N2S3: User Guide

June 30, 2015

1 Getting started

1.1 Requirements
1.1.1 Java virtual Machine

First of all, you will need a Java Virtual Machine in order to run N2S3.
See : http://www.oracle.com/technetwork/java/javase/downloads/index.html
(JDK and JRE)

1.1.2 Simple Build Tool

In order to manage easily the requiert packages, you have to install sbt :
http://www.scala-sbt.org/release/tutorial /Setup.html
1.1.3 Integrated Development Environment

Choose your own favorite IDE for scala programming, for example : http://scala-

ide.org/.

You can also add the plugin into already installed eclipse from the market-
place.

1.1.4 Subversion

In order to checkout the project repository, you must have a subversion client
installed on your computer : https://subversion.apache.org/ or sudo apt-get
install svn.

The command to checkout is : svn checkout http://forge.lifl.fr/Emeraude/svn/main/Software /N2S3v2

1.2 Starting

After you pulled the project from the svn repository, you must build a sbt
project for your eclipse. Open a terminal (or a cmd for window user), place
you in the directory of N2S3, and type : sbt eclipse. It will download all the
packages that are required for running the simulator.



You just have to add N2S3 project to your workspace in order to run it. You
can create a new Scala Project with the same name if N2S3 is in your workspace,
or you can use file -> import -> existing project into workspace
1.3 Example

Some example are provided, in experiment package. Such as VerticalMove(Dsl).scala,
that will build a simple network in order to recognize if a pixel are going up or
down.

You can see a description of the Domain Specific Language at the section 3

2 General Architecture

2.1 Packages

N2S3 contains sereval packages :

e core contains main common feature essential for simulator working

e models should contains different implemented models of neural network.
this package extends the core package

e features contains additionnal functionality of the network (logging, visu-
alisation)

e experiments contains user trying. this package use models and features

package

2.2 Awvailable features

3 Domain Specific Language

Experiment creation is done with command "Experiment.create(network :
Network)". After this one, several section are possible. Here is an example :

Experiment.create(new Network)
.configuration{ config => } // Configuration section
.topology{ topology => } // Topology section
.stage { stage => } // Stage section

Order of section are not important, but number of them is : It can be only
one configuration and topology section, but 0 or more stage section.

For run the experiment, you simply need to call command execute() after all
your section.



3.1 Configuration section

Section configuration allow to set global parameter of the experiment. here
is the list of the available command :

e name : set name of the experimentation

e synchronizer : set the synchronizer manager type used in the simulation

Example of a configuration section :

Experiment.create(new Network)
.configuration{ config =>
config name "My Experiment"
config synchronizer new MonoSynchronizer
config neuron NeuronThreshold(5 Volt)

3.2 Topology section

This section used to construct the network topology. A network is composed
of input and layer. Each of them is identified by a string.

For add an input, the line command is "topology input("Input name") of Type
..." for the moment, there are three types of input : Simplelnput, MnistFile and
AERFile

e Simplelnput which can send pre-synaptic and post-synaptic spike to an
unique neuron

e MnistFile which can read in the mnist database file and send event on
neurons of a layer

e MnistFile which can read an AER file and send event on neurons of a layer

Example of the inputs

Experiment.create(new Network)
.topology{ topology =>
// Simple Input which can be connected to only one neuron
topology input "Input 1" ofType SimpleInput() connectedTo
Neuron("Input Layer", 0)

// Mnist
topology input "Input 2" ofType MnistFile()
from("images.idx3-ubyte", "labels.idxl-ubyte") connectedTo

Layer ("Input Layer")

// Address Event Representation

topology input "Input 3" ofType AERFile() from "data/file.aer"
ofSize(width = 128, height=128) withAddress
RetinaWithSignedSpikeInitialize.apply connectedTo
Layer("Input Layer")



It is possible to set parameters of the model depending layers. But available
property depend of which are implemented in used model.

Here is an example of topology section :

.topology { net =>
net input("Input Tmpdiff128") ofType AERFile() from
"data/aerdata/freeway.mat.dat" ofSize(width = 128,
height=128) withAddress
RetinaWithSignedSpikeInitialize.apply connectedTo
Layer("Hidden Layer")

net layer("Hidden Layer") has(neuron = 60, target =
"Qutput Layer")
net onLayer("Hidden Layer") set NeuronThreshold(500 Volt)
net onLayer("Hidden Layer") set NeuronRefractory(300 MilliSecond)
net onLayer("Hidden Layer") set NeuronInhibitRefractory (50
MilliSecond)

net onLayer("Hidden Layer") set SynapseLTP(12 MilliSecond)
net onLayer("Hidden Layer") set SynapseLeak(450 MilliSecond)

net layer("Output Layer") has(neuron = 10)

net onLayer("Output Layer") set NeuronThreshold(1.5 Volt)

net onLayer("Output Layer") set NeuronRefractory(250 MilliSecond)

net onLayer("Output Layer") set NeuronInhibitRefractory(100
MilliSecond)

net onLayer("Output Layer") set SynapseLTP(300 MilliSecond)
net onlLayer("Output Layer") set SynapseLeak(300 MilliSecond)

3.3 Result section

This section is optionnal and it use to add a logger on result of the network.
Here, an example of usage for vertical move example :

.result { result =>
result init Array("Up","Down")

}

You must manage it during the experimentation in two steps : Learning and
Testing

3.4 Stage sections

An experiment can have several stage. The different stage will be executed in
the order of declaration and in synchronous way (next stage will wait end of
simulation of the previous stage before start).

Stage allow to start different type of plot and log, to generate input and
some other stuff.



3.4.1 Input

In case of a manual input (without file for it), you must explicity send them :

stage onInput ("Pixel 1 +") providePostSynapticSpike (time = 2*i
MilliSecond, weight = 2 Volt)
stage onInput ("Pixel 2 -") providePostSynapticSpike (time = 2xi

MilliSecond, weight = 2 Volt)

3.4.2 Logging

You have some logger available for experimentations. Each of these logger are
used in the same way :

stage {plotl|log} ({name of the logger}) follow {Logging you want}
(betweenLayer|layer) ({names of layers}) (unit UnitTime)

Neurons Fire: stage plot ("Neuron Fire 0f OutputLayer") follow
NeuronFirePlot layer ("Output Layer")

It will build a plot of the layer named "Output Layer" on the neuron which
are fired.(NeuronFireLog to create a log file in output/log/neuronfire.log)

SynapsesWeight: stage plot ("Weight of Synapses of OutputLayer") follow
SynapseWeightPlot betweenLayer("Input Layer", "Output
Layer")

As the same way, but for the weights of synapses which link the Input
Layer and Output Layer. There is other logger available :

— SynapseWeightRepartPlot : it will build a graph with all weights of
synapses at the end of the simulation.(no need to precise which layer
you want, it will take the whole synapses of the network)

— Synapse WeightAtEndPlot : it will build a similar graph as Synapse Weight-
Plot but at the end of simulation(not during it). Be careful, you must
use a new stage at the end like this :

.stage { stage =>
stage onPlot("Synapse weight of output layer") run(O
MilliSecond, 1500 MilliSecond)
}

Parameters of run are the border of the graph you want(from 0 Mil-
liSecond to 1500 MilliSecond in this example). The name must match
with the declared Synapse WeightAtEndPlot.

Follow a simulation You can add a display of neurons which are firing using :

stage plot ("I/0") follow ActivitiesOfLayers topology (Array((20,
20, "Input Layer"), (2, 5, "Output Layer")))



topology keyword is waiting about an array of (Int,Int,String). The string
must match with layers declared in topology stage. You must provide
an (Int,Int,String) for each of them which the couple of Int represent the
dimension of the Rect (number of neurons) you want to display(must
match with the number of the layer (x*y=nbNeuronPerLay

Names of layers must match with layers declared in the topology section.

About the unit of time, you can use Second, MilliSecond and MicroSecond.
By default, all graph are in MilliSecond, but you can change this unit like this :

stage plot ("Weight of Synapses of OutputLayer") follow
SynapseWeightPlot betweenLayer ("Input Layer", "Output Layer") unit
Second

It will look for the same thing, but with Second as unit for the X axis.

3.4.3 Result

For each event, you must send to the logger result which one you give to the
network :

stage onResult() event("Up", 2*i MilliSecond)

The logger will count event and after the stage Learning, it will attribute a
label (which are in the Array given at the construction) at one neuron. After
the learning stage, you can pass in test stage like this :

stage onResult() test()

At the end of the test stage, you have a report in the console.

4 Write your own experiment in scala

4.1 Introduction

This section is only for scala user, which want to write their own experiment
in scala.

4.2 Basics
First of all, we will see how to create the network.
1: You need to build the network, as an object :

val net = new Network()

2: Then, you must describe the topology with a Seq[Int] :

net.nbNeuronPerLayer = Seq(4, 2)

3: Finally, you set the type of synchronization you want :



net.initiateNetwork(new MonoSynchronizer())

After that, you can add a specially layer manager. By default, the layer-
Manager do nothing. You can add inibition on a layer with a Winner Take All
manager as this :

net.setlLayerManager (1, net.system.actor0f (Props[WinnerTakeAll]))
To Remove it, you just put a default LayerManager :

net.setLayerManager (1, net.system.actor0f (Props[LayerManager]))

4.3 Input
4.3.1 Input from file

N2S3 provide two input from file : AER file, and file of handwritten digit from
Mnist database (see : http://yann.lecun.com/exdb/mnist/).

AER In order to use AER file, you must create the input generator like this :

val input = net.system.actor0f (Props(new InputJAERFile(net, filename,
0, 128, 128, RetinaWithSignedSpikeInitialize.apply)), name =
"Input")

It will build an actor InputJAERFile.

e net : the network of the experimentation

e filename : the path to the input file

e 0 : index of the target layer of the input

e 128,128 : the size of the input layer

e RetinaWithSignedSpikelnitialize.apply : the address mode
There is 3 address mode :

e Cochlealnitialize : for audio input

e Retinalnitialize : for DVS input, without difference between positive and
negative spike

e RetinaWithSignedSpikelnitialize : same as before, but with the difference
After that, you need to Initialize the input with :

Avwait.result(ask(input, Initialize()), timeout.duration)



Mmnist In the same way, you can read file from mnist database with this :

val input = net.system.actor0f (Props(new InputMnist(net,
"data/train-images.idx3-ubyte", "data/train-labels.idxl-ubyte", 1,
0)), name = "Input")

e net : the network of the experimentation

e string,string : these two string are the path for file to be read, one for
inputs themselves(array of spikes), and the other for the label for each
input

e 1 : the size of chunk of the file you want to read (more it is huge, more
the reading will be long, but less often)

e 0 : index of the target layer of the input
e boolean : a last parameters is available to switch between two mode
Mode of input :

o false(default) : It will transform the intensity of pixels into frequency
(more it is white, more we send spike)

e true : It will transform the weight of spike in function of the intensity of
the pixel.

Do not forget to Initialize (as for AER input) your actor.

4.3.2 Manual Input

As for Input from file, you must create an actor, and then ask to connect it to
the right neuron, because it won’t create a layer of input neuron as "automatic"
input. See the example :

val pixellPositive = net.system.actorOf (Props(new
SimpleInput (net.synchronizer.getSynchronizerOfInput())), name =
"Pixel_1_Positive")

First we create the actor, and then we connect it to the first neuron of the first
layer :

Await.result (ask(pixellPositive,
SimpleInputConnectWith(net.neuronsActorRef (0) (0))),
timeout.duration)

4.4 Logging/Monitoring

Now, let see how to monitor your experiment. All of logger are actor. Graph
can use different unit for the time : MicroSecond, MilliSecond and Second

4.4.1 Plot

You can create a lot of logger which will build plot during, or after the simula-
tion.



First, see the list of online plot :

e NeuronsPotentialsLogGraph : it will track the update of the potential of
neurons.

e NeuronsFireLogGraph : it will track the neurons which are firing
e SynapsesLogGraph : it will track the update of the weights of synapses.
Those Plots have the same construction :

NeuronsFireLogGraph(step: Int = 50, unit : TimeUnitType = MilliSecond)

By default, the step between two point is 50, and the unit of time is MilliSecond.
You can change them as the construction, or let by default:

val logger = net.system.actorOf (Props(new NeuronsPotentialsLogGraph()))
Here, without any parameters, it will take the default value.
val logger = net.system.actor0f (Props(new SynapsesLogGraph(10, Second)))

Here, I want a point each 10 Second on my plot.

After you build your actor, you must Subscribe him to want it have to look at
: Which neurons/synapses of which layers, and which event? Here, an example
of a way to Subscribe your logger :

for (i <- 0 until net.nbNeuronPerLayer (1))
net.neuronsActorRef (1) (i) ! Subscribe(NeuronFireEvent(), logger)

It will Subscribe logger to the NeuronFireEvent() of each neurons of the layer
L.

nbNeuronPerLayer and neuronsActorRef are members of the class Network.
nbNeuronPerLayer is an array, which contains the numbers of neuron for the
layer at the index i(net.NeuronPerLayer(1) returns the number of neurons in the
layer 1). In the same way, neuronsActorRef contains ActorRef for each neurons
in each layers (net.neuronsActorRef(i)(j) returns the ActorRef of the j neuron
in the i layer)

There is 3 event available :
e NeuronFireEvent() : When a neuron Fire.

e NeuronPotential() : When a potential of neuron change.

e SynapseWeightEvent(id) : When the id synapse of neuron change.

Now, see the list offline plot :

e SynapsesWeightRepartition(sync: ActorRef) : This actor will build a plot
at the end of the simulation of the whole last weight of synapses. You must
give him the synchronizer at the construction (Does not work with mutiple
synchronizer). You should Subcribe it to all synapses of the network to
have a great plot at the end :



for {

k <- 0 until net.nbNeuronPerLayer.size - 1

i <~ 0 until net.nbNeuronPerLayer (k)

j <= 0 until net.nbNeuronPerLayer(k + 1)

} yield {

Await.result (ask(net.neuronsActorRef (k) (i),
GetConnectionId(net.neuronsActorRef(k + 1)(j))),
timeout.duration) match {

case ReturnConnectionId(list) => list.foreach { id =>
net.neuronsActorRef (k + 1)(j) !
Subscribe (SynapseWeightEvent (id), loggerRepart) }

This code will Subscribe the logger to every synapses in the network.

e SynapsesGraph : This is graph is the same as the online(with same args
: SynapsesLogGraph) but you must send him a message to run :

loggerAtEnd ! Run(21000 MilliSecond, 26000 MilliSecond)
loggerAtEnd ! Run(0 MilliSecond, 10000 MilliSecond)

Here, it will display 2 plot, between the two borders you gave.

Finally, we will see the NeuronInputOutputGraph which it needs more ex-
plaination.

First of all, it is a online plot. It will display a black square for each neuron
in the network, and when one of them fire, it will turn to white. Let’s see the
args of the construction

class NeuronInputOutputGraph(net: Network, topo :
Array[(Int,Int,String)], input : ActorRef = null)
e net : Network of the simulation

e topo : An array which is contains the description of the network as you
want to display it with a name, for each layers.

e input : in case of use a Mnist input, you can give it to add it to the plot.

Here, see two example of construction :

val logger = net.system.actor0f (Props(new NeuronInputOutputGraph(net,
Array((20,20,"NO0") , (2,5,"N1")), input)))

val logger = net.system.actor0f (Props(new NeuronInputOutputGraph(net,
Array((1,4,"NO") , (1,2,"N1")))))

You don’t have to Subscribe it, it will do it itself to the whole neurons of the
network.

10



4.4.2 Log

In the same way, you record the change in the network into file (output/log).

e NeuronsFireLogText : will record in output/log/neuronfire.log neurons
which fires.

e NeuronsPotentialLogText : will record in output/log/neuron.log poten-
tials of neurons which changes.

e SynapsesLogText : will record in output/log/synapses.log weights of synapses
which changes.

Do not forget to Subcribe your logger at the event.

4.4.3 Result
There is a particular logger, which can test if a network learnt or not.

val loggerRes = net.system.actorOf (Props(new LogResult (output :
Array[ActorRef], label : Array[String]l)))

output is the layer of output of the network, and label is an array which is
contains labels (or pattern) that the network will recognize.

There is two step in this logger : Learning and Testing. You need to send to
it messages during the simulation :

® loggerRes !
Synchronization(net.synchronizer.getSynchronizer0fInput())

This message is used to know when to switch in the Testing stage.
e loggerRes ! EventTime("Up", i * 2 MilliSecond)

This one, provide to the logger which event you are sending to the network.
® net.synchronizer.waitComputation()

In order to have a perfect synchronization, you will need to wait the com-
putation(according to the Synchronization (1rst message))

® loggerRes !
TestKnowledge (net.synchronizer.getSynchronizer0fInput())

In order to mark the begin of the Testing stage.

At the end of the simlutation, you will a report in the console.

11



5 Create a new model

N2S3 allow you to create new neural network models. The main step is to
inherit from core.Network and override abstract function :

e createNeuron which build specialized model neuron

e sendInputEvent which manage an input reception

If models need more feature, it will need redefine more behavior

e XMLBuilder need to specialize construction of the network

Each models can define it’s own Property and event. Each property need to
inherit from Property class need to be process in the Neuron.processProperty
function for setting new values of properties.

Event need to be added via addEvent function. after that, each of them can
be trigger with triggerEvent function. This one will send the message given on
second parameter to all observer of this event.

A Example of Vertical Move in the DSL

object VerticalMoveDSL extends App {
type model = fr.cristal.emeraude.n2s3.models.qgbg.Network

Experiment.create(new model)

.configuration { config =>

config name "Dsl exemple"
config synchronizer new MonoSynchronizer

config neuron NeuronThreshold(l Volt)
}
.topology { net =>
net input ("Pixel 1 +") ofType SimpleInput() connectedTo
Neuron("Input Layer", 0)
net input ("Pixel 1 -") ofType SimpleInput() connectedTo
Neuron("Input Layer", 1)
net input ("Pixel 2 +") ofType SimpleInput() connectedTo
Neuron("Input Layer", 2)
net input ("Pixel 2 -") ofType SimpleInput() connectedTo
Neuron("Input Layer", 3)

net layer ("Input Layer") has (neuron = 4, target = "Output Layer")
net onLayer ("Input Layer") set NeuronThreshold(1l Volt)

net layer ("Output Layer") has (neuron = 2)
}
.result { result =>

result init Array("Up","Down")

12



.stage { stage =>
stage name "Learning"

stage plot ("Synapse Repartition") follow SynapseWeightRepartPlot

stage plot ("Weight of Synapses of OutputLayer") follow
SynapseWeightPlot betweenLayer("Input Layer", "Output Layer")
unit Second

stage plot ("Synapse Weight") follow SynapseWeightAtEndPlot
betweenlLayer ("Input Layer", "Output Layer")

stage log ("NeuronFire") follow NeuronFireLog layer ("Output Layer")

stage onLayer ("Output Layer") set WinnerTakeAllManager

for(i <- 0 to 5000) {
if (1% 2==0 {
stage onResult() event("Up", 2*i MilliSecond)
stage onInput ("Pixel 1 +") providePostSynapticSpike (time =
2xi MilliSecond, weight = 2 Volt)
stage onInput ("Pixel 2 -") providePostSynapticSpike (time =
2xi MilliSecond, weight = 2 Volt)
} else {
stage onResult() event("Down", 2%i MilliSecond)
stage onInput ("Pixel 1 -") providePostSynapticSpike (time =
2xi MilliSecond, weight = 2 Volt)
stage onInput ("Pixel 2 +") providePostSynapticSpike (time =
2xi MilliSecond, weight = 2 Volt)

}
.stage { stage =>
stage name "Testing"
stage onResult() test()
stage onLayer ("Output Layer") set NoManager

val r = scala.util.Random

for (i <- 0 to 5000) {
if (r nextBoolean ) {
stage onResult() event("Up", 4*i MilliSecond)
stage onInput ("Pixel 1 +") providePostSynapticSpike (time =
4xi MilliSecond, weight = 2 Volt)
stage onInput ("Pixel 2 -") providePostSynapticSpike (time =
4xi MilliSecond, weight = 2 Volt)
} else {
stage onResult() event("Down", 4%i MilliSecond)
stage onInput ("Pixel 1 -") providePostSynapticSpike (time =
4xi MilliSecond, weight = 2 Volt)
stage onInput ("Pixel 2 +") providePostSynapticSpike (time =
4xi MilliSecond, weight = 2 Volt)

13



.stage { stage =>
stage onPlot("Synapse Weight") run(0 MilliSecond, 1500 MilliSecond)
}

.execute

14



B Example of Vertical Move in Scala

object VerticalMove extends App {
println("Create Network ...")

val net = new Network()
net.nbNeuronPerLayer = Seq(4, 2)
net.initiateNetwork(new MonoSynchronizer())

println("Create inputs ...")

implicit val timeout = Timeout (10 seconds)
import ExecutionContext.Implicits.global

val pixellPositive = net.system.actor0f (Props(new
SimpleInput (net.synchronizer.getSynchronizerOfInput())), name
"Pixel_1_Positive")

Await.result(ask(pixellPositive,
SimpleInputConnectWith(net.neuronsActorRef (0)(0))),
timeout.duration)

val pixeliNegative = net.system.actor0f (Props(new
SimpleInput (net.synchronizer.getSynchronizerOfInput())), name
"Pixel_1_Negative")

Await.result(ask(pixellNegative,
SimpleInputConnectWith(net.neuronsActorRef (0)(1))),
timeout.duration)

val pixel2Positive = net.system.actor0f (Props(new
SimpleInput (net.synchronizer.getSynchronizerOfInput())), name
"Pixel_2_Positive")

Await.result (ask(pixel2Positive,
SimpleInputConnectWith(net.neuronsActorRef (0) (2))),
timeout.duration)

val pixel2Negative = net.system.actor0f (Props(new
SimpleInput (net.synchronizer.getSynchronizerOfInput())), name
"Pixel_2_Negative")

Await.result(ask(pixel2Negative,
SimpleInputConnectWith(net.neuronsActorRef (0)(3))),
timeout.duration)

println("Configure network ...")

//Inibition on the layer 1 (the output)
net.setlLayerManager(1, net.system.actor0Of (Props[WinnerTakeAll]))

//Create a logger Res

val loggerRes = net.system.actorOf (Props(new
LogResult (net.neuronsActorRef (net.nbNeuronPerLayer.size - 1),
Array("Up", "Down"))))

15



//Subscribing the logger res to the output neurons
for (i <- 0 until net.neuronsActorRef(1).length)
net.neuronsActorRef (1) (i) ! Subscribe(NeuronFireEvent(), loggerRes)

//Synchronization to change step (first learning)
loggerRes ! Synchronization(net.synchronizer.getSynchronizerOfInput())

//logger plot

val loggerAtEnd = net.system.actorOf (Props(new SynapsesGraph(5000)))

val logger = net.system.actor0f (Props(new SynapsesLogGraph))

val loggerRepart = net.system.actorOf (Props(new
SynapsesWeightRepartition(net.synchronizer.getSynchronizer0fInput())))

//logger text

val loggerNeuron = net.system.actorOf (Props(new NeuronsFireLogText))

//Subscribing the LoggerRepart to the whole synapses in the network
for {

k <- O until net.nbNeuronPerlLayer.size - 1

i <- 0 until net.nbNeuronPerLayer (k)

j <= O until net.nbNeuronPerLayer(k + 1)

} yield {

Await.result (ask(net.neuronsActorRef (k) (i),
GetConnectionId(net.neuronsActorRef (k+1) (j))), timeout.duration)
match {

case ReturnConnectionId(list) => list.foreach {id =>
net.neuronsActorRef (k+1) (j) !
Subscribe (SynapseWeightEvent (id), loggerRepart)}

}

}

//Subscribing the logger and logger at end to the 8 synapses of output
for (i <- 0 until 4) {
net.neuronsActorRef (1) (0) ! Subscribe(SynapseWeightEvent(i), logger)
net.neuronsActorRef (1) (0) ! Subscribe(SynapseWeightEvent (i),
loggerAtEnd)
net.neuronsActorRef (1) (1) ! Subscribe(SynapseWeightEvent(i), logger)
net.neuronsActorRef (1) (1) ! Subscribe(SynapseWeightEvent(i),
loggerAtEnd)
}

//Subscribing the loggerNeuron to the whole neuron in the network
for (i <- 0 until net.nbNeuronPerLayer.size-1)
for (j <- 0 until net.nbNeuronPerLayer(i))
net.neuronsActorRef (i) (j) ! Subscribe(NeuronFireEvent(),
loggerNeuron)
println("Start simulation ...")
println("Learn ...")

val nbLearn = 1500

for (i <- O until nbLearn) {
if (1% 2==0) {

16



loggerRes ! EventTime("Up", i * 2 MilliSecond)
net.synchronizer.getSynchronizer0OfInput() !
InputPostSynapticSpike(i * 2 MilliSecond, pixel2Negative, 1
Volt)
net.synchronizer.getSynchronizer0OfInput() !
InputPostSynapticSpike(i * 2 MilliSecond, pixellPositive, 1
Volt)
} else {
loggerRes ! EventTime("Down", i * 2 MilliSecond)
net.synchronizer.getSynchronizer0fInput() !
InputPostSynapticSpike(i * 2 MilliSecond, pixel2Positive, 1.
Volt)
net.synchronizer.getSynchronizer0fInput() !
InputPostSynapticSpike(i * 2 MilliSecond, pixellNegative, 1.
Volt)
X
}

net.synchronizer.waitComputation()
println("Test ...")

//Removing the WinnerTakeAll for test
net.setLayerManager (1, net.system.actor0f (Props[LayerManager]))

//We pass into test in the logger Res
loggerRes ! TestKnowledge(net.synchronizer.getSynchronizer0fInput())

val r = Random
val nbTest = 5000

//The event are sent randomly
for (i <- nbLearn until nbLearn + nbTest) {
if (r nextBoolean) {
loggerRes ! EventTime("Up", 4 * i MilliSecond)
net.synchronizer.getSynchronizer0fInput() !
InputPostSynapticSpike(i * 4 MilliSecond, pixel2Negative, 1
Volt)
net.synchronizer.getSynchronizer0fInput () !
InputPostSynapticSpike(i * 4 MilliSecond, pixellPositive, 1
Volt)
} else {
loggerRes ! EventTime("Down", i * 4 MilliSecond)
net.synchronizer.getSynchronizer0OfInput () !
InputPostSynapticSpike(i * 4 MilliSecond, pixel2Positive, 1
Volt)
net.synchronizer.getSynchronizer0OfInput () !
InputPostSynapticSpike(i * 4 MilliSecond, pixellNegative, 1
Volt)
3
}

net.synchronizer.waitComputation()

17

of

of



//Running the logger at the end in the specified window of time
loggerAtEnd ! Run(0 MilliSecond, 1500 MilliSecond)

println("End simulation...")

18



