diff --git a/TP7/analyse-tris/analyse_tris.csv b/TP7/analyse-tris/analyse_tris.csv
index b679da25df8ac52db9fc3d28e2673e75f7f28072..8c2c3d5bec7d9df8832888ce14530033a4a493e6 100644
--- a/TP7/analyse-tris/analyse_tris.csv
+++ b/TP7/analyse-tris/analyse_tris.csv
@@ -2,101 +2,101 @@ taille;"tri séléction";"tri insertion"
   0;    0.00;    0.00
   1;    0.00;    0.00
   2;    1.00;    1.00
-  3;    3.00;    2.62
-  4;    6.00;    4.90
-  5;   10.00;    7.54
-  6;   15.00;   10.90
-  7;   21.00;   14.56
-  8;   28.00;   19.96
-  9;   36.00;   23.84
- 10;   45.00;   29.12
- 11;   55.00;   35.24
- 12;   66.00;   42.72
- 13;   78.00;   48.12
- 14;   91.00;   55.06
- 15;  105.00;   64.22
- 16;  120.00;   72.72
- 17;  136.00;   82.22
- 18;  153.00;   91.08
- 19;  171.00;  100.86
- 20;  190.00;  109.80
- 21;  210.00;  116.96
- 22;  231.00;  136.72
- 23;  253.00;  142.74
- 24;  276.00;  154.70
- 25;  300.00;  172.60
- 26;  325.00;  185.50
- 27;  351.00;  197.92
- 28;  378.00;  213.90
- 29;  406.00;  228.38
- 30;  435.00;  242.74
- 31;  465.00;  264.10
- 32;  496.00;  273.96
- 33;  528.00;  297.28
- 34;  561.00;  308.94
- 35;  595.00;  328.56
- 36;  630.00;  347.48
- 37;  666.00;  369.30
- 38;  703.00;  386.26
- 39;  741.00;  417.00
- 40;  780.00;  429.88
- 41;  820.00;  438.68
- 42;  861.00;  476.60
- 43;  903.00;  490.30
- 44;  946.00;  514.28
- 45;  990.00;  535.98
- 46; 1035.00;  546.88
- 47; 1081.00;  598.08
- 48; 1128.00;  605.58
- 49; 1176.00;  639.08
- 50; 1225.00;  651.50
- 51; 1275.00;  689.16
- 52; 1326.00;  712.04
- 53; 1378.00;  746.86
- 54; 1431.00;  768.66
- 55; 1485.00;  794.12
- 56; 1540.00;  819.04
- 57; 1596.00;  854.84
- 58; 1653.00;  890.52
- 59; 1711.00;  931.04
- 60; 1770.00;  951.98
- 61; 1830.00;  968.66
- 62; 1891.00; 1008.38
- 63; 1953.00; 1037.84
- 64; 2016.00; 1090.42
- 65; 2080.00; 1080.92
- 66; 2145.00; 1127.48
- 67; 2211.00; 1188.08
- 68; 2278.00; 1207.70
- 69; 2346.00; 1225.60
- 70; 2415.00; 1281.40
- 71; 2485.00; 1313.32
- 72; 2556.00; 1353.52
- 73; 2628.00; 1379.60
- 74; 2701.00; 1422.80
- 75; 2775.00; 1469.98
- 76; 2850.00; 1506.84
- 77; 2926.00; 1535.16
- 78; 3003.00; 1578.44
- 79; 3081.00; 1621.58
- 80; 3160.00; 1655.34
- 81; 3240.00; 1699.60
- 82; 3321.00; 1717.26
- 83; 3403.00; 1794.74
- 84; 3486.00; 1826.90
- 85; 3570.00; 1874.66
- 86; 3655.00; 1931.14
- 87; 3741.00; 1935.44
- 88; 3828.00; 2021.40
- 89; 3916.00; 2035.10
- 90; 4005.00; 2128.82
- 91; 4095.00; 2130.34
- 92; 4186.00; 2177.56
- 93; 4278.00; 2271.38
- 94; 4371.00; 2261.42
- 95; 4465.00; 2299.68
- 96; 4560.00; 2374.12
- 97; 4656.00; 2422.98
- 98; 4753.00; 2486.74
- 99; 4851.00; 2532.82
-100; 4950.00; 2560.18
+  3;    3.00;    2.70
+  4;    6.00;    5.00
+  5;   10.00;    7.42
+  6;   15.00;   11.08
+  7;   21.00;   15.02
+  8;   28.00;   19.46
+  9;   36.00;   22.76
+ 10;   45.00;   29.34
+ 11;   55.00;   36.10
+ 12;   66.00;   42.16
+ 13;   78.00;   48.64
+ 14;   91.00;   55.22
+ 15;  105.00;   63.70
+ 16;  120.00;   72.70
+ 17;  136.00;   83.50
+ 18;  153.00;   92.14
+ 19;  171.00;  101.14
+ 20;  190.00;  109.58
+ 21;  210.00;  125.48
+ 22;  231.00;  133.68
+ 23;  253.00;  141.48
+ 24;  276.00;  154.30
+ 25;  300.00;  171.96
+ 26;  325.00;  184.44
+ 27;  351.00;  193.64
+ 28;  378.00;  212.40
+ 29;  406.00;  231.78
+ 30;  435.00;  244.28
+ 31;  465.00;  260.20
+ 32;  496.00;  275.90
+ 33;  528.00;  292.84
+ 34;  561.00;  302.56
+ 35;  595.00;  330.30
+ 36;  630.00;  345.34
+ 37;  666.00;  366.86
+ 38;  703.00;  387.52
+ 39;  741.00;  401.46
+ 40;  780.00;  430.58
+ 41;  820.00;  445.86
+ 42;  861.00;  464.26
+ 43;  903.00;  479.92
+ 44;  946.00;  514.20
+ 45;  990.00;  536.68
+ 46; 1035.00;  553.74
+ 47; 1081.00;  576.56
+ 48; 1128.00;  612.98
+ 49; 1176.00;  624.00
+ 50; 1225.00;  663.02
+ 51; 1275.00;  681.04
+ 52; 1326.00;  710.64
+ 53; 1378.00;  750.00
+ 54; 1431.00;  783.20
+ 55; 1485.00;  787.38
+ 56; 1540.00;  837.78
+ 57; 1596.00;  850.50
+ 58; 1653.00;  881.98
+ 59; 1711.00;  896.46
+ 60; 1770.00;  963.60
+ 61; 1830.00;  966.84
+ 62; 1891.00;  998.28
+ 63; 1953.00; 1022.86
+ 64; 2016.00; 1040.34
+ 65; 2080.00; 1110.04
+ 66; 2145.00; 1133.78
+ 67; 2211.00; 1167.56
+ 68; 2278.00; 1216.76
+ 69; 2346.00; 1223.36
+ 70; 2415.00; 1299.94
+ 71; 2485.00; 1288.88
+ 72; 2556.00; 1346.62
+ 73; 2628.00; 1379.68
+ 74; 2701.00; 1433.14
+ 75; 2775.00; 1449.96
+ 76; 2850.00; 1491.20
+ 77; 2926.00; 1517.32
+ 78; 3003.00; 1581.40
+ 79; 3081.00; 1583.22
+ 80; 3160.00; 1666.78
+ 81; 3240.00; 1709.74
+ 82; 3321.00; 1733.52
+ 83; 3403.00; 1768.52
+ 84; 3486.00; 1836.30
+ 85; 3570.00; 1891.84
+ 86; 3655.00; 1858.28
+ 87; 3741.00; 1990.32
+ 88; 3828.00; 1997.30
+ 89; 3916.00; 2035.36
+ 90; 4005.00; 2082.44
+ 91; 4095.00; 2100.02
+ 92; 4186.00; 2167.74
+ 93; 4278.00; 2257.30
+ 94; 4371.00; 2247.90
+ 95; 4465.00; 2339.64
+ 96; 4560.00; 2363.40
+ 97; 4656.00; 2422.96
+ 98; 4753.00; 2462.92
+ 99; 4851.00; 2530.06
+100; 4950.00; 2574.66
diff --git a/TP7/analyse-tris/analyse_tris2.py b/TP7/analyse-tris/analyse_tris2.py
index be9e9189425a29f967e009520964646b6e8e78b1..3a2fa65ea5d5191ed1bed3b8b88b315769285567 100755
--- a/TP7/analyse-tris/analyse_tris2.py
+++ b/TP7/analyse-tris/analyse_tris2.py
@@ -61,7 +61,7 @@ if (__name__ == '__main__'):
         c_select[t] = analyser_tri(tri_select, 1, t)
         # inutile de moyenner pour le tri par sélection
         c_insert[t] = analyser_tri(tri_insert, NB_ESSAIS, t)
-        c_sort[t] = analyser_tri(tri_sort, 1, t)
+        c_sort[t] = analyser_tri(tri_sort,NB_ESSAIS , t)
 
     # Sauvegarde des données calculées dans un fichier au format CSV
     prem_ligne = 'taille;"tri séléction";"tri insertion"\n'
diff --git a/TP7/analyse-tris/tp7.py b/TP7/analyse-tris/tp7.py
index 286a5d594cd498d5ca998d83e9c4e472264bd4f8..c20c1a8910f1097baa2b5b4f251dd17b9ec34f96 100644
--- a/TP7/analyse-tris/tp7.py
+++ b/TP7/analyse-tris/tp7.py
@@ -1,6 +1,6 @@
 # TP7 AP Analyse empirique des tris
 # Belkacemi Melissa
-# 13/03/2024
+# 20/03/2024
 
 #Préliminaires
 
@@ -33,5 +33,36 @@ nvle_compare = count(compare)
 #Évaluation expérimentale de la complexité en temps
 import timeit
 
+#Cas du tri par selection
+
+TAILLE_MAX = 100
+"""
+c_select = [0.0] * (TAILLE_MAX + 1)
+for t in range(TAILLE_MAX + 1):
+    c_select[t] = timeit.timeit(stmt='tri_select(l)', setup=f'from tp7 import liste_alea ;l=liste_alea({t});from tris import tri_select', number=5000)
+
+
+plt.plot(list(range(TAILLE_MAX + 1)), c_select, 'b.', label='Tri sélection')
+
+plt.title('Tris : temps de comparaisons')
+plt.legend()
+plt.xlabel('n = taille des listes')
+plt.ylabel('c(n) = temps de comparaisons')
+plt.savefig('tris_select_tmpscomp.png')
+plt.show()
+"""
+#Cas du tri par insertion
+globals=globals()
+#meilleur des cas
+meil_cas=[0.0] * (TAILLE_MAX + 1)
+for t in range(TAILLE_MAX + 1):
+    liste=liste_alea(t)
+    tmp=timeit.timeit(stmt=f'tri_insert({liste})', setup='from tris import tri_insert', number=5000)
+    meil_cas[t]=tmp
+
+    
+    
+    
+    
 
 
diff --git a/TP7/analyse-tris/tris_nbcomp.png b/TP7/analyse-tris/tris_nbcomp.png
index e17e8c6a3f44b28019c7fde9ec262bdc4a6a2042..7c60ab6ce87c293f962ab075bba539600ae15094 100644
Binary files a/TP7/analyse-tris/tris_nbcomp.png and b/TP7/analyse-tris/tris_nbcomp.png differ
diff --git a/TP7/analyse-tris/tris_tmpscomp.png b/TP7/analyse-tris/tris_tmpscomp.png
new file mode 100644
index 0000000000000000000000000000000000000000..c89b14b616eccc79dcff89a9370c934e15a7115c
Binary files /dev/null and b/TP7/analyse-tris/tris_tmpscomp.png differ