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Abstract cally implement concurrency control using atomic instruc-
tions such as compare-and-swap.

Algorithms for concurrent data structures have gained  This paper discusses the differences between these meth-
attention in recent years as multi-core processors have be-ods and compares the scalability and performance of repre-
come ubiquitous. Using the example of a concurrent prior- sentative implementations for each approach. We do this by
ity queue, this paper investigates different synchroienat  using the priority queue data structure as the case study. Pr
methods and concurrent algorithms. It covers traditional ority queues are fundamental data structures often used as
lock-based approaches, non-blocking algorithms as well asbasic components in more complex systems. As the high-
a method based on software transactional memory. Besidesst priority element in the queue represents a contention
discussing correctness criteria for the various approaghe point, it is notoriously difficult to implement it efficientl
we also present performance results for all algorithms for for concurrent applications. Our motivation to study tlsis i
various scenarios. Somewhat surprisingly, we find that a to find the most practical solution for the messaging system
simple lock-based approach performs reasonable well, evenTempo[3]. Tempo is a lightweight publish/subscribe mes-
though it does not scale with the number of threads. Bettersaging system that uses a priority queue as the basic data
scalability is achieved by non-blocking approaches. structure for its message scheduler. As Tempo is imple-

mented in Java, we also use Java as the runtime environment
for the algorithms presented here.
1 Introduction The paper is structured as follows. Section 2 gives an
overview of the priority queue algorithms investigated in-
cluding the correctness conditions that are fulfilled byheac
function of the operating clock frequency. Physical limits of them. Section 3 describes the performance test scenarios

have caused a shift in processor design. Today, ever morénd discusses the results. Section 4 discusses related work
processing cores are place on a single chip. Application Fmally, Section 5 provides a summary and conclusion. [4]

software exploit multi-core designs by embracing parallel IS @n extended version of this paper.
execution. Consequently, many sequential data structures
have to be adapted in order to scale well on multi-core 2 Concurrent Priority Queue Algorithms
systems. This is especially challenging for concurrently
accessed and manipulated data structures because mecha- A priority queue is an abstract data type with two opera-
nisms to avoid inconsistencies are needed, which incur ad+jons. Theput(z) operation adds the elementwith prior-
ditional overhead. The prevalent way of handling concur- ity .p into the queue, where.p is an integer value from a
rency is to use locking as a synchronization mechanism be'given priority range. Theet() operation retrieves the ele-
tween threads. It is well-known that Coarse-grained lock- ment with the highest priority from the queue, provided the
ing approaches lack scalability for increasing numbers of queue is not empty. This paper studies several concurrent
threads as they prevent parallel execution. On the otherpriority queue algorithms that are classified into lockezhs
hand, solutions such as fine-grained Iocking that use mU|-approacheS (using a mutual exclusion |ock), non_b|ocking
tiple locks often prove difficult and error-prone in both de- ajgorithms (building on atomic operations such as compare-
sign and implementation. Lock-free approaches try to over- and-set (CAS)), and approaches based on software transac-
come the disadvantages of lock-based methods. They typitional memory (STM, [15]).

*|EEE International Symposium on Parallel and Distributedcess- Even though each algorithm presented here implements
ing, 2008. IPDPS 2008. 14-18 April 2008 a priority queue, the correctness condition that each ap-

In the past, CPU performance mainly increased as a




proach fulfills is different. A correctness condition de- 2.2 Non-Blocking Algorithms

fines how an algorithm behaves during parallel execution.

The strongest condition I;earizability [9], also known as The second class of algorithms is known as non-blocking
strict or atomic consistency. An algorithm fullfilling ttie- algorithms. They refrain from using locks and instead are
earizability correctness condition matches closest what in- hased on instructions such as compare-and-swap as the
tuitively would be considered as the parallel pendant of its y55ic means of concurrency control. Non-blocking algo-
sequential counterpart. A weaker condition is Lamports se rithms are further classified as eithemit-free lock-free

quential consistency [12]. This condition is generallydise o gpstruction-free[7]. This paper investigates two non-
as a correctness condition for transactions in databaskes anplocking algorithms.

distributed systems.
Based on the properties introduced, the algorithms can|_ock-free skip-list Sundell and Tsigas present in [17] a

be characterized as follows: fast lock-free priority queue that is based on a sorted skip-
list. It applies a helping strategy that is essential to exahi
2.1 Lock-based Approaches the lock-free property as it allows a task to continue even

though another task has unfinished work. Sundell’s algo-

The classic approach to concurrency control is to userithm is lock-free and linearizable. The version of the algo
mutual-exclusion locks. We investigate three algorithms i rithm described in [17] is not quite as general as other im-
this category. plementations because it only allows a single element per
priority. However, there exists an accelerated, commekrcia
Coarse-lock The coarse-lock approach uses a single global yersion of this algorithm that has been modified to deal with

lock that protects access to a binary heap. Therefore, it pro this jssue. For our performance tests, the version puldlishe
hibits parallelism altogether. The global lock forgesg and in [17] is used.

get operations to be executed strictly sequentially and thus
provides strict consistency. Quantizing queue This algorithm has been developed for

) the Tempo messaging system [3]. This method is similar
Hunt heap A refinement of coarse-lock was presented by 4 the simple bounded range priority queue algorithm de-
Hunt et al. [11]. It uses mutual exclusion locks to protect geriped in [16]. It operates on a bounded priority range that
the heap size variable as well as each node in the binarygyantizes priorities into a fixed number of priority levels.
heap. Furthermore, the “bit-reversal” technique is applie  Elements having the same priority level are stored in a lock-
which is basically the same idea as the LR-algorithm de- free FIFO queue described by Michael and Scott in [13].
scribed in [1]. Consequently, Hunt's fine-grained locking The algorithm is non-blocking because the underlying FIFO
approach increases parallelism. This approach is lineariz queue is lock-free and thus non-blocking. It is sequentiall

able but suffers one noticeable disadvantage. It may end URsgnsistent, but not linearizable, in contrast to a statémen
in a near-deadlock situation that occurs when the capacity;, [16]. The proof for non-linearizability is given in [4].

of the queue is reached. Since the algorithm provides a fixed number of priorities

Parallel Fibonacci heap This algorithm, described in [10], Ic()at\éeelrsalegt:rli?h?nglven priority range, it is less general than

uses a set of Fibonacci heaps that are synchronized using
locks. The heaps are independent of each other and contain .

each a distinct subset of the elements. The performance?-3 STM-Based Algorithm

of the algorithm depends on the number of heaps. The

guality of the removed nodes depends on various parame- STM [15]is arelatively new programming paradigm that
ters like the size of the “promising list” and the so-called has recently been an area of intense research. The basic
“strictness parameter”, see discussion in [10]. This evalu idea is to declare a piece of code as being an atomic block if
ation considers an algorithm with(n + 1) heaps and the its effects must appear atomic. The execution of an atomic
same number of promising elements, wheris the num- block is called a transaction. If a conflict with other transa

ber of threads. This algorithm is neither linearizable nor tions occurs, the computation is discarded and the block is
sequentially consistent. To increase parallelism, it uses reexecuted from the beginning. STM implementations can
randomization technique that spreads out operations to dif be lock-based [5] or non-blocking [6]. We use the DSTM2
ferent heaps. Parallelism and thus performance increasefactory [8], which is non-blocking and, with the aid of a
with the number of heaps. At the same time, randomnesscontention manager [14], practically lock-free. This pape
also increases. The worst-case behavior results in randontonsiders a single priority queue that is based on STM. It
results, and it is arguable whether this algorithm qualdies implements optimizations to the naive approach that merely
a valid concurrent priority queue implementation. declares the entire queue access operations as being atomic



STM This algorithm uses a binary heap wheig andget
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The description of the six techniques presented above
shows that they are not simply comparable in terms of raw
performance numbers. Independently of the results of our

tests, the characteristics explained here concerningaorr application behavior. At maximum contention level no lo-
ness and functionality must always be taken into account. .1 \work (“working delay”) is done. For a more realistic be-
Despite this fact, we compare the performance of these apy, oy the time spent in local work varies froms to 1 ms

proaches as all of them implement a priority queue, albeit, .., exponential stepping. We simulate this delay by ex-

with different characteristics. ecuting integer computations in between queue operations.
The computations are based on random input and an itera-
3 Performance Tests tive computation that cannot be optimized by a compiler.
As a last parameter, we vary the initial queue size, start-
Priority queues are often used at the core of schedulersjng with an empty queue or a queue pre-loaded with 100 or
such as in the Tempo project. In such an environment, thel0000 elements. Queues with initially 10000 elements we
performance of the queue is a critical factor in the over- call “big queues”.
all system. Scalability in the number of threads is another ~ The results presented in the figures below show the ac-
property that is crucial for concurrent algorithms. Both cumulated number of operations of all threads including the
these parameters are measured in the performance tests. local work done after each operation. So if there is a “work-
All of the algorithms have been implemented in Java, and ing delay”, we measure the performance of the entire appli-
the performance tests are executed on a Java 6.0 runtimeéation and not only of the operations on the queue.
environment on a Linux SMP system.

Figure 1. Throughput for the very high con-
tention test case without local work and an
initially empty queue

3.2 Results of Selected Scenarios
3.1 Metrics
In order to compute confidence intervals, we assume that
A key attribute of every concurrent algorithm is its scal- the cumulative throughput for a given scenario follows a
ability in the number of threads. Two cases are consid- normal distribution for repeated test runs. The boundsef th
ered. In a fully concurrent environment, each thread is ex- confidence intervals for a confidence coefficient of 95% dif-
ecuted on a CPU core. In time-sharing mode, more threadder by less than 3% from the computed average for scenar-
than CPU cores are available, and the operating system’sos where the queue was initially empty or pre-loaded with
scheduler governs access to the CPU cores in a time-sharind00 elements only. For bigger queues, especially for the
mode. For the performance tests, an 8-way multi-core ma-quantizing queue and the STM-heap, they differ by about
chine was used. This allows scalability to be measured in6%. An exception is the STM-heap, the bounds differ by as
a fully concurrent environment from 1 to 8 threads and in a much as 10% from the average.
time-sharing environment for more than 8 threads. First, we test the very high contention case without any
Another parameter is the access pattern of the priority simulated local work outside operations on the queue and
gueue. Each thread puts an item with random priority into an initially empty queue. The results are shown in figure 1.
the queue or gets an item from the queue, and after thatRecall that we have 8 physical CPU-cores.
does some “local” work. The amount of local work deter- The quantizing queue and the parallel Fibonacci heap are
mines the contention level and is used to simulate realisticthe only queues scaling in this case for up to 8 threads.
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Figure 2. Throughput for the high contention Figure 3. Throughput for the test case with
test case with short local work (roughly 1 11S) short local work and a queue initialized with
and an initially empty queue 10000 elements

Regarding performance, Sundell's and Tsigas’ lock-free Pecially for a lower CPU core/thread ratio. However, again
skip-list exhibits a competitive performance, but the guan the best performing test case with a lower dominance than
tizing queue outperforms all other implementations. The before is the single-threaded coarse-lock case.
Hunt heap shows low scalability at this level of contention, ~ When pre-loaded with 10,000 random elements, the
whereas the STM-based heap obviously implies very muchlock-free skip-list, the coarse-locked heap and the Hunt
overhead due to the DSTM2 factory. The highest per- heap do not show significant deficits, whereas the quantiz-
formance is achieved by the coarse-locked heap runninging gueue and the Fibonacci heap suffer a noticeable loss of
single-threaded. The drastic break-down of the perfor- Performance (Figure 3).
mance froml to 2 threads is due to the implementation of
locking in Java, which distinguishes thin and thick locks. 3.3 Results Summary
The principle of these Java locks is explained in detail ]n [2

Another evident pattern is the jump of the number of  There are also scenarios with significant local work
operations in the coarse-lock implementation from 8 to 9 tested that, as expected, show advantages for the coarse-
threads. This can be explained by the CPU-hopping effect,locked heap for up to 8 threads. The Hunt heap and the
which is caused by the process scheduler in the kernel, beFibonacci heap catch up the other implementations because
cause it attempts to do load-balancing between CPU coresall performances have been relativized. But we can still see
As all other CPU cores are idle because the threads runthe same picture with the quantizing queue compared with
ning on them are waiting for the global lock, the sched- the lock-free skip-list: for big queues (10,000 elements),
uler reschedules the only working thread to another CPUthe skip-list has a higher throughput, whereas the quantiz-
core, which causes additional cash-trashing. This effect i ing queue performs better than the skip-list on small queues
reduced by pinning threads to CPU cores; something that Tables 1 and 2 provide a rough summary of our
we didn’t do for our tests. survey with the coarse-locked queue (CLQ), Hunt heap

When running in timesharing mode, with more than 8 (HH), parallel Fibonacci heap (PFH), lock-free skip-list
threads, the behavior of the algorithms no longer follows (LFSL), quantizing queue (QQ), and the STM-based queue
an easily explainable pattern. However, the relative per- (STMQ). The termsery low(v. low), below/above average
formance between the algorithms remains stable (c.f. Fig-(b./a. avg, high, etc. for characterizing the scalability and
ures 1, 2). The exception is the coarse-lock implementationperformance are used relatively among the implementations
in the high contention scenario (Figure 1) that outperforms studied here. The terimigh contention(HC) denotes short
the lock-free skip-list when using more than 10 threads.  local work (1us and less) and small queue scenarios while

Figure 2 shows the results for the test scenario with shortthe termlow contentior(LC) refers to significant local work
local work (1 us) and an initially empty queue. Here, the (more than 1Qus) and big queue scenarios. Table 1 sum-
lock-free skip-list shows even better performance ini@at  marizes the results concerning performance and scajabilit
to the other implementations, but the quantizing queuk stil for fully concurrent tests. Table 2 gives an overview of the
outperforms all of them. The coarse-locked queue shows aperformance results in timesharing mode, the variance of
worse performance than in the scenario described above, essperations per thread per second and the correctness condi-



Table 1. Summary of the results for a CPU- Table 2. Summary of the general results and

core/thread-ratio > 1 (performance and scal- characteristics (correctness condition, vari-

ability) ance of operations per thread per second,
performance)

Method || Perf. Perf. Scale. Scale

with HC | with LC | with HC | with LC Method || Corr. | Variance| Perf. LC | Perf. HC

CLQ avg V. h|gh V. low h|gh cond. clthr< 1 | clthr< 1

HH low avg v. low low CLQ lin avg avg avg

PFH b. avg b.avg | v. high | avg HH lin v. low low low

LFSL high high a. avg high PFH rand | low b. avg b. avg

QQ v. high | avg high low LFSL lin avg v. high high

STMQ || v. low low avg low QQ S.C. high high v. high
STMQ || lin high v. low v. low

tions each queue implementation fulfills (linearizabla)(li 240

sequentially consistent (s.c.), random (rand)). 220 |
A surprising result is that the coarse-grained locking ap-
proach with one thread achieves the highest absolute perfor
mance in the high-contention scenarios, where no or very
little additional work is done besides the queue operation.
In this scenario, the costs of concurrency control outweigh
the benefits. As expected, however, the single-lock ap-
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proach does not scale at all in a high-contention scenarios. oo L% coaluantzing queue —— |
For low-contenion, fully concurrent (up to 8 threads) sce- 20 c . . . Skip-ist queue +-x---,
narios, the coarse-locked case performs better than ather s 46 nui o Oftfreads 12 a8
lutions. It is particularly noticeable that for higher nuenb

of threads, the lock-free approaches perform well. Figure 4. Message throughput within the

Another interesting value is the variance of the number  yempomessaging system with confidence in-
of operations per thread and per second in relation to the av-  tgryal bars
erage of each implementation. The Hunt heap has the low-
est variance with only 10-20% of the average value. This performance of the publish/subscribe engine decreases sig
means that the number of operations of each thread doegificantly for the lock-free approaches, whereas the seenar
not vary much in a designated interval. The Fibonacci heapusing the coarse-locked queue shows better performance.
also has a reasonable variance, with only 25-30%. The lock-There are many factors in the pub/sub engine that influence
free skip-list and coarse-locked heap vary on average withthe results of this test beside the priority queue. A discus-
40%. The quantizing queue and the STM-based heap showsion of these factors would, however, exceed the scope for
a relatively high variance, with about 100%. The higher the this paper.
variance is, the less reliable is an a priori estimation @ ho
many operations will be done in a time interval. An a priori 4 Rdated Work
estimation is of special interest for real-time applicatip

which need to know the behavior of its components. Shavit and Zemach [16] report performance tests us-

ing a simulated distributed-shared-memory machine for the
3.4 Use Case Results coarse-lock queue, the Hunt heap and the quantizing queue,

among others. The tests with up to 16 threads are compa-

We also study the behavior of the three most competi- rable to the tests done in this paper. It also used an ini-

tive priority queues in the context of our publish/subserib tially empty queue, and each thread conducted an unspeci-
systemTempo(see Figure 4). We run the tests on the same fied “small” amount of local work. While the results for the
machine as the previous tests, with the publishers and thequantizing queue agree, the coarse-grained lock approach
subscribers running on the same system. In the figure weis the worst performer in Shavit and Zemach'’s experiment.
observe that for up to 8 threads we clearly have a betterHowever, we find it to be in the middle field, and in some
performance for the lock-free queues than for the coarse-scenarios even being one of the best.
locked queue. As soon as timesharing mode is entered, the Hunt et al. [11] use a fixed set of operations for



their experiment, either insertion-only, deletion-onty;

a insertion/deletion-pair test. They compare their fine-
grained locking with the traditional coarse-locking ap-
proach, where each process conducts “significant real
work” between operations on the queues. Their experiments
with empty or small initial queue size are comparable to
ours and also match the result in that the coarse grained
locking approach outperforms the fine-grained locking ap-
proach. Hunt et al. show that fine-grained locking outper-
forms coarse grained locking for queue sizes that are larger [3]
than 100,000 elements. Note that we did not conduct tests
for queues with more than 10,000 elements.

(1]

(2]

Sundell and Tsigas [17] compare their skip-list imple-

mentation with Hunt’s algorithm on machines ranging from )
2 to 64 processors. In line with our results, they find that
Hunt’s algorithm exhibits worse performance than the skip- [5]
list implementation, both with respect to absolute number
as well as scalability in the number of threads. However, 5
we cannot confirm the level of scalability reported for the [6]
skip-list. We observe a scalability that is noteworthy buoit n 7]
outstanding.
5 Summary and Conclusion (8]
Using the example of a concurrent priority queue, we
have investigated different approaches to concurrency con
trol, i.e. traditional lock-based approaches and lock-fik (9]

gorithms as well as an algorithm based on the software
transactional memory model. We have characterized the
properties and discussed the correctness condition of each
algorithm. In addition, we have evaluated the performance [10]
of the algorithms using several benchmarks that where car-
ried out on a eight-core machine. To the best of our knowl-
edge, this performance discussion is wider and compares[ll]
more implementation techniques in a homogeneous envi-
ronment than what has been done before.

We find that the highest performance is achieved by [12]
the coarse-locked binary heap when executed by a single
thread, i.e. when the costs for concurrency control are neg-
ligible due to the thin-locks used by Java. When accessed!*?!
by multiple threads, the quantizing queue followed by the
lock-free skip-list provide the best performance. While the
guantizing queue shows good scalability, it also has a Inighe

variance and is, in contrary to the skip-list, not lineabiza [14]

Finally, we also observe that the Linux process sched-
uler has a significant effect on the performance. In most
cases, the CPU-hopping effect has a higher impact on the(; g,
performance than the actual implementation itself i.e- pin
ning threads to CPU cores yields significant improvements
in performance.
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