
EFFICIENT DISCRETE EVENT SIMULATION

OF SPIKING NEURONS IN NEURON

N.T. Carnevale1* and M.L. Hines2

Departments of 1Psychology and 2Computer Science

Yale University, New Haven, CT 06520

Abstract 312.10 AA−34

Carnevale and Hines Discrete event simulations in NEURON Page 1

Abstract

Recent releases of NEURON can perform efficient discrete event simulations
of networks of integrate−and−fire spiking neurons, as well as hybrid simulations
involving both integrate−and−fire neurons and cells with voltage−gated
conductances. This is made possible by NEURON’s event delivery system, which
opens up a large domain of problems in which certain types of "artificial" spiking
cells, and networks of them, can be simulated hundreds of times faster than with
numerical integration. Discrete event simulations are possible when all state
variables of a model cell can be computed analytically from a new set of initial
conditions. Computations are performed only when an event occurs, so total
computation time is proportional to the number of events delivered, and is
independent of the problem time and the numbers of cells and connections. Thus
a simulation that involves 105 spikes in 1 hour for 100 cells takes the same time
as one with 105 spikes in 1 second for 1 cell. The three classes of integrate−and−
fire neurons built into NEURON are leaky integrators that differ in their response
to input events. An input of weight w to an IntFire1 cell makes its "membrane
potential" jump instantaneously by that amount. IntFire2 integrates a steady bias
current plus a net synaptic current with first order kinetics that is driven by input
events. Excitatory events to IntFire3 drive a "depolarizing" current with fast first
order kinetics, while inhibitory events drive a "hyperpolarizing" current with
slower, second order kinetics.

Introduction

The NEURON simulation environment was initially developed to handle
neuronal models in which complex membrane properties and extended geometry
play important roles (Hines 1989; 1993; Hines and Carnevale 1995). However,
NEURON has continued to evolve to address the evolving research needs of
experimental and theoretical neuroscientists. For most of the past decade it has
been used to model networks of biological neurons, e.g. (Destexhe et al. 1993;
Lytton et al. 1997; Sohal et al. 2000). This work stimulated the development of
powerful strategies that increase the convenience and efficiency of creating,
managing, and exercising such models (Destexhe et al. 1994; Lytton 1996; Hines
and Carnevale 2000). Further enhancements have been prompted by increasing
research on networks of spiking neurons, e.g. (Maas and Bishop 1999; Riecke et
al. 1997), so that the most recent releases of NEURON are capable of efficient
discrete event simulations of networks of "artificial" (integrate and fire) spiking

Carnevale and Hines Discrete event simulations in NEURON Page 2

neurons, as well as hybrid simulations of nets whose elements include both
artificial neurons and neuron models with membrane currents governed by
voltage−gated ionic conductances. Here we show how discrete events are used in
NEURON to implement three broad classes of integrate and fire neurons.

NEURON’s event delivery system

NEURON’s event delivery system opens up a large domain of discrete event
simulations in which certain types of "artificial" spiking cells, and networks of
them, can be simulated hundreds of times faster than with numerical integration.
Discrete event simulations are possible when all state variables of a model cell
can be computed analytically from a set of initial conditions. That is, if an event
occurs at time t1, all state variables must be computable from the state values and

time t0 of the previous event. Since computations are performed only when an

event occurs, run time is proportional to the number of events delivered and
independent of the number of cells, number of connections, or problem time.
Thus handling 100,000 spikes in one hour for 100 cells takes the same time as
handling 100,000 spikes in 1 second for 1 cell.

The NetCon (Network Connection) class is the portion of the event delivery
system that is used to define connections between cells. A NetCon object watches
its source cell for the occurrence of a spike event and then, after some time delay,
delivers a weighted synaptic input event to a target cell. That is, the NetCon
object represents axonal spike propagation and synaptic delay. More generally, it
can be thought of as a channel that transmits a stream of events from a source to a
target. The implementation of this service takes into account the fact that the
delay between initiation and delivery of events is different for different streams.
Consequently the order in which events are generated by a set of sources is rarely
the order in which they are received by a set of targets. Furthermore the delay
may be anything in the range [0, 109].

Three classes of integrate and fire cells

Recent releases of NEURON have three broad classes of integrate and fire
cells built in. Handling of incoming events and the calculations necessary to
generate outgoing events are specified using the NET_RECEIVE block of
NEURON’s model description language NMODL (Hines and Carnevale 2000).
Artificial cells are implemented as point processes that serve as both targets and

Carnevale and Hines Discrete event simulations in NEURON Page 3

sources for NetCon objects. They are targets because they have a NET_RECEIVE
block, which handles discrete event input streams through one or more NetCon
objects. They are also sources because the NET_RECEIVE block also generates
discrete output events which are delivered through one or more NetCon objects.

Computer code listings have been edited to remove unnecessary detail for the
sake of clarity; omissions are marked by ellipsis . . . and italics. Complete source
code for all mechanisms described here are included with NEURON, which is
available at no charge from http://www.neuron.yale.edu

IntFire1: a basic integrate and fire model

NEURON’s simplest built−in integrate and fire mechanism is IntFire1, which
has a "membrane potential" state m which decays toward 0 with time constant τ.

τ dm

dt
+ m = 0 Eq. 1

An input event of weight w adds instantaneously to m, and when m ≥ 1 the cell
"fires," producing an output event and returning m to 0. Negative weights are
inhibitory while positive weights are excitatory. This is analogous to an
electrotonically compact cell whose membrane time constant τ is very long
compared to the time course of individual synaptic conductance changes. Every
synaptic input quickly shifts membrane potential to a new level, and each cell
firing erases all traces of prior inputs. Listing 1 shows an initial implementation
of this model.

The response of an IntFire1 cell with τ = 10 ms to input events is shown in
Fig. 1. The events arrive at t = 5, 22, and 25 ms, each with a weight w = 0.8. The
third input triggers a spike. The plot of m in Fig. 1 top looks like a staircase
because this variable is evaluated only when a new input event arrives. A function
can be included in the mod file that defines IntFire1 to give a better indication of
the time course of the integration state m. Plotting this function during a
simulation with fixed time steps (dt = 0.025 ms, Fig. 1 middle) demonstrates the
exponential decay of m between input events. In a simulation run with variable
time steps (Fig. 1 bottom), the decay appears to follow a sequence of linear
ramps. This is only an artifact of the Graph tool drawing lines between the points
computed analytically at the time steps chosen by the integrator.

Note: Many of these graphs show smooth plots to facilitate
visualization of integrate and fire mechanisms, e.g. M in Fig. 1.

Carnevale and Hines Discrete event simulations in NEURON Page 4

However, we must emphasize that the simulation calculations are
analytic and are performed only at event arrival, regardless of
esthetic graphical refinements.

Adding a relative refractory period to IntFire1 is as simple as initializing m to
a negative value after the cell fires. Alternatively, a depolarizing afterpotential can
be emulated by initializing m to values in the range (0, 1).

The IntFire1 built into NEURON has an absolute refractory period that makes
use of a special feature of NEURON’s event delivery system called self−events.
A PARAMETER named refrac specifies the duration of the refractory period and
an ASSIGNED variable called refractory keeps track of whether or not the
mechanism is in the refractory period.

Listing 2 shows a NET_RECEIVE block that implements an absolute refractory
period. If refractory equals 0, the cell accepts external events (i.e. events
delivered by a NetCon) and calculates the state and whether to fire the cell. When
the cell fires a spike, refractory is set to 1 and further external events are
ignored. The flag variable is a keyword which is defined as 0 when an external
event is received. If its value is non−zero, it must have been set by a call to
net_send() when the cell fired. The net_send(interval, flag) statement
places an event into the delivery system as an "echo" of the current event, i.e. it
will come back to the sender after the specified interval and with the specified
flag. In this case we aren’t interested in the weight but only the flag. When this
self−event comes back, it means that the refractory period is over.

Figure 2 illustrates an IntFire1 with a refractory interval of 5 ms subjected to a
train of inputs with weight w = 0.4 at 3 ms intervals (arrows). The fourth input,
which occurs at 11 ms, drives the cell above firing threshold. The M function of
this mechanism imitates the appearance of a spike by following a suggestive
stereotyped time course, but it should be recalled that this is a purely cosmetic
feature that has nothing to do with the computation of the actual state m. During
the refractory interval, the cell is unresponsive to further inputs. At 16 ms
refractory falls to 0, as does M, and the cell is once again responsive to input
events.

Sending an event to oneself involves very little overhead, yet it allows
elaborate calculations to be performed much more efficiently than if they were
executed on a per dt basis. This is exploited in the implementation of two other
built−in integrate and fire mechanisms that offer greater kinetic complexity than
IntFire1.

Carnevale and Hines Discrete event simulations in NEURON Page 5

NEURON {
 POINT_PROCESS IntFire1
 RANGE tau, m
}

PARAMETER { tau = 10 (ms) }

ASSIGNED {
 m
 t0 (ms)
}

INITIAL {
 m = 0
 t0 = 0
}

NET_RECEIVE (w) {
 : calculate present m analytically
 m = m*exp(−(t − t0)/tau)
 : increment by weight of event
 m = m + w
 : keep track of last event time
 t0 = t
 if (m >= 1) {
 : threshold exceeded
 net_event(t)
 m = 0
 }
}

Listing 1: Initial implementation of IntFire1

Calculations take place here only when a
NetCon delivers a new event. There is no
BREAKPOINT or SOLVE block to be
executed at every dt

Notify all NetCon objects for which this
point process is a source that it fired a spike
at time t. Then reset m to 0.

Carnevale and Hines Discrete event simulations in NEURON Page 6

Figure 1

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].m

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].M

0 10 20 30
0

0.2

0.4

0.6

0.8

1
IntFire1[0].M

Carnevale and Hines Discrete event simulations in NEURON Page 7

NET_RECEIVE (w) {
 if (refractory == 0) {
 : accept external events
 m = m*exp(−(t − t0)/tau)
 m = m + w
 t0 = t
 if (m >= 1) {
 net_event(t)
 refractory = 1
 net_send(refrac, refractory)
 m = 2 : imitation "spike"
 }
 } else if (flag == 1) {
 refractory = 0
 m = 0
 t0 = t
 } : else ignore the external event
}

Listing 2: Adding refractoriness to IntFire1

Issue a self−event that will
arrive after refrac ms,
tagged with flag == 1

Detect and respond
to self−event

Carnevale and Hines Discrete event simulations in NEURON Page 8

Figure 2

0 5 10 15 20

−1

0

1

2
IntFire1[0].M

Carnevale and Hines Discrete event simulations in NEURON Page 9

IntFire2: firing rate proportional to input

The IntFire2 mechanism, like IntFire1, has a "membrane potential" state m that
follows first order kinetics with time constant τm. However, an input event to

IntFire2 does not have an immediate effect on m. Instead it produces a
discontinuous change in the net synaptic current i. Between events, i decays with
time constant τs toward a steady input current of magnitude ib. That is,

τ
s

di

dt
+ i = i

b
Eq. 2

where an input event causes i to change abruptly by w (Fig. 3 top). This
piecewise continuous current i drives m so that

τ
m

dm

dt
+ m = i Eq. 3

where τm < τs. Thus an input event produces a more gradual change in m that is

described by two time constants and approximates an alpha function if τm ≈ τs.

When m crosses a threshold of 1 in a positive direction, the cell fires, m is reset to
0, and integration resumes immediately (Fig. 3 bottom). Note that i is not reset to
0, i.e. cell firing does not obliterate all traces of prior synaptic activation, as it did
in the IntFire1 mechanism.

Depending on its parameters, IntFire2 can emulate a wide range of relation−
ships between input pattern and firing rate. The firing rate is approximately i / τm

if i is >> 1 and changes slowly compared to τm.

The ib current is analogous to the combined effect of a baseline level of

synaptic drive plus a bias current injected through an electrode. The requirement
that τm < τs is equivalent to asserting that the membrane time constant is faster

than the decay of the current produced by an individual synaptic activation. This
is plausible for slow inhibitory inputs, but where fast excitatory inputs are
concerned an alternative interpretation can be applied: each input event signals an
abrupt increase (followed by an exponential decline) in the mean firing rate of
one or more afferents that produce brief but temporally overlapping postsynaptic
currents. The resulting change of i is then the moving average of these currents.

Carnevale and Hines Discrete event simulations in NEURON Page 10

The IntFire2 mechanism is amenable to discrete event simulations because
Equations 2 and 3 have analytic solutions. If the last input event occurred at time
t0 and the values of i and m immediately after that event were i(t0) and m(t0), then

their subsequent time course is given by

i t = i
b
+ i t

0
Bi

b
e
B tBt

0
⁄ τ

s Eq. 4

and

m t = i
b
+ i t

0
Bi

b

τ
s

τ
s
Bτ

m

e
B tBt

0
⁄ τ

s

 + m t
0
B i

b
B i t

0
Bi

b

τ
s

τ
s
Bτ

m

e
B tBt

0
⁄ τ

m

Eq. 5

At the core of the implementation of IntFire2 is the function firetime(),
which is discussed below. This function projects when m will equal 1 based on
the present values of ib, i, and m, assuming that no new input events arrive. The

value returned by firetime() is 109 if the cell will never fire with no additional
input. Note that if ib > 1 the cell fires spontaneously even if no input events occur.

NMODL syntax includes an INITIAL block (Listing 3) whose statements are
executed when a simulation is initialized (Hines and Carnevale 2000). The
INITIAL block in IntFire2 calls firetime() and uses the returned value to put a
self−event into the delivery system. The strategy, which is spelled out in the
NET_RECEIVE block, is to respond to input ("external") events by moving the
delivery time of the self−event back and forth with the net_move() function.
When the self−event is finally delivered (potentially never), net_event() is
called to signal that this cell is firing. Notice that external events are never
ignored (and shouldn’t be even if we introduced a refractory period where we
refused to integrate m) but always have an effect on the value of i.

The function firetime() returns the first t ≥ 0 for which

a + b e
Bt ⁄ τ

s + c B a B b e
Bt ⁄ τ

m = 1 Eq. 6

where the parameters a, b and c are defined by the coefficients in Eq. 5a. If there
is no such t the function returns 109. This represents the time of the next cell

Carnevale and Hines Discrete event simulations in NEURON Page 11

firing, relative to the time t0 of the most recent synaptic event. Since this

computation must be performed on every input event, it is important to minimize
the number of Newton iterations.

For this we use a strategy that depends on the behavior of the function

f1(x) = a + b xr + (c − a − b) x where x = e−t/τm and r = τm/τs Eq. 7a

over the domain 0 < x ≤ 1. Note that c < 1 is the value of f1 at x = 0 (i.e. at t = ∞).

This function f1 has the advantage of being either linear in x (if b = 0) or convex

up (b > 0) or down (b < 0) with no inflection points. Since r < 1, f1 is tangent to

the y axis for any nonzero b (i.e. f1´(0) is infinite).

Figure 4 top illustrates the qualitative behavior of f1 for a ≤ 1. It is easy to

analytically compute the maximum in order to determine if there is a solution to
f1(x) = 1. If a solution exists, f1 is concave downward so Newton iterations

starting at x = 1 underestimate the firing time.

For a > 1, a solution is guaranteed. However, Newton iterations starting at
x = 1 are inappropriate if the slope there is more negative than c − 1 (dashed line

in Fig. 4 middle). In that case, the transformation x = e
Bt ⁄ τ

s is used, giving the
function

f2(x) = a + b x + (c − a − b) x1/r Eq. 7b

and the Newton iterations begin at x = 0 (Fig. 4 bottom).

Since iterations are performed over regions in which f1 and f2 are relatively

linear, firetime() usually requires only two or three Newton iterations to
converge to the next firing time. The only exception is when f1 has a maximum

that is just slightly larger than 1, in which case it may be a good idea to stop after
a couple of iterations and issue a self−event. The advantage of this strategy is that
it defers a costly series of iterations and allows an interval in which another
external event might arrive that would force computation of a new projected
firing time. Such an event, regardless of whether excitatory or inhibitory, would
very likely make it easier to compute the next firing time.

Carnevale and Hines Discrete event simulations in NEURON Page 12

Figure 3

0 50 100 150
0

0.5

1

1.5

2 ib = 0.2

w = 1.4

IntFire2[0].I

0 50 100 150
0

0.2

0.4

0.6

0.8

1 IntFire2[0].M

τm = 10 ms, τs = 20 ms, ib = 0.2, w = 1.4

Carnevale and Hines Discrete event simulations in NEURON Page 13

INITIAL {
 . . .
 net_send(firetime(args), 1)
}

NET_RECEIVE (w) {
 . . .
 if (flag == 1) { : time to fire
 net_event(t)
 m = 0
 . . .
 net_send(firetime(args), 1)
 } else {
 . . .
 compute new value of m
 if (m >= 1) {
 net_move(t) : fire now
 } else {
 . . .
 net_move(firetime(args) + t)
 }
 }
 update t0 and assign new value to i
}

Listing 3: IntFire2

Carnevale and Hines Discrete event simulations in NEURON Page 14

Figure 4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
b = 4

2

1

0

−1

x

a = 0.2

c = 0.9

r = 0.5

f (x)
1

x
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

−0.8

b = 0.8

0

−2.4
1+(c−1)x

a = 1.5

c = 0.3

r = 0.5

f (x)
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

b = −2.4

a = 1.5

r = 0.5

c = 0.3

(x)f2

x

Carnevale and Hines Discrete event simulations in NEURON Page 15

IntFire4: different synaptic time constants

While the dynamics of IntFire2 are more complex than IntFire1, they are
restricted in that the response to any external event, whether excitatory or
inhibitory, has the same kinetics. As we pointed out in the discussion of IntFire2,
it is possible to interpret excitatory events in a way that partially sidesteps this
issue. However, experimentally observed synaptic excitation tends to be faster
than inhibition so a more flexible integrate and fire mechanism is needed.

The IntFire4 mechanism addresses this need. Its dynamics are specified by
four time constants: τe for a fast excitatory current, τi1 and τi2 for a slower

inhibitory current, and τm for the even slower leaky "membrane" which integrates

these currents. When m reaches 1, the cell "fires," producing an output event and
returning m to 0. This does not affect the other states of the model.

IntFire4 is governed by the differential equations

de

dt
=Bk

e
e Eq. 8

di
1

dt
=Bk

i1
i
1

Eq. 9

di
2

dt
=Bk

i2
i
2
+ a

i1
i
1

Eq. 10

dm

dt
=Bk

m
m + a

e
e + a

i2
i
2

Eq. 11

where each k is a rate constant that equals the reciprocal of the corresponding
time constant, and it is assumed that ke > ki1 > ki2 > km. An input event with

weight w > 0 (i.e. an excitatory event) adds instantaneously to the excitatory
current e. Equations 9 and 10, which define the inhibitory current i2, are based on

the reaction scheme

i
1
→

k
i1

i
2
→

k
i2

bath Eq. 12

in which an input event with weight w < 0 (i.e. an inhibitory event) adds

Carnevale and Hines Discrete event simulations in NEURON Page 16

instantaneously to i1. The constants ae, ai1, and ai2 are chosen to normalize the

response of the states e, i1, i2, and m to input events (Fig. 5). Therefore an input

with weight we > 0 (an "excitatory" input) produces a peak e of we and a

maximum "membrane potential" m of we. Likewise, an input with weight wi < 0

(an "inhibitory" input) produces an inhibitory current i2 with a minimum of wi
and drives m to a minimum of wi. Details of the analytic solution to these

equations are presented in an Appendix which can be obtained from
http://www.neuron.yale.edu/neuron/bib/nrnpubs.html

IntFire4, like IntFire2, finds the next firing time through successive
approximation. However, IntFire2 generally iterates to convergence every time an
input event is received, whereas the algorithm used by IntFire4 exploits the
convexity of the trajectory of m so that single Newton iterations alternating with
self−events converge to the correct firing time. Specifically, if an event arrives at
time t0, then values of e(t0), i1(t0), i2(t0), and m(t0) are calculated analytically.

Should m(t0) be subthreshold, the self−event is moved to a new approximate

firing time tf that is based on the slope approximation to m

tf = t0 + (1 − m(t0)) / m’(t0) if m’(t0) > 0 Eq. 13

or
∞ if m’(t0) ≤ 0

This is illustrated in Fig. 6 top where the arrow marks arrival of an external
event. Although Eq. 13 predicts a finite tf, this input is too weak to drive the cell

to fire. The vertical lines indicate self−events, at which new Newton iterations are
performed. If m’ < 0 immediately after an input event, as in Fig. 6 middle, both tf
and the true firing time are infinite.

If instead m(t0) reaches threshold, the cell "fires," generating a net_event

and setting m to 0. The self−event is then moved to an approximate firing time
that is computed from Eq. 13 using the values assumed by m and m’ immediately
after the "spike." This is shown in Fig. 6 bottom, where the slope approximation
after the excitatory event is not marked, but the response clearly crosses threshold
(asterisk). Following the spike, m is reset to 0 but bounces back because of
persistent excitatory current. This dies away without eliciting a second spike,
even though tf is finite (dashed line).

Carnevale and Hines Discrete event simulations in NEURON Page 17

We use this approach for several reasons. First, tf is never later than the true

firing time. This stipulation is of central importance because the simulation would
otherwise be in error. Second, successive approximations must converge rapidly
to the true firing time, in order to avoid the overhead of a large number of self−
events. Using the slope approximation to m is equivalent to the Newton method
for solving m(t) = 1, so convergence is slow only when the maximum value of m
is close to 1. Finally, the use of a series of self−events is superior to carrying out a
complete Newton method solution because it is most likely that external input
events will arrive in the interval between firing times. Each external event would
invalidate the previous computation of firing time and force a recalculation. This
might be acceptable for the IntFire2 mechanism with its efficient convergence,
but the complicated dynamics of IntFire4 suggest that the cost would be too high.
How many iterations should be carried out per self−event is an experimental
question, since the self−event overhead depends partly on the number of
outstanding events in the event queue.

Carnevale and Hines Discrete event simulations in NEURON Page 18

Figure 5

0 20 40 60 80 100

−0.5

−0.3

−0.1

0.1

0.3

0.5 e

2
i

0 20 40 60 80 100

−0.5

−0.3

−0.1

0.1

0.3

0.5 m

IntFire4 responses to individual events with w = 0.5 and −0.5.

τe = 3 ms, τi1 = 5 ms, τi2 = 10 ms, τm = 30 ms

Carnevale and Hines Discrete event simulations in NEURON Page 19

Figure 6

1

0

1

Carnevale and Hines Discrete event simulations in NEURON Page 20

Examples using integrate and fire neurons

A ring of inhibitory neurons driven by noisy excitatory input can produce a
noisy but cyclic firing pattern if the ring contains an odd number of neurons
(Friesen and Friesen 1994). Executing the model shown here for 300,000 ms
(>300,000 received events) required 30 seconds of runtime on a 2.2 GHz P4 with
512 MB RAM.

Ring of inhibitory interneurons driven by
noisy excitatory afferents.

S are NetStim with interval 3ms, noise 0.2
IF1 are IntFire1 with tau 19ms, refrac 1ms

IF10 IF11

IF12

S3

S4

S5

Circles indicate synaptic terminals.
Weights S−>IF1 0.6, IF1−>IF1 −1.5
All delays 1ms

0 100 200 300

S5

S4

S3

IF12

IF11

IF10

ms

A scaled−down version of the Hopfield−Brody network (Hopfield and Brody
2000; 2001) was implemented with 401 IntFire4 cells that had been modified by
including an absolute refractory interval. The figures below demonstrate typical
activity of the trained net during a recognition task: afferent spike trains (top), m
in an α cell (middle), and m in a γ cell (bottom). The particular simulation shown
here took 16 seconds to run, during which there was a total of 250,970 received

Carnevale and Hines Discrete event simulations in NEURON Page 21

events (63,785 self−events, 96,618 excitatory input events, and 90,567 inhibitory
input events).

0 200 400 600 800 1000
0

50

100

150

200

ms

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1 alphac[0][0].M

ms

0 200 400 600 800 1000

−4

−3

−2

−1

0

1
gamma.M

ms

Carnevale and Hines Discrete event simulations in NEURON Page 22

Discussion

NEURON’s application domain now extends beyond continuous system
simulations of models of individual neurons with complex anatomical and
biophysical properties, to encompass discrete−event and hybrid simulations that
combine "biological" and "artificial" neuronal models. The integrate−and−fire
models presented here are distributed as part of the NEURON simulation
environment, which is available from http://www.neuron.yale.edu at no
charge.

Since NEURON’s library of mechanisms is extensible through the NMODL
programming language (Hines and Carnevale 2000), these mechanisms can be
modified to add new features, and other formulations of artificial neuron models
that have analytic solutions can be added by users as the need arises. For
example, revisions of IntFire1 and 2 that implement short−term use−dependent
plasticity as described by (Tsodyks et al. 2000) and (Varela et al. 1997) have
already been made available at ModelDB
http://senselab.med.yale.edu/senselab/modeldb/

Acknowledgment

This work was supported by: NIH grant NS011613.

References

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J.. An efficient method for
computing synaptic conductances based on a kinetic model of receptor
binding. Neural Computation 6:14−18, 1994.

Destexhe, A., McCormick, D.A., and Sejnowski, T.J.. A model for 8−10 Hz
spindling in interconnected thalamic relay and reticularis neurons. Biophys. J.
65:2474−2478, 1993.

Friesen, W.O. and Friesen, J.A.. NeuroDynamix. Oxford University Press, New

York, 1994.

Hines, M.. A program for simulation of nerve equations with branching

geometries. Int. J. Bio−Med. Comput. 24:55−68, 1989.

Carnevale and Hines Discrete event simulations in NEURON Page 23

Hines, M.. NEURON−−a program for simulation of nerve equations, in Neural
Systems: Analysis and Modeling, ed. F. Eeckman, Kluwer, Norwell, MA,
1993, pp. 127−136.

Hines, M. and Carnevale, N.T.. Computer modeling methods for neurons, in The
Handbook of Brain Theory and Neural Networks edition 1, ed. M.A. Arbib,
MIT Press, Cambridge, MA, 1995, pp. 226−230.

Hines, M.L. and Carnevale, N.T.. Expanding NEURON’s repertoire of
mechanisms with NMODL. Neural Computation 12:839−851, 2000.

Hopfield, J.J. and Brody, C.D.. What is a moment? "Cortical" sensory integration
over a brief interval. PNAS 97:13919−13924, 2000.

Hopfield, J.J. and Brody, C.D.. What is a moment? Transient synchrony as a
collective mechanism for spatiotemporal integration. PNAS 98:1282−1287,
2001.

Lytton, W.W.. Optimizing synaptic conductance calculation for network
simulations. Neural Computation 8:501−509, 1996.

Lytton, W.W., Contreras, D., Destexhe, A., and Steriade, M.. Dynamic
interactions determine partial thalamic quiescence in a computer network
model of spike−and−wave seizures. J. Neurophysiol. 77:1679−1696, 1997.

Maas, W. and Bishop, C.M., eds.. Pulsed Neural Networks. MIT Press,
Cambridge, MA, 1999.

Riecke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W.. Spikes:
Exploring the Neural Code. MIT Press, Cambridge, MA, 1997.

Sohal, V.S., Huntsman, M.M., and Huguenard, J.R.. Reciprocal inhibitory
connections regulate the spatiotemporal properties of intrathalamic
oscillations. J. Neurosci. 20:1735−1745, 2000.

Tsodyks, M., Uziel, A., and Markram, H.. Synchrony generation in recurrent
networks with frequency−dependent synapses. J. Neurosci. 20:1−5, 2000.

Varela, J.A., Sen, K., Gibson, J., Fost, J., Abbott, L.F., and Nelson, S.B..
A quantitative description of short−term plasticity at excitatory synapses in
layer 2/3 of rat primary visual cortex. J. Neurosci. 17:7926−7940, 1997.

Carnevale and Hines Discrete event simulations in NEURON Page 24

