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Abstract

Algorithms for concurrent data structures have gained
attention in recent years as multi-core processors have be-
come ubiquitous. Using the example of a concurrent prior-
ity queue, this paper investigates different synchronization
methods and concurrent algorithms. It covers traditional
lock-based approaches, non-blocking algorithms as well as
a method based on software transactional memory. Besides
discussing correctness criteria for the various approaches,
we also present performance results for all algorithms for
various scenarios. Somewhat surprisingly, we find that a
simple lock-based approach performs reasonable well, even
though it does not scale with the number of threads. Better
scalability is achieved by non-blocking approaches.

1 Introduction

In the past, CPU performance mainly increased as a
function of the operating clock frequency. Physical limits
have caused a shift in processor design. Today, ever more
processing cores are place on a single chip. Application
software exploit multi-core designs by embracing parallel
execution. Consequently, many sequential data structures
have to be adapted in order to scale well on multi-core
systems. This is especially challenging for concurrently
accessed and manipulated data structures because mecha-
nisms to avoid inconsistencies are needed, which incur ad-
ditional overhead. The prevalent way of handling concur-
rency is to use locking as a synchronization mechanism be-
tween threads. It is well-known that coarse-grained lock-
ing approaches lack scalability for increasing numbers of
threads as they prevent parallel execution. On the other
hand, solutions such as fine-grained locking that use mul-
tiple locks often prove difficult and error-prone in both de-
sign and implementation. Lock-free approaches try to over-
come the disadvantages of lock-based methods. They typi-
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cally implement concurrency control using atomic instruc-
tions such as compare-and-swap.

This paper discusses the differences between these meth-
ods and compares the scalability and performance of repre-
sentative implementations for each approach. We do this by
using the priority queue data structure as the case study. Pri-
ority queues are fundamental data structures often used as
basic components in more complex systems. As the high-
est priority element in the queue represents a contention
point, it is notoriously difficult to implement it efficiently
for concurrent applications. Our motivation to study this is
to find the most practical solution for the messaging system
Tempo[3]. Tempo is a lightweight publish/subscribe mes-
saging system that uses a priority queue as the basic data
structure for its message scheduler. As Tempo is imple-
mented in Java, we also use Java as the runtime environment
for the algorithms presented here.

The paper is structured as follows. Section 2 gives an
overview of the priority queue algorithms investigated in-
cluding the correctness conditions that are fulfilled by each
of them. Section 3 describes the performance test scenarios
and discusses the results. Section 4 discusses related work.
Finally, Section 5 provides a summary and conclusion. [4]
is an extended version of this paper.

2 Concurrent Priority Queue Algorithms

A priority queue is an abstract data type with two opera-
tions. Theput(x) operation adds the elementx with prior-
ity x.p into the queue, wherex.p is an integer value from a
given priority range. Theget() operation retrieves the ele-
ment with the highest priority from the queue, provided the
queue is not empty. This paper studies several concurrent
priority queue algorithms that are classified into lock-based
approaches (using a mutual exclusion lock), non-blocking
algorithms (building on atomic operations such as compare-
and-set (CAS)), and approaches based on software transac-
tional memory (STM, [15]).

Even though each algorithm presented here implements
a priority queue, the correctness condition that each ap-
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proach fulfills is different. A correctness condition de-
fines how an algorithm behaves during parallel execution.
The strongest condition islinearizability [9], also known as
strict or atomic consistency. An algorithm fullfilling thelin-
earizabilitycorrectness condition matches closest what in-
tuitively would be considered as the parallel pendant of its
sequential counterpart. A weaker condition is Lamport’s se-
quential consistency [12]. This condition is generally used
as a correctness condition for transactions in databases and
distributed systems.

Based on the properties introduced, the algorithms can
be characterized as follows:

2.1 Lock-based Approaches

The classic approach to concurrency control is to use
mutual-exclusion locks. We investigate three algorithms in
this category.

Coarse-lock The coarse-lock approach uses a single global
lock that protects access to a binary heap. Therefore, it pro-
hibits parallelism altogether. The global lock forcesput and
get operations to be executed strictly sequentially and thus
provides strict consistency.

Hunt heap A refinement of coarse-lock was presented by
Hunt et al. [11]. It uses mutual exclusion locks to protect
the heap size variable as well as each node in the binary
heap. Furthermore, the “bit-reversal” technique is applied,
which is basically the same idea as the LR-algorithm de-
scribed in [1]. Consequently, Hunt’s fine-grained locking
approach increases parallelism. This approach is lineariz-
able but suffers one noticeable disadvantage. It may end up
in a near-deadlock situation that occurs when the capacity
of the queue is reached.

Parallel Fibonacci heap This algorithm, described in [10],
uses a set of Fibonacci heaps that are synchronized using
locks. The heaps are independent of each other and contain
each a distinct subset of the elements. The performance
of the algorithm depends on the number of heaps. The
quality of the removed nodes depends on various parame-
ters like the size of the “promising list” and the so-called
“strictness parameter”, see discussion in [10]. This evalu-
ation considers an algorithm with2
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(n + 1) heaps and the

same number of promising elements, wheren is the num-
ber of threads. This algorithm is neither linearizable nor
sequentially consistent. To increase parallelism, it usesa
randomization technique that spreads out operations to dif-
ferent heaps. Parallelism and thus performance increases
with the number of heaps. At the same time, randomness
also increases. The worst-case behavior results in random
results, and it is arguable whether this algorithm qualifiesas
a valid concurrent priority queue implementation.

2.2 Non-Blocking Algorithms

The second class of algorithms is known as non-blocking
algorithms. They refrain from using locks and instead are
based on instructions such as compare-and-swap as the
basic means of concurrency control. Non-blocking algo-
rithms are further classified as eitherwait-free, lock-free,
or obstruction-free[7]. This paper investigates two non-
blocking algorithms.

Lock-free skip-list Sundell and Tsigas present in [17] a
fast lock-free priority queue that is based on a sorted skip-
list. It applies a helping strategy that is essential to achieve
the lock-free property as it allows a task to continue even
though another task has unfinished work. Sundell’s algo-
rithm is lock-free and linearizable. The version of the algo-
rithm described in [17] is not quite as general as other im-
plementations because it only allows a single element per
priority. However, there exists an accelerated, commercial
version of this algorithm that has been modified to deal with
this issue. For our performance tests, the version published
in [17] is used.

Quantizing queue This algorithm has been developed for
the Tempo messaging system [3]. This method is similar
to the simple bounded range priority queue algorithm de-
scribed in [16]. It operates on a bounded priority range that
quantizes priorities into a fixed number of priority levels.
Elements having the same priority level are stored in a lock-
free FIFO queue described by Michael and Scott in [13].
The algorithm is non-blocking because the underlying FIFO
queue is lock-free and thus non-blocking. It is sequentially
consistent, but not linearizable, in contrast to a statement
in [16]. The proof for non-linearizability is given in [4].
Since the algorithm provides a fixed number of priorities
levels within a given priority range, it is less general than
other algorithms.

2.3 STM-Based Algorithm

STM [15] is a relatively new programming paradigm that
has recently been an area of intense research. The basic
idea is to declare a piece of code as being an atomic block if
its effects must appear atomic. The execution of an atomic
block is called a transaction. If a conflict with other transac-
tions occurs, the computation is discarded and the block is
reexecuted from the beginning. STM implementations can
be lock-based [5] or non-blocking [6]. We use the DSTM2
factory [8], which is non-blocking and, with the aid of a
contention manager [14], practically lock-free. This paper
considers a single priority queue that is based on STM. It
implements optimizations to the naive approach that merely
declares the entire queue access operations as being atomic.
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STM This algorithm uses a binary heap whereput andget

operations are executed as a sequence of transactions. It
has similarities with theHunt heapconcerning the insertion
policy of elements. As a novelty, it introduces a new value
with which nodes can be tagged to be ahole. The perfor-
mance of this algorithm mainly depends on the underlying
STM implementation. Its properties are also inherited from
the STM used. We reimplemented an existing C-solution of
an STM-based binary heap by using the DSTM2 [8] library.
As the DSTM2 factory is designed for functional and proof-
of-concept experiments rather than for performance, the test
results are not representative for this implementation. The
C-implementation using Fraser’s solution [6] shows a much
better performance. It also includes optimizations that are
not implemented in the Java-version.

The description of the six techniques presented above
shows that they are not simply comparable in terms of raw
performance numbers. Independently of the results of our
tests, the characteristics explained here concerning correct-
ness and functionality must always be taken into account.
Despite this fact, we compare the performance of these ap-
proaches as all of them implement a priority queue, albeit
with different characteristics.

3 Performance Tests

Priority queues are often used at the core of schedulers,
such as in the Tempo project. In such an environment, the
performance of the queue is a critical factor in the over-
all system. Scalability in the number of threads is another
property that is crucial for concurrent algorithms. Both
these parameters are measured in the performance tests.

All of the algorithms have been implemented in Java, and
the performance tests are executed on a Java 6.0 runtime
environment on a Linux SMP system.

3.1 Metrics

A key attribute of every concurrent algorithm is its scal-
ability in the number of threads. Two cases are consid-
ered. In a fully concurrent environment, each thread is ex-
ecuted on a CPU core. In time-sharing mode, more threads
than CPU cores are available, and the operating system’s
scheduler governs access to the CPU cores in a time-sharing
mode. For the performance tests, an 8-way multi-core ma-
chine was used. This allows scalability to be measured in
a fully concurrent environment from 1 to 8 threads and in a
time-sharing environment for more than 8 threads.

Another parameter is the access pattern of the priority
queue. Each thread puts an item with random priority into
the queue or gets an item from the queue, and after that
does some “local” work. The amount of local work deter-
mines the contention level and is used to simulate realistic
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Figure 1. Throughput for the very high con-
tention test case without local work and an
initially empty queue

application behavior. At maximum contention level no lo-
cal work (“working delay”) is done. For a more realistic be-
havior the time spent in local work varies from 1µs to 1 ms
with exponential stepping. We simulate this delay by ex-
ecuting integer computations in between queue operations.
The computations are based on random input and an itera-
tive computation that cannot be optimized by a compiler.

As a last parameter, we vary the initial queue size, start-
ing with an empty queue or a queue pre-loaded with 100 or
10000 elements. Queues with initially 10000 elements we
call “big queues”.

The results presented in the figures below show the ac-
cumulated number of operations of all threads including the
local work done after each operation. So if there is a “work-
ing delay”, we measure the performance of the entire appli-
cation and not only of the operations on the queue.

3.2 Results of Selected Scenarios

In order to compute confidence intervals, we assume that
the cumulative throughput for a given scenario follows a
normal distribution for repeated test runs. The bounds of the
confidence intervals for a confidence coefficient of 95% dif-
fer by less than 3% from the computed average for scenar-
ios where the queue was initially empty or pre-loaded with
100 elements only. For bigger queues, especially for the
quantizing queue and the STM-heap, they differ by about
6%. An exception is the STM-heap, the bounds differ by as
much as 10% from the average.

First, we test the very high contention case without any
simulated local work outside operations on the queue and
an initially empty queue. The results are shown in figure 1.
Recall that we have 8 physical CPU-cores.

The quantizing queue and the parallel Fibonacci heap are
the only queues scaling in this case for up to 8 threads.
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Figure 2. Throughput for the high contention
test case with short local work (roughly 1 µs)
and an initially empty queue

Regarding performance, Sundell’s and Tsigas’ lock-free
skip-list exhibits a competitive performance, but the quan-
tizing queue outperforms all other implementations. The
Hunt heap shows low scalability at this level of contention,
whereas the STM-based heap obviously implies very much
overhead due to the DSTM2 factory. The highest per-
formance is achieved by the coarse-locked heap running
single-threaded. The drastic break-down of the perfor-
mance from1 to 2 threads is due to the implementation of
locking in Java, which distinguishes thin and thick locks.
The principle of these Java locks is explained in detail in [2].

Another evident pattern is the jump of the number of
operations in the coarse-lock implementation from 8 to 9
threads. This can be explained by the CPU-hopping effect,
which is caused by the process scheduler in the kernel, be-
cause it attempts to do load-balancing between CPU cores.
As all other CPU cores are idle because the threads run-
ning on them are waiting for the global lock, the sched-
uler reschedules the only working thread to another CPU
core, which causes additional cash-trashing. This effect is
reduced by pinning threads to CPU cores; something that
we didn’t do for our tests.

When running in timesharing mode, with more than 8
threads, the behavior of the algorithms no longer follows
an easily explainable pattern. However, the relative per-
formance between the algorithms remains stable (c.f. Fig-
ures 1, 2). The exception is the coarse-lock implementation
in the high contention scenario (Figure 1) that outperforms
the lock-free skip-list when using more than 10 threads.

Figure 2 shows the results for the test scenario with short
local work (1µs) and an initially empty queue. Here, the
lock-free skip-list shows even better performance in relation
to the other implementations, but the quantizing queue still
outperforms all of them. The coarse-locked queue shows a
worse performance than in the scenario described above, es-
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Figure 3. Throughput for the test case with
short local work and a queue initialized with
10000 elements

pecially for a lower CPU core/thread ratio. However, again
the best performing test case with a lower dominance than
before is the single-threaded coarse-lock case.

When pre-loaded with 10,000 random elements, the
lock-free skip-list, the coarse-locked heap and the Hunt
heap do not show significant deficits, whereas the quantiz-
ing queue and the Fibonacci heap suffer a noticeable loss of
performance (Figure 3).

3.3 Results Summary

There are also scenarios with significant local work
tested that, as expected, show advantages for the coarse-
locked heap for up to 8 threads. The Hunt heap and the
Fibonacci heap catch up the other implementations because
all performances have been relativized. But we can still see
the same picture with the quantizing queue compared with
the lock-free skip-list: for big queues (10,000 elements),
the skip-list has a higher throughput, whereas the quantiz-
ing queue performs better than the skip-list on small queues.

Tables 1 and 2 provide a rough summary of our
survey with the coarse-locked queue (CLQ), Hunt heap
(HH), parallel Fibonacci heap (PFH), lock-free skip-list
(LFSL), quantizing queue (QQ), and the STM-based queue
(STMQ). The termsvery low(v. low), below/above average
(b./a. avg), high, etc. for characterizing the scalability and
performance are used relatively among the implementations
studied here. The termhigh contention(HC) denotes short
local work (1µs and less) and small queue scenarios while
the termlow contention(LC) refers to significant local work
(more than 10µs) and big queue scenarios. Table 1 sum-
marizes the results concerning performance and scalability
for fully concurrent tests. Table 2 gives an overview of the
performance results in timesharing mode, the variance of
operations per thread per second and the correctness condi-
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Table 1. Summary of the results for a CPU-
core/thread-ratio ≥ 1 (performance and scal-
ability)

Method Perf. Perf. Scale. Scale
with HC with LC with HC with LC

CLQ avg v. high v. low high
HH low avg v. low low
PFH b. avg b. avg v. high avg
LFSL high high a. avg high
QQ v. high avg high low
STMQ v. low low avg low

tions each queue implementation fulfills (linearizable (lin),
sequentially consistent (s.c.), random (rand)).

A surprising result is that the coarse-grained locking ap-
proach with one thread achieves the highest absolute perfor-
mance in the high-contention scenarios, where no or very
little additional work is done besides the queue operation.
In this scenario, the costs of concurrency control outweighs
the benefits. As expected, however, the single-lock ap-
proach does not scale at all in a high-contention scenarios.
For low-contenion, fully concurrent (up to 8 threads) sce-
narios, the coarse-locked case performs better than other so-
lutions. It is particularly noticeable that for higher numbers
of threads, the lock-free approaches perform well.

Another interesting value is the variance of the number
of operations per thread and per second in relation to the av-
erage of each implementation. The Hunt heap has the low-
est variance with only 10-20% of the average value. This
means that the number of operations of each thread does
not vary much in a designated interval. The Fibonacci heap
also has a reasonable variance, with only 25-30%. The lock-
free skip-list and coarse-locked heap vary on average with
40%. The quantizing queue and the STM-based heap show
a relatively high variance, with about 100%. The higher the
variance is, the less reliable is an a priori estimation of how
many operations will be done in a time interval. An a priori
estimation is of special interest for real-time applications,
which need to know the behavior of its components.

3.4 Use Case Results

We also study the behavior of the three most competi-
tive priority queues in the context of our publish/subscribe
systemTempo(see Figure 4). We run the tests on the same
machine as the previous tests, with the publishers and the
subscribers running on the same system. In the figure we
observe that for up to 8 threads we clearly have a better
performance for the lock-free queues than for the coarse-
locked queue. As soon as timesharing mode is entered, the

Table 2. Summary of the general results and
characteristics (correctness condition, vari-
ance of operations per thread per second,
performance)

Method Corr. Variance Perf. LC Perf. HC
cond. c/thr< 1 c/thr< 1

CLQ lin avg avg avg
HH lin v. low low low
PFH rand low b. avg b. avg
LFSL lin avg v. high high
QQ s.c. high high v. high
STMQ lin high v. low v. low
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Figure 4. Message throughput within the
Tempomessaging system with confidence in-
terval bars

performance of the publish/subscribe engine decreases sig-
nificantly for the lock-free approaches, whereas the scenario
using the coarse-locked queue shows better performance.
There are many factors in the pub/sub engine that influence
the results of this test beside the priority queue. A discus-
sion of these factors would, however, exceed the scope for
this paper.

4 Related Work

Shavit and Zemach [16] report performance tests us-
ing a simulated distributed-shared-memory machine for the
coarse-lock queue, the Hunt heap and the quantizing queue,
among others. The tests with up to 16 threads are compa-
rable to the tests done in this paper. It also used an ini-
tially empty queue, and each thread conducted an unspeci-
fied “small” amount of local work. While the results for the
quantizing queue agree, the coarse-grained lock approach
is the worst performer in Shavit and Zemach’s experiment.
However, we find it to be in the middle field, and in some
scenarios even being one of the best.

Hunt et al. [11] use a fixed set of operations for
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their experiment, either insertion-only, deletion-only,or
a insertion/deletion-pair test. They compare their fine-
grained locking with the traditional coarse-locking ap-
proach, where each process conducts “significant real
work” between operations on the queues. Their experiments
with empty or small initial queue size are comparable to
ours and also match the result in that the coarse grained
locking approach outperforms the fine-grained locking ap-
proach. Hunt et al. show that fine-grained locking outper-
forms coarse grained locking for queue sizes that are larger
than 100,000 elements. Note that we did not conduct tests
for queues with more than 10,000 elements.

Sundell and Tsigas [17] compare their skip-list imple-
mentation with Hunt’s algorithm on machines ranging from
2 to 64 processors. In line with our results, they find that
Hunt’s algorithm exhibits worse performance than the skip-
list implementation, both with respect to absolute number
as well as scalability in the number of threads. However,
we cannot confirm the level of scalability reported for the
skip-list. We observe a scalability that is noteworthy but not
outstanding.

5 Summary and Conclusion

Using the example of a concurrent priority queue, we
have investigated different approaches to concurrency con-
trol, i.e. traditional lock-based approaches and lock-free al-
gorithms as well as an algorithm based on the software
transactional memory model. We have characterized the
properties and discussed the correctness condition of each
algorithm. In addition, we have evaluated the performance
of the algorithms using several benchmarks that where car-
ried out on a eight-core machine. To the best of our knowl-
edge, this performance discussion is wider and compares
more implementation techniques in a homogeneous envi-
ronment than what has been done before.

We find that the highest performance is achieved by
the coarse-locked binary heap when executed by a single
thread, i.e. when the costs for concurrency control are neg-
ligible due to the thin-locks used by Java. When accessed
by multiple threads, the quantizing queue followed by the
lock-free skip-list provide the best performance. While the
quantizing queue shows good scalability, it also has a higher
variance and is, in contrary to the skip-list, not linearizable.

Finally, we also observe that the Linux process sched-
uler has a significant effect on the performance. In most
cases, the CPU-hopping effect has a higher impact on the
performance than the actual implementation itself i.e. pin-
ning threads to CPU cores yields significant improvements
in performance.
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