diff --git a/Norse/requirements.txt b/Norse/requirements.txt
new file mode 100755
index 0000000000000000000000000000000000000000..bc8da77c31fa322923b1bd36a04ba8cce4e72567
--- /dev/null
+++ b/Norse/requirements.txt
@@ -0,0 +1,2 @@
+matplotlib
+norse
\ No newline at end of file
diff --git a/README.md b/README.md
index 16d49939ad761ef238ae6a8a405ace6f6e25b8a8..02cc6587955b9135181ade8be947f01bec77d3d6 100644
--- a/README.md
+++ b/README.md
@@ -36,6 +36,16 @@ For example: to run MNIST simulation without compression and reinforcement:
 
 In the `apps` folder, you will find the source code for each simulation, where you can change the architecture and the network parameters or activate the [layerwise compression](https://gitlab.univ-lille.fr/hammouda.elbez/progressive-layer-based-compression-for-convolutional-spiking-neural-network/-/blob/main/CSNN-Simulator/apps/Mnist.cpp#L21).
 
+### How to use Norse
+First, install the required libraries:
+
+    python install -r requirements.txt
+
+To run a simulation:
+
+    python [name_dataset].py
+
+Each file runs each configuration ten times. You can change the parameters at the beginning of each file.
 ## Going from CSNN to SpiNNaker
 First, run the simulation of the two dense layers using CSNN: