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Abstract

In many search tree (maps) applications the distribution of items accesses is non-uniform,

with some popular items accessed more frequently than others. Traditional self-adjusting tree

algorithms adapt to the access pattern, but are not suitable for a concurrent setting since they

constantly move items to the tree’s root, turning the root into a sequential hot spot. Here we

present lazy splaying, a new search tree algorithm that moves frequently accessed items close

to the root without making the root a bottleneck. Lazy splaying is fast and highly scalable

making at most one local adjustment to the tree on each access. It can be combined with other

sequential or concurrent search tree algorithms. In the experimental evaluation we integrated

lazy splaying into Bronson et. al.’s optimistic search tree implementation to get a concurrent

highly scalable search tree, and show that it significantly improves performance on realistic

non-uniform access patterns, while only slightly degrading performance for uniform accesses.
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1 Introduction

It is common knowledge, in sequential computing, that although self-adjusting binary search tress
(BST), e.g., Splay tree, are theoretically better than balanced BST, e.g., AVL and red-black tree,
specially on skewed access sequences, in practice red-black and AVL trees outperform even on
skewed sequences [4] (except for extremely skewed sequences). This is mostly because of the
self-adjusting overheads, i.e., the constant is too big. Here we show that in concurrent multi-core
processing it is not the case. We present a new self-adjusting concurrent BST, called Lazy Splaying,
that outperforms other known non-adjusting (but balanced, like AVL) BSTs on skewed access
sequences. This is a surprising finding since the known self-adjusting BST (different variants of
Splay Tree) all modify the root with each access, thus making it an immediate sequential bottleneck.
Our new technique overcomes this bottleneck by splaying the tree in a lazy manner which ends up
being much more efficient. Our experimental results show that it is also more efficient in the single
thread case, on skewed sequences.

Binary Search Tree (BST) is a common and popular data structure for storing an ordered set
of items that supports in addition to the standard insert, lookup, and remove operations, range
operations and predecessor/successor operations. Keeping the tree balanced guarantees that the
cost of each operation is bounded by O(log n), where n is the number of items in the tree, and
Balanced BSTs, such as, AVL [2] and red-black trees [3] are popular data structures in many
software systems, and data-bases. The average and worst case access time in these data structures
if each item has the same (uniform) probability of being accessed is logarithmic in the tree size.

However, in practice most access sequences are non-uniform, for instance 80% of the accesses are
to 20% of the items [6, 7, 9]. In this situation Optimum tree algorithms [11–13] build trees which
provide optimal average access time, but they need the frequencies be fixed and known prior to
the tree construction. Of course this is not realistic for online algorithms and can be used only in
static trees.

Biased search tries [5, 10] provide optimal with constant factor average access time along with
support of modifications in the tree. However, they also requires that the frequencies of the items
will be known and a change in the estimated frequency requires costly operations.

Self-adjusting BSTs have been suggested in which frequently accessed items are automatically
migrated towards the root of the tree, thus achieving much better average access time over a
sequence of accesses, without affecting the worst case (assuming they are kept balanced).

The most famous self-adjusting BST is the splay tree [15] which get the frequently accessed items at
the top of the tree by moving each accessed node to the root of the tree while splaying the tree by a
sequence of weighted local re-balancing operations on the path from the accessed node to the root.
This way frequently accessed nodes end up closer to the root and are found faster when searched
again. The major drawback of the splay tree is that each access (insert, look-up or remove) to an
item not at the root results in a sequence of tree rotations up to the root. This drawback has two
consequences: in sequential computing each operation has a large constant overhead which usually
outweighs the logarithmic gain of a binary tree. In concurrent computing the situation is even
worse, since almost all operations modify the root, the root becomes a hot sequential bottleneck
that makes the structure non-scalable at best. Due to these, despite its good theoretical properties
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splay tree is not widely used in practice.

In this paper we propose a new splaying technique, called Lazy Splaying, that overcomes both
drawbacks and experimentally wins in both sequential and concurrent environments with skewed
data sequences, such as Zipf with skew parameter greater than 0.8 (in which 80% of the accesses
is to 37% of the items). In uniform access sequences lazy splaying is still competitive though
slightly worse than AVL and red-black tree. The key idea, is to do at most one local tree rotation
(re-balancing) per access as a function of historical frequencies. This way an item accessed very
frequently does full splaying but over few accesses and ends up high in the tree, on the other hand
infrequently accessed items will not get enough pushes up the tree and will remain at the bottom
part of the tree. Moreover, the decision on whether to do one local tree rotation or not, depends on
the past frequencies of the item and its neighboring subtrees. Like in other online algorithms the
history serves as a good estimate on future accesses. Unlike in splay tree, in the steady state with
fixed access frequencies there should be almost no re-balancing at all, and most of the splaying
overhead is thus removed, making it a good competitor to AVL and other BST specially with
skewed access sequences.

Moreover, lazy splaying also resolves the standard splaying root-bottleneck, making it a highly
concurrent with good scalability BST. The reason is that it makes at most one rotation per access
and does not continue with lock based modifications up to the root. That is, we distinguish between
two types of updates during an operation, tree rotations and modifications that have to be done
with locking and in a consistent way, and counting the number of operations in different parts of
the tree which can be done asynchronously without locking. As we show the algorithm is robust to
synchronization hazards on these counters. As far as we know it is the first concurrent scalable self
adjusting algorithm. Our extensive experimental testing shows that lazy splaying performs better
than top of the art algorithms on skewed access patterns, and the performance advantage grows as
the skewness parameter increases (getting farther away from uniform). Moreover, lazy splaying is
cache friendly. Since most of the operations are at the top part of the tree, the top part may fit
into the cache.

From an implementation point of view, our re-balancing technique can be integrated into most
single thread or concurrent BST implementations by replacing their re-balancing method with lazy
splaying. In our testing we have integrated lazy splaying with the efficient concurrent implementa-
tion of balanced AVL tree provided by Bronson, Casper, Chafi, and Olukotun in [8].

2 Lazy Splaying

A Binary Search Tree (BST) is a binary tree based data structure containing a set of items each with
a value from a totaly ordered domain. Below we might interchange item for the value associated
with the item. In addition to the value each item may contain other data related to the item which
is beyond our concern. Each node o in the tree holds one item with value o.v such that, the left
subtree of o holds items smaller than o.v and the right subtree holds items larger than o.v. Any
operation on an item starts by searching the item in the BST (even insert to make sure the item
is not there already). A search for an item starts going down from the root, going left and right at
each node o if the searched item is smaller or larger than the item at o, respectively, until reaching
a node containing the item, or an empty subtree indicating the item is not in the tree. In such a
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case the item can be inserted at the point where the search stopped.

Following splay tree BST techniques [15] in lazy splaying we perform one tree rotation (kind of
re-balancing) at the node containing the item we operate on, moving subtrees with more frequently
accessed nodes one level up on the account of moving less frequently accessed subtree(s) one level
down. Specifically we perform conditional zig-zag or zig operations as they are named in [15], and
as explained below. Notice that Lazy splaying is substantially different than the semi-splaying vari-
ations suggested in Section 5 of [15], where splaying is also conditioned but on different parameters
and when done, it is still done all the way to the root (sometimes only on a subset of the nodes on
the path to the root).

In lazy splaying in addition to the item’s value each node o has three counters, selfCnt which is
an estimate on the total number of operations that has been performed on the item in o (number
of find(o.v) and insert(o.v) operations), rightCnt and leftfCnt which are an estimate on the
total number of operations that have been performed on items in the right and left sub-tress
respectively. Each find(i) and insert(i) operation increments selfCnt of the node containing i.
When node i is found in the tree all the nodes along the path from the root to i’s parent increase
their rightCnt/leftfCnt counter depending on whether i was in their right or left sub-tree. Actual
insert and remove operations are performed concurrently exactly as in Bronson et.al. [8]. We
simply replaced the re-balance function in their code with our new lazy splaying re-balancing code.

The re-balancing (tree rotation) is performed just before incrementing the counter selfCnt. See
Figure 1 and Listing 4 for the code and description of zig and zig-zag. Zig-zag is carried out if the
total number of accesses to the node right subtree is larger than the total number of accesses to the
node-parent and its right subtree. If zig-zag was not performed then zig is performed if the total
number of accesses to the node and its left subtree is larger than the total number of accesses to the
node-parent and its right subtree. After the rotation rightCnt and leftCnt counters are updated to
represent the number of accesses in the new right/left sub-tress respectively. Notice that zig and
zig-zag have a symmetric mirror operations when the subtree at node p leans to the right.

To avoid a chain of nodes where all nodes are left (or all nodes are right) parents of their children in
the case of descending / ascending insertion order, when a new node inserted to the tree re-balancing
operation performed from this new node up to the root.

Lazy splaying re-balancing can be integrated with different multi-thread binary search tree imple-
mentations by replacing the re-balancing code with ours. Here we integrated lazy splaying with
the implementation of practical AVL binary search tree [8] and replaced the AVL re-balancing
according to height. In [8] the function fixHeightAndRebalance is replaced with our re-balancing
code. One advantage of doing it like this, is that any difference in the experimental performances
when comparing the two implementations can be attributed to the new re-balancing code. Hence
the locking and the consistency checks are done as in [8]. The locks are taken in order from the
parent to child. If thread A does a zig rotation it doesn’t need to lock node.right. If node.right
is changed concurrently by another thread B then node.right is the grand parent in B’s rotation.
Otherwise B must lock the node which is locked by A. Since only node.right parent field is changed
and it isn’t changed by B, operations are atomic. After taking a lock, the algorithm performs a
check to assure the node is not modified by a concurrent thread. If the node has been modified by
a concurrent thread then the algorithm unlocks its locks and gives up the rotation.
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Figure 1: Splaying steps. Zig: when the number of operations on n and on nodes in nLeft is
larger than the number of operations on p and on nodes in pRight. Zig-zag: when the number of
operations on c and on nodes in cLeft and cRight is larger than the number of operations on p
and on nodes in pRight.

Counters Estimation: While rotations (which are all the possible structural modifications of
the tree) are protected by locks, the different counter increments at the nodes are not protected
by locks and may suffer from race hazards. These potential hazards have no effect on the safely
properties of the operations and may only effect the correctness of the counter values, which in
turn may effect performances. However, as we show and extensively examined experimentally
these inaccuracies have negligible effect on the performances (see Figure 9 for testing with fake
large hazards), while the elimination of the extra locking operations (CAS operations) significantly
improves the overall performances.

Long splaying: Since the counters are updated in an asynchronous un-safe manner we add a
safety belt watch-dog check in the code, that if a node at depth larger than 2 log n is reached then
full semi-splaying (following semi-splaying of [15]) along the path from the node to the root is
performed. We keep this check, although rarely reached, as a measure of protection and guarantee
on worst case per operation performance. Furthermore, the inclusion of this semi-splaying along
the path enables us to rely on Theorem 7 in [15] and to claim worst case amortized complexity
of O(log n). This check made us add code that estimates log n to within +1 or −1 from the true
value. Essentially each thread holds a local count of the total number of new items it has inserted
minus the number of items it has removed from the tree, and whenever that count either doubles
or halves it reads the counter of all the threads and update the estimate accordingly. If it fails to
update the new estimate due to a conflict (done with CAS) it re-scans the new total value and
tries to CAS again.
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Listing 1: AttemptInsert function

1 attemptInsert(key, parent, node, height)
2 {
3 if (key == node.key) {
4 if (height >= ((2 ∗ log size ))){
5 SemiSplay(node);
6 }else{
7 Rebalance(parent, node);
8 }
9 node.selfCnt++;

10 return node.value;
11 }
12 while (true) {
13 child = node.child(key); //child in the direction to the key
14

15 //check if node is not changed or removed by another thread
16 if ( isInvalid (node) {
17 return SpecialRetry;
18 }
19 if (child == null) {
20 child = NewNode(key, node); //create a new node and link it to node
21 if (height >= ((2 ∗ log size ))){
22 SemiSplay(child);
23 }
24 return null; //not found!
25 } else {
26 result = attemptInsert(key, node, child, height+1);
27 if ( result != SpecialRetry) {
28 if (direction to child == Left){
29 node.leftCnt++;
30 }else{
31 node.rightCnt++;
32 }
33 if ( result == null){
34 //for new node check if re−balancing needed
35 //Find the current child of the parent since it may changed due to rotation in recursive call .
36 curr node = parent.child(key);

//child in the direction to the key
37 Rebalance(parent, curr node);
38 }
39 return result;
40 }// else RETRY
41 }}}
42 \end{Code}
43

44 \begin{Code}
45 \centering
46 \ lstset {caption=AttemptGet function,label=get, captionpos=t, frame=single}
47 \begin{ lstlisting }[language=java,
48 emph={parent, node, selfCnt, leftCnt, rightCnt, right , left },emphstyle=\color{darkBlue},tabsize=2]
49 attemptGet(key, parent, node, height)
50 {
51 if (key == node.key) {
52 if (height >= ((2 ∗ log size ))){
53 SemiSplay(node);
54 }else{
55 Rebalance(parent, node);
56 }
57 node.selfCnt++;
58 return node.value;
59 }
60 while (true) {
61 child = node.child(key); //child in the direction to the key
62

63 //check if node is not changed or removed by another thread
64 if ( isInvalid (node) {
65 return SpecialRetry;
66 }
67 if (child == null) {
68 if (height >= ((2 ∗ log size ))){
69 SemiSplay(node);
70 }
71 return null; //not found!
72 } else {
73 result = attemptGet(key, node, child, height+1);
74 if ( result != SpecialRetry) {
75 if ( result != null){
76 if (direction to child == Left){
77 node.leftCnt++;
78 }else{
79 node.rightCnt++;
80 }
81 }
82 return result;
83 }// else RETRY
84 }}}
85 /∗ attemptRemove is similar to attemptGet,
86 except that in attemptRemove item is removed when found. ∗/
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Listing 2: Insert function

1 insert (key, id) {
2 if (attemptInsert(key, null, root, 0) == null){
3 //item was not found and was inserted
4 localCounter[id]++;
5 if (localCounter[id]>max[id]){
6 max[id]=localCounter[id];
7 }
8 if (localCounter[id]>2∗min[id]){ //local counter was doubled
9 //start remembering max and min from now on.

10 max[id]=min[id]=localCounter[id];
11 succeeded = false;
12 while (!succeeded){
13 prevLogSize = logSize;
14 prevVersion = version;
15 //scan all counters and update log size
16 totalSize = 0;
17 for ( i=0;i<NUM OF THREADS;i++){
18 totalSize+=localCounter[i];
19 }
20 if (log( totalSize ) != logSize){
21 succeeded = compareAndSet(prevLogSize, prevVersion,
22 log( totalSize ), prevVersion+1);
23 }else{
24 succeeded=true;
25 }
26 }}}}
27 /∗ highTreshold and lowTreshold values in border cases are omitted. ∗/

Listing 3: Remove function

1 remove(key, id) {
2 if (attemptRemove(key, null, root, 0) != null){
3 //item was found and removed (at least logically)
4 localCounter[id]−−;
5 if (localCounter[id]<min[id]){
6 min[id]=localCounter[id];
7 }
8 if (localCounter[id]<max[id]/2){ //local counter was doubled
9 //start remembering max and min from now on.

10 max[id]=min[id]=localCounter[id];
11 succeeded = false;
12 while (!succeeded){
13 prevLogSize = logSize;
14 prevVersion = version;
15 //scan all counters and update log size
16 totalSize = 0;
17 for ( i=0;i<NUM OF THREADS;i++){
18 totalSize+=localCounter[i];
19 }
20 if (log( totalSize ) != logSize){
21 succeeded = compareAndSet(prevLogSize, prevVersion,
22 log( totalSize ), prevVersion+1);
23 }else{
24 succeeded=true;
25 }
26 }}}}
27 /∗ highTreshold and lowTreshold values in border cases are omitted. ∗/
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Listing 4: Rebalance function

1 Rebalance(Node parent, Node node){
2

3 nodePlusLeftCount = node.selfCnt + node.leftCnt;
4 parentPlusRightCount = parent.selfCnt + parent.rightCnt;
5 nodeRightCount = node.rightCnt;
6

7 //decide whether to perform zig−zag step
8 if (nodeRightCount >= parentPlusRightCount){
9 Node grand = parent.parent;

10 synchronized (grand) {
11 if ((grand. left == parent) || (grand.right == parent)) {
12 synchronized (parent) {
13 if (parent. left == node) {
14 synchronized (node) {
15 Node rightChild = node.right;
16 if (rightChild != null){
17 synchronized (rightChild){
18 ZigZag(grand, parent, node, rightChild);
19 parent.leftCnt = rightChild.rightCnt;
20 node.rightCnt = rightChild.leftCnt;
21 rightChild.rightCnt += parentPlusRightCount;
22 rightChild. leftCnt += nodePlusLeftCount;
23 }}}}}}}
24 //decide whether to perform zig step
25 }else if (nodePlusLeftCount > parentPlusRightCount) {
26 Node grand = parent.parent;
27 synchronized (grand) {
28 if ((grand. left == parent) || (grand.right == parent)) {
29 synchronized (parent) {
30 if (parent. left == node) {
31 synchronized (node) {
32 Zig(grand, parent, node, node.right );
33 parent.leftCnt = node.rightCnt;
34 node.rightCnt += parentPlusRightCount;
35 }}}}}}}

3 Worse case analysis

Since counters are incremented without synchronization they may have wrong values which may
results in long path to a node.

To avoid this situation we do long path splay. In [15] were proposed semi-adjusting search trees.
Semi-splaying step is similar to splaying step except that in zig-zig step x is not moving to the top.
The rotation done between its parent and grand parent and splaying continues from its parent. See
picture. Additionally in [15] was suggested to perform semi-splaying only over long paths, when
the depth of the node is at least c log(N) + c/2 for any c> 2 where N is the number of nodes in
the tree. If we do not perform any rotations in lower depths as proposed in the paper the total
splaying time is O(N logN). See theorem 7 Long Splay Theorem in [15].

Our algorithm counts the depth of the node starting from the root. If the depth is higher than
2logN it will perform semi-splaying up to the root. Otherwise it will perform at most one rotation
as described before.
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Figure 2: Semi-splaying. Node in bold is the current node of splaying.

Amortized time analysis of the algorithm. Let’s c=4 be our constant required in Long Splay
Theorem. In addition to long paths splaying time of O(N logN), we perform semi-splaying on
shorter paths. These paths are at most 4 log(N) + 1 hence the total time to perform them is
at most O(m logN) where m is the total number of operations. Operation on nodes with depth
smaller than 2logN , from the same reason have total time of O(m logN). As in theorem 1 in [15]
the decrease in potential over the sequence of rotations algorithm performs over short paths is at
most N logN . Summarize all the times above gives that the total time to perform m operations is
O((m+N) logN) , hence amortize time of operation is O(logN).

logN concurrent calculations. In order to decide whether to perform semi-splaying to the root
we should know the logN value. By logN it is always considered the highest integer value smaller
than logN . Pay attention that for the amortize time analysis we do not need the exact logN value,
since we perform semi-splaying also on shorter paths. Brute force calculation of logN by using
atomic counter for N and calculating logN from it may become a bottleneck when many treads will
concurrently try to update N. Therefore, we use the following algorithm to calculate estimation of
logN .

Every processor has a counter that is incremented on every insert of a new item and is decremented
once an item is removed. See listing 2 and listing 3. Initially counter value is 0. Therefore the
summary of all counters represents the number of nodes in the tree. The thread stores locally the
previously calculated global logN value and summarize the values of all threads counters.

If the log of the summery is higher or lower than the previously calculated global logN , the global
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logN value is updated using compareAndSet method. To assure that no other thread changes the
value of global logN and the errors don’t accumulate in addition to 8 bit dedicated to logN value
additional 24 bits represent update version. If compareAndSet fails due to concurrent update made
by another thread and the new value logN still not equals to calculated by thread i value, thread
i will retry the procedure.

Remark: Only 8 bits are used for logN value since 2255 is higher than any practically needed value.
Other bits in the atomic integer are used to store the version of the log. This makes the scanning
and log calculation an atomic operation and avoids ABA problem.

If the real logN value increases/decreases by more than one it means that the summary of the
counters is at least doubled/halved. This means that at least one local counter was doubled/halved
thus the scan aws performed and a new logN was calculated.

Because of the log version, in the time interval between thread i read the previously calculated global
logN and successful call to compareAndSet no other thread issues successful compareAndSet.
Let’s suppose that thread wants to increment global logN value (the case of decrement is symmet-
rical). Thread i read other thread j counter value cj . Since no other thread changed logN value,
it means that all other threads current value c′j remains cj ≥ 2 · c′j . This means that the value of
every counter may be reduced to at most half and so is the summery of all counters. Therefore the
error in logN is at most 1.

Our algorithm performs splaying when the depth is at least 2 log Ñ , where Ñ is an estimated N.
2 log Ñ ≤ 4 logN +2 Therefore on every long path we still perform semi-splaying and the amortize
time bounds are still hold.

3.1 Adaptiveness to changes in access frequencies

While counting the number of operations on items in different parts of the tree significantly im-
proves the performance on skewed access sequences, it may be problematic in the case that a very
popular item becomes in-popular but is still stuck at the top of the tree for a long time. Fre-
quent nodes from the new distribution need a lot of time until they reach high enough counters
to beat nodes that lost their popularity. To overcome this we add an exponential decay function
to the counters. Each counter value is divided by 2 every clockCycle time interval, as follows:
Every node has an additional timeStamp field which contains the time when its counters have
been updated last. Every clockCycle a globalClock is incremented by 1. Before comparing with
any counter, if timeStamp of the corresponding node is smaller than the globalClock the following
updateCounters function is called. This function divides by 2 each of the nodes’ counters for each
clockCycle time that has elapsed since the last time the counters have been updated. The effect
of the adaptive mechanism is tested and compared with a non-adaptive version in Figure 8.
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Listing 5: UpdateCounters function

1 updateCounters(Node node) {
2 synchronized (node) {
3 // check that not modified by concurrent operation
4 if (node.timeStamp < globalClock) {
5 int timeDif = globalClock − node.timeStamp;
6 node.selfCnt = node.selfCnt >> timeDif; /∗ shift right timeDif times ∗/
7 node.rightCnt = node.rightCnt >> timeDif;
8 node.leftCnt = node.leftCnt >> timeDif;
9 node.timeStamp = globalClock;

10 }}}

To avoid race condition in which several threads divide a node’s counter by two simultaneously
we protect the code with a lock (java synchronized block). Over time nodes which were popular
and then became unpopular decrease their counters, and move down the tree enabling nodes that
become now popular to climb up the tree.

4 Performance

Experimental setup. The experiments run on UltraSPARC T2 Plus server [1] with two Niagara II
chips, a multithreading (CMT) processor; each chip has 8 1.165 GHz in-order cores with 8 hardware
threads each, for a total of 64 hardware threads. All algorithms are implemented in Java, using
the HotSpot Server JVM build 19.0-b09 with Java Runtime Environment version 1.6.0-23-ea.
Unless stated otherwise, reported results are averages of three 10-second runs on an otherwise idle
machine. Initially the tree is warmed up by a single thread inserting a total of 5 times the key
range values into the tree (i.e., for keys in the range 130, 000 it inserts 650, 000 keys), after which
the measurement start.

The following four algorithms are tested and compared:

OptTree - Bronson et. al. [8] implementation, without the extensions which worsen the perfor-
mance.

UnbalancedTree - OptTree in which the AVL re-balancing code is disabled. The trees created by
this algorithm are not balanced, hence it is named UnbalancedTree. This serves a yard stick to
measure how much each of the re-balancing techniques (AVL ala Bronson et. al. or lazy splaying)
improves the performances of the implementation.

LazySplayTree - UnbalancedTree with lazy splaying re-balancing. The difference between LazySplayTree
and UnbalancedTree is due to the lazy splaying re-balancing method.

LazyAdaptSplayTree - The adaptive version of LazySplayTree. Unless stated otherwise clockCycle
value in all tests is 1 sec.

In the first few tests the values selected for a lookup are Zipf distributed with skew parameter
0.94 in which 80% of the accesses are to 20% of the items as in 80-20 Pareto rule [14]. While the
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removes in the benchmark are distributed uniformly, the inserts values are taken from the same
Zipf distribution as the lookups. This results in faster return of frequent nodes after they have
been removed.

Figure 3 (a) shows the average paths length to accessed nodes in difference size trees. Since the
lazy splay tree has shorter average paths length it also provides better performance as can be seen
in figure 3 (b). The test were performed with 64 threads on trees with different sizes. Operation
ratio was 9% inserts, 1% removes and 90% lookups.

(a) Average paths length (b) Number of operations per second

Figure 3: Performance of 64 threads running on trees with different sizes. Operation ratio is 9%
inserts, 1% removes and 90% lookups. Zipf exponent (skew parameter) is 0.94 resulting in 80% of
accesses to 20% of the items. (a) Average paths length over the access sequence as measured by
one out of the 64 threads. (b) Number of operations per second.

(a) Performance of 64 threads (b) Performance of 8 threads

Figure 4: Performance on a tree with 130K nodes as a function of the Zipf exponent. Operation
ratio is 9% insert, 1% remove and 90% lookup. (a) Number of operations per second performed
by 64 threads. (b) Number of operations per second performed by 8 threads. In skew of 0.8,
equilibrium point of LazySplayTree and OptTree performances, 80% of accesses are made to 37%
of the items.

Figure 4 compares the performances with different Zipf skew parameters on a tree with 130K
nodes. As can be seen in access distributions with zipf exponents larger than 0.8 (80% accesses
to 37% of the items) LazySplayTree outperforms OptTree. The explanation for this can be seen
in figure 5. While in OptTree average path length remains almost the same for all skew value, in
LazySplayTree average path length becomes shorter as skew grows.
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(a) Average path length of 64 threads (b) Average path length of 8 threads

Figure 5: Average path length on a tree with 130K nodes as a function of the Zipf exponent.
Operation ratio is 9% insert, 1% remove and 90% lookup. (a) Average path length performed by
64 threads. (b) Average path length performed by 8 threads.

Figure 6: Single thread performance on a 130K nodes tree as a function of the Zipf exponent.
Operation ratio is 10% insert and 90% lookup. From skew level of 0.6 and up LazySplayTree
outperforms AvlTree, where 80% of the accesses are made to 55% of the items. Until skew level 0.9
RedBlackTree outperforms LazySplayTree, where 80% of accesses are made to 24% of the items.

Figure 6 compares the performances of different Binary Search Tree sequential (single thread)
implementations. The following BSTs were tested:

LazySplayTree a single thread implementation that doesn’t use locks, or checks and other code
needed for synchronization.

SplayTree is an implementation of top-down splay tree by Daniel D. Sleator available from
http://www.link.cs.cmu.edu/splay/.

AvlTree and RedBlackTree are AVL tree and Red Black tree implementations by Mark Allen
Weiss available from http://users.cis.fiu.edu/ weiss/dsaajava/code/DataStructures/.

In Zipf access distributions with exponent smaller than 0.9 (around 80%−40% ratio) RedBlackTree
outperforms all other algorithms, while with higher exponent values LazySplayTree outperforms all
others with an increasing gap. The small increase in performances by AvlTree and RedBlackTree
with high exponent values is because of the better caching while they perform many operations on
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the same paths to frequent nodes. Since the AvlTree and RedBlackTree implementations that we
use are missing remove implementation we compared LazySplayTree only against SplayTree when
operation ratio did not included removes. These tests also show that LazySplayTree outperforms
SplayTree in a single thread implementation.

(a) 9% insert, 1% remove, 90% find (b) 20% insert, 10% remove, 70% find

(c) 50% insert, 50% remove, 0% find

Figure 7: Scalability test: Performance on a 130K nodes tree with different operation mix as a
function of the number of threads (maximum of 64 hardware threads, i.e., at 128 there is context
switching). Zipf exponent is 0.94 (80% − 20% ratio). Remove operations items are uniformly
distributed.

The scalability of the different implementations is shown in Figure 7, where the performance of
the algorithms throughput as a function of the number of threads (from 1 to 128) on different
operations mix is given. Zipf exponent is 0.94. When the percentage of removes, which are uniformly
distributed, grows the performance of LazySplayTree decreases. Pay attention that the number
of hardware threads in the test is 64. 128 threads results show the effect of context switches on the
performance. Even though counters are non-atomic and may be disrupted by context-switches, in
practise context-switches on LazySplayTree and LazyAdaptSplayTree have the same effect as on
OptTree and UnbalancedTree.

The advantage of LazyAdaptSplayTree over LazytSplayTree is exemplified in Figure 8 were we
run the following test with 100% lookup operations. On initially filled tree, in the first 15 sec-
onds one thread executes one sequence taken from a Zipf distribution with skew of 0.8 while in
the last 15 seconds it executes on a sequence taken from a new sampling of Zipf distribution with
the same skew. The LazyAdaptSplayTree algorithm is tested with 3 different clockCycles values:
1 sec, 100 ms and 10 ms. As can be seen, though in the first 15 seconds LazytSplayTree and
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Figure 8: On initially filled tree, first 15 seconds one thread executes 100% lookup operations from
one zipf distribution with skew 0.8, while in the last 15 seconds it executes 100% lookup of from
a different zipf distribution with the same skew. LazyAdaptSplayTree algorithm is tested with 3
clockCycles values, 1 sec, 100 ms and 10 ms.

Figure 9: Error injection test. This test simulates the situation in which a scheduler makes context-
switches during the increment of the counter. This may result in out dated counter updates, i.e.,
errors. The Performance on a tree with 130K nodes and different operation mix of 9% insert,
1% remove, 90% lookup. Zipf exponent is 0.94. In Errors(500, 2000) and Errors(5000, 50000)
once every 500 and 5000 operations respectively some counter value is decreased by 2000 and 50000
respectively. Even such a drastic out of date counter reduction has only small effect on performance.

LazyAdaptSplayTree with larger clockCycles perform better, the drop in performance on a distri-
bution switch is much larger. LazyAdaptSplayTree which doesn’t divide its counter at all during
the test, after distribution switch has previously frequent nodes in the top of the tree while nodes
that become now popular are placed in the bottom of the tree. It takes a lot of time until these
frequent nodes overcome the previously frequent nodes and take their place in the top part of the
tree. LazyAdaptSplayTree with small clockCycle, on the other hand, has counters with very small
values and quickly looses the influence of the previous distribution (short memory). In conclusion,
there is a tradeoff between better performance in fixed distributions enabled with larger clockCycle
values and better adaptiveness to distribution changes with smaller clockCycle values.

While the tests in Figure 7 show that context switches do not affect the performance even though the
counters are non-atomic, we test the algorithms under harsher conditions. The purpose of the test
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is to show the robustness of the algorithm despite unexpected erroneous changes to the counters due
to its un protected updates. The results are given in Figure 9: Every thread every errorFrequency
operations inject an error into one of the node’s counters. leftCnt and rightCnt were disrupted
three times more than selfCnt since they are incremented more by the algorithm. The injected
errors reduced the counter values by errorV alue, which was taken either −2000 or −50000. The
tests shown that neither have significant affect on the performances. With errorV alue < 2000
there is almost no effect. With error −50000 performances are reduced by up to −9.5%. Thus
showing that the algorithm is robust to counters inaccuracies.

5 Extensions

Thresholds before making re-balance operations

Since re-balancing is performed when some sum of counters higher than other by only one, there
was a concern that many redundant re-balancing operations are performed. We performed a test
where re-balancing operation are performed only when the counters of a child are higher than a
counters of the parent by some threshold. As showed on figure 10 small threshold has negligible
negative effect while higher thresholds have much worse performance.

Figure 10: Number of operations per second performed by 64 threads on a tree with 130K
nodes as a function of the Zipf exponent. Operation ratio is 9% insert, 1% remove and 90%
lookup. LazySplayThreshold(x) stands for LazySplay algorithm with threshold parameter x.
LazySplay(2) is the LazySplay algorithm where re-balancing performed only when child coun-
ters sum is twice the counter sum of the parent. As can be seen, higher thresholds have worse
performance.

Re-balancing up to the root

We checked wether performing re-balancing up to the root can provide a better balanced tree and
an improved the performance. BiasedTree variation, after accessing the searched node, doesn’t
perform the re-balance operation as LazySplay. Instead it continues up to the root checking that
grand parent half sum of counters is higher than grand child’s sum of counters. If this doesn’t hold,
it tries to re-balance as the LazySplay does. BiasedSplayTree is a combination of BiasedTree
and LazySplay. It performs re-balancing on the accessed node as LazySplay does and continues
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the checking and the re-balancing up to the root. As seen in figure 11 performing re-balancing up
to the root have small negative effect on performance. However not performing the re-balancing
on the accessed node greatly reduce the performance.

Figure 11: Number of operations per second performed by 64 threads on a tree with 130K nodes
as a function of the Zipf exponent. Operation ratio is 9% insert, 1% remove and 90% lookup.
BiasedTree makes re-balancing only when sum of counters of a grand child higher than half sum
of counters of a grand parent, starting from the accessed node up to the root. BiasedSplayTree re-
balances on accessed node as LazySplay does and continues checking up to the root as BiasedTree
does. As can be seen checking up to the root has small impact on performance. However, not re-
balancing on the accessed node greatly reduce the performance.

6 Conclusions

In this paper we have presented the first scalable concurrent self adjusting binary search tree, and
a new re-balancing technique - lazy splaying which improves the performance and scalability of
self adjusting binary search trees. We believe that self adjusting binary search trees will be no
more only a theoretical algorithm, but can be used as a practical single thread and highly scalable
multi-thread BST implementation. Future work: 1. it is interesting to see whether the bottleneck
created with high zip skew values may be settled. 2. Is there an algorithm with better performance
on both uniform and zipf distributions. Possible candidate is a combination between ideas from
lazy splaying and other algorithms such as red-black tree or other AVL trees.
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