565S`P$nBm}XBs5kqN3<z
z!O(nZRmHroxh2|@mOKr4IDN%=QNGFkA@R27wLa!|wLaTgsgURV_57zb)2{bkN-oQm
z4wSFmamQbMUACR{GB=x$rOCEmO`j)x5`KOC-pcJN%(u5%S(>ZcRR6lHCVA_~gA2Zs
zq<*}pns+rQ<0SiaQ^SOqbV*rF)tXP@d*xbnxpbJ)`;5J1S}bys<~(V-aX{sYx<cu*
z*~uF>ORc?PYbo2B<}J~!<;cD@>XP1(pw{GrrumT@GCpd=Pu=;bsjSS<Y--}Ux~+>d
z#b>q1d#wmK!RE%XGB*Nrg)Osmp|H}#dDfw>xyzSk$1$o@G9=5cR^24kG;J}b&ao*x
zL3~@bTugKo3B1C(K<?&I^@p?UWiBv1@6yz;;mSYZlq|BS(W_E&Nn@w0NMK@XW`<AL
z7r`%UZtY$Cv0}NTQd8>2YiB$IPdwi7N^8obR`#a{l})oeeHt`hMwa^@e9SDvl=-5k
zd!JN8T=vBL_^Et<s;;ld+_=~y<(7qv)aU;U%u!9(#dFwwcxHX+wdh#;m|@Q3Ni!e6
zj`?cSSGnw7^Hvp&l?rz4YpdTMwEq04pCvXU=-f*Ed8awjRG0!9kJkKNnU+6=VTQz$
z57|q8WIx(zV_j;jJt-{W3HKa1{+!UD>3fsK(}lf{PKf)Vd?-$5`;|jS>+{o9DiRM*
zvv$^hko`QL%PmN_e|De6%lN#yo8NE6?fq@>@}6>MV5#=(9XWrF%Iuo6nfc4nn&gE}
zVmFP-p09WxYZT~z*L-Oy>)D;V=N#GdVE(lwn^j^qTJZSG&D9iOmNR=$!hLV95XTfl
z>2vQGOxD<z*){x~`u<(6O?<WK+QY6ovr;y0406=+IR8oXb<~rWOAmNYJDuA3a$+3!
z2j(NX5C0bZdvNgEv}#FZkL?Le9#5_p)>qqYF3Qu7owAMZLS5)L(W7z8wKv^)ykh+-
z`PHw3vgDE-XI$Q(zT(@OgISj>84LLA>f^I&CLI^4etxL&)UU^v7Eb#ygZae$^yWEg
zc4c3V7QUK#lS_?neb%M>R*NTW)YM^Ds53owKdbt*JLgGu){RlKo_8$UUAC?HuiOnL
z3C7RD@3QAjKHVu@U>O%~dQyE|bCkdtA(ne@=a|*yeLYmM|43a-kVaimfmP|+dg1I$
znWDr~E1u8$`c!J&qF+;Qd)?tXwClr{om<murRp=9BBL@T?>y}f_F2^Rb(=L)m&URN
zjYVD3Oh<QV26>z{^WggOY<{NEF&WFZhq|WSSyxxY@a1gUmz1oTE`Rn`EVf*|-J9E^
zY)5|8nh#TD-5>f|zY9Im`{6-f_Nohd*E~anKc^&jJ!!mEu~t{_@u?Zb{m!9DQMOUH
z3ZFdfIQTkp*4*ne`gj`4zDS%j4Z9v-6tVHd<E|6)-t1{t=`+aKduHlIrx)vQ@ytBj
z2%5|5`J?s0{g0A7=O4qRmC>nYt4obFUaQPERR1jc;rqe;?Z$t?e$0RPpMmGLVE68+
znI~UuSbpaDC(&QkD_^cyckM&dhGUB?+KRV^B-AzS`4fEU%<BbjwYO9*JvMod%=5nE
zYtub5+(Z~8=5g3uudGc;u3-@0#`t8`f!!Mp{NDNg@~n@`ZdJ+MQQPh=UZ1~nhMB-T
zgS)TiT+zKU!R^A~W%vEP-h9=LWKK>H{PKL|x}skyjE}<{Z!@ng)~^m-_`+?uk!7c1
zzO^!onV-cHf!aUQSPY~izOD`rOwNqSV`(kgv;N1GJcm#o&cgl~p`X>>1&4<#8hi;l
z*kP|P!h3RWWP$bM<91iG%vcvo7r0Bl^tvd1?k6+rIYyhbm0q_y*By)bXspjs+&uZ(
zp8pJwv{d)acv|&fPWAN_s=K`<4p_W$lwjNOzGGL=od^SsK#7#(<$KF7Y&XhycqD#W
zxLx+;lAZba(Px5+?pKtr`*it`nbXBtk5o%<Pbj>!{g3s-h}^fXhg)x0K1r5;98stL
zkt?d*BYruvOkup^qANdrQ_iU$wThdW=RQ%;?S1pnqJ9S6<Nm=>Qmrp{PV9T+R{eF=
z$0MnhEBBran<aYb;?m!Xm#@|TmU19H&o$>})RQlId(XyAP42RJ!c$=T@`mR(OY<!i
z$IrA>UvV?Oz;%Dmu1H1+mQaqzzW<hd6PZ8ZO3$O^jb0)Xe}t{N<yO_VHBVc@t7o07
z7+>;y!R<@+r`*5$CwuL-%eqSr+^FZezUkuIz{XF(6361YInR84x_RO+O^fG^e!qE+
zJU*TC?Zo;ZZr(LI6P@MwRi;X=d6@L8_t4zk9k#933eVE#d1vZq@4V3XD$A7XY*Ter
zc;aJi#?*{vd9woFqOyxm50}YidGBlOFgZ5Ucmn%gvuxo!s~)NA?N3|gpEsRetL7<r
zJ|}Ia=C;6doL`qcnYU%_YYz<*r{^Mh$_tk)n&n{YU;Llp_41VmPdr*IDO0}uQ{m+o
znH-bfZ?ODz<>cFwYzqR|W3F6$r^0wp_OsU$)0N9JKTVu?eZ|@c1EteEzZxUU*2t`v
zd>hqs$hyem0CP`)uc6Gb&1%0lS#vE~T+I5_HuJlYWO|z2R=xT1v&*_~n|fSMDaqvA
zbcsVYvN&d!&&Q1iO>f2CQQcB_%<-6&;L+r}nVJPW6J><YY3h1J<%Mj%I?JGZPS@=%
zdm;lppHyErw4Ji;jWe@v(=!i=qQaLRI`dY%=@C4`!64W-b$0m@)|l4sFFlvNdeFPZ
z;XKQ=_cJD`Jw5I>^K4Mc%{fmu{dA4sk$U;%^wddAJyzeptoeP~rZqK2_^t2ewARl%
z8eev?oc^_U-S2W1CXNFN;p_h$t~0We{;_vyWNhr6!^`8&Y};<=tQe?NdQkRQb@;S1
zhaTPFy^&L5`>MU6bft~*<8JAv78UBA)9n^+%2E~8*rHzib#0wSjoruiW4iYK^A0`s
zZ+6{nRlCGIxL?<B+BB!Vofb?x=C|C^{qs-j`j*r2qIZ9kyIs#u+ctB}6}Cxtb{=5)
zq9V8Td7S!(cQfu;U#f{@TbjAjef^<d{gauSuI&y<+3<Gq#Hjn5+dFe@YCp>Au3K+2
zJ1pJoVTImfi<57RW4;Q9Jxy0#YBjwo;^*scn?H#4e|Y?@?fM@3ho`+eOuRL6uiacO
z`MK}@JcsJ0?4}J3rYrQgHmC^R+xP6p!H2%;kJmM?%{C8vUHB-T_bzw*#z>3%#d+<|
zau4q_?q6CHn_QW``pzrih+DQxSL~RW*yL%xYk>vB_O&IN#ct2TWVhRe1$`2|@~|SV
zE^B3J7N?^7!UJnB=WxdSX<;b7HdBYmf$xyVJFUwvO3v>*y>+wZIm7eZeN%M;9$WX_
z`?}nAwN88QO__<87K@$gDc4lsTeRJMwq|xoD$fJ)+Y^u58v0FSagpiikJ_ieJMp^m
z+VDv?zALlK`&>%Pb}dUeFIId<c+OR)-EKzpOS63?6a2)PSFQ>==JX)B@yholxsoP<
zNx_!vwkwxz;xn9hZB1ofmr>zSm;DvbWxgJG9hjCgOZguAZ<heSJ8usgmwj2jB&ALA
zn3YtxLxEd4-}Ai*S7%-nFD-C7wfMrX^5vZdvo}tv4isu-w~^Z-!Z@{3;q!d2w%*AX
ziai@Y^)b9XtM=%4nY#^NM#ur{!oE2n6K_AC!+4(|XoHbyOi}T~3rTCDZf*H-;N`ug
zU1AeIZeK6SwEc~aXh6Bdm-kUe4yAhg8tn7>Ch>gdT8k}b_A!fVpZIm{*!(4HdiUqc
zIvlUM*6hKzn1Rja3D>f|yu9P)vXd7ayX2q4H?=bNmQ7yn5}w~lyPTJt7IYGr6h3#a
z)|y{_7tT2K?qz1Gv|XjLe&eG3f!EW5p1hS%p6_+K^7dJqp5#kgpNDBY-DFhQd~2g#
zV6x5Jn_t#P28DgLyc%BQvis919&?*_ug_-QzW=r-VIE&Wtu}*&L)Gd6MpKKa9So&1
zPl78-eu=H#y7KaWhAc5lp4|;BjDKrim0sz7ulPNo_WtXbRelGAD)cXWU1{@1cyc>S
z0>77X>#j2CBbmiZedFKpOtOA!Ge0YHhYshRX7$A~=GX6SRNnEq;EkE#gXX_lUsrJ5
zx8ty3m33JCYiq~1?<Oow<%b%i7pU*`l*yAcw@9eaV9)BZ2+28U!LBer>SCARvzDa7
zD|13?<BrAM4mvxB=iHp;K8JIBwXf5(eFT=Q%-bW=IIHi_`6oI~Q)T%qkCuo{d!%~n
zz?2-B?NMI6-`Jy02OE}L+%jpu(RTLy_~bBQ|AhSp_T`pw4Zp(nPug*-GWT$%ZEJ*B
z%*Fuo;*-l3rs!uDbH1Gy$(W;gKJ3e??bBvh#+CE!b<3`c_FZ+hN8s+c;`fo?4Yc0g
z@=jOj`*KxRPd|6%={V<>f3E}_-$!g#d-Ai$$ZV4P>sY@9^ED1IOInDYi&^P2$+P(S
z)0a_h^Ak@k?W_A{v+-xyiU*UbeueqG2xpno$H=sOebVWvw|5$zvr5~fCo*YyTII3g
zzuKuzr%p<0^%qS$rZ8u!%GWjdV$FK9mDaJn+xfcd?%|(v9(+9YD~!KeTI_Yt!sm19
zrk?LydfIpMvME>JRDAuq%d&7@+s0=tdLGAEWA^XVEqX9V=8MR|&+9A>{?$Hw-=$1<
ztM=jvj0YI__I<TfO0lp^zBl8e%;!n`5-Seprb^h9NG@b{31V8`!(^M;dd$F`dExR?
z&ccmfS8cY85vW{sK|CqVS>Zv+i!4ro702tIO-$2nvYNN&%BzFNs^)u5n!RnQiM6!t
z(b8L{Z>-i%nYOup&FxmZsi#jfYuvFE*;ekKY%#HjSMgoUt}WHt?Y##jZ2hZRFDJ4T
zajgA$)%3KX)kmWq;Y%A%7#eE}PrPw4Z^=TX$xjcbzYNtA&la+(zVg}Nq(Yr(;JN7a
zqMlRQo|^=)X)M^VsQI`_0HbG5aI2~=gT|8cUcu)@6u6?iH104>=(%*!wL$A!ALpJJ
znNX?SOP;@VW>zU%;GevBLZiU*_v!P!PVLD_m#wwBHsy?y;03NzH?Er(x~=j|WA5_b
zIrGjByBqGyZZB#7n=GDW9bPQ-<cZ8eyBP=8+*LYcu`qVO)+!#Jgyz2NIF?%{$_*u+
z2;SRyXX+P=nCpgd|IAq3oEP)4I|pV=kTms>5-Q%!E`Q?6c5U6OC;ANg%GOz$zLw|Q
zCmj1aJaN*o$mc~;8joX&|33S+dMUeF+A9s^roT&SoU7#z^K(`dl}=2W_VeBK!pBcz
z_g~wy-210uKNmybwY}TFJ-YCp;i2S5_okA{rNZ~RJ@e9U6s?GCV5kdyZ05zZB7UZu
z0e{rXZOda)ekK?D>FzE%<MDb{z=H)b#a~uirOnh^TFSbH>(g27)`+Xcld8G4K8okb
zvJ<{icfOu|vYMZ`;^rTHUoLO>HFx@<`IBC~oU-EYJ)^_@YpV=qzI&3|P_&%&PR(M|
z=l3~vC%wwvIyG`?fHnW|uJ@(7VHPQ$6hqx)nZC+LJy`c>X>nKHr46TdDqa4m`#h$|
zHl&udxN7Q=*(y7Xn3eSZu+(b1pQ@BL@(__L|9UjxN7s|%xiS*RJayx0p8dNx_g!(&
z+|$Zd)70ngd>eCb>#EkUKC@HvJZ)Dyhg><q%Vfsx-1RwLGJADi+$Ax!w1>Ah$W1j_
zxvTHkmj}<j7}of%o&EFAl%fmE<)aSDYI>YyNZPx?)iqLXR?MnHj9pRuObx~18y#Im
zxH3S!7v`zu269_OEYu~L_nJ+OSm*E}%SGf#jo{=)pT#0?nC~`P$^;!%yT($o;^oJc
z=eK&8lv<fSte7b=NAUJu=TgI%ZB|vKYyMh2ak-h?@1?Kbz2DE+_eFa09s8ue<-g^>
z&H50WcT4Zdw6p*ETKKQ+_tAgDBA4S>8K&j@^>zHD`J10DDEZIOH;-wjj%R=5_9xXl
z<ge{d_`1Sj_wGAO<PH1P@9p{ZVYg||nm*~E&3ys4Ll-MI&+}MU_Et2`!OiJo@7{{n
zv3*N-xH%?qzJK{fd)BUYjYvMXd*!9;%?h^l%5GSldrmsAb?VHr2j(Bmy`Jf>Jr=LM
zwVk2t*Y(_0Zn86YPtRNOeO=NwRo97~KO0|V&%0Qqd}(RWbJa@mQ+J-P_+lEayVcwM
z1asfBt$K?xQhpZPcszMRR=3O2tJ?*8KGbHZN@q-KubS4vvCQe!!LrANC!T*WO_KP|
zYU}ZQsk`j{8D}mr$jmbgzaYqeYUgp*TCFv+UCeWx-#m?UE;;sQ<rAsrd*YXw%t}6S
zM1b-3#IDzCCrp^b^XqY!DX*3GY){7j3?Xa<?oscS%EkJ5ZF&}Fm$~=)t$W8JqI?oN
zw5*ul#)YqoKUr=qmecd=di_Tu)5~9HKI~=5crt<g`mBe^m*+j)6d*Y7>)WHnuJY!p
zr_~Zwc(wCxA77gtb>pG)#2%SzYpPPhZl08G&sthrEyK{7BU2nDxWl_(+hOj8sz)2&
z>vsz+-TC!w*v@@M(-dSLH;4Ay%-i>6ebFR!Bi;kd^DI^_e!{~)d*`YbOJ^`%T7Nrg
z^Mi)sd&|y5vpDu!JYH^EbR*xUiLGL#^5&aON9KGzUmUjf;o%~Oqk-nzmd>{L);R4u
z+q&6%8-%ah7T#OM87R(WlxcTivE}2xbH09G*t~Ofe%^I=`O1Fz-jZ)pK4k)IMdnp<
z`+JL~NlhtxU@Yfu!M5)7BlWplig)<@q%Tdr9wL@^-0-8^Q<ZrtZg=}0FI<;)%+7eb
z<=gNYU+X*Zy?+?2Ldvp~*%w;8oW*@J%d^_DlWC=e^2CVCcAqczM{TXNEPFk{VwH|t
zRZ{O3nP7nr88%(~UNJoZ-ARG2lE<%aWtOqD`RIR#Us+vl%LPW+&wlbtS@;9En$J~V
z`S85#jZFGd#|h$=Ctn_o+^XJ_B44GWmUWxy#(BRTOiQooHAM+tc-%ZM^IPC2&Ie)T
z9nV-Nvddk$*7DV0_R{PhRkzRX=5Z^$d~1{Tk`Hg<LWI0(4IP(kQ@*CRxgfmk!D88}
z;5YhatO0KK9$X8(dAH#0Ic{P9?L{+X!<O_;ym(qB+)&8DKI+V#3+7D$3Ew1F>aOdq
z=exUa@9V5fg&MyX%sYH(?upOtd`Z);Iq^A)u3eUOOqFrxb4k;!D_<7Ix?EZy`Q?4g
zoohkSvbQ~$mzv)dJzKnP>t64LTjuobklXUR+h#?{fwx^xbMocbWhNNM>djxFdrY+7
zdCsrP{!Wp$bMpMpUMTE3ay|Ley2T008DB4~_-6J+eeyAF{pjtPhdds9JjpaGw&h)I
z=m*c+N9{x}C|6v%6XmG8rkC^Q{FRKWjlb1gQQrEaG3UC!N?6*%#|DQdMC)#sDKd-|
zf3sy**!mCgN3LD#)|qv8+0y)?$Q?KHoA<VVT4#LtvhU(Q-dBY#IdgVBIVs3Kx8=Er
zYK2{}*zB2Kt}Xv4_Wqmg$8#I2YNTbp?Nhw0I@!;B{pQoDDs0O8IR6yKD^&O{+qGfm
zj```g(q}H47?5agET&MEY<jisy4CfrJ<gB+iU)sG+g!SeQ%8(jQB72-g`uof?(gfl
zA6#6&Z0Bt<@3TGdI#R=8_3Xf|o?d4G9d4PFqQ%QEEvgQXSoG(>*8^+)^)sIoUSIAU
zu)%P%S#i%}S^ljdp*OeOo!IeV(lMjOt*<OZ8MZUz$(QdGU2bv9aQAyY5Ba5T*AB`|
zJaNo+_41`NpPsxI?iSJM&yc)ReQWr<n>FY67{860q|bBQx|2aZYyFeT+3ojuJS9W~
zt6wGia&R{o?e+M&D%e5xIv3|-X3>lP8PWwWyp=7;oRrz+q0?H+s~ul7<y_#xJG~Q%
z>fYys2t_BXXSO|B^7&=1yfV+82Hy13NlWzDgU@AVZd?<$dq$g?Bp1K>@}(BhbJok0
zKi_|8OWc{~d2e_=ZeJjBFvokU#oammRYw<ZnzLo2Z|*rGH_I3PrV0%!4ji;C3>RdY
z!^%>1X_2UcK-sT}ky}b#mMG{>TF_@zeRahGJrO<jyz0x388?agtFIJYo}DEjG-uwN
zEBg+oOf#FEeDdYXu9siV>X%!K^j}+@In6S54aXhBIVq2C?OrSGEi-qwFr(LsCs&W1
zI21K8BIAfl_m&BVEsuNM+i>9|?-b>2Z}(<r9rua|*!+Bw!SbznhchNJcs-POd(612
z-L9>s<LUl~@^`p$a?hUH^!aSSz6%#pG|tyAt&$0wxWnch!-M2&tL|iMWJ%>HoL8&i
z_q)0C@pplrS>}qzthkQsYiLafXDL~?=+}+iqTCZWE##)2k3GhCsL#XV<lFezH(zWt
z&Yd}8X~eKbx?I9`qaVi!rU_1Re*EgQA{o<C4=R*ed|iI5%WRS2p`MznYcg-fN)><3
z&~{=_5%SEN`O;6YG_SbN?6ar9>5>!YENnH8C`@V9ad>QN80|E7m!#zj-%PG)cXw=i
zJSS}HVurUTUT{2~pe-fv#@$l(lXl#VEzJsS2cPuun!B#=n4ek8n;m*&zM+J2W8c-a
zc?(YT?wQ=XTy3+iN6-@4KQ#w;tX*qaxHVF=Ug}hU$CfWvymCS-H#~SSaem;}bxqe;
zO9Gs8<9A7I_;P6F%?+nd^=-WvwN21FrLpnk^N;H?wXN57`I;sjY_Ka>b)?*G%R|9b
z?u(mGiabqx=D``XcXz_&DV@rZ5*saU&w1Px_QtzR+h3&6Tzh}MY=!CUY6i8i2iq)|
z*XC|o5xj-%z%hw1-_v<PAt}op#3y7;dU3Smt7Y|%i4PMP`ECaA%l}*T{JrWYr#VGC
zSRKxrUWs?%Hc;n1$<S9EA#PZy>Z!2KiuvcYj~(x?JYUas=G>8|+l#D(BgD0qb{<x=
zJXam=S+d)L^>mfI*Wn#4XUuaLgugfb)m}I0u95!Ac|it8&sFoU-&;ISztu;BX~L2D
zGv?=MuTD8VkE_YBIYLf<yWz{#nvBylMgKGKd@7FlajWKvYF^uw^sG+f1Ew5%W-nLy
zB=Kx6r{oEi=S#CH&iiH8x_OHFPdi@pS6lANlR3g)*7wGxZ{KOXU9NfOmsOL#%hWoq
zTvo8)x$?bLyYtoWe_fo$tJqV{*ud~@)g|5==UJ}2zrgdLIz;8+#-_~Mj*HlS9|@41
zzK=J;?2b@X2(Ki=@2X2X%Y8Pp-b~}Vv;NW=-<(Z<4qv{snf-M1EMfPeW$MTN6!`K?
z+bwGH`}&3*$BJ4$zmF2nmOb@z!(;UyS#66`pL#hQI9?yMT=wwoFDlhtVLQHxJrJDp
z@ongF*{tZ!nqzn8T#3#6Dbm8uHh0dY+@;JSimf7nz72t{49|KQG?XnCbuk2azV>uw
zcyft>StQVvL3H7w{x1s-uUPY-I4a7da^ma_%UZsf=AGp5d{L|QpP`|o?dl&#KK7G>
zMne8RVSWqMPdDD%*ZX(EKb}|f1!f1%I(7BgNkQ$L-wTR7m!5k1Zt=7=I~9wyt{rlp
zp|qTR=cC>HTs2mEKAJ7fPE6+6)%x`KuhrG5caH8(zqD`eCHs`g*{dRL4<GATP`mcs
z^rsEA>_N5KOMaX6Kg^fN{Keif<K?DEk7dy-9^HDcXjA;M?`pxKg=_ki=bp@{eBNlE
z;vLU%_po_)UTCR#pyuTV)=xS+9~i!z_1#we@P&$Ozlt}x(LN3Ozi$4V+I}TGbfrz$
zuf1m<M4EPgQ%sqkXUV+rWz77}r&scCr}QMXZsIZ2EI+^VWvpk>YFFWt?_=lBi{JM2
z{;fLu$XoBzy<_!+mdyEdWO7_$z94(yKmDk;_L(O<|1RFTLPbZ4yCUGdrRDAUuVY#?
z_crLUU5;5_eAD}`&zJoz+y1#eeYZd|EMk%2vd>NC{4?8kh>9O6_1>#?t<Y$`=CKRX
z#kuE<YKtTO@qbL+-nQ;ZZIE(t!ePFR&kG(m+15?Xeq`UDvnO14N>u7@$5bATb;lIu
zCG*XYbr6}iX(QL~>HnlomOec%qd2?ZVCt{`3|jAf*ObkEn!wYNu6u7se(NTQqqh~A
zpUS-Z`Zl&_5_{UYnhpESs>3ID#qZf=@w~dzQb^nD)LJoqx&2X}*NbFZzmL;6_J=1g
z_`uqJp&v62%1pbq=Hi*h?;9tc7d?<IuI#>fQug#SGhW<1TNpj}#*Ed!X4Gk17k1uW
zpmO%|-=i{L-^V5DoG(=NcoTW!$>cE8TrXe0Po8roPyW<=Bh>cl+rVWj*Bf77&gY_6
z?8=bT^}>`(W6{(D8jHFTMC3FU^ju(c6$xN;6$#qRSS3~UVaeqG4A+;IFsbHze(5Xo
z_2sp0Aq(Tu7a1%YEiFy1S=t1**-dFF`Om<!?$+@~>aFVpx0zIJUCn0y^=kIF-A6Q3
z_V2tc!6h@*^7qvrl@EV6XRm#Exw)<Fl{&jzA8+0LY;h*fr0L8;2Sw%wB?rfRO|CYI
z-nLwKg<VLKk;v!fOFQod=v4ZwnN#>SmiJ2!^F!x%>aCAO&%Uy*?{xYlcx%UV?ibmT
zX6K@QMx3A5v-*eBGyTQZGoI+VpW%EW^=hj*%eD(<^US%Pnewzq`_J%DZ2Thox-T%G
z+?J~-<LNs=w@+ucGQP-aZcEt1aByQ&)wSL$r{<TuJ$d4N*8;D3oLWb|atEI*ub#Vc
z<pQT(BW+g3hSNDO!*n0zyggl1_E@&qb&tl%=1+Y)zppk-vt;Cnta>9;r#2-yGsDvB
z)RS+ol-fM5e%$iG^CbI);Puab+irfJKRwTXtCdJvh-AR|Ng+HRZ*8#2tuuM6=DZ{Q
zv}N#pxvSTu&68)IUu~E7qqAW8Kg~HpXPX=E&w8#hO`2odPUbts!LQAqMgLruzweE2
z;jbxgb=oJf`BrmQuawi7Z!$Y|u79-Ad&##4Wna&q_Hb#=w3ElQoJA%HHq>kFPhaS3
z86dE&`q3;WpA&s%d0oEoTQ5DCvi?-1tzm3m`vb{m(s%jp{Sduya^bBP(+)ll=&)e<
zx_VRhmA>2(i{0|P`|e(965lU>Y5kV4TQ#<9k1A|G2E6*G-Da+tvz)o-@!I0v>cWcO
z{qa@P-o>pC_Ivg>ay#GF(DnE8CE1s;nz(dMn=-LK>f*&GTV|Nu=zdU|xBR8oH}zl*
z-*UBrHHNROuB7T0&)03=x$YYG?hKD3+FMHb!<O&aFqbX&(DwN03r$4VJ2$sQPyBx2
z*XQtsd-d4-EFR0QULlxS{5)eK`;N2DX3e=KsSj(Cw;6_RJF>aws{N()%?S_q&&}2r
zalBCV>(QEfiTTm_F4o17+shet7u8yYe7&$~&ibAGDh*j$aXXhRE_RX4U}`Y*vbxO1
zl5BFpz}Wwl$Fe@nuE$e8F)a6-dg8T*=79-@*I#?EE8gKxejTnWU}kx8RblhA6K69b
zH0~|Fer=}C?cT^_K4}J?bjfweA-l}OeQutRN!w-pyD>Y-pR4e|*&^$1A^(^wt9!Yc
zs~N0kz0pk)yOqUL`!9Ry#{M&N-S?JUFK7O4(4%*OFXNR^Eth!Mo_98aAzp8}d-w{^
z=CgS&KEb-dKQQvU0rMY=^Ip}9ZMQ0IpYWW0ebmL)QxmG>7PD;*m9j~x+qwF}r{Y-x
zG1r^w7}PD~ru^=9+2Q2CQ+R3fqa>r^FVEIH>s_)c3~`;=T)u1%U)8$G<+n~h-PGqO
zdNn3$=^Go3^GVwC_iQxSC$94Sz{-u;o6Q&O{;V4yyt}V?t810bjlUw-@@Cslahj7*
zvevsz$mxiHb)&D{6Hl{R_TOT$=Sv^i3sz)ln(-!k&N9_LsI#Xr_&-B3<Eq+S2CG%v
zQ)Zs~<aqG;hxNvP=hTE3KjiPOli1fgO(|cDliQ4a+J6Skf2FVX8Dy_#{S)|6ZqkFj
zTle06>-HeA??LhX^--6&-Y(|Mcyy-zR_cN)$6MDuocLtYy%Wl9IS;$#Pi?G|SCo?b
z7W;bt#J;w*HI6-5)1tTQPZQSaGIIQ~^n>j7$q%E8eukx`Deri`aLtl6eJj+@<aqF%
zeQJ2l>Z<i30X=EXEB(%4>IxfE53m%TSDrU@a&3XKo_X?|^o=GDc5TYqcSPuv<DDB%
z9-ADSEy3k*Jb2cs?+lY0TVJ1*Zp=wvZ@Koo*;`w0MX}^9a{Ma)8Ct!0q#bTCG89fe
zYoxq=;<SLm^D#-wJ8KRtQ4_xtxZ&7}8x1V?oXg+3tZG+iDzN&tvc;A2u+Ysn7D`K6
zML!(KlP$2-@R6O?Rx|DQ39be5dw2ZX8ujQTpHZ`|cI@Kd$<u#&9!$J(>F<n90>LXz
zoP0L9?1s0mUsN;`zt59TS-Yb&Boq8DH+H?q%PBK@+-j41-qgvX?1|RYx_MWpOy2q8
z;?#>1zm*2>EQ+=`@O7n4)6Ek)Rw*T-IS2lLTF^2n!7g5_Za&@hL?+Bv_CwUvht0_e
z!i{&^@2%~%5|Lo6cxCZA^5ZeimpiI|U%T3(rNTS8fvx`6)!BD0F4^WDyfC`Knbo?T
z#o+DRxaK7<Kc19HUsv6?^+ZP5(T3V5DGbbI{~5ksUzD+7vsUjaH?~^G6-CCAVtqMs
zXR>kJ?_t=nmbG1HcmJ6)<$@O;&F3&^Iy2XeL49J-DhqkNE4mjpefhd3IQP!UmpdjN
zTD!6T)RHIqPQD)B-fHa=XSL#cQns4Q&MlRTt?aRER)!m=qNE$UUrSh5n9?;H{s6ng
z^D%-K9>}jvxUVKT<I_zWuB*FtoKaz7kmZlLrh1w6<n03oZ{L3%zu<T*|I9G2H|KH>
zJV@B^%0JN0<4DGlmCxsG&CH!~=6J@*<7b19FV9mkNU*KGdQU_2;=BXPzlR!LDPO)M
zSB>$@(<uen5ieaYmMwE*IJhL&a5BScp65MZ-$xa@FXS%P6j?1Q`FLG**woc|j5}l|
zb|pv6xURD<LgvfLYs$jB2mTzF2|2eYL+HA**DZ%oN0z3#nQK>D{yDJVdDgG8Z)+sl
zr+Fy6<(+!+<<X3&7#7yD2agqg&3g9SZCb70e(xPjt`dyD`?KzC-xH#@c$yBg!rK_v
zz3-mz+}ZB@{>QZ`Qmge<zCO16x<;itE<KU;kp+XsgHI0c-v`fLZ1l8nhfHzIoT|>-
zpQfJrZu{!gtDfV!P5hE^#}@83y0r6x-2%ho_u`g(u$wx+v~1&Mp|YL7Z~La5T(#L+
z%-ZRf{^vETZ~uK`6rCT(8xyuYr)|=OS??-UlOAie2t<pX_b*VXR4%C9@&0X4T#RMT
zYO4l!-q4htr#zS*cAge}XS=$>WZI&sTQu(GO_;+b#Cm{j)4IS;t~&zNefED#SL$7g
z&U<oPdCrqi&db@Y$7KW@PhDNLGAp<_RmFeGJ1sYUzh#^L1WU|!-0Sdqhs%xQ><Xo8
zw{c2Z9%DRacrKgy=uTh0ubX%Jq{v)aA6jjxuk_OKv&*NyTHgL5FSS$475aWD9^U_v
z>&e#rys<CLt5w}OqMO)Rs;*kE?p%|%=R{Gv?doNh>y&hl#JR1_o1S%m_ec@L`p($?
zylXd}#hFg!W7M&HwmGKeNzz_ES!KtoDY}{U-@=m57?m);j=Z(MQSVW(>aMk?ntP5M
zn15<*CD(V0MIMhW&YC=_y?=dg<ep3K*2;gM_DRpp?TNCeKWq5BeUGL)JKYi1P_Fej
zo3E*`K_=PMi#0Pw&(ikQkzXb!j2JDR%nB20@=oeme!8Hxy=rZ)a?~B|q9roHQJQP}
zJW{`yT$?z5<yo`9)hj)B9M`bCW2v?&_B#*PZkg5P9KC%UFKS;+Ug)M(p)`r5?Xu^|
zrR*lT%L2Bfiv+l3HU!>lKCpzXL99z-ae`R0=bXSfm+p92Uvw4u)uXYfD~w^SuXLm4
zSJ7$N!M-uk8)fUZ%+yaxKQp;OWS+b1>#y6tF<#2qBmAMmyPmP{@>{{JM;|SVIPvF=
zy<_|gd-fV*`JOtJjHr+UmBIHEr)<B=At82toA&qe!}jc7=C|3&UHNibGpv^H>$H!$
zO9FrIG-JGeX-hzn-?=lN4Mn9gqn%INnIB!9Ri_|c$9qN0o{!_mcEeMTY$x?Swwd5+
zeR!H2$A*h<YJ7RGf7`a@Kf|tRPUTuB`+SS`Z*f25FBJRYaO8*XlSP~6YkfN^&9i`y
zi|_04KhjrPugxuAa8LW@ojppSeI+-<TpzYsJ?VO}T%2XvbD23Y+ia5qJ}wd8Zf$c$
zF|oCyz`bf^^=cQ<N#cggw<XW<JI930&b9J8wej;D-o^bZ)}Fi&acq;<Z)xj}36B{9
z)h-rpYk$`Mma*>E^0%^&GoMU8t6iXU;%zIlXmiHG5Bv_sKQ8@o+$XjCn7nir*THMP
zUICI-2{JrE(es%3_$-eWFD<?@?Iiz<l-38IuWxnZ|0sCg!7BOQ5<dRZuPW6h-tL*l
zR&{Zw{@p0q`-d;eWEM{{7nRwZEV^}dR;yB~bK@T${-|d)axq7Zj!4dEY&}*~d})2Q
zmaa<uR)N`WWwSmR`hK1hD!#W^?ceh^x8J>sKa;RW;mg}upZH}f8ox@<*RWK!Oz<mw
z8=K!<`pr92FGWG=PsidP`?)^NTxxvklli^m$>Hrw%g-urY7ve(lPVG<-1Wup0<*}L
zKqrQC84Gv<eVDp57O<XG6=9xbF0ey(#qAxJLc6`ocGj-GzSeX#+Z&e^p2w@MT(Hqz
zRWUzg`{k0^+P!Z7%8rzMyEwhf?m%E}!u@QIO-4tGT&uQie{f#-kJgXshxL*#KmTV)
zU*4&wr@K~9cZqhvA{};RnTFzPbJk4kH_kip$u`-2=f&k2dJ`wPB=zv8v9r{=21(qG
z`<T3V-SXc$72CtFtA|GGW?kbIu3}cXyzj9E@0Erf>g!D(JZUJtwaM?rMP3!*c};T+
zJdQ^t$Xw|Nw<%lx!YpD-(dNZ{l9Ca%&Rl=DPkZ?6vdK=Br)Q_`yu}`n6!piWoiE(>
zX8nxyw=CaHla=@GpEhyJ@BBS{OdZqrCI=^T%@)}zDI#O2+1Fa}Z0B09fQ20__CB*N
z?%QL-yRgI3;<@Pg`!NEHY4<EoDqq|1bl+07GqYbdoj7`d$%5Thd&ZSz3?~G3<sCnJ
zZQEAMNQ)ee<M(X7uFL!R&EvtGFWP+#*Hv9t-u4SK)Qd4TWD&bRNAN;u&;#Maf)k?q
zM5;r(zuO-&FP_t9<QuG|<g?Esa1wKg{k4r>t&`quQE!oZyIqDYd2-kO{OP^i%+qCl
z8T`7I<3D$CkGXZj!9Q7dj6`4WWt3q($UbYU=)#y|y&Eb%ZfDMTWzFyPq)zjWRz=X$
z8#0T8=RGN3w@CB+w9ulMl$7u5oFA>(|IsU+vD0gz&Bs2im#a@bGoIG-GwkP{o8H=D
z-@mTf_;P+`LG|RoJ24_$?w8iRl-gsk;WL|CmDIP1Pj+uEcKqP5r_{PGpi(8-^u;ds
z79E`nHb<*kWghfbJx=^MDM~>w_l8yS+O${utY;p6Tl1vq;`!yfI-cg<dHW~&v9&z!
z&8gdO<(Uasg}1-nr?uyrdfGJS%{DxjOQm;yjczMTy0Pl@vb=+~wwkt~H<twUJFU{3
zxcOw_r7Z^poYwfupSa@9(2^|EcX#Ea%E=G-=5j1g_^cHhyZ6kG=Xn)td+ic)1)ij@
z%UWWlWW2N8mSOeA!*UGjcE^`$vquY8e)97;$nf?1+GuNbLrsOoD`|@^<vyNy?#R6Z
zJ&YGZ=f;XfcI|n8fvuO%@NMWq^L<AynJ%66Eb?)r$ny+S_mGb+0?{37KBXpp7P4T!
zwXt+9#~P*zb5Z6AejaP0YZ@F?LZ<AVb}z>5h|J`Zc3)>|ixv4s%=0O5lw4JNmURi+
z<VJ5-YcV!ZraQ{KaKS8g5u+SSwo0{m3-XpRg>Q4!VxIGOR+z9_Z^U-_>1(rZ>ai;;
zREL#rN^)>F-JZv~C+Ba&Yo{{B-7|OnJy7b=^mt#k)SCDh)1#+1S~53=zMQpIaOr|0
zaUcDR+-*YtI&QyfoSZ4USBsZ}<MA|~ngfMjS3Z#pI`U-RzA2Y>&aUd)I{&nUtyR}1
zQMKTn$D*?*i4<?YbM<v3<Dm%^@7<2Pb5xOe(tm1_`i%#2^S&<JtT1{0q17hL1<KEq
zS1j4xG0#9HDWviBtb(aip3ITC60pJ3z%^o`%e)!3A1}?23KQRPJn+Wzy;1Y-#456{
zkFyFB$+_4Rk}k_ub?t1=&%lXO|823pALO%A_fKcp<DO6KQQQ1}c)gYB_sjZvhTA}e
zVY!9eR>v#1KOLT5#ijP)->P46>vId`f4xxi41Tpl>UZ>`_%_`=xgVwdt})zZ+q%TD
zY*J-|-rpGte>v8-<Sh%CB4p=OskU#&hq#rckLp|EIIkp4*z?Qv@ymDT>YF74`@L>8
z|9$k?Xw}}^bC!gyIbWD^Fh1KT?|6*dqV4j2xypWxH5+A8i#P6`b#b<T@QS-`$3%Bk
z@+@F*b9|%ieKdUa>OVG@o_Y)C{EAthU##~2>(YLfzpSAdw|q*TR=g_^|Gx3a&O8pu
z1Mg#=K7DsR!R_f+yRAw8UQRi=d!<F-oCj6cST6tjkUoFqn#C(kRW4nab0^(;<N2t~
zJo_yq6iUvfNH<7s-a6%1*H)I<ZpPOyZTVsuWw!P?&(f;uUstcr*x0+>z;;8nlH~DI
zd(3URcBJ0hd4OHw(5zUG+d&_0Nk&Xhd%p6(`Mn<Nw;o{6ROsoOv8vFw&uhXeOZL5f
zo2KT^Xj6E?d~liB#mpTKIa3+Z?Y7!EeG-|o&hnMkEDy;dHm@grH&%wZ3-Zjbt7?4d
zcjVS@&Jw1T3LkrlBR@@;I7jWB@l;#muxArE?g$i~wBElo{iNcJ9a{cA^S(}5R~A_J
zk>%`;2MWO#Lb&$t`8j2~g{aEX$b<G~7AGE?a&L>yJRUQ_y6btaE`ONv#O`SfbDDd?
zrp-8FcU^(;g7CFXjo~?b2F78zdOSXy2M>NZFFI%1EUA0P7iSbrbx29o;dptc`ufs}
zx}+eZBgXu*3!a-kk<xt;Kf!>tdfw0VP8UoWrCpYGhCOdSAUb*X760V@+h&|rJMPoB
zFF|xka+2N4B+H=swZ*?m?-=E3Jy+b;Jpc2o>sxjPIB2%rDLUSBE$^4L%q?-nV}6gn
zep?c%@ucm<?^SzOs!Z6$FsJm{syp{)OwLTz?|Hmn)wAf1pNF0maXPqhKACr=$=IfK
z#vF~)g3Xg7_h(kJ^KqyzFUk)0>*-w=zVPI&a)#`8p|Sj2CR=t^ojb3-AhGe_+U{Bl
zhILL)_@>;paNeOjck#45<LIypiH;gv{~4;ku2GNOy4Xrqx2xIH(`-VE*5@A=)w<Zc
zKQ<qlw_v{4i#Km?UNAh#W5n-&seQZasSoU2{Bd)OW8Mo~-h1Y*N}pG@XlU4z>8Czl
zwcF~I?T{iD7a-R%=i9nfkFHG9*xmG4VdBBFX?Je@wA7lh__fUKjaq)z5)EsLG!zWv
z_IfT%J@%=b^_!^8hAqBo{Ab=y@Lw7-^WtLbx)&14vKghN+Bd%I9IVRyIOpAqqUw+f
zuaeAi%-k2QkyH^pCXmeif?wXN<KBc-%b%W?WLkNB-x00Yb4y-5yxQl+X0dE;Y@)iP
z&4W4L*M;2A4JvYDXSr&2b;H6>w_{S8L*MRfe{;(^{94&E<%!?FJo)-<)#NOXCmWKy
zYhOK9xps{Ij6Zwhec4rKq?%7OObhUMQGM~PQ11+@TwA^gF{>vXz0FX3KG3JSuWH&I
z!-lFb74a6H#lpL_9OX}~J+5&=Ia89kkJI9P(Cf%Zk(GDvxt^I8dUyAQ$>(l4Pg6;m
z!)Nh6@KET6hkHXlAN6sQ^p^-d=I%8!Y~!kBH(9!tJmIr=ReZK+pKaiO299}4j^y1I
zmSfXiJGWeG)h7>ogO@SSdl!DT(OkLWWN72e#`pbR=a%MWL_M3ZWXigl*JZmO$V{HV
z!BQP2(~&e;`Pwe;i%)JVr#$F0{<1FZk?)(@;yAnZq&q?{CpPj_tnIZwQXckhX<ANS
zyJ-WPpH_9nNefHnYmGN$*VyUpE9LquDa`(KLf-M`F0<zDJ(#~G>Y#!4F>(1*JA2<O
zXs8r5DVoRe+-~j)zcX!FTbIqWKQryT7+YQV%djAq3@^QiWSPEfGj;WCj87h|i`vOQ
zExGZ9)`Zz_+-sM5YN;`3_O+Cnp1=EI^X-j?%-EM(to!sv_3Jdtu;VN;f-zI?o_#jw
zUC({>74N?;-Eg_wpd;hFjiBG8c!R`t<-M8pnMXB`T+sY3n>F`khd@A)d)}2;sl3od
zU78|lw*m}ZMRFKjMascD2N=Mk*nzGJTpEkI85X2%)t$R|i%PQSG^@{NvkokEVm)SH
zv2d}a-0t7jx3_LvTfK@^uIT8K!-}tZ{5=1()?NQmd~EgO`R!G58*>Zfr1x5xl-xeG
zYem@K>`%f@AFk}@d;6u<thjsU+DYG1w43H7oRFWU{l)&9{70|X|9G$eu~m8a^wN{Q
zR~G#io&P?vzrM9~*_-ofYv#;r-?`?w+m3D9r}^u7J~UEJe=quFz2&tn7NzS&k5+B#
zkaT9txRS5?I#&G{=d#UL_ShCP8LRkwoW{H$G3I)AP5km2iwn{rSKd!MRkY-|gyf{O
z<BaTUOHO%7&H3p2qR_l*+0+HDm4&4x6HoH=NQg71+c0TATi-1&zLj6v+jQP+#b%$A
zpH*I5DyVzEV9k2TA1D8Wua3Fn)0@lksq&t8Y4SX7`KX6m-{xsYYnDAc$y2~?!+dhR
z+&;zai!a>Ld{gswsl(+gspdHo^5XZ$WiRM?BVGA;Yw<nlU>hT28RIi&C%^M8iDnD$
z*&tKJzqZsp`C_fRm6*?i#2wFO6j*3Ul>7>rR5Yi~V%5{a-32OgGgjSkuYbTBbl&xH
zY4+}|;Ztii=5anRD=Lh6-&s1-wEE<_XSLm@Mb9&Y#@e<|a6ESL<=^bCkKa3a`f?N!
z*#B(N{<He*9GO=)&IUi9KJna-$x&8YA9B<e%+dJzeND}?E{3D!t{SVA_o_^t5I85$
zQF1||t4Qz;R*}H72H+$SIOkHA0fWSAPY%ZetD{Pu-OGKv&M-9F+4=I4D_<pY7cwrL
z+N7Y)tnz5?+Z9V!ZLEC1WaqB%G|LmOukGvpa7IqzdX4^rpMNTLeYq!np{M=S<>l<(
zeQwVcF?Tw?W4-Lo4=#4{AM?MNEnb`X@w~J~<=Q8o7l+wAR$jkw-R?*GyVif@l{<c@
zEKJPMKU*R*_41SRGvyr&U*B7_)a9+{ZiDu+viVzC&o|pCRLJ{%^l#bP&Ci!1X4I`K
zf8fHlp9|Z6ES=K)Z)^V<&u^0Jr$t*X-O=WqIZHF(xY8V>4F}mKOgxsk<l+Uzhbwfv
zQ-b7t?F>(TTM#Y&rMrI1tFVGTp3QFaXEVlcnl&S0QIqhVRnbn3)rC@Be>#8UF1K6$
z_&jeE>u0IQ!P^{~*Z(?rX@B(Bn}6myJv5#qu|j<wJJW`h7bVUwY}GmVL@Qw3{ouw(
zan~smEYA6xt}O5t*AwAMXgs-Q_vIZaPbOL9wQa0Yn)cj&rTepEjE5SViqG*DTXiJv
zP_+B`GPd+X;O?>utJvOr{gXZQiu2E&hWsbbFLWIWpKP_DFY9HGt25K?eaT0|Goznb
zJdtyc+FVgQCE(0X8@_tJtVwJqQrRsJGhf@3IahPiu{X;LS-+QkS-Ehc*Cgj$-k$!a
z0eW{Ao-(p~!xKC~U&DCLbnREQtHNjI#tL_yn!}c+@WIwN=J*lKo_{j?+;SHvv!6Vk
zb%)1!8>7MmzH0upi52ti=I1QyozZjbz~hPGoUt=)h3y=7?o$2SQyp3|V_Agk-c{F@
zrzP%~Wu~t2r1*H%S`|ljWrk1M*Q4dC<@6=pb+UHH8Gp6>W*U3)LHT)+Yrk*2e*HEy
zm$leQ`)L5<iSMgduQ(LE;`Q;p2@fXsHE*>nVzXbW*KF2%#9fkEdB?J?mnJqaeV15s
z;>Y{5KFf=nJeS>1@{D`ZIOoX~p*z+oPac#UwVhs&<S%((Wzu%1!)L5r<(!>M_NF~L
z6!7wdY<Au4xGj~O*=2W*Pdc_>^QO%iKjP<<K40spx^@5Tjw`>XEzdhxyz9~$ozh<0
znU2m|+JgH(&-&~yl&S8vw^U}Oz2>_A42O=cUGp?)N8s&i8*Os4O1Yg2d)~fqHD5Vz
z<(<znV@^Dom7o9Gx%5w_rYvZJFd$hZ(9L3*qQmpG63>^aYW3a;(C$Cy@NN03Cw<3e
zusu`1w5)^4t*U&{BmJB1lXo*TRIJ`L<q)@;<kP*ctRozbOYgqQn^o|sW6FoUuG$l`
zHycfL^Z2r4W$vQSX@T!u&-%XRu-UCsdiR{G>112BSM%6eI!@kL-2ZQ{_QI1456bMe
zOq{H}C;b$|<H`3XseQWfsg~X3`@eTp<txrbKMg)#XBE8li`cT3+?|ZC>b9&|T=e$$
zS3k~E1^%|L9aG(IarMoV34WnH^-yl@UAC-4q9>P>K6sEK=*ggU<oTB+?JsQI*nQHL
zZJmG0;_jAolVgsDQ+h63WbQL^x4F1W^i6gr%f>%Tn5<_lE}IuESN?p~v~vz2{JZ=E
zU2i>~cwN+Ec8P(h@{IfQ{FCEd>&}G#XZSGThxXBXvY)$RmuRnuV*LB$_l-Z=&!aEz
zROQ)WyL!*xnR|-mo9nbPF2@Sws+Voq5oQsud(5b|ak<##9m}PUo%mjMZQav7m+t-a
z(da5vc0c_~erf5ofTh=4|9CDvZ+=VaowAL>+=Vj5JE}j%$Mm<z@&9=FVZBe6#M?Jp
z@7hT!wS7{#HK*kK^{$_3w-4=Fe(1eq^o?wf4R!w+PPtEbV)RA#Y;{DJR>{?fnu||^
zR%)ESdAhFs?5wFbg`QhCN<8nm=5k$;gXQbXx3S^JVl^s~AGvK`woq53xN^fB#u>M#
zTC8JTH(l9M{nDP^zN@P?R;~*z+Oxs-s4we*2R-j>H%FW;@~&A@`XFRtoJg8=f4tw6
z$(qZyxCczvo_0v^#iI2`?Oqy5%aoX&a;)DP!e%q?Znl&3ft{-TwjK+n3NP(*IQ_j}
z*{1mTQm;)*8kj6Cq<25t@b*1JKu807PUyxG`LcIRpWL&|6psfdrZF&Z%@HW{|Lqud
z?(Gq|sS{;harHEaFF5`>xORoaX#>W>gX-)r{oX1BUf5n}_i^Wq0xP+#6Ll}#3vX<m
z!x(TUu4Zp@$@A@xBR|Cnt2y(`GY+`9RWyC&g1jOQ=B(%YtL!fA*?5eTfx+@@`kLJ{
zWS)F|H0NxCTiths=Svg5+j`u&Fv($+UG3s4^;)5GRu_JHzQNSvR5Eu1p8?0~S(A1A
z7-M)Q6$WQZnU(Ac{XVTA#=!Ju#;z3}O`HGRcwiorwrAh9H>=p<r_1~^-JZF!fw6|q
z?!)t0({?RVx!Rw3>1zz{>`hB*FJF+mx;J;#lbUxinkNFP%h$_qyk1stw!xj<=DKV4
z+D{9km!FaNzA}5~xqHhO|7XY*X<60q`YKz2|JL-ouT@sh;a$GI?ymNf+JcP|HS=R0
zgr(l^Fk6|P(DGHf*SYsXta8)l9d}MnSWq7GL3{CK39UJ-fpbLSjNfVZZmPKIZCo?+
zxU66HnoH-W2s~ddnfIR|>U(<FZArITH(qXeKb7f$p1bq4?QbL!n#|<7cC5?08hXRb
zWyY(UZ(l}-Z4wDhf9QDPxw`D?xmWXp-C0V?@{as@`?Bqr*6AaBv4vYd?@0f;DlABS
z>eOV#IFGmCVuohS1s>-vUI;f?)$6jdl#|iVT!iI;Omk%U#Az>jxRd*{UNlID2!H-$
zCK&mB!o<Czn<sx-|DPdl<F}WFtHP^frY&38S#s#l?IO!H-t9S}GV(FuzO`Hn5_bqs
zs!B=Q@J=aC(o?U(rl9zJ=-c}RC0lPifA>7}A48-Ycago+(dt7Hyw8;t<~42Gs?l^T
zWD>(;_Ps^Z@9&!0uDa{NJa*A7+QpJyyu#iqwj_GmTUb2)d9C*Bm+q5El`li*{aie`
z!K!%H!s@CuOXe-w9%?OV5wVx|f|1Zo3w61xo0BbWEqR_FAhqLm_QYrDh0kZbG?_i^
z_V%)fFDxa?&&lkT710w}Ii+FW;%!-fcYgY|{=Ti-d#}^m%RUQiW|KI1V6BJhjdJ1h
z%dD^El~vDDy>nsfEe_epUCXzx^(i<qhlxM%_N~<iq?|kt`lR<=P4(c2{ujybxARw+
z-sV@C61};rc5-k1H7A|<*3SP7B1$J8?)BH5l#qIUq20Zym-e(Ks%XlTuggB_n)u<^
zN{xVbit3j$PCQ$DYg=?{|J<5TtHUyZ8a8}&TTe~Cw`J?^%jFek_*{dwZO?qd#c1lu
znXyj5{h7g|t;*Xq<yV?6PFyIjt&-U5UKe(iLuSsSRo9eW&b)8-iIe5|(&#N6=~GQ-
zs$NieAg3uFJjskjPBTYp^NO}3+wUHT+xh;>^0ga!)M8|cJl{qHRI~+@Z9HJ>v0D7v
z`ij|$cAlD(z?FN)H{$;1MTt*;o^bzt<>XtjU%I_*J_UzoJ&E_(<>d9W;T^AMj;Tlc
zyK6!07H>UcGIdXwTC;E3k@|L?R=4nlYjeN8xy0iy$ix1T@9T^+5l=2eiFG*?d;1r)
zy!LR@Jdo669K`4<5~{}Ns$jWvAw$rYCGY24y2NNaOM_V?m|?+1R|d;)9pekvt3RxF
zYClqEb<yPI$8X^~!e>mrDDuw!)Q$+dG|9)Juk5)^ZZ4P=>!g-Cp=RPnS^k<jk$JP`
ze2ty>?mvUrd;2Ya(se%>WW=yI@w-Sc)Jd#g@Sowq{Cmp%o<G*FxOvj<;EI?1lDwbU
zw2HK!T1U)_-1GYI6vvD0!LQ>MeqesY^vCw&7pqSi)2uy~{Jky1uCs$_bI;ai>9g*h
zzhK|9Uuci@!~Hz}88Wh_JF@Ox*(dt@v&BEbc;-K@KNha8@w_e{u!FB_Nr%$JPZQQV
zZmG4psxSYeKjO#4N8EGcqpw~)IN|SX|JJgjOl8bhe$9Fub?Tmy|E;A{JuDe_NPbyY
zb@k3)F7GLubreqBE4`7^z`=XqS6JTe!o<Wy_a>Y=a_qU5k>~B8<N28!%BPu`mDMdp
zyC26o>g+MD)yWd+F82{Ut}J@=qo;|$HBUMBhciySyl8eWT3!8hbncXM?6Q^bBctTs
znVc@={yrs{ZHx1?_}R@bvhR4joA#t@k*SWv#Ky(|li7^w&DUjDY35HX+WqapW46u9
zuQ)s`2){NxmNn({t^Q8G-o@tx^k*ynjNkDqe1@;KzxIhIn+;E@ZLM)HyL?va{hbBE
zJs)_JudG;d+e%SdVNsXnG!aO@v4Q!-qAsllhNB{ZJy*UmENZe`G`B_br*BCe%bvFL
z(Vtb1y;pOTv_JH_!u0H;o(YcZ6JL5R*tlrg8`boQn{KLXtC}CRQKm@xU_oAV#W9)r
zvp=snSoT9{R(kQBuC+R;nQ`Au{<xZym%lbDdM{xl^IZ3JWU{j5V#_37({@uc69<bI
zS+0r&R_WJf_EoG5l-zvbg6{d0zf-=ff7{=`kE3y7oXI|6+52xa^Iyg<-L+=*b8F$b
z?>rJ;Wk2Y@;q78RU;6EO32pafFTabkZ2vH6clgI=``*s|D9>Jyw_x6XhN#CYz8Y7(
zNIz8<X7i!e>MHkCBLSXtma0!$PY*h3ub8kw=J7ACwuDWqw$J=j&(+5rX8!8zr7MSb
zceEx1>;8$fkzbo|=N5~4q4kW9TRz8zo=WY|Fe={h-L%_;=gm)@O^nAx3f~5Nb^GWp
zU7A+5l7YELz}@R?cG1$sC)ih>__KQT&IX=oTu%?O%dR$x2uS5N4DRy{cg~hbG7r7o
z=Uj94Mu>`m*3Fpb){W1$yj#R*)K&R*9&hmE=j?SMW>&?`5f)}&wM$p}&M`>f42rgt
z<+Bdub(6Q_6nG!NR@6NC$F*iX?%u;$bNcF|7OyzxEVJG5VDJf1UGEt&d;O={lrEdA
ze`LB>$eJL#_p^4MzG*1*fU)oDyLeF>4bxoRb&IT*I-j_G@=x}`{ELqhrJE%Er1nM?
zKXd2xu<#CAd0Oy%Rox{wixmeCS678hTpv7VzSoPrH>W$ET3l{h73|5_Z}Rqb$h@oK
z(!C7U@3wiY7St?0@TBytllU{0$vt&j^F%b8n|H4~s<O`8`Qy{(iSvvD&KjmO$WOmD
z=}{R^xP|(PFDpbg+S+YVFkPEgV8omI^4nVL1?uapuklWru8_`rYxjD-$aQDlaQBHT
ze_fu<ytmgdche<}#Ru(=c1^0~ops4)h4%KB=eOp+_!acHT5#fdhJ>qUoeULI*z@J)
zgl<cjU;ONB*!4H%pAVlub$o5ey4lCSDV>j-EYl`4zv@{Q--<V&yL1<d=*o0yGM-rA
zI45}HoTLdoNmJyObvLZMwk~Qx@rmPkTARMEwU#*cN4Se4^@}!-?>Pg@b$O41P0rj~
zwym_%C+xPPrTYG*iF{L7!UI<S%26@Qdyta0(#?FIcG0c-Dba<~UY`wnJoOjTe4Wpe
z@2y+^UipFGyvkKQh7AiI+tx3QXiD5JGb?Q4w8u-kxj3Hu)l!R}-9L4g)V5PxCCVRH
zNGta76?!iaz3U~w#`$$+!o>M1AF6@`Ztr{`6&kzTa+RyNhb3#(7s&<IY{wkFy$y^$
z;dq>-@5$AMg_}H{-|BZN;dsJx(9eIZ&pH*KlE*ToM;+$q6*s;PV(t;(=KH&{vb)4i
z^Uunr#xH9n>#B>Y5=z&6IN0!bdDYz1wEq0UD^-_yw;ARK3mF7em74Y@7UX<oR7jHa
ztN1F@b^A&Y=l8$bGp2qt-(WM#^?2|%`)?{gns!}3JmY#{=93nt{sX){;cIFlexzr9
zj6Zmi_v!kZU#$yVm!3*4OuQf*&s2A4p8d32hrS)kp4+iWQ*!bI!((Fmz3lk2>px7o
zb?>IaZ?D4&ncSs5efC^mGQ+1$%y&LNS2SI9=g;Eb2^suLvi?b4nJ3y-nJabdMY{eo
zw+h{_qMsMX@_e~<Y`@$72TSA_JAT-``*)2^+-$pcQD5iW)fW%`XOQ}Hc~b7#Nq!6u
z=50M6q{nyAE#`ZE(ajyQg>B1C@1HXA_^Pzo=f*LAw$}MQDN+Y_%Z6RKw*89P)CX_R
zvu#P-7k)yWrTl!<(`iY2o~(TRChJh_gSKM^R+qW8Wm}{sIvIp7zqTd!{r6?^3!k&E
zzqDh=R_4RZ2W>t^aj!B`zkBlgYv(sT^Lk!~eUP}p+!A);sH54sj-?$u?6%pnbDi8Q
z>`T5po6$S{N#kqhtq0Y!7sovgG4^aIYrYWT6cDZQpvmHOi0Gj?4W2eq6{&X&55DtN
z&ujaTDV3?_HN|Gm$3Csp!W~S-2j50MO8b3pZ{f?};|eZ0n&)%oUG44LF+Jq{31*9z
zXYDIfd2Yxxgr-c^a<kj_Ri!%R<o(_1e;!R;*Sp3?K53cV%h&UxChA9-xyKX~He`uT
zSd-|japJkmr2_HmHv&b{l^1Ni>a1YNK5ysiD1&UDo+a;Y{XO|IrX=s;V-0^B220UA
z%f5@B<{pvz&#*SADdW+cosrk~?Fh9CJ|SWAyzBJt>r$~R_e`?>6{dbmC8y`lD#L55
z&T5``p7C5_`I|F8-|t+$>`uOonN0D1i*=iQcOSbcz^cBEuc$WroXO84XN*5hs_J_E
zWo46@^EQVA%nO&?-uU8XiS_HutBb>UJB_M}4}ATyb~a~&mRq$L_c`spjk`5M7Rx?o
zmVEs>mbLYXlM{2zPv-QxY_TU3-jr3<oI11Q^RWW!YfE?QBt{5H7v`wfuPxpcdx1g7
zY3fP2onO}On7M&d@+3=g|GAx7AusYJmQC&6TysE-_p{6s-JretO53=OwJR4_SA{O0
ze>&)tck<+UQ=J})`B;S6e3<z%u6o7d3$I#rXSuoFNv?W2Q+m<!#bK^@mrp6P_{`?5
zZ^?Xbm-mE88h4iK6fn)3I<=Cam#HD7^znpj``j~Yi<iH;9&XVab-!x6^u|f$g=Y(^
zT71$HcW*a+Q8jg<mN$=mfmOKTiU@;9MwWzxkGJ-6h3Z^e&KkvE+_&$PjNl~86Kk?h
z{&W5;le|FmQv7X3!B-LmzQs~K>MH%y%S~T8Mcw$UDs9U(?YsM#ClC5qOQm#Lrk)lk
zK4>@f#O;+rHHS^FW?U3Y4W7e)X_t^;#_KIVLv{p3tWWOyx;Mk2`x$eY-vhsjUtw~y
zIno&zyI$x{6>NBVx<|-%wd7h~;f+OtPxTxgd^_(|5fm|ZFW-aO6&_Pgo^DH(Y5cS5
ziM&yp^1G(u`!8cQ?J{?fNS6MyBdBQ2aog%}{*P7<ZvHTiOgI>Rii`cqW6}F}HtpeV
zI_0leIP25;-tXT388}{EeyFgrP-h8Wd3r<r+;mU7>@Qlr5kKE)oISFq>&+kQhZ{Ej
zywuQ8a>we*J&_Onx1!$)^SCUxkGk+Nza#g{Q?qO5jGFd}E?aKA`@-pKrXFt;Q{xPe
z%f9a1wWoTextPUUzrFjjZ<-ta(b}~#?ZD!*vs6>mioMvXLRaUSJ_~v~rMK?0;H7B}
z6Q8)4|DI*a{Y^`t@Y0%_@#oVHC(qq^?%uIkB0TSNszWvy9VrqvnX$8%?IY`N{gW*c
z$GHR7EnH!oZ+v2J2ivSXz5_dCJ~#R|sqZLQA{4#UWS#4q-dr*Nw~RXB6W1K*ljy6r
zI(f~+bi1?dPM*0JN~3Oj1p95j(K2&J&Dj^WniFq}_di#%xV_SZ)4aGxHbdFe_KnlM
zS1#-da=ebamfVTbShVVZNV<p|t9n$dLlkIEAkgta0AGfKNT90$SKO6!k=19JOiZFJ
z_4C6t9_zhx(qLBE_<*N2`%Agg-??ATb5-yko^~l~V|1Krrp)wf>jlz`_UoRHX()`h
z{C8kJ`=cN0KfZR|vZr^+<&vwpQ7>3e+!oj3d^_!ET}zGM2fNvivtP#S&b(gWyK`xK
zqsH5bZ=;>`uDeg{ocr`t&F9DcZBe2<fu{SOhsx_Su(9u4C;d-QJG<g;Sh7^@gD&=G
z+Iv49Z~3at>sM{IyS#_->5~r*?_+fTO|4Dy$TXLKsQl|X&z;%3-3$V~ow)-pKWg(~
zx3y4QZKNHzbAx%=TIsoVdFC5+?=Vgb=oU|MS4ffLe;rqHId_(*(D|vkM-Paes0o|m
z{NVLA`D0<meK$>C6x=l0=fNx^<gOc6{PAws^+Vq#HkJF9ta6lPcsA9dIK=hRo+Xuc
z!sXMN6eaGgSRlVnYwx?|{ksYb&-tdGET~y~uz#D@Y>(JRb<=loFWz~b-E{Ws&jRcD
z&m*Uc_nmQ2k$>tp&8c~X(#o?6%C|P>@61?QaC_<NS$$LY{amujG@4Z;&;vA9&#<UV
zgW;@(q{WisCW5mBSXlzyiZ3;AX}ok;z`Rx@fK5Xn(ABc~(hklhjU`Kudoew*x;ndX
znoLR+SEJ*X<EB-|bT2FX$>jKL|Bc~-m-FM=%ISGR+#GlKgLk$+?fSLonX91D<n8Ph
zqEG%aY~pLEvHigBH?1UOdgSg|Uk}Q>Vb2o&!S$8%{v<YuDme!EsL#)}PcHmas*tdp
zgI$aBtHt+K@BEds#2m^dS&FPLV0+5lcW2(QMbm;(w72)vKB!oF;i9hBcEk6#Kg&<Q
zw&ISHjNI;D@7_mw?S8_rE`(?D{LizxB5o|+T=s6c#fs^Mm$|bpo{PI}7O}#5^P$H*
zVKvi~lQ|9N87v9+`q1gk{PF_d{@#F{+s^nNJjZdswlFmN*R((9qJI0|aM`IWD^eVy
z-p?hWt)Jj7A$sw&T=KnD=8Y%vIM$p@3hT~L*j8)RWpi`Z)GY?So1BhwIlkgtWxkO+
zHK%p5#mU!mu6?<%q^RbBc+Mv`Hf^(Sq5`}J43ss>6B=VCZAmR&#9M0dd$&Py#!YYb
z--ox=u70lHW#v*8x9*UN_TIiXU)HafCC2x1hd@#By*<H?{kosKZTH&2GH>41i%!|M
zq8=S_o;Ba-MMaz0w)e+p%`@V><8OCWIx(Wj`0LV8uBz+n`W17moF^Fmy0j>P`JlzJ
z^k)n`SJyW1w4P*c49+`XqIZY!#7dq<<1O;%8s*-!{&^wz_M60$@&&%7+8gel{Mq?+
zxsu>9>u)O`J2o)BpXcha^0Q21f7BB7XVI4zpIN{Zk-oM3mdT+z3=WEw&vu+uWSr{G
z@NM0_%l_4^!P^s<*MDENX2!gZS6}v)$#33pOXLf)%+-r!dQNYAZ#+obshw*TI*0e{
zojKS3Zs}ZpEA@`pafW%tZXG9IRUSWj*Q8nWL`-s1ZT6Ygs_*?Oxz2~b8=IMHvddk4
zqBPkm;S2MLMU!nc-J{$Zy>Crku&9Bns3$n{@d~y!Z&k;gJC0uoyEb2p&tE?3)K-7P
zj$;?2`R=E0D}Q13Xd>S;zx9^WUQSo$JTB@qb$0Qj>d#K=9(Sd6yF_j1E@}AuW$hH}
z&FA<FwC3)rEac(yubL{+$IkG@Bq!yj<ze2vhUc^x9(ta9zCbjyF7<@X<Ik(!HQ8)t
z@U%(aD*i%sW11v)?#~VG602<z8XMe;?`;-)vbwnWZTQ03TJG#UU!I%%V)yPixo6Jz
zcU2(_Us>k#P0b6rBO-c0`Rj^EvuzI;k1thGOk(t8Zoaq9=>;Em%KS?!h1MAM`7e*T
zvT9*W`g?<gJv)|bw@S*sxU;+XqN~H&&xLdPw0wI%wLbL^_KgWs?QM9+zf`*Tvyl6>
z#T+5e%Pr1dS{5nt&f<h^#tzBw=fwsu#J{e~s#DFobKSk>_ma|s4CS_aSI^xgIpy1u
z?-zEgmOJ~~pknPG+sC()mU^8sn|p8X>aWG$ygsHZe`L2fT|15Ybpcz2bbHmG*dO(4
z=Q1CeX5Jts=+o!$<;2;#tu-wB+a7+oFL3LumMeEBXH4xO>;DX1*Ni+(&hdoY)zmDp
zz5H$S2dN*Y5A5m@Jp9aL!j_cg!zsyZ`*}_Os@3ynSG7$q;X0pgec-Xg6Zxm{7ks8)
zsF;8F`m{HP@{PnkEld6Bd7KSA&hnpuC+<h_qhmY1H+1T~lgoK~`@ZP);CsuK?2-uF
zl2tV?aZagC*?Wf~50(c~J%-7168NS(V3tYw_&O%sR<`rB%$&dXy-MoKUmkUx<gU(s
zYnkH-^`#tUS2p!{9<z{rb;!%WyTIYVs+SYEe$5HFxKf$RLgYl%w7}2(^>JH1EAupd
z_YV$aa!}7uYkI)Ic`(mjie+MYp`yowa><nwf9h^A{@5767a_az@q*PHWph_I&&!Hj
z66CY-#Lq*M8^0HaiA-v?l>GB*M_^BL^ZPKCO4-7R*EU_0Eeuodz3Om#>VxMtPp-TW
zNzgbfcVk6T=nbp+OMN+BwpqMvzO{L`mFU|N@2B&1K40$3bQ37NzD`rv-atNnt>*n5
zqQMg^pKUdov1IP;u0PA0n}ggA#>oC>&}yF8mFYBlyA1P%-@zAWB+tF^<oVK!iO;Uw
zJCkiCak|L(4%cd}KZm6o&U<atdeW1izg_10s_!~Cj=jC#?zKAN*k7L6mEBgY51POC
zmdvXCaKq8s<GJ$ILbG$X+tpubhe>{NJm*`ae&=hy%jHtvRWl1uyuJQ9R&RP$<3S#A
z<vG`<z5KPHBXt9Zj9_$F)H9i<o6mXJ9`)WGC9?L)H(l%Cun>lI7Z}f3&APXB&z(Mo
z*!}n3X`jfcaVTd?)7g1y`NFlQ;{~m)rvCJ+RNt}QYE}6zTP{txo?DGQt!=3abByMB
z%5Ay6JA8(~$_X<p)R+Ibt}3=E^5h-<oWAAv);U+D2NZ5$K3DO4YvtytThq6C%}*{l
zy+e8OmX;@S_oLceEploe$T^C#sN`yhOt>3=ZP~r!6DKe}NMErouIx+at(C`DPOcSm
z`m;xl-`4i^j6GY+^#q!?Jhp!vTY4leX+p?~<cVL`M9&a(<`Foo*brA7yCr^0`s|LT
z?i-)qCY{eKdmwwftSVf6Wpu92&J*m-U0=Chiz;@qPM3I6xAo+!S(%avjLHhaFJH#}
z)eT#IHq`I8jCPdK&Y;Dnmn!O1GY?F7^El)DrN!B*e4NZ>)$^vVUmUfe=G%z_>m4)t
z?eaHXczNx%nedk6hT81Kmlry7G8mpb7EvlXfB8b4uKg8X)^#1bv1Z8x&cyjk6AorB
z<S~0C^WceDanK@GPf@;~d<-fNlGb^0>YWP7eL3;cOcrmsD93GfOFPaP#(eIoGG3&2
z>hV?yzsXDXEqfp^Un!+De`!T|-?Qx9l1nF4?kqS{c=Gw)s`E#+H`Q;>Wvo|DpSeYb
z?QwIQ@1qvo#W5ZGzTKa~=bP!LsbqO)-fWq$<&VTRUiNY*dy>o@!}2lazW?54%jA38
zegD`c>D=k*J@B7F>x(}3>wmnP9rD+t?5N$r=ppedbhUb!`I&vfr*ijLmKQ4Z>pYl~
zF1qiY^tKOQ?DAIB>@@u3WSM5S{L=3K3<7^VF6Amt)8~I_=&W`}<<g%scFouJREJD^
zAF#Xfo$Ql|ecqO<pGCU_KC3!Y`)&ERn@xI(?VFZ+^)xmKe_qAt=g$(b=D`Eu;Afe6
zN2j*4Pm-7)HN$O%fggX=s=gzik6Ea#Ip#g_y4>=;MsY14k4}|*9c$jUCM=RW`5Bjo
z#QO+=9GS@{-^PZu>))Ir{As1lWTy+Wi}TEKZ57T;Hss!IdA8Vm`r6v^r*3DTu6$4?
zy7p17``gJjW|ew(3o4j4J-+npvdK%myPOFYc2oG%l3%sf-6;FUAip-`#L_Z7&*Vvd
zp34NgcmrN(EKz4`>~<9i+`+-7nX#xBw24%Qflb3?LHcqpj)Myvdy=p3wKM(MU=z&F
zY-+mW&VyVX&$q5e?)G2I|Dm$AXI6Q4P3($f?$V`ucd9U%Et6iq&bQY8@w9B)*d;1&
z%5JsrFl0Z!|3iI>;Sck}^Ax5PC0D#z+<qqTTBLMg{O>1R-~FY2bX|%LG(OS0VbUrO
z$#oqki{`P0Jykwpr<Zl%=$h!C{qs%jQvLJ3J~x*-6a2J-h41+GOKbl4eAJP;wl6R#
zHR3wQgOsAmgX@%D2S#iP`M`MaxZ0kVS9WjQbm8KT`89J4l-2uYuCVzK|NG7ZnJ~qj
zNk=;m##Ox2y5g6r(6q{3<!@Cu&$3Hbgm<o#IkNM4CA+2lsXgW28g}uRL>Ih?IQ7X$
zc;e;exEbFUX*6%V^SDj>{=Gf+k9l9;{n2*J%*I_>^tp}jwRMyIGG#@=_Y@ZGbCA`N
zRAuI}`ueC-qM@kb%UNgb+yJNROTJp?rYA{vZZf{L%IC+is*q3ntmg4A4YSmqWMt^?
zxQPGJqMl+`X{lC`K-UJ1#d{S@zB6XLcYN06Ad)trNV9MjgR!@(sx^nkVv7Yl0S2$V
z`-~kd7SFRdE6v&Xtjp)KD}%_+$0Bm9%=4@-3CT-X%6(nA?7(&7C4rx{H}n?XncV+6
zGK=9@_BH!-efHyz?YrY7E<X*r_Mag;y7OO5@5DdHe{yx6bTz*rR5Z!suh@reGi)>;
ztml1ks!{B)UmKgP<?YGGuUy$)?z)K~Xs#Qd#j;n|&+2|Ts~2H1GjQT}f1fbhGczBU
z`RB(U+oP(NUVi2M9Lo~b&yjP4LK`0R$9u8-oLII|w&OV4N^zlucYa#haMk#3bKtX(
zF<)D{ynJO>Z?CB8qGJX(4qcY1Ol<tdd!B8^r0Me2I@Wzxj+QW_Pg8l)=eX!~adw%=
z!W#$e9PZ2y(CV4UnOuCixhd=ZiK38{KI2(UC4oEJtUlRl9tkQlT-MI=bdx7LOYNO7
z-=iBW9X};*-hFSo-VX`Mq$=iv%C|P=O<AD+?6AzrbMB9$bGBN(U)PrMQ~%CN3+eq!
z(_)?0aOAGIH~-Ss=W`{yj2l8Lo{LV^nW6t#TjR0%3e%H8nmJpoUT*oGX6WOocH+?7
zJO3HB#<(AOEB@QvW#*~2Qr3M<dwCB`3b1B9=Wxz9`Bj);+|5&y*#176nyPGFvCiez
zq>Q(P!OKt8q*iBs%kETGw)T&?8s}*FSnlf8AFn<BoxYkDH#7N|_T=Qx)!`S9-}9Vr
zcXjTJvj;TapO2cSy(UG@O>3J$#cMCd6UXDWM5N6rZtg35p?S3JQ{kj+%h1h@U(foB
z?8q@>nD^zPn9jq!#_xmJRCtPSGzaR;WnZ~6_<K9kjEszzlRK8O^dxVslIvfq;p$`*
zlEN65$~C3bdQ)w0&dpdGcXf;JCc5TIUcY6(-rK0M>0KxTUx975UG&OzPjrq<p2PZO
zP3g6V7I)_!-|<4*>-Z6|4AB|v36-{*_YU1&@Sj02>ZE$xyQEtVDX-j3AM-4YXueXA
z{UZG8TGL$31-)0yIB(TvA1Xbqw&}_{Wo3!tF1HC6Z=7G$rD4XUVZ)`_uxMVxoWGjQ
zv!=3pO^U2K$Sq*_Wu<9nm(#}QldmnmEF!?nlfHA!TCaS&mnR<Zu}TST)w;S{;;^Ca
z{G8BKrzc74ZZoVC`0{m`rCsa$Jywl>vy?x}ynRuz+L2jvRnRl@<2K(Gy;Qaf`n$R<
zabiQo%C!EXhJqt}cUMha^0>}Q_;vV&_TY1u=lOCh>v<WlrlGHW#me00+KuzJCPg%!
zW}aWQ-2B}+vrpC+cWQnySu|$@WBY%GxOpLFGCT>-MQ8K;sC&X!R2A0cvu1gA%0$;U
zP1jO9mU7;)x^kG+QPMu{$|56ANoM<{N~;wupW8542kwYEJe8~X+A@bTJC0dATFmu4
z&#Ee<%VYA&Kbd<uorJf%J?1Gh%RJFP&r)gX)o!Nfz9U^JeP#y9&96OQNlTW`I6ddd
ze6K?@-dV`6&5hj|P-IYeZKH~H=lQjAZ4*^CO+K|F?40HLi~Kj$9~tcZz<$H#`@{o=
z9^uW$mG)a1Ii6U*xIU#{O4j(O_wo~dw|iIvs<!`UShZ<R%%V4ik5^WE8F~D*`%(PS
zvZNyHaOlpXiv<>6HNJ29QT^@jha7q~-qovLzT51~v+!W|gycHoc<1b}T)CTXZ_N0x
z<nuxM$8m`t!yW9@FR#~4vDbaNTHE+}lcmJ>vxN^f8aI6t^`Cy=(b97(y%+xcbbzTs
zaWAi>$FYK<>X7NvHr<Lj&(h4#J>$f8c9A2&FPr;M?RDEFA2s*t$q+VmnP+QVx*~)u
zR){e0Rf?uEhQ;uneCs+hf1?(IhqYhvwPh>~ewJTEj>Imlcx<`y+vf&;b%o2ZJ#&w^
z9XN4beW}IVpFa!xo-K*E-Plw9_)?4C@;UNxS4#L6ba~G!u$r}<L+1`-<E4cWr@ks*
zH#JE~;ormS?{w+9)1|rHeVkub3rwCkN2YjE)|PbL0|(#u`b~V;P&3JDVx(#DHjNDn
zWRLgAHAu~p3s%=EJYn-}fvaM(*7u{)J(G&(Sru4adGXCkzwl#2nc?ppFRU+LQ#vx=
zV1wg{<6fd1p~}x}H=eUy6>^X5@pu1%s=t{tJ>vs=#hyJ#N#8HBTI$nWTf-ouH!2gi
z%T`}VKAj>|%V&5rTl~W3S4ZzX;b91zH`C&5*bIi22gTv43~$fz+cLfnO>>kk>@m;U
z{c>Sb)T_c*H>|hIOg^yk;pC!82YMGvo{w7o%-Cq&f{>49;Z1JVvmQmuP4SgT*K#;;
zK(^n1ZDd<+i$U`IfNU*EzfUc-4`=P<JjT>#mAqGPnrZjW3sG6FJ9v)tO}&(P-DrY=
zn{<!d)#EQ8yw6!zFB9&*?DUqWv7wE!t_9a(`@`C{?Y#c-(zZ9o6B}E<oGsZ^G;_v$
z<Ko69!wK1wHcnwMVDsjEb6EYuy6s+tpO`1ye4MdfYDv!A^JU#PWqEgrh3XzqZeW*O
z?Z}X@L*c93p_$9wLW9c#&)H^22DaN6*u0fp-5YBy`z>r|zYU{^5ra(nv*gHd!M8mo
zoxcxxvdDa2*Y@hBr~M(rc{7iu-*Z`L_J+0L6?<UZRQ>YgGe@*vC(qd1Z+ODMd~)9&
zsb^oMMM{)2V(%KB)82IDEsJkk{ETnv(%DiKB5tP|rrTOy-|4wJR^Bu=_En+q%Lf)Z
z20PFBJ864ex{!D5g69*t8*js(Y~Z_@dTT*q<IAAi(Jc-k49EB9gs+%;b>_p6OW|(w
z=4Uy$E2!1`SKZszx~ZbSfFa#x)`_iJvl%7NOUA#B`qrbOpr~%Y{?g_;hb?N{&zbJ5
z>XYCz>^gXL>xq1oS<+?6A`(2S?pJ*OlkqXX<GSPJC!g-}Ug-)AsOOi>p7f#b$>z^b
z?)Y973#vH3a?RX#+3E}TKE7@~%fEfAX;Q9!!kv8yCxeU(-}Z#h$eOO4eB|)tv*l5H
zPtHDA9+h%g*sQncljHnHy*m$lTW^%<v*4`43FXGiCbmb#b0wetQ`t}*8x+d$_7(rN
zP3Ak^IjnmfJ4<@@`Z+0IesLY!aUo>ViNlGq#i42W#az}ql@;2Qw&mEk<|zxtMgQ!o
z+Vypna3;T`g=O5aReNV^Co9Za`0~ojo>`_Zf6BP{r!V|t&#d<%t@EI*=;|pMGyR?W
zqo%T)vJ10sTwcCeTyv{=`%|Z~752SOB|8N)l^Ob@&WUdqWbBl-dp7y)W%<W;duD}S
z(7kiLOSETYIz#h`*HIeBa#v3}z#kKCDSGn`x4H7QttM}MT`vir<5&2;=)33^tJBuf
z*%IX^x5hM-JzDW9YW^G_yQrV)tG*reH+HU7NSzycyT|Y-=W=Huv8msGF%;EJ(H5*%
zo>!}O>K!|mPjG4At(_|uW~8L#aagST_wA6yB4f8u{=#_<>w=>*)}<M__P#!xyqCY&
zW3#g4a>g!(qly+wH!j$cZX%b#EW!}z_#n`iA<$J%gW;`L#6*XfQkhF{ZTX{gJT4w*
zURpAb<8s*V$d-LvuD_45PjGk}^GjVJd`*qXhesT&S5}>pc&<|5zBJuZL)Rzk{4||k
z{0HMjzVfsDu#2@ipme&rXnVfqs~xcm>$%q4Gr9K1x#&`S{OOIJT&@3N<d%ybbC&j3
zdM+I@^_=DL1#44cCmQhVj_5ru)AiZ%samC$?>qk$aVI|a?6|`pYTN&Hsbrl*!t<Rg
z0+o8N*xlr?<Z>(ix>9Azo)(ov@zugXcPECa1t=d-5InCE<Ze;ZafN4n+?5=jQ+yJF
zug_`9)z8rASFHFM&CqqUvhB3v*<2BxxJaYI6U<#7^1H<Y?^HZ;@e`8}W&gZBYyXZ<
zk59`T;j6Cit@-}wW$X2>t&*Y@cSM+q+*nH!r#>%U)_$~DbLXSQGdZ0Y4xFponwTtc
z@POS`k<UB=)}`OqhaFE}>G=3qW>3MK9;uQwMd6aa%2vI5x{33wO1DewXIGKnw1y0s
zv@T81rh*wvfA&@`_>^h&Xj%*7oH-XABo;MrMR{p5$W2-BJKdyxDMJ9$qrNY4zKS9z
zZ)hx<zF>*LQI-!HY&{9T12^#Xt2TW+U-g^$o79JriLavGcXdtvrd_(J;d!IVobCUt
zw4X#v%*vj^+&J-^_Luf=#UJMXQH*E%Qt>QcdR6zng+*+R(mNb~@?YCwIMq_q-grB^
z_pPg6Y{g1>cWh)Xc-(W%r-6CGsk@!B`?lsiayZh&B~U%jV^v(%5ziAU^D5ReO}SH=
zzCLUs--QUlp1#LDm#>OHJ#Sqd<niEP(JJXh&u2+SOB`TcaNP8T<NZjvoW*H|>mpMb
zcLZ>-6#l%dvNPwHqXP3mc|TW`HC2@rw+xEvzV8hxQqECkFme{YwM$|BBBQ#Oi}cKo
zMMkq<`1*atlHK7v$u*O#=4rJA>-e2LcCT^v%4H@u!^&84{|UzicDox-J*iUg;6!ur
z#B<fv*FsO+d&AS+e0*!ftkM*grUr(>J6z{>PR~$T_ov9;r@l8cNm%PtV(b|P^$QK2
zay!?o?E89afwj4%(z3lXHW{sU3z6NgpS38D>G1-F5Bycnri42$6WX>QcB(+a1V#q^
z<oA)+&wN&%BU*Tp`@k`+!&4_0B!zaeBwY2rIWuAM!W;odo9q1A{=Vl<_^Q;r{TRhM
z@9iC#ZI3VQ*?N+v@NCun-Zy`KuROrzc~1MZ-Xg;jr>y#HSKn^h68QM!J-?@pk~zPA
zhrE<H?(Ed$f6ASCDeI{@#b3^5Y!%*nBzXhFmMhGKwl5Mqm*-f>wko8o@MP|*&3dA{
z;kl$~nDK>DmZarQB6{^+Ig_67n6s*+uggw4cmHif?9$B#n08Lzaiii%-`DkvveT}G
zvOFm{s(b8<$vPYBBEG-~{j7y{(@S%&$Olf0{X4&7@vM8MKaKC(zD&9DV9K@^fekhf
zGrHaKzFTldzwWkl4?NF)Y2E8-n(L!XUNP)&JXhbfD|5?T>!1W-0q^U)VY)RcA7zef
zZK~2-woUZy+J51RTjmLeSqd_Do-NsDb#ebD(<G6nDboAeb}ldsO<rof0KC21BdMV{
zZ0%3Q!g)Vet*U(GoB6Usw&S?^RyAjRyW7=jITLPIn4TB%RQYPUex2vjMNWHvW}WJ@
zy=h?~H|3q_!ldh23FfAW)A{EWUhi76>eOS|>a=yrLW^y~dOdQ*-_DqFC%n%v@UEK!
zZ}a2}ze28^Gkfyq?v7=#n#}7S_Qy@pH!8ca;F3(~lk&CJZYm#&3@>du&o2A>>h8>*
zWVVL=#eObH?BBE2o=KeE!{i<qmN>aet~{lDNk~}S+#Mon>I<iZtbFkCWzend(@s@N
zd|#Q~J-LB>S=MgZ#TFLJIPY8$W{YDy`96p(J%|6)=7gyS)q6ruq@P)}^Jl->gnLgH
zF-`EWT=w_k<T+P1ZPsA6lvwd`_x{s8)6`}d-qbzzxXFTT^_||XBIEb7W_AXj`q{p~
z?rPABx6=I#^QLIu@H=yI&ur^mljm)nQK@pR_03#|_qR5$lscll>PP<CZJm$qn!Q$Z
z@>xD_ZuZobZ&eNMC^PrSJZqS=%RaG2arxOt@~zY46k3I%gASRcK3J*Tmi4%FE>~pk
z@*P`?9w|i^&AD#;TjGy*yhx4i?hkwaUhMTU$+LdKKjC-j>N=T^D*yOD@*Znk<N55!
zx@2La590SaA54v?&hif3`QgSX!NZS4rcJk#`Eh(<ulOUmHB1tZ=J}hMs;f^t`R8+t
zSMBAAUroP!f1CN>#i`?KZXMbk<Q6vBX4kxy@G~0~?A00ggQNBarC)ydN^8qy**tR@
z!7Y6=S8rru2)^=pVt@;$y3Cxfc2kQKchA2x@#03Eih~v>{=JQEQ@JHEiMwRkQU1FU
zGIO3S<6vZ#+0J}zUd#5S7mmd=Srs=`U!LgIP<+lRd9BT%;yaIfE^R0c5RqB$?7U(9
zx+S`Yz9^(O`gbr`KHh(A3d4ivwv}gf3LmTb6(7@*ToSipqa@3E*MC!!40rBSVLq^8
zVSnQU+oO@~TAY^lYf~5A6^rN$jSMk7W+gQ{>3EOKq)N*b$#)7EC6wj=X3bMIl9_m{
zDkSQ->z50&j3<Q1uAS%cGFYd2^27$-@P3X;35Mru{dRDe%Y2;VUX^|3WZQ+<=9Ip}
z_NV4Ztm8ZxQzG-Pq$6b8BQw2wb3ecJcT<!sVwP(+T~m@iH|l+o*pro#%FC>hR-Jq3
zo}*TIHYy?IVB$QhZ)d}IdK^@k5b{`g1>083OWU6Fm><7w`8wG3Gmp$aksgKwcdw~-
zKNJe8tFO;5zUuYlqMP9agX4{1kK~Q!-F&vdg^Q78j@<ISk)4wLvbC>bf5{rSwN4P6
zU^S`o+4eUxU1pbkY@Afhb!cn1#f_rpE5EF3J6f>%gtE=7$185WycF9v-G8FF0(+b3
zm6v@>zZo36e9YhUM5IyEf|U$a-|epMPda+a>g0(xZk~U#Pfgoy+m*X`=jD`JtJZ!G
zdGL5`$;5SE!jlT_Xsk2#pW<><MBcdFGN<`y$*<}*S9|?aclaLdc(dq>Ez7&DdQ;TQ
z5_=k7MoyownpK^>FQTwH>h*UEh6%+zpR$&o(QuyA$L24?m%VM;F1gxlnJ3>~D(5No
zJt&f1vF3KSNS``ax%|7n?4oCP?{?m?c;lOP#zW0C_HH9HL;AhFt32P#{5+#K?@fy5
z^3_Zp63lbv?e|*wEndgChvV~>w5|6nQ*>4|-z@%hMJReRkAX(vB=)Q?50#Itl%DeD
zyV9zaPj@AEZLM6XHZvzR{V?OF-}AH9+r;^)FwA@2H}%ku<uT?$9aB$+%J6(!6g|T=
zEA`c_mRskx&gAne*zvsY>y@>qZbrYH7n683O;dsS-IKx};ns^>HXcYnc<(<$Y2iGr
zyT_Kwgb5#bvSyN6vg8wk7n!E1N$YEykA`oId?gsO)9_&7@0pL4wR=AJe_C((G4#TQ
zSuQP;vnso9)Ml@^n*aE!$#rwCg1VrcPbOa5^FCyU__`0q=I?e$zJD3KFtgm?>BN~c
z@5~XtwXi*K))lkL{wv=WJqnw6)9#%$bHK5K-O4q$cdXia+C=DYn$Je|YYQg0-Oyrs
zwCSDFq?-p$-pKGie87b7Znsaf!uE$<ZO<MCmaXb9zBlVq(~?gftJY6XDxPz>nm2pL
zwWQ-Fb89tU3o6X2=w_bi+O<p3Rx`9iq4~s0m*~wCe+2(&unH1fzAVe}V)Ep973Z_A
zd|IaG<2&)%&XS%^3yXD&J$Gt#@t?Wd%VMvj*?MN-qB2E~cUrSvw%Hze&|uxS^-4_4
z(Jit&O`|+odO!8~XJs12wKKg6atks%@8xy>y2;{cGwnXS+S=&8a#uN*#-d&~kwEt<
zJ*Eq6RYB{kf)6b57D?%2w>_)K@>|M^r=Yggn@3l9RYT>!l6T74hwjPEj=PfFWP0L6
zx?R)W{|xRIj&9vkw(;Gk>oO&0gMT<a%#P)E|LyvQU-#}Y`GObC8%$qluZq<2S|obw
zFthScsn1&H=iZdd_56J5y207jLrqJx5<b-0zVg`ew6}fMnX~tAe_Fjc?m(oY_LiQB
zw<RA<T-INCoF(N+Rk-r^seQR(treF{*t6O#&)c6`Y$R8ntb0A*YnFq|<Q*$yp4-go
zXgqn~SaD;(o9(IU%NG6Y-Ldo7y&JEzgboV4`8nsxY6YirYYMlsMilx+hFFwIyT`76
z?eBKzMM_mcX=bXbqs^T1^|MPmdv5((sh}`zXH7!#-df3ZSsP#Os=4&Doo8v+wBO4`
zKW8OncRrD6FH7>@x!##?;!WqY6Wzjd&tCts;ui1espo3X#tOU(Dto-$D|B1#j>jL@
zJG{JgEOSec@#LdHI~&|jNUUpqlR88Az_EhrYjrDgf|Ty=4!GLYy|dp{B*>JfOJmUt
zR@oOz)I}J!1iH#4fX+4**)m1=tp}^j1*=PPQ}jg`7JT$Lklqz!xnyAj&!t&jnm1S%
ztM0nQbNNC_&-bMZ)$2dRAJl(bFPHJlBY4}p(lFbm=4pSmzwCOe)SY9tqwkh!#3Bca
z(7*<Jub=+k^gpCeGL;uP&$OYDcMZ>DdE-*cuT1-vOq?08?edo|>!%&RTD1D~MfuQa
z4}WG>yI)yqvg4;j+v!|Mn`f&$6=PQMe7AfVeC{brgC_SuOPOa23U_Qcw6E~%%S(IS
zmDek8E19xxri$i?-?R5m^$9-}Kbw(%d0=Qr$6dF}msOtcjfgC2u6kHCao*I+GVX?l
zwZv|$v}cvibF?^UGci(Fi$(I-+v7c7PrjUWd*4(^Z^QSEeOKGdwVM7j?0Hfm@i+U*
z!r-0Ht}o9$u{8D5=PN58@ZG!0xkGFD`_x@mf@2n{O!C^U@J(s6`W|hy3x3AU$C>tO
zoGiE5sn#8Q_u;m8S~vcEH=SKxK4%?6&hz&vQj0#%eO@n_lTdOra9-`EiF@id@&CBi
zbMDD^;le4568*Dfo~_t=>}ibr?yJ#ruJBjRVVCwi&)jx4G@REk!9cvp^A)Rem!`)~
zm4_013z+;juG)O+b*`aub?%?KWwSQx^hJD-R%c#xRW>S-x93v(ts{a5kIPMMS+suR
zmh_a0<ws&8BCS{aXNXi#5dLHD^?CKu&!O^`C(dODKN4H{?QQB+H$i`yYp!eBymOat
zEx&g%;#t+Ju)r-7`@R@`o>UknrNeeW<@@oh-gd{H-&bGm=;%M)_hrSAZRLe81C0gv
z>oQwAMB1jF{&p%Zu<gOOwd`Bf7p$2bxo11eoUo^BKbcg#sLgogt$8x3E{X9^mi%Uq
z9;>`>YkLp({ky7ktflszt2NiN)U8*KSV(s$e2g}$y7TgIicqEctQE;Y#*GJGWIE@(
z*jp8t*0_1))*XEx%XZ#4V-Qi0opeol#!WFx?<T|R{l|99uKj)e`Z~{b-yQe-mhJYp
zzk8hdSKubqTi-4HJF9~C&M~(Unq$WAzqWF2)wb=c-B;X>)oC}}q39kHK6MA<ZCPW#
z@1`BMG!`{Ge*F7z*3HZA)6N`u%&acET8rg$)vs%(H{E)9=D?pL$t)r7&di_KUul0U
zZ|+I;t-cxeqTX64eC}GYc+S<^C7(G?{Ly@8rm}!tBBuJ;63HODsR>bS=L!nFzt!-~
zcr@?Gortu5x_hg-swZkqRcKwY*mtj+yH8^<i^9jFzPs3_Yj545t~5vKcF$I?Rk0r`
zmjA4j;6A@{`38;!D-Uh6d=PS4PrP~J>wuprDMkLDmV|2ExaEIorphGGo!=(TU+Uy=
zKt+aY29rTVvfPx9a!<dWw^;bfbRm=4yQ;2@(jEPGpY)$<>Crr9aaO^{<Bovs%NXgM
zit|^Vw|MCl^Y*|prS<o0cLo1Y5#o^B@@Bi(idn{e|Nb-d2Jcd6dobr?*OYe*6EFOd
zT50oJ`B?S$C1Pb8r<WX7?`vDN-_qiBSbD;7#j2}ecE_4s%=daq{A{zjQh$WiUnXT+
z*|Y8`=NIlz-7ja}V&l$iy#BpBYl@BVt$n>eCO(p`7yi+vy+YS@vx)Or$)7&+7VVS&
zuw`x9N*kABuZkl0vR|HWyDzF^<DbknbB##bE7jXFYZeG)Up$zk>{R#d%m-s0<s;h1
zi!aVU5dP2lM{Z4??w;Q<HXaXz+ZaA%KU{s+D%R**b>!sJ)5JA`*BNAg4gOXzOFOzZ
z{BYEqRoA4JM6}-ENta}i`l0=8`H!+X`9F!*bT8RX+b$$2(tqWj>Ba6I*{94r;_rSY
zeEH8{d?G~Xh`zknR*?izn+N5hEM7%?1zKmgWLTLQzQ2!4e7n8qjrtQVN9GlFQ|<20
zEc@i|bbqZ=_veI!$4kAXjSASTg{p%TUwDK+v$WxVxXj|`cjm3TyDZagUz)Q13|~=1
za+lCX|HR$qyvH+7E_c}-dZWPewbueOf%Se1$`+)C_prX76}>QHjaT=E=H2U~wy54J
zSl{?YYuP6@MwySZs!oJIu{TdXA9Z%|E-9r?W``_(?v|QenY%n+@~L~)l1W8u1?(%A
zFO*QoW8L5B?{#|RuGIHa*i_yze0dqfX}<B8!^`GNE0t4H%pC2bW}GPBU~xQ7W4}|%
zy9oCLr->InxqD5#Vf5wD^ZkJV%8e85db|wQo-_H=go<a|V*8|~Z7@ll^5+k~W1tWF
z+3gleYbw)E2l2i67I&4W<+1h0c?-I>-ju1%E8>+qyxF$mnDynwk~V#{uiROeKG(6H
zQ~q@&OTwnc?^RE(tLx30cSkDaqDufz*Cypu?c?#6CP_4FJ#W5}w%%E2!|ij{bHYv5
z^*hbUU$H?!QhAcQ#n-i~GfpXOV^rV2G_XryM}YgX#|PF*=dp3VKd0TbI6wK~a#>T;
zoX^G!f{NH5XfNI}q2W}WtIfM_>&niSO?v*6<w3&NwX;1rH4Ka@lx-MejLXwwO_weA
zUVbN6%R_>>?R~87)N_Y+CIs%hd*Qld?k*#VN#eG<xbAM*rP^i@_{w<JlfrAqOHxb9
z1Y(q#s#eX5UT*SI%}A5`dk4#EuH##FvH4H@7kH!ZYR0|J0ByU%E9<M?Elpi`FnY$?
zin1p6GtZm*woZBV@zj&XiRU;Ue_DP0l17kmYhByMCllVMvNP|?zPfBuxO;o7p=!NF
zUtQ{h4KKeei!pjDZB&&$tIgBv?SWe!C(c(btXv^o`{s<OQ_9N6qSqx$-KU%UnquR>
zs&>}R+z?@HChzL-xodQ*Yfc14Y<$>xkZEnqYyFjX{eEw1pK|hrtyZ*lqLj%xZ!-(~
zyX!i1`NH>JEDF-i{lM;WfZ@wJuSaD&r);!l>S3x}YwPv$p2LazYIo$Lo^GA%y4YX0
zE~v=!wf6-xm#C{ht0yQXojCsdz>93=h>6}4CGWUPGK(sCwrCaI-uo*oWyJ-rFt_7D
ze3>`)^4vaSQhn&{WYak^Z6|D=n=V$YjF~@W&Q-|(#XI%_8aK8~TrCm(I+f?JLh;d*
zJGXx7epzi+o|ty*o>kiVvw54<!l%E}NV;*5@9>HfUre>EK2ETBF7kSHTJPrVEZ<fb
zh0Hs`6{cxD?Q!Cq$8uM8J21@K8en<A^7vl+vszZqMYxVGIH1lp<J^)jkJp9^rEff{
z_s-*QR>SOqyH}Y1ybe0_U}21mfVK$FC+pA|OSJB{@%kQJxaYg;-Qq)E*Gh-;@XK1I
zU)uR)!nTWZ9_`Y#HIII-us^O=^Ow-^Shrq5N$J|x{ntzmW<7GT<h>E@x+-?nhn)`+
zt{Jb~)n9nduq)Z`n5f9Qr7}$huByrji@E|&E^Ju+)}PDLc9lV4ke2ZE`CetO94_os
zzqHr<VSeMe?FG{>EB-doG2r-pHm1F;#^%@28%|{|OT>#`zKwhM;P;C!rPU@3PD>0}
zin3IG`bAy7bmE(?v2)v{gMH@>Zx;6yu%>%1Ia->xz$wW#!eVt)-KOhRIX)7T1b9}y
zK3}D}d)`Z~ndN2`w+!m0o_H*}=*EMs6PxXNTBdc#{oQp{{PI1u=S3&nK$ov+mL*S}
zep-j&>F&pS*&d0_`S<2Tkx}@iP2UO=H=ZqOJgD;It@W<Ue=bO8oGZL??Z}7dlNJ&Q
zoCjEnG&kKi!1;4ypa0gPbCY+5ZR``vZfueL7%ZK#o$+Y_AD`n3tt;OHB6NCpCM!>J
zc)Gg%BYVfar#*!-n(WP20@g|^1nf50r}Vn%(Y2I@i4wuh_eGysg|5pD{cwB&yXlpR
zwX<yXLUY8^7-YVz*{h@zr8S4~!ngHaEjcsq`bH^iVEi<3^4oiJwl&V5U@sir#nbw_
zYt_Zgc7BfQR`2bO$~y6+eZg_%k89SZshUj^*m>a3>N*(%dp)DV$X{P~t)26nJtN3X
z<LcBa5B<F~7Bv@`1aK(d>+%E*?*~Aar}Hg0NjKps?qWD9-O!M5>7uJ{gQmN)rz?Zx
z$wgfpXKiP&GNg6IO<`a>xmK3z?D|rU#1JFH#8%m#YaU+P+y5>7gY%EwkL>2O@T-Y`
zPSw4j@m&4ZhSjEieEtgqnpc|2J--#tS)(;i-~-$A<qL0GAARn_|6wz~|I)HtW=)?7
zk(Ii0(v}+3{oLf7@Ib)g_*Tzv^(J%Lc#Jr|{t7=7viiK)&0o4!S#yNmq}lF%Sl(op
zJZbOotktTUkA)~Cznb~{b*xO-<HCf+FRG-v-uvqmw_8v7WX*Wnbke*Ps(xm>E%)mz
zPF{Il{nos5Hzg!(PxDD_z3dy?F!hH2`ofTB%^A0>TF+H??eO|FqbN3Z#&tjU7`9go
zPinQf-evsxu=CTCoF=QVcZ<ZFudGg1R-UIl^UBlk?J5l%Hgk$<Utd0KZN0bOSkT{>
z%UrmVxiY19xpZs5wD2O&BCk1pg+ZqczZ_s@;E#_wzH_(6)9pMHxAYy_JFDnL&D)Hd
zlkQr*RiDS^5x4W}n(Cc~a&IR2Rob3de&-eA)d>vVe5<mxs-GrLob=;e#kv=FZ#<aV
zslH2Z#p&kO*LOlP4bC0<-6&fe`RHl%Ld$P9A@Z3a6V0_XB&}CxOWu#36?l4g-mw#9
zHdSHr-Fh=kPVU*<v(9d6q1vY_Us;|@{3|_Gu{<>5^r0JRg>#p`3`{SYobzFCiP*lW
z=kMuMnueXr*F9GywR`Q;^)mB!`DJU^U1up`JexIbnyz#-SDSU={HVp&q6aLGZ;keB
z*`OD_ereF`ITJkXru^yLwzSOB?%9lccQxM}nP8wf<9U~>f~D@Hf~<&jl6>VdRl!__
zlCRyTxy$~2`K#yh_NyGs%F6e)to<r<WW|BA#a>H3HisqMSz^Y2sr$yX66-yO=P*<y
zEp5_yx+6d9{N@=sGLyfq)vjzSYrMW=_1=p!%l)>0esZ&SPlNHx=zj{Ir(KdxapUTq
zW`Anqmzh)ZlKESov&>&xE<D3`<{bT7oB<qab5HKt`Aq!%(<6Tp3r`#^d{^}3vE+K+
z>(|b`Q+4fJSY*6?ZRNMc%eO9>$yFwoRd(l+-czXnzd}zx2Xmfh6Ia&zbr(KfUo}6X
zcC}36r^RzZW~C%LCb=2Tn>xGJa#oooi}01eE8VeEKkvA@yF9h$!RJtsnmgBe7X&Qt
zKXQpJa_fvOuAX;}O?rCI=J7L;69?{;&2zPT{=8tp+#7#1)N=zx_uf8H_T}x_sA-8(
zlY7ceEOTc%vgES5;)In?zCN0<e#MJ-MF*xy*sgYBJ!P$_>YC!7m#W-1b!Wmei5mh;
z6Hkb+JvEzu>O1>dZiRxv#ycV30~9S89$UN&opxpQ#5qg_THAS#bsyZ#@?36fu2FEk
z&zDt&x0nhKDz9G}9m$i$c+4tkvZr;s<HskpPw&`fz7d(KlCWKr`_%1CY{f5c&5)ht
z8pOfAm*Hw>O8=ea{!@zr%AOZ0@3lUo<hPekb9n<>(Y|HV_A+~S9QmTd|7F#52ey}U
z%0+V*3#ChnTuwT-cW*{Un)M;?!UJDd{Ap8`I4`?8`?q}p!#|VHOWsNbAAI@NS1CVv
ze%s9@(=%9RU6^%u?IF$BC8cLGf7G2+y}r0-!kva%?KM9ZS1)^IKFfFB^rg$@nEWml
zJ$roip1U4?<<$&UTy2e~leOKt|FX#KTYMq(#@w|k!p91g{$73=m~mihpJ9)T%+;A9
zE9<BC%@keZ^JMacU+fRIAGchPU27k-%fO@gySep-;u~Bq?X#*m{}evF{77?wQS2=Z
z)yMJscD(YfS)H#lZPMz6_Ug*A*|%$WKQ_Fwlic&++iI<8)0l-$>lL`~-y1c%Z7yHr
z<)H7o=5cOMIBr|rwON3-r!ORJZe{M1IG>J(Q)N~tJQ19gwJ`16g+h-PzBjh=iTB8S
z<$WEzruu{m&vVPKE0mcN&Y!BE8X5RmrbMo-Nl%Sqg64x?e3?IZ${tMan|Vz0C}+&d
zV^%?LP9;CfDSbTId%@-Ejm?tE7SGqZNhmTDpW{5{>aW1A-6NC294Pwf#^fEW?=tU*
zedE1dSG%Xnqa(ra^}QL-<@N4=Se`5-z-MF_xp}3qO8aSrb?*xJszO%1Zago$YU43R
zl~0ELEFvlbwOYDY?#AqV*6O?0$XaR^`<+$C=kXPXgum0PRGxFS)tW<L;xXHm5x$%L
z<nAebdHdSZo+riz%<MffS1smSdp=g~37rwoGPzZK66e~$^VTK04nLULb$eK4f>XJh
zI8?TaT(vi9m5?|Wy_KcG&#&;<#mlclUlhIgVtMn?jiY^q^P_5*wRdM&zI>+@y;R;f
zU0GK1;yMO~!afdBo4(^q*^@jL^Hs*(pBmROMfur@FRNZGP5$X&cQsG(oY{k<o$74;
zZd3MsI>SAIyI#D=QZ(<D@B7}>#~m*#|H+zD#H#Y7t~5<e=&hF7wCBqu*V`?LcfQzj
zyDaDGwxo4@j4I#XXvf_uSg}AxCf)vVgn_(n;CyCDmgXy0zs{CO`Vn}};oCaNtaCeV
z%JKv~cry2=g5bQXtFsHA?#hc<S5zExckQ=J#=kEdex~rC&q8#0X3@c5R?xut(uAvh
zOI1q4rfW;8?yBOi+M)L-=t1JP^}2J)j~17GKeADQDMYyEQ`YTREm4))hx7J?2JcEM
zl}f$+Qv6K7+pXTB&zE1@l&2RcpJ9=BUq-6-$(xXs2PIjA&%cf=4`!5mW~op(Z|loT
z^JdM{&A7WwZDGwt#oG!heaq+W_j<a=dF5<xvkpVgbeXnShp%mkJr@|+Z9S){itEuI
z-xYcbSD&4JUuvQpzhmE$@Ko!QFZ#7MzY5>vzGFv7PlLP7udsUy3#MIUjcb2;aMi35
z?c6+>NwK>GuW+qh>8DaI-H~|bdfB<>BKfsvcJJOOXqkK`vAX{2>goG;@aq?!D-Ji+
zUM3{KR~r(>di36#o(EMypQUP#PJ5Ubmc(gcQx%re<b6HOCV8RBqo=o3K4fn4+o;Fx
zQ@1sI-(ruY%0CN@CYYzM4V<|1gyiae`B~ocY~9y}PG(_ZV_&}1wflvEyv~!tzuL*3
zJB4LrijVJ25-Jzs7d74Y<;G7f<AWmKuJ|1fE?x5T!j_KRQ>z<ep1zy+F=gV!x3T4I
zr7aUWmMULpzPI&jJilwPw9$lenVu4nj4y8GPs?9a=2aYg{QA~J_W=H<(N^pFzP%|h
zZjLx2anSPMlB>PJ{)r*Y6N)Ssq@<L8HQ}^+5^(l&>EZ<^85J!pY*%@le1HAgg5ys7
zA|HNNl`cATJK5=O2g6s{?7T}KeUw!gFF!RsciXE%;@SG8hn#j=NW6aU%TfDe_MCak
zZ3KNCY&Q5izI+{e>~&}Jud>y%Lzt%>keT!S+tLfulf?tJSKP6Tlisnabf@m=GY1Pl
z^)-B1HN8x6%1LpS(kT66mou+4Gc~7KT7Fp@EA2izY>!8>o65vV)*)49lg(C_O>kOz
z=bzKw=0pFa+g*EDna><QcmJO0lvhQ{vzEHba+vHDE!myA-6bIWy?k(Z|GOn8e#VrE
zuG}ah;52!T%$1-6b^!ux>g7>~=l!1Z{ayJ#&i%qSOkBiHoKz{$UgR*xbH|f8nnw%w
z^WAcrRZ{echi9rxc!she^Y+O%%$KiKPo9}sl6c=$ckSu7b$sF6$D`KmYCcqOV25M>
z^scMBC+IxxpZb^GInY-me+z>|dEk}nCJz<2T<j|iFOzxL@!-+wUa!oK9tHg-qioMF
zFFutEEcwLvGT33-HP5-H&eXT??eFzTdb{G5;gU;oC6hc;_4_aPdwtGz@nyZd<ZikA
zjMAf3SI?eIIO=xwm|fufb36S7G6nD5+HAyHu(Y|k|I(HxzOOHA`7P)E=;V=Qx9%1>
z=H53C4!XHmf%{I0DDSV?_XU-5PxK_;+NEu6nmdy@KR@b=rhd8e+MFN{ImdZ3A2(iF
zSD)TL)vJNw_}*BLvTcma?DA2YMHnMz&eoliv~{C-tdIDXh^Y-Mg~zg$kE~RQ()sjO
zL4eV2=DH`hR4xf$*Ph&W^-PUxX#e3OJdJzZtb;EdbuX!m6$uP3UZL^Y@mUvxgQ273
z(nV7nG!``(yFFl=EZ?gu0$K&H$LPx5==joy;ey7}vx=O3#jY9A(e5jbDTm!GvU^}F
zeQTvBx2v)??;1W1lXXmPyKiv)4*%x#VaBCBrj=`r*3T?^bk87s(vH(I|3W{px0&oL
z&5h!&P%`p(C!*E2{L+4xJ-kbuANKQS?#kifDLBCVPFAL8*2iM6JzI8KZN7QxrPkD)
zOE=l_ojkyjtRf><xwbl@<|IeT35%yY)|LCr{_d>IeTVPs<;>3?1RGOtH%MGRW?oWz
zsQ1#&Ds7p4qUG{=hn82HPW0CL`lP2s_EmQ2Ptl!<)#+=aT%C9D&AaQGwlq1EWlOq!
zY5LX~jmHf5ERSa$*}FAq!H4Dhs;{T&M0eg=UjJd@t)1CVPw$$}xT!9u<lEY$`_7if
zox86r3Z1%LsBrS7o!Srgwx8Y1{I2nwaqPTx?z0cFlqA25S^H_GZ2vulsb5TAT+FlD
zd}_6?_2NlaBp>VTxO1xVcu=ixQoP^6bI;DC)a+(6sC``@5G?K4`g3;E=_|j(mFtaH
z+j+{K`gXLImAy9db416hi+-Qpn3WmGZWlh5trgiVGo4}br11HtW>!{&wn>JpIC(a0
z@5ORU1>wK<roOoxC1>jF;dQpb!tX!Bzg?lZ=XNk|p5S45G^i<eM-2149q+>e*sL3G
z8DHS}9A#T(Y3m;2wNfs0+mj;xz_{#3vF>lB-cRHIwd15s_`+AmPi#4!Bc|h9u{z7`
z_mS{*mJA{+^R9B1x^0Y-kXoJg@POsBP5x2)SIBPKc`kZiR$EbVNVZ63X1z@wAA{Uh
znKR`@#peTqU#^^@{G(U(PBj1i4J&u*7q#8nDY=yS2G<O=vQLKh=II{p<IiF*(%tiz
zX({Md9h0xpY!MCCrlw0D_gOAaj5{>rs=rN;b~2YG)8fia$LH0)6z$B*T=+{od5Rjt
zpVdxx&lxR9xn^V#c;(TSH7bW04m|kseZk}fn;ez-r}OrCu6=79J?U~y5mWevH`(TH
z9li%&WiQ+EVgIa!je-kV*z=}b?RmPaZSK~6^H(X&->htDWAK>y(&nx5%+YtYOq{|X
z)3;YU@0xY3s<QvonQlexUHdj~nXu)Q)As!fS6xpmmbb2$?ljr)ik#T*_9^*+k>6IN
zOwcnvTh-rRvi@!C(ZG-+775njb8j8EaKh~pueaOAX|rbW@ot@I!7{Ni=Ffedxdye`
zd9MmQx^47hu1YTWY?pYUd`aj<PqzrUpQ~SgIu_AqyK4KCfKQB~3wazI`|d~Cy4>{H
z%=V)2*782L)RW6+I6qz?H>F9;e@3~?<s15Co+78W%$fYQYrXQu$r86`O?6~e;a|R1
zrTbZN6Mv4}R>h5`i*pax$z0oF9c32w`r0PlsoUNie~|U)RQHu+yD1#A(j@M1{;|zm
z_3-+f=eAn>7Rk-`zbsp+t9annmTy;d{Fbvk==b7KDOfP8BtePy^nFvMi4%U?>m6DV
zrsy$Wxu-TW&VG*Ep*4BZyPovbO}Tq2yxcj6_jZ!SBfdR7zXCQqp3`8<>#@eEjhV4p
z_*#?XvBz7Oj2J||ypXz4wCL><rYq-dL+14DNow%4c=<|GwlYjv*|t^e)uFe1ku}F0
zH!$BfUA&=^<w0$>mGY*bo9_>p)<*oDduPK#&t-FO%=A9Ap>u0?`@5Y7MOUx5$q+Gd
z=jVA@?afLI{^m6kEWfVZeR;-Y?j7q{HwPSC8^|}oIog9g?b(_W`_<U(zHH-K&Bi8T
zdGh<Bh!4m63@>fzUAuD5y1S>&iB=WgTBtg;&o0g?ZJEMG<)<t~g@L(Ge=yA2uPmKq
zz`tur^{lBChxi=7Jh;H1Fv%{zO0;RCa)C-R)3T>qQ?sWjC+=vn=l9wuf2LZ0<?*N$
zz0C(DZ7rTH@7>lv;~n!p&Gkk#-S!H{-0oRDn-*Z!CO5a&^%+x9h^S3USIQ=#CC$xm
zFN<VfSu5gx(k!}R@dn$EfgTGDuV;QW$yeDlfnP>GD%qMfj*mS_)9jn0#QngUgKBP!
z$5o{AXNb(7Zr3)=Ei`~b(&mbrPtjrZ70i3n&aL>_AG29ZUjMhs*OhLUX1skH`sZlk
z<ZDa#_!xd4{<6|kXW^$~70f%%M)aQA=5dE#!ZeV7M!_q~_hD1FZ98_5eW~u;BY(OD
zPfrR?NH8d#_chOq>oG%9HRHLgS!L(hZ4JZ3e2=e;d-8R)*Y7!-b8Wc~Id0(HDSNys
qL-$kSwt06F9^aeEJ!j6`!;*4Wmbu<rb6Cg1!nADLG4U(^Zvp^g9dY6S

literal 0
HcmV?d00001

diff --git a/src/yolov5/data/scripts/download_weights.sh b/src/yolov5/data/scripts/download_weights.sh
new file mode 100755
index 00000000..e9fa6539
--- /dev/null
+++ b/src/yolov5/data/scripts/download_weights.sh
@@ -0,0 +1,20 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download latest models from https://github.com/ultralytics/yolov5/releases
+# Example usage: bash path/to/download_weights.sh
+# parent
+# └── yolov5
+#     ├── yolov5s.pt  ← downloads here
+#     ├── yolov5m.pt
+#     └── ...
+
+python - <<EOF
+from utils.downloads import attempt_download
+
+models = ['n', 's', 'm', 'l', 'x']
+models.extend([x + '6' for x in models])  # add P6 models
+
+for x in models:
+    attempt_download(f'yolov5{x}.pt')
+
+EOF
diff --git a/src/yolov5/data/scripts/get_coco.sh b/src/yolov5/data/scripts/get_coco.sh
new file mode 100755
index 00000000..0210c8eb
--- /dev/null
+++ b/src/yolov5/data/scripts/get_coco.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download COCO 2017 dataset http://cocodataset.org
+# Example usage: bash data/scripts/get_coco.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco  ← downloads here
+
+# Download/unzip labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
+
+# Download/unzip images
+d='../datasets/coco/images' # unzip directory
+url=http://images.cocodataset.org/zips/
+f1='train2017.zip' # 19G, 118k images
+f2='val2017.zip'   # 1G, 5k images
+f3='test2017.zip'  # 7G, 41k images (optional)
+for f in $f1 $f2; do
+  echo 'Downloading' $url$f '...'
+  curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
+done
+wait # finish background tasks
diff --git a/src/yolov5/data/scripts/get_coco128.sh b/src/yolov5/data/scripts/get_coco128.sh
new file mode 100644
index 00000000..ee05a867
--- /dev/null
+++ b/src/yolov5/data/scripts/get_coco128.sh
@@ -0,0 +1,17 @@
+#!/bin/bash
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Download COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017)
+# Example usage: bash data/scripts/get_coco128.sh
+# parent
+# ├── yolov5
+# └── datasets
+#     └── coco128  ← downloads here
+
+# Download/unzip images and labels
+d='../datasets' # unzip directory
+url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
+f='coco128.zip' # or 'coco128-segments.zip', 68 MB
+echo 'Downloading' $url$f ' ...'
+curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &
+
+wait # finish background tasks
diff --git a/src/yolov5/data/xView.yaml b/src/yolov5/data/xView.yaml
new file mode 100644
index 00000000..fd82828d
--- /dev/null
+++ b/src/yolov5/data/xView.yaml
@@ -0,0 +1,102 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# DIUx xView 2018 Challenge https://challenge.xviewdataset.org by U.S. National Geospatial-Intelligence Agency (NGA)
+# --------  DOWNLOAD DATA MANUALLY and jar xf val_images.zip to 'datasets/xView' before running train command!  --------
+# Example usage: python train.py --data xView.yaml
+# parent
+# ├── yolov5
+# └── datasets
+#     └── xView  ← downloads here
+
+
+# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
+path: ../datasets/xView  # dataset root dir
+train: images/autosplit_train.txt  # train images (relative to 'path') 90% of 847 train images
+val: images/autosplit_val.txt  # train images (relative to 'path') 10% of 847 train images
+
+# Classes
+nc: 60  # number of classes
+names: ['Fixed-wing Aircraft', 'Small Aircraft', 'Cargo Plane', 'Helicopter', 'Passenger Vehicle', 'Small Car', 'Bus',
+        'Pickup Truck', 'Utility Truck', 'Truck', 'Cargo Truck', 'Truck w/Box', 'Truck Tractor', 'Trailer',
+        'Truck w/Flatbed', 'Truck w/Liquid', 'Crane Truck', 'Railway Vehicle', 'Passenger Car', 'Cargo Car',
+        'Flat Car', 'Tank car', 'Locomotive', 'Maritime Vessel', 'Motorboat', 'Sailboat', 'Tugboat', 'Barge',
+        'Fishing Vessel', 'Ferry', 'Yacht', 'Container Ship', 'Oil Tanker', 'Engineering Vehicle', 'Tower crane',
+        'Container Crane', 'Reach Stacker', 'Straddle Carrier', 'Mobile Crane', 'Dump Truck', 'Haul Truck',
+        'Scraper/Tractor', 'Front loader/Bulldozer', 'Excavator', 'Cement Mixer', 'Ground Grader', 'Hut/Tent', 'Shed',
+        'Building', 'Aircraft Hangar', 'Damaged Building', 'Facility', 'Construction Site', 'Vehicle Lot', 'Helipad',
+        'Storage Tank', 'Shipping container lot', 'Shipping Container', 'Pylon', 'Tower']  # class names
+
+
+# Download script/URL (optional) ---------------------------------------------------------------------------------------
+download: |
+  import json
+  import os
+  from pathlib import Path
+
+  import numpy as np
+  from PIL import Image
+  from tqdm import tqdm
+
+  from utils.datasets import autosplit
+  from utils.general import download, xyxy2xywhn
+
+
+  def convert_labels(fname=Path('xView/xView_train.geojson')):
+      # Convert xView geoJSON labels to YOLO format
+      path = fname.parent
+      with open(fname) as f:
+          print(f'Loading {fname}...')
+          data = json.load(f)
+
+      # Make dirs
+      labels = Path(path / 'labels' / 'train')
+      os.system(f'rm -rf {labels}')
+      labels.mkdir(parents=True, exist_ok=True)
+
+      # xView classes 11-94 to 0-59
+      xview_class2index = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, -1, 3, -1, 4, 5, 6, 7, 8, -1, 9, 10, 11,
+                           12, 13, 14, 15, -1, -1, 16, 17, 18, 19, 20, 21, 22, -1, 23, 24, 25, -1, 26, 27, -1, 28, -1,
+                           29, 30, 31, 32, 33, 34, 35, 36, 37, -1, 38, 39, 40, 41, 42, 43, 44, 45, -1, -1, -1, -1, 46,
+                           47, 48, 49, -1, 50, 51, -1, 52, -1, -1, -1, 53, 54, -1, 55, -1, -1, 56, -1, 57, -1, 58, 59]
+
+      shapes = {}
+      for feature in tqdm(data['features'], desc=f'Converting {fname}'):
+          p = feature['properties']
+          if p['bounds_imcoords']:
+              id = p['image_id']
+              file = path / 'train_images' / id
+              if file.exists():  # 1395.tif missing
+                  try:
+                      box = np.array([int(num) for num in p['bounds_imcoords'].split(",")])
+                      assert box.shape[0] == 4, f'incorrect box shape {box.shape[0]}'
+                      cls = p['type_id']
+                      cls = xview_class2index[int(cls)]  # xView class to 0-60
+                      assert 59 >= cls >= 0, f'incorrect class index {cls}'
+
+                      # Write YOLO label
+                      if id not in shapes:
+                          shapes[id] = Image.open(file).size
+                      box = xyxy2xywhn(box[None].astype(np.float), w=shapes[id][0], h=shapes[id][1], clip=True)
+                      with open((labels / id).with_suffix('.txt'), 'a') as f:
+                          f.write(f"{cls} {' '.join(f'{x:.6f}' for x in box[0])}\n")  # write label.txt
+                  except Exception as e:
+                      print(f'WARNING: skipping one label for {file}: {e}')
+
+
+  # Download manually from https://challenge.xviewdataset.org
+  dir = Path(yaml['path'])  # dataset root dir
+  # urls = ['https://d307kc0mrhucc3.cloudfront.net/train_labels.zip',  # train labels
+  #         'https://d307kc0mrhucc3.cloudfront.net/train_images.zip',  # 15G, 847 train images
+  #         'https://d307kc0mrhucc3.cloudfront.net/val_images.zip']  # 5G, 282 val images (no labels)
+  # download(urls, dir=dir, delete=False)
+
+  # Convert labels
+  convert_labels(dir / 'xView_train.geojson')
+
+  # Move images
+  images = Path(dir / 'images')
+  images.mkdir(parents=True, exist_ok=True)
+  Path(dir / 'train_images').rename(dir / 'images' / 'train')
+  Path(dir / 'val_images').rename(dir / 'images' / 'val')
+
+  # Split
+  autosplit(dir / 'images' / 'train')
diff --git a/src/yolov5/detect.py b/src/yolov5/detect.py
new file mode 100644
index 00000000..76f67bea
--- /dev/null
+++ b/src/yolov5/detect.py
@@ -0,0 +1,257 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run inference on images, videos, directories, streams, etc.
+
+Usage - sources:
+    $ python path/to/detect.py --weights yolov5s.pt --source 0              # webcam
+                                                             img.jpg        # image
+                                                             vid.mp4        # video
+                                                             path/          # directory
+                                                             path/*.jpg     # glob
+                                                             'https://youtu.be/Zgi9g1ksQHc'  # YouTube
+                                                             'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
+
+Usage - formats:
+    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
+                                         yolov5s.torchscript        # TorchScript
+                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                         yolov5s.xml                # OpenVINO
+                                         yolov5s.engine             # TensorRT
+                                         yolov5s.mlmodel            # CoreML (MacOS-only)
+                                         yolov5s_saved_model        # TensorFlow SavedModel
+                                         yolov5s.pb                 # TensorFlow GraphDef
+                                         yolov5s.tflite             # TensorFlow Lite
+                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+"""
+
+import argparse
+import os
+import sys
+from pathlib import Path
+
+import cv2
+import torch
+import torch.backends.cudnn as cudnn
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
+from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr,
+                           increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import select_device, time_sync
+
+
+@torch.no_grad()
+def run(weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
+        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        imgsz=(640, 640),  # inference size (height, width)
+        conf_thres=0.25,  # confidence threshold
+        iou_thres=0.45,  # NMS IOU threshold
+        max_det=1000,  # maximum detections per image
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        view_img=False,  # show results
+        save_txt=False,  # save results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_crop=False,  # save cropped prediction boxes
+        nosave=False,  # do not save images/videos
+        classes=None,  # filter by class: --class 0, or --class 0 2 3
+        agnostic_nms=False,  # class-agnostic NMS
+        augment=False,  # augmented inference
+        visualize=False,  # visualize features
+        update=False,  # update all models
+        project=ROOT / 'runs/detect',  # save results to project/name
+        name='exp',  # save results to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        line_thickness=3,  # bounding box thickness (pixels)
+        hide_labels=False,  # hide labels
+        hide_conf=False,  # hide confidences
+        half=False,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        ):
+    source = str(source)
+    save_img = not nosave and not source.endswith('.txt')  # save inference images
+    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
+    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
+    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
+    if is_url and is_file:
+        source = check_file(source)  # download
+
+    # Directories
+    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+    # Load model
+    device = select_device(device)
+    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
+    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
+    imgsz = check_img_size(imgsz, s=stride)  # check image size
+
+    # Half
+    half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
+    if pt or jit:
+        model.model.half() if half else model.model.float()
+
+    # Dataloader
+    if webcam:
+        view_img = check_imshow()
+        cudnn.benchmark = True  # set True to speed up constant image size inference
+        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
+        bs = len(dataset)  # batch_size
+    else:
+        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
+        bs = 1  # batch_size
+    vid_path, vid_writer = [None] * bs, [None] * bs
+
+    # Run inference
+    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
+    dt, seen = [0.0, 0.0, 0.0], 0
+    for path, im, im0s, vid_cap, s in dataset:
+        t1 = time_sync()
+        im = torch.from_numpy(im).to(device)
+        im = im.half() if half else im.float()  # uint8 to fp16/32
+        im /= 255  # 0 - 255 to 0.0 - 1.0
+        if len(im.shape) == 3:
+            im = im[None]  # expand for batch dim
+        t2 = time_sync()
+        dt[0] += t2 - t1
+
+        # Inference
+        visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
+        pred = model(im, augment=augment, visualize=visualize)
+        t3 = time_sync()
+        dt[1] += t3 - t2
+
+        # NMS
+        pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
+        dt[2] += time_sync() - t3
+
+        # Second-stage classifier (optional)
+        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
+
+        # Process predictions
+        for i, det in enumerate(pred):  # per image
+            seen += 1
+            if webcam:  # batch_size >= 1
+                p, im0, frame = path[i], im0s[i].copy(), dataset.count
+                s += f'{i}: '
+            else:
+                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
+
+            p = Path(p)  # to Path
+            save_path = str(save_dir / p.name)  # im.jpg
+            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
+            s += '%gx%g ' % im.shape[2:]  # print string
+            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
+            imc = im0.copy() if save_crop else im0  # for save_crop
+            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
+            if len(det):
+                # Rescale boxes from img_size to im0 size
+                det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
+
+                # Print results
+                for c in det[:, -1].unique():
+                    n = (det[:, -1] == c).sum()  # detections per class
+                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
+
+                # Write results
+                for *xyxy, conf, cls in reversed(det):
+                    if save_txt:  # Write to file
+                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+                        with open(txt_path + '.txt', 'a') as f:
+                            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+                    if save_img or save_crop or view_img:  # Add bbox to image
+                        c = int(cls)  # integer class
+                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
+                        annotator.box_label(xyxy, label, color=colors(c, True))
+                        if save_crop:
+                            save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
+
+            # Stream results
+            im0 = annotator.result()
+            if view_img:
+                cv2.imshow(str(p), im0)
+                cv2.waitKey(1)  # 1 millisecond
+
+            # Save results (image with detections)
+            if save_img:
+                if dataset.mode == 'image':
+                    cv2.imwrite(save_path, im0)
+                else:  # 'video' or 'stream'
+                    if vid_path[i] != save_path:  # new video
+                        vid_path[i] = save_path
+                        if isinstance(vid_writer[i], cv2.VideoWriter):
+                            vid_writer[i].release()  # release previous video writer
+                        if vid_cap:  # video
+                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
+                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+                        else:  # stream
+                            fps, w, h = 30, im0.shape[1], im0.shape[0]
+                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
+                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
+                    vid_writer[i].write(im0)
+
+        # Print time (inference-only)
+        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
+
+    # Print results
+    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
+    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
+    if save_txt or save_img:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    if update:
+        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path(s)')
+    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob, 0 for webcam')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
+    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--view-img', action='store_true', help='show results')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
+    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
+    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
+    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--visualize', action='store_true', help='visualize features')
+    parser.add_argument('--update', action='store_true', help='update all models')
+    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
+    parser.add_argument('--name', default='exp', help='save results to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
+    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
+    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    check_requirements(exclude=('tensorboard', 'thop'))
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/src/yolov5/export.py b/src/yolov5/export.py
new file mode 100644
index 00000000..15e92a78
--- /dev/null
+++ b/src/yolov5/export.py
@@ -0,0 +1,559 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Export a YOLOv5 PyTorch model to other formats. TensorFlow exports authored by https://github.com/zldrobit
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+
+Usage:
+    $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx openvino engine coreml tflite ...
+
+Inference:
+    $ python path/to/detect.py --weights yolov5s.pt                 # PyTorch
+                                         yolov5s.torchscript        # TorchScript
+                                         yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                         yolov5s.xml                # OpenVINO
+                                         yolov5s.engine             # TensorRT
+                                         yolov5s.mlmodel            # CoreML (MacOS-only)
+                                         yolov5s_saved_model        # TensorFlow SavedModel
+                                         yolov5s.pb                 # TensorFlow GraphDef
+                                         yolov5s.tflite             # TensorFlow Lite
+                                         yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+
+TensorFlow.js:
+    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
+    $ npm install
+    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
+    $ npm start
+"""
+
+import argparse
+import json
+import os
+import platform
+import subprocess
+import sys
+import time
+import warnings
+from pathlib import Path
+
+import pandas as pd
+import torch
+import torch.nn as nn
+from torch.utils.mobile_optimizer import optimize_for_mobile
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import Conv
+from models.experimental import attempt_load
+from models.yolo import Detect
+from utils.activations import SiLU
+from utils.datasets import LoadImages
+from utils.general import (LOGGER, check_dataset, check_img_size, check_requirements, check_version, colorstr,
+                           file_size, print_args, url2file)
+from utils.torch_utils import select_device
+
+
+def export_formats():
+    # YOLOv5 export formats
+    x = [['PyTorch', '-', '.pt'],
+         ['TorchScript', 'torchscript', '.torchscript'],
+         ['ONNX', 'onnx', '.onnx'],
+         ['OpenVINO', 'openvino', '_openvino_model'],
+         ['TensorRT', 'engine', '.engine'],
+         ['CoreML', 'coreml', '.mlmodel'],
+         ['TensorFlow SavedModel', 'saved_model', '_saved_model'],
+         ['TensorFlow GraphDef', 'pb', '.pb'],
+         ['TensorFlow Lite', 'tflite', '.tflite'],
+         ['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite'],
+         ['TensorFlow.js', 'tfjs', '_web_model']]
+    return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix'])
+
+
+def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
+    # YOLOv5 TorchScript model export
+    try:
+        LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
+        f = file.with_suffix('.torchscript')
+
+        ts = torch.jit.trace(model, im, strict=False)
+        d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
+        extra_files = {'config.txt': json.dumps(d)}  # torch._C.ExtraFilesMap()
+        if optimize:  # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
+            optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
+        else:
+            ts.save(str(f), _extra_files=extra_files)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'{prefix} export failure: {e}')
+
+
+def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
+    # YOLOv5 ONNX export
+    try:
+        check_requirements(('onnx',))
+        import onnx
+
+        LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
+        f = file.with_suffix('.onnx')
+
+        torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
+                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
+                          do_constant_folding=not train,
+                          input_names=['images'],
+                          output_names=['output'],
+                          dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
+                                        'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
+                                        } if dynamic else None)
+
+        # Checks
+        model_onnx = onnx.load(f)  # load onnx model
+        onnx.checker.check_model(model_onnx)  # check onnx model
+        # LOGGER.info(onnx.helper.printable_graph(model_onnx.graph))  # print
+
+        # Simplify
+        if simplify:
+            try:
+                check_requirements(('onnx-simplifier',))
+                import onnxsim
+
+                LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
+                model_onnx, check = onnxsim.simplify(
+                    model_onnx,
+                    dynamic_input_shape=dynamic,
+                    input_shapes={'images': list(im.shape)} if dynamic else None)
+                assert check, 'assert check failed'
+                onnx.save(model_onnx, f)
+            except Exception as e:
+                LOGGER.info(f'{prefix} simplifier failure: {e}')
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'{prefix} export failure: {e}')
+
+
+def export_openvino(model, im, file, prefix=colorstr('OpenVINO:')):
+    # YOLOv5 OpenVINO export
+    try:
+        check_requirements(('openvino-dev',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+        import openvino.inference_engine as ie
+
+        LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
+        f = str(file).replace('.pt', '_openvino_model' + os.sep)
+
+        cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f}"
+        subprocess.check_output(cmd, shell=True)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
+    # YOLOv5 CoreML export
+    try:
+        check_requirements(('coremltools',))
+        import coremltools as ct
+
+        LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
+        f = file.with_suffix('.mlmodel')
+
+        ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
+        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
+        ct_model.save(f)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return ct_model, f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+        return None, None
+
+
+def export_engine(model, im, file, train, half, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
+    # YOLOv5 TensorRT export https://developer.nvidia.com/tensorrt
+    try:
+        check_requirements(('tensorrt',))
+        import tensorrt as trt
+
+        if trt.__version__[0] == '7':  # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
+            grid = model.model[-1].anchor_grid
+            model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
+            export_onnx(model, im, file, 12, train, False, simplify)  # opset 12
+            model.model[-1].anchor_grid = grid
+        else:  # TensorRT >= 8
+            check_version(trt.__version__, '8.0.0', hard=True)  # require tensorrt>=8.0.0
+            export_onnx(model, im, file, 13, train, False, simplify)  # opset 13
+        onnx = file.with_suffix('.onnx')
+
+        LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
+        assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
+        assert onnx.exists(), f'failed to export ONNX file: {onnx}'
+        f = file.with_suffix('.engine')  # TensorRT engine file
+        logger = trt.Logger(trt.Logger.INFO)
+        if verbose:
+            logger.min_severity = trt.Logger.Severity.VERBOSE
+
+        builder = trt.Builder(logger)
+        config = builder.create_builder_config()
+        config.max_workspace_size = workspace * 1 << 30
+
+        flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
+        network = builder.create_network(flag)
+        parser = trt.OnnxParser(network, logger)
+        if not parser.parse_from_file(str(onnx)):
+            raise RuntimeError(f'failed to load ONNX file: {onnx}')
+
+        inputs = [network.get_input(i) for i in range(network.num_inputs)]
+        outputs = [network.get_output(i) for i in range(network.num_outputs)]
+        LOGGER.info(f'{prefix} Network Description:')
+        for inp in inputs:
+            LOGGER.info(f'{prefix}\tinput "{inp.name}" with shape {inp.shape} and dtype {inp.dtype}')
+        for out in outputs:
+            LOGGER.info(f'{prefix}\toutput "{out.name}" with shape {out.shape} and dtype {out.dtype}')
+
+        half &= builder.platform_has_fast_fp16
+        LOGGER.info(f'{prefix} building FP{16 if half else 32} engine in {f}')
+        if half:
+            config.set_flag(trt.BuilderFlag.FP16)
+        with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
+            t.write(engine.serialize())
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+def export_saved_model(model, im, file, dynamic,
+                       tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
+                       conf_thres=0.25, keras=False, prefix=colorstr('TensorFlow SavedModel:')):
+    # YOLOv5 TensorFlow SavedModel export
+    try:
+        import tensorflow as tf
+        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+        from models.tf import TFDetect, TFModel
+
+        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+        f = str(file).replace('.pt', '_saved_model')
+        batch_size, ch, *imgsz = list(im.shape)  # BCHW
+
+        tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+        im = tf.zeros((batch_size, *imgsz, 3))  # BHWC order for TensorFlow
+        _ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+        inputs = tf.keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
+        outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
+        keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
+        keras_model.trainable = False
+        keras_model.summary()
+        if keras:
+            keras_model.save(f, save_format='tf')
+        else:
+            m = tf.function(lambda x: keras_model(x))  # full model
+            spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
+            m = m.get_concrete_function(spec)
+            frozen_func = convert_variables_to_constants_v2(m)
+            tfm = tf.Module()
+            tfm.__call__ = tf.function(lambda x: frozen_func(x), [spec])
+            tfm.__call__(im)
+            tf.saved_model.save(
+                tfm,
+                f,
+                options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if
+                check_version(tf.__version__, '2.6') else tf.saved_model.SaveOptions())
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return keras_model, f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+        return None, None
+
+
+def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
+    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
+    try:
+        import tensorflow as tf
+        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
+
+        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+        f = file.with_suffix('.pb')
+
+        m = tf.function(lambda x: keras_model(x))  # full model
+        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
+        frozen_func = convert_variables_to_constants_v2(m)
+        frozen_func.graph.as_graph_def()
+        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
+    # YOLOv5 TensorFlow Lite export
+    try:
+        import tensorflow as tf
+
+        LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
+        batch_size, ch, *imgsz = list(im.shape)  # BCHW
+        f = str(file).replace('.pt', '-fp16.tflite')
+
+        converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
+        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
+        converter.target_spec.supported_types = [tf.float16]
+        converter.optimizations = [tf.lite.Optimize.DEFAULT]
+        if int8:
+            from models.tf import representative_dataset_gen
+            dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False)  # representative data
+            converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
+            converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
+            converter.target_spec.supported_types = []
+            converter.inference_input_type = tf.uint8  # or tf.int8
+            converter.inference_output_type = tf.uint8  # or tf.int8
+            converter.experimental_new_quantizer = False
+            f = str(file).replace('.pt', '-int8.tflite')
+
+        tflite_model = converter.convert()
+        open(f, "wb").write(tflite_model)
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+def export_edgetpu(keras_model, im, file, prefix=colorstr('Edge TPU:')):
+    # YOLOv5 Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
+    try:
+        cmd = 'edgetpu_compiler --version'
+        help_url = 'https://coral.ai/docs/edgetpu/compiler/'
+        assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
+        if subprocess.run(cmd + ' >/dev/null', shell=True).returncode != 0:
+            LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
+            sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0  # sudo installed on system
+            for c in ['curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
+                      'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
+                      'sudo apt-get update',
+                      'sudo apt-get install edgetpu-compiler']:
+                subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
+        ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
+
+        LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
+        f = str(file).replace('.pt', '-int8_edgetpu.tflite')  # Edge TPU model
+        f_tfl = str(file).replace('.pt', '-int8.tflite')  # TFLite model
+
+        cmd = f"edgetpu_compiler -s {f_tfl}"
+        subprocess.run(cmd, shell=True, check=True)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
+    # YOLOv5 TensorFlow.js export
+    try:
+        check_requirements(('tensorflowjs',))
+        import re
+
+        import tensorflowjs as tfjs
+
+        LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
+        f = str(file).replace('.pt', '_web_model')  # js dir
+        f_pb = file.with_suffix('.pb')  # *.pb path
+        f_json = f + '/model.json'  # *.json path
+
+        cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
+              f'--output_node_names="Identity,Identity_1,Identity_2,Identity_3" {f_pb} {f}'
+        subprocess.run(cmd, shell=True)
+
+        json = open(f_json).read()
+        with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
+            subst = re.sub(
+                r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
+                r'"Identity.?.?": {"name": "Identity.?.?"}, '
+                r'"Identity.?.?": {"name": "Identity.?.?"}, '
+                r'"Identity.?.?": {"name": "Identity.?.?"}}}',
+                r'{"outputs": {"Identity": {"name": "Identity"}, '
+                r'"Identity_1": {"name": "Identity_1"}, '
+                r'"Identity_2": {"name": "Identity_2"}, '
+                r'"Identity_3": {"name": "Identity_3"}}}',
+                json)
+            j.write(subst)
+
+        LOGGER.info(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
+        return f
+    except Exception as e:
+        LOGGER.info(f'\n{prefix} export failure: {e}')
+
+
+@torch.no_grad()
+def run(data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
+        weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=(640, 640),  # image (height, width)
+        batch_size=1,  # batch size
+        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        include=('torchscript', 'onnx'),  # include formats
+        half=False,  # FP16 half-precision export
+        inplace=False,  # set YOLOv5 Detect() inplace=True
+        train=False,  # model.train() mode
+        optimize=False,  # TorchScript: optimize for mobile
+        int8=False,  # CoreML/TF INT8 quantization
+        dynamic=False,  # ONNX/TF: dynamic axes
+        simplify=False,  # ONNX: simplify model
+        opset=12,  # ONNX: opset version
+        verbose=False,  # TensorRT: verbose log
+        workspace=4,  # TensorRT: workspace size (GB)
+        nms=False,  # TF: add NMS to model
+        agnostic_nms=False,  # TF: add agnostic NMS to model
+        topk_per_class=100,  # TF.js NMS: topk per class to keep
+        topk_all=100,  # TF.js NMS: topk for all classes to keep
+        iou_thres=0.45,  # TF.js NMS: IoU threshold
+        conf_thres=0.25  # TF.js NMS: confidence threshold
+        ):
+    t = time.time()
+    include = [x.lower() for x in include]  # to lowercase
+    formats = tuple(export_formats()['Argument'][1:])  # --include arguments
+    flags = [x in include for x in formats]
+    assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {formats}'
+    jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = flags  # export booleans
+    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)  # PyTorch weights
+
+    # Load PyTorch model
+    device = select_device(device)
+    assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
+    model = attempt_load(weights, map_location=device, inplace=True, fuse=True)  # load FP32 model
+    nc, names = model.nc, model.names  # number of classes, class names
+
+    # Checks
+    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
+    opset = 12 if ('openvino' in include) else opset  # OpenVINO requires opset <= 12
+    assert nc == len(names), f'Model class count {nc} != len(names) {len(names)}'
+
+    # Input
+    gs = int(max(model.stride))  # grid size (max stride)
+    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
+    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection
+
+    # Update model
+    if half:
+        im, model = im.half(), model.half()  # to FP16
+    model.train() if train else model.eval()  # training mode = no Detect() layer grid construction
+    for k, m in model.named_modules():
+        if isinstance(m, Conv):  # assign export-friendly activations
+            if isinstance(m.act, nn.SiLU):
+                m.act = SiLU()
+        elif isinstance(m, Detect):
+            m.inplace = inplace
+            m.onnx_dynamic = dynamic
+            if hasattr(m, 'forward_export'):
+                m.forward = m.forward_export  # assign custom forward (optional)
+
+    for _ in range(2):
+        y = model(im)  # dry runs
+    shape = tuple(y[0].shape)  # model output shape
+    LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
+
+    # Exports
+    f = [''] * 10  # exported filenames
+    warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning)  # suppress TracerWarning
+    if jit:
+        f[0] = export_torchscript(model, im, file, optimize)
+    if engine:  # TensorRT required before ONNX
+        f[1] = export_engine(model, im, file, train, half, simplify, workspace, verbose)
+    if onnx or xml:  # OpenVINO requires ONNX
+        f[2] = export_onnx(model, im, file, opset, train, dynamic, simplify)
+    if xml:  # OpenVINO
+        f[3] = export_openvino(model, im, file)
+    if coreml:
+        _, f[4] = export_coreml(model, im, file)
+
+    # TensorFlow Exports
+    if any((saved_model, pb, tflite, edgetpu, tfjs)):
+        if int8 or edgetpu:  # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707
+            check_requirements(('flatbuffers==1.12',))  # required before `import tensorflow`
+        assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
+        model, f[5] = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs,
+                                         agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class,
+                                         topk_all=topk_all, conf_thres=conf_thres, iou_thres=iou_thres)  # keras model
+        if pb or tfjs:  # pb prerequisite to tfjs
+            f[6] = export_pb(model, im, file)
+        if tflite or edgetpu:
+            f[7] = export_tflite(model, im, file, int8=int8 or edgetpu, data=data, ncalib=100)
+        if edgetpu:
+            f[8] = export_edgetpu(model, im, file)
+        if tfjs:
+            f[9] = export_tfjs(model, im, file)
+
+    # Finish
+    f = [str(x) for x in f if x]  # filter out '' and None
+    if any(f):
+        LOGGER.info(f'\nExport complete ({time.time() - t:.2f}s)'
+                    f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
+                    f"\nDetect:          python detect.py --weights {f[-1]}"
+                    f"\nPyTorch Hub:     model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}')"
+                    f"\nValidate:        python val.py --weights {f[-1]}"
+                    f"\nVisualize:       https://netron.app")
+    return f  # return list of exported files/dirs
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
+    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
+    parser.add_argument('--train', action='store_true', help='model.train() mode')
+    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
+    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
+    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
+    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
+    parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
+    parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
+    parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
+    parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
+    parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
+    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
+    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
+    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
+    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
+    parser.add_argument('--include', nargs='+',
+                        default=['torchscript', 'onnx'],
+                        help='torchscript, onnx, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs')
+    opt = parser.parse_args()
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
+        run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/src/yolov5/hubconf.py b/src/yolov5/hubconf.py
new file mode 100644
index 00000000..39fa614b
--- /dev/null
+++ b/src/yolov5/hubconf.py
@@ -0,0 +1,143 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/
+
+Usage:
+    import torch
+    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
+    model = torch.hub.load('ultralytics/yolov5:master', 'custom', 'path/to/yolov5s.onnx')  # file from branch
+"""
+
+import torch
+
+
+def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    """Creates or loads a YOLOv5 model
+
+    Arguments:
+        name (str): model name 'yolov5s' or path 'path/to/best.pt'
+        pretrained (bool): load pretrained weights into the model
+        channels (int): number of input channels
+        classes (int): number of model classes
+        autoshape (bool): apply YOLOv5 .autoshape() wrapper to model
+        verbose (bool): print all information to screen
+        device (str, torch.device, None): device to use for model parameters
+
+    Returns:
+        YOLOv5 model
+    """
+    from pathlib import Path
+
+    from models.common import AutoShape, DetectMultiBackend
+    from models.yolo import Model
+    from utils.downloads import attempt_download
+    from utils.general import LOGGER, check_requirements, intersect_dicts, logging
+    from utils.torch_utils import select_device
+
+    if not verbose:
+        LOGGER.setLevel(logging.WARNING)
+    check_requirements(exclude=('tensorboard', 'thop', 'opencv-python'))
+    name = Path(name)
+    path = name.with_suffix('.pt') if name.suffix == '' else name  # checkpoint path
+    try:
+        device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device)
+
+        if pretrained and channels == 3 and classes == 80:
+            model = DetectMultiBackend(path, device=device)  # download/load FP32 model
+            # model = models.experimental.attempt_load(path, map_location=device)  # download/load FP32 model
+        else:
+            cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0]  # model.yaml path
+            model = Model(cfg, channels, classes)  # create model
+            if pretrained:
+                ckpt = torch.load(attempt_download(path), map_location=device)  # load
+                csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
+                csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors'])  # intersect
+                model.load_state_dict(csd, strict=False)  # load
+                if len(ckpt['model'].names) == classes:
+                    model.names = ckpt['model'].names  # set class names attribute
+        if autoshape:
+            model = AutoShape(model)  # for file/URI/PIL/cv2/np inputs and NMS
+        return model.to(device)
+
+    except Exception as e:
+        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
+        s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
+        raise Exception(s) from e
+
+
+def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None):
+    # YOLOv5 custom or local model
+    return _create(path, autoshape=autoshape, verbose=verbose, device=device)
+
+
+def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-nano model https://github.com/ultralytics/yolov5
+    return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-small model https://github.com/ultralytics/yolov5
+    return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-medium model https://github.com/ultralytics/yolov5
+    return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-large model https://github.com/ultralytics/yolov5
+    return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-xlarge model https://github.com/ultralytics/yolov5
+    return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device)
+
+
+def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
+    # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5
+    return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device)
+
+
+if __name__ == '__main__':
+    model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)  # pretrained
+    # model = custom(path='path/to/model.pt')  # custom
+
+    # Verify inference
+    from pathlib import Path
+
+    import cv2
+    import numpy as np
+    from PIL import Image
+
+    imgs = ['data/images/zidane.jpg',  # filename
+            Path('data/images/zidane.jpg'),  # Path
+            'https://ultralytics.com/images/zidane.jpg',  # URI
+            cv2.imread('data/images/bus.jpg')[:, :, ::-1],  # OpenCV
+            Image.open('data/images/bus.jpg'),  # PIL
+            np.zeros((320, 640, 3))]  # numpy
+
+    results = model(imgs, size=320)  # batched inference
+    results.print()
+    results.save()
diff --git a/src/yolov5/models/__init__.py b/src/yolov5/models/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/src/yolov5/models/common.py b/src/yolov5/models/common.py
new file mode 100644
index 00000000..0dae0244
--- /dev/null
+++ b/src/yolov5/models/common.py
@@ -0,0 +1,677 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Common modules
+"""
+
+import json
+import math
+import platform
+import warnings
+from collections import OrderedDict, namedtuple
+from copy import copy
+from pathlib import Path
+
+import cv2
+import numpy as np
+import pandas as pd
+import requests
+import torch
+import torch.nn as nn
+import yaml
+from PIL import Image
+from torch.cuda import amp
+
+from utils.datasets import exif_transpose, letterbox
+from utils.general import (LOGGER, check_requirements, check_suffix, check_version, colorstr, increment_path,
+                           make_divisible, non_max_suppression, scale_coords, xywh2xyxy, xyxy2xywh)
+from utils.plots import Annotator, colors, save_one_box
+from utils.torch_utils import copy_attr, time_sync
+
+
+def autopad(k, p=None):  # kernel, padding
+    # Pad to 'same'
+    if p is None:
+        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
+    return p
+
+
+class Conv(nn.Module):
+    # Standard convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
+
+    def forward(self, x):
+        return self.act(self.bn(self.conv(x)))
+
+    def forward_fuse(self, x):
+        return self.act(self.conv(x))
+
+
+class DWConv(Conv):
+    # Depth-wise convolution class
+    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
+
+
+class TransformerLayer(nn.Module):
+    # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
+    def __init__(self, c, num_heads):
+        super().__init__()
+        self.q = nn.Linear(c, c, bias=False)
+        self.k = nn.Linear(c, c, bias=False)
+        self.v = nn.Linear(c, c, bias=False)
+        self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
+        self.fc1 = nn.Linear(c, c, bias=False)
+        self.fc2 = nn.Linear(c, c, bias=False)
+
+    def forward(self, x):
+        x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
+        x = self.fc2(self.fc1(x)) + x
+        return x
+
+
+class TransformerBlock(nn.Module):
+    # Vision Transformer https://arxiv.org/abs/2010.11929
+    def __init__(self, c1, c2, num_heads, num_layers):
+        super().__init__()
+        self.conv = None
+        if c1 != c2:
+            self.conv = Conv(c1, c2)
+        self.linear = nn.Linear(c2, c2)  # learnable position embedding
+        self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
+        self.c2 = c2
+
+    def forward(self, x):
+        if self.conv is not None:
+            x = self.conv(x)
+        b, _, w, h = x.shape
+        p = x.flatten(2).permute(2, 0, 1)
+        return self.tr(p + self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)
+
+
+class Bottleneck(nn.Module):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_, c2, 3, 1, g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class BottleneckCSP(nn.Module):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
+        self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
+        self.cv4 = Conv(2 * c_, c2, 1, 1)
+        self.bn = nn.BatchNorm2d(2 * c_)  # applied to cat(cv2, cv3)
+        self.act = nn.SiLU()
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+
+    def forward(self, x):
+        y1 = self.cv3(self.m(self.cv1(x)))
+        y2 = self.cv2(x)
+        return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
+
+
+class C3(nn.Module):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c1, c_, 1, 1)
+        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
+        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
+        # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
+
+    def forward(self, x):
+        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
+
+
+class C3TR(C3):
+    # C3 module with TransformerBlock()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = TransformerBlock(c_, c_, 4, n)
+
+
+class C3SPP(C3):
+    # C3 module with SPP()
+    def __init__(self, c1, c2, k=(5, 9, 13), n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)
+        self.m = SPP(c_, c_, k)
+
+
+class C3Ghost(C3):
+    # C3 module with GhostBottleneck()
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
+        super().__init__(c1, c2, n, shortcut, g, e)
+        c_ = int(c2 * e)  # hidden channels
+        self.m = nn.Sequential(*(GhostBottleneck(c_, c_) for _ in range(n)))
+
+
+class SPP(nn.Module):
+    # Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
+    def __init__(self, c1, c2, k=(5, 9, 13)):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
+        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
+
+    def forward(self, x):
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
+            return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
+
+
+class SPPF(nn.Module):
+    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
+    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, 1, 1)
+        self.cv2 = Conv(c_ * 4, c2, 1, 1)
+        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
+
+    def forward(self, x):
+        x = self.cv1(x)
+        with warnings.catch_warnings():
+            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
+            y1 = self.m(x)
+            y2 = self.m(y1)
+            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
+
+
+class Focus(nn.Module):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
+        # self.contract = Contract(gain=2)
+
+    def forward(self, x):  # x(b,c,w,h) -> y(b,4c,w/2,h/2)
+        return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
+        # return self.conv(self.contract(x))
+
+
+class GhostConv(nn.Module):
+    # Ghost Convolution https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
+        super().__init__()
+        c_ = c2 // 2  # hidden channels
+        self.cv1 = Conv(c1, c_, k, s, None, g, act)
+        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
+
+    def forward(self, x):
+        y = self.cv1(x)
+        return torch.cat([y, self.cv2(y)], 1)
+
+
+class GhostBottleneck(nn.Module):
+    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
+    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
+        super().__init__()
+        c_ = c2 // 2
+        self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pw
+                                  DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
+                                  GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
+        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
+                                      Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
+
+    def forward(self, x):
+        return self.conv(x) + self.shortcut(x)
+
+
+class Contract(nn.Module):
+    # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
+    def __init__(self, gain=2):
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        b, c, h, w = x.size()  # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, c, h // s, s, w // s, s)  # x(1,64,40,2,40,2)
+        x = x.permute(0, 3, 5, 1, 2, 4).contiguous()  # x(1,2,2,64,40,40)
+        return x.view(b, c * s * s, h // s, w // s)  # x(1,256,40,40)
+
+
+class Expand(nn.Module):
+    # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
+    def __init__(self, gain=2):
+        super().__init__()
+        self.gain = gain
+
+    def forward(self, x):
+        b, c, h, w = x.size()  # assert C / s ** 2 == 0, 'Indivisible gain'
+        s = self.gain
+        x = x.view(b, s, s, c // s ** 2, h, w)  # x(1,2,2,16,80,80)
+        x = x.permute(0, 3, 4, 1, 5, 2).contiguous()  # x(1,16,80,2,80,2)
+        return x.view(b, c // s ** 2, h * s, w * s)  # x(1,16,160,160)
+
+
+class Concat(nn.Module):
+    # Concatenate a list of tensors along dimension
+    def __init__(self, dimension=1):
+        super().__init__()
+        self.d = dimension
+
+    def forward(self, x):
+        return torch.cat(x, self.d)
+
+
+class DetectMultiBackend(nn.Module):
+    # YOLOv5 MultiBackend class for python inference on various backends
+    def __init__(self, weights='yolov5s.pt', device=None, dnn=False, data=None):
+        # Usage:
+        #   PyTorch:              weights = *.pt
+        #   TorchScript:                    *.torchscript
+        #   ONNX Runtime:                   *.onnx
+        #   ONNX OpenCV DNN:                *.onnx with --dnn
+        #   OpenVINO:                       *.xml
+        #   CoreML:                         *.mlmodel
+        #   TensorRT:                       *.engine
+        #   TensorFlow SavedModel:          *_saved_model
+        #   TensorFlow GraphDef:            *.pb
+        #   TensorFlow Lite:                *.tflite
+        #   TensorFlow Edge TPU:            *_edgetpu.tflite
+        from models.experimental import attempt_download, attempt_load  # scoped to avoid circular import
+
+        super().__init__()
+        w = str(weights[0] if isinstance(weights, list) else weights)
+        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs = self.model_type(w)  # get backend
+        stride, names = 64, [f'class{i}' for i in range(1000)]  # assign defaults
+        w = attempt_download(w)  # download if not local
+        if data:  # data.yaml path (optional)
+            with open(data, errors='ignore') as f:
+                names = yaml.safe_load(f)['names']  # class names
+
+        if pt:  # PyTorch
+            model = attempt_load(weights if isinstance(weights, list) else w, map_location=device)
+            stride = max(int(model.stride.max()), 32)  # model stride
+            names = model.module.names if hasattr(model, 'module') else model.names  # get class names
+            self.model = model  # explicitly assign for to(), cpu(), cuda(), half()
+        elif jit:  # TorchScript
+            LOGGER.info(f'Loading {w} for TorchScript inference...')
+            extra_files = {'config.txt': ''}  # model metadata
+            model = torch.jit.load(w, _extra_files=extra_files)
+            if extra_files['config.txt']:
+                d = json.loads(extra_files['config.txt'])  # extra_files dict
+                stride, names = int(d['stride']), d['names']
+        elif dnn:  # ONNX OpenCV DNN
+            LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
+            check_requirements(('opencv-python>=4.5.4',))
+            net = cv2.dnn.readNetFromONNX(w)
+        elif onnx:  # ONNX Runtime
+            LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
+            cuda = torch.cuda.is_available()
+            check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
+            import onnxruntime
+            providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
+            session = onnxruntime.InferenceSession(w, providers=providers)
+        elif xml:  # OpenVINO
+            LOGGER.info(f'Loading {w} for OpenVINO inference...')
+            check_requirements(('openvino-dev',))  # requires openvino-dev: https://pypi.org/project/openvino-dev/
+            import openvino.inference_engine as ie
+            core = ie.IECore()
+            if not Path(w).is_file():  # if not *.xml
+                w = next(Path(w).glob('*.xml'))  # get *.xml file from *_openvino_model dir
+            network = core.read_network(model=w, weights=Path(w).with_suffix('.bin'))  # *.xml, *.bin paths
+            executable_network = core.load_network(network, device_name='CPU', num_requests=1)
+        elif engine:  # TensorRT
+            LOGGER.info(f'Loading {w} for TensorRT inference...')
+            import tensorrt as trt  # https://developer.nvidia.com/nvidia-tensorrt-download
+            check_version(trt.__version__, '7.0.0', hard=True)  # require tensorrt>=7.0.0
+            Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
+            logger = trt.Logger(trt.Logger.INFO)
+            with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
+                model = runtime.deserialize_cuda_engine(f.read())
+            bindings = OrderedDict()
+            for index in range(model.num_bindings):
+                name = model.get_binding_name(index)
+                dtype = trt.nptype(model.get_binding_dtype(index))
+                shape = tuple(model.get_binding_shape(index))
+                data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
+                bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
+            binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
+            context = model.create_execution_context()
+            batch_size = bindings['images'].shape[0]
+        elif coreml:  # CoreML
+            LOGGER.info(f'Loading {w} for CoreML inference...')
+            import coremltools as ct
+            model = ct.models.MLModel(w)
+        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
+            if saved_model:  # SavedModel
+                LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
+                import tensorflow as tf
+                keras = False  # assume TF1 saved_model
+                model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
+            elif pb:  # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
+                LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
+                import tensorflow as tf
+
+                def wrap_frozen_graph(gd, inputs, outputs):
+                    x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), [])  # wrapped
+                    ge = x.graph.as_graph_element
+                    return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
+
+                gd = tf.Graph().as_graph_def()  # graph_def
+                gd.ParseFromString(open(w, 'rb').read())
+                frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs="Identity:0")
+            elif tflite or edgetpu:  # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
+                try:  # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
+                    from tflite_runtime.interpreter import Interpreter, load_delegate
+                except ImportError:
+                    import tensorflow as tf
+                    Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
+                if edgetpu:  # Edge TPU https://coral.ai/software/#edgetpu-runtime
+                    LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
+                    delegate = {'Linux': 'libedgetpu.so.1',
+                                'Darwin': 'libedgetpu.1.dylib',
+                                'Windows': 'edgetpu.dll'}[platform.system()]
+                    interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
+                else:  # Lite
+                    LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
+                    interpreter = Interpreter(model_path=w)  # load TFLite model
+                interpreter.allocate_tensors()  # allocate
+                input_details = interpreter.get_input_details()  # inputs
+                output_details = interpreter.get_output_details()  # outputs
+            elif tfjs:
+                raise Exception('ERROR: YOLOv5 TF.js inference is not supported')
+        self.__dict__.update(locals())  # assign all variables to self
+
+    def forward(self, im, augment=False, visualize=False, val=False):
+        # YOLOv5 MultiBackend inference
+        b, ch, h, w = im.shape  # batch, channel, height, width
+        if self.pt or self.jit:  # PyTorch
+            y = self.model(im) if self.jit else self.model(im, augment=augment, visualize=visualize)
+            return y if val else y[0]
+        elif self.dnn:  # ONNX OpenCV DNN
+            im = im.cpu().numpy()  # torch to numpy
+            self.net.setInput(im)
+            y = self.net.forward()
+        elif self.onnx:  # ONNX Runtime
+            im = im.cpu().numpy()  # torch to numpy
+            y = self.session.run([self.session.get_outputs()[0].name], {self.session.get_inputs()[0].name: im})[0]
+        elif self.xml:  # OpenVINO
+            im = im.cpu().numpy()  # FP32
+            desc = self.ie.TensorDesc(precision='FP32', dims=im.shape, layout='NCHW')  # Tensor Description
+            request = self.executable_network.requests[0]  # inference request
+            request.set_blob(blob_name='images', blob=self.ie.Blob(desc, im))  # name=next(iter(request.input_blobs))
+            request.infer()
+            y = request.output_blobs['output'].buffer  # name=next(iter(request.output_blobs))
+        elif self.engine:  # TensorRT
+            assert im.shape == self.bindings['images'].shape, (im.shape, self.bindings['images'].shape)
+            self.binding_addrs['images'] = int(im.data_ptr())
+            self.context.execute_v2(list(self.binding_addrs.values()))
+            y = self.bindings['output'].data
+        elif self.coreml:  # CoreML
+            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
+            im = Image.fromarray((im[0] * 255).astype('uint8'))
+            # im = im.resize((192, 320), Image.ANTIALIAS)
+            y = self.model.predict({'image': im})  # coordinates are xywh normalized
+            if 'confidence' in y:
+                box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
+                conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
+                y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
+            else:
+                k = 'var_' + str(sorted(int(k.replace('var_', '')) for k in y)[-1])  # output key
+                y = y[k]  # output
+        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
+            im = im.permute(0, 2, 3, 1).cpu().numpy()  # torch BCHW to numpy BHWC shape(1,320,192,3)
+            if self.saved_model:  # SavedModel
+                y = (self.model(im, training=False) if self.keras else self.model(im)[0]).numpy()
+            elif self.pb:  # GraphDef
+                y = self.frozen_func(x=self.tf.constant(im)).numpy()
+            else:  # Lite or Edge TPU
+                input, output = self.input_details[0], self.output_details[0]
+                int8 = input['dtype'] == np.uint8  # is TFLite quantized uint8 model
+                if int8:
+                    scale, zero_point = input['quantization']
+                    im = (im / scale + zero_point).astype(np.uint8)  # de-scale
+                self.interpreter.set_tensor(input['index'], im)
+                self.interpreter.invoke()
+                y = self.interpreter.get_tensor(output['index'])
+                if int8:
+                    scale, zero_point = output['quantization']
+                    y = (y.astype(np.float32) - zero_point) * scale  # re-scale
+            y[..., :4] *= [w, h, w, h]  # xywh normalized to pixels
+
+        y = torch.tensor(y) if isinstance(y, np.ndarray) else y
+        return (y, []) if val else y
+
+    def warmup(self, imgsz=(1, 3, 640, 640), half=False):
+        # Warmup model by running inference once
+        if self.pt or self.jit or self.onnx or self.engine:  # warmup types
+            if isinstance(self.device, torch.device) and self.device.type != 'cpu':  # only warmup GPU models
+                im = torch.zeros(*imgsz).to(self.device).type(torch.half if half else torch.float)  # input image
+                self.forward(im)  # warmup
+
+    @staticmethod
+    def model_type(p='path/to/model.pt'):
+        # Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
+        from export import export_formats
+        suffixes = list(export_formats().Suffix) + ['.xml']  # export suffixes
+        check_suffix(p, suffixes)  # checks
+        p = Path(p).name  # eliminate trailing separators
+        pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, xml2 = (s in p for s in suffixes)
+        xml |= xml2  # *_openvino_model or *.xml
+        tflite &= not edgetpu  # *.tflite
+        return pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs
+
+
+class AutoShape(nn.Module):
+    # YOLOv5 input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
+    conf = 0.25  # NMS confidence threshold
+    iou = 0.45  # NMS IoU threshold
+    agnostic = False  # NMS class-agnostic
+    multi_label = False  # NMS multiple labels per box
+    classes = None  # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
+    max_det = 1000  # maximum number of detections per image
+    amp = False  # Automatic Mixed Precision (AMP) inference
+
+    def __init__(self, model):
+        super().__init__()
+        LOGGER.info('Adding AutoShape... ')
+        copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=())  # copy attributes
+        self.dmb = isinstance(model, DetectMultiBackend)  # DetectMultiBackend() instance
+        self.pt = not self.dmb or model.pt  # PyTorch model
+        self.model = model.eval()
+
+    def _apply(self, fn):
+        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+        self = super()._apply(fn)
+        if self.pt:
+            m = self.model.model.model[-1] if self.dmb else self.model.model[-1]  # Detect()
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+    @torch.no_grad()
+    def forward(self, imgs, size=640, augment=False, profile=False):
+        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
+        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
+        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
+        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
+        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
+        #   numpy:           = np.zeros((640,1280,3))  # HWC
+        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
+        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images
+
+        t = [time_sync()]
+        p = next(self.model.parameters()) if self.pt else torch.zeros(1)  # for device and type
+        autocast = self.amp and (p.device.type != 'cpu')  # Automatic Mixed Precision (AMP) inference
+        if isinstance(imgs, torch.Tensor):  # torch
+            with amp.autocast(enabled=autocast):
+                return self.model(imgs.to(p.device).type_as(p), augment, profile)  # inference
+
+        # Pre-process
+        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs])  # number of images, list of images
+        shape0, shape1, files = [], [], []  # image and inference shapes, filenames
+        for i, im in enumerate(imgs):
+            f = f'image{i}'  # filename
+            if isinstance(im, (str, Path)):  # filename or uri
+                im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
+                im = np.asarray(exif_transpose(im))
+            elif isinstance(im, Image.Image):  # PIL Image
+                im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
+            files.append(Path(f).with_suffix('.jpg').name)
+            if im.shape[0] < 5:  # image in CHW
+                im = im.transpose((1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
+            im = im[..., :3] if im.ndim == 3 else np.tile(im[..., None], 3)  # enforce 3ch input
+            s = im.shape[:2]  # HWC
+            shape0.append(s)  # image shape
+            g = (size / max(s))  # gain
+            shape1.append([y * g for y in s])
+            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(im)  # update
+        shape1 = [make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)]  # inference shape
+        x = [letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0] for im in imgs]  # pad
+        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
+        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
+        x = torch.from_numpy(x).to(p.device).type_as(p) / 255  # uint8 to fp16/32
+        t.append(time_sync())
+
+        with amp.autocast(enabled=autocast):
+            # Inference
+            y = self.model(x, augment, profile)  # forward
+            t.append(time_sync())
+
+            # Post-process
+            y = non_max_suppression(y if self.dmb else y[0], self.conf, iou_thres=self.iou, classes=self.classes,
+                                    agnostic=self.agnostic, multi_label=self.multi_label, max_det=self.max_det)  # NMS
+            for i in range(n):
+                scale_coords(shape1, y[i][:, :4], shape0[i])
+
+            t.append(time_sync())
+            return Detections(imgs, y, files, t, self.names, x.shape)
+
+
+class Detections:
+    # YOLOv5 detections class for inference results
+    def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None):
+        super().__init__()
+        d = pred[0].device  # device
+        gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs]  # normalizations
+        self.imgs = imgs  # list of images as numpy arrays
+        self.pred = pred  # list of tensors pred[0] = (xyxy, conf, cls)
+        self.names = names  # class names
+        self.files = files  # image filenames
+        self.times = times  # profiling times
+        self.xyxy = pred  # xyxy pixels
+        self.xywh = [xyxy2xywh(x) for x in pred]  # xywh pixels
+        self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)]  # xyxy normalized
+        self.xywhn = [x / g for x, g in zip(self.xywh, gn)]  # xywh normalized
+        self.n = len(self.pred)  # number of images (batch size)
+        self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3))  # timestamps (ms)
+        self.s = shape  # inference BCHW shape
+
+    def display(self, pprint=False, show=False, save=False, crop=False, render=False, save_dir=Path('')):
+        crops = []
+        for i, (im, pred) in enumerate(zip(self.imgs, self.pred)):
+            s = f'image {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} '  # string
+            if pred.shape[0]:
+                for c in pred[:, -1].unique():
+                    n = (pred[:, -1] == c).sum()  # detections per class
+                    s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "  # add to string
+                if show or save or render or crop:
+                    annotator = Annotator(im, example=str(self.names))
+                    for *box, conf, cls in reversed(pred):  # xyxy, confidence, class
+                        label = f'{self.names[int(cls)]} {conf:.2f}'
+                        if crop:
+                            file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
+                            crops.append({'box': box, 'conf': conf, 'cls': cls, 'label': label,
+                                          'im': save_one_box(box, im, file=file, save=save)})
+                        else:  # all others
+                            annotator.box_label(box, label, color=colors(cls))
+                    im = annotator.im
+            else:
+                s += '(no detections)'
+
+            im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im  # from np
+            if pprint:
+                LOGGER.info(s.rstrip(', '))
+            if show:
+                im.show(self.files[i])  # show
+            if save:
+                f = self.files[i]
+                im.save(save_dir / f)  # save
+                if i == self.n - 1:
+                    LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
+            if render:
+                self.imgs[i] = np.asarray(im)
+        if crop:
+            if save:
+                LOGGER.info(f'Saved results to {save_dir}\n')
+            return crops
+
+    def print(self):
+        self.display(pprint=True)  # print results
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' %
+                    self.t)
+
+    def show(self):
+        self.display(show=True)  # show results
+
+    def save(self, save_dir='runs/detect/exp'):
+        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True)  # increment save_dir
+        self.display(save=True, save_dir=save_dir)  # save results
+
+    def crop(self, save=True, save_dir='runs/detect/exp'):
+        save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) if save else None
+        return self.display(crop=True, save=save, save_dir=save_dir)  # crop results
+
+    def render(self):
+        self.display(render=True)  # render results
+        return self.imgs
+
+    def pandas(self):
+        # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
+        new = copy(self)  # return copy
+        ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name'  # xyxy columns
+        cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name'  # xywh columns
+        for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
+            a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)]  # update
+            setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
+        return new
+
+    def tolist(self):
+        # return a list of Detections objects, i.e. 'for result in results.tolist():'
+        r = range(self.n)  # iterable
+        x = [Detections([self.imgs[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
+        # for d in x:
+        #    for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
+        #        setattr(d, k, getattr(d, k)[0])  # pop out of list
+        return x
+
+    def __len__(self):
+        return self.n
+
+
+class Classify(nn.Module):
+    # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1):  # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.aap = nn.AdaptiveAvgPool2d(1)  # to x(b,c1,1,1)
+        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g)  # to x(b,c2,1,1)
+        self.flat = nn.Flatten()
+
+    def forward(self, x):
+        z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1)  # cat if list
+        return self.flat(self.conv(z))  # flatten to x(b,c2)
diff --git a/src/yolov5/models/experimental.py b/src/yolov5/models/experimental.py
new file mode 100644
index 00000000..463e5514
--- /dev/null
+++ b/src/yolov5/models/experimental.py
@@ -0,0 +1,120 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Experimental modules
+"""
+import math
+
+import numpy as np
+import torch
+import torch.nn as nn
+
+from models.common import Conv
+from utils.downloads import attempt_download
+
+
+class CrossConv(nn.Module):
+    # Cross Convolution Downsample
+    def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False):
+        # ch_in, ch_out, kernel, stride, groups, expansion, shortcut
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = Conv(c1, c_, (1, k), (1, s))
+        self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g)
+        self.add = shortcut and c1 == c2
+
+    def forward(self, x):
+        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
+
+
+class Sum(nn.Module):
+    # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
+    def __init__(self, n, weight=False):  # n: number of inputs
+        super().__init__()
+        self.weight = weight  # apply weights boolean
+        self.iter = range(n - 1)  # iter object
+        if weight:
+            self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True)  # layer weights
+
+    def forward(self, x):
+        y = x[0]  # no weight
+        if self.weight:
+            w = torch.sigmoid(self.w) * 2
+            for i in self.iter:
+                y = y + x[i + 1] * w[i]
+        else:
+            for i in self.iter:
+                y = y + x[i + 1]
+        return y
+
+
+class MixConv2d(nn.Module):
+    # Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
+    def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True):  # ch_in, ch_out, kernel, stride, ch_strategy
+        super().__init__()
+        n = len(k)  # number of convolutions
+        if equal_ch:  # equal c_ per group
+            i = torch.linspace(0, n - 1E-6, c2).floor()  # c2 indices
+            c_ = [(i == g).sum() for g in range(n)]  # intermediate channels
+        else:  # equal weight.numel() per group
+            b = [c2] + [0] * n
+            a = np.eye(n + 1, n, k=-1)
+            a -= np.roll(a, 1, axis=1)
+            a *= np.array(k) ** 2
+            a[0] = 1
+            c_ = np.linalg.lstsq(a, b, rcond=None)[0].round()  # solve for equal weight indices, ax = b
+
+        self.m = nn.ModuleList(
+            [nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
+        self.bn = nn.BatchNorm2d(c2)
+        self.act = nn.SiLU()
+
+    def forward(self, x):
+        return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
+
+
+class Ensemble(nn.ModuleList):
+    # Ensemble of models
+    def __init__(self):
+        super().__init__()
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        y = []
+        for module in self:
+            y.append(module(x, augment, profile, visualize)[0])
+        # y = torch.stack(y).max(0)[0]  # max ensemble
+        # y = torch.stack(y).mean(0)  # mean ensemble
+        y = torch.cat(y, 1)  # nms ensemble
+        return y, None  # inference, train output
+
+
+def attempt_load(weights, map_location=None, inplace=True, fuse=True):
+    from models.yolo import Detect, Model
+
+    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
+    model = Ensemble()
+    for w in weights if isinstance(weights, list) else [weights]:
+        ckpt = torch.load(attempt_download(w), map_location=map_location)  # load
+        if fuse:
+            model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval())  # FP32 model
+        else:
+            model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().eval())  # without layer fuse
+
+    # Compatibility updates
+    for m in model.modules():
+        if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
+            m.inplace = inplace  # pytorch 1.7.0 compatibility
+            if type(m) is Detect:
+                if not isinstance(m.anchor_grid, list):  # new Detect Layer compatibility
+                    delattr(m, 'anchor_grid')
+                    setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
+        elif type(m) is Conv:
+            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility
+
+    if len(model) == 1:
+        return model[-1]  # return model
+    else:
+        print(f'Ensemble created with {weights}\n')
+        for k in ['names']:
+            setattr(model, k, getattr(model[-1], k))
+        model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride  # max stride
+        return model  # return ensemble
diff --git a/src/yolov5/models/hub/anchors.yaml b/src/yolov5/models/hub/anchors.yaml
new file mode 100644
index 00000000..e4d7beb0
--- /dev/null
+++ b/src/yolov5/models/hub/anchors.yaml
@@ -0,0 +1,59 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+# Default anchors for COCO data
+
+
+# P5 -------------------------------------------------------------------------------------------------------------------
+# P5-640:
+anchors_p5_640:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+
+# P6 -------------------------------------------------------------------------------------------------------------------
+# P6-640:  thr=0.25: 0.9964 BPR, 5.54 anchors past thr, n=12, img_size=640, metric_all=0.281/0.716-mean/best, past_thr=0.469-mean: 9,11,  21,19,  17,41,  43,32,  39,70,  86,64,  65,131,  134,130,  120,265,  282,180,  247,354,  512,387
+anchors_p6_640:
+  - [9,11,  21,19,  17,41]  # P3/8
+  - [43,32,  39,70,  86,64]  # P4/16
+  - [65,131,  134,130,  120,265]  # P5/32
+  - [282,180,  247,354,  512,387]  # P6/64
+
+# P6-1280:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1280, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 19,27,  44,40,  38,94,  96,68,  86,152,  180,137,  140,301,  303,264,  238,542,  436,615,  739,380,  925,792
+anchors_p6_1280:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# P6-1920:  thr=0.25: 0.9950 BPR, 5.55 anchors past thr, n=12, img_size=1920, metric_all=0.281/0.714-mean/best, past_thr=0.468-mean: 28,41,  67,59,  57,141,  144,103,  129,227,  270,205,  209,452,  455,396,  358,812,  653,922,  1109,570,  1387,1187
+anchors_p6_1920:
+  - [28,41,  67,59,  57,141]  # P3/8
+  - [144,103,  129,227,  270,205]  # P4/16
+  - [209,452,  455,396,  358,812]  # P5/32
+  - [653,922,  1109,570,  1387,1187]  # P6/64
+
+
+# P7 -------------------------------------------------------------------------------------------------------------------
+# P7-640:  thr=0.25: 0.9962 BPR, 6.76 anchors past thr, n=15, img_size=640, metric_all=0.275/0.733-mean/best, past_thr=0.466-mean: 11,11,  13,30,  29,20,  30,46,  61,38,  39,92,  78,80,  146,66,  79,163,  149,150,  321,143,  157,303,  257,402,  359,290,  524,372
+anchors_p7_640:
+  - [11,11,  13,30,  29,20]  # P3/8
+  - [30,46,  61,38,  39,92]  # P4/16
+  - [78,80,  146,66,  79,163]  # P5/32
+  - [149,150,  321,143,  157,303]  # P6/64
+  - [257,402,  359,290,  524,372]  # P7/128
+
+# P7-1280:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1280, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 19,22,  54,36,  32,77,  70,83,  138,71,  75,173,  165,159,  148,334,  375,151,  334,317,  251,626,  499,474,  750,326,  534,814,  1079,818
+anchors_p7_1280:
+  - [19,22,  54,36,  32,77]  # P3/8
+  - [70,83,  138,71,  75,173]  # P4/16
+  - [165,159,  148,334,  375,151]  # P5/32
+  - [334,317,  251,626,  499,474]  # P6/64
+  - [750,326,  534,814,  1079,818]  # P7/128
+
+# P7-1920:  thr=0.25: 0.9968 BPR, 6.71 anchors past thr, n=15, img_size=1920, metric_all=0.273/0.732-mean/best, past_thr=0.463-mean: 29,34,  81,55,  47,115,  105,124,  207,107,  113,259,  247,238,  222,500,  563,227,  501,476,  376,939,  749,711,  1126,489,  801,1222,  1618,1227
+anchors_p7_1920:
+  - [29,34,  81,55,  47,115]  # P3/8
+  - [105,124,  207,107,  113,259]  # P4/16
+  - [247,238,  222,500,  563,227]  # P5/32
+  - [501,476,  376,939,  749,711]  # P6/64
+  - [1126,489,  801,1222,  1618,1227]  # P7/128
diff --git a/src/yolov5/models/hub/yolov3-spp.yaml b/src/yolov5/models/hub/yolov3-spp.yaml
new file mode 100644
index 00000000..c6698215
--- /dev/null
+++ b/src/yolov5/models/hub/yolov3-spp.yaml
@@ -0,0 +1,51 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [32, 3, 1]],  # 0
+   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
+   [-1, 1, Bottleneck, [64]],
+   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
+   [-1, 2, Bottleneck, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
+   [-1, 8, Bottleneck, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
+   [-1, 8, Bottleneck, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
+   [-1, 4, Bottleneck, [1024]],  # 10
+  ]
+
+# YOLOv3-SPP head
+head:
+  [[-1, 1, Bottleneck, [1024, False]],
+   [-1, 1, SPP, [512, [5, 9, 13]]],
+   [-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Bottleneck, [256, False]],
+   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
+
+   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov3-tiny.yaml b/src/yolov5/models/hub/yolov3-tiny.yaml
new file mode 100644
index 00000000..b28b4431
--- /dev/null
+++ b/src/yolov5/models/hub/yolov3-tiny.yaml
@@ -0,0 +1,41 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,14, 23,27, 37,58]  # P4/16
+  - [81,82, 135,169, 344,319]  # P5/32
+
+# YOLOv3-tiny backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [16, 3, 1]],  # 0
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 1-P1/2
+   [-1, 1, Conv, [32, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 3-P2/4
+   [-1, 1, Conv, [64, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 5-P3/8
+   [-1, 1, Conv, [128, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 7-P4/16
+   [-1, 1, Conv, [256, 3, 1]],
+   [-1, 1, nn.MaxPool2d, [2, 2, 0]],  # 9-P5/32
+   [-1, 1, Conv, [512, 3, 1]],
+   [-1, 1, nn.ZeroPad2d, [[0, 1, 0, 1]]],  # 11
+   [-1, 1, nn.MaxPool2d, [2, 1, 0]],  # 12
+  ]
+
+# YOLOv3-tiny head
+head:
+  [[-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Conv, [256, 3, 1]],  # 19 (P4/16-medium)
+
+   [[19, 15], 1, Detect, [nc, anchors]],  # Detect(P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov3.yaml b/src/yolov5/models/hub/yolov3.yaml
new file mode 100644
index 00000000..d1ef9129
--- /dev/null
+++ b/src/yolov5/models/hub/yolov3.yaml
@@ -0,0 +1,51 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# darknet53 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [32, 3, 1]],  # 0
+   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2
+   [-1, 1, Bottleneck, [64]],
+   [-1, 1, Conv, [128, 3, 2]],  # 3-P2/4
+   [-1, 2, Bottleneck, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 5-P3/8
+   [-1, 8, Bottleneck, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 7-P4/16
+   [-1, 8, Bottleneck, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P5/32
+   [-1, 4, Bottleneck, [1024]],  # 10
+  ]
+
+# YOLOv3 head
+head:
+  [[-1, 1, Bottleneck, [1024, False]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, Conv, [1024, 3, 1]],  # 15 (P5/32-large)
+
+   [-2, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Bottleneck, [512, False]],
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, Conv, [512, 3, 1]],  # 22 (P4/16-medium)
+
+   [-2, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Bottleneck, [256, False]],
+   [-1, 2, Bottleneck, [256, False]],  # 27 (P3/8-small)
+
+   [[27, 22, 15], 1, Detect, [nc, anchors]],   # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-bifpn.yaml b/src/yolov5/models/hub/yolov5-bifpn.yaml
new file mode 100644
index 00000000..504815f5
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-bifpn.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 BiFPN head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14, 6], 1, Concat, [1]],  # cat P4 <--- BiFPN change
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-fpn.yaml b/src/yolov5/models/hub/yolov5-fpn.yaml
new file mode 100644
index 00000000..a23e9c6f
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-fpn.yaml
@@ -0,0 +1,42 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 FPN head
+head:
+  [[-1, 3, C3, [1024, False]],  # 10 (P5/32-large)
+
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 3, C3, [512, False]],  # 14 (P4/16-medium)
+
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 3, C3, [256, False]],  # 18 (P3/8-small)
+
+   [[18, 14, 10], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-p2.yaml b/src/yolov5/models/hub/yolov5-p2.yaml
new file mode 100644
index 00000000..554117dd
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-p2.yaml
@@ -0,0 +1,54 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head with (P2, P3, P4, P5) outputs
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [128, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 2], 1, Concat, [1]],  # cat backbone P2
+   [-1, 1, C3, [128, False]],  # 21 (P2/4-xsmall)
+
+   [-1, 1, Conv, [128, 3, 2]],
+   [[-1, 18], 1, Concat, [1]],  # cat head P3
+   [-1, 3, C3, [256, False]],  # 24 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 27 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 30 (P5/32-large)
+
+   [[21, 24, 27, 30], 1, Detect, [nc, anchors]],  # Detect(P2, P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-p34.yaml b/src/yolov5/models/hub/yolov5-p34.yaml
new file mode 100644
index 00000000..dbf0f850
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-p34.yaml
@@ -0,0 +1,41 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [ [ -1, 1, Conv, [ 64, 6, 2, 2 ] ],  # 0-P1/2
+    [ -1, 1, Conv, [ 128, 3, 2 ] ],  # 1-P2/4
+    [ -1, 3, C3, [ 128 ] ],
+    [ -1, 1, Conv, [ 256, 3, 2 ] ],  # 3-P3/8
+    [ -1, 6, C3, [ 256 ] ],
+    [ -1, 1, Conv, [ 512, 3, 2 ] ],  # 5-P4/16
+    [ -1, 9, C3, [ 512 ] ],
+    [ -1, 1, Conv, [ 1024, 3, 2 ] ],  # 7-P5/32
+    [ -1, 3, C3, [ 1024 ] ],
+    [ -1, 1, SPPF, [ 1024, 5 ] ],  # 9
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4) outputs
+head:
+  [ [ -1, 1, Conv, [ 512, 1, 1 ] ],
+    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+    [ [ -1, 6 ], 1, Concat, [ 1 ] ],  # cat backbone P4
+    [ -1, 3, C3, [ 512, False ] ],  # 13
+
+    [ -1, 1, Conv, [ 256, 1, 1 ] ],
+    [ -1, 1, nn.Upsample, [ None, 2, 'nearest' ] ],
+    [ [ -1, 4 ], 1, Concat, [ 1 ] ],  # cat backbone P3
+    [ -1, 3, C3, [ 256, False ] ],  # 17 (P3/8-small)
+
+    [ -1, 1, Conv, [ 256, 3, 2 ] ],
+    [ [ -1, 14 ], 1, Concat, [ 1 ] ],  # cat head P4
+    [ -1, 3, C3, [ 512, False ] ],  # 20 (P4/16-medium)
+
+    [ [ 17, 20 ], 1, Detect, [ nc, anchors ] ],  # Detect(P3, P4)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-p6.yaml b/src/yolov5/models/hub/yolov5-p6.yaml
new file mode 100644
index 00000000..a17202f2
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-p6.yaml
@@ -0,0 +1,56 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6) outputs
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-p7.yaml b/src/yolov5/models/hub/yolov5-p7.yaml
new file mode 100644
index 00000000..edd7d13a
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-p7.yaml
@@ -0,0 +1,67 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors: 3  # AutoAnchor evolves 3 anchors per P output layer
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, Conv, [1280, 3, 2]],  # 11-P7/128
+   [-1, 3, C3, [1280]],
+   [-1, 1, SPPF, [1280, 5]],  # 13
+  ]
+
+# YOLOv5 v6.0 head with (P3, P4, P5, P6, P7) outputs
+head:
+  [[-1, 1, Conv, [1024, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 10], 1, Concat, [1]],  # cat backbone P6
+   [-1, 3, C3, [1024, False]],  # 17
+
+   [-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 21
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 25
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 29 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 26], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 32 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 22], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 35 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 18], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 38 (P6/64-xlarge)
+
+   [-1, 1, Conv, [1024, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P7
+   [-1, 3, C3, [1280, False]],  # 41 (P7/128-xxlarge)
+
+   [[29, 32, 35, 38, 41], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6, P7)
+  ]
diff --git a/src/yolov5/models/hub/yolov5-panet.yaml b/src/yolov5/models/hub/yolov5-panet.yaml
new file mode 100644
index 00000000..ccfbf900
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5-panet.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 PANet head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5l6.yaml b/src/yolov5/models/hub/yolov5l6.yaml
new file mode 100644
index 00000000..632c2cb6
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5l6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/hub/yolov5m6.yaml b/src/yolov5/models/hub/yolov5m6.yaml
new file mode 100644
index 00000000..ecc53fd6
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5m6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.67  # model depth multiple
+width_multiple: 0.75  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/hub/yolov5n6.yaml b/src/yolov5/models/hub/yolov5n6.yaml
new file mode 100644
index 00000000..0c0c71d3
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5n6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.25  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/hub/yolov5s-ghost.yaml b/src/yolov5/models/hub/yolov5s-ghost.yaml
new file mode 100644
index 00000000..ff9519c3
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5s-ghost.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, GhostConv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3Ghost, [128]],
+   [-1, 1, GhostConv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3Ghost, [256]],
+   [-1, 1, GhostConv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3Ghost, [512]],
+   [-1, 1, GhostConv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3Ghost, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, GhostConv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3Ghost, [512, False]],  # 13
+
+   [-1, 1, GhostConv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3Ghost, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, GhostConv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3Ghost, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, GhostConv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3Ghost, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5s-transformer.yaml b/src/yolov5/models/hub/yolov5s-transformer.yaml
new file mode 100644
index 00000000..100d7c44
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5s-transformer.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3TR, [1024]],  # 9 <--- C3TR() Transformer module
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/hub/yolov5s6.yaml b/src/yolov5/models/hub/yolov5s6.yaml
new file mode 100644
index 00000000..a28fb559
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5s6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/hub/yolov5x6.yaml b/src/yolov5/models/hub/yolov5x6.yaml
new file mode 100644
index 00000000..ba795c4a
--- /dev/null
+++ b/src/yolov5/models/hub/yolov5x6.yaml
@@ -0,0 +1,60 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.33  # model depth multiple
+width_multiple: 1.25  # layer channel multiple
+anchors:
+  - [19,27,  44,40,  38,94]  # P3/8
+  - [96,68,  86,152,  180,137]  # P4/16
+  - [140,301,  303,264,  238,542]  # P5/32
+  - [436,615,  739,380,  925,792]  # P6/64
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [768, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [768]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 9-P6/64
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 11
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [768, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 8], 1, Concat, [1]],  # cat backbone P5
+   [-1, 3, C3, [768, False]],  # 15
+
+   [-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 19
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 23 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 20], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 26 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 16], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [768, False]],  # 29 (P5/32-large)
+
+   [-1, 1, Conv, [768, 3, 2]],
+   [[-1, 12], 1, Concat, [1]],  # cat head P6
+   [-1, 3, C3, [1024, False]],  # 32 (P6/64-xlarge)
+
+   [[23, 26, 29, 32], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5, P6)
+  ]
diff --git a/src/yolov5/models/tf.py b/src/yolov5/models/tf.py
new file mode 100644
index 00000000..74681e40
--- /dev/null
+++ b/src/yolov5/models/tf.py
@@ -0,0 +1,464 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+TensorFlow, Keras and TFLite versions of YOLOv5
+Authored by https://github.com/zldrobit in PR https://github.com/ultralytics/yolov5/pull/1127
+
+Usage:
+    $ python models/tf.py --weights yolov5s.pt
+
+Export:
+    $ python path/to/export.py --weights yolov5s.pt --include saved_model pb tflite tfjs
+"""
+
+import argparse
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import numpy as np
+import tensorflow as tf
+import torch
+import torch.nn as nn
+from tensorflow import keras
+
+from models.common import C3, SPP, SPPF, Bottleneck, BottleneckCSP, Concat, Conv, DWConv, Focus, autopad
+from models.experimental import CrossConv, MixConv2d, attempt_load
+from models.yolo import Detect
+from utils.activations import SiLU
+from utils.general import LOGGER, make_divisible, print_args
+
+
+class TFBN(keras.layers.Layer):
+    # TensorFlow BatchNormalization wrapper
+    def __init__(self, w=None):
+        super().__init__()
+        self.bn = keras.layers.BatchNormalization(
+            beta_initializer=keras.initializers.Constant(w.bias.numpy()),
+            gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
+            moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
+            moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
+            epsilon=w.eps)
+
+    def call(self, inputs):
+        return self.bn(inputs)
+
+
+class TFPad(keras.layers.Layer):
+    def __init__(self, pad):
+        super().__init__()
+        self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
+
+    def call(self, inputs):
+        return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
+
+
+class TFConv(keras.layers.Layer):
+    # Standard convolution
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        # ch_in, ch_out, weights, kernel, stride, padding, groups
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        assert isinstance(k, int), "Convolution with multiple kernels are not allowed."
+        # TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
+        # see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
+
+        conv = keras.layers.Conv2D(
+            c2, k, s, 'SAME' if s == 1 else 'VALID', use_bias=False if hasattr(w, 'bn') else True,
+            kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
+        self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
+        self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
+
+        # YOLOv5 activations
+        if isinstance(w.act, nn.LeakyReLU):
+            self.act = (lambda x: keras.activations.relu(x, alpha=0.1)) if act else tf.identity
+        elif isinstance(w.act, nn.Hardswish):
+            self.act = (lambda x: x * tf.nn.relu6(x + 3) * 0.166666667) if act else tf.identity
+        elif isinstance(w.act, (nn.SiLU, SiLU)):
+            self.act = (lambda x: keras.activations.swish(x)) if act else tf.identity
+        else:
+            raise Exception(f'no matching TensorFlow activation found for {w.act}')
+
+    def call(self, inputs):
+        return self.act(self.bn(self.conv(inputs)))
+
+
+class TFFocus(keras.layers.Layer):
+    # Focus wh information into c-space
+    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
+        # ch_in, ch_out, kernel, stride, padding, groups
+        super().__init__()
+        self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
+
+    def call(self, inputs):  # x(b,w,h,c) -> y(b,w/2,h/2,4c)
+        # inputs = inputs / 255  # normalize 0-255 to 0-1
+        return self.conv(tf.concat([inputs[:, ::2, ::2, :],
+                                    inputs[:, 1::2, ::2, :],
+                                    inputs[:, ::2, 1::2, :],
+                                    inputs[:, 1::2, 1::2, :]], 3))
+
+
+class TFBottleneck(keras.layers.Layer):
+    # Standard bottleneck
+    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None):  # ch_in, ch_out, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
+        self.add = shortcut and c1 == c2
+
+    def call(self, inputs):
+        return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
+
+
+class TFConv2d(keras.layers.Layer):
+    # Substitution for PyTorch nn.Conv2D
+    def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
+        super().__init__()
+        assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
+        self.conv = keras.layers.Conv2D(
+            c2, k, s, 'VALID', use_bias=bias,
+            kernel_initializer=keras.initializers.Constant(w.weight.permute(2, 3, 1, 0).numpy()),
+            bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None, )
+
+    def call(self, inputs):
+        return self.conv(inputs)
+
+
+class TFBottleneckCSP(keras.layers.Layer):
+    # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
+        self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
+        self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
+        self.bn = TFBN(w.bn)
+        self.act = lambda x: keras.activations.relu(x, alpha=0.1)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        y1 = self.cv3(self.m(self.cv1(inputs)))
+        y2 = self.cv2(inputs)
+        return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
+
+
+class TFC3(keras.layers.Layer):
+    # CSP Bottleneck with 3 convolutions
+    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
+        # ch_in, ch_out, number, shortcut, groups, expansion
+        super().__init__()
+        c_ = int(c2 * e)  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
+        self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
+        self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
+
+    def call(self, inputs):
+        return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
+
+
+class TFSPP(keras.layers.Layer):
+    # Spatial pyramid pooling layer used in YOLOv3-SPP
+    def __init__(self, c1, c2, k=(5, 9, 13), w=None):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
+        self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
+
+    def call(self, inputs):
+        x = self.cv1(inputs)
+        return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
+
+
+class TFSPPF(keras.layers.Layer):
+    # Spatial pyramid pooling-Fast layer
+    def __init__(self, c1, c2, k=5, w=None):
+        super().__init__()
+        c_ = c1 // 2  # hidden channels
+        self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
+        self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
+        self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
+
+    def call(self, inputs):
+        x = self.cv1(inputs)
+        y1 = self.m(x)
+        y2 = self.m(y1)
+        return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
+
+
+class TFDetect(keras.layers.Layer):
+    def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None):  # detection layer
+        super().__init__()
+        self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [tf.zeros(1)] * self.nl  # init grid
+        self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
+        self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]),
+                                      [self.nl, 1, -1, 1, 2])
+        self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
+        self.training = False  # set to False after building model
+        self.imgsz = imgsz
+        for i in range(self.nl):
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            self.grid[i] = self._make_grid(nx, ny)
+
+    def call(self, inputs):
+        z = []  # inference output
+        x = []
+        for i in range(self.nl):
+            x.append(self.m[i](inputs[i]))
+            # x(bs,20,20,255) to x(bs,3,20,20,85)
+            ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
+            x[i] = tf.transpose(tf.reshape(x[i], [-1, ny * nx, self.na, self.no]), [0, 2, 1, 3])
+
+            if not self.training:  # inference
+                y = tf.sigmoid(x[i])
+                xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
+                wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
+                # Normalize xywh to 0-1 to reduce calibration error
+                xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
+                y = tf.concat([xy, wh, y[..., 4:]], -1)
+                z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
+
+        return x if self.training else (tf.concat(z, 1), x)
+
+    @staticmethod
+    def _make_grid(nx=20, ny=20):
+        # yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
+        # return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
+        xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
+        return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
+
+
+class TFUpsample(keras.layers.Layer):
+    def __init__(self, size, scale_factor, mode, w=None):  # warning: all arguments needed including 'w'
+        super().__init__()
+        assert scale_factor == 2, "scale_factor must be 2"
+        self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * 2, x.shape[2] * 2), method=mode)
+        # self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
+        # with default arguments: align_corners=False, half_pixel_centers=False
+        # self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
+        #                                                            size=(x.shape[1] * 2, x.shape[2] * 2))
+
+    def call(self, inputs):
+        return self.upsample(inputs)
+
+
+class TFConcat(keras.layers.Layer):
+    def __init__(self, dimension=1, w=None):
+        super().__init__()
+        assert dimension == 1, "convert only NCHW to NHWC concat"
+        self.d = 3
+
+    def call(self, inputs):
+        return tf.concat(inputs, self.d)
+
+
+def parse_model(d, ch, model, imgsz):  # model_dict, input_channels(3)
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
+        m_str = m
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            try:
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+            except NameError:
+                pass
+
+        n = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in [nn.Conv2d, Conv, Bottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv, BottleneckCSP, C3]:
+            c1, c2 = ch[f], args[0]
+            c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
+
+            args = [c1, c2, *args[1:]]
+            if m in [BottleneckCSP, C3]:
+                args.insert(2, n)
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
+        elif m is Detect:
+            args.append([ch[x + 1] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+            args.append(imgsz)
+        else:
+            c2 = ch[f]
+
+        tf_m = eval('TF' + m_str.replace('nn.', ''))
+        m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
+            else tf_m(*args, w=model.model[i])  # module
+
+        torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace('__main__.', '')  # module type
+        np = sum(x.numel() for x in torch_m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10}  {t:<40}{str(args):<30}')  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        ch.append(c2)
+    return keras.Sequential(layers), sorted(save)
+
+
+class TFModel:
+    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)):  # model, channels, classes
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+            self.yaml_file = Path(cfg).name
+            with open(cfg) as f:
+                self.yaml = yaml.load(f, Loader=yaml.FullLoader)  # model dict
+
+        # Define model
+        if nc and nc != self.yaml['nc']:
+            LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
+            self.yaml['nc'] = nc  # override yaml value
+        self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
+
+    def predict(self, inputs, tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
+                conf_thres=0.25):
+        y = []  # outputs
+        x = inputs
+        for i, m in enumerate(self.model.layers):
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+
+            x = m(x)  # run
+            y.append(x if m.i in self.savelist else None)  # save output
+
+        # Add TensorFlow NMS
+        if tf_nms:
+            boxes = self._xywh2xyxy(x[0][..., :4])
+            probs = x[0][:, :, 4:5]
+            classes = x[0][:, :, 5:]
+            scores = probs * classes
+            if agnostic_nms:
+                nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
+                return nms, x[1]
+            else:
+                boxes = tf.expand_dims(boxes, 2)
+                nms = tf.image.combined_non_max_suppression(
+                    boxes, scores, topk_per_class, topk_all, iou_thres, conf_thres, clip_boxes=False)
+                return nms, x[1]
+
+        return x[0]  # output only first tensor [1,6300,85] = [xywh, conf, class0, class1, ...]
+        # x = x[0][0]  # [x(1,6300,85), ...] to x(6300,85)
+        # xywh = x[..., :4]  # x(6300,4) boxes
+        # conf = x[..., 4:5]  # x(6300,1) confidences
+        # cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1))  # x(6300,1)  classes
+        # return tf.concat([conf, cls, xywh], 1)
+
+    @staticmethod
+    def _xywh2xyxy(xywh):
+        # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+        x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
+        return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
+
+
+class AgnosticNMS(keras.layers.Layer):
+    # TF Agnostic NMS
+    def call(self, input, topk_all, iou_thres, conf_thres):
+        # wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
+        return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres), input,
+                         fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
+                         name='agnostic_nms')
+
+    @staticmethod
+    def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25):  # agnostic NMS
+        boxes, classes, scores = x
+        class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
+        scores_inp = tf.reduce_max(scores, -1)
+        selected_inds = tf.image.non_max_suppression(
+            boxes, scores_inp, max_output_size=topk_all, iou_threshold=iou_thres, score_threshold=conf_thres)
+        selected_boxes = tf.gather(boxes, selected_inds)
+        padded_boxes = tf.pad(selected_boxes,
+                              paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
+                              mode="CONSTANT", constant_values=0.0)
+        selected_scores = tf.gather(scores_inp, selected_inds)
+        padded_scores = tf.pad(selected_scores,
+                               paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+                               mode="CONSTANT", constant_values=-1.0)
+        selected_classes = tf.gather(class_inds, selected_inds)
+        padded_classes = tf.pad(selected_classes,
+                                paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
+                                mode="CONSTANT", constant_values=-1.0)
+        valid_detections = tf.shape(selected_inds)[0]
+        return padded_boxes, padded_scores, padded_classes, valid_detections
+
+
+def representative_dataset_gen(dataset, ncalib=100):
+    # Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
+    for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
+        input = np.transpose(img, [1, 2, 0])
+        input = np.expand_dims(input, axis=0).astype(np.float32)
+        input /= 255
+        yield [input]
+        if n >= ncalib:
+            break
+
+
+def run(weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=(640, 640),  # inference size h,w
+        batch_size=1,  # batch size
+        dynamic=False,  # dynamic batch size
+        ):
+    # PyTorch model
+    im = torch.zeros((batch_size, 3, *imgsz))  # BCHW image
+    model = attempt_load(weights, map_location=torch.device('cpu'), inplace=True, fuse=False)
+    _ = model(im)  # inference
+    model.info()
+
+    # TensorFlow model
+    im = tf.zeros((batch_size, *imgsz, 3))  # BHWC image
+    tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
+    _ = tf_model.predict(im)  # inference
+
+    # Keras model
+    im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
+    keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
+    keras_model.summary()
+
+    LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
+    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
+    opt = parser.parse_args()
+    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/src/yolov5/models/yolo.py b/src/yolov5/models/yolo.py
new file mode 100644
index 00000000..f659a045
--- /dev/null
+++ b/src/yolov5/models/yolo.py
@@ -0,0 +1,329 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+YOLO-specific modules
+
+Usage:
+    $ python path/to/models/yolo.py --cfg yolov5s.yaml
+"""
+
+import argparse
+import sys
+from copy import deepcopy
+from pathlib import Path
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+from models.common import *
+from models.experimental import *
+from utils.autoanchor import check_anchor_order
+from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
+from utils.plots import feature_visualization
+from utils.torch_utils import fuse_conv_and_bn, initialize_weights, model_info, scale_img, select_device, time_sync
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+
+class Detect(nn.Module):
+    stride = None  # strides computed during build
+    onnx_dynamic = False  # ONNX export parameter
+
+    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
+        super().__init__()
+        self.nc = nc  # number of classes
+        self.no = nc + 5  # number of outputs per anchor
+        self.nl = len(anchors)  # number of detection layers
+        self.na = len(anchors[0]) // 2  # number of anchors
+        self.grid = [torch.zeros(1)] * self.nl  # init grid
+        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
+        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
+        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
+        self.inplace = inplace  # use in-place ops (e.g. slice assignment)
+
+    def forward(self, x):
+        z = []  # inference output
+        for i in range(self.nl):
+            x[i] = self.m[i](x[i])  # conv
+            bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
+            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
+
+            if not self.training:  # inference
+                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
+                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
+
+                y = x[i].sigmoid()
+                if self.inplace:
+                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
+                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
+                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
+                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
+                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
+                    y = torch.cat((xy, wh, y[..., 4:]), -1)
+                z.append(y.view(bs, -1, self.no))
+
+        return x if self.training else (torch.cat(z, 1), x)
+
+    def _make_grid(self, nx=20, ny=20, i=0):
+        d = self.anchors[i].device
+        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
+            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
+        else:
+            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
+        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
+        anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
+            .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
+        return grid, anchor_grid
+
+
+class Model(nn.Module):
+    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
+        super().__init__()
+        if isinstance(cfg, dict):
+            self.yaml = cfg  # model dict
+        else:  # is *.yaml
+            import yaml  # for torch hub
+            self.yaml_file = Path(cfg).name
+            with open(cfg, encoding='ascii', errors='ignore') as f:
+                self.yaml = yaml.safe_load(f)  # model dict
+
+        # Define model
+        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
+        if nc and nc != self.yaml['nc']:
+            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
+            self.yaml['nc'] = nc  # override yaml value
+        if anchors:
+            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
+            self.yaml['anchors'] = round(anchors)  # override yaml value
+        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
+        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
+        self.inplace = self.yaml.get('inplace', True)
+
+        # Build strides, anchors
+        m = self.model[-1]  # Detect()
+        if isinstance(m, Detect):
+            s = 256  # 2x min stride
+            m.inplace = self.inplace
+            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
+            m.anchors /= m.stride.view(-1, 1, 1)
+            check_anchor_order(m)
+            self.stride = m.stride
+            self._initialize_biases()  # only run once
+
+        # Init weights, biases
+        initialize_weights(self)
+        self.info()
+        LOGGER.info('')
+
+    def forward(self, x, augment=False, profile=False, visualize=False):
+        if augment:
+            return self._forward_augment(x)  # augmented inference, None
+        return self._forward_once(x, profile, visualize)  # single-scale inference, train
+
+    def _forward_augment(self, x):
+        img_size = x.shape[-2:]  # height, width
+        s = [1, 0.83, 0.67]  # scales
+        f = [None, 3, None]  # flips (2-ud, 3-lr)
+        y = []  # outputs
+        for si, fi in zip(s, f):
+            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
+            yi = self._forward_once(xi)[0]  # forward
+            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
+            yi = self._descale_pred(yi, fi, si, img_size)
+            y.append(yi)
+        y = self._clip_augmented(y)  # clip augmented tails
+        return torch.cat(y, 1), None  # augmented inference, train
+
+    def _forward_once(self, x, profile=False, visualize=False):
+        y, dt = [], []  # outputs
+        for m in self.model:
+            if m.f != -1:  # if not from previous layer
+                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
+            if profile:
+                self._profile_one_layer(m, x, dt)
+            x = m(x)  # run
+            y.append(x if m.i in self.save else None)  # save output
+            if visualize:
+                feature_visualization(x, m.type, m.i, save_dir=visualize)
+        return x
+
+    def _descale_pred(self, p, flips, scale, img_size):
+        # de-scale predictions following augmented inference (inverse operation)
+        if self.inplace:
+            p[..., :4] /= scale  # de-scale
+            if flips == 2:
+                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
+            elif flips == 3:
+                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
+        else:
+            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
+            if flips == 2:
+                y = img_size[0] - y  # de-flip ud
+            elif flips == 3:
+                x = img_size[1] - x  # de-flip lr
+            p = torch.cat((x, y, wh, p[..., 4:]), -1)
+        return p
+
+    def _clip_augmented(self, y):
+        # Clip YOLOv5 augmented inference tails
+        nl = self.model[-1].nl  # number of detection layers (P3-P5)
+        g = sum(4 ** x for x in range(nl))  # grid points
+        e = 1  # exclude layer count
+        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
+        y[0] = y[0][:, :-i]  # large
+        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
+        y[-1] = y[-1][:, i:]  # small
+        return y
+
+    def _profile_one_layer(self, m, x, dt):
+        c = isinstance(m, Detect)  # is final layer, copy input as inplace fix
+        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
+        t = time_sync()
+        for _ in range(10):
+            m(x.copy() if c else x)
+        dt.append((time_sync() - t) * 100)
+        if m == self.model[0]:
+            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
+        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
+        if c:
+            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")
+
+    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
+        # https://arxiv.org/abs/1708.02002 section 3.3
+        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
+        m = self.model[-1]  # Detect() module
+        for mi, s in zip(m.m, m.stride):  # from
+            b = mi.bias.view(m.na, -1)  # conv.bias(255) to (3,85)
+            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
+            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
+            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)
+
+    def _print_biases(self):
+        m = self.model[-1]  # Detect() module
+        for mi in m.m:  # from
+            b = mi.bias.detach().view(m.na, -1).T  # conv.bias(255) to (3,85)
+            LOGGER.info(
+                ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))
+
+    # def _print_weights(self):
+    #     for m in self.model.modules():
+    #         if type(m) is Bottleneck:
+    #             LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights
+
+    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
+        LOGGER.info('Fusing layers... ')
+        for m in self.model.modules():
+            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
+                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
+                delattr(m, 'bn')  # remove batchnorm
+                m.forward = m.forward_fuse  # update forward
+        self.info()
+        return self
+
+    def info(self, verbose=False, img_size=640):  # print model information
+        model_info(self, verbose, img_size)
+
+    def _apply(self, fn):
+        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
+        self = super()._apply(fn)
+        m = self.model[-1]  # Detect()
+        if isinstance(m, Detect):
+            m.stride = fn(m.stride)
+            m.grid = list(map(fn, m.grid))
+            if isinstance(m.anchor_grid, list):
+                m.anchor_grid = list(map(fn, m.anchor_grid))
+        return self
+
+
+def parse_model(d, ch):  # model_dict, input_channels(3)
+    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
+    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
+    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
+    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
+
+    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
+    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
+        m = eval(m) if isinstance(m, str) else m  # eval strings
+        for j, a in enumerate(args):
+            try:
+                args[j] = eval(a) if isinstance(a, str) else a  # eval strings
+            except NameError:
+                pass
+
+        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
+        if m in [Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
+                 BottleneckCSP, C3, C3TR, C3SPP, C3Ghost]:
+            c1, c2 = ch[f], args[0]
+            if c2 != no:  # if not output
+                c2 = make_divisible(c2 * gw, 8)
+
+            args = [c1, c2, *args[1:]]
+            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
+                args.insert(2, n)  # number of repeats
+                n = 1
+        elif m is nn.BatchNorm2d:
+            args = [ch[f]]
+        elif m is Concat:
+            c2 = sum(ch[x] for x in f)
+        elif m is Detect:
+            args.append([ch[x] for x in f])
+            if isinstance(args[1], int):  # number of anchors
+                args[1] = [list(range(args[1] * 2))] * len(f)
+        elif m is Contract:
+            c2 = ch[f] * args[0] ** 2
+        elif m is Expand:
+            c2 = ch[f] // args[0] ** 2
+        else:
+            c2 = ch[f]
+
+        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
+        t = str(m)[8:-2].replace('__main__.', '')  # module type
+        np = sum(x.numel() for x in m_.parameters())  # number params
+        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
+        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
+        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
+        layers.append(m_)
+        if i == 0:
+            ch = []
+        ch.append(c2)
+    return nn.Sequential(*layers), sorted(save)
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--cfg', type=str, default='yolov5s.yaml', help='model.yaml')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--profile', action='store_true', help='profile model speed')
+    parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
+    opt = parser.parse_args()
+    opt.cfg = check_yaml(opt.cfg)  # check YAML
+    print_args(FILE.stem, opt)
+    device = select_device(opt.device)
+
+    # Create model
+    model = Model(opt.cfg).to(device)
+    model.train()
+
+    # Profile
+    if opt.profile:
+        img = torch.rand(8 if torch.cuda.is_available() else 1, 3, 640, 640).to(device)
+        y = model(img, profile=True)
+
+    # Test all models
+    if opt.test:
+        for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
+            try:
+                _ = Model(cfg)
+            except Exception as e:
+                print(f'Error in {cfg}: {e}')
+
+    # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898)
+    # from torch.utils.tensorboard import SummaryWriter
+    # tb_writer = SummaryWriter('.')
+    # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/")
+    # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), [])  # add model graph
diff --git a/src/yolov5/models/yolov5l.yaml b/src/yolov5/models/yolov5l.yaml
new file mode 100644
index 00000000..ce8a5de4
--- /dev/null
+++ b/src/yolov5/models/yolov5l.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.0  # model depth multiple
+width_multiple: 1.0  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/yolov5m.yaml b/src/yolov5/models/yolov5m.yaml
new file mode 100644
index 00000000..ad13ab37
--- /dev/null
+++ b/src/yolov5/models/yolov5m.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.67  # model depth multiple
+width_multiple: 0.75  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/yolov5n.yaml b/src/yolov5/models/yolov5n.yaml
new file mode 100644
index 00000000..8a28a40d
--- /dev/null
+++ b/src/yolov5/models/yolov5n.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/yolov5s.yaml b/src/yolov5/models/yolov5s.yaml
new file mode 100644
index 00000000..f35beabb
--- /dev/null
+++ b/src/yolov5/models/yolov5s.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 0.33  # model depth multiple
+width_multiple: 0.50  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/models/yolov5x.yaml b/src/yolov5/models/yolov5x.yaml
new file mode 100644
index 00000000..f617a027
--- /dev/null
+++ b/src/yolov5/models/yolov5x.yaml
@@ -0,0 +1,48 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+
+# Parameters
+nc: 80  # number of classes
+depth_multiple: 1.33  # model depth multiple
+width_multiple: 1.25  # layer channel multiple
+anchors:
+  - [10,13, 16,30, 33,23]  # P3/8
+  - [30,61, 62,45, 59,119]  # P4/16
+  - [116,90, 156,198, 373,326]  # P5/32
+
+# YOLOv5 v6.0 backbone
+backbone:
+  # [from, number, module, args]
+  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
+   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
+   [-1, 3, C3, [128]],
+   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
+   [-1, 6, C3, [256]],
+   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
+   [-1, 9, C3, [512]],
+   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
+   [-1, 3, C3, [1024]],
+   [-1, 1, SPPF, [1024, 5]],  # 9
+  ]
+
+# YOLOv5 v6.0 head
+head:
+  [[-1, 1, Conv, [512, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
+   [-1, 3, C3, [512, False]],  # 13
+
+   [-1, 1, Conv, [256, 1, 1]],
+   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
+   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
+   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)
+
+   [-1, 1, Conv, [256, 3, 2]],
+   [[-1, 14], 1, Concat, [1]],  # cat head P4
+   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)
+
+   [-1, 1, Conv, [512, 3, 2]],
+   [[-1, 10], 1, Concat, [1]],  # cat head P5
+   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)
+
+   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
+  ]
diff --git a/src/yolov5/requirements.txt b/src/yolov5/requirements.txt
new file mode 100755
index 00000000..96fc9d1a
--- /dev/null
+++ b/src/yolov5/requirements.txt
@@ -0,0 +1,37 @@
+# pip install -r requirements.txt
+
+# Base ----------------------------------------
+matplotlib>=3.2.2
+numpy>=1.18.5
+opencv-python>=4.1.2
+Pillow>=7.1.2
+PyYAML>=5.3.1
+requests>=2.23.0
+scipy>=1.4.1
+torch>=1.7.0
+torchvision>=0.8.1
+tqdm>=4.41.0
+
+# Logging -------------------------------------
+tensorboard>=2.4.1
+# wandb
+
+# Plotting ------------------------------------
+pandas>=1.1.4
+seaborn>=0.11.0
+
+# Export --------------------------------------
+# coremltools>=4.1  # CoreML export
+# onnx>=1.9.0  # ONNX export
+# onnx-simplifier>=0.3.6  # ONNX simplifier
+# scikit-learn==0.19.2  # CoreML quantization
+# tensorflow>=2.4.1  # TFLite export
+# tensorflowjs>=3.9.0  # TF.js export
+# openvino-dev  # OpenVINO export
+
+# Extras --------------------------------------
+# albumentations>=1.0.3
+# Cython  # for pycocotools https://github.com/cocodataset/cocoapi/issues/172
+# pycocotools>=2.0  # COCO mAP
+# roboflow
+thop  # FLOPs computation
diff --git a/src/yolov5/setup.cfg b/src/yolov5/setup.cfg
new file mode 100644
index 00000000..20ea49a8
--- /dev/null
+++ b/src/yolov5/setup.cfg
@@ -0,0 +1,45 @@
+# Project-wide configuration file, can be used for package metadata and other toll configurations
+# Example usage: global configuration for PEP8 (via flake8) setting or default pytest arguments
+
+[metadata]
+license_file = LICENSE
+description-file = README.md
+
+
+[tool:pytest]
+norecursedirs =
+    .git
+    dist
+    build
+addopts =
+    --doctest-modules
+    --durations=25
+    --color=yes
+
+
+[flake8]
+max-line-length = 120
+exclude = .tox,*.egg,build,temp
+select = E,W,F
+doctests = True
+verbose = 2
+# https://pep8.readthedocs.io/en/latest/intro.html#error-codes
+format = pylint
+# see: https://www.flake8rules.com/
+ignore =
+    E731  # Do not assign a lambda expression, use a def
+    F405  # name may be undefined, or defined from star imports: module
+    E402  # module level import not at top of file
+    F401  # module imported but unused
+    W504  # line break after binary operator
+    E127  # continuation line over-indented for visual indent
+    W504  # line break after binary operator
+    E231  # missing whitespace after ‘,’, ‘;’, or ‘:’
+    E501  # line too long
+    F403  # ‘from module import *’ used; unable to detect undefined names
+
+
+[isort]
+# https://pycqa.github.io/isort/docs/configuration/options.html
+line_length = 120
+multi_line_output = 0
diff --git a/src/yolov5/train.py b/src/yolov5/train.py
new file mode 100644
index 00000000..88586fde
--- /dev/null
+++ b/src/yolov5/train.py
@@ -0,0 +1,643 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Train a YOLOv5 model on a custom dataset.
+
+Models and datasets download automatically from the latest YOLOv5 release.
+Models: https://github.com/ultralytics/yolov5/tree/master/models
+Datasets: https://github.com/ultralytics/yolov5/tree/master/data
+Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data
+
+Usage:
+    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from pretrained (RECOMMENDED)
+    $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 640  # from scratch
+"""
+
+import argparse
+import math
+import os
+import random
+import sys
+import time
+from copy import deepcopy
+from datetime import datetime
+from pathlib import Path
+
+import numpy as np
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import yaml
+from torch.cuda import amp
+from torch.nn.parallel import DistributedDataParallel as DDP
+from torch.optim import SGD, Adam, AdamW, lr_scheduler
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+import val  # for end-of-epoch mAP
+from models.experimental import attempt_load
+from models.yolo import Model
+from utils.autoanchor import check_anchors
+from utils.autobatch import check_train_batch_size
+from utils.callbacks import Callbacks
+from utils.datasets import create_dataloader
+from utils.downloads import attempt_download
+from utils.general import (LOGGER, check_dataset, check_file, check_git_status, check_img_size, check_requirements,
+                           check_suffix, check_yaml, colorstr, get_latest_run, increment_path, init_seeds,
+                           intersect_dicts, labels_to_class_weights, labels_to_image_weights, methods, one_cycle,
+                           print_args, print_mutation, strip_optimizer)
+from utils.loggers import Loggers
+from utils.loggers.wandb.wandb_utils import check_wandb_resume
+from utils.loss import ComputeLoss
+from utils.metrics import fitness
+from utils.plots import plot_evolve, plot_labels
+from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, torch_distributed_zero_first
+
+LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
+RANK = int(os.getenv('RANK', -1))
+WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
+
+
+def train(hyp,  # path/to/hyp.yaml or hyp dictionary
+          opt,
+          device,
+          callbacks
+          ):
+    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
+        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
+        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
+
+    # Directories
+    w = save_dir / 'weights'  # weights dir
+    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
+    last, best = w / 'last.pt', w / 'best.pt'
+
+    # Hyperparameters
+    if isinstance(hyp, str):
+        with open(hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
+
+    # Save run settings
+    if not evolve:
+        with open(save_dir / 'hyp.yaml', 'w') as f:
+            yaml.safe_dump(hyp, f, sort_keys=False)
+        with open(save_dir / 'opt.yaml', 'w') as f:
+            yaml.safe_dump(vars(opt), f, sort_keys=False)
+
+    # Loggers
+    data_dict = None
+    if RANK in [-1, 0]:
+        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance
+        if loggers.wandb:
+            data_dict = loggers.wandb.data_dict
+            if resume:
+                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size
+
+        # Register actions
+        for k in methods(loggers):
+            callbacks.register_action(k, callback=getattr(loggers, k))
+
+    # Config
+    plots = not evolve  # create plots
+    cuda = device.type != 'cpu'
+    init_seeds(1 + RANK)
+    with torch_distributed_zero_first(LOCAL_RANK):
+        data_dict = data_dict or check_dataset(data)  # check if None
+    train_path, val_path = data_dict['train'], data_dict['val']
+    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
+    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
+    assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
+    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset
+
+    # Model
+    check_suffix(weights, '.pt')  # check weights
+    pretrained = weights.endswith('.pt')
+    if pretrained:
+        with torch_distributed_zero_first(LOCAL_RANK):
+            weights = attempt_download(weights)  # download if not found locally
+        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
+        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
+        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
+        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
+        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
+        model.load_state_dict(csd, strict=False)  # load
+        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
+    else:
+        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
+
+    # Freeze
+    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
+    for k, v in model.named_parameters():
+        v.requires_grad = True  # train all layers
+        if any(x in k for x in freeze):
+            LOGGER.info(f'freezing {k}')
+            v.requires_grad = False
+
+    # Image size
+    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
+    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple
+
+    # Batch size
+    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
+        batch_size = check_train_batch_size(model, imgsz)
+        loggers.on_params_update({"batch_size": batch_size})
+
+    # Optimizer
+    nbs = 64  # nominal batch size
+    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
+    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
+    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")
+
+    g0, g1, g2 = [], [], []  # optimizer parameter groups
+    for v in model.modules():
+        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
+            g2.append(v.bias)
+        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
+            g0.append(v.weight)
+        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with decay)
+            g1.append(v.weight)
+
+    if opt.optimizer == 'Adam':
+        optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
+    elif opt.optimizer == 'AdamW':
+        optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
+    else:
+        optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
+
+    optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # add g1 with weight_decay
+    optimizer.add_param_group({'params': g2})  # add g2 (biases)
+    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
+                f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
+    del g0, g1, g2
+
+    # Scheduler
+    if opt.cos_lr:
+        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
+    else:
+        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
+    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)
+
+    # EMA
+    ema = ModelEMA(model) if RANK in [-1, 0] else None
+
+    # Resume
+    start_epoch, best_fitness = 0, 0.0
+    if pretrained:
+        # Optimizer
+        if ckpt['optimizer'] is not None:
+            optimizer.load_state_dict(ckpt['optimizer'])
+            best_fitness = ckpt['best_fitness']
+
+        # EMA
+        if ema and ckpt.get('ema'):
+            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
+            ema.updates = ckpt['updates']
+
+        # Epochs
+        start_epoch = ckpt['epoch'] + 1
+        if resume:
+            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
+        if epochs < start_epoch:
+            LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs.")
+            epochs += ckpt['epoch']  # finetune additional epochs
+
+        del ckpt, csd
+
+    # DP mode
+    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
+        LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
+                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.')
+        model = torch.nn.DataParallel(model)
+
+    # SyncBatchNorm
+    if opt.sync_bn and cuda and RANK != -1:
+        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
+        LOGGER.info('Using SyncBatchNorm()')
+
+    # Trainloader
+    train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls,
+                                              hyp=hyp, augment=True, cache=None if opt.cache == 'val' else opt.cache,
+                                              rect=opt.rect, rank=LOCAL_RANK, workers=workers,
+                                              image_weights=opt.image_weights, quad=opt.quad,
+                                              prefix=colorstr('train: '), shuffle=True)
+    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
+    nb = len(train_loader)  # number of batches
+    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'
+
+    # Process 0
+    if RANK in [-1, 0]:
+        val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls,
+                                       hyp=hyp, cache=None if noval else opt.cache,
+                                       rect=True, rank=-1, workers=workers * 2, pad=0.5,
+                                       prefix=colorstr('val: '))[0]
+
+        if not resume:
+            labels = np.concatenate(dataset.labels, 0)
+            # c = torch.tensor(labels[:, 0])  # classes
+            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
+            # model._initialize_biases(cf.to(device))
+            if plots:
+                plot_labels(labels, names, save_dir)
+
+            # Anchors
+            if not opt.noautoanchor:
+                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
+            model.half().float()  # pre-reduce anchor precision
+
+        callbacks.run('on_pretrain_routine_end')
+
+    # DDP mode
+    if cuda and RANK != -1:
+        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)
+
+    # Model attributes
+    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
+    hyp['box'] *= 3 / nl  # scale to layers
+    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
+    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
+    hyp['label_smoothing'] = opt.label_smoothing
+    model.nc = nc  # attach number of classes to model
+    model.hyp = hyp  # attach hyperparameters to model
+    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
+    model.names = names
+
+    # Start training
+    t0 = time.time()
+    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
+    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
+    last_opt_step = -1
+    maps = np.zeros(nc)  # mAP per class
+    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
+    scheduler.last_epoch = start_epoch - 1  # do not move
+    scaler = amp.GradScaler(enabled=cuda)
+    stopper = EarlyStopping(patience=opt.patience)
+    compute_loss = ComputeLoss(model)  # init loss class
+    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
+                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
+                f"Logging results to {colorstr('bold', save_dir)}\n"
+                f'Starting training for {epochs} epochs...')
+    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
+        model.train()
+
+        # Update image weights (optional, single-GPU only)
+        if opt.image_weights:
+            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
+            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
+            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
+
+        # Update mosaic border (optional)
+        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
+        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders
+
+        mloss = torch.zeros(3, device=device)  # mean losses
+        if RANK != -1:
+            train_loader.sampler.set_epoch(epoch)
+        pbar = enumerate(train_loader)
+        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
+        if RANK in [-1, 0]:
+            pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
+        optimizer.zero_grad()
+        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
+            ni = i + nb * epoch  # number integrated batches (since train start)
+            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0
+
+            # Warmup
+            if ni <= nw:
+                xi = [0, nw]  # x interp
+                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
+                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
+                for j, x in enumerate(optimizer.param_groups):
+                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
+                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
+                    if 'momentum' in x:
+                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
+
+            # Multi-scale
+            if opt.multi_scale:
+                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
+                sf = sz / max(imgs.shape[2:])  # scale factor
+                if sf != 1:
+                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
+                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
+
+            # Forward
+            with amp.autocast(enabled=cuda):
+                pred = model(imgs)  # forward
+                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
+                if RANK != -1:
+                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
+                if opt.quad:
+                    loss *= 4.
+
+            # Backward
+            scaler.scale(loss).backward()
+
+            # Optimize
+            if ni - last_opt_step >= accumulate:
+                scaler.step(optimizer)  # optimizer.step
+                scaler.update()
+                optimizer.zero_grad()
+                if ema:
+                    ema.update(model)
+                last_opt_step = ni
+
+            # Log
+            if RANK in [-1, 0]:
+                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
+                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
+                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % (
+                    f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
+                callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, opt.sync_bn)
+                if callbacks.stop_training:
+                    return
+            # end batch ------------------------------------------------------------------------------------------------
+
+        # Scheduler
+        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
+        scheduler.step()
+
+        if RANK in [-1, 0]:
+            # mAP
+            callbacks.run('on_train_epoch_end', epoch=epoch)
+            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
+            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
+            if not noval or final_epoch:  # Calculate mAP
+                results, maps, _ = val.run(data_dict,
+                                           batch_size=batch_size // WORLD_SIZE * 2,
+                                           imgsz=imgsz,
+                                           model=ema.ema,
+                                           single_cls=single_cls,
+                                           dataloader=val_loader,
+                                           save_dir=save_dir,
+                                           plots=False,
+                                           callbacks=callbacks,
+                                           compute_loss=compute_loss)
+
+            # Update best mAP
+            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
+            if fi > best_fitness:
+                best_fitness = fi
+            log_vals = list(mloss) + list(results) + lr
+            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)
+
+            # Save model
+            if (not nosave) or (final_epoch and not evolve):  # if save
+                ckpt = {'epoch': epoch,
+                        'best_fitness': best_fitness,
+                        'model': deepcopy(de_parallel(model)).half(),
+                        'ema': deepcopy(ema.ema).half(),
+                        'updates': ema.updates,
+                        'optimizer': optimizer.state_dict(),
+                        'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,
+                        'date': datetime.now().isoformat()}
+
+                # Save last, best and delete
+                torch.save(ckpt, last)
+                if best_fitness == fi:
+                    torch.save(ckpt, best)
+                if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):
+                    torch.save(ckpt, w / f'epoch{epoch}.pt')
+                del ckpt
+                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)
+
+            # Stop Single-GPU
+            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
+                break
+
+            # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
+            # stop = stopper(epoch=epoch, fitness=fi)
+            # if RANK == 0:
+            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks
+
+        # Stop DPP
+        # with torch_distributed_zero_first(RANK):
+        # if stop:
+        #    break  # must break all DDP ranks
+
+        # end epoch ----------------------------------------------------------------------------------------------------
+    # end training -----------------------------------------------------------------------------------------------------
+    if RANK in [-1, 0]:
+        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
+        for f in last, best:
+            if f.exists():
+                strip_optimizer(f)  # strip optimizers
+                if f is best:
+                    LOGGER.info(f'\nValidating {f}...')
+                    results, _, _ = val.run(data_dict,
+                                            batch_size=batch_size // WORLD_SIZE * 2,
+                                            imgsz=imgsz,
+                                            model=attempt_load(f, device).half(),
+                                            iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65
+                                            single_cls=single_cls,
+                                            dataloader=val_loader,
+                                            save_dir=save_dir,
+                                            save_json=is_coco,
+                                            verbose=True,
+                                            plots=True,
+                                            callbacks=callbacks,
+                                            compute_loss=compute_loss)  # val best model with plots
+                    if is_coco:
+                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)
+
+        callbacks.run('on_train_end', last, best, plots, epoch, results)
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")
+
+    torch.cuda.empty_cache()
+    return results
+
+
+def parse_opt(known=False):
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
+    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch.yaml', help='hyperparameters path')
+    parser.add_argument('--epochs', type=int, default=300)
+    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
+    parser.add_argument('--rect', action='store_true', help='rectangular training')
+    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
+    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
+    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
+    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
+    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
+    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
+    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
+    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
+    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
+    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
+    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--quad', action='store_true', help='quad dataloader')
+    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
+    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
+    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
+    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
+    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
+    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
+
+    # Weights & Biases arguments
+    parser.add_argument('--entity', default=None, help='W&B: Entity')
+    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
+    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
+    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
+
+    opt = parser.parse_known_args()[0] if known else parser.parse_args()
+    return opt
+
+
+def main(opt, callbacks=Callbacks()):
+    # Checks
+    if RANK in [-1, 0]:
+        print_args(FILE.stem, opt)
+        check_git_status()
+        check_requirements(exclude=['thop'])
+
+    # Resume
+    if opt.resume and not check_wandb_resume(opt) and not opt.evolve:  # resume an interrupted run
+        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or most recent path
+        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
+        with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:
+            opt = argparse.Namespace(**yaml.safe_load(f))  # replace
+        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate
+        LOGGER.info(f'Resuming training from {ckpt}')
+    else:
+        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
+            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
+        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
+        if opt.evolve:
+            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
+                opt.project = str(ROOT / 'runs/evolve')
+            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
+        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
+
+    # DDP mode
+    device = select_device(opt.device, batch_size=opt.batch_size)
+    if LOCAL_RANK != -1:
+        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
+        assert not opt.image_weights, f'--image-weights {msg}'
+        assert not opt.evolve, f'--evolve {msg}'
+        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
+        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
+        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
+        torch.cuda.set_device(LOCAL_RANK)
+        device = torch.device('cuda', LOCAL_RANK)
+        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")
+
+    # Train
+    if not opt.evolve:
+        train(opt.hyp, opt, device, callbacks)
+        if WORLD_SIZE > 1 and RANK == 0:
+            LOGGER.info('Destroying process group... ')
+            dist.destroy_process_group()
+
+    # Evolve hyperparameters (optional)
+    else:
+        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
+        meta = {'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
+                'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
+                'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
+                'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
+                'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
+                'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
+                'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
+                'box': (1, 0.02, 0.2),  # box loss gain
+                'cls': (1, 0.2, 4.0),  # cls loss gain
+                'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
+                'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
+                'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
+                'iou_t': (0, 0.1, 0.7),  # IoU training threshold
+                'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
+                'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
+                'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
+                'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
+                'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
+                'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
+                'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
+                'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
+                'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
+                'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
+                'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
+                'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
+                'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
+                'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
+                'mixup': (1, 0.0, 1.0),  # image mixup (probability)
+                'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)
+
+        with open(opt.hyp, errors='ignore') as f:
+            hyp = yaml.safe_load(f)  # load hyps dict
+            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
+                hyp['anchors'] = 3
+        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
+        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
+        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
+        if opt.bucket:
+            os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')  # download evolve.csv if exists
+
+        for _ in range(opt.evolve):  # generations to evolve
+            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
+                # Select parent(s)
+                parent = 'single'  # parent selection method: 'single' or 'weighted'
+                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
+                n = min(5, len(x))  # number of previous results to consider
+                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
+                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
+                if parent == 'single' or len(x) == 1:
+                    # x = x[random.randint(0, n - 1)]  # random selection
+                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
+                elif parent == 'weighted':
+                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination
+
+                # Mutate
+                mp, s = 0.8, 0.2  # mutation probability, sigma
+                npr = np.random
+                npr.seed(int(time.time()))
+                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
+                ng = len(meta)
+                v = np.ones(ng)
+                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
+                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
+                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
+                    hyp[k] = float(x[i + 7] * v[i])  # mutate
+
+            # Constrain to limits
+            for k, v in meta.items():
+                hyp[k] = max(hyp[k], v[1])  # lower limit
+                hyp[k] = min(hyp[k], v[2])  # upper limit
+                hyp[k] = round(hyp[k], 5)  # significant digits
+
+            # Train mutation
+            results = train(hyp.copy(), opt, device, callbacks)
+            callbacks = Callbacks()
+            # Write mutation results
+            print_mutation(results, hyp.copy(), save_dir, opt.bucket)
+
+        # Plot results
+        plot_evolve(evolve_csv)
+        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
+                    f"Results saved to {colorstr('bold', save_dir)}\n"
+                    f'Usage example: $ python train.py --hyp {evolve_yaml}')
+
+
+def run(**kwargs):
+    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
+    opt = parse_opt(True)
+    for k, v in kwargs.items():
+        setattr(opt, k, v)
+    main(opt)
+    return opt
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/src/yolov5/tutorial.ipynb b/src/yolov5/tutorial.ipynb
new file mode 100644
index 00000000..09b2b33b
--- /dev/null
+++ b/src/yolov5/tutorial.ipynb
@@ -0,0 +1,1102 @@
+{
+  "nbformat": 4,
+  "nbformat_minor": 0,
+  "metadata": {
+    "colab": {
+      "name": "YOLOv5 Tutorial",
+      "provenance": [],
+      "collapsed_sections": [],
+      "include_colab_link": true
+    },
+    "kernelspec": {
+      "name": "python3",
+      "display_name": "Python 3"
+    },
+    "accelerator": "GPU",
+    "widgets": {
+      "application/vnd.jupyter.widget-state+json": {
+        "eb95db7cae194218b3fcefb439b6352f": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HBoxModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "HBoxView",
+            "_dom_classes": [],
+            "_model_name": "HBoxModel",
+            "_view_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "_view_count": null,
+            "_view_module_version": "1.5.0",
+            "box_style": "",
+            "layout": "IPY_MODEL_769ecde6f2e64bacb596ce972f8d3d2d",
+            "_model_module": "@jupyter-widgets/controls",
+            "children": [
+              "IPY_MODEL_384a001876054c93b0af45cd1e960bfe",
+              "IPY_MODEL_dded0aeae74440f7ba2ffa0beb8dd612",
+              "IPY_MODEL_5296d28be75740b2892ae421bbec3657"
+            ]
+          }
+        },
+        "769ecde6f2e64bacb596ce972f8d3d2d": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_view_name": "LayoutView",
+            "grid_template_rows": null,
+            "right": null,
+            "justify_content": null,
+            "_view_module": "@jupyter-widgets/base",
+            "overflow": null,
+            "_model_module_version": "1.2.0",
+            "_view_count": null,
+            "flex_flow": null,
+            "width": null,
+            "min_width": null,
+            "border": null,
+            "align_items": null,
+            "bottom": null,
+            "_model_module": "@jupyter-widgets/base",
+            "top": null,
+            "grid_column": null,
+            "overflow_y": null,
+            "overflow_x": null,
+            "grid_auto_flow": null,
+            "grid_area": null,
+            "grid_template_columns": null,
+            "flex": null,
+            "_model_name": "LayoutModel",
+            "justify_items": null,
+            "grid_row": null,
+            "max_height": null,
+            "align_content": null,
+            "visibility": null,
+            "align_self": null,
+            "height": null,
+            "min_height": null,
+            "padding": null,
+            "grid_auto_rows": null,
+            "grid_gap": null,
+            "max_width": null,
+            "order": null,
+            "_view_module_version": "1.2.0",
+            "grid_template_areas": null,
+            "object_position": null,
+            "object_fit": null,
+            "grid_auto_columns": null,
+            "margin": null,
+            "display": null,
+            "left": null
+          }
+        },
+        "384a001876054c93b0af45cd1e960bfe": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "HTMLView",
+            "style": "IPY_MODEL_9f09facb2a6c4a7096810d327c8b551c",
+            "_dom_classes": [],
+            "description": "",
+            "_model_name": "HTMLModel",
+            "placeholder": "​",
+            "_view_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "value": "100%",
+            "_view_count": null,
+            "_view_module_version": "1.5.0",
+            "description_tooltip": null,
+            "_model_module": "@jupyter-widgets/controls",
+            "layout": "IPY_MODEL_25621cff5d16448cb7260e839fd0f543"
+          }
+        },
+        "dded0aeae74440f7ba2ffa0beb8dd612": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "FloatProgressModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "ProgressView",
+            "style": "IPY_MODEL_0ce7164fc0c74bb9a2b5c7037375a727",
+            "_dom_classes": [],
+            "description": "",
+            "_model_name": "FloatProgressModel",
+            "bar_style": "success",
+            "max": 818322941,
+            "_view_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "value": 818322941,
+            "_view_count": null,
+            "_view_module_version": "1.5.0",
+            "orientation": "horizontal",
+            "min": 0,
+            "description_tooltip": null,
+            "_model_module": "@jupyter-widgets/controls",
+            "layout": "IPY_MODEL_c4c4593c10904cb5b8a5724d60c7e181"
+          }
+        },
+        "5296d28be75740b2892ae421bbec3657": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "HTMLModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "HTMLView",
+            "style": "IPY_MODEL_473371611126476c88d5d42ec7031ed6",
+            "_dom_classes": [],
+            "description": "",
+            "_model_name": "HTMLModel",
+            "placeholder": "​",
+            "_view_module": "@jupyter-widgets/controls",
+            "_model_module_version": "1.5.0",
+            "value": " 780M/780M [00:11&lt;00:00, 91.9MB/s]",
+            "_view_count": null,
+            "_view_module_version": "1.5.0",
+            "description_tooltip": null,
+            "_model_module": "@jupyter-widgets/controls",
+            "layout": "IPY_MODEL_65efdfd0d26c46e79c8c5ff3b77126cc"
+          }
+        },
+        "9f09facb2a6c4a7096810d327c8b551c": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "StyleView",
+            "_model_name": "DescriptionStyleModel",
+            "description_width": "",
+            "_view_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.5.0",
+            "_view_count": null,
+            "_view_module_version": "1.2.0",
+            "_model_module": "@jupyter-widgets/controls"
+          }
+        },
+        "25621cff5d16448cb7260e839fd0f543": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_view_name": "LayoutView",
+            "grid_template_rows": null,
+            "right": null,
+            "justify_content": null,
+            "_view_module": "@jupyter-widgets/base",
+            "overflow": null,
+            "_model_module_version": "1.2.0",
+            "_view_count": null,
+            "flex_flow": null,
+            "width": null,
+            "min_width": null,
+            "border": null,
+            "align_items": null,
+            "bottom": null,
+            "_model_module": "@jupyter-widgets/base",
+            "top": null,
+            "grid_column": null,
+            "overflow_y": null,
+            "overflow_x": null,
+            "grid_auto_flow": null,
+            "grid_area": null,
+            "grid_template_columns": null,
+            "flex": null,
+            "_model_name": "LayoutModel",
+            "justify_items": null,
+            "grid_row": null,
+            "max_height": null,
+            "align_content": null,
+            "visibility": null,
+            "align_self": null,
+            "height": null,
+            "min_height": null,
+            "padding": null,
+            "grid_auto_rows": null,
+            "grid_gap": null,
+            "max_width": null,
+            "order": null,
+            "_view_module_version": "1.2.0",
+            "grid_template_areas": null,
+            "object_position": null,
+            "object_fit": null,
+            "grid_auto_columns": null,
+            "margin": null,
+            "display": null,
+            "left": null
+          }
+        },
+        "0ce7164fc0c74bb9a2b5c7037375a727": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "ProgressStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "StyleView",
+            "_model_name": "ProgressStyleModel",
+            "description_width": "",
+            "_view_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.5.0",
+            "_view_count": null,
+            "_view_module_version": "1.2.0",
+            "bar_color": null,
+            "_model_module": "@jupyter-widgets/controls"
+          }
+        },
+        "c4c4593c10904cb5b8a5724d60c7e181": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_view_name": "LayoutView",
+            "grid_template_rows": null,
+            "right": null,
+            "justify_content": null,
+            "_view_module": "@jupyter-widgets/base",
+            "overflow": null,
+            "_model_module_version": "1.2.0",
+            "_view_count": null,
+            "flex_flow": null,
+            "width": null,
+            "min_width": null,
+            "border": null,
+            "align_items": null,
+            "bottom": null,
+            "_model_module": "@jupyter-widgets/base",
+            "top": null,
+            "grid_column": null,
+            "overflow_y": null,
+            "overflow_x": null,
+            "grid_auto_flow": null,
+            "grid_area": null,
+            "grid_template_columns": null,
+            "flex": null,
+            "_model_name": "LayoutModel",
+            "justify_items": null,
+            "grid_row": null,
+            "max_height": null,
+            "align_content": null,
+            "visibility": null,
+            "align_self": null,
+            "height": null,
+            "min_height": null,
+            "padding": null,
+            "grid_auto_rows": null,
+            "grid_gap": null,
+            "max_width": null,
+            "order": null,
+            "_view_module_version": "1.2.0",
+            "grid_template_areas": null,
+            "object_position": null,
+            "object_fit": null,
+            "grid_auto_columns": null,
+            "margin": null,
+            "display": null,
+            "left": null
+          }
+        },
+        "473371611126476c88d5d42ec7031ed6": {
+          "model_module": "@jupyter-widgets/controls",
+          "model_name": "DescriptionStyleModel",
+          "model_module_version": "1.5.0",
+          "state": {
+            "_view_name": "StyleView",
+            "_model_name": "DescriptionStyleModel",
+            "description_width": "",
+            "_view_module": "@jupyter-widgets/base",
+            "_model_module_version": "1.5.0",
+            "_view_count": null,
+            "_view_module_version": "1.2.0",
+            "_model_module": "@jupyter-widgets/controls"
+          }
+        },
+        "65efdfd0d26c46e79c8c5ff3b77126cc": {
+          "model_module": "@jupyter-widgets/base",
+          "model_name": "LayoutModel",
+          "model_module_version": "1.2.0",
+          "state": {
+            "_view_name": "LayoutView",
+            "grid_template_rows": null,
+            "right": null,
+            "justify_content": null,
+            "_view_module": "@jupyter-widgets/base",
+            "overflow": null,
+            "_model_module_version": "1.2.0",
+            "_view_count": null,
+            "flex_flow": null,
+            "width": null,
+            "min_width": null,
+            "border": null,
+            "align_items": null,
+            "bottom": null,
+            "_model_module": "@jupyter-widgets/base",
+            "top": null,
+            "grid_column": null,
+            "overflow_y": null,
+            "overflow_x": null,
+            "grid_auto_flow": null,
+            "grid_area": null,
+            "grid_template_columns": null,
+            "flex": null,
+            "_model_name": "LayoutModel",
+            "justify_items": null,
+            "grid_row": null,
+            "max_height": null,
+            "align_content": null,
+            "visibility": null,
+            "align_self": null,
+            "height": null,
+            "min_height": null,
+            "padding": null,
+            "grid_auto_rows": null,
+            "grid_gap": null,
+            "max_width": null,
+            "order": null,
+            "_view_module_version": "1.2.0",
+            "grid_template_areas": null,
+            "object_position": null,
+            "object_fit": null,
+            "grid_auto_columns": null,
+            "margin": null,
+            "display": null,
+            "left": null
+          }
+        }
+      }
+    }
+  },
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "view-in-github",
+        "colab_type": "text"
+      },
+      "source": [
+        "<a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "t6MPjfT5NrKQ"
+      },
+      "source": [
+        "<a align=\"left\" href=\"https://ultralytics.com/yolov5\" target=\"_blank\">\n",
+        "<img width=\"1024\", src=\"https://user-images.githubusercontent.com/26833433/125273437-35b3fc00-e30d-11eb-9079-46f313325424.png\"></a>\n",
+        "\n",
+        "This is the **official YOLOv5 🚀 notebook** by **Ultralytics**, and is freely available for redistribution under the [GPL-3.0 license](https://choosealicense.com/licenses/gpl-3.0/). \n",
+        "For more information please visit https://github.com/ultralytics/yolov5 and https://ultralytics.com. Thank you!"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "7mGmQbAO5pQb"
+      },
+      "source": [
+        "# Setup\n",
+        "\n",
+        "Clone repo, install dependencies and check PyTorch and GPU."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "wbvMlHd_QwMG",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "3809e5a9-dd41-4577-fe62-5531abf7cca2"
+      },
+      "source": [
+        "!git clone https://github.com/ultralytics/yolov5  # clone\n",
+        "%cd yolov5\n",
+        "%pip install -qr requirements.txt  # install\n",
+        "\n",
+        "import torch\n",
+        "from yolov5 import utils\n",
+        "display = utils.notebook_init()  # checks"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+            "Setup complete ✅\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "4JnkELT0cIJg"
+      },
+      "source": [
+        "# 1. Inference\n",
+        "\n",
+        "`detect.py` runs YOLOv5 inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases), and saving results to `runs/detect`. Example inference sources are:\n",
+        "\n",
+        "```shell\n",
+        "python detect.py --source 0  # webcam\n",
+        "                          img.jpg  # image \n",
+        "                          vid.mp4  # video\n",
+        "                          path/  # directory\n",
+        "                          path/*.jpg  # glob\n",
+        "                          'https://youtu.be/Zgi9g1ksQHc'  # YouTube\n",
+        "                          'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream\n",
+        "```"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "zR9ZbuQCH7FX",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "8f7e6588-215d-4ebd-93af-88b871e770a7"
+      },
+      "source": [
+        "!python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images\n",
+        "display.Image(filename='runs/detect/exp/zidane.jpg', width=600)"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mdetect: \u001b[0mweights=['yolov5s.pt'], source=data/images, imgsz=[640, 640], conf_thres=0.25, iou_thres=0.45, max_det=1000, device=, view_img=False, save_txt=False, save_conf=False, save_crop=False, nosave=False, classes=None, agnostic_nms=False, augment=False, visualize=False, update=False, project=runs/detect, name=exp, exist_ok=False, line_thickness=3, hide_labels=False, hide_conf=False, half=False, dnn=False\n",
+            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model Summary: 213 layers, 7225885 parameters, 0 gradients\n",
+            "image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.007s)\n",
+            "image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.007s)\n",
+            "Speed: 0.5ms pre-process, 6.9ms inference, 1.3ms NMS per image at shape (1, 3, 640, 640)\n",
+            "Results saved to \u001b[1mruns/detect/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "hkAzDWJ7cWTr"
+      },
+      "source": [
+        "&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;\n",
+        "<img align=\"left\" src=\"https://user-images.githubusercontent.com/26833433/127574988-6a558aa1-d268-44b9-bf6b-62d4c605cc72.jpg\" width=\"600\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "0eq1SMWl6Sfn"
+      },
+      "source": [
+        "# 2. Validate\n",
+        "Validate a model's accuracy on [COCO](https://cocodataset.org/#home) val or test-dev datasets. Models are downloaded automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases). To show results by class use the `--verbose` flag. Note that `pycocotools` metrics may be ~1% better than the equivalent repo metrics, as is visible below, due to slight differences in mAP computation."
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "eyTZYGgRjnMc"
+      },
+      "source": [
+        "## COCO val\n",
+        "Download [COCO val 2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L14) dataset (1GB - 5000 images), and test model accuracy."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "WQPtK1QYVaD_",
+        "colab": {
+          "base_uri": "https://localhost:8080/",
+          "height": 48,
+          "referenced_widgets": [
+            "eb95db7cae194218b3fcefb439b6352f",
+            "769ecde6f2e64bacb596ce972f8d3d2d",
+            "384a001876054c93b0af45cd1e960bfe",
+            "dded0aeae74440f7ba2ffa0beb8dd612",
+            "5296d28be75740b2892ae421bbec3657",
+            "9f09facb2a6c4a7096810d327c8b551c",
+            "25621cff5d16448cb7260e839fd0f543",
+            "0ce7164fc0c74bb9a2b5c7037375a727",
+            "c4c4593c10904cb5b8a5724d60c7e181",
+            "473371611126476c88d5d42ec7031ed6",
+            "65efdfd0d26c46e79c8c5ff3b77126cc"
+          ]
+        },
+        "outputId": "bcf9a448-1f9b-4a41-ad49-12f181faf05a"
+      },
+      "source": [
+        "# Download COCO val\n",
+        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017val.zip', 'tmp.zip')\n",
+        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/vnd.jupyter.widget-view+json": {
+              "model_id": "eb95db7cae194218b3fcefb439b6352f",
+              "version_minor": 0,
+              "version_major": 2
+            },
+            "text/plain": [
+              "  0%|          | 0.00/780M [00:00<?, ?B/s]"
+            ]
+          },
+          "metadata": {}
+        }
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "X58w8JLpMnjH",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "74f1dfa9-6b6d-4b36-f67e-bbae243869f9"
+      },
+      "source": [
+        "# Run YOLOv5x on COCO val\n",
+        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mval: \u001b[0mdata=/content/yolov5/data/coco.yaml, weights=['yolov5x.pt'], batch_size=32, imgsz=640, conf_thres=0.001, iou_thres=0.65, task=val, device=, single_cls=False, augment=False, verbose=False, save_txt=False, save_hybrid=False, save_conf=False, save_json=True, project=runs/val, name=exp, exist_ok=False, half=True\n",
+            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+            "\n",
+            "Downloading https://github.com/ultralytics/yolov5/releases/download/v6.0/yolov5x.pt to yolov5x.pt...\n",
+            "100% 166M/166M [00:03<00:00, 54.1MB/s]\n",
+            "\n",
+            "Fusing layers... \n",
+            "Model Summary: 444 layers, 86705005 parameters, 0 gradients\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco/val2017' images and labels...4952 found, 48 missing, 0 empty, 0 corrupted: 100% 5000/5000 [00:01<00:00, 2636.64it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mNew cache created: ../datasets/coco/val2017.cache\n",
+            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 157/157 [01:12<00:00,  2.17it/s]\n",
+            "                 all       5000      36335      0.729       0.63      0.683      0.496\n",
+            "Speed: 0.1ms pre-process, 4.9ms inference, 1.9ms NMS per image at shape (32, 3, 640, 640)\n",
+            "\n",
+            "Evaluating pycocotools mAP... saving runs/val/exp/yolov5x_predictions.json...\n",
+            "loading annotations into memory...\n",
+            "Done (t=0.46s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Loading and preparing results...\n",
+            "DONE (t=5.15s)\n",
+            "creating index...\n",
+            "index created!\n",
+            "Running per image evaluation...\n",
+            "Evaluate annotation type *bbox*\n",
+            "DONE (t=90.39s).\n",
+            "Accumulating evaluation results...\n",
+            "DONE (t=14.54s).\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.507\n",
+            " Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.689\n",
+            " Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.552\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.345\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.559\n",
+            " Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.381\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.630\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.682\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.526\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.732\n",
+            " Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829\n",
+            "Results saved to \u001b[1mruns/val/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "rc_KbFk0juX2"
+      },
+      "source": [
+        "## COCO test\n",
+        "Download [COCO test2017](https://github.com/ultralytics/yolov5/blob/74b34872fdf41941cddcf243951cdb090fbac17b/data/coco.yaml#L15) dataset (7GB - 40,000 images), to test model accuracy on test-dev set (**20,000 images, no labels**). Results are saved to a `*.json` file which should be **zipped** and submitted to the evaluation server at https://competitions.codalab.org/competitions/20794."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "V0AJnSeCIHyJ"
+      },
+      "source": [
+        "# Download COCO test-dev2017\n",
+        "torch.hub.download_url_to_file('https://ultralytics.com/assets/coco2017labels.zip', 'tmp.zip')\n",
+        "!unzip -q tmp.zip -d ../datasets && rm tmp.zip\n",
+        "!f=\"test2017.zip\" && curl http://images.cocodataset.org/zips/$f -o $f && unzip -q $f -d ../datasets/coco/images"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "29GJXAP_lPrt"
+      },
+      "source": [
+        "# Run YOLOv5x on COCO test\n",
+        "!python val.py --weights yolov5x.pt --data coco.yaml --img 640 --iou 0.65 --half --task test"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "ZY2VXXXu74w5"
+      },
+      "source": [
+        "# 3. Train\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"1000\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png\"/></a></p>\n",
+        "Close the active learning loop by sampling images from your inference conditions with the `roboflow` pip package\n",
+        "<br><br>\n",
+        "\n",
+        "Train a YOLOv5s model on the [COCO128](https://www.kaggle.com/ultralytics/coco128) dataset with `--data coco128.yaml`, starting from pretrained `--weights yolov5s.pt`, or from randomly initialized `--weights '' --cfg yolov5s.yaml`.\n",
+        "\n",
+        "- **Pretrained [Models](https://github.com/ultralytics/yolov5/tree/master/models)** are downloaded\n",
+        "automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases)\n",
+        "- **[Datasets](https://github.com/ultralytics/yolov5/tree/master/data)** available for autodownload include: [COCO](https://github.com/ultralytics/yolov5/blob/master/data/coco.yaml), [COCO128](https://github.com/ultralytics/yolov5/blob/master/data/coco128.yaml), [VOC](https://github.com/ultralytics/yolov5/blob/master/data/VOC.yaml), [Argoverse](https://github.com/ultralytics/yolov5/blob/master/data/Argoverse.yaml), [VisDrone](https://github.com/ultralytics/yolov5/blob/master/data/VisDrone.yaml), [GlobalWheat](https://github.com/ultralytics/yolov5/blob/master/data/GlobalWheat2020.yaml), [xView](https://github.com/ultralytics/yolov5/blob/master/data/xView.yaml), [Objects365](https://github.com/ultralytics/yolov5/blob/master/data/Objects365.yaml), [SKU-110K](https://github.com/ultralytics/yolov5/blob/master/data/SKU-110K.yaml).\n",
+        "- **Training Results** are saved to `runs/train/` with incrementing run directories, i.e. `runs/train/exp2`, `runs/train/exp3` etc.\n",
+        "<br><br>\n",
+        "\n",
+        "## Train on Custom Data with Roboflow 🌟 NEW\n",
+        "\n",
+        "[Roboflow](https://roboflow.com/?ref=ultralytics) enables you to easily **organize, label, and prepare** a high quality dataset with your own custom data. Roboflow also makes it easy to establish an active learning pipeline, collaborate with your team on dataset improvement, and integrate directly into your model building workflow with the `roboflow` pip package.\n",
+        "\n",
+        "- Custom Training Example: [https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/](https://blog.roboflow.com/how-to-train-yolov5-on-a-custom-dataset/?ref=ultralytics)\n",
+        "- Custom Training Notebook: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/roboflow-ai/yolov5-custom-training-tutorial/blob/main/yolov5-custom-training.ipynb)\n",
+        "<br>\n",
+        "\n",
+        "<p align=\"\"><a href=\"https://roboflow.com/?ref=ultralytics\"><img width=\"480\" src=\"https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/6152a275ad4b4ac20cd2e21a_roboflow-annotate.gif\"/></a></p>Label images lightning fast (including with model-assisted labeling)"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "bOy5KI2ncnWd"
+      },
+      "source": [
+        "# Tensorboard  (optional)\n",
+        "%load_ext tensorboard\n",
+        "%tensorboard --logdir runs/train"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "2fLAV42oNb7M"
+      },
+      "source": [
+        "# Weights & Biases  (optional)\n",
+        "%pip install -q wandb\n",
+        "import wandb\n",
+        "wandb.login()"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "1NcFxRcFdJ_O",
+        "colab": {
+          "base_uri": "https://localhost:8080/"
+        },
+        "outputId": "8724d13d-6711-4a12-d96a-1c655e5c3549"
+      },
+      "source": [
+        "# Train YOLOv5s on COCO128 for 3 epochs\n",
+        "!python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache"
+      ],
+      "execution_count": null,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[34m\u001b[1mtrain: \u001b[0mweights=yolov5s.pt, cfg=, data=coco128.yaml, hyp=data/hyps/hyp.scratch.yaml, epochs=3, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, evolve=None, bucket=, cache=ram, image_weights=False, device=, multi_scale=False, single_cls=False, adam=False, sync_bn=False, workers=8, project=runs/train, name=exp, exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, patience=100, freeze=0, save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest\n",
+            "\u001b[34m\u001b[1mgithub: \u001b[0mup to date with https://github.com/ultralytics/yolov5 ✅\n",
+            "YOLOv5 🚀 v6.0-48-g84a8099 torch 1.10.0+cu102 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)\n",
+            "\n",
+            "\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0\n",
+            "\u001b[34m\u001b[1mWeights & Biases: \u001b[0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)\n",
+            "\u001b[34m\u001b[1mTensorBoard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n",
+            "\n",
+            "                 from  n    params  module                                  arguments                     \n",
+            "  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]              \n",
+            "  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]                \n",
+            "  2                -1  1     18816  models.common.C3                        [64, 64, 1]                   \n",
+            "  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               \n",
+            "  4                -1  2    115712  models.common.C3                        [128, 128, 2]                 \n",
+            "  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]              \n",
+            "  6                -1  3    625152  models.common.C3                        [256, 256, 3]                 \n",
+            "  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]              \n",
+            "  8                -1  1   1182720  models.common.C3                        [512, 512, 1]                 \n",
+            "  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]                 \n",
+            " 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]              \n",
+            " 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 12           [-1, 6]  1         0  models.common.Concat                    [1]                           \n",
+            " 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]          \n",
+            " 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]              \n",
+            " 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          \n",
+            " 16           [-1, 4]  1         0  models.common.Concat                    [1]                           \n",
+            " 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]          \n",
+            " 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]              \n",
+            " 19          [-1, 14]  1         0  models.common.Concat                    [1]                           \n",
+            " 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]          \n",
+            " 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]              \n",
+            " 22          [-1, 10]  1         0  models.common.Concat                    [1]                           \n",
+            " 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]          \n",
+            " 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]\n",
+            "Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.5 GFLOPs\n",
+            "\n",
+            "Transferred 349/349 items from yolov5s.pt\n",
+            "Scaled weight_decay = 0.0005\n",
+            "\u001b[34m\u001b[1moptimizer:\u001b[0m SGD with parameter groups 57 weight, 60 weight (no decay), 60 bias\n",
+            "\u001b[34m\u001b[1malbumentations: \u001b[0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mtrain: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:00<00:00, 296.04it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mScanning '../datasets/coco128/labels/train2017.cache' images and labels... 128 found, 0 missing, 2 empty, 0 corrupted: 100% 128/128 [00:00<?, ?it/s]\n",
+            "\u001b[34m\u001b[1mval: \u001b[0mCaching images (0.1GB ram): 100% 128/128 [00:01<00:00, 121.58it/s]\n",
+            "Plotting labels... \n",
+            "\n",
+            "\u001b[34m\u001b[1mAutoAnchor: \u001b[0mAnalyzing anchors... anchors/target = 4.27, Best Possible Recall (BPR) = 0.9935\n",
+            "Image sizes 640 train, 640 val\n",
+            "Using 2 dataloader workers\n",
+            "Logging results to \u001b[1mruns/train/exp\u001b[0m\n",
+            "Starting training for 3 epochs...\n",
+            "\n",
+            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
+            "       0/2     3.62G   0.04621    0.0711   0.02112       203       640: 100% 8/8 [00:04<00:00,  1.99it/s]\n",
+            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.37it/s]\n",
+            "                 all        128        929      0.655      0.547      0.622       0.41\n",
+            "\n",
+            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
+            "       1/2     5.31G   0.04564   0.06898   0.02116       143       640: 100% 8/8 [00:01<00:00,  4.77it/s]\n",
+            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.27it/s]\n",
+            "                 all        128        929       0.68      0.554      0.632      0.419\n",
+            "\n",
+            "     Epoch   gpu_mem       box       obj       cls    labels  img_size\n",
+            "       2/2     5.31G   0.04487   0.06883   0.01998       253       640: 100% 8/8 [00:01<00:00,  4.91it/s]\n",
+            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:00<00:00,  4.30it/s]\n",
+            "                 all        128        929       0.71      0.544      0.629      0.423\n",
+            "\n",
+            "3 epochs completed in 0.003 hours.\n",
+            "Optimizer stripped from runs/train/exp/weights/last.pt, 14.9MB\n",
+            "Optimizer stripped from runs/train/exp/weights/best.pt, 14.9MB\n",
+            "\n",
+            "Validating runs/train/exp/weights/best.pt...\n",
+            "Fusing layers... \n",
+            "Model Summary: 213 layers, 7225885 parameters, 0 gradients, 16.5 GFLOPs\n",
+            "               Class     Images     Labels          P          R     mAP@.5 mAP@.5:.95: 100% 4/4 [00:03<00:00,  1.04it/s]\n",
+            "                 all        128        929       0.71      0.544       0.63      0.423\n",
+            "              person        128        254      0.816      0.669      0.774      0.507\n",
+            "             bicycle        128          6      0.799      0.667      0.614      0.371\n",
+            "                 car        128         46      0.803      0.355      0.486      0.209\n",
+            "          motorcycle        128          5      0.704        0.6      0.791      0.583\n",
+            "            airplane        128          6          1      0.795      0.995      0.717\n",
+            "                 bus        128          7      0.656      0.714       0.72      0.606\n",
+            "               train        128          3      0.852          1      0.995      0.682\n",
+            "               truck        128         12      0.521       0.25      0.395      0.215\n",
+            "                boat        128          6      0.795      0.333      0.445      0.137\n",
+            "       traffic light        128         14      0.576      0.143       0.24      0.161\n",
+            "           stop sign        128          2      0.636        0.5      0.828      0.713\n",
+            "               bench        128          9      0.972      0.444      0.575       0.25\n",
+            "                bird        128         16      0.939      0.968      0.988      0.645\n",
+            "                 cat        128          4      0.984       0.75      0.822      0.694\n",
+            "                 dog        128          9      0.888      0.667      0.903       0.54\n",
+            "               horse        128          2      0.689          1      0.995      0.697\n",
+            "            elephant        128         17       0.96      0.882      0.943      0.681\n",
+            "                bear        128          1      0.549          1      0.995      0.995\n",
+            "               zebra        128          4       0.86          1      0.995      0.952\n",
+            "             giraffe        128          9      0.822      0.778      0.905       0.57\n",
+            "            backpack        128          6          1      0.309      0.457      0.195\n",
+            "            umbrella        128         18      0.775      0.576       0.74      0.418\n",
+            "             handbag        128         19      0.628      0.105      0.167      0.111\n",
+            "                 tie        128          7       0.96      0.571      0.701      0.441\n",
+            "            suitcase        128          4          1      0.895      0.995      0.621\n",
+            "             frisbee        128          5      0.641        0.8      0.798      0.664\n",
+            "                skis        128          1      0.627          1      0.995      0.497\n",
+            "           snowboard        128          7      0.988      0.714      0.768      0.556\n",
+            "         sports ball        128          6      0.671        0.5      0.579      0.339\n",
+            "                kite        128         10      0.631      0.515      0.598      0.221\n",
+            "        baseball bat        128          4       0.47      0.456      0.277      0.137\n",
+            "      baseball glove        128          7      0.459      0.429      0.334      0.182\n",
+            "          skateboard        128          5        0.7       0.48      0.736      0.548\n",
+            "       tennis racket        128          7      0.559      0.571      0.538      0.315\n",
+            "              bottle        128         18      0.607      0.389      0.484      0.282\n",
+            "          wine glass        128         16      0.722      0.812       0.82      0.385\n",
+            "                 cup        128         36      0.881      0.361      0.532      0.312\n",
+            "                fork        128          6      0.384      0.167      0.239      0.191\n",
+            "               knife        128         16      0.908      0.616      0.681      0.443\n",
+            "               spoon        128         22      0.836      0.364      0.536      0.264\n",
+            "                bowl        128         28      0.793      0.536      0.633      0.471\n",
+            "              banana        128          1          0          0      0.142     0.0995\n",
+            "            sandwich        128          2          0          0     0.0951     0.0717\n",
+            "              orange        128          4          1          0       0.67      0.317\n",
+            "            broccoli        128         11      0.345      0.182      0.283      0.243\n",
+            "              carrot        128         24      0.688      0.459      0.612      0.402\n",
+            "             hot dog        128          2      0.424      0.771      0.497      0.473\n",
+            "               pizza        128          5      0.622          1      0.824      0.551\n",
+            "               donut        128         14      0.703          1      0.952      0.853\n",
+            "                cake        128          4      0.733          1      0.945      0.777\n",
+            "               chair        128         35      0.512      0.486      0.488      0.222\n",
+            "               couch        128          6       0.68       0.36      0.746      0.406\n",
+            "        potted plant        128         14      0.797      0.714      0.808      0.482\n",
+            "                 bed        128          3          1          0      0.474      0.318\n",
+            "        dining table        128         13      0.852      0.445      0.478      0.315\n",
+            "              toilet        128          2      0.512        0.5      0.554      0.487\n",
+            "                  tv        128          2      0.754          1      0.995      0.895\n",
+            "              laptop        128          3          1          0       0.39      0.147\n",
+            "               mouse        128          2          1          0     0.0283     0.0226\n",
+            "              remote        128          8      0.747      0.625      0.636      0.488\n",
+            "          cell phone        128          8      0.555      0.166      0.417      0.222\n",
+            "           microwave        128          3      0.417          1      0.995      0.732\n",
+            "                oven        128          5       0.37        0.4      0.432      0.249\n",
+            "                sink        128          6      0.356      0.167      0.269      0.149\n",
+            "        refrigerator        128          5      0.705        0.8      0.814       0.45\n",
+            "                book        128         29      0.628      0.138      0.298      0.136\n",
+            "               clock        128          9      0.857      0.778      0.893      0.574\n",
+            "                vase        128          2      0.242          1      0.663      0.622\n",
+            "            scissors        128          1          1          0     0.0207    0.00207\n",
+            "          teddy bear        128         21      0.847      0.381      0.622      0.345\n",
+            "          toothbrush        128          5       0.99        0.6      0.662       0.45\n",
+            "Results saved to \u001b[1mruns/train/exp\u001b[0m\n"
+          ]
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "15glLzbQx5u0"
+      },
+      "source": [
+        "# 4. Visualize"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "DLI1JmHU7B0l"
+      },
+      "source": [
+        "## Weights & Biases Logging 🌟 NEW\n",
+        "\n",
+        "[Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_notebook) (W&B) is now integrated with YOLOv5 for real-time visualization and cloud logging of training runs. This allows for better run comparison and introspection, as well improved visibility and collaboration for teams. To enable W&B `pip install wandb`, and then train normally (you will be guided through setup on first use). \n",
+        "\n",
+        "During training you will see live updates at [https://wandb.ai/home](https://wandb.ai/home?utm_campaign=repo_yolo_notebook), and you can create and share detailed [Reports](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY) of your results. For more information see the [YOLOv5 Weights & Biases Tutorial](https://github.com/ultralytics/yolov5/issues/1289). \n",
+        "\n",
+        "<p align=\"left\"><img width=\"900\" alt=\"Weights & Biases dashboard\" src=\"https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png\"></p>"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "-WPvRbS5Swl6"
+      },
+      "source": [
+        "## Local Logging\n",
+        "\n",
+        "All results are logged by default to `runs/train`, with a new experiment directory created for each new training as `runs/train/exp2`, `runs/train/exp3`, etc. View train and val jpgs to see mosaics, labels, predictions and augmentation effects. Note an Ultralytics **Mosaic Dataloader** is used for training (shown below), which combines 4 images into 1 mosaic during training.\n",
+        "\n",
+        "> <img src=\"https://user-images.githubusercontent.com/26833433/131255960-b536647f-7c61-4f60-bbc5-cb2544d71b2a.jpg\" width=\"700\">  \n",
+        "`train_batch0.jpg` shows train batch 0 mosaics and labels\n",
+        "\n",
+        "> <img src=\"https://user-images.githubusercontent.com/26833433/131256748-603cafc7-55d1-4e58-ab26-83657761aed9.jpg\" width=\"700\">  \n",
+        "`test_batch0_labels.jpg` shows val batch 0 labels\n",
+        "\n",
+        "> <img src=\"https://user-images.githubusercontent.com/26833433/131256752-3f25d7a5-7b0f-4bb3-ab78-46343c3800fe.jpg\" width=\"700\">  \n",
+        "`test_batch0_pred.jpg` shows val batch 0 _predictions_\n",
+        "\n",
+        "Training results are automatically logged to [Tensorboard](https://www.tensorflow.org/tensorboard) and [CSV](https://github.com/ultralytics/yolov5/pull/4148) as `results.csv`, which is plotted as `results.png` (below) after training completes. You can also plot any `results.csv` file manually:\n",
+        "\n",
+        "```python\n",
+        "from utils.plots import plot_results \n",
+        "plot_results('path/to/results.csv')  # plot 'results.csv' as 'results.png'\n",
+        "```\n",
+        "\n",
+        "<img align=\"left\" width=\"800\" alt=\"COCO128 Training Results\" src=\"https://user-images.githubusercontent.com/26833433/126906780-8c5e2990-6116-4de6-b78a-367244a33ccf.png\">"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "Zelyeqbyt3GD"
+      },
+      "source": [
+        "# Environments\n",
+        "\n",
+        "YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):\n",
+        "\n",
+        "- **Google Colab and Kaggle** notebooks with free GPU: <a href=\"https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a> <a href=\"https://www.kaggle.com/ultralytics/yolov5\"><img src=\"https://kaggle.com/static/images/open-in-kaggle.svg\" alt=\"Open In Kaggle\"></a>\n",
+        "- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)\n",
+        "- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)\n",
+        "- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href=\"https://hub.docker.com/r/ultralytics/yolov5\"><img src=\"https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker\" alt=\"Docker Pulls\"></a>\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "6Qu7Iesl0p54"
+      },
+      "source": [
+        "# Status\n",
+        "\n",
+        "![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)\n",
+        "\n",
+        "If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), testing ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "IEijrePND_2I"
+      },
+      "source": [
+        "# Appendix\n",
+        "\n",
+        "Optional extras below. Unit tests validate repo functionality and should be run on any PRs submitted.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "mcKoSIK2WSzj"
+      },
+      "source": [
+        "# Reproduce\n",
+        "for x in 'yolov5n', 'yolov5s', 'yolov5m', 'yolov5l', 'yolov5x':\n",
+        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --task speed  # speed\n",
+        "  !python val.py --weights {x}.pt --data coco.yaml --img 640 --conf 0.001 --iou 0.65  # mAP"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "GMusP4OAxFu6"
+      },
+      "source": [
+        "# PyTorch Hub\n",
+        "import torch\n",
+        "\n",
+        "# Model\n",
+        "model = torch.hub.load('ultralytics/yolov5', 'yolov5s')\n",
+        "\n",
+        "# Images\n",
+        "dir = 'https://ultralytics.com/images/'\n",
+        "imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')]  # batch of images\n",
+        "\n",
+        "# Inference\n",
+        "results = model(imgs)\n",
+        "results.print()  # or .show(), .save()"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "FGH0ZjkGjejy"
+      },
+      "source": [
+        "# CI Checks\n",
+        "%%shell\n",
+        "export PYTHONPATH=\"$PWD\"  # to run *.py. files in subdirectories\n",
+        "rm -rf runs  # remove runs/\n",
+        "for m in yolov5n; do  # models\n",
+        "  python train.py --img 64 --batch 32 --weights $m.pt --epochs 1 --device 0  # train pretrained\n",
+        "  python train.py --img 64 --batch 32 --weights '' --cfg $m.yaml --epochs 1 --device 0  # train scratch\n",
+        "  for d in 0 cpu; do  # devices\n",
+        "    python val.py --weights $m.pt --device $d # val official\n",
+        "    python val.py --weights runs/train/exp/weights/best.pt --device $d # val custom\n",
+        "    python detect.py --weights $m.pt --device $d  # detect official\n",
+        "    python detect.py --weights runs/train/exp/weights/best.pt --device $d  # detect custom\n",
+        "  done\n",
+        "  python hubconf.py  # hub\n",
+        "  python models/yolo.py --cfg $m.yaml  # build PyTorch model\n",
+        "  python models/tf.py --weights $m.pt  # build TensorFlow model\n",
+        "  python export.py --img 64 --batch 1 --weights $m.pt --include torchscript onnx  # export\n",
+        "done"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "gogI-kwi3Tye"
+      },
+      "source": [
+        "# Profile\n",
+        "from utils.torch_utils import profile\n",
+        "\n",
+        "m1 = lambda x: x * torch.sigmoid(x)\n",
+        "m2 = torch.nn.SiLU()\n",
+        "results = profile(input=torch.randn(16, 3, 640, 640), ops=[m1, m2], n=100)"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "RVRSOhEvUdb5"
+      },
+      "source": [
+        "# Evolve\n",
+        "!python train.py --img 640 --batch 64 --epochs 100 --data coco128.yaml --weights yolov5s.pt --cache --noautoanchor --evolve\n",
+        "!d=runs/train/evolve && cp evolve.* $d && zip -r evolve.zip $d && gsutil mv evolve.zip gs://bucket  # upload results (optional)"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "BSgFCAcMbk1R"
+      },
+      "source": [
+        "# VOC\n",
+        "for b, m in zip([64, 64, 32, 16], ['yolov5s', 'yolov5m', 'yolov5l', 'yolov5x']):  # zip(batch_size, model)\n",
+        "  !python train.py --batch {b} --weights {m}.pt --data VOC.yaml --epochs 50 --cache --img 512 --nosave --hyp hyp.finetune.yaml --project VOC --name {m}"
+      ],
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "code",
+      "metadata": {
+        "id": "VTRwsvA9u7ln"
+      },
+      "source": [
+        "# TensorRT \n",
+        "# https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html#installing-pip\n",
+        "!pip install -U nvidia-tensorrt --index-url https://pypi.ngc.nvidia.com  # install\n",
+        "!python export.py --weights yolov5s.pt --include engine --imgsz 640 640 --device 0  # export\n",
+        "!python detect.py --weights yolov5s.engine --imgsz 640 640 --device 0  # inference"
+      ],
+      "execution_count": null,
+      "outputs": []
+    }
+  ]
+}
diff --git a/src/yolov5/utils/__init__.py b/src/yolov5/utils/__init__.py
new file mode 100644
index 00000000..4658ed64
--- /dev/null
+++ b/src/yolov5/utils/__init__.py
@@ -0,0 +1,37 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+utils/initialization
+"""
+
+
+def notebook_init(verbose=True):
+    # Check system software and hardware
+    print('Checking setup...')
+
+    import os
+    import shutil
+
+    from utils.general import check_requirements, emojis, is_colab
+    from utils.torch_utils import select_device  # imports
+
+    check_requirements(('psutil', 'IPython'))
+    import psutil
+    from IPython import display  # to display images and clear console output
+
+    if is_colab():
+        shutil.rmtree('/content/sample_data', ignore_errors=True)  # remove colab /sample_data directory
+
+    if verbose:
+        # System info
+        # gb = 1 / 1000 ** 3  # bytes to GB
+        gib = 1 / 1024 ** 3  # bytes to GiB
+        ram = psutil.virtual_memory().total
+        total, used, free = shutil.disk_usage("/")
+        display.clear_output()
+        s = f'({os.cpu_count()} CPUs, {ram * gib:.1f} GB RAM, {(total - free) * gib:.1f}/{total * gib:.1f} GB disk)'
+    else:
+        s = ''
+
+    select_device(newline=False)
+    print(emojis(f'Setup complete ✅ {s}'))
+    return display
diff --git a/src/yolov5/utils/activations.py b/src/yolov5/utils/activations.py
new file mode 100644
index 00000000..a4ff789c
--- /dev/null
+++ b/src/yolov5/utils/activations.py
@@ -0,0 +1,101 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Activation functions
+"""
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
+class SiLU(nn.Module):  # export-friendly version of nn.SiLU()
+    @staticmethod
+    def forward(x):
+        return x * torch.sigmoid(x)
+
+
+class Hardswish(nn.Module):  # export-friendly version of nn.Hardswish()
+    @staticmethod
+    def forward(x):
+        # return x * F.hardsigmoid(x)  # for TorchScript and CoreML
+        return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0  # for TorchScript, CoreML and ONNX
+
+
+# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
+class Mish(nn.Module):
+    @staticmethod
+    def forward(x):
+        return x * F.softplus(x).tanh()
+
+
+class MemoryEfficientMish(nn.Module):
+    class F(torch.autograd.Function):
+        @staticmethod
+        def forward(ctx, x):
+            ctx.save_for_backward(x)
+            return x.mul(torch.tanh(F.softplus(x)))  # x * tanh(ln(1 + exp(x)))
+
+        @staticmethod
+        def backward(ctx, grad_output):
+            x = ctx.saved_tensors[0]
+            sx = torch.sigmoid(x)
+            fx = F.softplus(x).tanh()
+            return grad_output * (fx + x * sx * (1 - fx * fx))
+
+    def forward(self, x):
+        return self.F.apply(x)
+
+
+# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
+class FReLU(nn.Module):
+    def __init__(self, c1, k=3):  # ch_in, kernel
+        super().__init__()
+        self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
+        self.bn = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        return torch.max(x, self.bn(self.conv(x)))
+
+
+# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
+class AconC(nn.Module):
+    r""" ACON activation (activate or not).
+    AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
+    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
+    """
+
+    def __init__(self, c1):
+        super().__init__()
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
+
+    def forward(self, x):
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
+
+
+class MetaAconC(nn.Module):
+    r""" ACON activation (activate or not).
+    MetaAconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is generated by a small network
+    according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
+    """
+
+    def __init__(self, c1, k=1, s=1, r=16):  # ch_in, kernel, stride, r
+        super().__init__()
+        c2 = max(r, c1 // r)
+        self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
+        self.fc1 = nn.Conv2d(c1, c2, k, s, bias=True)
+        self.fc2 = nn.Conv2d(c2, c1, k, s, bias=True)
+        # self.bn1 = nn.BatchNorm2d(c2)
+        # self.bn2 = nn.BatchNorm2d(c1)
+
+    def forward(self, x):
+        y = x.mean(dim=2, keepdims=True).mean(dim=3, keepdims=True)
+        # batch-size 1 bug/instabilities https://github.com/ultralytics/yolov5/issues/2891
+        # beta = torch.sigmoid(self.bn2(self.fc2(self.bn1(self.fc1(y)))))  # bug/unstable
+        beta = torch.sigmoid(self.fc2(self.fc1(y)))  # bug patch BN layers removed
+        dpx = (self.p1 - self.p2) * x
+        return dpx * torch.sigmoid(beta * dpx) + self.p2 * x
diff --git a/src/yolov5/utils/augmentations.py b/src/yolov5/utils/augmentations.py
new file mode 100644
index 00000000..0311b97b
--- /dev/null
+++ b/src/yolov5/utils/augmentations.py
@@ -0,0 +1,277 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Image augmentation functions
+"""
+
+import math
+import random
+
+import cv2
+import numpy as np
+
+from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box
+from utils.metrics import bbox_ioa
+
+
+class Albumentations:
+    # YOLOv5 Albumentations class (optional, only used if package is installed)
+    def __init__(self):
+        self.transform = None
+        try:
+            import albumentations as A
+            check_version(A.__version__, '1.0.3', hard=True)  # version requirement
+
+            self.transform = A.Compose([
+                A.Blur(p=0.01),
+                A.MedianBlur(p=0.01),
+                A.ToGray(p=0.01),
+                A.CLAHE(p=0.01),
+                A.RandomBrightnessContrast(p=0.0),
+                A.RandomGamma(p=0.0),
+                A.ImageCompression(quality_lower=75, p=0.0)],
+                bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
+
+            LOGGER.info(colorstr('albumentations: ') + ', '.join(f'{x}' for x in self.transform.transforms if x.p))
+        except ImportError:  # package not installed, skip
+            pass
+        except Exception as e:
+            LOGGER.info(colorstr('albumentations: ') + f'{e}')
+
+    def __call__(self, im, labels, p=1.0):
+        if self.transform and random.random() < p:
+            new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0])  # transformed
+            im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
+        return im, labels
+
+
+def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
+    # HSV color-space augmentation
+    if hgain or sgain or vgain:
+        r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1  # random gains
+        hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
+        dtype = im.dtype  # uint8
+
+        x = np.arange(0, 256, dtype=r.dtype)
+        lut_hue = ((x * r[0]) % 180).astype(dtype)
+        lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
+        lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
+
+        im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
+        cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im)  # no return needed
+
+
+def hist_equalize(im, clahe=True, bgr=False):
+    # Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
+    yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
+    if clahe:
+        c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
+        yuv[:, :, 0] = c.apply(yuv[:, :, 0])
+    else:
+        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])  # equalize Y channel histogram
+    return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB)  # convert YUV image to RGB
+
+
+def replicate(im, labels):
+    # Replicate labels
+    h, w = im.shape[:2]
+    boxes = labels[:, 1:].astype(int)
+    x1, y1, x2, y2 = boxes.T
+    s = ((x2 - x1) + (y2 - y1)) / 2  # side length (pixels)
+    for i in s.argsort()[:round(s.size * 0.5)]:  # smallest indices
+        x1b, y1b, x2b, y2b = boxes[i]
+        bh, bw = y2b - y1b, x2b - x1b
+        yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw))  # offset x, y
+        x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
+        im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b]  # im4[ymin:ymax, xmin:xmax]
+        labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
+
+    return im, labels
+
+
+def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
+    # Resize and pad image while meeting stride-multiple constraints
+    shape = im.shape[:2]  # current shape [height, width]
+    if isinstance(new_shape, int):
+        new_shape = (new_shape, new_shape)
+
+    # Scale ratio (new / old)
+    r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
+    if not scaleup:  # only scale down, do not scale up (for better val mAP)
+        r = min(r, 1.0)
+
+    # Compute padding
+    ratio = r, r  # width, height ratios
+    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
+    dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]  # wh padding
+    if auto:  # minimum rectangle
+        dw, dh = np.mod(dw, stride), np.mod(dh, stride)  # wh padding
+    elif scaleFill:  # stretch
+        dw, dh = 0.0, 0.0
+        new_unpad = (new_shape[1], new_shape[0])
+        ratio = new_shape[1] / shape[1], new_shape[0] / shape[0]  # width, height ratios
+
+    dw /= 2  # divide padding into 2 sides
+    dh /= 2
+
+    if shape[::-1] != new_unpad:  # resize
+        im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
+    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
+    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
+    im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border
+    return im, ratio, (dw, dh)
+
+
+def random_perspective(im, targets=(), segments=(), degrees=10, translate=.1, scale=.1, shear=10, perspective=0.0,
+                       border=(0, 0)):
+    # torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
+    # targets = [cls, xyxy]
+
+    height = im.shape[0] + border[0] * 2  # shape(h,w,c)
+    width = im.shape[1] + border[1] * 2
+
+    # Center
+    C = np.eye(3)
+    C[0, 2] = -im.shape[1] / 2  # x translation (pixels)
+    C[1, 2] = -im.shape[0] / 2  # y translation (pixels)
+
+    # Perspective
+    P = np.eye(3)
+    P[2, 0] = random.uniform(-perspective, perspective)  # x perspective (about y)
+    P[2, 1] = random.uniform(-perspective, perspective)  # y perspective (about x)
+
+    # Rotation and Scale
+    R = np.eye(3)
+    a = random.uniform(-degrees, degrees)
+    # a += random.choice([-180, -90, 0, 90])  # add 90deg rotations to small rotations
+    s = random.uniform(1 - scale, 1 + scale)
+    # s = 2 ** random.uniform(-scale, scale)
+    R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
+
+    # Shear
+    S = np.eye(3)
+    S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # x shear (deg)
+    S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180)  # y shear (deg)
+
+    # Translation
+    T = np.eye(3)
+    T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width  # x translation (pixels)
+    T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height  # y translation (pixels)
+
+    # Combined rotation matrix
+    M = T @ S @ R @ P @ C  # order of operations (right to left) is IMPORTANT
+    if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any():  # image changed
+        if perspective:
+            im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
+        else:  # affine
+            im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
+
+    # Visualize
+    # import matplotlib.pyplot as plt
+    # ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
+    # ax[0].imshow(im[:, :, ::-1])  # base
+    # ax[1].imshow(im2[:, :, ::-1])  # warped
+
+    # Transform label coordinates
+    n = len(targets)
+    if n:
+        use_segments = any(x.any() for x in segments)
+        new = np.zeros((n, 4))
+        if use_segments:  # warp segments
+            segments = resample_segments(segments)  # upsample
+            for i, segment in enumerate(segments):
+                xy = np.ones((len(segment), 3))
+                xy[:, :2] = segment
+                xy = xy @ M.T  # transform
+                xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]  # perspective rescale or affine
+
+                # clip
+                new[i] = segment2box(xy, width, height)
+
+        else:  # warp boxes
+            xy = np.ones((n * 4, 3))
+            xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2)  # x1y1, x2y2, x1y2, x2y1
+            xy = xy @ M.T  # transform
+            xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8)  # perspective rescale or affine
+
+            # create new boxes
+            x = xy[:, [0, 2, 4, 6]]
+            y = xy[:, [1, 3, 5, 7]]
+            new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
+
+            # clip
+            new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
+            new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
+
+        # filter candidates
+        i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
+        targets = targets[i]
+        targets[:, 1:5] = new[i]
+
+    return im, targets
+
+
+def copy_paste(im, labels, segments, p=0.5):
+    # Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
+    n = len(segments)
+    if p and n:
+        h, w, c = im.shape  # height, width, channels
+        im_new = np.zeros(im.shape, np.uint8)
+        for j in random.sample(range(n), k=round(p * n)):
+            l, s = labels[j], segments[j]
+            box = w - l[3], l[2], w - l[1], l[4]
+            ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+            if (ioa < 0.30).all():  # allow 30% obscuration of existing labels
+                labels = np.concatenate((labels, [[l[0], *box]]), 0)
+                segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
+                cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (255, 255, 255), cv2.FILLED)
+
+        result = cv2.bitwise_and(src1=im, src2=im_new)
+        result = cv2.flip(result, 1)  # augment segments (flip left-right)
+        i = result > 0  # pixels to replace
+        # i[:, :] = result.max(2).reshape(h, w, 1)  # act over ch
+        im[i] = result[i]  # cv2.imwrite('debug.jpg', im)  # debug
+
+    return im, labels, segments
+
+
+def cutout(im, labels, p=0.5):
+    # Applies image cutout augmentation https://arxiv.org/abs/1708.04552
+    if random.random() < p:
+        h, w = im.shape[:2]
+        scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16  # image size fraction
+        for s in scales:
+            mask_h = random.randint(1, int(h * s))  # create random masks
+            mask_w = random.randint(1, int(w * s))
+
+            # box
+            xmin = max(0, random.randint(0, w) - mask_w // 2)
+            ymin = max(0, random.randint(0, h) - mask_h // 2)
+            xmax = min(w, xmin + mask_w)
+            ymax = min(h, ymin + mask_h)
+
+            # apply random color mask
+            im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
+
+            # return unobscured labels
+            if len(labels) and s > 0.03:
+                box = np.array([xmin, ymin, xmax, ymax], dtype=np.float32)
+                ioa = bbox_ioa(box, labels[:, 1:5])  # intersection over area
+                labels = labels[ioa < 0.60]  # remove >60% obscured labels
+
+    return labels
+
+
+def mixup(im, labels, im2, labels2):
+    # Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
+    r = np.random.beta(32.0, 32.0)  # mixup ratio, alpha=beta=32.0
+    im = (im * r + im2 * (1 - r)).astype(np.uint8)
+    labels = np.concatenate((labels, labels2), 0)
+    return im, labels
+
+
+def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):  # box1(4,n), box2(4,n)
+    # Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
+    w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
+    w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
+    ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps))  # aspect ratio
+    return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr)  # candidates
diff --git a/src/yolov5/utils/autoanchor.py b/src/yolov5/utils/autoanchor.py
new file mode 100644
index 00000000..27d6fb68
--- /dev/null
+++ b/src/yolov5/utils/autoanchor.py
@@ -0,0 +1,165 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+AutoAnchor utils
+"""
+
+import random
+
+import numpy as np
+import torch
+import yaml
+from tqdm import tqdm
+
+from utils.general import LOGGER, colorstr, emojis
+
+PREFIX = colorstr('AutoAnchor: ')
+
+
+def check_anchor_order(m):
+    # Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
+    a = m.anchors.prod(-1).view(-1)  # anchor area
+    da = a[-1] - a[0]  # delta a
+    ds = m.stride[-1] - m.stride[0]  # delta s
+    if da.sign() != ds.sign():  # same order
+        LOGGER.info(f'{PREFIX}Reversing anchor order')
+        m.anchors[:] = m.anchors.flip(0)
+
+
+def check_anchors(dataset, model, thr=4.0, imgsz=640):
+    # Check anchor fit to data, recompute if necessary
+    m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1]  # Detect()
+    shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1))  # augment scale
+    wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float()  # wh
+
+    def metric(k):  # compute metric
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        best = x.max(1)[0]  # best_x
+        aat = (x > 1 / thr).float().sum(1).mean()  # anchors above threshold
+        bpr = (best > 1 / thr).float().mean()  # best possible recall
+        return bpr, aat
+
+    anchors = m.anchors.clone() * m.stride.to(m.anchors.device).view(-1, 1, 1)  # current anchors
+    bpr, aat = metric(anchors.cpu().view(-1, 2))
+    s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
+    if bpr > 0.98:  # threshold to recompute
+        LOGGER.info(emojis(f'{s}Current anchors are a good fit to dataset ✅'))
+    else:
+        LOGGER.info(emojis(f'{s}Anchors are a poor fit to dataset âš ī¸, attempting to improve...'))
+        na = m.anchors.numel() // 2  # number of anchors
+        try:
+            anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
+        except Exception as e:
+            LOGGER.info(f'{PREFIX}ERROR: {e}')
+        new_bpr = metric(anchors)[0]
+        if new_bpr > bpr:  # replace anchors
+            anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
+            m.anchors[:] = anchors.clone().view_as(m.anchors) / m.stride.to(m.anchors.device).view(-1, 1, 1)  # loss
+            check_anchor_order(m)
+            LOGGER.info(f'{PREFIX}New anchors saved to model. Update model *.yaml to use these anchors in the future.')
+        else:
+            LOGGER.info(f'{PREFIX}Original anchors better than new anchors. Proceeding with original anchors.')
+
+
+def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
+    """ Creates kmeans-evolved anchors from training dataset
+
+        Arguments:
+            dataset: path to data.yaml, or a loaded dataset
+            n: number of anchors
+            img_size: image size used for training
+            thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
+            gen: generations to evolve anchors using genetic algorithm
+            verbose: print all results
+
+        Return:
+            k: kmeans evolved anchors
+
+        Usage:
+            from utils.autoanchor import *; _ = kmean_anchors()
+    """
+    from scipy.cluster.vq import kmeans
+
+    npr = np.random
+    thr = 1 / thr
+
+    def metric(k, wh):  # compute metrics
+        r = wh[:, None] / k[None]
+        x = torch.min(r, 1 / r).min(2)[0]  # ratio metric
+        # x = wh_iou(wh, torch.tensor(k))  # iou metric
+        return x, x.max(1)[0]  # x, best_x
+
+    def anchor_fitness(k):  # mutation fitness
+        _, best = metric(torch.tensor(k, dtype=torch.float32), wh)
+        return (best * (best > thr).float()).mean()  # fitness
+
+    def print_results(k, verbose=True):
+        k = k[np.argsort(k.prod(1))]  # sort small to large
+        x, best = metric(k, wh0)
+        bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n  # best possible recall, anch > thr
+        s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
+            f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
+            f'past_thr={x[x > thr].mean():.3f}-mean: '
+        for i, x in enumerate(k):
+            s += '%i,%i, ' % (round(x[0]), round(x[1]))
+        if verbose:
+            LOGGER.info(s[:-2])
+        return k
+
+    if isinstance(dataset, str):  # *.yaml file
+        with open(dataset, errors='ignore') as f:
+            data_dict = yaml.safe_load(f)  # model dict
+        from utils.datasets import LoadImagesAndLabels
+        dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
+
+    # Get label wh
+    shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
+    wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)])  # wh
+
+    # Filter
+    i = (wh0 < 3.0).any(1).sum()
+    if i:
+        LOGGER.info(f'{PREFIX}WARNING: Extremely small objects found. {i} of {len(wh0)} labels are < 3 pixels in size.')
+    wh = wh0[(wh0 >= 2.0).any(1)]  # filter > 2 pixels
+    # wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1)  # multiply by random scale 0-1
+
+    # Kmeans calculation
+    LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
+    s = wh.std(0)  # sigmas for whitening
+    k = kmeans(wh / s, n, iter=30)[0] * s  # points
+    if len(k) != n:  # kmeans may return fewer points than requested if wh is insufficient or too similar
+        LOGGER.warning(f'{PREFIX}WARNING: scipy.cluster.vq.kmeans returned only {len(k)} of {n} requested points')
+        k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size  # random init
+    wh = torch.tensor(wh, dtype=torch.float32)  # filtered
+    wh0 = torch.tensor(wh0, dtype=torch.float32)  # unfiltered
+    k = print_results(k, verbose=False)
+
+    # Plot
+    # k, d = [None] * 20, [None] * 20
+    # for i in tqdm(range(1, 21)):
+    #     k[i-1], d[i-1] = kmeans(wh / s, i)  # points, mean distance
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
+    # ax = ax.ravel()
+    # ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
+    # fig, ax = plt.subplots(1, 2, figsize=(14, 7))  # plot wh
+    # ax[0].hist(wh[wh[:, 0]<100, 0],400)
+    # ax[1].hist(wh[wh[:, 1]<100, 1],400)
+    # fig.savefig('wh.png', dpi=200)
+
+    # Evolve
+    f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1  # fitness, generations, mutation prob, sigma
+    pbar = tqdm(range(gen), desc=f'{PREFIX}Evolving anchors with Genetic Algorithm:')  # progress bar
+    for _ in pbar:
+        v = np.ones(sh)
+        while (v == 1).all():  # mutate until a change occurs (prevent duplicates)
+            v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
+        kg = (k.copy() * v).clip(min=2.0)
+        fg = anchor_fitness(kg)
+        if fg > f:
+            f, k = fg, kg.copy()
+            pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
+            if verbose:
+                print_results(k, verbose)
+
+    return print_results(k)
diff --git a/src/yolov5/utils/autobatch.py b/src/yolov5/utils/autobatch.py
new file mode 100644
index 00000000..cb94f041
--- /dev/null
+++ b/src/yolov5/utils/autobatch.py
@@ -0,0 +1,57 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Auto-batch utils
+"""
+
+from copy import deepcopy
+
+import numpy as np
+import torch
+from torch.cuda import amp
+
+from utils.general import LOGGER, colorstr
+from utils.torch_utils import profile
+
+
+def check_train_batch_size(model, imgsz=640):
+    # Check YOLOv5 training batch size
+    with amp.autocast():
+        return autobatch(deepcopy(model).train(), imgsz)  # compute optimal batch size
+
+
+def autobatch(model, imgsz=640, fraction=0.9, batch_size=16):
+    # Automatically estimate best batch size to use `fraction` of available CUDA memory
+    # Usage:
+    #     import torch
+    #     from utils.autobatch import autobatch
+    #     model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
+    #     print(autobatch(model))
+
+    prefix = colorstr('AutoBatch: ')
+    LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
+    device = next(model.parameters()).device  # get model device
+    if device.type == 'cpu':
+        LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
+        return batch_size
+
+    d = str(device).upper()  # 'CUDA:0'
+    properties = torch.cuda.get_device_properties(device)  # device properties
+    t = properties.total_memory / 1024 ** 3  # (GiB)
+    r = torch.cuda.memory_reserved(device) / 1024 ** 3  # (GiB)
+    a = torch.cuda.memory_allocated(device) / 1024 ** 3  # (GiB)
+    f = t - (r + a)  # free inside reserved
+    LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
+
+    batch_sizes = [1, 2, 4, 8, 16]
+    try:
+        img = [torch.zeros(b, 3, imgsz, imgsz) for b in batch_sizes]
+        y = profile(img, model, n=3, device=device)
+    except Exception as e:
+        LOGGER.warning(f'{prefix}{e}')
+
+    y = [x[2] for x in y if x]  # memory [2]
+    batch_sizes = batch_sizes[:len(y)]
+    p = np.polyfit(batch_sizes, y, deg=1)  # first degree polynomial fit
+    b = int((f * fraction - p[1]) / p[0])  # y intercept (optimal batch size)
+    LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%)')
+    return b
diff --git a/src/yolov5/utils/aws/__init__.py b/src/yolov5/utils/aws/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/src/yolov5/utils/aws/mime.sh b/src/yolov5/utils/aws/mime.sh
new file mode 100644
index 00000000..c319a83c
--- /dev/null
+++ b/src/yolov5/utils/aws/mime.sh
@@ -0,0 +1,26 @@
+# AWS EC2 instance startup 'MIME' script https://aws.amazon.com/premiumsupport/knowledge-center/execute-user-data-ec2/
+# This script will run on every instance restart, not only on first start
+# --- DO NOT COPY ABOVE COMMENTS WHEN PASTING INTO USERDATA ---
+
+Content-Type: multipart/mixed; boundary="//"
+MIME-Version: 1.0
+
+--//
+Content-Type: text/cloud-config; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="cloud-config.txt"
+
+#cloud-config
+cloud_final_modules:
+- [scripts-user, always]
+
+--//
+Content-Type: text/x-shellscript; charset="us-ascii"
+MIME-Version: 1.0
+Content-Transfer-Encoding: 7bit
+Content-Disposition: attachment; filename="userdata.txt"
+
+#!/bin/bash
+# --- paste contents of userdata.sh here ---
+--//
diff --git a/src/yolov5/utils/aws/resume.py b/src/yolov5/utils/aws/resume.py
new file mode 100644
index 00000000..b21731c9
--- /dev/null
+++ b/src/yolov5/utils/aws/resume.py
@@ -0,0 +1,40 @@
+# Resume all interrupted trainings in yolov5/ dir including DDP trainings
+# Usage: $ python utils/aws/resume.py
+
+import os
+import sys
+from pathlib import Path
+
+import torch
+import yaml
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[2]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+port = 0  # --master_port
+path = Path('').resolve()
+for last in path.rglob('*/**/last.pt'):
+    ckpt = torch.load(last)
+    if ckpt['optimizer'] is None:
+        continue
+
+    # Load opt.yaml
+    with open(last.parent.parent / 'opt.yaml', errors='ignore') as f:
+        opt = yaml.safe_load(f)
+
+    # Get device count
+    d = opt['device'].split(',')  # devices
+    nd = len(d)  # number of devices
+    ddp = nd > 1 or (nd == 0 and torch.cuda.device_count() > 1)  # distributed data parallel
+
+    if ddp:  # multi-GPU
+        port += 1
+        cmd = f'python -m torch.distributed.run --nproc_per_node {nd} --master_port {port} train.py --resume {last}'
+    else:  # single-GPU
+        cmd = f'python train.py --resume {last}'
+
+    cmd += ' > /dev/null 2>&1 &'  # redirect output to dev/null and run in daemon thread
+    print(cmd)
+    os.system(cmd)
diff --git a/src/yolov5/utils/aws/userdata.sh b/src/yolov5/utils/aws/userdata.sh
new file mode 100644
index 00000000..5fc1332a
--- /dev/null
+++ b/src/yolov5/utils/aws/userdata.sh
@@ -0,0 +1,27 @@
+#!/bin/bash
+# AWS EC2 instance startup script https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/user-data.html
+# This script will run only once on first instance start (for a re-start script see mime.sh)
+# /home/ubuntu (ubuntu) or /home/ec2-user (amazon-linux) is working dir
+# Use >300 GB SSD
+
+cd home/ubuntu
+if [ ! -d yolov5 ]; then
+  echo "Running first-time script." # install dependencies, download COCO, pull Docker
+  git clone https://github.com/ultralytics/yolov5 -b master && sudo chmod -R 777 yolov5
+  cd yolov5
+  bash data/scripts/get_coco.sh && echo "COCO done." &
+  sudo docker pull ultralytics/yolov5:latest && echo "Docker done." &
+  python -m pip install --upgrade pip && pip install -r requirements.txt && python detect.py && echo "Requirements done." &
+  wait && echo "All tasks done." # finish background tasks
+else
+  echo "Running re-start script." # resume interrupted runs
+  i=0
+  list=$(sudo docker ps -qa) # container list i.e. $'one\ntwo\nthree\nfour'
+  while IFS= read -r id; do
+    ((i++))
+    echo "restarting container $i: $id"
+    sudo docker start $id
+    # sudo docker exec -it $id python train.py --resume # single-GPU
+    sudo docker exec -d $id python utils/aws/resume.py # multi-scenario
+  done <<<"$list"
+fi
diff --git a/src/yolov5/utils/benchmarks.py b/src/yolov5/utils/benchmarks.py
new file mode 100644
index 00000000..962df812
--- /dev/null
+++ b/src/yolov5/utils/benchmarks.py
@@ -0,0 +1,92 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Run YOLOv5 benchmarks on all supported export formats
+
+Format                      | `export.py --include`         | Model
+---                         | ---                           | ---
+PyTorch                     | -                             | yolov5s.pt
+TorchScript                 | `torchscript`                 | yolov5s.torchscript
+ONNX                        | `onnx`                        | yolov5s.onnx
+OpenVINO                    | `openvino`                    | yolov5s_openvino_model/
+TensorRT                    | `engine`                      | yolov5s.engine
+CoreML                      | `coreml`                      | yolov5s.mlmodel
+TensorFlow SavedModel       | `saved_model`                 | yolov5s_saved_model/
+TensorFlow GraphDef         | `pb`                          | yolov5s.pb
+TensorFlow Lite             | `tflite`                      | yolov5s.tflite
+TensorFlow Edge TPU         | `edgetpu`                     | yolov5s_edgetpu.tflite
+TensorFlow.js               | `tfjs`                        | yolov5s_web_model/
+
+Requirements:
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime openvino-dev tensorflow-cpu  # CPU
+    $ pip install -r requirements.txt coremltools onnx onnx-simplifier onnxruntime-gpu openvino-dev tensorflow  # GPU
+
+Usage:
+    $ python utils/benchmarks.py --weights yolov5s.pt --img 640
+"""
+
+import argparse
+import sys
+import time
+from pathlib import Path
+
+import pandas as pd
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+# ROOT = ROOT.relative_to(Path.cwd())  # relative
+
+import export
+import val
+from utils import notebook_init
+from utils.general import LOGGER, print_args
+
+
+def run(weights=ROOT / 'yolov5s.pt',  # weights path
+        imgsz=640,  # inference size (pixels)
+        batch_size=1,  # batch size
+        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
+        ):
+    y, t = [], time.time()
+    formats = export.export_formats()
+    for i, (name, f, suffix) in formats.iterrows():  # index, (name, file, suffix)
+        try:
+            w = weights if f == '-' else export.run(weights=weights, imgsz=[imgsz], include=[f], device='cpu')[-1]
+            assert suffix in str(w), 'export failed'
+            result = val.run(data, w, batch_size, imgsz=imgsz, plots=False, device='cpu', task='benchmark')
+            metrics = result[0]  # metrics (mp, mr, map50, map, *losses(box, obj, cls))
+            speeds = result[2]  # times (preprocess, inference, postprocess)
+            y.append([name, metrics[3], speeds[1]])  # mAP, t_inference
+        except Exception as e:
+            LOGGER.warning(f'WARNING: Benchmark failure for {name}: {e}')
+            y.append([name, None, None])  # mAP, t_inference
+
+    # Print results
+    LOGGER.info('\n')
+    parse_opt()
+    notebook_init()  # print system info
+    py = pd.DataFrame(y, columns=['Format', 'mAP@0.5:0.95', 'Inference time (ms)'])
+    LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
+    LOGGER.info(str(py))
+    return py
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='weights path')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    opt = parser.parse_args()
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    run(**vars(opt))
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
diff --git a/src/yolov5/utils/callbacks.py b/src/yolov5/utils/callbacks.py
new file mode 100644
index 00000000..c51c268f
--- /dev/null
+++ b/src/yolov5/utils/callbacks.py
@@ -0,0 +1,78 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Callback utils
+"""
+
+
+class Callbacks:
+    """"
+    Handles all registered callbacks for YOLOv5 Hooks
+    """
+
+    def __init__(self):
+        # Define the available callbacks
+        self._callbacks = {
+            'on_pretrain_routine_start': [],
+            'on_pretrain_routine_end': [],
+
+            'on_train_start': [],
+            'on_train_epoch_start': [],
+            'on_train_batch_start': [],
+            'optimizer_step': [],
+            'on_before_zero_grad': [],
+            'on_train_batch_end': [],
+            'on_train_epoch_end': [],
+
+            'on_val_start': [],
+            'on_val_batch_start': [],
+            'on_val_image_end': [],
+            'on_val_batch_end': [],
+            'on_val_end': [],
+
+            'on_fit_epoch_end': [],  # fit = train + val
+            'on_model_save': [],
+            'on_train_end': [],
+            'on_params_update': [],
+            'teardown': [],
+        }
+        self.stop_training = False  # set True to interrupt training
+
+    def register_action(self, hook, name='', callback=None):
+        """
+        Register a new action to a callback hook
+
+        Args:
+            hook        The callback hook name to register the action to
+            name        The name of the action for later reference
+            callback    The callback to fire
+        """
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+        assert callable(callback), f"callback '{callback}' is not callable"
+        self._callbacks[hook].append({'name': name, 'callback': callback})
+
+    def get_registered_actions(self, hook=None):
+        """"
+        Returns all the registered actions by callback hook
+
+        Args:
+            hook The name of the hook to check, defaults to all
+        """
+        if hook:
+            return self._callbacks[hook]
+        else:
+            return self._callbacks
+
+    def run(self, hook, *args, **kwargs):
+        """
+        Loop through the registered actions and fire all callbacks
+
+        Args:
+            hook The name of the hook to check, defaults to all
+            args Arguments to receive from YOLOv5
+            kwargs Keyword Arguments to receive from YOLOv5
+        """
+
+        assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
+
+        for logger in self._callbacks[hook]:
+            logger['callback'](*args, **kwargs)
diff --git a/src/yolov5/utils/datasets.py b/src/yolov5/utils/datasets.py
new file mode 100755
index 00000000..e132e04f
--- /dev/null
+++ b/src/yolov5/utils/datasets.py
@@ -0,0 +1,1037 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Dataloaders and dataset utils
+"""
+
+import glob
+import hashlib
+import json
+import math
+import os
+import random
+import shutil
+import time
+from itertools import repeat
+from multiprocessing.pool import Pool, ThreadPool
+from pathlib import Path
+from threading import Thread
+from zipfile import ZipFile
+
+import cv2
+import numpy as np
+import torch
+import torch.nn.functional as F
+import yaml
+from PIL import ExifTags, Image, ImageOps
+from torch.utils.data import DataLoader, Dataset, dataloader, distributed
+from tqdm import tqdm
+
+from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective
+from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, check_dataset, check_requirements, check_yaml, clean_str,
+                           segments2boxes, xyn2xy, xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
+from utils.torch_utils import torch_distributed_zero_first
+
+# Parameters
+HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
+IMG_FORMATS = ['bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp']  # include image suffixes
+VID_FORMATS = ['asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'wmv']  # include video suffixes
+
+# Get orientation exif tag
+for orientation in ExifTags.TAGS.keys():
+    if ExifTags.TAGS[orientation] == 'Orientation':
+        break
+
+
+def get_hash(paths):
+    # Returns a single hash value of a list of paths (files or dirs)
+    size = sum(os.path.getsize(p) for p in paths if os.path.exists(p))  # sizes
+    h = hashlib.md5(str(size).encode())  # hash sizes
+    h.update(''.join(paths).encode())  # hash paths
+    return h.hexdigest()  # return hash
+
+
+def exif_size(img):
+    # Returns exif-corrected PIL size
+    s = img.size  # (width, height)
+    try:
+        rotation = dict(img._getexif().items())[orientation]
+        if rotation == 6:  # rotation 270
+            s = (s[1], s[0])
+        elif rotation == 8:  # rotation 90
+            s = (s[1], s[0])
+    except Exception:
+        pass
+
+    return s
+
+
+def exif_transpose(image):
+    """
+    Transpose a PIL image accordingly if it has an EXIF Orientation tag.
+    Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
+
+    :param image: The image to transpose.
+    :return: An image.
+    """
+    exif = image.getexif()
+    orientation = exif.get(0x0112, 1)  # default 1
+    if orientation > 1:
+        method = {2: Image.FLIP_LEFT_RIGHT,
+                  3: Image.ROTATE_180,
+                  4: Image.FLIP_TOP_BOTTOM,
+                  5: Image.TRANSPOSE,
+                  6: Image.ROTATE_270,
+                  7: Image.TRANSVERSE,
+                  8: Image.ROTATE_90,
+                  }.get(orientation)
+        if method is not None:
+            image = image.transpose(method)
+            del exif[0x0112]
+            image.info["exif"] = exif.tobytes()
+    return image
+
+
+def create_dataloader(path, imgsz, batch_size, stride, single_cls=False, hyp=None, augment=False, cache=False, pad=0.0,
+                      rect=False, rank=-1, workers=8, image_weights=False, quad=False, prefix='', shuffle=False):
+    if rect and shuffle:
+        LOGGER.warning('WARNING: --rect is incompatible with DataLoader shuffle, setting shuffle=False')
+        shuffle = False
+    with torch_distributed_zero_first(rank):  # init dataset *.cache only once if DDP
+        dataset = LoadImagesAndLabels(path, imgsz, batch_size,
+                                      augment=augment,  # augmentation
+                                      hyp=hyp,  # hyperparameters
+                                      rect=rect,  # rectangular batches
+                                      cache_images=cache,
+                                      single_cls=single_cls,
+                                      stride=int(stride),
+                                      pad=pad,
+                                      image_weights=image_weights,
+                                      prefix=prefix)
+
+    batch_size = min(batch_size, len(dataset))
+    nd = torch.cuda.device_count()  # number of CUDA devices
+    nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])  # number of workers
+    sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
+    loader = DataLoader if image_weights else InfiniteDataLoader  # only DataLoader allows for attribute updates
+    return loader(dataset,
+                  batch_size=batch_size,
+                  shuffle=shuffle and sampler is None,
+                  num_workers=nw,
+                  sampler=sampler,
+                  pin_memory=True,
+                  collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn), dataset
+
+
+class InfiniteDataLoader(dataloader.DataLoader):
+    """ Dataloader that reuses workers
+
+    Uses same syntax as vanilla DataLoader
+    """
+
+    def __init__(self, *args, **kwargs):
+        super().__init__(*args, **kwargs)
+        object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
+        self.iterator = super().__iter__()
+
+    def __len__(self):
+        return len(self.batch_sampler.sampler)
+
+    def __iter__(self):
+        for i in range(len(self)):
+            yield next(self.iterator)
+
+
+class _RepeatSampler:
+    """ Sampler that repeats forever
+
+    Args:
+        sampler (Sampler)
+    """
+
+    def __init__(self, sampler):
+        self.sampler = sampler
+
+    def __iter__(self):
+        while True:
+            yield from iter(self.sampler)
+
+
+class LoadImages:
+    # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
+    def __init__(self, path, img_size=640, stride=32, auto=True):
+        p = str(Path(path).resolve())  # os-agnostic absolute path
+        if '*' in p:
+            files = sorted(glob.glob(p, recursive=True))  # glob
+        elif os.path.isdir(p):
+            files = sorted(glob.glob(os.path.join(p, '*.*')))  # dir
+        elif os.path.isfile(p):
+            files = [p]  # files
+        else:
+            raise Exception(f'ERROR: {p} does not exist')
+
+        images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
+        videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
+        ni, nv = len(images), len(videos)
+
+        self.img_size = img_size
+        self.stride = stride
+        self.files = images + videos
+        self.nf = ni + nv  # number of files
+        self.video_flag = [False] * ni + [True] * nv
+        self.mode = 'image'
+        self.auto = auto
+        if any(videos):
+            self.new_video(videos[0])  # new video
+        else:
+            self.cap = None
+        assert self.nf > 0, f'No images or videos found in {p}. ' \
+                            f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
+
+    def __iter__(self):
+        self.count = 0
+        return self
+
+    def __next__(self):
+        if self.count == self.nf:
+            raise StopIteration
+        path = self.files[self.count]
+
+        if self.video_flag[self.count]:
+            # Read video
+            self.mode = 'video'
+            ret_val, img0 = self.cap.read()
+            while not ret_val:
+                self.count += 1
+                self.cap.release()
+                if self.count == self.nf:  # last video
+                    raise StopIteration
+                else:
+                    path = self.files[self.count]
+                    self.new_video(path)
+                    ret_val, img0 = self.cap.read()
+
+            self.frame += 1
+            s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
+
+        else:
+            # Read image
+            self.count += 1
+            img0 = cv2.imread(path)  # BGR
+            assert img0 is not None, f'Image Not Found {path}'
+            s = f'image {self.count}/{self.nf} {path}: '
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0]
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return path, img, img0, self.cap, s
+
+    def new_video(self, path):
+        self.frame = 0
+        self.cap = cv2.VideoCapture(path)
+        self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT))
+
+    def __len__(self):
+        return self.nf  # number of files
+
+
+class LoadWebcam:  # for inference
+    # YOLOv5 local webcam dataloader, i.e. `python detect.py --source 0`
+    def __init__(self, pipe='0', img_size=640, stride=32):
+        self.img_size = img_size
+        self.stride = stride
+        self.pipe = eval(pipe) if pipe.isnumeric() else pipe
+        self.cap = cv2.VideoCapture(self.pipe)  # video capture object
+        self.cap.set(cv2.CAP_PROP_BUFFERSIZE, 3)  # set buffer size
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if cv2.waitKey(1) == ord('q'):  # q to quit
+            self.cap.release()
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Read frame
+        ret_val, img0 = self.cap.read()
+        img0 = cv2.flip(img0, 1)  # flip left-right
+
+        # Print
+        assert ret_val, f'Camera Error {self.pipe}'
+        img_path = 'webcam.jpg'
+        s = f'webcam {self.count}: '
+
+        # Padded resize
+        img = letterbox(img0, self.img_size, stride=self.stride)[0]
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return img_path, img, img0, None, s
+
+    def __len__(self):
+        return 0
+
+
+class LoadStreams:
+    # YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP streams`
+    def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True):
+        self.mode = 'stream'
+        self.img_size = img_size
+        self.stride = stride
+
+        if os.path.isfile(sources):
+            with open(sources) as f:
+                sources = [x.strip() for x in f.read().strip().splitlines() if len(x.strip())]
+        else:
+            sources = [sources]
+
+        n = len(sources)
+        self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
+        self.sources = [clean_str(x) for x in sources]  # clean source names for later
+        self.auto = auto
+        for i, s in enumerate(sources):  # index, source
+            # Start thread to read frames from video stream
+            st = f'{i + 1}/{n}: {s}... '
+            if 'youtube.com/' in s or 'youtu.be/' in s:  # if source is YouTube video
+                check_requirements(('pafy', 'youtube_dl==2020.12.2'))
+                import pafy
+                s = pafy.new(s).getbest(preftype="mp4").url  # YouTube URL
+            s = eval(s) if s.isnumeric() else s  # i.e. s = '0' local webcam
+            cap = cv2.VideoCapture(s)
+            assert cap.isOpened(), f'{st}Failed to open {s}'
+            w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
+            h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
+            fps = cap.get(cv2.CAP_PROP_FPS)  # warning: may return 0 or nan
+            self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf')  # infinite stream fallback
+            self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30  # 30 FPS fallback
+
+            _, self.imgs[i] = cap.read()  # guarantee first frame
+            self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
+            LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
+            self.threads[i].start()
+        LOGGER.info('')  # newline
+
+        # check for common shapes
+        s = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0].shape for x in self.imgs])
+        self.rect = np.unique(s, axis=0).shape[0] == 1  # rect inference if all shapes equal
+        if not self.rect:
+            LOGGER.warning('WARNING: Stream shapes differ. For optimal performance supply similarly-shaped streams.')
+
+    def update(self, i, cap, stream):
+        # Read stream `i` frames in daemon thread
+        n, f, read = 0, self.frames[i], 1  # frame number, frame array, inference every 'read' frame
+        while cap.isOpened() and n < f:
+            n += 1
+            # _, self.imgs[index] = cap.read()
+            cap.grab()
+            if n % read == 0:
+                success, im = cap.retrieve()
+                if success:
+                    self.imgs[i] = im
+                else:
+                    LOGGER.warning('WARNING: Video stream unresponsive, please check your IP camera connection.')
+                    self.imgs[i] = np.zeros_like(self.imgs[i])
+                    cap.open(stream)  # re-open stream if signal was lost
+            time.sleep(1 / self.fps[i])  # wait time
+
+    def __iter__(self):
+        self.count = -1
+        return self
+
+    def __next__(self):
+        self.count += 1
+        if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'):  # q to quit
+            cv2.destroyAllWindows()
+            raise StopIteration
+
+        # Letterbox
+        img0 = self.imgs.copy()
+        img = [letterbox(x, self.img_size, stride=self.stride, auto=self.rect and self.auto)[0] for x in img0]
+
+        # Stack
+        img = np.stack(img, 0)
+
+        # Convert
+        img = img[..., ::-1].transpose((0, 3, 1, 2))  # BGR to RGB, BHWC to BCHW
+        img = np.ascontiguousarray(img)
+
+        return self.sources, img, img0, None, ''
+
+    def __len__(self):
+        return len(self.sources)  # 1E12 frames = 32 streams at 30 FPS for 30 years
+
+
+def img2label_paths(img_paths):
+    # Define label paths as a function of image paths
+    sa, sb = os.sep + 'images' + os.sep, os.sep + 'labels' + os.sep  # /images/, /labels/ substrings
+    return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
+
+
+class LoadImagesAndLabels(Dataset):
+    # YOLOv5 train_loader/val_loader, loads images and labels for training and validation
+    cache_version = 0.6  # dataset labels *.cache version
+
+    def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
+                 cache_images=False, single_cls=False, stride=32, pad=0.0, prefix=''):
+        self.img_size = img_size
+        self.augment = augment
+        self.hyp = hyp
+        self.image_weights = image_weights
+        self.rect = False if image_weights else rect
+        self.mosaic = self.augment and not self.rect  # load 4 images at a time into a mosaic (only during training)
+        self.mosaic_border = [-img_size // 2, -img_size // 2]
+        self.stride = stride
+        self.path = path
+        self.albumentations = Albumentations() if augment else None
+
+        try:
+            f = []  # image files
+            for p in path if isinstance(path, list) else [path]:
+                p = Path(p)  # os-agnostic
+                if p.is_dir():  # dir
+                    f += glob.glob(str(p / '**' / '*.*'), recursive=True)
+                    # f = list(p.rglob('*.*'))  # pathlib
+                elif p.is_file():  # file
+                    with open(p) as t:
+                        t = t.read().strip().splitlines()
+                        parent = str(p.parent) + os.sep
+                        f += [x.replace('./', parent) if x.startswith('./') else x for x in t]  # local to global path
+                        # f += [p.parent / x.lstrip(os.sep) for x in t]  # local to global path (pathlib)
+                else:
+                    raise Exception(f'{prefix}{p} does not exist')
+            self.img_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
+            # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS])  # pathlib
+            assert self.img_files, f'{prefix}No images found'
+        except Exception as e:
+            raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}')
+
+        # Check cache
+        self.label_files = img2label_paths(self.img_files)  # labels
+        cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
+        try:
+            cache, exists = np.load(cache_path, allow_pickle=True).item(), True  # load dict
+            assert cache['version'] == self.cache_version  # same version
+            assert cache['hash'] == get_hash(self.label_files + self.img_files)  # same hash
+        except Exception:
+            cache, exists = self.cache_labels(cache_path, prefix), False  # cache
+
+        # Display cache
+        nf, nm, ne, nc, n = cache.pop('results')  # found, missing, empty, corrupt, total
+        if exists:
+            d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
+            tqdm(None, desc=prefix + d, total=n, initial=n)  # display cache results
+            if cache['msgs']:
+                LOGGER.info('\n'.join(cache['msgs']))  # display warnings
+        assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}'
+
+        # Read cache
+        [cache.pop(k) for k in ('hash', 'version', 'msgs')]  # remove items
+        labels, shapes, self.segments = zip(*cache.values())
+        self.labels = list(labels)
+        self.shapes = np.array(shapes, dtype=np.float64)
+        self.img_files = list(cache.keys())  # update
+        self.label_files = img2label_paths(cache.keys())  # update
+        n = len(shapes)  # number of images
+        bi = np.floor(np.arange(n) / batch_size).astype(np.int)  # batch index
+        nb = bi[-1] + 1  # number of batches
+        self.batch = bi  # batch index of image
+        self.n = n
+        self.indices = range(n)
+
+        # Update labels
+        include_class = []  # filter labels to include only these classes (optional)
+        include_class_array = np.array(include_class).reshape(1, -1)
+        for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
+            if include_class:
+                j = (label[:, 0:1] == include_class_array).any(1)
+                self.labels[i] = label[j]
+                if segment:
+                    self.segments[i] = segment[j]
+            if single_cls:  # single-class training, merge all classes into 0
+                self.labels[i][:, 0] = 0
+                if segment:
+                    self.segments[i][:, 0] = 0
+
+        # Rectangular Training
+        if self.rect:
+            # Sort by aspect ratio
+            s = self.shapes  # wh
+            ar = s[:, 1] / s[:, 0]  # aspect ratio
+            irect = ar.argsort()
+            self.img_files = [self.img_files[i] for i in irect]
+            self.label_files = [self.label_files[i] for i in irect]
+            self.labels = [self.labels[i] for i in irect]
+            self.shapes = s[irect]  # wh
+            ar = ar[irect]
+
+            # Set training image shapes
+            shapes = [[1, 1]] * nb
+            for i in range(nb):
+                ari = ar[bi == i]
+                mini, maxi = ari.min(), ari.max()
+                if maxi < 1:
+                    shapes[i] = [maxi, 1]
+                elif mini > 1:
+                    shapes[i] = [1, 1 / mini]
+
+            self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(np.int) * stride
+
+        # Cache images into RAM/disk for faster training (WARNING: large datasets may exceed system resources)
+        self.imgs, self.img_npy = [None] * n, [None] * n
+        if cache_images:
+            if cache_images == 'disk':
+                self.im_cache_dir = Path(Path(self.img_files[0]).parent.as_posix() + '_npy')
+                self.img_npy = [self.im_cache_dir / Path(f).with_suffix('.npy').name for f in self.img_files]
+                self.im_cache_dir.mkdir(parents=True, exist_ok=True)
+            gb = 0  # Gigabytes of cached images
+            self.img_hw0, self.img_hw = [None] * n, [None] * n
+            results = ThreadPool(NUM_THREADS).imap(self.load_image, range(n))
+            pbar = tqdm(enumerate(results), total=n)
+            for i, x in pbar:
+                if cache_images == 'disk':
+                    if not self.img_npy[i].exists():
+                        np.save(self.img_npy[i].as_posix(), x[0])
+                    gb += self.img_npy[i].stat().st_size
+                else:  # 'ram'
+                    self.imgs[i], self.img_hw0[i], self.img_hw[i] = x  # im, hw_orig, hw_resized = load_image(self, i)
+                    gb += self.imgs[i].nbytes
+                pbar.desc = f'{prefix}Caching images ({gb / 1E9:.1f}GB {cache_images})'
+            pbar.close()
+
+    def cache_labels(self, path=Path('./labels.cache'), prefix=''):
+        # Cache dataset labels, check images and read shapes
+        x = {}  # dict
+        nm, nf, ne, nc, msgs = 0, 0, 0, 0, []  # number missing, found, empty, corrupt, messages
+        desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
+        with Pool(NUM_THREADS) as pool:
+            pbar = tqdm(pool.imap(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))),
+                        desc=desc, total=len(self.img_files))
+            for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
+                nm += nm_f
+                nf += nf_f
+                ne += ne_f
+                nc += nc_f
+                if im_file:
+                    x[im_file] = [lb, shape, segments]
+                if msg:
+                    msgs.append(msg)
+                pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
+
+        pbar.close()
+        if msgs:
+            LOGGER.info('\n'.join(msgs))
+        if nf == 0:
+            LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}')
+        x['hash'] = get_hash(self.label_files + self.img_files)
+        x['results'] = nf, nm, ne, nc, len(self.img_files)
+        x['msgs'] = msgs  # warnings
+        x['version'] = self.cache_version  # cache version
+        try:
+            np.save(path, x)  # save cache for next time
+            path.with_suffix('.cache.npy').rename(path)  # remove .npy suffix
+            LOGGER.info(f'{prefix}New cache created: {path}')
+        except Exception as e:
+            LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}')  # not writeable
+        return x
+
+    def __len__(self):
+        return len(self.img_files)
+
+    # def __iter__(self):
+    #     self.count = -1
+    #     print('ran dataset iter')
+    #     #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
+    #     return self
+
+    def __getitem__(self, index):
+        index = self.indices[index]  # linear, shuffled, or image_weights
+
+        hyp = self.hyp
+        mosaic = self.mosaic and random.random() < hyp['mosaic']
+        if mosaic:
+            # Load mosaic
+            img, labels = self.load_mosaic(index)
+            shapes = None
+
+            # MixUp augmentation
+            if random.random() < hyp['mixup']:
+                img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
+
+        else:
+            # Load image
+            img, (h0, w0), (h, w) = self.load_image(index)
+
+            # Letterbox
+            shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size  # final letterboxed shape
+            img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
+            shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
+
+            labels = self.labels[index].copy()
+            if labels.size:  # normalized xywh to pixel xyxy format
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
+
+            if self.augment:
+                img, labels = random_perspective(img, labels,
+                                                 degrees=hyp['degrees'],
+                                                 translate=hyp['translate'],
+                                                 scale=hyp['scale'],
+                                                 shear=hyp['shear'],
+                                                 perspective=hyp['perspective'])
+
+        nl = len(labels)  # number of labels
+        if nl:
+            labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
+
+        if self.augment:
+            # Albumentations
+            img, labels = self.albumentations(img, labels)
+            nl = len(labels)  # update after albumentations
+
+            # HSV color-space
+            augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
+
+            # Flip up-down
+            if random.random() < hyp['flipud']:
+                img = np.flipud(img)
+                if nl:
+                    labels[:, 2] = 1 - labels[:, 2]
+
+            # Flip left-right
+            if random.random() < hyp['fliplr']:
+                img = np.fliplr(img)
+                if nl:
+                    labels[:, 1] = 1 - labels[:, 1]
+
+            # Cutouts
+            # labels = cutout(img, labels, p=0.5)
+            # nl = len(labels)  # update after cutout
+
+        labels_out = torch.zeros((nl, 6))
+        if nl:
+            labels_out[:, 1:] = torch.from_numpy(labels)
+
+        # Convert
+        img = img.transpose((2, 0, 1))[::-1]  # HWC to CHW, BGR to RGB
+        img = np.ascontiguousarray(img)
+
+        return torch.from_numpy(img), labels_out, self.img_files[index], shapes
+
+    def load_image(self, i):
+        # loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
+        im = self.imgs[i]
+        if im is None:  # not cached in RAM
+            npy = self.img_npy[i]
+            if npy and npy.exists():  # load npy
+                im = np.load(npy)
+            else:  # read image
+                f = self.img_files[i]
+                im = cv2.imread(f)  # BGR
+                assert im is not None, f'Image Not Found {f}'
+            h0, w0 = im.shape[:2]  # orig hw
+            r = self.img_size / max(h0, w0)  # ratio
+            if r != 1:  # if sizes are not equal
+                im = cv2.resize(im,
+                                (int(w0 * r), int(h0 * r)),
+                                interpolation=cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA)
+            return im, (h0, w0), im.shape[:2]  # im, hw_original, hw_resized
+        else:
+            return self.imgs[i], self.img_hw0[i], self.img_hw[i]  # im, hw_original, hw_resized
+
+    def load_mosaic(self, index):
+        # YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
+        labels4, segments4 = [], []
+        s = self.img_size
+        yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border)  # mosaic center x, y
+        indices = [index] + random.choices(self.indices, k=3)  # 3 additional image indices
+        random.shuffle(indices)
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img4
+            if i == 0:  # top left
+                img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc  # xmin, ymin, xmax, ymax (large image)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h  # xmin, ymin, xmax, ymax (small image)
+            elif i == 1:  # top right
+                x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
+                x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
+            elif i == 2:  # bottom left
+                x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
+            elif i == 3:  # bottom right
+                x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
+                x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
+
+            img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b]  # img4[ymin:ymax, xmin:xmax]
+            padw = x1a - x1b
+            padh = y1a - y1b
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
+            labels4.append(labels)
+            segments4.extend(segments)
+
+        # Concat/clip labels
+        labels4 = np.concatenate(labels4, 0)
+        for x in (labels4[:, 1:], *segments4):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img4, labels4 = replicate(img4, labels4)  # replicate
+
+        # Augment
+        img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
+        img4, labels4 = random_perspective(img4, labels4, segments4,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img4, labels4
+
+    def load_mosaic9(self, index):
+        # YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
+        labels9, segments9 = [], []
+        s = self.img_size
+        indices = [index] + random.choices(self.indices, k=8)  # 8 additional image indices
+        random.shuffle(indices)
+        hp, wp = -1, -1  # height, width previous
+        for i, index in enumerate(indices):
+            # Load image
+            img, _, (h, w) = self.load_image(index)
+
+            # place img in img9
+            if i == 0:  # center
+                img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8)  # base image with 4 tiles
+                h0, w0 = h, w
+                c = s, s, s + w, s + h  # xmin, ymin, xmax, ymax (base) coordinates
+            elif i == 1:  # top
+                c = s, s - h, s + w, s
+            elif i == 2:  # top right
+                c = s + wp, s - h, s + wp + w, s
+            elif i == 3:  # right
+                c = s + w0, s, s + w0 + w, s + h
+            elif i == 4:  # bottom right
+                c = s + w0, s + hp, s + w0 + w, s + hp + h
+            elif i == 5:  # bottom
+                c = s + w0 - w, s + h0, s + w0, s + h0 + h
+            elif i == 6:  # bottom left
+                c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
+            elif i == 7:  # left
+                c = s - w, s + h0 - h, s, s + h0
+            elif i == 8:  # top left
+                c = s - w, s + h0 - hp - h, s, s + h0 - hp
+
+            padx, pady = c[:2]
+            x1, y1, x2, y2 = (max(x, 0) for x in c)  # allocate coords
+
+            # Labels
+            labels, segments = self.labels[index].copy(), self.segments[index].copy()
+            if labels.size:
+                labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady)  # normalized xywh to pixel xyxy format
+                segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
+            labels9.append(labels)
+            segments9.extend(segments)
+
+            # Image
+            img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:]  # img9[ymin:ymax, xmin:xmax]
+            hp, wp = h, w  # height, width previous
+
+        # Offset
+        yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border)  # mosaic center x, y
+        img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
+
+        # Concat/clip labels
+        labels9 = np.concatenate(labels9, 0)
+        labels9[:, [1, 3]] -= xc
+        labels9[:, [2, 4]] -= yc
+        c = np.array([xc, yc])  # centers
+        segments9 = [x - c for x in segments9]
+
+        for x in (labels9[:, 1:], *segments9):
+            np.clip(x, 0, 2 * s, out=x)  # clip when using random_perspective()
+        # img9, labels9 = replicate(img9, labels9)  # replicate
+
+        # Augment
+        img9, labels9 = random_perspective(img9, labels9, segments9,
+                                           degrees=self.hyp['degrees'],
+                                           translate=self.hyp['translate'],
+                                           scale=self.hyp['scale'],
+                                           shear=self.hyp['shear'],
+                                           perspective=self.hyp['perspective'],
+                                           border=self.mosaic_border)  # border to remove
+
+        return img9, labels9
+
+    @staticmethod
+    def collate_fn(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        for i, lb in enumerate(label):
+            lb[:, 0] = i  # add target image index for build_targets()
+        return torch.stack(img, 0), torch.cat(label, 0), path, shapes
+
+    @staticmethod
+    def collate_fn4(batch):
+        img, label, path, shapes = zip(*batch)  # transposed
+        n = len(shapes) // 4
+        img4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
+
+        ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
+        wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
+        s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]])  # scale
+        for i in range(n):  # zidane torch.zeros(16,3,720,1280)  # BCHW
+            i *= 4
+            if random.random() < 0.5:
+                im = F.interpolate(img[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear', align_corners=False)[
+                    0].type(img[i].type())
+                lb = label[i]
+            else:
+                im = torch.cat((torch.cat((img[i], img[i + 1]), 1), torch.cat((img[i + 2], img[i + 3]), 1)), 2)
+                lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
+            img4.append(im)
+            label4.append(lb)
+
+        for i, lb in enumerate(label4):
+            lb[:, 0] = i  # add target image index for build_targets()
+
+        return torch.stack(img4, 0), torch.cat(label4, 0), path4, shapes4
+
+
+# Ancillary functions --------------------------------------------------------------------------------------------------
+def create_folder(path='./new'):
+    # Create folder
+    if os.path.exists(path):
+        shutil.rmtree(path)  # delete output folder
+    os.makedirs(path)  # make new output folder
+
+
+def flatten_recursive(path=DATASETS_DIR / 'coco128'):
+    # Flatten a recursive directory by bringing all files to top level
+    new_path = Path(str(path) + '_flat')
+    create_folder(new_path)
+    for file in tqdm(glob.glob(str(Path(path)) + '/**/*.*', recursive=True)):
+        shutil.copyfile(file, new_path / Path(file).name)
+
+
+def extract_boxes(path=DATASETS_DIR / 'coco128'):  # from utils.datasets import *; extract_boxes()
+    # Convert detection dataset into classification dataset, with one directory per class
+    path = Path(path)  # images dir
+    shutil.rmtree(path / 'classifier') if (path / 'classifier').is_dir() else None  # remove existing
+    files = list(path.rglob('*.*'))
+    n = len(files)  # number of files
+    for im_file in tqdm(files, total=n):
+        if im_file.suffix[1:] in IMG_FORMATS:
+            # image
+            im = cv2.imread(str(im_file))[..., ::-1]  # BGR to RGB
+            h, w = im.shape[:2]
+
+            # labels
+            lb_file = Path(img2label_paths([str(im_file)])[0])
+            if Path(lb_file).exists():
+                with open(lb_file) as f:
+                    lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32)  # labels
+
+                for j, x in enumerate(lb):
+                    c = int(x[0])  # class
+                    f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg'  # new filename
+                    if not f.parent.is_dir():
+                        f.parent.mkdir(parents=True)
+
+                    b = x[1:] * [w, h, w, h]  # box
+                    # b[2:] = b[2:].max()  # rectangle to square
+                    b[2:] = b[2:] * 1.2 + 3  # pad
+                    b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(np.int)
+
+                    b[[0, 2]] = np.clip(b[[0, 2]], 0, w)  # clip boxes outside of image
+                    b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
+                    assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
+
+
+def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
+    """ Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
+    Usage: from utils.datasets import *; autosplit()
+    Arguments
+        path:            Path to images directory
+        weights:         Train, val, test weights (list, tuple)
+        annotated_only:  Only use images with an annotated txt file
+    """
+    path = Path(path)  # images dir
+    files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS)  # image files only
+    n = len(files)  # number of files
+    random.seed(0)  # for reproducibility
+    indices = random.choices([0, 1, 2], weights=weights, k=n)  # assign each image to a split
+
+    txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt']  # 3 txt files
+    [(path.parent / x).unlink(missing_ok=True) for x in txt]  # remove existing
+
+    print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
+    for i, img in tqdm(zip(indices, files), total=n):
+        if not annotated_only or Path(img2label_paths([str(img)])[0]).exists():  # check label
+            with open(path.parent / txt[i], 'a') as f:
+                f.write('./' + img.relative_to(path.parent).as_posix() + '\n')  # add image to txt file
+
+
+def verify_image_label(args):
+    # Verify one image-label pair
+    im_file, lb_file, prefix = args
+    nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', []  # number (missing, found, empty, corrupt), message, segments
+    try:
+        # verify images
+        im = Image.open(im_file)
+        im.verify()  # PIL verify
+        shape = exif_size(im)  # image size
+        assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
+        assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
+        if im.format.lower() in ('jpg', 'jpeg'):
+            with open(im_file, 'rb') as f:
+                f.seek(-2, 2)
+                if f.read() != b'\xff\xd9':  # corrupt JPEG
+                    ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
+                    msg = f'{prefix}WARNING: {im_file}: corrupt JPEG restored and saved'
+
+        # verify labels
+        if os.path.isfile(lb_file):
+            nf = 1  # label found
+            with open(lb_file) as f:
+                lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
+                if any([len(x) > 8 for x in lb]):  # is segment
+                    classes = np.array([x[0] for x in lb], dtype=np.float32)
+                    segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb]  # (cls, xy1...)
+                    lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1)  # (cls, xywh)
+                lb = np.array(lb, dtype=np.float32)
+            nl = len(lb)
+            if nl:
+                assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
+                assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
+                assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
+                _, i = np.unique(lb, axis=0, return_index=True)
+                if len(i) < nl:  # duplicate row check
+                    lb = lb[i]  # remove duplicates
+                    if segments:
+                        segments = segments[i]
+                    msg = f'{prefix}WARNING: {im_file}: {nl - len(i)} duplicate labels removed'
+            else:
+                ne = 1  # label empty
+                lb = np.zeros((0, 5), dtype=np.float32)
+        else:
+            nm = 1  # label missing
+            lb = np.zeros((0, 5), dtype=np.float32)
+        return im_file, lb, shape, segments, nm, nf, ne, nc, msg
+    except Exception as e:
+        nc = 1
+        msg = f'{prefix}WARNING: {im_file}: ignoring corrupt image/label: {e}'
+        return [None, None, None, None, nm, nf, ne, nc, msg]
+
+
+def dataset_stats(path='coco128.yaml', autodownload=False, verbose=False, profile=False, hub=False):
+    """ Return dataset statistics dictionary with images and instances counts per split per class
+    To run in parent directory: export PYTHONPATH="$PWD/yolov5"
+    Usage1: from utils.datasets import *; dataset_stats('coco128.yaml', autodownload=True)
+    Usage2: from utils.datasets import *; dataset_stats('path/to/coco128_with_yaml.zip')
+    Arguments
+        path:           Path to data.yaml or data.zip (with data.yaml inside data.zip)
+        autodownload:   Attempt to download dataset if not found locally
+        verbose:        Print stats dictionary
+    """
+
+    def round_labels(labels):
+        # Update labels to integer class and 6 decimal place floats
+        return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
+
+    def unzip(path):
+        # Unzip data.zip TODO: CONSTRAINT: path/to/abc.zip MUST unzip to 'path/to/abc/'
+        if str(path).endswith('.zip'):  # path is data.zip
+            assert Path(path).is_file(), f'Error unzipping {path}, file not found'
+            ZipFile(path).extractall(path=path.parent)  # unzip
+            dir = path.with_suffix('')  # dataset directory == zip name
+            return True, str(dir), next(dir.rglob('*.yaml'))  # zipped, data_dir, yaml_path
+        else:  # path is data.yaml
+            return False, None, path
+
+    def hub_ops(f, max_dim=1920):
+        # HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
+        f_new = im_dir / Path(f).name  # dataset-hub image filename
+        try:  # use PIL
+            im = Image.open(f)
+            r = max_dim / max(im.height, im.width)  # ratio
+            if r < 1.0:  # image too large
+                im = im.resize((int(im.width * r), int(im.height * r)))
+            im.save(f_new, 'JPEG', quality=75, optimize=True)  # save
+        except Exception as e:  # use OpenCV
+            print(f'WARNING: HUB ops PIL failure {f}: {e}')
+            im = cv2.imread(f)
+            im_height, im_width = im.shape[:2]
+            r = max_dim / max(im_height, im_width)  # ratio
+            if r < 1.0:  # image too large
+                im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
+            cv2.imwrite(str(f_new), im)
+
+    zipped, data_dir, yaml_path = unzip(Path(path))
+    with open(check_yaml(yaml_path), errors='ignore') as f:
+        data = yaml.safe_load(f)  # data dict
+        if zipped:
+            data['path'] = data_dir  # TODO: should this be dir.resolve()?
+    check_dataset(data, autodownload)  # download dataset if missing
+    hub_dir = Path(data['path'] + ('-hub' if hub else ''))
+    stats = {'nc': data['nc'], 'names': data['names']}  # statistics dictionary
+    for split in 'train', 'val', 'test':
+        if data.get(split) is None:
+            stats[split] = None  # i.e. no test set
+            continue
+        x = []
+        dataset = LoadImagesAndLabels(data[split])  # load dataset
+        for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics'):
+            x.append(np.bincount(label[:, 0].astype(int), minlength=data['nc']))
+        x = np.array(x)  # shape(128x80)
+        stats[split] = {'instance_stats': {'total': int(x.sum()), 'per_class': x.sum(0).tolist()},
+                        'image_stats': {'total': dataset.n, 'unlabelled': int(np.all(x == 0, 1).sum()),
+                                        'per_class': (x > 0).sum(0).tolist()},
+                        'labels': [{str(Path(k).name): round_labels(v.tolist())} for k, v in
+                                   zip(dataset.img_files, dataset.labels)]}
+
+        if hub:
+            im_dir = hub_dir / 'images'
+            im_dir.mkdir(parents=True, exist_ok=True)
+            for _ in tqdm(ThreadPool(NUM_THREADS).imap(hub_ops, dataset.img_files), total=dataset.n, desc='HUB Ops'):
+                pass
+
+    # Profile
+    stats_path = hub_dir / 'stats.json'
+    if profile:
+        for _ in range(1):
+            file = stats_path.with_suffix('.npy')
+            t1 = time.time()
+            np.save(file, stats)
+            t2 = time.time()
+            x = np.load(file, allow_pickle=True)
+            print(f'stats.npy times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
+
+            file = stats_path.with_suffix('.json')
+            t1 = time.time()
+            with open(file, 'w') as f:
+                json.dump(stats, f)  # save stats *.json
+            t2 = time.time()
+            with open(file) as f:
+                x = json.load(f)  # load hyps dict
+            print(f'stats.json times: {time.time() - t2:.3f}s read, {t2 - t1:.3f}s write')
+
+    # Save, print and return
+    if hub:
+        print(f'Saving {stats_path.resolve()}...')
+        with open(stats_path, 'w') as f:
+            json.dump(stats, f)  # save stats.json
+    if verbose:
+        print(json.dumps(stats, indent=2, sort_keys=False))
+    return stats
diff --git a/src/yolov5/utils/downloads.py b/src/yolov5/utils/downloads.py
new file mode 100644
index 00000000..d7b87cb2
--- /dev/null
+++ b/src/yolov5/utils/downloads.py
@@ -0,0 +1,153 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Download utils
+"""
+
+import os
+import platform
+import subprocess
+import time
+import urllib
+from pathlib import Path
+from zipfile import ZipFile
+
+import requests
+import torch
+
+
+def gsutil_getsize(url=''):
+    # gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
+    s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
+    return eval(s.split(' ')[0]) if len(s) else 0  # bytes
+
+
+def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
+    # Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
+    file = Path(file)
+    assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
+    try:  # url1
+        print(f'Downloading {url} to {file}...')
+        torch.hub.download_url_to_file(url, str(file))
+        assert file.exists() and file.stat().st_size > min_bytes, assert_msg  # check
+    except Exception as e:  # url2
+        file.unlink(missing_ok=True)  # remove partial downloads
+        print(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
+        os.system(f"curl -L '{url2 or url}' -o '{file}' --retry 3 -C -")  # curl download, retry and resume on fail
+    finally:
+        if not file.exists() or file.stat().st_size < min_bytes:  # check
+            file.unlink(missing_ok=True)  # remove partial downloads
+            print(f"ERROR: {assert_msg}\n{error_msg}")
+        print('')
+
+
+def attempt_download(file, repo='ultralytics/yolov5'):  # from utils.downloads import *; attempt_download()
+    # Attempt file download if does not exist
+    file = Path(str(file).strip().replace("'", ''))
+
+    if not file.exists():
+        # URL specified
+        name = Path(urllib.parse.unquote(str(file))).name  # decode '%2F' to '/' etc.
+        if str(file).startswith(('http:/', 'https:/')):  # download
+            url = str(file).replace(':/', '://')  # Pathlib turns :// -> :/
+            file = name.split('?')[0]  # parse authentication https://url.com/file.txt?auth...
+            if Path(file).is_file():
+                print(f'Found {url} locally at {file}')  # file already exists
+            else:
+                safe_download(file=file, url=url, min_bytes=1E5)
+            return file
+
+        # GitHub assets
+        file.parent.mkdir(parents=True, exist_ok=True)  # make parent dir (if required)
+        try:
+            response = requests.get(f'https://api.github.com/repos/{repo}/releases/latest').json()  # github api
+            assets = [x['name'] for x in response['assets']]  # release assets, i.e. ['yolov5s.pt', 'yolov5m.pt', ...]
+            tag = response['tag_name']  # i.e. 'v1.0'
+        except Exception:  # fallback plan
+            assets = ['yolov5n.pt', 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt',
+                      'yolov5n6.pt', 'yolov5s6.pt', 'yolov5m6.pt', 'yolov5l6.pt', 'yolov5x6.pt']
+            try:
+                tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
+            except Exception:
+                tag = 'v6.0'  # current release
+
+        if name in assets:
+            safe_download(file,
+                          url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
+                          # url2=f'https://storage.googleapis.com/{repo}/ckpt/{name}',  # backup url (optional)
+                          min_bytes=1E5,
+                          error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/')
+
+    return str(file)
+
+
+def gdrive_download(id='16TiPfZj7htmTyhntwcZyEEAejOUxuT6m', file='tmp.zip'):
+    # Downloads a file from Google Drive. from yolov5.utils.downloads import *; gdrive_download()
+    t = time.time()
+    file = Path(file)
+    cookie = Path('cookie')  # gdrive cookie
+    print(f'Downloading https://drive.google.com/uc?export=download&id={id} as {file}... ', end='')
+    file.unlink(missing_ok=True)  # remove existing file
+    cookie.unlink(missing_ok=True)  # remove existing cookie
+
+    # Attempt file download
+    out = "NUL" if platform.system() == "Windows" else "/dev/null"
+    os.system(f'curl -c ./cookie -s -L "drive.google.com/uc?export=download&id={id}" > {out}')
+    if os.path.exists('cookie'):  # large file
+        s = f'curl -Lb ./cookie "drive.google.com/uc?export=download&confirm={get_token()}&id={id}" -o {file}'
+    else:  # small file
+        s = f'curl -s -L -o {file} "drive.google.com/uc?export=download&id={id}"'
+    r = os.system(s)  # execute, capture return
+    cookie.unlink(missing_ok=True)  # remove existing cookie
+
+    # Error check
+    if r != 0:
+        file.unlink(missing_ok=True)  # remove partial
+        print('Download error ')  # raise Exception('Download error')
+        return r
+
+    # Unzip if archive
+    if file.suffix == '.zip':
+        print('unzipping... ', end='')
+        ZipFile(file).extractall(path=file.parent)  # unzip
+        file.unlink()  # remove zip
+
+    print(f'Done ({time.time() - t:.1f}s)')
+    return r
+
+
+def get_token(cookie="./cookie"):
+    with open(cookie) as f:
+        for line in f:
+            if "download" in line:
+                return line.split()[-1]
+    return ""
+
+# Google utils: https://cloud.google.com/storage/docs/reference/libraries ----------------------------------------------
+#
+#
+# def upload_blob(bucket_name, source_file_name, destination_blob_name):
+#     # Uploads a file to a bucket
+#     # https://cloud.google.com/storage/docs/uploading-objects#storage-upload-object-python
+#
+#     storage_client = storage.Client()
+#     bucket = storage_client.get_bucket(bucket_name)
+#     blob = bucket.blob(destination_blob_name)
+#
+#     blob.upload_from_filename(source_file_name)
+#
+#     print('File {} uploaded to {}.'.format(
+#         source_file_name,
+#         destination_blob_name))
+#
+#
+# def download_blob(bucket_name, source_blob_name, destination_file_name):
+#     # Uploads a blob from a bucket
+#     storage_client = storage.Client()
+#     bucket = storage_client.get_bucket(bucket_name)
+#     blob = bucket.blob(source_blob_name)
+#
+#     blob.download_to_filename(destination_file_name)
+#
+#     print('Blob {} downloaded to {}.'.format(
+#         source_blob_name,
+#         destination_file_name))
diff --git a/src/yolov5/utils/flask_rest_api/README.md b/src/yolov5/utils/flask_rest_api/README.md
new file mode 100644
index 00000000..a726acbd
--- /dev/null
+++ b/src/yolov5/utils/flask_rest_api/README.md
@@ -0,0 +1,73 @@
+# Flask REST API
+
+[REST](https://en.wikipedia.org/wiki/Representational_state_transfer) [API](https://en.wikipedia.org/wiki/API)s are
+commonly used to expose Machine Learning (ML)  models to other services. This folder contains an example REST API
+created using Flask to expose the YOLOv5s model from [PyTorch Hub](https://pytorch.org/hub/ultralytics_yolov5/).
+
+## Requirements
+
+[Flask](https://palletsprojects.com/p/flask/) is required. Install with:
+
+```shell
+$ pip install Flask
+```
+
+## Run
+
+After Flask installation run:
+
+```shell
+$ python3 restapi.py --port 5000
+```
+
+Then use [curl](https://curl.se/) to perform a request:
+
+```shell
+$ curl -X POST -F image=@zidane.jpg 'http://localhost:5000/v1/object-detection/yolov5s'
+```
+
+The model inference results are returned as a JSON response:
+
+```json
+[
+  {
+    "class": 0,
+    "confidence": 0.8900438547,
+    "height": 0.9318675399,
+    "name": "person",
+    "width": 0.3264600933,
+    "xcenter": 0.7438579798,
+    "ycenter": 0.5207948685
+  },
+  {
+    "class": 0,
+    "confidence": 0.8440024257,
+    "height": 0.7155083418,
+    "name": "person",
+    "width": 0.6546785235,
+    "xcenter": 0.427829951,
+    "ycenter": 0.6334488392
+  },
+  {
+    "class": 27,
+    "confidence": 0.3771208823,
+    "height": 0.3902671337,
+    "name": "tie",
+    "width": 0.0696444362,
+    "xcenter": 0.3675483763,
+    "ycenter": 0.7991207838
+  },
+  {
+    "class": 27,
+    "confidence": 0.3527112305,
+    "height": 0.1540903747,
+    "name": "tie",
+    "width": 0.0336618312,
+    "xcenter": 0.7814827561,
+    "ycenter": 0.5065554976
+  }
+]
+```
+
+An example python script to perform inference using [requests](https://docs.python-requests.org/en/master/) is given
+in `example_request.py`
diff --git a/src/yolov5/utils/flask_rest_api/example_request.py b/src/yolov5/utils/flask_rest_api/example_request.py
new file mode 100644
index 00000000..ff21f30f
--- /dev/null
+++ b/src/yolov5/utils/flask_rest_api/example_request.py
@@ -0,0 +1,13 @@
+"""Perform test request"""
+import pprint
+
+import requests
+
+DETECTION_URL = "http://localhost:5000/v1/object-detection/yolov5s"
+TEST_IMAGE = "zidane.jpg"
+
+image_data = open(TEST_IMAGE, "rb").read()
+
+response = requests.post(DETECTION_URL, files={"image": image_data}).json()
+
+pprint.pprint(response)
diff --git a/src/yolov5/utils/flask_rest_api/restapi.py b/src/yolov5/utils/flask_rest_api/restapi.py
new file mode 100644
index 00000000..b93ad16a
--- /dev/null
+++ b/src/yolov5/utils/flask_rest_api/restapi.py
@@ -0,0 +1,37 @@
+"""
+Run a rest API exposing the yolov5s object detection model
+"""
+import argparse
+import io
+
+import torch
+from flask import Flask, request
+from PIL import Image
+
+app = Flask(__name__)
+
+DETECTION_URL = "/v1/object-detection/yolov5s"
+
+
+@app.route(DETECTION_URL, methods=["POST"])
+def predict():
+    if not request.method == "POST":
+        return
+
+    if request.files.get("image"):
+        image_file = request.files["image"]
+        image_bytes = image_file.read()
+
+        img = Image.open(io.BytesIO(image_bytes))
+
+        results = model(img, size=640)  # reduce size=320 for faster inference
+        return results.pandas().xyxy[0].to_json(orient="records")
+
+
+if __name__ == "__main__":
+    parser = argparse.ArgumentParser(description="Flask API exposing YOLOv5 model")
+    parser.add_argument("--port", default=5000, type=int, help="port number")
+    args = parser.parse_args()
+
+    model = torch.hub.load("ultralytics/yolov5", "yolov5s", force_reload=True)  # force_reload to recache
+    app.run(host="0.0.0.0", port=args.port)  # debug=True causes Restarting with stat
diff --git a/src/yolov5/utils/general.py b/src/yolov5/utils/general.py
new file mode 100755
index 00000000..4b7a7c6f
--- /dev/null
+++ b/src/yolov5/utils/general.py
@@ -0,0 +1,880 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+General utils
+"""
+
+import contextlib
+import glob
+import logging
+import math
+import os
+import platform
+import random
+import re
+import shutil
+import signal
+import time
+import urllib
+from itertools import repeat
+from multiprocessing.pool import ThreadPool
+from pathlib import Path
+from subprocess import check_output
+from zipfile import ZipFile
+
+import cv2
+import numpy as np
+import pandas as pd
+import pkg_resources as pkg
+import torch
+import torchvision
+import yaml
+
+from utils.downloads import gsutil_getsize
+from utils.metrics import box_iou, fitness
+
+# Settings
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[1]  # YOLOv5 root directory
+DATASETS_DIR = ROOT.parent / 'datasets'  # YOLOv5 datasets directory
+NUM_THREADS = min(8, max(1, os.cpu_count() - 1))  # number of YOLOv5 multiprocessing threads
+VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true'  # global verbose mode
+FONT = 'Arial.ttf'  # https://ultralytics.com/assets/Arial.ttf
+
+torch.set_printoptions(linewidth=320, precision=5, profile='long')
+np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format})  # format short g, %precision=5
+pd.options.display.max_columns = 10
+cv2.setNumThreads(0)  # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
+os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS)  # NumExpr max threads
+
+
+def is_kaggle():
+    # Is environment a Kaggle Notebook?
+    try:
+        assert os.environ.get('PWD') == '/kaggle/working'
+        assert os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
+        return True
+    except AssertionError:
+        return False
+
+
+def is_writeable(dir, test=False):
+    # Return True if directory has write permissions, test opening a file with write permissions if test=True
+    if test:  # method 1
+        file = Path(dir) / 'tmp.txt'
+        try:
+            with open(file, 'w'):  # open file with write permissions
+                pass
+            file.unlink()  # remove file
+            return True
+        except OSError:
+            return False
+    else:  # method 2
+        return os.access(dir, os.R_OK)  # possible issues on Windows
+
+
+def set_logging(name=None, verbose=VERBOSE):
+    # Sets level and returns logger
+    if is_kaggle():
+        for h in logging.root.handlers:
+            logging.root.removeHandler(h)  # remove all handlers associated with the root logger object
+    rank = int(os.getenv('RANK', -1))  # rank in world for Multi-GPU trainings
+    logging.basicConfig(format="%(message)s", level=logging.INFO if (verbose and rank in (-1, 0)) else logging.WARNING)
+    return logging.getLogger(name)
+
+
+LOGGER = set_logging('yolov5')  # define globally (used in train.py, val.py, detect.py, etc.)
+
+
+def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
+    # Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
+    env = os.getenv(env_var)
+    if env:
+        path = Path(env)  # use environment variable
+    else:
+        cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'}  # 3 OS dirs
+        path = Path.home() / cfg.get(platform.system(), '')  # OS-specific config dir
+        path = (path if is_writeable(path) else Path('/tmp')) / dir  # GCP and AWS lambda fix, only /tmp is writeable
+    path.mkdir(exist_ok=True)  # make if required
+    return path
+
+
+CONFIG_DIR = user_config_dir()  # Ultralytics settings dir
+
+
+class Profile(contextlib.ContextDecorator):
+    # Usage: @Profile() decorator or 'with Profile():' context manager
+    def __enter__(self):
+        self.start = time.time()
+
+    def __exit__(self, type, value, traceback):
+        print(f'Profile results: {time.time() - self.start:.5f}s')
+
+
+class Timeout(contextlib.ContextDecorator):
+    # Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
+    def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
+        self.seconds = int(seconds)
+        self.timeout_message = timeout_msg
+        self.suppress = bool(suppress_timeout_errors)
+
+    def _timeout_handler(self, signum, frame):
+        raise TimeoutError(self.timeout_message)
+
+    def __enter__(self):
+        signal.signal(signal.SIGALRM, self._timeout_handler)  # Set handler for SIGALRM
+        signal.alarm(self.seconds)  # start countdown for SIGALRM to be raised
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        signal.alarm(0)  # Cancel SIGALRM if it's scheduled
+        if self.suppress and exc_type is TimeoutError:  # Suppress TimeoutError
+            return True
+
+
+class WorkingDirectory(contextlib.ContextDecorator):
+    # Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
+    def __init__(self, new_dir):
+        self.dir = new_dir  # new dir
+        self.cwd = Path.cwd().resolve()  # current dir
+
+    def __enter__(self):
+        os.chdir(self.dir)
+
+    def __exit__(self, exc_type, exc_val, exc_tb):
+        os.chdir(self.cwd)
+
+
+def try_except(func):
+    # try-except function. Usage: @try_except decorator
+    def handler(*args, **kwargs):
+        try:
+            func(*args, **kwargs)
+        except Exception as e:
+            print(e)
+
+    return handler
+
+
+def methods(instance):
+    # Get class/instance methods
+    return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
+
+
+def print_args(name, opt):
+    # Print argparser arguments
+    LOGGER.info(colorstr(f'{name}: ') + ', '.join(f'{k}={v}' for k, v in vars(opt).items()))
+
+
+def init_seeds(seed=0):
+    # Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
+    # cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
+    import torch.backends.cudnn as cudnn
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
+
+
+def intersect_dicts(da, db, exclude=()):
+    # Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
+    return {k: v for k, v in da.items() if k in db and not any(x in k for x in exclude) and v.shape == db[k].shape}
+
+
+def get_latest_run(search_dir='.'):
+    # Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
+    last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
+    return max(last_list, key=os.path.getctime) if last_list else ''
+
+
+def is_docker():
+    # Is environment a Docker container?
+    return Path('/workspace').exists()  # or Path('/.dockerenv').exists()
+
+
+def is_colab():
+    # Is environment a Google Colab instance?
+    try:
+        import google.colab
+        return True
+    except ImportError:
+        return False
+
+
+def is_pip():
+    # Is file in a pip package?
+    return 'site-packages' in Path(__file__).resolve().parts
+
+
+def is_ascii(s=''):
+    # Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
+    s = str(s)  # convert list, tuple, None, etc. to str
+    return len(s.encode().decode('ascii', 'ignore')) == len(s)
+
+
+def is_chinese(s='äēēåˇĨæ™ēčƒŊ'):
+    # Is string composed of any Chinese characters?
+    return True if re.search('[\u4e00-\u9fff]', str(s)) else False
+
+
+def emojis(str=''):
+    # Return platform-dependent emoji-safe version of string
+    return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
+
+
+def file_size(path):
+    # Return file/dir size (MB)
+    path = Path(path)
+    if path.is_file():
+        return path.stat().st_size / 1E6
+    elif path.is_dir():
+        return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / 1E6
+    else:
+        return 0.0
+
+
+def check_online():
+    # Check internet connectivity
+    import socket
+    try:
+        socket.create_connection(("1.1.1.1", 443), 5)  # check host accessibility
+        return True
+    except OSError:
+        return False
+
+
+@try_except
+@WorkingDirectory(ROOT)
+def check_git_status():
+    # Recommend 'git pull' if code is out of date
+    msg = ', for updates see https://github.com/ultralytics/yolov5'
+    s = colorstr('github: ')  # string
+    assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
+    assert not is_docker(), s + 'skipping check (Docker image)' + msg
+    assert check_online(), s + 'skipping check (offline)' + msg
+
+    cmd = 'git fetch && git config --get remote.origin.url'
+    url = check_output(cmd, shell=True, timeout=5).decode().strip().rstrip('.git')  # git fetch
+    branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip()  # checked out
+    n = int(check_output(f'git rev-list {branch}..origin/master --count', shell=True))  # commits behind
+    if n > 0:
+        s += f"âš ī¸ YOLOv5 is out of date by {n} commit{'s' * (n > 1)}. Use `git pull` or `git clone {url}` to update."
+    else:
+        s += f'up to date with {url} ✅'
+    LOGGER.info(emojis(s))  # emoji-safe
+
+
+def check_python(minimum='3.6.2'):
+    # Check current python version vs. required python version
+    check_version(platform.python_version(), minimum, name='Python ', hard=True)
+
+
+def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
+    # Check version vs. required version
+    current, minimum = (pkg.parse_version(x) for x in (current, minimum))
+    result = (current == minimum) if pinned else (current >= minimum)  # bool
+    s = f'{name}{minimum} required by YOLOv5, but {name}{current} is currently installed'  # string
+    if hard:
+        assert result, s  # assert min requirements met
+    if verbose and not result:
+        LOGGER.warning(s)
+    return result
+
+
+@try_except
+def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True):
+    # Check installed dependencies meet requirements (pass *.txt file or list of packages)
+    prefix = colorstr('red', 'bold', 'requirements:')
+    check_python()  # check python version
+    if isinstance(requirements, (str, Path)):  # requirements.txt file
+        file = Path(requirements)
+        assert file.exists(), f"{prefix} {file.resolve()} not found, check failed."
+        with file.open() as f:
+            requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
+    else:  # list or tuple of packages
+        requirements = [x for x in requirements if x not in exclude]
+
+    n = 0  # number of packages updates
+    for r in requirements:
+        try:
+            pkg.require(r)
+        except Exception:  # DistributionNotFound or VersionConflict if requirements not met
+            s = f"{prefix} {r} not found and is required by YOLOv5"
+            if install:
+                LOGGER.info(f"{s}, attempting auto-update...")
+                try:
+                    assert check_online(), f"'pip install {r}' skipped (offline)"
+                    LOGGER.info(check_output(f"pip install '{r}'", shell=True).decode())
+                    n += 1
+                except Exception as e:
+                    LOGGER.warning(f'{prefix} {e}')
+            else:
+                LOGGER.info(f'{s}. Please install and rerun your command.')
+
+    if n:  # if packages updated
+        source = file.resolve() if 'file' in locals() else requirements
+        s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
+            f"{prefix} âš ī¸ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
+        LOGGER.info(emojis(s))
+
+
+def check_img_size(imgsz, s=32, floor=0):
+    # Verify image size is a multiple of stride s in each dimension
+    if isinstance(imgsz, int):  # integer i.e. img_size=640
+        new_size = max(make_divisible(imgsz, int(s)), floor)
+    else:  # list i.e. img_size=[640, 480]
+        new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
+    if new_size != imgsz:
+        LOGGER.warning(f'WARNING: --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
+    return new_size
+
+
+def check_imshow():
+    # Check if environment supports image displays
+    try:
+        assert not is_docker(), 'cv2.imshow() is disabled in Docker environments'
+        assert not is_colab(), 'cv2.imshow() is disabled in Google Colab environments'
+        cv2.imshow('test', np.zeros((1, 1, 3)))
+        cv2.waitKey(1)
+        cv2.destroyAllWindows()
+        cv2.waitKey(1)
+        return True
+    except Exception as e:
+        LOGGER.warning(f'WARNING: Environment does not support cv2.imshow() or PIL Image.show() image displays\n{e}')
+        return False
+
+
+def check_suffix(file='yolov5s.pt', suffix=('.pt',), msg=''):
+    # Check file(s) for acceptable suffix
+    if file and suffix:
+        if isinstance(suffix, str):
+            suffix = [suffix]
+        for f in file if isinstance(file, (list, tuple)) else [file]:
+            s = Path(f).suffix.lower()  # file suffix
+            if len(s):
+                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
+
+
+def check_yaml(file, suffix=('.yaml', '.yml')):
+    # Search/download YAML file (if necessary) and return path, checking suffix
+    return check_file(file, suffix)
+
+
+def check_file(file, suffix=''):
+    # Search/download file (if necessary) and return path
+    check_suffix(file, suffix)  # optional
+    file = str(file)  # convert to str()
+    if Path(file).is_file() or file == '':  # exists
+        return file
+    elif file.startswith(('http:/', 'https:/')):  # download
+        url = str(Path(file)).replace(':/', '://')  # Pathlib turns :// -> :/
+        file = Path(urllib.parse.unquote(file).split('?')[0]).name  # '%2F' to '/', split https://url.com/file.txt?auth
+        if Path(file).is_file():
+            LOGGER.info(f'Found {url} locally at {file}')  # file already exists
+        else:
+            LOGGER.info(f'Downloading {url} to {file}...')
+            torch.hub.download_url_to_file(url, file)
+            assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}'  # check
+        return file
+    else:  # search
+        files = []
+        for d in 'data', 'models', 'utils':  # search directories
+            files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True))  # find file
+        assert len(files), f'File not found: {file}'  # assert file was found
+        assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}"  # assert unique
+        return files[0]  # return file
+
+
+def check_font(font=FONT):
+    # Download font to CONFIG_DIR if necessary
+    font = Path(font)
+    if not font.exists() and not (CONFIG_DIR / font.name).exists():
+        url = "https://ultralytics.com/assets/" + font.name
+        LOGGER.info(f'Downloading {url} to {CONFIG_DIR / font.name}...')
+        torch.hub.download_url_to_file(url, str(font), progress=False)
+
+
+def check_dataset(data, autodownload=True):
+    # Download and/or unzip dataset if not found locally
+    # Usage: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128_with_yaml.zip
+
+    # Download (optional)
+    extract_dir = ''
+    if isinstance(data, (str, Path)) and str(data).endswith('.zip'):  # i.e. gs://bucket/dir/coco128.zip
+        download(data, dir=DATASETS_DIR, unzip=True, delete=False, curl=False, threads=1)
+        data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
+        extract_dir, autodownload = data.parent, False
+
+    # Read yaml (optional)
+    if isinstance(data, (str, Path)):
+        with open(data, errors='ignore') as f:
+            data = yaml.safe_load(f)  # dictionary
+
+    # Resolve paths
+    path = Path(extract_dir or data.get('path') or '')  # optional 'path' default to '.'
+    if not path.is_absolute():
+        path = (ROOT / path).resolve()
+    for k in 'train', 'val', 'test':
+        if data.get(k):  # prepend path
+            data[k] = str(path / data[k]) if isinstance(data[k], str) else [str(path / x) for x in data[k]]
+
+    # Parse yaml
+    assert 'nc' in data, "Dataset 'nc' key missing."
+    if 'names' not in data:
+        data['names'] = [f'class{i}' for i in range(data['nc'])]  # assign class names if missing
+    train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
+    if val:
+        val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])]  # val path
+        if not all(x.exists() for x in val):
+            LOGGER.info('\nDataset not found, missing paths: %s' % [str(x) for x in val if not x.exists()])
+            if s and autodownload:  # download script
+                root = path.parent if 'path' in data else '..'  # unzip directory i.e. '../'
+                if s.startswith('http') and s.endswith('.zip'):  # URL
+                    f = Path(s).name  # filename
+                    LOGGER.info(f'Downloading {s} to {f}...')
+                    torch.hub.download_url_to_file(s, f)
+                    Path(root).mkdir(parents=True, exist_ok=True)  # create root
+                    ZipFile(f).extractall(path=root)  # unzip
+                    Path(f).unlink()  # remove zip
+                    r = None  # success
+                elif s.startswith('bash '):  # bash script
+                    LOGGER.info(f'Running {s} ...')
+                    r = os.system(s)
+                else:  # python script
+                    r = exec(s, {'yaml': data})  # return None
+                LOGGER.info(f"Dataset autodownload {f'success, saved to {root}' if r in (0, None) else 'failure'}\n")
+            else:
+                raise Exception('Dataset not found.')
+
+    return data  # dictionary
+
+
+def url2file(url):
+    # Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
+    url = str(Path(url)).replace(':/', '://')  # Pathlib turns :// -> :/
+    file = Path(urllib.parse.unquote(url)).name.split('?')[0]  # '%2F' to '/', split https://url.com/file.txt?auth
+    return file
+
+
+def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1):
+    # Multi-threaded file download and unzip function, used in data.yaml for autodownload
+    def download_one(url, dir):
+        # Download 1 file
+        f = dir / Path(url).name  # filename
+        if Path(url).is_file():  # exists in current path
+            Path(url).rename(f)  # move to dir
+        elif not f.exists():
+            LOGGER.info(f'Downloading {url} to {f}...')
+            if curl:
+                os.system(f"curl -L '{url}' -o '{f}' --retry 9 -C -")  # curl download, retry and resume on fail
+            else:
+                torch.hub.download_url_to_file(url, f, progress=True)  # torch download
+        if unzip and f.suffix in ('.zip', '.gz'):
+            LOGGER.info(f'Unzipping {f}...')
+            if f.suffix == '.zip':
+                ZipFile(f).extractall(path=dir)  # unzip
+            elif f.suffix == '.gz':
+                os.system(f'tar xfz {f} --directory {f.parent}')  # unzip
+            if delete:
+                f.unlink()  # remove zip
+
+    dir = Path(dir)
+    dir.mkdir(parents=True, exist_ok=True)  # make directory
+    if threads > 1:
+        pool = ThreadPool(threads)
+        pool.imap(lambda x: download_one(*x), zip(url, repeat(dir)))  # multi-threaded
+        pool.close()
+        pool.join()
+    else:
+        for u in [url] if isinstance(url, (str, Path)) else url:
+            download_one(u, dir)
+
+
+def make_divisible(x, divisor):
+    # Returns nearest x divisible by divisor
+    if isinstance(divisor, torch.Tensor):
+        divisor = int(divisor.max())  # to int
+    return math.ceil(x / divisor) * divisor
+
+
+def clean_str(s):
+    # Cleans a string by replacing special characters with underscore _
+    return re.sub(pattern="[|@#!¥¡$â‚Ŧ%&()=?Âŋ^*;:,¨´><+]", repl="_", string=s)
+
+
+def one_cycle(y1=0.0, y2=1.0, steps=100):
+    # lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
+    return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
+
+
+def colorstr(*input):
+    # Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e.  colorstr('blue', 'hello world')
+    *args, string = input if len(input) > 1 else ('blue', 'bold', input[0])  # color arguments, string
+    colors = {'black': '\033[30m',  # basic colors
+              'red': '\033[31m',
+              'green': '\033[32m',
+              'yellow': '\033[33m',
+              'blue': '\033[34m',
+              'magenta': '\033[35m',
+              'cyan': '\033[36m',
+              'white': '\033[37m',
+              'bright_black': '\033[90m',  # bright colors
+              'bright_red': '\033[91m',
+              'bright_green': '\033[92m',
+              'bright_yellow': '\033[93m',
+              'bright_blue': '\033[94m',
+              'bright_magenta': '\033[95m',
+              'bright_cyan': '\033[96m',
+              'bright_white': '\033[97m',
+              'end': '\033[0m',  # misc
+              'bold': '\033[1m',
+              'underline': '\033[4m'}
+    return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
+
+
+def labels_to_class_weights(labels, nc=80):
+    # Get class weights (inverse frequency) from training labels
+    if labels[0] is None:  # no labels loaded
+        return torch.Tensor()
+
+    labels = np.concatenate(labels, 0)  # labels.shape = (866643, 5) for COCO
+    classes = labels[:, 0].astype(np.int)  # labels = [class xywh]
+    weights = np.bincount(classes, minlength=nc)  # occurrences per class
+
+    # Prepend gridpoint count (for uCE training)
+    # gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum()  # gridpoints per image
+    # weights = np.hstack([gpi * len(labels)  - weights.sum() * 9, weights * 9]) ** 0.5  # prepend gridpoints to start
+
+    weights[weights == 0] = 1  # replace empty bins with 1
+    weights = 1 / weights  # number of targets per class
+    weights /= weights.sum()  # normalize
+    return torch.from_numpy(weights)
+
+
+def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
+    # Produces image weights based on class_weights and image contents
+    class_counts = np.array([np.bincount(x[:, 0].astype(np.int), minlength=nc) for x in labels])
+    image_weights = (class_weights.reshape(1, nc) * class_counts).sum(1)
+    # index = random.choices(range(n), weights=image_weights, k=1)  # weight image sample
+    return image_weights
+
+
+def coco80_to_coco91_class():  # converts 80-index (val2014) to 91-index (paper)
+    # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
+    # a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
+    # b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
+    # x1 = [list(a[i] == b).index(True) + 1 for i in range(80)]  # darknet to coco
+    # x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)]  # coco to darknet
+    x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
+         35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
+         64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
+    return x
+
+
+def xyxy2xywh(x):
+    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[:, 0] = (x[:, 0] + x[:, 2]) / 2  # x center
+    y[:, 1] = (x[:, 1] + x[:, 3]) / 2  # y center
+    y[:, 2] = x[:, 2] - x[:, 0]  # width
+    y[:, 3] = x[:, 3] - x[:, 1]  # height
+    return y
+
+
+def xywh2xyxy(x):
+    # Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[:, 0] = x[:, 0] - x[:, 2] / 2  # top left x
+    y[:, 1] = x[:, 1] - x[:, 3] / 2  # top left y
+    y[:, 2] = x[:, 0] + x[:, 2] / 2  # bottom right x
+    y[:, 3] = x[:, 1] + x[:, 3] / 2  # bottom right y
+    return y
+
+
+def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
+    # Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[:, 0] = w * (x[:, 0] - x[:, 2] / 2) + padw  # top left x
+    y[:, 1] = h * (x[:, 1] - x[:, 3] / 2) + padh  # top left y
+    y[:, 2] = w * (x[:, 0] + x[:, 2] / 2) + padw  # bottom right x
+    y[:, 3] = h * (x[:, 1] + x[:, 3] / 2) + padh  # bottom right y
+    return y
+
+
+def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
+    # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
+    if clip:
+        clip_coords(x, (h - eps, w - eps))  # warning: inplace clip
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[:, 0] = ((x[:, 0] + x[:, 2]) / 2) / w  # x center
+    y[:, 1] = ((x[:, 1] + x[:, 3]) / 2) / h  # y center
+    y[:, 2] = (x[:, 2] - x[:, 0]) / w  # width
+    y[:, 3] = (x[:, 3] - x[:, 1]) / h  # height
+    return y
+
+
+def xyn2xy(x, w=640, h=640, padw=0, padh=0):
+    # Convert normalized segments into pixel segments, shape (n,2)
+    y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
+    y[:, 0] = w * x[:, 0] + padw  # top left x
+    y[:, 1] = h * x[:, 1] + padh  # top left y
+    return y
+
+
+def segment2box(segment, width=640, height=640):
+    # Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
+    x, y = segment.T  # segment xy
+    inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
+    x, y, = x[inside], y[inside]
+    return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4))  # xyxy
+
+
+def segments2boxes(segments):
+    # Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
+    boxes = []
+    for s in segments:
+        x, y = s.T  # segment xy
+        boxes.append([x.min(), y.min(), x.max(), y.max()])  # cls, xyxy
+    return xyxy2xywh(np.array(boxes))  # cls, xywh
+
+
+def resample_segments(segments, n=1000):
+    # Up-sample an (n,2) segment
+    for i, s in enumerate(segments):
+        x = np.linspace(0, len(s) - 1, n)
+        xp = np.arange(len(s))
+        segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T  # segment xy
+    return segments
+
+
+def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None):
+    # Rescale coords (xyxy) from img1_shape to img0_shape
+    if ratio_pad is None:  # calculate from img0_shape
+        gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])  # gain  = old / new
+        pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2  # wh padding
+    else:
+        gain = ratio_pad[0][0]
+        pad = ratio_pad[1]
+
+    coords[:, [0, 2]] -= pad[0]  # x padding
+    coords[:, [1, 3]] -= pad[1]  # y padding
+    coords[:, :4] /= gain
+    clip_coords(coords, img0_shape)
+    return coords
+
+
+def clip_coords(boxes, shape):
+    # Clip bounding xyxy bounding boxes to image shape (height, width)
+    if isinstance(boxes, torch.Tensor):  # faster individually
+        boxes[:, 0].clamp_(0, shape[1])  # x1
+        boxes[:, 1].clamp_(0, shape[0])  # y1
+        boxes[:, 2].clamp_(0, shape[1])  # x2
+        boxes[:, 3].clamp_(0, shape[0])  # y2
+    else:  # np.array (faster grouped)
+        boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1])  # x1, x2
+        boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0])  # y1, y2
+
+
+def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False,
+                        labels=(), max_det=300):
+    """Runs Non-Maximum Suppression (NMS) on inference results
+
+    Returns:
+         list of detections, on (n,6) tensor per image [xyxy, conf, cls]
+    """
+
+    nc = prediction.shape[2] - 5  # number of classes
+    xc = prediction[..., 4] > conf_thres  # candidates
+
+    # Checks
+    assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
+    assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
+
+    # Settings
+    min_wh, max_wh = 2, 7680  # (pixels) minimum and maximum box width and height
+    max_nms = 30000  # maximum number of boxes into torchvision.ops.nms()
+    time_limit = 10.0  # seconds to quit after
+    redundant = True  # require redundant detections
+    multi_label &= nc > 1  # multiple labels per box (adds 0.5ms/img)
+    merge = False  # use merge-NMS
+
+    t = time.time()
+    output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
+    for xi, x in enumerate(prediction):  # image index, image inference
+        # Apply constraints
+        x[((x[..., 2:4] < min_wh) | (x[..., 2:4] > max_wh)).any(1), 4] = 0  # width-height
+        x = x[xc[xi]]  # confidence
+
+        # Cat apriori labels if autolabelling
+        if labels and len(labels[xi]):
+            lb = labels[xi]
+            v = torch.zeros((len(lb), nc + 5), device=x.device)
+            v[:, :4] = lb[:, 1:5]  # box
+            v[:, 4] = 1.0  # conf
+            v[range(len(lb)), lb[:, 0].long() + 5] = 1.0  # cls
+            x = torch.cat((x, v), 0)
+
+        # If none remain process next image
+        if not x.shape[0]:
+            continue
+
+        # Compute conf
+        x[:, 5:] *= x[:, 4:5]  # conf = obj_conf * cls_conf
+
+        # Box (center x, center y, width, height) to (x1, y1, x2, y2)
+        box = xywh2xyxy(x[:, :4])
+
+        # Detections matrix nx6 (xyxy, conf, cls)
+        if multi_label:
+            i, j = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
+            x = torch.cat((box[i], x[i, j + 5, None], j[:, None].float()), 1)
+        else:  # best class only
+            conf, j = x[:, 5:].max(1, keepdim=True)
+            x = torch.cat((box, conf, j.float()), 1)[conf.view(-1) > conf_thres]
+
+        # Filter by class
+        if classes is not None:
+            x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
+
+        # Apply finite constraint
+        # if not torch.isfinite(x).all():
+        #     x = x[torch.isfinite(x).all(1)]
+
+        # Check shape
+        n = x.shape[0]  # number of boxes
+        if not n:  # no boxes
+            continue
+        elif n > max_nms:  # excess boxes
+            x = x[x[:, 4].argsort(descending=True)[:max_nms]]  # sort by confidence
+
+        # Batched NMS
+        c = x[:, 5:6] * (0 if agnostic else max_wh)  # classes
+        boxes, scores = x[:, :4] + c, x[:, 4]  # boxes (offset by class), scores
+        i = torchvision.ops.nms(boxes, scores, iou_thres)  # NMS
+        if i.shape[0] > max_det:  # limit detections
+            i = i[:max_det]
+        if merge and (1 < n < 3E3):  # Merge NMS (boxes merged using weighted mean)
+            # update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
+            iou = box_iou(boxes[i], boxes) > iou_thres  # iou matrix
+            weights = iou * scores[None]  # box weights
+            x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True)  # merged boxes
+            if redundant:
+                i = i[iou.sum(1) > 1]  # require redundancy
+
+        output[xi] = x[i]
+        if (time.time() - t) > time_limit:
+            LOGGER.warning(f'WARNING: NMS time limit {time_limit}s exceeded')
+            break  # time limit exceeded
+
+    return output
+
+
+def strip_optimizer(f='best.pt', s=''):  # from utils.general import *; strip_optimizer()
+    # Strip optimizer from 'f' to finalize training, optionally save as 's'
+    x = torch.load(f, map_location=torch.device('cpu'))
+    if x.get('ema'):
+        x['model'] = x['ema']  # replace model with ema
+    for k in 'optimizer', 'best_fitness', 'wandb_id', 'ema', 'updates':  # keys
+        x[k] = None
+    x['epoch'] = -1
+    x['model'].half()  # to FP16
+    for p in x['model'].parameters():
+        p.requires_grad = False
+    torch.save(x, s or f)
+    mb = os.path.getsize(s or f) / 1E6  # filesize
+    LOGGER.info(f"Optimizer stripped from {f},{(' saved as %s,' % s) if s else ''} {mb:.1f}MB")
+
+
+def print_mutation(results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
+    evolve_csv = save_dir / 'evolve.csv'
+    evolve_yaml = save_dir / 'hyp_evolve.yaml'
+    keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
+            'val/box_loss', 'val/obj_loss', 'val/cls_loss') + tuple(hyp.keys())  # [results + hyps]
+    keys = tuple(x.strip() for x in keys)
+    vals = results + tuple(hyp.values())
+    n = len(keys)
+
+    # Download (optional)
+    if bucket:
+        url = f'gs://{bucket}/evolve.csv'
+        if gsutil_getsize(url) > (os.path.getsize(evolve_csv) if os.path.exists(evolve_csv) else 0):
+            os.system(f'gsutil cp {url} {save_dir}')  # download evolve.csv if larger than local
+
+    # Log to evolve.csv
+    s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n')  # add header
+    with open(evolve_csv, 'a') as f:
+        f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
+
+    # Save yaml
+    with open(evolve_yaml, 'w') as f:
+        data = pd.read_csv(evolve_csv)
+        data = data.rename(columns=lambda x: x.strip())  # strip keys
+        i = np.argmax(fitness(data.values[:, :4]))  #
+        generations = len(data)
+        f.write('# YOLOv5 Hyperparameter Evolution Results\n' +
+                f'# Best generation: {i}\n' +
+                f'# Last generation: {generations - 1}\n' +
+                '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) + '\n' +
+                '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
+        yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
+
+    # Print to screen
+    LOGGER.info(prefix + f'{generations} generations finished, current result:\n' +
+                prefix + ', '.join(f'{x.strip():>20s}' for x in keys) + '\n' +
+                prefix + ', '.join(f'{x:20.5g}' for x in vals) + '\n\n')
+
+    if bucket:
+        os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}')  # upload
+
+
+def apply_classifier(x, model, img, im0):
+    # Apply a second stage classifier to YOLO outputs
+    # Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
+    im0 = [im0] if isinstance(im0, np.ndarray) else im0
+    for i, d in enumerate(x):  # per image
+        if d is not None and len(d):
+            d = d.clone()
+
+            # Reshape and pad cutouts
+            b = xyxy2xywh(d[:, :4])  # boxes
+            b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # rectangle to square
+            b[:, 2:] = b[:, 2:] * 1.3 + 30  # pad
+            d[:, :4] = xywh2xyxy(b).long()
+
+            # Rescale boxes from img_size to im0 size
+            scale_coords(img.shape[2:], d[:, :4], im0[i].shape)
+
+            # Classes
+            pred_cls1 = d[:, 5].long()
+            ims = []
+            for j, a in enumerate(d):  # per item
+                cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
+                im = cv2.resize(cutout, (224, 224))  # BGR
+                # cv2.imwrite('example%i.jpg' % j, cutout)
+
+                im = im[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
+                im = np.ascontiguousarray(im, dtype=np.float32)  # uint8 to float32
+                im /= 255  # 0 - 255 to 0.0 - 1.0
+                ims.append(im)
+
+            pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1)  # classifier prediction
+            x[i] = x[i][pred_cls1 == pred_cls2]  # retain matching class detections
+
+    return x
+
+
+def increment_path(path, exist_ok=False, sep='', mkdir=False):
+    # Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
+    path = Path(path)  # os-agnostic
+    if path.exists() and not exist_ok:
+        path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
+        dirs = glob.glob(f"{path}{sep}*")  # similar paths
+        matches = [re.search(rf"%s{sep}(\d+)" % path.stem, d) for d in dirs]
+        i = [int(m.groups()[0]) for m in matches if m]  # indices
+        n = max(i) + 1 if i else 2  # increment number
+        path = Path(f"{path}{sep}{n}{suffix}")  # increment path
+    if mkdir:
+        path.mkdir(parents=True, exist_ok=True)  # make directory
+    return path
+
+
+# Variables
+NCOLS = 0 if is_docker() else shutil.get_terminal_size().columns  # terminal window size for tqdm
diff --git a/src/yolov5/utils/google_app_engine/Dockerfile b/src/yolov5/utils/google_app_engine/Dockerfile
new file mode 100644
index 00000000..0155618f
--- /dev/null
+++ b/src/yolov5/utils/google_app_engine/Dockerfile
@@ -0,0 +1,25 @@
+FROM gcr.io/google-appengine/python
+
+# Create a virtualenv for dependencies. This isolates these packages from
+# system-level packages.
+# Use -p python3 or -p python3.7 to select python version. Default is version 2.
+RUN virtualenv /env -p python3
+
+# Setting these environment variables are the same as running
+# source /env/bin/activate.
+ENV VIRTUAL_ENV /env
+ENV PATH /env/bin:$PATH
+
+RUN apt-get update && apt-get install -y python-opencv
+
+# Copy the application's requirements.txt and run pip to install all
+# dependencies into the virtualenv.
+ADD requirements.txt /app/requirements.txt
+RUN pip install -r /app/requirements.txt
+
+# Add the application source code.
+ADD . /app
+
+# Run a WSGI server to serve the application. gunicorn must be declared as
+# a dependency in requirements.txt.
+CMD gunicorn -b :$PORT main:app
diff --git a/src/yolov5/utils/google_app_engine/additional_requirements.txt b/src/yolov5/utils/google_app_engine/additional_requirements.txt
new file mode 100644
index 00000000..42d7ffc0
--- /dev/null
+++ b/src/yolov5/utils/google_app_engine/additional_requirements.txt
@@ -0,0 +1,4 @@
+# add these requirements in your app on top of the existing ones
+pip==21.1
+Flask==1.0.2
+gunicorn==19.9.0
diff --git a/src/yolov5/utils/google_app_engine/app.yaml b/src/yolov5/utils/google_app_engine/app.yaml
new file mode 100644
index 00000000..5056b7c1
--- /dev/null
+++ b/src/yolov5/utils/google_app_engine/app.yaml
@@ -0,0 +1,14 @@
+runtime: custom
+env: flex
+
+service: yolov5app
+
+liveness_check:
+  initial_delay_sec: 600
+
+manual_scaling:
+  instances: 1
+resources:
+  cpu: 1
+  memory_gb: 4
+  disk_size_gb: 20
diff --git a/src/yolov5/utils/loggers/__init__.py b/src/yolov5/utils/loggers/__init__.py
new file mode 100644
index 00000000..86ccf384
--- /dev/null
+++ b/src/yolov5/utils/loggers/__init__.py
@@ -0,0 +1,168 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Logging utils
+"""
+
+import os
+import warnings
+from threading import Thread
+
+import pkg_resources as pkg
+import torch
+from torch.utils.tensorboard import SummaryWriter
+
+from utils.general import colorstr, emojis
+from utils.loggers.wandb.wandb_utils import WandbLogger
+from utils.plots import plot_images, plot_results
+from utils.torch_utils import de_parallel
+
+LOGGERS = ('csv', 'tb', 'wandb')  # text-file, TensorBoard, Weights & Biases
+RANK = int(os.getenv('RANK', -1))
+
+try:
+    import wandb
+
+    assert hasattr(wandb, '__version__')  # verify package import not local dir
+    if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in [0, -1]:
+        try:
+            wandb_login_success = wandb.login(timeout=30)
+        except wandb.errors.UsageError:  # known non-TTY terminal issue
+            wandb_login_success = False
+        if not wandb_login_success:
+            wandb = None
+except (ImportError, AssertionError):
+    wandb = None
+
+
+class Loggers():
+    # YOLOv5 Loggers class
+    def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
+        self.save_dir = save_dir
+        self.weights = weights
+        self.opt = opt
+        self.hyp = hyp
+        self.logger = logger  # for printing results to console
+        self.include = include
+        self.keys = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
+                     'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',  # metrics
+                     'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
+                     'x/lr0', 'x/lr1', 'x/lr2']  # params
+        self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95',]
+        for k in LOGGERS:
+            setattr(self, k, None)  # init empty logger dictionary
+        self.csv = True  # always log to csv
+
+        # Message
+        if not wandb:
+            prefix = colorstr('Weights & Biases: ')
+            s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)"
+            print(emojis(s))
+
+        # TensorBoard
+        s = self.save_dir
+        if 'tb' in self.include and not self.opt.evolve:
+            prefix = colorstr('TensorBoard: ')
+            self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
+            self.tb = SummaryWriter(str(s))
+
+        # W&B
+        if wandb and 'wandb' in self.include:
+            wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
+            run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
+            self.opt.hyp = self.hyp  # add hyperparameters
+            self.wandb = WandbLogger(self.opt, run_id)
+        else:
+            self.wandb = None
+
+    def on_pretrain_routine_end(self):
+        # Callback runs on pre-train routine end
+        paths = self.save_dir.glob('*labels*.jpg')  # training labels
+        if self.wandb:
+            self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
+
+    def on_train_batch_end(self, ni, model, imgs, targets, paths, plots, sync_bn):
+        # Callback runs on train batch end
+        if plots:
+            if ni == 0:
+                if not sync_bn:  # tb.add_graph() --sync known issue https://github.com/ultralytics/yolov5/issues/3754
+                    with warnings.catch_warnings():
+                        warnings.simplefilter('ignore')  # suppress jit trace warning
+                        self.tb.add_graph(torch.jit.trace(de_parallel(model), imgs[0:1], strict=False), [])
+            if ni < 3:
+                f = self.save_dir / f'train_batch{ni}.jpg'  # filename
+                Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
+            if self.wandb and ni == 10:
+                files = sorted(self.save_dir.glob('train*.jpg'))
+                self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
+
+    def on_train_epoch_end(self, epoch):
+        # Callback runs on train epoch end
+        if self.wandb:
+            self.wandb.current_epoch = epoch + 1
+
+    def on_val_image_end(self, pred, predn, path, names, im):
+        # Callback runs on val image end
+        if self.wandb:
+            self.wandb.val_one_image(pred, predn, path, names, im)
+
+    def on_val_end(self):
+        # Callback runs on val end
+        if self.wandb:
+            files = sorted(self.save_dir.glob('val*.jpg'))
+            self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
+
+    def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
+        # Callback runs at the end of each fit (train+val) epoch
+        x = {k: v for k, v in zip(self.keys, vals)}  # dict
+        if self.csv:
+            file = self.save_dir / 'results.csv'
+            n = len(x) + 1  # number of cols
+            s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n')  # add header
+            with open(file, 'a') as f:
+                f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
+
+        if self.tb:
+            for k, v in x.items():
+                self.tb.add_scalar(k, v, epoch)
+
+        if self.wandb:
+            if best_fitness == fi:
+                best_results = [epoch] + vals[3:7]
+                for i, name in enumerate(self.best_keys):
+                    self.wandb.wandb_run.summary[name] = best_results[i]  # log best results in the summary
+            self.wandb.log(x)
+            self.wandb.end_epoch(best_result=best_fitness == fi)
+
+    def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
+        # Callback runs on model save event
+        if self.wandb:
+            if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
+                self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
+
+    def on_train_end(self, last, best, plots, epoch, results):
+        # Callback runs on training end
+        if plots:
+            plot_results(file=self.save_dir / 'results.csv')  # save results.png
+        files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
+        files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()]  # filter
+
+        if self.tb:
+            import cv2
+            for f in files:
+                self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
+
+        if self.wandb:
+            self.wandb.log({k: v for k, v in zip(self.keys[3:10], results)})  # log best.pt val results
+            self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
+            # Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
+            if not self.opt.evolve:
+                wandb.log_artifact(str(best if best.exists() else last), type='model',
+                                   name='run_' + self.wandb.wandb_run.id + '_model',
+                                   aliases=['latest', 'best', 'stripped'])
+            self.wandb.finish_run()
+
+    def on_params_update(self, params):
+        # Update hyperparams or configs of the experiment
+        # params: A dict containing {param: value} pairs
+        if self.wandb:
+            self.wandb.wandb_run.config.update(params, allow_val_change=True)
diff --git a/src/yolov5/utils/loggers/wandb/README.md b/src/yolov5/utils/loggers/wandb/README.md
new file mode 100644
index 00000000..63d99985
--- /dev/null
+++ b/src/yolov5/utils/loggers/wandb/README.md
@@ -0,0 +1,152 @@
+📚 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 🚀. UPDATED 29 September 2021.
+* [About Weights & Biases](#about-weights-&-biases)
+* [First-Time Setup](#first-time-setup)
+* [Viewing runs](#viewing-runs)
+* [Disabling wandb](#disabling-wandb)
+* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
+* [Reports: Share your work with the world!](#reports)
+
+## About Weights & Biases
+Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models — architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
+
+Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
+
+ * [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
+ * [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
+ * [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
+ * [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
+ * [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
+ * [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
+
+## First-Time Setup
+<details open>
+ <summary> Toggle Details </summary>
+When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
+
+W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
+
+ ```shell
+ $ python train.py --project ... --name ...
+ ```
+
+YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
+
+
+ </details>
+
+## Viewing Runs
+<details open>
+  <summary> Toggle Details </summary>
+Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
+
+ * Training & Validation losses
+ * Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
+ * Learning Rate over time
+ * A bounding box debugging panel, showing the training progress over time
+ * GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
+ * System: Disk I/0, CPU utilization, RAM memory usage
+ * Your trained model as W&B Artifact
+ * Environment: OS and Python types, Git repository and state, **training command**
+
+<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
+</details>
+
+ ## Disabling wandb
+* training after running `wandb disabled` inside that directory creates no wandb run
+![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
+
+* To enable wandb again, run `wandb online`
+![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
+
+## Advanced Usage
+You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
+<details open>
+ <h3> 1: Train and Log Evaluation simultaneousy </h3>
+   This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
+   Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
+   so no images will be uploaded from your system more than once.
+ <details open>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python train.py --upload_data val</code>
+
+![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
+ </details>
+
+ <h3>2. Visualize and Version Datasets</h3>
+ Log, visualize, dynamically query, and understand your data with <a href='https://docs.wandb.ai/guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
+ <details>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
+
+ ![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
+ </details>
+
+ <h3> 3: Train using dataset artifact </h3>
+   When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
+   can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
+ <details>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
+
+![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
+ </details>
+
+   <h3> 4: Save model checkpoints as artifacts </h3>
+  To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
+  You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
+
+ <details>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python train.py --save_period 1 </code>
+
+![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
+ </details>
+
+</details>
+
+ <h3> 5: Resume runs from checkpoint artifacts. </h3>
+Any run can be resumed using artifacts if the <code>--resume</code> argument starts with <code>wandb-artifact://</code> prefix followed by the run path, i.e, <code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
+
+ <details>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
+
+![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
+ </details>
+
+  <h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
+ <b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
+ The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
+ train from <code>_wandb.yaml</code> file and set <code>--save_period</code>
+
+ <details>
+  <summary> <b>Usage</b> </summary>
+   <b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
+
+![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
+ </details>
+
+</details>
+
+ <h3> Reports </h3>
+W&B Reports can be created from your saved runs for sharing online. Once a report is created you will receive a link you can use to publically share your results. Here is an example report created from the COCO128 tutorial trainings of all four YOLOv5 models ([link](https://wandb.ai/glenn-jocher/yolov5_tutorial/reports/YOLOv5-COCO128-Tutorial-Results--VmlldzozMDI5OTY)).
+
+<img width="900" alt="Weights & Biases Reports" src="https://user-images.githubusercontent.com/26833433/135394029-a17eaf86-c6c1-4b1d-bb80-b90e83aaffa7.png">
+
+
+## Environments
+
+YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
+
+- **Google Colab and Kaggle** notebooks with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
+- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
+- **Amazon** Deep Learning AMI. See [AWS Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart)
+- **Docker Image**. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) <a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a>
+
+
+## Status
+
+![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
+
+If this badge is green, all [YOLOv5 GitHub Actions](https://github.com/ultralytics/yolov5/actions) Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training ([train.py](https://github.com/ultralytics/yolov5/blob/master/train.py)), validation ([val.py](https://github.com/ultralytics/yolov5/blob/master/val.py)), inference ([detect.py](https://github.com/ultralytics/yolov5/blob/master/detect.py)) and export ([export.py](https://github.com/ultralytics/yolov5/blob/master/export.py)) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.
diff --git a/src/yolov5/utils/loggers/wandb/__init__.py b/src/yolov5/utils/loggers/wandb/__init__.py
new file mode 100644
index 00000000..e69de29b
diff --git a/src/yolov5/utils/loggers/wandb/log_dataset.py b/src/yolov5/utils/loggers/wandb/log_dataset.py
new file mode 100644
index 00000000..06e81fb6
--- /dev/null
+++ b/src/yolov5/utils/loggers/wandb/log_dataset.py
@@ -0,0 +1,27 @@
+import argparse
+
+from wandb_utils import WandbLogger
+
+from utils.general import LOGGER
+
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def create_dataset_artifact(opt):
+    logger = WandbLogger(opt, None, job_type='Dataset Creation')  # TODO: return value unused
+    if not logger.wandb:
+        LOGGER.info("install wandb using `pip install wandb` to log the dataset")
+
+
+if __name__ == '__main__':
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
+    parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
+    parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
+    parser.add_argument('--entity', default=None, help='W&B entity')
+    parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
+
+    opt = parser.parse_args()
+    opt.resume = False  # Explicitly disallow resume check for dataset upload job
+
+    create_dataset_artifact(opt)
diff --git a/src/yolov5/utils/loggers/wandb/sweep.py b/src/yolov5/utils/loggers/wandb/sweep.py
new file mode 100644
index 00000000..206059bc
--- /dev/null
+++ b/src/yolov5/utils/loggers/wandb/sweep.py
@@ -0,0 +1,41 @@
+import sys
+from pathlib import Path
+
+import wandb
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+from train import parse_opt, train
+from utils.callbacks import Callbacks
+from utils.general import increment_path
+from utils.torch_utils import select_device
+
+
+def sweep():
+    wandb.init()
+    # Get hyp dict from sweep agent
+    hyp_dict = vars(wandb.config).get("_items")
+
+    # Workaround: get necessary opt args
+    opt = parse_opt(known=True)
+    opt.batch_size = hyp_dict.get("batch_size")
+    opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
+    opt.epochs = hyp_dict.get("epochs")
+    opt.nosave = True
+    opt.data = hyp_dict.get("data")
+    opt.weights = str(opt.weights)
+    opt.cfg = str(opt.cfg)
+    opt.data = str(opt.data)
+    opt.hyp = str(opt.hyp)
+    opt.project = str(opt.project)
+    device = select_device(opt.device, batch_size=opt.batch_size)
+
+    # train
+    train(hyp_dict, opt, device, callbacks=Callbacks())
+
+
+if __name__ == "__main__":
+    sweep()
diff --git a/src/yolov5/utils/loggers/wandb/sweep.yaml b/src/yolov5/utils/loggers/wandb/sweep.yaml
new file mode 100644
index 00000000..c7790d75
--- /dev/null
+++ b/src/yolov5/utils/loggers/wandb/sweep.yaml
@@ -0,0 +1,143 @@
+# Hyperparameters for training
+# To set range-
+# Provide min and max values as:
+#      parameter:
+#
+#         min: scalar
+#         max: scalar
+# OR
+#
+# Set a specific list of search space-
+#     parameter:
+#         values: [scalar1, scalar2, scalar3...]
+#
+# You can use grid, bayesian and hyperopt search strategy
+# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
+
+program: utils/loggers/wandb/sweep.py
+method: random
+metric:
+  name: metrics/mAP_0.5
+  goal: maximize
+
+parameters:
+  # hyperparameters: set either min, max range or values list
+  data:
+    value: "data/coco128.yaml"
+  batch_size:
+    values: [64]
+  epochs:
+    values: [10]
+
+  lr0:
+    distribution: uniform
+    min: 1e-5
+    max: 1e-1
+  lrf:
+    distribution: uniform
+    min: 0.01
+    max: 1.0
+  momentum:
+    distribution: uniform
+    min: 0.6
+    max: 0.98
+  weight_decay:
+    distribution: uniform
+    min: 0.0
+    max: 0.001
+  warmup_epochs:
+    distribution: uniform
+    min: 0.0
+    max: 5.0
+  warmup_momentum:
+    distribution: uniform
+    min: 0.0
+    max: 0.95
+  warmup_bias_lr:
+    distribution: uniform
+    min: 0.0
+    max: 0.2
+  box:
+    distribution: uniform
+    min: 0.02
+    max: 0.2
+  cls:
+    distribution: uniform
+    min: 0.2
+    max: 4.0
+  cls_pw:
+    distribution: uniform
+    min: 0.5
+    max: 2.0
+  obj:
+    distribution: uniform
+    min: 0.2
+    max: 4.0
+  obj_pw:
+    distribution: uniform
+    min: 0.5
+    max: 2.0
+  iou_t:
+    distribution: uniform
+    min: 0.1
+    max: 0.7
+  anchor_t:
+    distribution: uniform
+    min: 2.0
+    max: 8.0
+  fl_gamma:
+    distribution: uniform
+    min: 0.0
+    max: 0.1
+  hsv_h:
+    distribution: uniform
+    min: 0.0
+    max: 0.1
+  hsv_s:
+    distribution: uniform
+    min: 0.0
+    max: 0.9
+  hsv_v:
+    distribution: uniform
+    min: 0.0
+    max: 0.9
+  degrees:
+    distribution: uniform
+    min: 0.0
+    max: 45.0
+  translate:
+    distribution: uniform
+    min: 0.0
+    max: 0.9
+  scale:
+    distribution: uniform
+    min: 0.0
+    max: 0.9
+  shear:
+    distribution: uniform
+    min: 0.0
+    max: 10.0
+  perspective:
+    distribution: uniform
+    min: 0.0
+    max: 0.001
+  flipud:
+    distribution: uniform
+    min: 0.0
+    max: 1.0
+  fliplr:
+    distribution: uniform
+    min: 0.0
+    max: 1.0
+  mosaic:
+    distribution: uniform
+    min: 0.0
+    max: 1.0
+  mixup:
+    distribution: uniform
+    min: 0.0
+    max: 1.0
+  copy_paste:
+    distribution: uniform
+    min: 0.0
+    max: 1.0
diff --git a/src/yolov5/utils/loggers/wandb/wandb_utils.py b/src/yolov5/utils/loggers/wandb/wandb_utils.py
new file mode 100644
index 00000000..38354365
--- /dev/null
+++ b/src/yolov5/utils/loggers/wandb/wandb_utils.py
@@ -0,0 +1,562 @@
+"""Utilities and tools for tracking runs with Weights & Biases."""
+
+import logging
+import os
+import sys
+from contextlib import contextmanager
+from pathlib import Path
+from typing import Dict
+
+import yaml
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[3]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+
+from utils.datasets import LoadImagesAndLabels, img2label_paths
+from utils.general import LOGGER, check_dataset, check_file
+
+try:
+    import wandb
+
+    assert hasattr(wandb, '__version__')  # verify package import not local dir
+except (ImportError, AssertionError):
+    wandb = None
+
+RANK = int(os.getenv('RANK', -1))
+WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
+
+
+def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
+    return from_string[len(prefix):]
+
+
+def check_wandb_config_file(data_config_file):
+    wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1))  # updated data.yaml path
+    if Path(wandb_config).is_file():
+        return wandb_config
+    return data_config_file
+
+
+def check_wandb_dataset(data_file):
+    is_trainset_wandb_artifact = False
+    is_valset_wandb_artifact = False
+    if check_file(data_file) and data_file.endswith('.yaml'):
+        with open(data_file, errors='ignore') as f:
+            data_dict = yaml.safe_load(f)
+        is_trainset_wandb_artifact = (isinstance(data_dict['train'], str) and
+                                      data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX))
+        is_valset_wandb_artifact = (isinstance(data_dict['val'], str) and
+                                    data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX))
+    if is_trainset_wandb_artifact or is_valset_wandb_artifact:
+        return data_dict
+    else:
+        return check_dataset(data_file)
+
+
+def get_run_info(run_path):
+    run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
+    run_id = run_path.stem
+    project = run_path.parent.stem
+    entity = run_path.parent.parent.stem
+    model_artifact_name = 'run_' + run_id + '_model'
+    return entity, project, run_id, model_artifact_name
+
+
+def check_wandb_resume(opt):
+    process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
+    if isinstance(opt.resume, str):
+        if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+            if RANK not in [-1, 0]:  # For resuming DDP runs
+                entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+                api = wandb.Api()
+                artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
+                modeldir = artifact.download()
+                opt.weights = str(Path(modeldir) / "last.pt")
+            return True
+    return None
+
+
+def process_wandb_config_ddp_mode(opt):
+    with open(check_file(opt.data), errors='ignore') as f:
+        data_dict = yaml.safe_load(f)  # data dict
+    train_dir, val_dir = None, None
+    if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
+        api = wandb.Api()
+        train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
+        train_dir = train_artifact.download()
+        train_path = Path(train_dir) / 'data/images/'
+        data_dict['train'] = str(train_path)
+
+    if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
+        api = wandb.Api()
+        val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
+        val_dir = val_artifact.download()
+        val_path = Path(val_dir) / 'data/images/'
+        data_dict['val'] = str(val_path)
+    if train_dir or val_dir:
+        ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
+        with open(ddp_data_path, 'w') as f:
+            yaml.safe_dump(data_dict, f)
+        opt.data = ddp_data_path
+
+
+class WandbLogger():
+    """Log training runs, datasets, models, and predictions to Weights & Biases.
+
+    This logger sends information to W&B at wandb.ai. By default, this information
+    includes hyperparameters, system configuration and metrics, model metrics,
+    and basic data metrics and analyses.
+
+    By providing additional command line arguments to train.py, datasets,
+    models and predictions can also be logged.
+
+    For more on how this logger is used, see the Weights & Biases documentation:
+    https://docs.wandb.com/guides/integrations/yolov5
+    """
+
+    def __init__(self, opt, run_id=None, job_type='Training'):
+        """
+        - Initialize WandbLogger instance
+        - Upload dataset if opt.upload_dataset is True
+        - Setup trainig processes if job_type is 'Training'
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        run_id (str) -- Run ID of W&B run to be resumed
+        job_type (str) -- To set the job_type for this run
+
+       """
+        # Pre-training routine --
+        self.job_type = job_type
+        self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
+        self.val_artifact, self.train_artifact = None, None
+        self.train_artifact_path, self.val_artifact_path = None, None
+        self.result_artifact = None
+        self.val_table, self.result_table = None, None
+        self.bbox_media_panel_images = []
+        self.val_table_path_map = None
+        self.max_imgs_to_log = 16
+        self.wandb_artifact_data_dict = None
+        self.data_dict = None
+        # It's more elegant to stick to 1 wandb.init call,
+        #  but useful config data is overwritten in the WandbLogger's wandb.init call
+        if isinstance(opt.resume, str):  # checks resume from artifact
+            if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+                entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
+                model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
+                assert wandb, 'install wandb to resume wandb runs'
+                # Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
+                self.wandb_run = wandb.init(id=run_id,
+                                            project=project,
+                                            entity=entity,
+                                            resume='allow',
+                                            allow_val_change=True)
+                opt.resume = model_artifact_name
+        elif self.wandb:
+            self.wandb_run = wandb.init(config=opt,
+                                        resume="allow",
+                                        project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
+                                        entity=opt.entity,
+                                        name=opt.name if opt.name != 'exp' else None,
+                                        job_type=job_type,
+                                        id=run_id,
+                                        allow_val_change=True) if not wandb.run else wandb.run
+        if self.wandb_run:
+            if self.job_type == 'Training':
+                if opt.upload_dataset:
+                    if not opt.resume:
+                        self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
+
+                if opt.resume:
+                    # resume from artifact
+                    if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+                        self.data_dict = dict(self.wandb_run.config.data_dict)
+                    else:  # local resume
+                        self.data_dict = check_wandb_dataset(opt.data)
+                else:
+                    self.data_dict = check_wandb_dataset(opt.data)
+                    self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
+
+                    # write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
+                    self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict},
+                                                 allow_val_change=True)
+                self.setup_training(opt)
+
+            if self.job_type == 'Dataset Creation':
+                self.wandb_run.config.update({"upload_dataset": True})
+                self.data_dict = self.check_and_upload_dataset(opt)
+
+    def check_and_upload_dataset(self, opt):
+        """
+        Check if the dataset format is compatible and upload it as W&B artifact
+
+        arguments:
+        opt (namespace)-- Commandline arguments for current run
+
+        returns:
+        Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
+        """
+        assert wandb, 'Install wandb to upload dataset'
+        config_path = self.log_dataset_artifact(opt.data,
+                                                opt.single_cls,
+                                                'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
+        with open(config_path, errors='ignore') as f:
+            wandb_data_dict = yaml.safe_load(f)
+        return wandb_data_dict
+
+    def setup_training(self, opt):
+        """
+        Setup the necessary processes for training YOLO models:
+          - Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
+          - Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
+          - Setup log_dict, initialize bbox_interval
+
+        arguments:
+        opt (namespace) -- commandline arguments for this run
+
+        """
+        self.log_dict, self.current_epoch = {}, 0
+        self.bbox_interval = opt.bbox_interval
+        if isinstance(opt.resume, str):
+            modeldir, _ = self.download_model_artifact(opt)
+            if modeldir:
+                self.weights = Path(modeldir) / "last.pt"
+                config = self.wandb_run.config
+                opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
+                    self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
+                    config.hyp, config.imgsz
+        data_dict = self.data_dict
+        if self.val_artifact is None:  # If --upload_dataset is set, use the existing artifact, don't download
+            self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'),
+                                                                                           opt.artifact_alias)
+            self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'),
+                                                                                       opt.artifact_alias)
+
+        if self.train_artifact_path is not None:
+            train_path = Path(self.train_artifact_path) / 'data/images/'
+            data_dict['train'] = str(train_path)
+        if self.val_artifact_path is not None:
+            val_path = Path(self.val_artifact_path) / 'data/images/'
+            data_dict['val'] = str(val_path)
+
+        if self.val_artifact is not None:
+            self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+            columns = ["epoch", "id", "ground truth", "prediction"]
+            columns.extend(self.data_dict['names'])
+            self.result_table = wandb.Table(columns)
+            self.val_table = self.val_artifact.get("val")
+            if self.val_table_path_map is None:
+                self.map_val_table_path()
+        if opt.bbox_interval == -1:
+            self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
+            if opt.evolve:
+                self.bbox_interval = opt.bbox_interval = opt.epochs + 1
+        train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
+        # Update the the data_dict to point to local artifacts dir
+        if train_from_artifact:
+            self.data_dict = data_dict
+
+    def download_dataset_artifact(self, path, alias):
+        """
+        download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
+
+        arguments:
+        path -- path of the dataset to be used for training
+        alias (str)-- alias of the artifact to be download/used for training
+
+        returns:
+        (str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
+        is found otherwise returns (None, None)
+        """
+        if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
+            artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
+            dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
+            assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
+            datadir = dataset_artifact.download()
+            return datadir, dataset_artifact
+        return None, None
+
+    def download_model_artifact(self, opt):
+        """
+        download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
+
+        arguments:
+        opt (namespace) -- Commandline arguments for this run
+        """
+        if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
+            model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
+            assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
+            modeldir = model_artifact.download()
+            # epochs_trained = model_artifact.metadata.get('epochs_trained')
+            total_epochs = model_artifact.metadata.get('total_epochs')
+            is_finished = total_epochs is None
+            assert not is_finished, 'training is finished, can only resume incomplete runs.'
+            return modeldir, model_artifact
+        return None, None
+
+    def log_model(self, path, opt, epoch, fitness_score, best_model=False):
+        """
+        Log the model checkpoint as W&B artifact
+
+        arguments:
+        path (Path)   -- Path of directory containing the checkpoints
+        opt (namespace) -- Command line arguments for this run
+        epoch (int)  -- Current epoch number
+        fitness_score (float) -- fitness score for current epoch
+        best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
+        """
+        model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model', type='model', metadata={
+            'original_url': str(path),
+            'epochs_trained': epoch + 1,
+            'save period': opt.save_period,
+            'project': opt.project,
+            'total_epochs': opt.epochs,
+            'fitness_score': fitness_score
+        })
+        model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
+        wandb.log_artifact(model_artifact,
+                           aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
+        LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
+
+    def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
+        """
+        Log the dataset as W&B artifact and return the new data file with W&B links
+
+        arguments:
+        data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
+        single_class (boolean)  -- train multi-class data as single-class
+        project (str) -- project name. Used to construct the artifact path
+        overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
+        file with _wandb postfix. Eg -> data_wandb.yaml
+
+        returns:
+        the new .yaml file with artifact links. it can be used to start training directly from artifacts
+        """
+        upload_dataset = self.wandb_run.config.upload_dataset
+        log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
+        self.data_dict = check_dataset(data_file)  # parse and check
+        data = dict(self.data_dict)
+        nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
+        names = {k: v for k, v in enumerate(names)}  # to index dictionary
+
+        # log train set
+        if not log_val_only:
+            self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(
+                data['train'], rect=True, batch_size=1), names, name='train') if data.get('train') else None
+            if data.get('train'):
+                data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
+
+        self.val_artifact = self.create_dataset_table(LoadImagesAndLabels(
+            data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
+        if data.get('val'):
+            data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
+
+        path = Path(data_file)
+        # create a _wandb.yaml file with artifacts links if both train and test set are logged
+        if not log_val_only:
+            path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml'  # updated data.yaml path
+            path = ROOT / 'data' / path
+            data.pop('download', None)
+            data.pop('path', None)
+            with open(path, 'w') as f:
+                yaml.safe_dump(data, f)
+                LOGGER.info(f"Created dataset config file {path}")
+
+        if self.job_type == 'Training':  # builds correct artifact pipeline graph
+            if not log_val_only:
+                self.wandb_run.log_artifact(
+                    self.train_artifact)  # calling use_artifact downloads the dataset. NOT NEEDED!
+            self.wandb_run.use_artifact(self.val_artifact)
+            self.val_artifact.wait()
+            self.val_table = self.val_artifact.get('val')
+            self.map_val_table_path()
+        else:
+            self.wandb_run.log_artifact(self.train_artifact)
+            self.wandb_run.log_artifact(self.val_artifact)
+        return path
+
+    def map_val_table_path(self):
+        """
+        Map the validation dataset Table like name of file -> it's id in the W&B Table.
+        Useful for - referencing artifacts for evaluation.
+        """
+        self.val_table_path_map = {}
+        LOGGER.info("Mapping dataset")
+        for i, data in enumerate(tqdm(self.val_table.data)):
+            self.val_table_path_map[data[3]] = data[0]
+
+    def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
+        """
+        Create and return W&B artifact containing W&B Table of the dataset.
+
+        arguments:
+        dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
+        class_to_id -- hash map that maps class ids to labels
+        name -- name of the artifact
+
+        returns:
+        dataset artifact to be logged or used
+        """
+        # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
+        artifact = wandb.Artifact(name=name, type="dataset")
+        img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
+        img_files = tqdm(dataset.img_files) if not img_files else img_files
+        for img_file in img_files:
+            if Path(img_file).is_dir():
+                artifact.add_dir(img_file, name='data/images')
+                labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
+                artifact.add_dir(labels_path, name='data/labels')
+            else:
+                artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
+                label_file = Path(img2label_paths([img_file])[0])
+                artifact.add_file(str(label_file),
+                                  name='data/labels/' + label_file.name) if label_file.exists() else None
+        table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
+        class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
+        for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
+            box_data, img_classes = [], {}
+            for cls, *xywh in labels[:, 1:].tolist():
+                cls = int(cls)
+                box_data.append({"position": {"middle": [xywh[0], xywh[1]], "width": xywh[2], "height": xywh[3]},
+                                 "class_id": cls,
+                                 "box_caption": "%s" % (class_to_id[cls])})
+                img_classes[cls] = class_to_id[cls]
+            boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}}  # inference-space
+            table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
+                           Path(paths).name)
+        artifact.add(table, name)
+        return artifact
+
+    def log_training_progress(self, predn, path, names):
+        """
+        Build evaluation Table. Uses reference from validation dataset table.
+
+        arguments:
+        predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
+        path (str): local path of the current evaluation image
+        names (dict(int, str)): hash map that maps class ids to labels
+        """
+        class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
+        box_data = []
+        avg_conf_per_class = [0] * len(self.data_dict['names'])
+        pred_class_count = {}
+        for *xyxy, conf, cls in predn.tolist():
+            if conf >= 0.25:
+                cls = int(cls)
+                box_data.append(
+                    {"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+                     "class_id": cls,
+                     "box_caption": f"{names[cls]} {conf:.3f}",
+                     "scores": {"class_score": conf},
+                     "domain": "pixel"})
+                avg_conf_per_class[cls] += conf
+
+                if cls in pred_class_count:
+                    pred_class_count[cls] += 1
+                else:
+                    pred_class_count[cls] = 1
+
+        for pred_class in pred_class_count.keys():
+            avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
+
+        boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
+        id = self.val_table_path_map[Path(path).name]
+        self.result_table.add_data(self.current_epoch,
+                                   id,
+                                   self.val_table.data[id][1],
+                                   wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
+                                   *avg_conf_per_class
+                                   )
+
+    def val_one_image(self, pred, predn, path, names, im):
+        """
+        Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
+
+        arguments:
+        pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
+        predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
+        path (str): local path of the current evaluation image
+        """
+        if self.val_table and self.result_table:  # Log Table if Val dataset is uploaded as artifact
+            self.log_training_progress(predn, path, names)
+
+        if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
+            if self.current_epoch % self.bbox_interval == 0:
+                box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
+                             "class_id": int(cls),
+                             "box_caption": f"{names[int(cls)]} {conf:.3f}",
+                             "scores": {"class_score": conf},
+                             "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
+                boxes = {"predictions": {"box_data": box_data, "class_labels": names}}  # inference-space
+                self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
+
+    def log(self, log_dict):
+        """
+        save the metrics to the logging dictionary
+
+        arguments:
+        log_dict (Dict) -- metrics/media to be logged in current step
+        """
+        if self.wandb_run:
+            for key, value in log_dict.items():
+                self.log_dict[key] = value
+
+    def end_epoch(self, best_result=False):
+        """
+        commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
+
+        arguments:
+        best_result (boolean): Boolean representing if the result of this evaluation is best or not
+        """
+        if self.wandb_run:
+            with all_logging_disabled():
+                if self.bbox_media_panel_images:
+                    self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
+                try:
+                    wandb.log(self.log_dict)
+                except BaseException as e:
+                    LOGGER.info(
+                        f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}")
+                    self.wandb_run.finish()
+                    self.wandb_run = None
+
+                self.log_dict = {}
+                self.bbox_media_panel_images = []
+            if self.result_artifact:
+                self.result_artifact.add(self.result_table, 'result')
+                wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch),
+                                                                  ('best' if best_result else '')])
+
+                wandb.log({"evaluation": self.result_table})
+                columns = ["epoch", "id", "ground truth", "prediction"]
+                columns.extend(self.data_dict['names'])
+                self.result_table = wandb.Table(columns)
+                self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
+
+    def finish_run(self):
+        """
+        Log metrics if any and finish the current W&B run
+        """
+        if self.wandb_run:
+            if self.log_dict:
+                with all_logging_disabled():
+                    wandb.log(self.log_dict)
+            wandb.run.finish()
+
+
+@contextmanager
+def all_logging_disabled(highest_level=logging.CRITICAL):
+    """ source - https://gist.github.com/simon-weber/7853144
+    A context manager that will prevent any logging messages triggered during the body from being processed.
+    :param highest_level: the maximum logging level in use.
+      This would only need to be changed if a custom level greater than CRITICAL is defined.
+    """
+    previous_level = logging.root.manager.disable
+    logging.disable(highest_level)
+    try:
+        yield
+    finally:
+        logging.disable(previous_level)
diff --git a/src/yolov5/utils/loss.py b/src/yolov5/utils/loss.py
new file mode 100644
index 00000000..5aa9f017
--- /dev/null
+++ b/src/yolov5/utils/loss.py
@@ -0,0 +1,222 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Loss functions
+"""
+
+import torch
+import torch.nn as nn
+
+from utils.metrics import bbox_iou
+from utils.torch_utils import de_parallel
+
+
+def smooth_BCE(eps=0.1):  # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
+    # return positive, negative label smoothing BCE targets
+    return 1.0 - 0.5 * eps, 0.5 * eps
+
+
+class BCEBlurWithLogitsLoss(nn.Module):
+    # BCEwithLogitLoss() with reduced missing label effects.
+    def __init__(self, alpha=0.05):
+        super().__init__()
+        self.loss_fcn = nn.BCEWithLogitsLoss(reduction='none')  # must be nn.BCEWithLogitsLoss()
+        self.alpha = alpha
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        pred = torch.sigmoid(pred)  # prob from logits
+        dx = pred - true  # reduce only missing label effects
+        # dx = (pred - true).abs()  # reduce missing label and false label effects
+        alpha_factor = 1 - torch.exp((dx - 1) / (self.alpha + 1e-4))
+        loss *= alpha_factor
+        return loss.mean()
+
+
+class FocalLoss(nn.Module):
+    # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+        # p_t = torch.exp(-loss)
+        # loss *= self.alpha * (1.000001 - p_t) ** self.gamma  # non-zero power for gradient stability
+
+        # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = (1.0 - p_t) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class QFocalLoss(nn.Module):
+    # Wraps Quality focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
+    def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
+        super().__init__()
+        self.loss_fcn = loss_fcn  # must be nn.BCEWithLogitsLoss()
+        self.gamma = gamma
+        self.alpha = alpha
+        self.reduction = loss_fcn.reduction
+        self.loss_fcn.reduction = 'none'  # required to apply FL to each element
+
+    def forward(self, pred, true):
+        loss = self.loss_fcn(pred, true)
+
+        pred_prob = torch.sigmoid(pred)  # prob from logits
+        alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
+        modulating_factor = torch.abs(true - pred_prob) ** self.gamma
+        loss *= alpha_factor * modulating_factor
+
+        if self.reduction == 'mean':
+            return loss.mean()
+        elif self.reduction == 'sum':
+            return loss.sum()
+        else:  # 'none'
+            return loss
+
+
+class ComputeLoss:
+    # Compute losses
+    def __init__(self, model, autobalance=False):
+        self.sort_obj_iou = False
+        device = next(model.parameters()).device  # get model device
+        h = model.hyp  # hyperparameters
+
+        # Define criteria
+        BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
+        BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
+
+        # Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
+        self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0))  # positive, negative BCE targets
+
+        # Focal loss
+        g = h['fl_gamma']  # focal loss gamma
+        if g > 0:
+            BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
+
+        det = de_parallel(model).model[-1]  # Detect() module
+        self.balance = {3: [4.0, 1.0, 0.4]}.get(det.nl, [4.0, 1.0, 0.25, 0.06, 0.02])  # P3-P7
+        self.ssi = list(det.stride).index(16) if autobalance else 0  # stride 16 index
+        self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
+        for k in 'na', 'nc', 'nl', 'anchors':
+            setattr(self, k, getattr(det, k))
+
+    def __call__(self, p, targets):  # predictions, targets, model
+        device = targets.device
+        lcls, lbox, lobj = torch.zeros(1, device=device), torch.zeros(1, device=device), torch.zeros(1, device=device)
+        tcls, tbox, indices, anchors = self.build_targets(p, targets)  # targets
+
+        # Losses
+        for i, pi in enumerate(p):  # layer index, layer predictions
+            b, a, gj, gi = indices[i]  # image, anchor, gridy, gridx
+            tobj = torch.zeros_like(pi[..., 0], device=device)  # target obj
+
+            n = b.shape[0]  # number of targets
+            if n:
+                ps = pi[b, a, gj, gi]  # prediction subset corresponding to targets
+
+                # Regression
+                pxy = ps[:, :2].sigmoid() * 2 - 0.5
+                pwh = (ps[:, 2:4].sigmoid() * 2) ** 2 * anchors[i]
+                pbox = torch.cat((pxy, pwh), 1)  # predicted box
+                iou = bbox_iou(pbox.T, tbox[i], x1y1x2y2=False, CIoU=True)  # iou(prediction, target)
+                lbox += (1.0 - iou).mean()  # iou loss
+
+                # Objectness
+                score_iou = iou.detach().clamp(0).type(tobj.dtype)
+                if self.sort_obj_iou:
+                    sort_id = torch.argsort(score_iou)
+                    b, a, gj, gi, score_iou = b[sort_id], a[sort_id], gj[sort_id], gi[sort_id], score_iou[sort_id]
+                tobj[b, a, gj, gi] = (1.0 - self.gr) + self.gr * score_iou  # iou ratio
+
+                # Classification
+                if self.nc > 1:  # cls loss (only if multiple classes)
+                    t = torch.full_like(ps[:, 5:], self.cn, device=device)  # targets
+                    t[range(n), tcls[i]] = self.cp
+                    lcls += self.BCEcls(ps[:, 5:], t)  # BCE
+
+                # Append targets to text file
+                # with open('targets.txt', 'a') as file:
+                #     [file.write('%11.5g ' * 4 % tuple(x) + '\n') for x in torch.cat((txy[i], twh[i]), 1)]
+
+            obji = self.BCEobj(pi[..., 4], tobj)
+            lobj += obji * self.balance[i]  # obj loss
+            if self.autobalance:
+                self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
+
+        if self.autobalance:
+            self.balance = [x / self.balance[self.ssi] for x in self.balance]
+        lbox *= self.hyp['box']
+        lobj *= self.hyp['obj']
+        lcls *= self.hyp['cls']
+        bs = tobj.shape[0]  # batch size
+
+        return (lbox + lobj + lcls) * bs, torch.cat((lbox, lobj, lcls)).detach()
+
+    def build_targets(self, p, targets):
+        # Build targets for compute_loss(), input targets(image,class,x,y,w,h)
+        na, nt = self.na, targets.shape[0]  # number of anchors, targets
+        tcls, tbox, indices, anch = [], [], [], []
+        gain = torch.ones(7, device=targets.device)  # normalized to gridspace gain
+        ai = torch.arange(na, device=targets.device).float().view(na, 1).repeat(1, nt)  # same as .repeat_interleave(nt)
+        targets = torch.cat((targets.repeat(na, 1, 1), ai[:, :, None]), 2)  # append anchor indices
+
+        g = 0.5  # bias
+        off = torch.tensor([[0, 0],
+                            [1, 0], [0, 1], [-1, 0], [0, -1],  # j,k,l,m
+                            # [1, 1], [1, -1], [-1, 1], [-1, -1],  # jk,jm,lk,lm
+                            ], device=targets.device).float() * g  # offsets
+
+        for i in range(self.nl):
+            anchors = self.anchors[i]
+            gain[2:6] = torch.tensor(p[i].shape)[[3, 2, 3, 2]]  # xyxy gain
+
+            # Match targets to anchors
+            t = targets * gain
+            if nt:
+                # Matches
+                r = t[:, :, 4:6] / anchors[:, None]  # wh ratio
+                j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t']  # compare
+                # j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t']  # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
+                t = t[j]  # filter
+
+                # Offsets
+                gxy = t[:, 2:4]  # grid xy
+                gxi = gain[[2, 3]] - gxy  # inverse
+                j, k = ((gxy % 1 < g) & (gxy > 1)).T
+                l, m = ((gxi % 1 < g) & (gxi > 1)).T
+                j = torch.stack((torch.ones_like(j), j, k, l, m))
+                t = t.repeat((5, 1, 1))[j]
+                offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
+            else:
+                t = targets[0]
+                offsets = 0
+
+            # Define
+            b, c = t[:, :2].long().T  # image, class
+            gxy = t[:, 2:4]  # grid xy
+            gwh = t[:, 4:6]  # grid wh
+            gij = (gxy - offsets).long()
+            gi, gj = gij.T  # grid xy indices
+
+            # Append
+            a = t[:, 6].long()  # anchor indices
+            indices.append((b, a, gj.clamp_(0, gain[3] - 1), gi.clamp_(0, gain[2] - 1)))  # image, anchor, grid indices
+            tbox.append(torch.cat((gxy - gij, gwh), 1))  # box
+            anch.append(anchors[a])  # anchors
+            tcls.append(c)  # class
+
+        return tcls, tbox, indices, anch
diff --git a/src/yolov5/utils/metrics.py b/src/yolov5/utils/metrics.py
new file mode 100644
index 00000000..857fa5d8
--- /dev/null
+++ b/src/yolov5/utils/metrics.py
@@ -0,0 +1,342 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Model validation metrics
+"""
+
+import math
+import warnings
+from pathlib import Path
+
+import matplotlib.pyplot as plt
+import numpy as np
+import torch
+
+
+def fitness(x):
+    # Model fitness as a weighted combination of metrics
+    w = [0.0, 0.0, 0.1, 0.9]  # weights for [P, R, mAP@0.5, mAP@0.5:0.95]
+    return (x[:, :4] * w).sum(1)
+
+
+def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16):
+    """ Compute the average precision, given the recall and precision curves.
+    Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
+    # Arguments
+        tp:  True positives (nparray, nx1 or nx10).
+        conf:  Objectness value from 0-1 (nparray).
+        pred_cls:  Predicted object classes (nparray).
+        target_cls:  True object classes (nparray).
+        plot:  Plot precision-recall curve at mAP@0.5
+        save_dir:  Plot save directory
+    # Returns
+        The average precision as computed in py-faster-rcnn.
+    """
+
+    # Sort by objectness
+    i = np.argsort(-conf)
+    tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
+
+    # Find unique classes
+    unique_classes, nt = np.unique(target_cls, return_counts=True)
+    nc = unique_classes.shape[0]  # number of classes, number of detections
+
+    # Create Precision-Recall curve and compute AP for each class
+    px, py = np.linspace(0, 1, 1000), []  # for plotting
+    ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
+    for ci, c in enumerate(unique_classes):
+        i = pred_cls == c
+        n_l = nt[ci]  # number of labels
+        n_p = i.sum()  # number of predictions
+
+        if n_p == 0 or n_l == 0:
+            continue
+        else:
+            # Accumulate FPs and TPs
+            fpc = (1 - tp[i]).cumsum(0)
+            tpc = tp[i].cumsum(0)
+
+            # Recall
+            recall = tpc / (n_l + eps)  # recall curve
+            r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0)  # negative x, xp because xp decreases
+
+            # Precision
+            precision = tpc / (tpc + fpc)  # precision curve
+            p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1)  # p at pr_score
+
+            # AP from recall-precision curve
+            for j in range(tp.shape[1]):
+                ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
+                if plot and j == 0:
+                    py.append(np.interp(px, mrec, mpre))  # precision at mAP@0.5
+
+    # Compute F1 (harmonic mean of precision and recall)
+    f1 = 2 * p * r / (p + r + eps)
+    names = [v for k, v in names.items() if k in unique_classes]  # list: only classes that have data
+    names = {i: v for i, v in enumerate(names)}  # to dict
+    if plot:
+        plot_pr_curve(px, py, ap, Path(save_dir) / 'PR_curve.png', names)
+        plot_mc_curve(px, f1, Path(save_dir) / 'F1_curve.png', names, ylabel='F1')
+        plot_mc_curve(px, p, Path(save_dir) / 'P_curve.png', names, ylabel='Precision')
+        plot_mc_curve(px, r, Path(save_dir) / 'R_curve.png', names, ylabel='Recall')
+
+    i = f1.mean(0).argmax()  # max F1 index
+    p, r, f1 = p[:, i], r[:, i], f1[:, i]
+    tp = (r * nt).round()  # true positives
+    fp = (tp / (p + eps) - tp).round()  # false positives
+    return tp, fp, p, r, f1, ap, unique_classes.astype('int32')
+
+
+def compute_ap(recall, precision):
+    """ Compute the average precision, given the recall and precision curves
+    # Arguments
+        recall:    The recall curve (list)
+        precision: The precision curve (list)
+    # Returns
+        Average precision, precision curve, recall curve
+    """
+
+    # Append sentinel values to beginning and end
+    mrec = np.concatenate(([0.0], recall, [1.0]))
+    mpre = np.concatenate(([1.0], precision, [0.0]))
+
+    # Compute the precision envelope
+    mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
+
+    # Integrate area under curve
+    method = 'interp'  # methods: 'continuous', 'interp'
+    if method == 'interp':
+        x = np.linspace(0, 1, 101)  # 101-point interp (COCO)
+        ap = np.trapz(np.interp(x, mrec, mpre), x)  # integrate
+    else:  # 'continuous'
+        i = np.where(mrec[1:] != mrec[:-1])[0]  # points where x axis (recall) changes
+        ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])  # area under curve
+
+    return ap, mpre, mrec
+
+
+class ConfusionMatrix:
+    # Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
+    def __init__(self, nc, conf=0.25, iou_thres=0.45):
+        self.matrix = np.zeros((nc + 1, nc + 1))
+        self.nc = nc  # number of classes
+        self.conf = conf
+        self.iou_thres = iou_thres
+
+    def process_batch(self, detections, labels):
+        """
+        Return intersection-over-union (Jaccard index) of boxes.
+        Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+        Arguments:
+            detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+            labels (Array[M, 5]), class, x1, y1, x2, y2
+        Returns:
+            None, updates confusion matrix accordingly
+        """
+        detections = detections[detections[:, 4] > self.conf]
+        gt_classes = labels[:, 0].int()
+        detection_classes = detections[:, 5].int()
+        iou = box_iou(labels[:, 1:], detections[:, :4])
+
+        x = torch.where(iou > self.iou_thres)
+        if x[0].shape[0]:
+            matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
+            if x[0].shape[0] > 1:
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+                matches = matches[matches[:, 2].argsort()[::-1]]
+                matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        else:
+            matches = np.zeros((0, 3))
+
+        n = matches.shape[0] > 0
+        m0, m1, _ = matches.transpose().astype(np.int16)
+        for i, gc in enumerate(gt_classes):
+            j = m0 == i
+            if n and sum(j) == 1:
+                self.matrix[detection_classes[m1[j]], gc] += 1  # correct
+            else:
+                self.matrix[self.nc, gc] += 1  # background FP
+
+        if n:
+            for i, dc in enumerate(detection_classes):
+                if not any(m1 == i):
+                    self.matrix[dc, self.nc] += 1  # background FN
+
+    def matrix(self):
+        return self.matrix
+
+    def tp_fp(self):
+        tp = self.matrix.diagonal()  # true positives
+        fp = self.matrix.sum(1) - tp  # false positives
+        # fn = self.matrix.sum(0) - tp  # false negatives (missed detections)
+        return tp[:-1], fp[:-1]  # remove background class
+
+    def plot(self, normalize=True, save_dir='', names=()):
+        try:
+            import seaborn as sn
+
+            array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1)  # normalize columns
+            array[array < 0.005] = np.nan  # don't annotate (would appear as 0.00)
+
+            fig = plt.figure(figsize=(12, 9), tight_layout=True)
+            nc, nn = self.nc, len(names)  # number of classes, names
+            sn.set(font_scale=1.0 if nc < 50 else 0.8)  # for label size
+            labels = (0 < nn < 99) and (nn == nc)  # apply names to ticklabels
+            with warnings.catch_warnings():
+                warnings.simplefilter('ignore')  # suppress empty matrix RuntimeWarning: All-NaN slice encountered
+                sn.heatmap(array, annot=nc < 30, annot_kws={"size": 8}, cmap='Blues', fmt='.2f', square=True, vmin=0.0,
+                           xticklabels=names + ['background FP'] if labels else "auto",
+                           yticklabels=names + ['background FN'] if labels else "auto").set_facecolor((1, 1, 1))
+            fig.axes[0].set_xlabel('True')
+            fig.axes[0].set_ylabel('Predicted')
+            fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
+            plt.close()
+        except Exception as e:
+            print(f'WARNING: ConfusionMatrix plot failure: {e}')
+
+    def print(self):
+        for i in range(self.nc + 1):
+            print(' '.join(map(str, self.matrix[i])))
+
+
+def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
+    # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
+    box2 = box2.T
+
+    # Get the coordinates of bounding boxes
+    if x1y1x2y2:  # x1, y1, x2, y2 = box1
+        b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+        b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+    else:  # transform from xywh to xyxy
+        b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2
+        b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2
+        b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2
+        b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2
+
+    # Intersection area
+    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
+            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
+
+    # Union Area
+    w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
+    w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
+    union = w1 * h1 + w2 * h2 - inter + eps
+
+    iou = inter / union
+    if CIoU or DIoU or GIoU:
+        cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1)  # convex (smallest enclosing box) width
+        ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1)  # convex height
+        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
+            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
+            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 +
+                    (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center distance squared
+            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
+                v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
+                with torch.no_grad():
+                    alpha = v / (v - iou + (1 + eps))
+                return iou - (rho2 / c2 + v * alpha)  # CIoU
+            return iou - rho2 / c2  # DIoU
+        c_area = cw * ch + eps  # convex area
+        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
+    return iou  # IoU
+
+
+def box_iou(box1, box2):
+    # https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
+    """
+    Return intersection-over-union (Jaccard index) of boxes.
+    Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
+    Arguments:
+        box1 (Tensor[N, 4])
+        box2 (Tensor[M, 4])
+    Returns:
+        iou (Tensor[N, M]): the NxM matrix containing the pairwise
+            IoU values for every element in boxes1 and boxes2
+    """
+
+    def box_area(box):
+        # box = 4xn
+        return (box[2] - box[0]) * (box[3] - box[1])
+
+    area1 = box_area(box1.T)
+    area2 = box_area(box2.T)
+
+    # inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
+    inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
+    return inter / (area1[:, None] + area2 - inter)  # iou = inter / (area1 + area2 - inter)
+
+
+def bbox_ioa(box1, box2, eps=1E-7):
+    """ Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
+    box1:       np.array of shape(4)
+    box2:       np.array of shape(nx4)
+    returns:    np.array of shape(n)
+    """
+
+    box2 = box2.transpose()
+
+    # Get the coordinates of bounding boxes
+    b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3]
+    b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3]
+
+    # Intersection area
+    inter_area = (np.minimum(b1_x2, b2_x2) - np.maximum(b1_x1, b2_x1)).clip(0) * \
+                 (np.minimum(b1_y2, b2_y2) - np.maximum(b1_y1, b2_y1)).clip(0)
+
+    # box2 area
+    box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
+
+    # Intersection over box2 area
+    return inter_area / box2_area
+
+
+def wh_iou(wh1, wh2):
+    # Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
+    wh1 = wh1[:, None]  # [N,1,2]
+    wh2 = wh2[None]  # [1,M,2]
+    inter = torch.min(wh1, wh2).prod(2)  # [N,M]
+    return inter / (wh1.prod(2) + wh2.prod(2) - inter)  # iou = inter / (area1 + area2 - inter)
+
+
+# Plots ----------------------------------------------------------------------------------------------------------------
+
+def plot_pr_curve(px, py, ap, save_dir='pr_curve.png', names=()):
+    # Precision-recall curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+    py = np.stack(py, axis=1)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py.T):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}')  # plot(recall, precision)
+    else:
+        ax.plot(px, py, linewidth=1, color='grey')  # plot(recall, precision)
+
+    ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f mAP@0.5' % ap[:, 0].mean())
+    ax.set_xlabel('Recall')
+    ax.set_ylabel('Precision')
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    fig.savefig(Path(save_dir), dpi=250)
+    plt.close()
+
+
+def plot_mc_curve(px, py, save_dir='mc_curve.png', names=(), xlabel='Confidence', ylabel='Metric'):
+    # Metric-confidence curve
+    fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
+
+    if 0 < len(names) < 21:  # display per-class legend if < 21 classes
+        for i, y in enumerate(py):
+            ax.plot(px, y, linewidth=1, label=f'{names[i]}')  # plot(confidence, metric)
+    else:
+        ax.plot(px, py.T, linewidth=1, color='grey')  # plot(confidence, metric)
+
+    y = py.mean(0)
+    ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
+    ax.set_xlabel(xlabel)
+    ax.set_ylabel(ylabel)
+    ax.set_xlim(0, 1)
+    ax.set_ylim(0, 1)
+    plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
+    fig.savefig(Path(save_dir), dpi=250)
+    plt.close()
diff --git a/src/yolov5/utils/plots.py b/src/yolov5/utils/plots.py
new file mode 100644
index 00000000..6c3f5bca
--- /dev/null
+++ b/src/yolov5/utils/plots.py
@@ -0,0 +1,471 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Plotting utils
+"""
+
+import math
+import os
+from copy import copy
+from pathlib import Path
+
+import cv2
+import matplotlib
+import matplotlib.pyplot as plt
+import numpy as np
+import pandas as pd
+import seaborn as sn
+import torch
+from PIL import Image, ImageDraw, ImageFont
+
+from utils.general import (CONFIG_DIR, FONT, LOGGER, Timeout, check_font, check_requirements, clip_coords,
+                           increment_path, is_ascii, is_chinese, try_except, xywh2xyxy, xyxy2xywh)
+from utils.metrics import fitness
+
+# Settings
+RANK = int(os.getenv('RANK', -1))
+matplotlib.rc('font', **{'size': 11})
+matplotlib.use('Agg')  # for writing to files only
+
+
+class Colors:
+    # Ultralytics color palette https://ultralytics.com/
+    def __init__(self):
+        # hex = matplotlib.colors.TABLEAU_COLORS.values()
+        hex = ('FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
+               '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
+        self.palette = [self.hex2rgb('#' + c) for c in hex]
+        self.n = len(self.palette)
+
+    def __call__(self, i, bgr=False):
+        c = self.palette[int(i) % self.n]
+        return (c[2], c[1], c[0]) if bgr else c
+
+    @staticmethod
+    def hex2rgb(h):  # rgb order (PIL)
+        return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
+
+
+colors = Colors()  # create instance for 'from utils.plots import colors'
+
+
+def check_pil_font(font=FONT, size=10):
+    # Return a PIL TrueType Font, downloading to CONFIG_DIR if necessary
+    font = Path(font)
+    font = font if font.exists() else (CONFIG_DIR / font.name)
+    try:
+        return ImageFont.truetype(str(font) if font.exists() else font.name, size)
+    except Exception:  # download if missing
+        check_font(font)
+        try:
+            return ImageFont.truetype(str(font), size)
+        except TypeError:
+            check_requirements('Pillow>=8.4.0')  # known issue https://github.com/ultralytics/yolov5/issues/5374
+
+
+class Annotator:
+    if RANK in (-1, 0):
+        check_pil_font()  # download TTF if necessary
+
+    # YOLOv5 Annotator for train/val mosaics and jpgs and detect/hub inference annotations
+    def __init__(self, im, line_width=None, font_size=None, font='Arial.ttf', pil=False, example='abc'):
+        assert im.data.contiguous, 'Image not contiguous. Apply np.ascontiguousarray(im) to Annotator() input images.'
+        self.pil = pil or not is_ascii(example) or is_chinese(example)
+        if self.pil:  # use PIL
+            self.im = im if isinstance(im, Image.Image) else Image.fromarray(im)
+            self.draw = ImageDraw.Draw(self.im)
+            self.font = check_pil_font(font='Arial.Unicode.ttf' if is_chinese(example) else font,
+                                       size=font_size or max(round(sum(self.im.size) / 2 * 0.035), 12))
+        else:  # use cv2
+            self.im = im
+        self.lw = line_width or max(round(sum(im.shape) / 2 * 0.003), 2)  # line width
+
+    def box_label(self, box, label='', color=(128, 128, 128), txt_color=(255, 255, 255)):
+        # Add one xyxy box to image with label
+        if self.pil or not is_ascii(label):
+            self.draw.rectangle(box, width=self.lw, outline=color)  # box
+            if label:
+                w, h = self.font.getsize(label)  # text width, height
+                outside = box[1] - h >= 0  # label fits outside box
+                self.draw.rectangle((box[0],
+                                     box[1] - h if outside else box[1],
+                                     box[0] + w + 1,
+                                     box[1] + 1 if outside else box[1] + h + 1), fill=color)
+                # self.draw.text((box[0], box[1]), label, fill=txt_color, font=self.font, anchor='ls')  # for PIL>8.0
+                self.draw.text((box[0], box[1] - h if outside else box[1]), label, fill=txt_color, font=self.font)
+        else:  # cv2
+            p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
+            cv2.rectangle(self.im, p1, p2, color, thickness=self.lw, lineType=cv2.LINE_AA)
+            if label:
+                tf = max(self.lw - 1, 1)  # font thickness
+                w, h = cv2.getTextSize(label, 0, fontScale=self.lw / 3, thickness=tf)[0]  # text width, height
+                outside = p1[1] - h - 3 >= 0  # label fits outside box
+                p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
+                cv2.rectangle(self.im, p1, p2, color, -1, cv2.LINE_AA)  # filled
+                cv2.putText(self.im, label, (p1[0], p1[1] - 2 if outside else p1[1] + h + 2), 0, self.lw / 3, txt_color,
+                            thickness=tf, lineType=cv2.LINE_AA)
+
+    def rectangle(self, xy, fill=None, outline=None, width=1):
+        # Add rectangle to image (PIL-only)
+        self.draw.rectangle(xy, fill, outline, width)
+
+    def text(self, xy, text, txt_color=(255, 255, 255)):
+        # Add text to image (PIL-only)
+        w, h = self.font.getsize(text)  # text width, height
+        self.draw.text((xy[0], xy[1] - h + 1), text, fill=txt_color, font=self.font)
+
+    def result(self):
+        # Return annotated image as array
+        return np.asarray(self.im)
+
+
+def feature_visualization(x, module_type, stage, n=32, save_dir=Path('runs/detect/exp')):
+    """
+    x:              Features to be visualized
+    module_type:    Module type
+    stage:          Module stage within model
+    n:              Maximum number of feature maps to plot
+    save_dir:       Directory to save results
+    """
+    if 'Detect' not in module_type:
+        batch, channels, height, width = x.shape  # batch, channels, height, width
+        if height > 1 and width > 1:
+            f = save_dir / f"stage{stage}_{module_type.split('.')[-1]}_features.png"  # filename
+
+            blocks = torch.chunk(x[0].cpu(), channels, dim=0)  # select batch index 0, block by channels
+            n = min(n, channels)  # number of plots
+            fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True)  # 8 rows x n/8 cols
+            ax = ax.ravel()
+            plt.subplots_adjust(wspace=0.05, hspace=0.05)
+            for i in range(n):
+                ax[i].imshow(blocks[i].squeeze())  # cmap='gray'
+                ax[i].axis('off')
+
+            LOGGER.info(f'Saving {f}... ({n}/{channels})')
+            plt.savefig(f, dpi=300, bbox_inches='tight')
+            plt.close()
+            np.save(str(f.with_suffix('.npy')), x[0].cpu().numpy())  # npy save
+
+
+def hist2d(x, y, n=100):
+    # 2d histogram used in labels.png and evolve.png
+    xedges, yedges = np.linspace(x.min(), x.max(), n), np.linspace(y.min(), y.max(), n)
+    hist, xedges, yedges = np.histogram2d(x, y, (xedges, yedges))
+    xidx = np.clip(np.digitize(x, xedges) - 1, 0, hist.shape[0] - 1)
+    yidx = np.clip(np.digitize(y, yedges) - 1, 0, hist.shape[1] - 1)
+    return np.log(hist[xidx, yidx])
+
+
+def butter_lowpass_filtfilt(data, cutoff=1500, fs=50000, order=5):
+    from scipy.signal import butter, filtfilt
+
+    # https://stackoverflow.com/questions/28536191/how-to-filter-smooth-with-scipy-numpy
+    def butter_lowpass(cutoff, fs, order):
+        nyq = 0.5 * fs
+        normal_cutoff = cutoff / nyq
+        return butter(order, normal_cutoff, btype='low', analog=False)
+
+    b, a = butter_lowpass(cutoff, fs, order=order)
+    return filtfilt(b, a, data)  # forward-backward filter
+
+
+def output_to_target(output):
+    # Convert model output to target format [batch_id, class_id, x, y, w, h, conf]
+    targets = []
+    for i, o in enumerate(output):
+        for *box, conf, cls in o.cpu().numpy():
+            targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf])
+    return np.array(targets)
+
+
+def plot_images(images, targets, paths=None, fname='images.jpg', names=None, max_size=1920, max_subplots=16):
+    # Plot image grid with labels
+    if isinstance(images, torch.Tensor):
+        images = images.cpu().float().numpy()
+    if isinstance(targets, torch.Tensor):
+        targets = targets.cpu().numpy()
+    if np.max(images[0]) <= 1:
+        images *= 255  # de-normalise (optional)
+    bs, _, h, w = images.shape  # batch size, _, height, width
+    bs = min(bs, max_subplots)  # limit plot images
+    ns = np.ceil(bs ** 0.5)  # number of subplots (square)
+
+    # Build Image
+    mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8)  # init
+    for i, im in enumerate(images):
+        if i == max_subplots:  # if last batch has fewer images than we expect
+            break
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        im = im.transpose(1, 2, 0)
+        mosaic[y:y + h, x:x + w, :] = im
+
+    # Resize (optional)
+    scale = max_size / ns / max(h, w)
+    if scale < 1:
+        h = math.ceil(scale * h)
+        w = math.ceil(scale * w)
+        mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
+
+    # Annotate
+    fs = int((h + w) * ns * 0.01)  # font size
+    annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
+    for i in range(i + 1):
+        x, y = int(w * (i // ns)), int(h * (i % ns))  # block origin
+        annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2)  # borders
+        if paths:
+            annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220))  # filenames
+        if len(targets) > 0:
+            ti = targets[targets[:, 0] == i]  # image targets
+            boxes = xywh2xyxy(ti[:, 2:6]).T
+            classes = ti[:, 1].astype('int')
+            labels = ti.shape[1] == 6  # labels if no conf column
+            conf = None if labels else ti[:, 6]  # check for confidence presence (label vs pred)
+
+            if boxes.shape[1]:
+                if boxes.max() <= 1.01:  # if normalized with tolerance 0.01
+                    boxes[[0, 2]] *= w  # scale to pixels
+                    boxes[[1, 3]] *= h
+                elif scale < 1:  # absolute coords need scale if image scales
+                    boxes *= scale
+            boxes[[0, 2]] += x
+            boxes[[1, 3]] += y
+            for j, box in enumerate(boxes.T.tolist()):
+                cls = classes[j]
+                color = colors(cls)
+                cls = names[cls] if names else cls
+                if labels or conf[j] > 0.25:  # 0.25 conf thresh
+                    label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
+                    annotator.box_label(box, label, color=color)
+    annotator.im.save(fname)  # save
+
+
+def plot_lr_scheduler(optimizer, scheduler, epochs=300, save_dir=''):
+    # Plot LR simulating training for full epochs
+    optimizer, scheduler = copy(optimizer), copy(scheduler)  # do not modify originals
+    y = []
+    for _ in range(epochs):
+        scheduler.step()
+        y.append(optimizer.param_groups[0]['lr'])
+    plt.plot(y, '.-', label='LR')
+    plt.xlabel('epoch')
+    plt.ylabel('LR')
+    plt.grid()
+    plt.xlim(0, epochs)
+    plt.ylim(0)
+    plt.savefig(Path(save_dir) / 'LR.png', dpi=200)
+    plt.close()
+
+
+def plot_val_txt():  # from utils.plots import *; plot_val()
+    # Plot val.txt histograms
+    x = np.loadtxt('val.txt', dtype=np.float32)
+    box = xyxy2xywh(x[:, :4])
+    cx, cy = box[:, 0], box[:, 1]
+
+    fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True)
+    ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0)
+    ax.set_aspect('equal')
+    plt.savefig('hist2d.png', dpi=300)
+
+    fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True)
+    ax[0].hist(cx, bins=600)
+    ax[1].hist(cy, bins=600)
+    plt.savefig('hist1d.png', dpi=200)
+
+
+def plot_targets_txt():  # from utils.plots import *; plot_targets_txt()
+    # Plot targets.txt histograms
+    x = np.loadtxt('targets.txt', dtype=np.float32).T
+    s = ['x targets', 'y targets', 'width targets', 'height targets']
+    fig, ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)
+    ax = ax.ravel()
+    for i in range(4):
+        ax[i].hist(x[i], bins=100, label=f'{x[i].mean():.3g} +/- {x[i].std():.3g}')
+        ax[i].legend()
+        ax[i].set_title(s[i])
+    plt.savefig('targets.jpg', dpi=200)
+
+
+def plot_val_study(file='', dir='', x=None):  # from utils.plots import *; plot_val_study()
+    # Plot file=study.txt generated by val.py (or plot all study*.txt in dir)
+    save_dir = Path(file).parent if file else Path(dir)
+    plot2 = False  # plot additional results
+    if plot2:
+        ax = plt.subplots(2, 4, figsize=(10, 6), tight_layout=True)[1].ravel()
+
+    fig2, ax2 = plt.subplots(1, 1, figsize=(8, 4), tight_layout=True)
+    # for f in [save_dir / f'study_coco_{x}.txt' for x in ['yolov5n6', 'yolov5s6', 'yolov5m6', 'yolov5l6', 'yolov5x6']]:
+    for f in sorted(save_dir.glob('study*.txt')):
+        y = np.loadtxt(f, dtype=np.float32, usecols=[0, 1, 2, 3, 7, 8, 9], ndmin=2).T
+        x = np.arange(y.shape[1]) if x is None else np.array(x)
+        if plot2:
+            s = ['P', 'R', 'mAP@.5', 'mAP@.5:.95', 't_preprocess (ms/img)', 't_inference (ms/img)', 't_NMS (ms/img)']
+            for i in range(7):
+                ax[i].plot(x, y[i], '.-', linewidth=2, markersize=8)
+                ax[i].set_title(s[i])
+
+        j = y[3].argmax() + 1
+        ax2.plot(y[5, 1:j], y[3, 1:j] * 1E2, '.-', linewidth=2, markersize=8,
+                 label=f.stem.replace('study_coco_', '').replace('yolo', 'YOLO'))
+
+    ax2.plot(1E3 / np.array([209, 140, 97, 58, 35, 18]), [34.6, 40.5, 43.0, 47.5, 49.7, 51.5],
+             'k.-', linewidth=2, markersize=8, alpha=.25, label='EfficientDet')
+
+    ax2.grid(alpha=0.2)
+    ax2.set_yticks(np.arange(20, 60, 5))
+    ax2.set_xlim(0, 57)
+    ax2.set_ylim(25, 55)
+    ax2.set_xlabel('GPU Speed (ms/img)')
+    ax2.set_ylabel('COCO AP val')
+    ax2.legend(loc='lower right')
+    f = save_dir / 'study.png'
+    print(f'Saving {f}...')
+    plt.savefig(f, dpi=300)
+
+
+@try_except  # known issue https://github.com/ultralytics/yolov5/issues/5395
+@Timeout(30)  # known issue https://github.com/ultralytics/yolov5/issues/5611
+def plot_labels(labels, names=(), save_dir=Path('')):
+    # plot dataset labels
+    LOGGER.info(f"Plotting labels to {save_dir / 'labels.jpg'}... ")
+    c, b = labels[:, 0], labels[:, 1:].transpose()  # classes, boxes
+    nc = int(c.max() + 1)  # number of classes
+    x = pd.DataFrame(b.transpose(), columns=['x', 'y', 'width', 'height'])
+
+    # seaborn correlogram
+    sn.pairplot(x, corner=True, diag_kind='auto', kind='hist', diag_kws=dict(bins=50), plot_kws=dict(pmax=0.9))
+    plt.savefig(save_dir / 'labels_correlogram.jpg', dpi=200)
+    plt.close()
+
+    # matplotlib labels
+    matplotlib.use('svg')  # faster
+    ax = plt.subplots(2, 2, figsize=(8, 8), tight_layout=True)[1].ravel()
+    y = ax[0].hist(c, bins=np.linspace(0, nc, nc + 1) - 0.5, rwidth=0.8)
+    try:  # color histogram bars by class
+        [y[2].patches[i].set_color([x / 255 for x in colors(i)]) for i in range(nc)]  # known issue #3195
+    except Exception:
+        pass
+    ax[0].set_ylabel('instances')
+    if 0 < len(names) < 30:
+        ax[0].set_xticks(range(len(names)))
+        ax[0].set_xticklabels(names, rotation=90, fontsize=10)
+    else:
+        ax[0].set_xlabel('classes')
+    sn.histplot(x, x='x', y='y', ax=ax[2], bins=50, pmax=0.9)
+    sn.histplot(x, x='width', y='height', ax=ax[3], bins=50, pmax=0.9)
+
+    # rectangles
+    labels[:, 1:3] = 0.5  # center
+    labels[:, 1:] = xywh2xyxy(labels[:, 1:]) * 2000
+    img = Image.fromarray(np.ones((2000, 2000, 3), dtype=np.uint8) * 255)
+    for cls, *box in labels[:1000]:
+        ImageDraw.Draw(img).rectangle(box, width=1, outline=colors(cls))  # plot
+    ax[1].imshow(img)
+    ax[1].axis('off')
+
+    for a in [0, 1, 2, 3]:
+        for s in ['top', 'right', 'left', 'bottom']:
+            ax[a].spines[s].set_visible(False)
+
+    plt.savefig(save_dir / 'labels.jpg', dpi=200)
+    matplotlib.use('Agg')
+    plt.close()
+
+
+def plot_evolve(evolve_csv='path/to/evolve.csv'):  # from utils.plots import *; plot_evolve()
+    # Plot evolve.csv hyp evolution results
+    evolve_csv = Path(evolve_csv)
+    data = pd.read_csv(evolve_csv)
+    keys = [x.strip() for x in data.columns]
+    x = data.values
+    f = fitness(x)
+    j = np.argmax(f)  # max fitness index
+    plt.figure(figsize=(10, 12), tight_layout=True)
+    matplotlib.rc('font', **{'size': 8})
+    print(f'Best results from row {j} of {evolve_csv}:')
+    for i, k in enumerate(keys[7:]):
+        v = x[:, 7 + i]
+        mu = v[j]  # best single result
+        plt.subplot(6, 5, i + 1)
+        plt.scatter(v, f, c=hist2d(v, f, 20), cmap='viridis', alpha=.8, edgecolors='none')
+        plt.plot(mu, f.max(), 'k+', markersize=15)
+        plt.title(f'{k} = {mu:.3g}', fontdict={'size': 9})  # limit to 40 characters
+        if i % 5 != 0:
+            plt.yticks([])
+        print(f'{k:>15}: {mu:.3g}')
+    f = evolve_csv.with_suffix('.png')  # filename
+    plt.savefig(f, dpi=200)
+    plt.close()
+    print(f'Saved {f}')
+
+
+def plot_results(file='path/to/results.csv', dir=''):
+    # Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
+    save_dir = Path(file).parent if file else Path(dir)
+    fig, ax = plt.subplots(2, 5, figsize=(12, 6), tight_layout=True)
+    ax = ax.ravel()
+    files = list(save_dir.glob('results*.csv'))
+    assert len(files), f'No results.csv files found in {save_dir.resolve()}, nothing to plot.'
+    for fi, f in enumerate(files):
+        try:
+            data = pd.read_csv(f)
+            s = [x.strip() for x in data.columns]
+            x = data.values[:, 0]
+            for i, j in enumerate([1, 2, 3, 4, 5, 8, 9, 10, 6, 7]):
+                y = data.values[:, j]
+                # y[y == 0] = np.nan  # don't show zero values
+                ax[i].plot(x, y, marker='.', label=f.stem, linewidth=2, markersize=8)
+                ax[i].set_title(s[j], fontsize=12)
+                # if j in [8, 9, 10]:  # share train and val loss y axes
+                #     ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
+        except Exception as e:
+            LOGGER.info(f'Warning: Plotting error for {f}: {e}')
+    ax[1].legend()
+    fig.savefig(save_dir / 'results.png', dpi=200)
+    plt.close()
+
+
+def profile_idetection(start=0, stop=0, labels=(), save_dir=''):
+    # Plot iDetection '*.txt' per-image logs. from utils.plots import *; profile_idetection()
+    ax = plt.subplots(2, 4, figsize=(12, 6), tight_layout=True)[1].ravel()
+    s = ['Images', 'Free Storage (GB)', 'RAM Usage (GB)', 'Battery', 'dt_raw (ms)', 'dt_smooth (ms)', 'real-world FPS']
+    files = list(Path(save_dir).glob('frames*.txt'))
+    for fi, f in enumerate(files):
+        try:
+            results = np.loadtxt(f, ndmin=2).T[:, 90:-30]  # clip first and last rows
+            n = results.shape[1]  # number of rows
+            x = np.arange(start, min(stop, n) if stop else n)
+            results = results[:, x]
+            t = (results[0] - results[0].min())  # set t0=0s
+            results[0] = x
+            for i, a in enumerate(ax):
+                if i < len(results):
+                    label = labels[fi] if len(labels) else f.stem.replace('frames_', '')
+                    a.plot(t, results[i], marker='.', label=label, linewidth=1, markersize=5)
+                    a.set_title(s[i])
+                    a.set_xlabel('time (s)')
+                    # if fi == len(files) - 1:
+                    #     a.set_ylim(bottom=0)
+                    for side in ['top', 'right']:
+                        a.spines[side].set_visible(False)
+                else:
+                    a.remove()
+        except Exception as e:
+            print(f'Warning: Plotting error for {f}; {e}')
+    ax[1].legend()
+    plt.savefig(Path(save_dir) / 'idetection_profile.png', dpi=200)
+
+
+def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True):
+    # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop
+    xyxy = torch.tensor(xyxy).view(-1, 4)
+    b = xyxy2xywh(xyxy)  # boxes
+    if square:
+        b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1)  # attempt rectangle to square
+    b[:, 2:] = b[:, 2:] * gain + pad  # box wh * gain + pad
+    xyxy = xywh2xyxy(b).long()
+    clip_coords(xyxy, im.shape)
+    crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)]
+    if save:
+        file.parent.mkdir(parents=True, exist_ok=True)  # make directory
+        cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop)
+    return crop
diff --git a/src/yolov5/utils/torch_utils.py b/src/yolov5/utils/torch_utils.py
new file mode 100644
index 00000000..c5257c6e
--- /dev/null
+++ b/src/yolov5/utils/torch_utils.py
@@ -0,0 +1,329 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+PyTorch utils
+"""
+
+import datetime
+import math
+import os
+import platform
+import subprocess
+import time
+import warnings
+from contextlib import contextmanager
+from copy import deepcopy
+from pathlib import Path
+
+import torch
+import torch.distributed as dist
+import torch.nn as nn
+import torch.nn.functional as F
+
+from utils.general import LOGGER
+
+try:
+    import thop  # for FLOPs computation
+except ImportError:
+    thop = None
+
+# Suppress PyTorch warnings
+warnings.filterwarnings('ignore', message='User provided device_type of \'cuda\', but CUDA is not available. Disabling')
+
+
+@contextmanager
+def torch_distributed_zero_first(local_rank: int):
+    """
+    Decorator to make all processes in distributed training wait for each local_master to do something.
+    """
+    if local_rank not in [-1, 0]:
+        dist.barrier(device_ids=[local_rank])
+    yield
+    if local_rank == 0:
+        dist.barrier(device_ids=[0])
+
+
+def date_modified(path=__file__):
+    # return human-readable file modification date, i.e. '2021-3-26'
+    t = datetime.datetime.fromtimestamp(Path(path).stat().st_mtime)
+    return f'{t.year}-{t.month}-{t.day}'
+
+
+def git_describe(path=Path(__file__).parent):  # path must be a directory
+    # return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
+    s = f'git -C {path} describe --tags --long --always'
+    try:
+        return subprocess.check_output(s, shell=True, stderr=subprocess.STDOUT).decode()[:-1]
+    except subprocess.CalledProcessError:
+        return ''  # not a git repository
+
+
+def device_count():
+    # Returns number of CUDA devices available. Safe version of torch.cuda.device_count(). Only works on Linux.
+    assert platform.system() == 'Linux', 'device_count() function only works on Linux'
+    try:
+        cmd = 'nvidia-smi -L | wc -l'
+        return int(subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1])
+    except Exception:
+        return 0
+
+
+def select_device(device='', batch_size=0, newline=True):
+    # device = 'cpu' or '0' or '0,1,2,3'
+    s = f'YOLOv5 🚀 {git_describe() or date_modified()} torch {torch.__version__} '  # string
+    device = str(device).strip().lower().replace('cuda:', '')  # to string, 'cuda:0' to '0'
+    cpu = device == 'cpu'
+    if cpu:
+        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'  # force torch.cuda.is_available() = False
+    elif device:  # non-cpu device requested
+        os.environ['CUDA_VISIBLE_DEVICES'] = device  # set environment variable - must be before assert is_available()
+        assert torch.cuda.is_available() and torch.cuda.device_count() >= len(device.replace(',', '')), \
+            f"Invalid CUDA '--device {device}' requested, use '--device cpu' or pass valid CUDA device(s)"
+
+    cuda = not cpu and torch.cuda.is_available()
+    if cuda:
+        devices = device.split(',') if device else '0'  # range(torch.cuda.device_count())  # i.e. 0,1,6,7
+        n = len(devices)  # device count
+        if n > 1 and batch_size > 0:  # check batch_size is divisible by device_count
+            assert batch_size % n == 0, f'batch-size {batch_size} not multiple of GPU count {n}'
+        space = ' ' * (len(s) + 1)
+        for i, d in enumerate(devices):
+            p = torch.cuda.get_device_properties(i)
+            s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / 1024 ** 2:.0f}MiB)\n"  # bytes to MB
+    else:
+        s += 'CPU\n'
+
+    if not newline:
+        s = s.rstrip()
+    LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s)  # emoji-safe
+    return torch.device('cuda:0' if cuda else 'cpu')
+
+
+def time_sync():
+    # pytorch-accurate time
+    if torch.cuda.is_available():
+        torch.cuda.synchronize()
+    return time.time()
+
+
+def profile(input, ops, n=10, device=None):
+    # YOLOv5 speed/memory/FLOPs profiler
+    #
+    # Usage:
+    #     input = torch.randn(16, 3, 640, 640)
+    #     m1 = lambda x: x * torch.sigmoid(x)
+    #     m2 = nn.SiLU()
+    #     profile(input, [m1, m2], n=100)  # profile over 100 iterations
+
+    results = []
+    device = device or select_device()
+    print(f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}"
+          f"{'input':>24s}{'output':>24s}")
+
+    for x in input if isinstance(input, list) else [input]:
+        x = x.to(device)
+        x.requires_grad = True
+        for m in ops if isinstance(ops, list) else [ops]:
+            m = m.to(device) if hasattr(m, 'to') else m  # device
+            m = m.half() if hasattr(m, 'half') and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m
+            tf, tb, t = 0, 0, [0, 0, 0]  # dt forward, backward
+            try:
+                flops = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2  # GFLOPs
+            except Exception:
+                flops = 0
+
+            try:
+                for _ in range(n):
+                    t[0] = time_sync()
+                    y = m(x)
+                    t[1] = time_sync()
+                    try:
+                        _ = (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward()
+                        t[2] = time_sync()
+                    except Exception:  # no backward method
+                        # print(e)  # for debug
+                        t[2] = float('nan')
+                    tf += (t[1] - t[0]) * 1000 / n  # ms per op forward
+                    tb += (t[2] - t[1]) * 1000 / n  # ms per op backward
+                mem = torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0  # (GB)
+                s_in = tuple(x.shape) if isinstance(x, torch.Tensor) else 'list'
+                s_out = tuple(y.shape) if isinstance(y, torch.Tensor) else 'list'
+                p = sum(list(x.numel() for x in m.parameters())) if isinstance(m, nn.Module) else 0  # parameters
+                print(f'{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}')
+                results.append([p, flops, mem, tf, tb, s_in, s_out])
+            except Exception as e:
+                print(e)
+                results.append(None)
+            torch.cuda.empty_cache()
+    return results
+
+
+def is_parallel(model):
+    # Returns True if model is of type DP or DDP
+    return type(model) in (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)
+
+
+def de_parallel(model):
+    # De-parallelize a model: returns single-GPU model if model is of type DP or DDP
+    return model.module if is_parallel(model) else model
+
+
+def initialize_weights(model):
+    for m in model.modules():
+        t = type(m)
+        if t is nn.Conv2d:
+            pass  # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
+        elif t is nn.BatchNorm2d:
+            m.eps = 1e-3
+            m.momentum = 0.03
+        elif t in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU]:
+            m.inplace = True
+
+
+def find_modules(model, mclass=nn.Conv2d):
+    # Finds layer indices matching module class 'mclass'
+    return [i for i, m in enumerate(model.module_list) if isinstance(m, mclass)]
+
+
+def sparsity(model):
+    # Return global model sparsity
+    a, b = 0, 0
+    for p in model.parameters():
+        a += p.numel()
+        b += (p == 0).sum()
+    return b / a
+
+
+def prune(model, amount=0.3):
+    # Prune model to requested global sparsity
+    import torch.nn.utils.prune as prune
+    print('Pruning model... ', end='')
+    for name, m in model.named_modules():
+        if isinstance(m, nn.Conv2d):
+            prune.l1_unstructured(m, name='weight', amount=amount)  # prune
+            prune.remove(m, 'weight')  # make permanent
+    print(' %.3g global sparsity' % sparsity(model))
+
+
+def fuse_conv_and_bn(conv, bn):
+    # Fuse convolution and batchnorm layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/
+    fusedconv = nn.Conv2d(conv.in_channels,
+                          conv.out_channels,
+                          kernel_size=conv.kernel_size,
+                          stride=conv.stride,
+                          padding=conv.padding,
+                          groups=conv.groups,
+                          bias=True).requires_grad_(False).to(conv.weight.device)
+
+    # prepare filters
+    w_conv = conv.weight.clone().view(conv.out_channels, -1)
+    w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var)))
+    fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
+
+    # prepare spatial bias
+    b_conv = torch.zeros(conv.weight.size(0), device=conv.weight.device) if conv.bias is None else conv.bias
+    b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
+    fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
+
+    return fusedconv
+
+
+def model_info(model, verbose=False, img_size=640):
+    # Model information. img_size may be int or list, i.e. img_size=640 or img_size=[640, 320]
+    n_p = sum(x.numel() for x in model.parameters())  # number parameters
+    n_g = sum(x.numel() for x in model.parameters() if x.requires_grad)  # number gradients
+    if verbose:
+        print(f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}")
+        for i, (name, p) in enumerate(model.named_parameters()):
+            name = name.replace('module_list.', '')
+            print('%5g %40s %9s %12g %20s %10.3g %10.3g' %
+                  (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std()))
+
+    try:  # FLOPs
+        from thop import profile
+        stride = max(int(model.stride.max()), 32) if hasattr(model, 'stride') else 32
+        img = torch.zeros((1, model.yaml.get('ch', 3), stride, stride), device=next(model.parameters()).device)  # input
+        flops = profile(deepcopy(model), inputs=(img,), verbose=False)[0] / 1E9 * 2  # stride GFLOPs
+        img_size = img_size if isinstance(img_size, list) else [img_size, img_size]  # expand if int/float
+        fs = ', %.1f GFLOPs' % (flops * img_size[0] / stride * img_size[1] / stride)  # 640x640 GFLOPs
+    except (ImportError, Exception):
+        fs = ''
+
+    LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}")
+
+
+def scale_img(img, ratio=1.0, same_shape=False, gs=32):  # img(16,3,256,416)
+    # scales img(bs,3,y,x) by ratio constrained to gs-multiple
+    if ratio == 1.0:
+        return img
+    else:
+        h, w = img.shape[2:]
+        s = (int(h * ratio), int(w * ratio))  # new size
+        img = F.interpolate(img, size=s, mode='bilinear', align_corners=False)  # resize
+        if not same_shape:  # pad/crop img
+            h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w))
+        return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447)  # value = imagenet mean
+
+
+def copy_attr(a, b, include=(), exclude=()):
+    # Copy attributes from b to a, options to only include [...] and to exclude [...]
+    for k, v in b.__dict__.items():
+        if (len(include) and k not in include) or k.startswith('_') or k in exclude:
+            continue
+        else:
+            setattr(a, k, v)
+
+
+class EarlyStopping:
+    # YOLOv5 simple early stopper
+    def __init__(self, patience=30):
+        self.best_fitness = 0.0  # i.e. mAP
+        self.best_epoch = 0
+        self.patience = patience or float('inf')  # epochs to wait after fitness stops improving to stop
+        self.possible_stop = False  # possible stop may occur next epoch
+
+    def __call__(self, epoch, fitness):
+        if fitness >= self.best_fitness:  # >= 0 to allow for early zero-fitness stage of training
+            self.best_epoch = epoch
+            self.best_fitness = fitness
+        delta = epoch - self.best_epoch  # epochs without improvement
+        self.possible_stop = delta >= (self.patience - 1)  # possible stop may occur next epoch
+        stop = delta >= self.patience  # stop training if patience exceeded
+        if stop:
+            LOGGER.info(f'Stopping training early as no improvement observed in last {self.patience} epochs. '
+                        f'Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n'
+                        f'To update EarlyStopping(patience={self.patience}) pass a new patience value, '
+                        f'i.e. `python train.py --patience 300` or use `--patience 0` to disable EarlyStopping.')
+        return stop
+
+
+class ModelEMA:
+    """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models
+    Keeps a moving average of everything in the model state_dict (parameters and buffers)
+    For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
+    """
+
+    def __init__(self, model, decay=0.9999, updates=0):
+        # Create EMA
+        self.ema = deepcopy(de_parallel(model)).eval()  # FP32 EMA
+        # if next(model.parameters()).device.type != 'cpu':
+        #     self.ema.half()  # FP16 EMA
+        self.updates = updates  # number of EMA updates
+        self.decay = lambda x: decay * (1 - math.exp(-x / 2000))  # decay exponential ramp (to help early epochs)
+        for p in self.ema.parameters():
+            p.requires_grad_(False)
+
+    def update(self, model):
+        # Update EMA parameters
+        with torch.no_grad():
+            self.updates += 1
+            d = self.decay(self.updates)
+
+            msd = de_parallel(model).state_dict()  # model state_dict
+            for k, v in self.ema.state_dict().items():
+                if v.dtype.is_floating_point:
+                    v *= d
+                    v += (1 - d) * msd[k].detach()
+
+    def update_attr(self, model, include=(), exclude=('process_group', 'reducer')):
+        # Update EMA attributes
+        copy_attr(self.ema, model, include, exclude)
diff --git a/src/yolov5/val.py b/src/yolov5/val.py
new file mode 100644
index 00000000..78abbda8
--- /dev/null
+++ b/src/yolov5/val.py
@@ -0,0 +1,383 @@
+# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
+"""
+Validate a trained YOLOv5 model accuracy on a custom dataset
+
+Usage:
+    $ python path/to/val.py --weights yolov5s.pt --data coco128.yaml --img 640
+
+Usage - formats:
+    $ python path/to/val.py --weights yolov5s.pt                 # PyTorch
+                                      yolov5s.torchscript        # TorchScript
+                                      yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
+                                      yolov5s.xml                # OpenVINO
+                                      yolov5s.engine             # TensorRT
+                                      yolov5s.mlmodel            # CoreML (MacOS-only)
+                                      yolov5s_saved_model        # TensorFlow SavedModel
+                                      yolov5s.pb                 # TensorFlow GraphDef
+                                      yolov5s.tflite             # TensorFlow Lite
+                                      yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
+"""
+
+import argparse
+import json
+import os
+import sys
+from pathlib import Path
+from threading import Thread
+
+import numpy as np
+import torch
+from tqdm import tqdm
+
+FILE = Path(__file__).resolve()
+ROOT = FILE.parents[0]  # YOLOv5 root directory
+if str(ROOT) not in sys.path:
+    sys.path.append(str(ROOT))  # add ROOT to PATH
+ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
+
+from models.common import DetectMultiBackend
+from utils.callbacks import Callbacks
+from utils.datasets import create_dataloader
+from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
+                           coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
+                           scale_coords, xywh2xyxy, xyxy2xywh)
+from utils.metrics import ConfusionMatrix, ap_per_class
+from utils.plots import output_to_target, plot_images, plot_val_study
+from utils.torch_utils import select_device, time_sync
+
+
+def save_one_txt(predn, save_conf, shape, file):
+    # Save one txt result
+    gn = torch.tensor(shape)[[1, 0, 1, 0]]  # normalization gain whwh
+    for *xyxy, conf, cls in predn.tolist():
+        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
+        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
+        with open(file, 'a') as f:
+            f.write(('%g ' * len(line)).rstrip() % line + '\n')
+
+
+def save_one_json(predn, jdict, path, class_map):
+    # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
+    image_id = int(path.stem) if path.stem.isnumeric() else path.stem
+    box = xyxy2xywh(predn[:, :4])  # xywh
+    box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
+    for p, b in zip(predn.tolist(), box.tolist()):
+        jdict.append({'image_id': image_id,
+                      'category_id': class_map[int(p[5])],
+                      'bbox': [round(x, 3) for x in b],
+                      'score': round(p[4], 5)})
+
+
+def process_batch(detections, labels, iouv):
+    """
+    Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
+    Arguments:
+        detections (Array[N, 6]), x1, y1, x2, y2, conf, class
+        labels (Array[M, 5]), class, x1, y1, x2, y2
+    Returns:
+        correct (Array[N, 10]), for 10 IoU levels
+    """
+    correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
+    iou = box_iou(labels[:, 1:], detections[:, :4])
+    x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5]))  # IoU above threshold and classes match
+    if x[0].shape[0]:
+        matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()  # [label, detection, iou]
+        if x[0].shape[0] > 1:
+            matches = matches[matches[:, 2].argsort()[::-1]]
+            matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
+            # matches = matches[matches[:, 2].argsort()[::-1]]
+            matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
+        matches = torch.Tensor(matches).to(iouv.device)
+        correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
+    return correct
+
+
+@torch.no_grad()
+def run(data,
+        weights=None,  # model.pt path(s)
+        batch_size=32,  # batch size
+        imgsz=640,  # inference size (pixels)
+        conf_thres=0.001,  # confidence threshold
+        iou_thres=0.6,  # NMS IoU threshold
+        task='val',  # train, val, test, speed or study
+        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
+        workers=8,  # max dataloader workers (per RANK in DDP mode)
+        single_cls=False,  # treat as single-class dataset
+        augment=False,  # augmented inference
+        verbose=False,  # verbose output
+        save_txt=False,  # save results to *.txt
+        save_hybrid=False,  # save label+prediction hybrid results to *.txt
+        save_conf=False,  # save confidences in --save-txt labels
+        save_json=False,  # save a COCO-JSON results file
+        project=ROOT / 'runs/val',  # save to project/name
+        name='exp',  # save to project/name
+        exist_ok=False,  # existing project/name ok, do not increment
+        half=True,  # use FP16 half-precision inference
+        dnn=False,  # use OpenCV DNN for ONNX inference
+        model=None,
+        dataloader=None,
+        save_dir=Path(''),
+        plots=True,
+        callbacks=Callbacks(),
+        compute_loss=None,
+        ):
+    # Initialize/load model and set device
+    training = model is not None
+    if training:  # called by train.py
+        device, pt, jit, engine = next(model.parameters()).device, True, False, False  # get model device, PyTorch model
+
+        half &= device.type != 'cpu'  # half precision only supported on CUDA
+        model.half() if half else model.float()
+    else:  # called directly
+        device = select_device(device, batch_size=batch_size)
+
+        # Directories
+        save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
+        (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir
+
+        # Load model
+        model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
+        stride, pt, jit, onnx, engine = model.stride, model.pt, model.jit, model.onnx, model.engine
+        imgsz = check_img_size(imgsz, s=stride)  # check image size
+        half &= (pt or jit or onnx or engine) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
+        if pt or jit:
+            model.model.half() if half else model.model.float()
+        elif engine:
+            batch_size = model.batch_size
+        else:
+            half = False
+            batch_size = 1  # export.py models default to batch-size 1
+            device = torch.device('cpu')
+            LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
+
+        # Data
+        data = check_dataset(data)  # check
+
+    # Configure
+    model.eval()
+    is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt')  # COCO dataset
+    nc = 1 if single_cls else int(data['nc'])  # number of classes
+    iouv = torch.linspace(0.5, 0.95, 10).to(device)  # iou vector for mAP@0.5:0.95
+    niou = iouv.numel()
+
+    # Dataloader
+    if not training:
+        model.warmup(imgsz=(1 if pt else batch_size, 3, imgsz, imgsz), half=half)  # warmup
+        pad = 0.0 if task in ('speed', 'benchmark') else 0.5
+        rect = False if task == 'benchmark' else pt  # square inference for benchmarks
+        task = task if task in ('train', 'val', 'test') else 'val'  # path to train/val/test images
+        dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=rect,
+                                       workers=workers, prefix=colorstr(f'{task}: '))[0]
+
+    seen = 0
+    confusion_matrix = ConfusionMatrix(nc=nc)
+    names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
+    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
+    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
+    dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
+    loss = torch.zeros(3, device=device)
+    jdict, stats, ap, ap_class = [], [], [], []
+    pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
+    for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
+        t1 = time_sync()
+        if pt or jit or engine:
+            im = im.to(device, non_blocking=True)
+            targets = targets.to(device)
+        im = im.half() if half else im.float()  # uint8 to fp16/32
+        im /= 255  # 0 - 255 to 0.0 - 1.0
+        nb, _, height, width = im.shape  # batch size, channels, height, width
+        t2 = time_sync()
+        dt[0] += t2 - t1
+
+        # Inference
+        out, train_out = model(im) if training else model(im, augment=augment, val=True)  # inference, loss outputs
+        dt[1] += time_sync() - t2
+
+        # Loss
+        if compute_loss:
+            loss += compute_loss([x.float() for x in train_out], targets)[1]  # box, obj, cls
+
+        # NMS
+        targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device)  # to pixels
+        lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else []  # for autolabelling
+        t3 = time_sync()
+        out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
+        dt[2] += time_sync() - t3
+
+        # Metrics
+        for si, pred in enumerate(out):
+            labels = targets[targets[:, 0] == si, 1:]
+            nl = len(labels)
+            tcls = labels[:, 0].tolist() if nl else []  # target class
+            path, shape = Path(paths[si]), shapes[si][0]
+            seen += 1
+
+            if len(pred) == 0:
+                if nl:
+                    stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
+                continue
+
+            # Predictions
+            if single_cls:
+                pred[:, 5] = 0
+            predn = pred.clone()
+            scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1])  # native-space pred
+
+            # Evaluate
+            if nl:
+                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
+                scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1])  # native-space labels
+                labelsn = torch.cat((labels[:, 0:1], tbox), 1)  # native-space labels
+                correct = process_batch(predn, labelsn, iouv)
+                if plots:
+                    confusion_matrix.process_batch(predn, labelsn)
+            else:
+                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
+            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))  # (correct, conf, pcls, tcls)
+
+            # Save/log
+            if save_txt:
+                save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
+            if save_json:
+                save_one_json(predn, jdict, path, class_map)  # append to COCO-JSON dictionary
+            callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
+
+        # Plot images
+        if plots and batch_i < 3:
+            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
+            Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
+            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
+            Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
+
+    # Compute metrics
+    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
+    if len(stats) and stats[0].any():
+        tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
+        ap50, ap = ap[:, 0], ap.mean(1)  # AP@0.5, AP@0.5:0.95
+        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
+        nt = np.bincount(stats[3].astype(np.int64), minlength=nc)  # number of targets per class
+    else:
+        nt = torch.zeros(1)
+
+    # Print results
+    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
+    LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
+
+    # Print results per class
+    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
+        for i, c in enumerate(ap_class):
+            LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
+
+    # Print speeds
+    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
+    if not training:
+        shape = (batch_size, 3, imgsz, imgsz)
+        LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
+
+    # Plots
+    if plots:
+        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
+        callbacks.run('on_val_end')
+
+    # Save JSON
+    if save_json and len(jdict):
+        w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else ''  # weights
+        anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json')  # annotations json
+        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
+        LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
+        with open(pred_json, 'w') as f:
+            json.dump(jdict, f)
+
+        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
+            check_requirements(['pycocotools'])
+            from pycocotools.coco import COCO
+            from pycocotools.cocoeval import COCOeval
+
+            anno = COCO(anno_json)  # init annotations api
+            pred = anno.loadRes(pred_json)  # init predictions api
+            eval = COCOeval(anno, pred, 'bbox')
+            if is_coco:
+                eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files]  # image IDs to evaluate
+            eval.evaluate()
+            eval.accumulate()
+            eval.summarize()
+            map, map50 = eval.stats[:2]  # update results (mAP@0.5:0.95, mAP@0.5)
+        except Exception as e:
+            LOGGER.info(f'pycocotools unable to run: {e}')
+
+    # Return results
+    model.float()  # for training
+    if not training:
+        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
+        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
+    maps = np.zeros(nc) + map
+    for i, c in enumerate(ap_class):
+        maps[c] = ap[i]
+    return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
+
+
+def parse_opt():
+    parser = argparse.ArgumentParser()
+    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
+    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model.pt path(s)')
+    parser.add_argument('--batch-size', type=int, default=32, help='batch size')
+    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
+    parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
+    parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
+    parser.add_argument('--task', default='val', help='train, val, test, speed or study')
+    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
+    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
+    parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
+    parser.add_argument('--augment', action='store_true', help='augmented inference')
+    parser.add_argument('--verbose', action='store_true', help='report mAP by class')
+    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
+    parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
+    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
+    parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
+    parser.add_argument('--project', default=ROOT / 'runs/val', help='save to project/name')
+    parser.add_argument('--name', default='exp', help='save to project/name')
+    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
+    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
+    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
+    opt = parser.parse_args()
+    opt.data = check_yaml(opt.data)  # check YAML
+    opt.save_json |= opt.data.endswith('coco.yaml')
+    opt.save_txt |= opt.save_hybrid
+    print_args(FILE.stem, opt)
+    return opt
+
+
+def main(opt):
+    check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
+
+    if opt.task in ('train', 'val', 'test'):  # run normally
+        if opt.conf_thres > 0.001:  # https://github.com/ultralytics/yolov5/issues/1466
+            LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
+        run(**vars(opt))
+
+    else:
+        weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
+        opt.half = True  # FP16 for fastest results
+        if opt.task == 'speed':  # speed benchmarks
+            # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
+            opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
+            for opt.weights in weights:
+                run(**vars(opt), plots=False)
+
+        elif opt.task == 'study':  # speed vs mAP benchmarks
+            # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
+            for opt.weights in weights:
+                f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt'  # filename to save to
+                x, y = list(range(256, 1536 + 128, 128)), []  # x axis (image sizes), y axis
+                for opt.imgsz in x:  # img-size
+                    LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
+                    r, _, t = run(**vars(opt), plots=False)
+                    y.append(r + t)  # results and times
+                np.savetxt(f, y, fmt='%10.4g')  # save
+            os.system('zip -r study.zip study_*.txt')
+            plot_val_study(x=x)  # plot
+
+
+if __name__ == "__main__":
+    opt = parse_opt()
+    main(opt)
-- 
GitLab