
Université de Lille

CRIStAL

SMAC team

Individual-based Approach to
Distributed Constraint
Optimization Problem

Author:
Alex Vigneron

Supervisors :
Anne-Cécile Caron

Maxime Morge
Jean-Christophe Routier

November 13, 2020

Abstract

This paper presents a short overview of DCOPs and details MGM and
MGM-2 algorithms. Both algorithms are presented with corresponding
detailed automata and two afferent examples of execution.

1

Contents
1 Introduction 4

2 Distributed Constraint Optimization Problems 5
2.1 Origins . 5
2.2 Classification . 7

3 State of the art 9
3.1 General overview . 9
3.2 MGM & MGM-2 . 9

3.2.1 MGM-2 overview . 10
3.2.2 MGM-2 prnciple . 10

4 Algorithms 12
4.1 MGM . 12
4.2 MGM-2 . 16

5 FSM modeling 19
5.1 Outline . 19
5.2 Agent States . 19

5.2.1 General overview . 19
5.2.2 Init . 20
5.2.3 Continue . 21
5.2.4 waitingForRole . 22
5.2.5 OffererWaitingValues 22
5.2.6 OffererMakingOffer . 22
5.2.7 ReceiverWaitingValues . 24
5.2.8 ReceiverWaitingOffers 25
5.2.9 ReceiverAllOffersReceived 25
5.2.10 Comitted . 27
5.2.11 Uncomitted . 27
5.2.12 ActSolo . 28
5.2.13 GivingPartnerGoNogo . 28
5.2.14 HandlingPartnersGoNogo 28
5.2.15 Final . 28

5.3 Agent’s Mind . 29
5.3.1 Personal beliefs . 29

5.4 Messages . 29
5.4.1 Standard agent messages 29

5.5 Outline . 30
5.6 Supervisor states . 31

5.6.1 General overview . 31
5.6.2 Start . 31
5.6.3 WaitingForAgentValues 31
5.6.4 DecidingToStopOrContinue 31

2

5.6.5 Finish . 31
5.7 Supervisor’s mental state . 31
5.8 Supervisor messages . 32

6 Example 1: An audience with lady Galadriel 33
6.1 Introduction . 33
6.2 MGM approach . 35
6.3 MGM-2 approach . 36
6.4 Modelling of the problem with SCADCOP API 39

7 Example 2: Dalek’s surveillance system 41
7.1 Introduction . 41
7.2 MGM resolution . 42
7.3 MGM-2 resolution . 44
7.4 Modelling of the problem with SCADCOP API 44

8 Glossary of technical terms 50

9 Conclusion 52

10 Annex 53

3

1 Introduction
Among existing DCOP algorithms, Maximum-Gain-Message (MGM) and its
2-coordinated version MGM-2 are popular. Other similar algorithms such as
DSA which is considered as a stochastic variant of MGM Fioretto et al. (2018)
and BE-Rebid Taylor et al. (2010) which extends MGM by calculating and
communicating expected gain Fioretto et al. (2018) also exist. Several open-
source implementations of MGM exist in Python with the pyDCOP framework
developped by Rust et al. (2019) and Java with the Frodo project offered by
Léauté et al. (2009). Though not necessarily always the best performers, MGM
and its variants are deemed robust and efficient algorithms on average, making
them suitable benchmark options Fioretto et al. (2018). We hereby present the
MGM and MGM-2 algorithms and detail two toy-examples to facilitate their
analysis.

We begin by giving a short overview of what DCOPs are and a general
picture of the state of the art algorithms used to solve them. We then move on
to a brief review of the existing algorithms to address DCOPs and detail two of
these, namely MGM and MGM-2. We proceed to the description of the MGM-2
automaton and finally move on to two examples of execution of said algorithms.

4

https://github.com/Orange-OpenSource/pyDcop
https://api.frodo-ai.tech/d3/d4c/a01724.html

2 Distributed Constraint Optimization Problems
A Distributed Constraint Optimization Problem (DCOP) framework is the
distributed version of constraint optimization problems. In this multi-agent
paradigm, agents representing variables in the problem communicate so that
each of them can gradually update the value of the variable it controls to im-
prove the global utility function.

There are at least as many variables as agents and possibly more variables
than agents, implying that a single agent might control several variables. How-
ever in most DCOPs, control of a single variable by a single agent is assumed.
The optimal solution is the minimum/maximum of the global objective function.
Each variable has a domain of values it can take, this domain is only known
to the agent in control of the said variable. However the value of a variable is
known to an agent’s neighbour. The notion of neighbourhood is key because
DCOPs rely on locality. Therefore each agent can only communicate with its
neighbours and only knows about cost functions which involve at least one of
the variables it controls.

2.1 Origins
In order to better understand DCOPs, we give here a brief overview of the types
of problems they come from.

A CSP is a problem where the goal is to determine whether a set of variables
spanning over determined domains can satisfy constraints. These are typically
combinatorial problems Fioretto et al. (2018)

Definition 1 (CSP) A Constraint Satisfaction Problem is a tuple 〈X,D,C〉
where

• X = {x1, . . . , xn} is the the set of variables

• D = {d1, . . . , dn} is the set of corresponding non-empty domains

• C = {c1, . . . , cm} is the set of constraints over the variables.

COPs -sometimes called Weighted Constraint Satisfaction Problems- take a
step further when compared with CSPs. Here the solution is not binary simply
stating whether constraint can be satisfied or not but values are quantifiable.
COPs are akin to CSPs with an additional particular objective function, either
a maximisation or a minimisation. In this setting, constraints can either be hard
or soft depending on whether respecting them is vital or preferable. There are
two types of objective functions, maximisations with their respective gain and
minimisations with their respective cost. Typically, a constraint which needs to
be satisfied will be coined hard while a constraint which should be satisfied will
be coined soft.

Definition 2 (COP) A Constraint Optimization Problem is a tuple 〈X,D,F, α〉
where:

5

• X = {x1, . . . , xn} is a set of n variables

• D = {D1, . . . , Dn} is the set of finite domains for the variables in X, with
Di being the set of possible values for the variable xi

• F is a set of constraints. A constraint fi ∈ F is a function
fi : Πxj∈xiDj → R+∪{⊥}, where the set of variables xi = {xi1 , . . . xik} ⊆
X is the scope of fi and ⊥ is a special element used to denote that a given
combination of values for the variables in xi is not allowed, and it has the
property that a+⊥ = ⊥+ a = ⊥,∀ a ∈ R.

A distributed version of CSPs also exists in the form of DisCSPs. DCOPs
are decentralised versions of COPs which are in turn extended CSPs.

Definition 3 (DCOP) A Distributed Constraint Optimization Problem (DCOP)
is a tuple 〈A,X,D, F, α〉 where:

• A = {a1, . . . , am} is a set of m autonomous agents

• X = {x1, . . . , xn} is a set of n variables

• D = {D1, . . . , Dn} is the set of finite domains for the variables in X, with
Di being the set of possible values for the variable xi

• F is a set of constraints. A constraint fi ∈ F is a function
fi : Πxj∈xiDj → R+∪{⊥}, where the set of variables xi = {xi1 , . . . xik} ⊆
X is the scope of fi and ⊥ is a special element used to denote that a given
combination of values for the variables in xi is not allowed, and it has the
property that a+⊥ = ⊥+ a = ⊥,∀ a ∈ R

• α : X → A is a surjective function, from variables to agents, which assigns
the control of each variable x ∈ X to an agent α(x).

A partial assignment is a value assignment for a proper subset of variables of
X. An assignment is complete if it assigns a value to each variable in X. For a
given complete assignment σ, we say that a constraint (also called cost function)
fi is satisfied by σ if fi(σ(xi)) 6= ⊥. A complete assignment is a solution of a
DCOP if it satisfies all its constraints.

In the case of anytime algorithms, each assignment is complete and gradually
improves over time, which makes it possible to stop the algorithm at any point.

The optimization objective is represented by the function F̄ , which can be
of different nature, either a minimisation or a maximisation. A solution is a
complete assignment with cost different from ⊥, and an optimal solution is a
solution with minimal cost (resp. maximal utility). In general, this function is
a sum of cost (resp. utility) constraints: F = Σifi ; but some approaches can
use other kind of agregation.

Additionally, in the following report, we consider that:

• n = m, i.e. each agent controls only one variable. This restriction is often
considered in the literature;

6

• constraints are binary constraints. More precisely, F contains at most one
function fij per pair i, j;

• there can be as many constraints as needed for each variable.

.
With these assumptions, a DCOP can be easily represented as a graph where

vertices are agents (each agent owns one variable) and edges are binary con-
straints. Note that since constraints are binary and can only be over a given
pair once, the resulting graph is never a multigraph.

Definition 4 Let 〈A,X,D, F, α〉 be a DCOP, such that
We define from F the global cost function and the local cost function of an

agent depending on its neighborhood :

• the global cost function F̄ = Σfij∈F fij(xi, xj) ;

• the neighborhood Ni of agent ai is {aj ∈ A|fij ∈ F} ;

• the local cost function of agent ai is c(i) = Σaj∈Nifij(xi, xj) ;

• given a valuation σ of variables in X, the contribution of agent ai is the re-
sult of its local cost function for this valuation, i.e. Σaj∈Ni

fij(σ(xi), σ(xj)).

We consider here cost functions, so the objective is to minimize the global
cost function. Symmetrically, one can use utility functions and the objective
becomes to maximize the global utility function.

2.2 Classification
In the multi-agent domain, DCOPs are classified according to their set of char-
acteristics, namely:

• Action effects : stochastic or deterministic. Refers to the results obtained
by actions, in a deterministic seting one action is considered to have one
specific result in a particular context, and if this action had to be repeated
in a similar context, the result ought to be identical. Whereas in a stochas-
tic one, the same action performed in the same environment can lead to
a different result.

• Knowledge : total or incomplete Refers to the extent of an agent’s aware-
ness of the other agent’s variables. With incomplete knowledge, locality
is often considered as the landmark, while with total knowledge any agent
posesses information about any other agent.

• Group behaviour : cooperative or competitive Depends on whether agents
consider their own welfare first or the general well-being of the system.

• Environment type : deterministic or stochastic Refers to how an environ-
ment evolves, whether events follow a certain pattern or not.

7

• Environment’s dynamics : static or dynamic Depends on whether an en-
vironment remains identical from beginning to end of a process or evolves.

Generally speaking, most DCOP algorithms rely on deterministic action effects,
a cooperative group-behaviour and total knowledge. MGM and MGM-2 are
deterministic both in terms of actions and environment, with cooperative group
behaviour sharing incomplete (local) knowledge.

DCOP algorithms are used for several applications, for instance:

• Disaster management

• Radio frequency allocation problems

• Recommendation Systems

• Scheduling

• Sensor networks

• Service-oriented management (cloud, server, power supply)

• Supply chain management

8

Figure 1: Fioretto’s taxonomy

3 State of the art

3.1 General overview
DCOPs can be addressed by algorithms descibed in Fioretto et al. (2018) and
presented in Figure 1. The first distinction made is in terms of solution optimal-
ity with complete algorithms guaranteeing the optimal solution to be found while
incomplete ones offer no guarantee but have shorter execution times. Then,
they are classified according to their (lack or presence of) centralisation and
synchronicity. Finally, they are divided based on their exploration process, re-
volving around three main frames, namely search, inference and sampling. In
our case, we focus on MGM and its coordinated variant MGM-2 which are
incomplete, decentralised, semi-synchronous search algorithms.

3.2 MGM & MGM-2
Both MGM and MGM-2 are extensively described by Maheswaran et al. (2004).
In this paper the 2-coordinated algorithm is detailed and hints are given at k-
coordinated versions.

Historically, MGM evolved from DBA with the difference that there is no

9

change on constraint costs to exit local minima issues and no need for DBA’s
global knowledge of solution quality. Another algorithm MGM is often com-
pared with is DSA. The difference lies is the guarantees MGM offers when com-
pared with DSA. MGM’s gain nevers drops below 0 while DSA might. In terms
of solution quality, both MGM and MGM-2 are proved to be monotonous, intu-
itively because since the utility function is the sum of all neighbours’ utilities,
if one increases, all neighbours’ utility consequently increases too.

3.2.1 MGM-2 overview

Their main focus of interest is the application of DCOPs to large-scale problems
where the limitation of fully-connected networks of agents (complete graphs) is
high. Computational costs caused by such topologies are prohibitive and a pos-
sible solution to this is the local knowledge approach of distributed algorithms.

The principle is one of coordinated negotiation and distributed control of
variables. "The optimal solution of a DCOP is a Nash Equilibrium in an ap-
propriate game". Coordination and cooperation are key since selfish behaviours
can result in unstable dynamics, which means a structure needs to be imposed
on how values get updated. Agents can perform either unilateral or bilatrela
(2-coordinated) moves whereby they update their values according to the com-
puted improvement in global utility. As opposed with coalition scenarios where
a manager handles agent’s decisions, therefore merging the behaviour into a
centralised one, MGM-2 aims at allowing coordination while maintaining a
distributed decision-making process. A notion of solidarity is necessary here,
hinting at a cooperative environment but could be replaced by compensations
between agents in a competitive environment. In MGM-2, coordinated pairs
consider the overall gain they and their partner can achieve, irrespective of
whether their own gain is better or not. This is possible because we base the
interaction on a cooperative framework. Were it competitive, a joint action is
considered useful if the sum of the 2 partenered agents utility functions increases,
even if one of them diminishes.

3.2.2 MGM-2 prnciple

Globally speaking, the process of MGM could be summed-up as follows: at the
beginning of each round, agents inform their neighbours of their current value.
Thanks to this information received from each of their neighbours, each agent is
then capable of computing the changes it can make to its own value to change
its utility taking into account each neighbours’ value. Once this is done, each
agent selects the best move it can do and the corresponding gain and informs
each of its neighbours of this. Among each neighbourhood, a single agent will
be allowed to act, the one having made the best offer of move. The agent thus
selected updates its value and another round can begin.

In MGM-2, the process is slightly more complex since coordinated moves
come into play. The difference starts from the begining of the round where
agents are randomly split into 2 sets, offerers and receivers. Each set will have a

10

very different behaviour. Offerers select a neighbour at random, make an offer to
said neighbour and wait for their neighbour’s response. If the neighbour declines
the offer, they switch back to an MGM-like behaviour where they compute
their best solo move (as in MGM) and so on. If their neighbour accepts, they
are from then on committed, just like their neighbour. Receivers merely wait
for potential offers, they might receive none and therefore go for an MGM-
like behaviour of solo move, or receive offers and choose among them. If they
do get offers, they will chose the best one among the acceptable ones. If no
offer is acceptable, they act as if they had not received any and go back to
MGM behaviour. Once they have selected the best offer, they send the selected
partner an accept message and are from now onwards committed. Committed
agents, both receivers and offerers, converge again in their behaviour after the
accept/reject messages. They both enter the phase where they inform each of
their neighbours of their potential joint gain. This phase is akin to MGM since
in each neighbourhood, only one agent will be the winner of that round. If the
winner is an uncommitted agent, then the round continues as in MGM. However,
if the winner is a committed agent, then more communication occurs between
both partners. Each partner will send its partner a Go or No-Go message,
depending on whether they have won or lost their neighbourhood’s round. A
No-Go means neither of them will make a move this round and so they move
on to the next.

Since variables are in fact agents in a DCOP game, the optimal solution
corresponds to a Nash Equilibrium in the specified game. The notion of vicinity
is crucial and should be considered fixed once and for all, the agent’s neighbours
do not vary during the game. A round starts by all agents broadcasting the
current value to their vicinity. This means each agent sends one message and
receives |vicinity | messages, each containing one particular neighbours’s current
value. At this stage, all agents are now aware of their own value as well as of
of their vicinity values. Now the stake is to select which agents will be allowed
to act, aka modify their value, the set of them will be called M . To select said
agents, each of them broadcasts a gain message, stating the ε by which it can
improve its current local utility value if allowed to act. At this stage, each
agent knows the ε by which it can improve but also all its vicinity’s εs. The
winner is simply the one which yields the highest ε (potential improvement).
Implementation should take into account possible ties and how to break them.
In the case of MGM-2, it is a pair of agents which gain is highest which are
allowed to act. The question of how to determine the highest pair gain for
MGM-2 relies on which actions are acceptable or not by agents, for instance in
cooperative environments, a joint gain can be considered acceptable even if one
of the agents actually looses, in other settings this might not be the case and
acceptable actions would in this case be limited to coordinated actions which
improve both agent’s value. The winner (winners in the case of MGM-2) act(s)
and update its/their value(s) consequently.

Both processes go on until the algorithm is stopped, either by having reached
the predefined number of cycles or by reaching a Nash equilibrium.

11

4 Algorithms
Both MGM and MGM-2 algorithms are described here.

4.1 MGM
The algorithm is described in Algorithms 1, 2, 3, 4, 6, 7, 8, 9, 10, 11,

We define N(ai) the set of neighbouring agents for ai:

N : A→ 2A

ai 7→ Ni = N(ai) =

From an agent’s perspective, the MGM algorithm is performed as follows:

Algorithme 1 : Agent-centered view of MGM
Input : xi ∈ X, di ∈ D,Fi ∈ F, b
Output : v ∈ di, the value of xi variable such that vt+1 is more

optimal than vt
1 while not terminated do
2 ∀ N(self) ! informValue(self.val) //one cycle
3 currLocContext ← [∀ N(self) : informValue(neighbourVal) //sync

point
4 (bVal, bδ)←[evaluate(currLocContext, currentValue, dx, b)
5 ∀ N(self) ! informDelta(N(a), bδ) //one cycle
6 currOffers ← [getAllOffers(N(a)) //sync point
7 shouldAct ←[decide(currOffers, bδ, b)
8 if shouldAct is true then
9 currentValue ←[bV al //ai updates xi

10 end
11 end
12 supervisor ! informValue(self.val)

While from a system-centered perpsective, it goes as such:

Algorithme 2 : System-centered view of MGM
Input : A DCOP < A;X;D;F ;α > such that |A| = |X| and

α(xi) = ai;
a boolean b set to true if the goal is miniMax, false if maxiMin
Output : A solution to the DCOP

1 currentV alue(xi)← [rand(di) //initialise currentValue
2 for ai ∈ A //In parallel do
3 doAgentMGM(xi, di, Fi, b)
4 end
5 currentGlobalContext ←[currLocContext ∀a ∈ A
Return : currentGlobalContext

12

Algorithme 3 : evaluate(currentLocalContext, currentValue, do-
mainX, b)
Input : The local context corresponding to current values of

xj ∀n ∈ Ni; current value of the agent’s variable x; the domain
d of the agent’s variable; a boolean b set to true if the goal is
miniMax, false if maxiMin

Output : A couple with the best value x can take given the current
context and the δ of change it can produce by doing so

1 results ← [∅
2 for v ∈ d do
3 x← [v
4 results[v] ← [

∑
xj∈N(a)

f(x, xj)) //sum over all arcs

5 end
6 if b is true then
7 (bestVal, best-δ) ←[min(results) //min over δ and

corresponding v
8 else
9 (bestVal, best-δ) ←[max(results) //max over δ and

corresponding v
10 end

Return : (bestVal, best-δ)

Algorithme 4 : decide(currentOffer, bestDelta, b)
Input : ∆ the set of δ improvements offered by a’s neighbours; a’s δ; a

boolean b set to true if the goal is miniMax, false if maxiMin
Output : A boolean, true if the agent a controlling x should act, false

otherwise
1 if b is true then
2 if δa ≤ min(∆) then
3 advice ←[true
4 end
5 else if δa ≥ max(∆) then
6 advice ←[true
7 else
8 advice ←[false
9 end
Return : advice

13

Algorithme 5 : communicateValuesToAll
1 Symmetrical to getAllValues
Input : N(a), a, v ∈ Dx

Output : (v, a)
2 for ai ∈ N(a) do
3 msg ← [communicateValue(ai, vx)
4 end
Return : msg

Algorithme 6 : communicateValue
1 Symmetrical to getValue
Input : ai, a, v ∈ Dx

Output : (v, a)
2 msg ← [send(v, ai)
Return : msg

Algorithme 7 : getValue
1 Symmetrical to communicateValue
Input : N(a)
Output : (v, a)

2 msg ← [receive(communicateValue(ai, a, v ∈ Dx))
Return : msg

Algorithme 8 : GetAllValues
1 Symmetrical to communicateValuesToAll
Input : N(a)
Output : {(vai, ai)}

2 currLocContext ← [∅ //fresh start
3 while |currLocContext| < |N(a)| do
4 currLocContext ← [currLocContext ∪ getValue(N(a))
5 end
Return : currLocContext

Algorithme 9 : makeAllOffers
1 Symmetrical to getAllOffers
Input : N(a), δa
Output : (δa, a)

2 for ai ∈ N(a) do
3 makeOffer(ai, δa)
4 end
Return : (δa, a)

14

Algorithme 10 : makeOffer
1 Symmetrical to getOffer
Input : ai, δa
Output : (δa, a)

2 offer ← [send(δa, ai)
Return : offer

Algorithme 11 : getOffer
1 Symmetrical to makeOffer
Input : N(a)

2 offer ← [receive(makeOffer(δa, a)))
Return : offer

Algorithme 12 : GetAllOffers
1 Symmetrical to makeAllOffers
Input : N(a)

2 currOffers ← [∅ //fresh start
3 while |currOffers| < |N(a)| do
4 currOffers ← [currOffers ∪ getOffer(N(a))
5 end
Return : {(δai, ai)}

15

4.2 MGM-2
Algorithm 13 and its sub-algorithms14, 15, 16, 17 and 18 present MGM-2.

Algorithme 13 : MGM-2
Input : A DCOP formalised as: A a set of autonomous agents, X a set

of variables, D a set of finite domains for the xi variables, F a
set of utility/cost functions

Output : A solution to the DCOP
1 while not terminated do
2 Inform
3 Determine offerers/receivers as resp. O and R
4 Offer
5 Evaluate
6 Inform2
7 Go/No-Go
8 The agent with max(bmx) wins the round and is allowed to act
9 end

Algorithme 14 : MGM-2 Inform
1 for each agent ai in A do
2 for each agent aj in A do
3 if ai and aj share a function fm then
4 ai informs aj of the xi value it controls in fm
5 end
6 end
7 end

16

Algorithme 15 : MGM-2 Offer
1 for each agent ai in O do
2 offerer sends (ai, aj , gain

O(ai, aj)) where gainO(ai, aj)) is offerer’s
local utility gain for suggested values ai and aj . Chose at
random an agent aj in R sharing a function fm with self Send offer
message containing all coordinated moves for the pair (ai, aj)
which improve current fm

3 end

Algorithme 16 : MGM-2 Evaluate
1 for each agent ai in R do
2 Compute improvement δ achievable, taking into account fm offer

and its own function fn
3 If gainR(ai, aj) is receiver’s local utility gain for suggested values

ai and aj
4 for each (ai, aj), compute

globalGain(ai, aj) = gainR(ai, aj) + gainO(ai, aj)−∆(ai, aj)
where ∆(ai, aj) = how much “link between both” changes using
(ai, aj) (not very clear in Mashewaran (fin page 4)).)

5 if max (globalGain(ai, aj)) > 0 then
6 Commit both offerer and receiver by sending accept message
7 Offerer and receiver are now committed
8 end
9 end

Algorithme 17 : MGM-2 Inform2
1 Foreach agent in A Send a gain message to all neighbours
2 if agent is committed then
3 Gain message is for coordinated move
4 end
5 else
6 Gain message is best bm for unilateral move
7 end

17

Algorithme 18 : MGM-2 Go/No-Go
1 for each agent ai in A do
2 if ai is in C then
3 if ai’s offer was the best of the neighbourhood then
4 ai send its committed partner aj a go message
5 end
6 else
7 ai send aj a no-go message
8 end
9 end

10 else
11 Uncommitted agents act if their offer was the best in their

neighbourhood
12 end
13 end

18

5 FSM modeling

5.1 Outline
According to the multi-agent approach, values of variables are discussed among
agents who come to local agreements and iteratively repeat the process to finally
yield a satisfying global assignment. Agents systematically base their decision
on their local knowledge.

The process is triggered by a supervisor agent which invites other agents to
begin their rounds of interactions. Each agent ai is sent a Trigger message
by the supervisor and initiates its variable’s value at random in the variable’s
domain. The behaviour of each agent is defined by a finite state automata (see
Figure 20 in annex for the big picture and Figures 2, 3, 4, 5 and 6 for focused
extracts).

Communication of potential moves and their corresponding potential gains
helps agents determine who should act. A single move is an action wherevy
an agent changes the current value of its variable to another possible value
belonging to the variable’s domain. A coordinated move is similar but involves
two agents changing the values of their variables. Note that a move can also be
static if the change to another value of the domain happens to be the current
value of the variable.

5.2 Agent States
5.2.1 General overview

• Init : initial state in which the agent can be triggered by the supervisor.

• Continue: central state which sparks each round of the algorithm, agent’s
behaviour depends here on the message it receives from supervisor.

• waitingForRole: agent awaits for the role assignment which will tell it
whether it will be an Offerer or a Receiver for this round.

• The Offerer’s side:

– OffererWaitingValues: the offerer agent collects all of its neigh-
bours values before it can choose a neighbour at random and select
a joint offer for it.

– OffererMakingOffer: the Offerer selects one neighbour and selects
an offer with that neighbour’s value which is then sent. No matter the
response given by the selected partner, only one offer can be made,
hence if rejected the offerer will move on to act on its own.

• The Receiver’s side:

– ReceiverWaitingOffers: the receiver agent gathers all offers he re-
ceives

19

– ReceiverAllOffersReceived: the Receiver has received all offers
from its neighbourhood and now chooses the best offer among those.

• Uncomitted: receivers who have not received any acceptable offer (or no
offer at all) and Offerer’s whose offer has been rejected join back in this
state and wait for their neighbours deltas while computing their own deltas
and informing their neighbourhood.

• Comitted: offerers which offers have been accepted and Receiver which
have received at least one acceptable offer become committed with their
respective partners.

• ActSolo: uncommited agents evaluate their neighbourhood and decide
whether they should act or not depending on the neighbourhood’s winner.

• GivingPartnerGoNogo: committed agents evaluate their neighbourhood
and decide whether they should act or not depending on the neighbour-
hood’s winner.

• HandlingPartnersGoNogo: committed agents which can act check whether
their partner can act too.

• Final: the last state an agent can be into, after having received the
StopAlgo message from the supervisor.

5.2.2 Init

This is the initial state agents wait in before starting the algorithm. Messages
received in this state are:

• InformValue(someVal): if the agent receives a InformValue(someVal)
message, it stashes it to deal with it when leaving waitingForRole.

• Trigger: upon receiving a Trigger, sent by the supervisor, agent per-
forms a mind.choose(variable)(mind.value.domain) operation, this me-
thod is called only once per algorithm execution for each agent. The
agent unstashes all previous InformValue() stashed messages and sends
a KickStartMe message to the Supervisor. The agent will then transition
to Continue.

During mind.choose(variable)(mind.value.domain), the agent’s vari-
able xi is initialised at a random value vi ∈ di. When the Supervisor
received KickStartMe, it will send back a ContinueAlgo message needed
to get going. This artificial trigger of ContinueAlgo is used only once, at
the begining of the algorithm.

20

Figure 2: Agent’s beginning

5.2.3 Continue

This state can be reached either via Init, GivingPartnerGoNogo or HandlingPartnersGoNogo,
it should be considered as the central state from which is sparked each round.
Messages received in this state:

• InformValue(someVal): neighbour’s InformValue(someVal) are stashed
to be dealt with when leaving waitingForRole.

• GiveGo: If the agent has reached this state after completing a round
where it had been committed but could not act because it did not win
the neighbourhood’s delta competition, it will receive its partners’ GiveGo
or GiveNoGo here, but nothing should be done about it.

• GiveNoGo: If the agent has reached this state after completing a round
where it had been committed but could not act because it did not win the
neighbourhood’s delta competition, it will receive its partners’ GiveGo or
GiveNoGo here, but nothing should be done about it.

• StopAlgo: agent transitions to Final with the whole process terminating

• ContinueAlgo: agent called mind.reset() method, emptying
mind.receivedOffers, mind.context and mind.deltas. early received
InformValue() messages are unstashed, then the agent sends its own
value via InformValue(mind.value) to all its neighbours. It performs

21

mind.determineSubset(threhold) and send the outcome to self via
ChooseSubset() before transitioning to waitingForRole where ChooseSubset()
will be dealt with as well as unstashed InformValue().

• Reject(o): stashes it.

• MakeOffer(o): stashes it.

• InformDelta(d): stashes it.

5.2.4 waitingForRole

This state acts as a crossroads between paths as Offerer or Receiver. Messages
received in this state:

• InformValue(someVal): are stashed to be dealt with when leaving this
state for the targeted next one.

• ChooseSubset(someSubset): triggers a transition to either
OffererWaitingValues or ReceiverWaitingOffers according to the value
of someSubset.

5.2.5 OffererWaitingValues

Agents reaching this state are considered offerers. Messages received in this
state:

• InformValue(someVal): it is added to mind.context’s map while some
are missing, when the last message of the kind is received, it triggers the
transitioning steps towards OffererMakingOffer. Once
mind.context’s map is complete (i.e. all neighbours have informed the
agent of their value), the agent will transition to
OffererMakingOffer. MakeOffer(myOffer) is sent to a neighbour cho-
sen at random to be its potential partner; all other neighbours receive
MakeOffer(None).

• MakeOffer(someOffer): all such messages will be answered with a Reject()
since Offerers can not be Receivers.

5.2.6 OffererMakingOffer

Before transitioning to the next state, the agent will wait here for the potential
partner’s response. Messages received in this state:

• InformDelta(): stashes it.

• MakeOffer(someOffer): message is still answered with a Reject(.)

• InformDelta(someDelta): messages received from neighbours which are
one step ahead are stashed at this stage.

22

Figure 3: Offerer agent

23

Figure 4: Receiver agent

• Accept(someCombinedMove): it will transition to committed and set
mind.isCommitted to true as well as set mind.partner to
Accept(someOffer)’s sender, this data will also help to compute the new
delta.
InformDelta(mind.deltas.get(self.variable)) is sent to all neighbours af-
ter having computed its new delta either through it’s partner’s
Accept(someCombinedMove)’s delta or on its own if it has been rejected
with mind.computeSoloDelta(bestUnilateralMove).

• Reject(someOffer): the agent will transition to Uncomitted, set
mind.isCommitted to true and set mind.partner to None.
InformDelta(mind.deltas.get(self.variable)) is sent to all neighbours af-
ter having computed its new delta either through it’s partner’s
Accept(someCombinedMove)’s delta or on its own if it has been rejected
with mind.computeSoloDelta(bestUnilateralMove).

5.2.7 ReceiverWaitingValues

In this state the receiver agent waits until it has been informed of all its neigh-
bours’ values. Messages received in this state:

• InformDelta(): stashes it.

24

• InformValue(someVal): are stored in the mind.context map and become
relevant only if the receiver does not get any acceptable offer. Once all of
them have been received, the agent transitions to ReceiverWaitingOffers.

• MakeOffer(None/someOffer): are stashed to be handled in
ReceiverWaitingOffers.

5.2.8 ReceiverWaitingOffers

The last offer to be received causes the transition to the next state. At the end,
when the last offer is received, whether the agent has received a real or None last
offer, it will process the list of real offers received with
mind.chooseBestSingleOffer(variable, neighbours, constraints).
Messages received in this state:

• MakeOffer(someOffer): stored in mind.receivedOffers map until all of-
fers have been received.

• MakeOffer(None): a counter is simply increased to keep track of the num-
ber and know when all offers ahev been received.

Once all offers have been received, the agent computes the result of
mind.chooseBestSingleOffer(variable, neighbours, constraints) and
sends it to itself with BestOfferForMe(someOffer) which will be handled in
the next state ReceiverAllOffersReceived.

5.2.9 ReceiverAllOffersReceived

This state is a fork between committed and uncommitted Receiver agents. Mes-
sages received in this state:

• InformDelta(someDelta): will be stashed and handled in either Comitted
or Uncomitted.

• BestOfferForMe(someOffer): will cause the agent to transition to Comitted,
setting mind.isCommitted to true and setting its mind.partner variable
to the agent it has committed with. the agent’s current delta value is
computed with mind.computeJointDelta(somePartner). It will send a
Reject() to all neighbours which are not the partner and an
Accept(someCombinedMove) to the chosen partner.

• BestOfferForMe(None): will cause the agent to transition to Uncomitted
and set its mind.isCommitted to false. It will send a Reject() to all
neighbours. The agent’s current delta value is computed with
mind.computeSoloDelta(bestUnilateralMove) and added to
mind.deltas.

In both BestOfferForMe(None/someOffer) cases, InformDelta(someDelta) is
sent to all neighbours, containing either the result of
mind.computeJointDelta(someDelta) or
mind.computeSoloDelta(bestUnilateralMove).

25

Figure 5: Committed agent
26

Figure 6: Uncommitted agent

5.2.10 Comitted

This state can be reached from ReceiverAllOffersReceived or
OffererMakingOffer. Messages received in this state:

• GiveGo: stashes it.

• InformDelta(someDelta): messages are added to mind.deltas until they
have been received from all neighbours. When all deltas have been re-
ceived, the best delta of the neighbourhood can be computed. Once it is
computed, the agent will send itself either Act(true) or Act(false) depend-
ing on whether it has the highest delta of its neighbourhood or not.

5.2.11 Uncomitted

Similarly to Comitted, this state can be reached either from
ReceiverAllOffersReceived or OffererMakingOffer. Messages received in
this state:

• InformDelta(someDelta): are added to mind.deltas until it they have
been received from all neighbours. Once all deltas have been received, it

27

will compute whether it should act or not based on neighbourhood deltas
and send either send Act(true) or Act(false) and transition to ActSolo.

5.2.12 ActSolo

Here the uncommitted agent processes the Act(true/false) message, it will tran-
sition to Continue either way. Messages received in this state:

• Act(true): mind.value will be updated to retainedMove, inform super-
visor of current value with InformValue(mind.value).

• Act(false): nothing except inform supervisor of current value with
InformValue(mind.value).

5.2.13 GivingPartnerGoNogo

We postulate that all agents adopt the same behaviour, they speak before they
listen. Hence the agent migh receive its partner’s GiveGo or GiveNoGo message
which will be stashed and handled in HandlingPartnersGoNogo. In any case,
the agent handles the self-sent message Act(true/false). Messages received in
this state:

• Act(false): it will send its partner a GiveNoGo signal and transition to
Continue by sending the Supervisor the InformValue(mind.value).

• Act(true): the agent sends its partner a GiveGo and transitions to
HandlingPartnersGoNogo.

5.2.14 HandlingPartnersGoNogo

Here the agent is the best among its neighbours and will check whether its
partner has a similar situation. No matter the message received, both will lead
to transitioning to Continue, however othe actions taken to transition differ.
Messages received in this state:

• GiveGo: the potentially stashed GiveGo and GiveNoGo messages are han-
dled. If the agent got a GiveGo from its partner, it will update its value
retainedMove and inform the Supervisor of it

• GiveNoGo: the potentially stashed GiveGo and GiveNoGo messages are
handled. If the agent got a GiveNoGo from its partner, it won’t update its
value and simply transition to Continue. The agent will not update its
value

5.2.15 Final

This state is reached coming from Continue in the case where the Supervisor
sent StopAlgo. No messages are sent nor received here, it merely represents the
end of the algorithm.

28

5.3 Agent’s Mind
The agent’s mental state can be considered as the variables which hold the
agent’s perception of its surroundings and of its inner state. In our case, each
agent possesses several personal beliefs and several other interpersonal.

5.3.1 Personal beliefs

• mind.context : is the current beliefs about variables in the vicinity in-
cluding its own variable.

• mind.isCommitted: is a boolean indicating whether an agent is committed
or not, makes the variable mind.partner relevant.

• mind.partner: is the neighbouring agent with which the agent is com-
mitted, only relevant when committed is set to true.

• mind.receivedOffers: are the offers receives by the agent during this
turn, potentially empty ones.

• mind.nbReceivedOffers: is the number of all offers received in the cur-
rent turn.

• mind.deltas: is a map containing the agent’s and all its neighbours’
current deltas.

• mind.currBestOffer : is the potential best offer the agent has, eventually
none.

5.4 Messages
In order to carry out negotiations, exchange information and coordiante them-
selves, agents can opt for a variety of messages. Each message can only be
handled in dedicated states and will therefore be stashed to be processed later
on.

5.4.1 Standard agent messages

• KickStartMe: is sent by the agent at the very begining of the first round
of the process to indicate to the Supervisor that it needs to send it the
initial ContinueAlgo message.

• ChooseSubset(Offerer/Receiver): is sent by the agent to itself, sent in
the waitingForRole state and then causing the transition towards either
OffererWaitingValues or ReceiverWaitingOffers. This message de-
termines the path the agent threads for the next two states before joigning
again in the Uncomitted/Uncomitted states.

29

• InformValue(someVal): is sent by an agent to all neighbouring agents in
order to inform them about the current value of the variable controlled by
the sender agent.

• InformDelta(mind.deltas.get(self.variable)): is sent by an agent which
has computed its solo or joint delta to its neighbourhood upon transition-
ing to either Uncomitted or Uncomitted states.

• MakeOffer(someOffer/None): is sent by an offerer. An offer contains all
coordinated moves between the offerer and the designated receiver with
their respective delta from the offerer’s perspective. A None offer is sent
by an offerer to all receivers which have not been chosen by it for this
round.

• Reject(): is sent by a receiver to all the non-chosen offerers. It can also be
sent by an offerer if it has been made an offer, in this case no computation
is needed since the offer is declined straight away.

• Accept(someCoordinatedMove): is sent by a receiver to the best offerer
upon having computed the best offer from all the received ones. It contains
a couple consisting of the desired coordinated move and the delta achieved
by it.

• BestOfferForMe(someOffer): is sent by the receiver agent to itself after
having received all offers from its neighbourhood. This message contains
the offer which must be selected.

• Act(): is sent by an agent, either offerer or receiver, it is sent when transi-
tioning either from Uncomitted or Uncomitted to GivingPartnerGoNogo.

• GiveGo: is sent by the partner which has received a Act(true).

• GiveNoGo: is sent by the partner which has received a Act(false).

• StopAlgo: is sent by the supervisor to inform agents that they should do
another full cycle.

• ContinueAlgo: is sent by the supervisor to the agents to inform them
that they should stop.

5.5 Outline
The supervisor has a simple behaviour based on mainly two states. In one of
them, it awaits for all the agent’s values. Once all values have been collected,
it switches to the second state, evaluating whether the full process had ended
or not. From there, it will branch, either back to the other state or to the final
one once the condition for ending is reached.

30

5.6 Supervisor states
5.6.1 General overview

• WaitingForAgentValues: the main state where supervisor waits for agents’
information.

• Start: the state in which the supervisor starts, from there it broadcasts
the Triggermessage to all agents and directly goes to
WaitingForAgentValues.

• DecidingToStopOrContinue: state in which the supervisor checks whether
the stopping condition has been met or not.

• Finish: the final state the supervisor ends in after the full algorithm has
ended and the stopping condition is met.

5.6.2 Start

Transiant state where the supervisor doesn’t stay, no messages can be received
here.

5.6.3 WaitingForAgentValues

This is the main state the supervisor spends most time in. Here it collects values
from agents in order to make its decision. Messages received in this state:

• KickStartMe: this is directly answered with a ContinueAlgo message.

• InformValue(someVal): these messages are put into the supervisors’
supervisorMind.currentContextuntil it is filled. The last one triggers
a transition to DecidingToStopOrContinue.

5.6.4 DecidingToStopOrContinue

Here the supervisor either continues or stops, according to the message it send it-
self before transitioning here from WaitingForAgentValues. Messages received
in this state:

• InformValue(): is stashed to be handled in WaitingForAgentValues.

5.6.5 Finish

Final state of the automaton, no messages are received here.

5.7 Supervisor’s mental state
The supervisor only handles one mental state variable:
supervisorMind.currentContext. In it it stores the current values all vari-
ables have.

31

5.8 Supervisor messages
• Trigger: is the initial message sent once by the supervisor to all agents

to launch the process.

• ContinueAlgo: is sent by the supervisor to indicate that another round
shoudld be carried out.

• StopAlgo: is sent by the supervisor when the halting condition has been
met.

32

Gandalf

Frodo

Aragorn

6 6

5

Figure 7: Favourable #1 case with sum of utilites = 17

6 Example 1: An audience with lady Galadriel

6.1 Introduction
Let us consider a company of three, sirs Gandalf, Frodo and Aragorn, visiting
the halls of lady Galadriel in Lothlorien. The three of them are discussing
which outfit they should wear and trying to find the best overall look their
reduced fellowship can have. Worn out from the journey, their hosts show them
to individual baths. Before leaving them to bathe and relax, their hosts leave
them with two clean outfits sets of robes, made of either black velvet or white
silk. After relaxing in the hot baths for a while, it will be up to them to decided
which outfit they should wear.

This graph-colouring problem can be formalised as follows (see Figure 10):

• Set of agents, the three companions: = (G,F,A)

• Set of variables, the colour of their each robe: = (R1, R2, R3).

• Domain of each variable, here the colour each robe can take: = (B,W)

• The set of utility functions corresponding to the different combinations of
each of their robes (see Table 1 and 2)

• α : simply the function (here the elf who gave each robe to each man!)
mapping R1 to Gandalf, R2 to Frodo and R3 to Aragorn.

Here, the goal is to maximise the global utility function Fg -considered to
be their charisma for intance- so they look as dashing as they can. We know by
computing manually the sums that there are three best option which each yield
a total of 17:

• G=W, F=W, A=W (see Figure 7)

• G=W, F=B, A=B (see Figure 8)

• G=W, F=W, A=B (see Figure 9)

Since there are in this case only two possible values for each variable, namely
black and white, we shall only note δ for the opposite value since remaining with
the current value always yields a δ = 0. Let us look at the proceedings in detail.

33

Gandalf

Frodo

Aragorn

5 4

8

Figure 8: Favourable #2 case with sum of utilites = 17

Gandalf

Frodo

Aragorn

1 3

8

Figure 9: Favourable #3 case with sum of utilites = 17

Gandalf

Frodo

Aragorn

U12 U23

U13

Figure 10: Graph representation with utility functions

34

Gandalf (R1) Frodo (R2) U12

B B 1
B W 0
W B 5
W W 6
Frodo (R2) Aragorn (R3) U23

B B 4
B W 0
W B 3
W W 1
Gandalf (R1) Aragorn (R3) U13

B B 3
B W 0
W B 8
W W 5

Table 1: Utility functions according to robe colours

Gandalf (R1) Frodo (R2) Aragorn (R3) U12 U13 U23 Total
B B B 1 3 4 8
B B W 1 0 0 1
B W B 0 3 3 6
B W W 0 0 6 6
W B B 5 8 4 17
W B W 5 5 0 10
W W B 6 8 3 17
W W W 6 5 6 17

Table 2: Full system values according to utilities

6.2 MGM approach
See Table 3.

1. Round 0: All three agents (G,A,F) start wearing black. Here each agent
computes the difference δ by which it can contribute to improve the situ-
ation as known to it. For instance

• If Gandalf switches his robes to white, U12 = 5 and U13 = 8 so that
gives deltas of respectively δ(U12) = 5−1 = 4 and δ(U13) = 8−3 = 5
with therefore ∆ =

∑
δ(Uij)

= 4 + 5 = 9. So his best offer is ∆G = +9

• Similarly, if Aragorn switches his robes to white, U13 = 0 and U23 = 0
so respectively δ(U13) = 0 − 3 = −3 and δ(U23) = 0 − 4 = −4, with
∆ =

∑
δ(Uij)

= −3 +−4 = −7. So his best offer is a decrease in general

utility ∆A = −7.

35

• Finally if Frodo switches his robes to white, U12 = 0 and U23 = 3
so respectively δ(U12) = 0 − 1 = −1 and δ(U23) = 3 − 4 = −1 with
∆ =

∑
δ(Uij)

= −1 +−1 = −2. So his best offer is ∆F = −2.

Here each agents now compares his own offer with the ones received and
acts only if his offer is the max among all offers received. Since all three
agents here are respectively neighbours max(∆G,∆A,∆F) = ∆G and
hence Gandalf with his +9 is the one who acts and shifts to white robes.

2. Round 1: Now Gandalf is wearing white and both others are wearing
black and a new evaluation of the situation for each begins, performed in
the same way as for round 0. All ∆ are either null or negative, there is
no improvement possible taking into account that ecah other agent is not
going to change its colour (Nash Equilibrium). The game stops. Since
this is one of the three optimal combinations, the gain for each agent will
be 0 and hence the best setting has been reached.

Round R1 R2 R3 U12 U13 U23 c(Gandalf) c(Aragorn) c(Frodo) Fg
0 B B B 1 3 4 1+3=4 3+4=7 1+4=5 8 ?
1 W B B 5 8 4 5+8=13 8+4=12 5+4=9 17 ?

Table 3: MGM evolution of Fg and agent’s contribution

Gandalf

Frodo

Aragorn

1 4

3

Figure 11: Round 0 situation

6.3 MGM-2 approach
This situation unravelled with our friends being unable to communicate with
each other. Each time they had to put on their robes, exit the individual baths,
meet and see what each of them was wearing, then they would think about the
best change they could, announce it outloud, in a non RP manner "I can get
a +x for our group charisma if you allow me to change my robes to y colour".
This did result in an optimal solution, but it might have been achieved faster
had they been allowed to communicate. This is what MGM2 allows us to do.

36

Gandalf

Frodo

Aragorn

5 4

8

Figure 12: Round 1 situation

Gandalf

Frodo

Aragorn

0 3

3

Figure 13: MGM-2 : round 0 situation

Let us now have a look at how this would have gone if they had been given a
way to communicate with each other, this is the case in 2-coordinated algorithm,
here MGM2. Imagine that, before leaving each of them to bathe, the elves give
-them except for Gandalf, since he can easily do this without a thingummy- a
thought stone. This allows them to create a mind link with one single other
person and communicate with that person. Mind links can be renewed with
different people as many times as they wish, they can not however be used to
communicate with two people at the same time since the elves warn them that
untrained novices such as them would catch a terrible headache for doing so.
Now our companions can coordinate their decisions two by two.

Gandalf

Frodo

Aragorn

6 3

8

Figure 14: MGM-2 : round 1 situation

37

1. Round 0 (see Figure 13):

• Agents inform each other of the current value of their variable.
• The set of Offerers and Receivers is determined at random, here
O = {G,F}, R = {A}

• Gandalf
– Gandalf chooses a neighbour at random: F.
– He receives an offer message from Frodo.
– He declines right away since he is an Offerer and can’t accept

offers.
– He computes all possible moves taking into account all possible

combinations of both their values, so here B/B, B/W, W/B,
W/W, for each of them he attaches the gain he would obtain in
his neighbourhood.

– He sends an offer message to Frodo.
– He receives a reject message from Frodo.
– He sets his commitment status to uncommitted.
– He makes empty offers to all other neighbours (F, A)
– He computes his gain by performing a solo change, just like in

MGM.
– He informs all his neighbours of his potential gain.

• Frodo
– Frodo chooses a neighbour at random: G
– He computes all possible joint moves.
– He sends an offer message to Gandalf.
– He receives an offer message from Gandalf.
– He sends a reject message to Gandlaf’s offer.
– He receives a reject message from Gandalf.
– He sets his commitment status to uncommitted.
– He makes empty offers to all other neighbours (G, A)
– He computes his gain by performing a solo change, just like in

MGM.
– He informs all his neighbours of his potential gain.

• Aragorn
– Aragorn received no offer since neither Frodo nor Gandalf chose

him as potential partner.
– He will perform a solo evaluation of his possible moves.

• All agents inform their neighbours of their best possible gains. Here
Aragorn has a δ = 0 since changing to white would decrease his
utility, so his best option is to remain black. Frodo computes a gain
of 2: (U12 = 1) > 0 + (U23 = 4) > 3 → 1 + 4 > 0 + 3. Gandalf
computes a gain of 11: (U12 = 6) > 0+(U13 = 8) > 3→ 6+8 > 0+3.

38

• Gandalf wins this round and is allowed to act and update its value
to white.

2. Round 1 (see Figure 14):

• The process repeats. Now a new set of Offerers and Receivers is
determined at random O = {G}, R = {F,A}

• Gandalf chooses a partner at random: Aragorn. And makes an offer
to him which is described in ??.

• Meanwhile Frodo being left without partner will proceed to compute
its solo move.

• Aragorn receives Gandalf’s offer and analyses it within its own neigh-
bourhood.

• Here again a total gain of seventeen has been reached, each agent’s
best delta will be 0 and hence the algorithm will stop.

Gandalf (R1) Aragorn (R3) U12 U13 total
B B 1 3 4 < 14→ δ < 0
B W 1 0 1 < 14→ δ < 0
W B 6 8 14 = 14→ δ = 0
W W 6 5 11 < 14→ δ < 0

Table 4: Gandalf’s offer to Aragorn for round 1

Table 5 summarizes the steps.

Round R1 R2 R3 U12 U13 U23 c(Gandalf) c(Aragorn) c(Frodo) Fg
0 B W B 0 3 3 0+3=3 3+3=6 0+3=3 6
1 W W B 6 8 3 6+8=14 8+3=11 6+3=9 17

Table 5: MGM-2 evolution of Fg and agent’s contribution

6.4 Modelling of the problem with SCADCOP API

ob j e c t RobeColouring extends App {
va l b lack = BooleanValue (f a l s e)
va l white = BooleanValue (t rue)
va l colourDomain = L i s t (black , white)
va l ganda l f = new Var iab le (id = 1 , colourDomain)
va l aragorn = new Var iab le (id = 2 , colourDomain)
va l f rodo = new Var iab le (id = 3 , colourDomain)

va l costGA = Array (Array (3 . 0 , 0 . 0) , Array (8 . 0 , 5 . 0))

39

va l costGF = Array (Array (1 . 0 , 0 . 0) , Array (5 . 0 , 6 . 0))
va l costFA = Array (Array (4 . 0 , 0 . 0) , Array (3 . 0 , 1 . 0))

va l cGA = new Constra int (gandal f , aragorn , costGA)
va l cGF = new Constra int (gandal f , f rodo , costGF)
va l cFA = new Constra int (frodo , aragorn , costFA)
va l pb = new DCOP(Set (gandal f , aragorn , f rodo) , L i s t (cGA, cGF, cFA))

va l a1 = new Context (pb)
a1 . f i x (Map(gandal f−> black , aragorn −> black , f rodo −> black))

p r i n t l n (pb)
}

40

7 Example 2: Dalek’s surveillance system

7.1 Introduction
Let us now switch to a different setting and for once, be on the bad guy ’s side.
The Dalek’s are building yet another stronghold in a dark corner of the galaxy.
Since this is a new endeavour of theirs, only a small team of five has been
sent to said planet. They know that, no matter how secret or insignificant
this base might be, the Doctor is never that far... hence they try to devise a
surveillance system to cover the small camp area. On the bright side, Dalek’s
neither sleep nor eat, so there is no question of organising shifts. Yet on the
not-so-bright side, they haven’t been designed with 360◦ sensors. Their sensors
basically allow them to scan only a 90◦ portion at a time, and for simplification
purposes, we will consider these 90◦ portions as the four cardinal directions, so
not dalek can be scanning a South-East portion in our example, it will have to
settle for scanning either South or East, tough luck. Last but not least, their
chief, who knows about strategy, assigned them to fixed positions in the camp
so these more junior Daleks wouldn’t have to worry about where to be but only
about where to look. To summarise, we can model the problem as follows (see
Figure 15):

• Set of agents, the five Daleks: = (D1, D2, D3, D4, D5)

• Set of variables, the cardinal point they are looking at: = (C1, C2, C3, C4, C5).

• Domain of each variable, here the four directions available: = (N,E, S,W)

• The set of utility functions corresponding to the different combinations of
which direction they are looking at (see Table 6).

• α : in this case this parameter is somehow artificial since a sensor is part
of the Dalek’s anatomy, but we could think of the function as the Dalek’s
creation process, when each of them was given "arms", "eyes", sensors,
etc...

Again, just like in our previous example, we shall consider agent and variable
they control as one and the same.

In our example, the cost function will be defined as a maximisation of the
surveillance space covered. In this case, Daleks who are the only ones capable
of covering an area should be highly rewarded for doing so, and areas which can
be covered by two Daleks who can also cover another area should ultimately be
surveiled only by one of them.

Considering the position of the 5 Daleks, we can model the prolem as the
following constraints graph (see 15):

With utility functions modeled as given in 6, translating the necessity to
cover a maximal number of zones.

41

Dalek1 Dalek2

Dalek3

Dalek4 Dalek5

U12

U13

U14

U45

U43

U32

U25

U35

Figure 15: Dalek graph representation with utility functions

7.2 MGM resolution
1. Round 0: All Daleks are looking north with utilities as illustrated in

Figure 16. Each Dalek computes its utility if it changed the direction
where its looking, taking into account its neighbours are supposed not to
change. For instance:

• D1 computes U12 + U13 + U14. Its goal is to adjust its value so that
it maximizes the sum over U12 + U13 + U14. Here, the domain of
the controlled variable ranges over four different values, so it has 4
options, including the one of remaining North.
– North (remaining still): 10 + 5 + 5 = 20

– East : 5 + 0 + 1 = 6

– South : 5 + 1 + 0 = 6

– West : 10 + 5 + 5 = 20

From these computed utilities, it can now compute the change δ it
can achieve when shifting from its current value to the next, knowing
that Ucurrent = 20.
– North is the current orientaton, so δN = 20−Ucurrent = 20−20 =

0

– East: δE = 6− Ucurrent = 6− 20 = −14

– South: δS = 6− Ucurrent = 6− 20 = −14

– West: δW = 20− Ucurrent = 20− 20 = 0

Here the best δ which can be achieved is 0, either by staying North
or shifting West.

• D2 computes U12 + U23 + U25

– North (remaining still): 10 + 5 + 5 which is the current utility
Ucurrent

42

– East: 10 + 5 + 5 = 20

– South: 5 + 1 + 5 = 11

– West: 5 + 5 + 5 = 15

And from these, it can compute the δs:

– δN = 0 since its the same position
– δE = 20− Ucurrent = 0

– δS = 11− Ucurrent = −9

– δW = 15− Ucurrent = −5

Here the best δ is again 0, this Dalek will not move since its current
position is the best it can have in this setting.

• D3 computes U13 + U23 + U34 + U35

– North: Ucurrent = 5 + 5 + 1 + 1 = 12, δN = 0

– East: 5 + 5 + 1 + 0 = 11, δE = 11− Ucurrent = −1

– South: 5 + 5 + 1 + 1 = 12, δS = 12− Ucurrent = 0

– West: 5 + 5 + 0 + 1 = 11, δW = 11− Ucurrent = −1

Hence the best δ is the current one, no move would improve the
situation.

• D4 computes U14 + U34 + U45

– North: 5 + 1 + 1 = 7 = Ucurrent, δN = 0

– East: 5 + 1 + 1 = 7, δE = 0

– South: 10 + 5 + 5 = 20, δS = 13

– West: 10 + 5 + 5 = 20, δW = 13

Here both E and W are good options since they both cause a gain
of 13. Which one will be chosen depends on the implementation,
here we shall postulate that th closest one is elected, hence W (see
Figure 17).

• D5 computes U25 + U35 + U45

– North: 5 + 1 + 1 = 7

– East: 10 + 5 + 5 = 20

– South: 10 + 5 + 5 = 20

– West: 5 + 1 + 1 = 7

Here both E and S are good with a δ = 13, we assume E is chosen
(see Figure 17).

Now that each Dalek has computed its utility and potential gain, they
announce it. Both D4 and D5 have a potential gain of 13, so the way
in which ties are handled depends on the implementtaion. Here we as-
sume D4 wins the tie and is allowed to update its value. Resulting in
the situation 1 graph.Because D4 will update its value, its neighbourhood

43

D1 = N D2 = N

D3 = N

D4 = N D5 = N

10

5

5

1

1

5

5

1

Figure 16: MGM situation 0: all Daleks looking North

consisting of {D1, D3, D5} can’t act this round because they have all re-
ceived a gain message which was higher than theirs. Yet, D2 not being in
the neighbourhood could act. However, despite not being in D4’s neigh-
bourhood, D2 had received a message from D5 whith a higher gain than
its own, so even if his gain had been positive (as opposed to null here) it
would not have acted because of D5’s message.

2. Round 1: The same process will go on as in round 0, here D5 will update
to east.

3. Round 2: The same process is repeated, here no move can improve the
situation since all Daleks are already in optimal positions, a Nash Equi-
librium is reached.

7.3 MGM-2 resolution

7.4 Modelling of the problem with SCADCOP API
This problem can be modelled as follows with the scadcop library.

ob j e c t DalekSurve i l lanceSystem extends App {
va l n = NominalValue ("North ")
va l e = NominalValue (" East ")
va l s = NominalValue (" South ")
va l w = NominalValue ("West")

va l card ina lDirect ionsDomain = L i s t (n , e , s , w)

va l d1 = new Var iab le (id = 1 , card ina lDirect ionsDomain)
va l d2 = new Var iab le (id = 2 , card ina lDirect ionsDomain)

44

D1 = N D2 = N

D3 = N

D4 = W D5 = N

10

5

10

5

5

5

5

1

Figure 17: MGM situation 1: Dalek 4 has turned West

D1 = N D2 = N

D3 = N

D4 = W D5 = E

10

5

10

10

5

5

10

5

Figure 18: MGM situation 2: Dalek 5 has turned East

45

D1 = W D2 = S

D3 = S

D4 = N D5 = E

5

5

5

5

1

1

5

E

Figure 19: MGM-2 situation 0: random initialisation

va l d3 = new Var iab le (id = 3 , card ina lDirect ionsDomain)
va l d4 = new Var iab le (id = 4 , card ina lDirect ionsDomain)
va l d5 = new Var iab le (id = 5 , card ina lDirect ionsDomain)

va l cos t12 = Array (Array (10 . 0 , 10 . 0 , 5 . 0 , 5 . 0) ,
Array (5 . 0 , 5 . 0 , 1 . 0 , 0 . 0) ,
Array (5 . 0 , 5 . 0 , 1 . 0 , 1 . 0) ,
Array (10 . 0 , 10 . 0 , 5 . 0 , 5 . 0))

va l cos t13 = Array (Array (5 . 0 , 5 . 0 , 5 . 0 , 5 . 0) ,
Array (0 . 0 , 1 . 0 , 1 . 0 , 1 . 0) ,
Array (1 . 0 , 0 . 0 , 1 . 0 , 1 . 0) ,
Array (5 . 0 , 5 . 0 , 5 . 0 , 5 . 0))

va l cos t14 = Array (Array (5 . 0 , 5 . 0 , 10 . 0 , 1 0 . 0) ,
Array (1 . 0 , 1 . 0 , 5 . 0 , 5 . 0) ,
Array (0 . 0 , 1 . 0 , 5 . 0 , 5 . 0) ,
Array (5 . 0 , 5 . 0 , 10 . 0 , 1 0 . 0))

va l cos t23 = Array (Array (5 . 0 , 5 . 0 , 5 . 0 , 5 . 0) ,
Array (5 . 0 , 5 . 0 , 5 . 0 , 5 . 0) ,
Array (1 . 0 , 0 . 0 , 1 . 0 , 1 . 0) ,
Array (0 . 0 , 1 . 0 , 1 . 0 , 1 . 0))

va l cos t25 = Array (Array (5 . 0 , 10 . 0 , 10 . 0 , 5 . 0) ,
Array (5 . 0 , 10 . 0 , 10 . 0 , 5 . 0) ,
Array (0 . 0 , 5 . 0 , 5 . 0 , 1 . 0) ,
Array (1 . 0 , 5 . 0 , 5 . 0 , 1 . 0))

46

va l cos t34 = Array (Array (1 . 0 , 1 . 0 , 5 . 0 , 5 . 0) ,
Array (1 . 0 , 1 . 0 , 5 . 0 , 5 . 0) ,
Array (1 . 0 , 0 . 0 , 5 . 0 , 5 . 0) ,
Array (0 . 0 , 1 . 0 , 5 . 0 , 5 . 0))

va l cos t35 = Array (Array (1 . 0 , 5 . 0 , 5 . 0 , 1 . 0) ,
Array (0 . 0 , 5 . 0 , 5 . 0 , 1 . 0) ,
Array (1 . 0 , 5 . 0 , 5 . 0 , 0 . 0) ,
Array (1 . 0 , 5 . 0 , 5 . 0 , 1 . 0))

va l cos t45 = Array (Array (1 . 0 , 5 . 0 , 5 . 0 , 1 . 0) ,
Array (1 . 0 , 5 . 0 , 5 . 0 , 0 . 0) ,
Array (5 . 0 , 10 . 0 , 10 . 0 , 5 . 0) ,
Array (5 . 0 , 10 . 0 , 10 . 0 , 5 . 0))

va l cons t r12 = new Constra int (d1 , d2 , cos t12)
va l cons t r13 = new Constra int (d1 , d3 , cos t13)
va l cons t r14 = new Constra int (d1 , d4 , cos t14)
va l cons t r23 = new Constra int (d2 , d3 , cos t23)
va l cons t r25 = new Constra int (d2 , d5 , cos t25)
va l cons t r34 = new Constra int (d3 , d4 , cos t34)
va l cons t r35 = new Constra int (d3 , d5 , cos t35)
va l cons t r45 = new Constra int (d4 , d5 , cos t45)

va l pb = new DCOP(Set (d1 , d2 , d3 , d4 , d5) , L i s t (constr12 , constr13 , constr14 , constr23 , constr25 , constr34 , constr35 , const r45))

va l a1 = new Context (pb)
a1 . f i x (Map(d1−> n , d2 −> n , d3 −> n , d4 −> n , d5 −> n))

}

47

D1 D2 U12

N N 10
N E 10
N S 5
N W 5
E N 5
E E 5
E S 1
E W 0
S N 5
S E 5
S S 1
S W 1
W N 10
W E 10
W S 5
W W 5

D1 D3 U13

N N 5
N E 5
N S 5
N W 5
E N 0
E E 1
E S 1
E W 1
S N 1
S E 0
S S 1
S W 1
W N 5
W E 5
W S 5
W W 5

D1 D4 U14

N N 5
N E 5
N S 10
N W 10
E N 1
E E 1
E S 5
E W 5
S N 0
S E 1
S S 5
S W 5
W N 5
W E 5
W S 10
W W 10

D2 D3 U23

N N 5
N E 5
N S 5
N W 5
E N 5
E E 5
E S 5
E W 5
S N 1
S E 0
S S 1
S W 1
W N 0
W E 1
W S 1
W W 1

D2 D5 U25

N N 5
N E 10
N S 10
N W 5
E N 5
E E 10
E S 10
E W 5
S N 0
S E 5
S S 5
S W 1
W N 1
W E 5
W S 5
W W 1

D3 D4 U34

N N 1
N E 1
N S 5
N W 5
E N 1
E E 1
E S 5
E W 5
S N 1
S E 0
S S 5
S W 5
W N 0
W E 1
W S 5
W W 5

D3 D5 U35

N N 1
N E 5
N S 5
N W 1
E N 0
E E 5
E S 5
E W 1
S N 1
S E 5
S S 5
S W 0
W N 1
W E 5
W S 5
W W 1

D4 D5 U45

N N 1
N E 5
N S 5
N W 1
E N 1
E E 5
E S 5
E W 0
S N 5
S E 10
S S 10
S W 5
W N 5
W E 10
W S 10
W W 5

Table 6: Binary utility functions according to surveillance directions

48

Sit’ D1 D2 D3 D4 D5 U12 U13 U14 U23 U25 U34 U35 U45 Ug

0 N N N N N 10 5 5 5 5 1 1 1 10+5+5
+5+5+
1+1+1
=33

1 N N N W N 10 5 5 5 5 1 1 1 10+10
+5+5+
5+5+
5+1
=46

1 N N N W E 10 5 5 5 10 1 5 10 10+10
+10+10
+5+5
+5+5
=60

49

8 Glossary of technical terms
• Asynchronous: agents take decisions whenever they have collected the

information they need to do so (i.e. received messages), not waiting for a
particular general phase or timing.

• Anytime: anytime algorithms can be stopped at any moment and still
yield a valid solution. They typically work by iteratively incrementing a
valid base solution, each time yielding a more profitable solution. If not
stopped artificially, they will come to an end and converge upon reaching
a Nash Equilibrium.

• Consistent assignment: assignment which respects all constraints.

• Cost function: the function which is to be minimised in a DCOP (equiv-
alent to utility function in maximisation)

• Distributed Stochastic Search Algorithm (DSA): an algorithm akin
to MGM where agents wh can act are selected through random.

• Equilibrium (Nash): a NE is a particular state of a non-zero sum adver-
sarial game with n ∈ N[2,+∞[players. Non-zero sum adversarial games
for n = 2 players had been studied earlier by Von Neumann and Morgen-
stern Von Neumann and Morgenstern (1944) but Nash was the one who
generalised it to n players. Basically, it is a solution in which no player
can benefit from changing its strategy. It assumes each agent acts inde-
pendently, without collaboration or communication with any other agent
and proves that "a finite non-cooperative game always has at least one
equilibrium point."

• Activation probability: aims at diminishing potential issues linked to
parallel processing.

• Monotonic: in this context usually used to refer to the strictly increasing
property of the result function of anytime algorithms. Since it is monotonic
(strictly increasing), no matter at which point we stop it, the result will
always be better than the prvious one.

• Multigraph: a multigraph is a graph that can have more than one edge
between a pair of vertices.

• Local variables: the set of variables controlled by an agent, in our con-
text a single one.

• Partial assignment: an assignment where a subset of variables is given
a value.

• Total assignment: an assignment where the full set of variables is given
a value, such assignment will be considered a solution to a DCOP if it
satisfies all its cost functions.

50

• Utility function: the function which is to be maximised in a DCOP
(equivalent to cost function in minimisation)

51

9 Conclusion
We detailed MGM and more particularly MGM-2 algorithms and presented
examples of execution on toy DCOPs. We likewise detailed the automaton
representing MGM-2 and proposed two examples of execution on toy problems.

52

Figure 20: Complete MGM2 agent automaton

10 Annex

53

References
Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. Distributed constraint

optimization problems and applications: A survey. Journal of Artificial In-
telligence Research, 61:623–698, 2018.

Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek. Frodo 2.0: An
open-source framework for distributed constraint optimization. Proceedings of
the IJCAI’09 Distributed Constraint Reasoning Workshop (DCR’09), pages
160–164, 2009. URL http://infoscience.epfl.ch/record/146585.

Rajiv T Maheswaran, Jonathan P Pearce, and Milind Tambe. Distributed algo-
rithms for dcop: A graphical-game-based approach. In Proc. of the ISCA 17th
International Conference on Parallel and Distributed Computing Systems, pp.
432-439, pages 432–439, 2004.

Pierre Rust, Gauthier Picard, and Fano Ramparany. pyDCOP, a DCOP library
for IoT and dynamic systems. In International Workshop on Optimisation in
Multi-Agent Systems (OptMAS@AAMAS 2019), 2019.

Matthew E Taylor, Manish Jain, Yanquin Jin, Makoto Yokoo, and Milind
Tambe. When should there be a" me" in" team"?: distributed multi-agent
optimization under uncertainty. In AAMAS, pages 109–116, 2010.

J. Von Neumann and O. Morgenstern. Theory of games and economic behavior.
Princeton University Press, Princeton, NJ, US, 1944.

54

http://infoscience.epfl.ch/record/146585

	Introduction
	Distributed Constraint Optimization Problems
	Origins
	Classification

	State of the art
	General overview
	MGM & MGM-2
	MGM-2 overview
	MGM-2 prnciple

	Algorithms
	MGM
	MGM-2

	FSM modeling
	Outline
	Agent States
	General overview
	Init
	Continue
	waitingForRole
	OffererWaitingValues
	OffererMakingOffer
	ReceiverWaitingValues
	ReceiverWaitingOffers
	ReceiverAllOffersReceived
	Comitted
	Uncomitted
	ActSolo
	GivingPartnerGoNogo
	HandlingPartnersGoNogo
	Final

	Agent's Mind
	Personal beliefs

	Messages
	Standard agent messages

	Outline
	Supervisor states
	General overview
	Start
	WaitingForAgentValues
	DecidingToStopOrContinue
	Finish

	Supervisor's mental state
	Supervisor messages

	Example 1: An audience with lady Galadriel
	Introduction
	MGM approach
	MGM-2 approach
	Modelling of the problem with SCADCOP API

	Example 2: Dalek's surveillance system
	Introduction
	MGM resolution
	MGM-2 resolution
	Modelling of the problem with SCADCOP API

	Glossary of technical terms
	Conclusion
	Annex

