
AUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND
ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES

MLADEN DIMITROV

Abstract. We introduce the notion of automorphic symbol generalizing the clas-
sical modular symbol and use it to attach very general p-adic L-functions to nearly
ordinary Hilbert automorphic forms. Then we establish an exact control theorem for
the p-adically completed cohomology of a Hilbert modular variety localized at a suit-
able nearly ordinary maximal ideal of the Hecke algebra. We also show its freeness
over the corresponding Hecke algebra which turns out to be a universal deformation
ring. In the last part of the paper we combine the above results to construct p-adic
L-functions for Hida families of Hilbert automorphic forms in universal deformation
rings of Galois representations.
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Introduction

Throughout this paper F will denote a totally real number field of degree d > 1
and ring of integers o. Let I be the set of its infinite places. Let p be a prime number
and let O be the ring of integers of a p-adic field E which is sufficiently large (to be
specified later). Let Q denote the field of algebraic numbers in C and let us fix an
embedding of Q in Qp.

0.1. Automorphic symbols and p-adic L-functions. Modular symbols arise clas-
sically as first homology classes of modular curves, represented by geodesics connecting
rational points on the boundary of the upper half plane. In general, the closure of the
image of a standard Shintani cone in the compactified Hilbert modular variety yields
a d-cycle, hence an element in the d-th homology group that we call a Manin-Oda
modular symbol (see Oda’s book [Od] for the case of Hilbert modular surfaces). The
relations between those symbols remain mysterious even in the simplest case of a
Hilbert modular surface.

In the spirit of Tate’s thesis, we define in §1 an “adelic” counterpart of the Manin-
Oda modular symbols, called automorphic symbols. Their importance (in particular
their non-vanishing) will become visible in §2 where they are related to L-values. When
F 6= Q the presence of units and non-trivial class groups complicates substantially
the evaluation of cohomology classes on automorphic symbols. Those difficulties are
addressed and overcome in §1.5 which makes it a key part of our construction. Our
definition of automorphic symbol is group-theoretic and can be easily transposed to
other groups than GL2.

Analytic p-adic L-functions for classical modular forms have been extensively studied
by Mazur, Manin, Vishik, Amice-Velu et al. by means of modular symbols (we refer to
[MTT] for a complete exposition of their results). For Hilbert modular forms, besides
the precursory work of Manin [Ma], the question has been studied by Dabrowski [Da],
Panchishkin [Pa] and Mok [M1] using Rankin-Selberg convolution, and more recently
by Januszewski [Ja]. Nevertheless, prior to the present article several aspects of the
theory remained unavailable in the Hilbert modular setting, namely:

• allowing horizontal twists, that is, twists by characters ramified at some finite
set Σ of primes of F not dividing p;
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• allowing nearly ordinary forms; note that a nearly ordinary Hilbert automor-
phic form is not necessarily a twist of an ordinary one by a Hecke character
unramified outside p∞;
• allowing forms that are not necessarily new, namely forms whose Euler factors

are 1 at primes in Σ;
• in [Da, Pa] the level is prime to p, whereas in [M1] the weight is parallel and

in [Ja] the class number is not divisible by p.
We use the flexibility of our construction of automorphic symbols to prove the fol-

lowing theorem (see theorem 2.11 for more precise statement).

Theorem 0.1. Let π be a cohomological cuspidal automorphic representation of GL2 /F
whose weight (w,w0) is critical (see definitions 1.16 and 2.1). Assume that π is nearly
ordinary at all places dividing p (see definition 2.2). Fix a finite set Σ of primes
not dividing p and let F (pΣ) be the maximal abelian pro-p extension of F unrami-
fied outside pΣ∞. Then there exists a p-adic L-function LΣ

p (π) ∈ O[[Gal(F (pΣ)/F )]],
uniquely determined by the following interpolation property: for every finite order char-
acter φ : Gal(F (pΣ)/F ) → O× the image of LΣ

p (π) by the resulting homomorphism
O[[Gal(F (pΣ)/F )]]→ O equals:

L(pΣ)(π ⊗ φ, 1)Γ(π, 1)
ΩΣ
π

∏
v|pΣ

Zv,

where L(pΣ)(π ⊗ φ, s) denotes the L-function whose Euler factors are 1 at primes di-
viding pΣ, ΩΣ

π is an Archimedean period (see definition 2.9) and Zv are local terms.
Moreover, if (w,w0 − 2) is critical too, then the automorphism [a] 7→ (χω−1)(a)[a]

of O[[Gal(F (pΣ)/F )]] sends LΣ
p (π) to LΣ

p (π ⊗ | · |Aω−1), where χ denotes the p-adic
cyclotomic character and ω is the Teichmüller character.

One reason to look for p-adic L-functions of Hilbert automorphic forms in that
generality is for the construction of p-adic L-functions of Hida families of Hilbert
automorphic forms (see theorems 0.2 and 0.3).

0.2. Ordinary cohomology. To any cohomological cuspidal automorphic represen-
tation π of GL2 /F , one can attach a two-dimensional p-adic representation ρπ,p defined
over a p-adic field. In [H1, H3] Hida developed the theory of nearly ordinary families
of Hilbert automorphic forms and proved a control theorem for the nearly ordinary
p-adic Hecke algebras, which allowed him to construct two-dimensional Galois repre-
sentations over these algebras interpolating the ρπ,p’s when π varies in a Hida family.
Hida’s proof relies, via the Jacquet-Langlands correspondence, on control theorems for
the nearly ordinary cohomology of Shimura varieties of dimension zero or one, coming
from quaternion algebras over F which are totally definite, or indefinite but yielding
Shimura curves. The introduction of [H1] concludes with the hope that those results
could be extended to other quaternionic Shimura varieties. In §3 we extend Hida’s
results to the case of the indefinite quaternion algebra M2(F ) by proving an exact
control theorem for the nearly ordinary cohomology of Hilbert modular varieties (see
theorem 3.8). The proof proceeds by specialization to a well chosen finite level and
weight where the main results of [D1, D2] can be applied.
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The last decade has seen the emergence of p-adic and mod p Langlands programs.
Although they are widely conjectural for a general reductive algebraic group over a
number field, precise statements for GL2 over Q have been proved by Breuil, Colmez,
Emerton and Kisin culminating in the proof of many cases of the Fontaine-Mazur
conjecture in dimension two (see [E2] and [K]). One of the main tools in these programs
is the completed cohomology introduced by Emerton [E1] and the associated spectral
sequence. Little is known about it in dimension > 1, in particular for GL2 over a
totally real number field. Our theorem 3.8 implies the degeneracy of the simplest yet
non-trivial piece of Emerton’s spectral sequence for GL2 over F , which is its nearly
ordinary part (on the Galois side, nearly ordinary means locally reducible at p).

0.3. p-adic L-functions in families. In this work, we call Hida family a local compo-
nent of the universal Hecke algebra. It turns out that under certain assumptions on the
residual representation ρπ,p mod p such components can be identified with universal
deformation rings. As explained in [EPW], in the case F = Q, the original definition
of a Hida family would then correspond to a branch of our family.

These families are parametrized by irreducible representations

ρ̄ : GalF,pΣ → GL2(Fp),

which are nearly ordinary at all places dividing p and totally odd at infinity, where
GalF,pΣ denotes the Galois group of the maximal extension of F in Q unramified outside
pΣ∞.

Consider the following assumptions on ρ̄:

(?) no twist of ρ̄ extends to a representation of Gal(Q/F ′) for any strict subfield F ′ of
F and its image contains SL2(Fp).

(??) p is unramified in F and ρ̄ ' ρπ̄,p mod p for some cuspidal automorphic repre-
sentation π̄ of GL2 /F which is nearly ordinary and unramified at all places dividing p
and has cohomological weight (w̄, w̄0) such that w̄τ > 0 for all τ ∈ I, w̄0 = maxτ∈I(w̄τ )
and p− 1 >

∑
τ∈I(

w̄0+w̄τ
2 + 1).

Note that, if a cuspidal automorphic representation π of GL2 /F is neither a theta
series, nor a twist of a base change, then ρπ,p mod p satisfies (?) for all but finitely
many primes p.

The following theorems prove the existence of analytic p-adic L-functions for (nearly)
ordinary families of Hilbert automorphic forms, extending results of Kitagawa [Ki],
Greenberg-Stevens [GS] and Emerton-Pollack-Weston [EPW] for Q. A novelty of our
approach (even for F = Q) is that the p-adic L-functions are naturally elements of
universal deformation rings of Galois representations, rather than abstract Iwasawa
algebras, which confirms an expectation of Greenberg [Gr, §4].

Let Rn.o
ρ̄,Σ be the universal O[[Gal(F (pΣ)/F )×(o⊗Zp)×p−part]]-algebra parametrizing

nearly ordinary deformations of ρ̄ (see §4.1) and let Rdet
ρ̄,Σ be the O[[(o⊗Zp)×p−part]]-

algebra parametrizing those deformations having determinant det(ρπ̄,p) (see (20)).

Theorem 0.2. Under the assumptions (?) and (??), there exists a p-adic L-function

Ln.o
p (ρ̄,Σ) ∈ Rn.o

ρ̄,Σ = Rdet
ρ̄,Σ[[Gal(F (pΣ)/F )]],
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unique up to an element in Rdet,×
ρ̄,Σ , whose specialization by any homomorphism Rdet

ρ̄,Σ →
O whose restriction to (o⊗Zp)×p−part is a finite order character, yields the p-adic L-
function LΣ

p (π) of a nearly ordinary cuspidal automorphic representation π on GL2 /F
of parallel weight w̄0.

For ordinary ρ̄, let Rord
ρ̄,Σ be the universal ordinary deformation O[[Gal(F (pΣ)/F )]]-

algebra (see (19)). A homomorphism Rord
ρ̄,Σ → O is algebraic if its restriction to

Gal(F (pΣ)/F ) is the product of a finite order character with a non-positive integer
power of χω−1.

Theorem 0.3. Assume that ρ̄ satisfies (?) and (??) with an ordinary π̄ of paral-
lel weight. Then there exists a p-adic L-function Lord

p (ρ̄,Σ) ∈ Rord
ρ̄,Σ[[Gal(F (pΣ)/F )]]

uniquely determined, up to an element in Rord,×
ρ̄,Σ , by the following universal property:

the specialization of Lord
p (ρ̄,Σ) by any algebraic homomorphism Rord

ρ̄,Σ → O yields the
p-adic L-function LΣ

p (π) of a parallel weight, ordinary, cuspidal automorphic represen-
tation π of GL2 /F .

The proof of theorem 0.3 (resp. theorem 0.2) relies on the fact that Rord
ρ̄,Σ (resp.

Rn.o
ρ̄,Σ) is canonically isomorphic to Hida’s universal (nearly) ordinary Hecke algebra

and that certain modules of (nearly) ordinary cohomology of Hilbert modular varieties
are free over these rings (see theorem 4.6 and corollaries 4.8, 4.9).

We believe that using some ideas of Ash-Stevens [AS] and Urban [Ur] would allow
to extend our results to the finite slope case, or at least to relax the assumptions (?)
and (??) in the nearly ordinary case as in [GS] (see also [BL]).

Finally we hope that our p-adic L-functions will be useful for the study of higher
order partial derivatives as in [M2], and for a formulation and proof of Iwasawa Main
Conjectures for GL2 over totally real fields.
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1.1. Hilbert modular varieties. The ring A of adeles of F is the product of finite
adeles Af = F ⊗ Ẑ and infinite adeles F∞ = F ⊗Q R. We denote by F+

∞ the connected
component of 1 in F×∞.

Definition 1.1. For an open compact subgroup K of GL2(Af ) we define the analytic
Hilbert modular variety of level K as

YK = GL2(F )\GL2(A)/KK+
∞,

whereK+
∞ is the subgroup of GL2(F∞) generated by its center F×∞ and by the connected

component of identity in the standard maximal compact subgroup.
The minimal (or Baily-Borel-Satake) compactification Y K of YK is obtained by

adding finitely many points (the cusps). A basis of neighborhoods for the cusp at
infinity is given by the sets

(1)
{

GL2(F )
(
y∞ 0
0 1

)
KK+

∞

∣∣∣y ∈ F+
∞ , NF/Q(y∞) > H

}
, for H ∈ R×+,

and neighborhoods of other cusp are obtained by translating those by the group action.
The adjoint Hilbert modular variety of level K is defined as

Y ad
K = GL2(F )\GL2(A)/A×KK+

∞.

We will only consider K factoring as a product
∏
vKv over the finite places v of F

and such that Y ad
K is smooth. Then YK is a finite abelian cover of Y ad

K with group the
class group A×f /F

×(A×f ∩K).
Since our interest is in p-adic aspects, usually Kv will be fixed for v not dividing p

and for α ≥ 1, Y0(pα), Y1(pα), Y11(pα) and Y (pα) will denote, respectively, the Hilbert
modular varieties whose level Kp =

∏
v|pKv at p equals:

K0(pα) =
{
u ∈ GL2(o⊗Zp)|u ≡

(
∗ ∗
0 ∗

)
(mod pα)

}
,

K1(pα) =
{
u ∈ GL2(o⊗Zp)|u ≡

(
∗ ∗
0 1

)
(mod pα)

}
,

K11(pα) =
{
u ∈ GL2(o⊗Zp)|u ≡

(
1 ∗
0 1

)
(mod pα)

}
,

K(pα) =
{
u ∈ GL2(o⊗Zp)|u ≡

(
1 0
0 1

)
(mod pα)

}
.

(2)

Remark 1.2. Classically Hilbert modular varieties are defined as quotients of the d-
fold product of upper half planes by congruence subgroups of SL2(o). These occur as
connected components of YK , but are not preserved by Hecke correspondences, hence
the importance of the above adelic definition.

1.2. Automorphic symbols in level K1. The automorphic symbols considered in
this section will be sufficient for the construction of the p-adic L-function of a nearly or-
dinary Hilbert automorphic newform (see theorem 2.5). The definition of automorphic
symbols in arbitrary level is postponed to §1.3 and can be skipped at first reading.
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1.2.1. Automorphic cycles and the mirabolic group. The mirabolic group M is defined
as the semi-direct product Gm n Ga, where Gm acts on Ga by multiplication. A natural
embedding of M in GL2 is given by (y, x) 7→ ( y x0 1 ).

Fix an integral ideal a of F and denote by av the valuation of a at a finite place
v. Put M(a) = U(a) n (o⊗Ẑ), where U(a) is the open compact subgroup of (o⊗Ẑ)×

whose elements are congruent to 1 modulo a. For all v, choose an uniformizer $v of
Fv.

The map:

(3) C(a) : A× /F×U(a) −→M(F )\M(A)/M(a) , y 7→
(
y, (yv$−avv )v| a

)
is well defined, since for all z ∈ F× and u ∈ U(a) we have(

zyu, ((zyu)v$−avv )v| a
)

= (z, 0)
(
y, (yv$−avv )v| a

) (
u, ((uv − 1)$−avv )v| a

)
and (z, 0) ∈M(F ) whereas

(
u, ((uv − 1)$−avv )v| a

)
∈M(a).

Denote by E(a) the group of totally positive units in o, congruent to 1 modulo a,
and by Cl+F (a) the narrow ray class group A× /F×U(a)F+

∞.

Definition 1.3. For η ∈ Cl+F (a) we define C(η) as the restriction of C(a) to the inverse
image η̃ of η using the short exact sequence

(4) 1→ F+
∞/E(a)→ A× /F×U(a)→ Cl+F (a)→ 1.

Definition 1.4. Let η ∈ Cl+F (a) and let K ⊂ GL2(Af ) be an open compact subgroup
containing the image of M(a) by the natural inclusion of M in GL2. The automorphic
cycle CK(η) on the Hilbert modular variety YK is defined as the composed map of
C(η) with the map coming from the natural inclusion M ⊂ GL2:

ιK : M(F )\M(A)/M(a) −→ GL2(F )\GL2(A)/KK+
∞ = YK .

1.2.2. Automorphic symbols for Hilbert modular varieties. As mentioned in the intro-
duction, the natural generalization in the Hilbert modular case of the geodesic between
the cusps 0 and ∞ in the upper half plane is the Shintani cone F+

∞/E(a). In order to
define the corresponding automorphic symbol, it needs to be compactified.

By (4), for any choice of an idele ξ ∈ η̃ ∩ A×f , the map y∞ 7→ y∞ξ yields an
isomorphism F+

∞/E(a) ' η̃, hence there is a continuous map:

(5) η̃ −→ R×+ , y 7→ NF/Q(yξ−1).

By Dirichlet’s unit theorem F+
∞/E(a) ' (R /Z)d−1 × R×+.

Definition 1.5. Denote by η the compactification of η̃ ∼−→ (R /Z)d−1 ×R×+ obtained
by adding two points (zero and infinity).

If d = 2 then η is homeomorphic to a sphere. In general, it is homeomorphic to the
suspension of the torus (R /Z)d−1, hence

Hi(η) '


Z for i = 0,
0 for i = 1,
Hi−1((R /Z)d−1) for 2 ≤ i ≤ d.
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Any ξ induces the same orientation on η, in particular, for any d ≥ 2 we can
canonically identify Hd(η) = Hd (η, {0,∞}) and Z.

Lemma 1.6. CK(η) extends uniquely to a continuous proper map CK(η) : η → Y K .

Proof. The uniqueness is clear. For the existence of a continuous map CK(η) one has
to show that the image by CK(η) of any sequence (yn)n≥1 of points in η̃ tending to zero
or infinity, converges to a cusp in Y K . Suppose first that limn NF/Q(ynξ−1) = +∞.
It follows then from (1) that the sequence CK(η)(yn) converges to the cusp at infinity
(on the connected component of YK corresponding to ξ).

Suppose next that limn NF/Q(ynξ−1) = 0 and consider the following diagram:

(F ∩ ξ(o⊗Ẑ))\F∞
∼ //

��

A /(F + ξ(o⊗Ẑ))

��
E(a) n (F ∩ ξ(o⊗Ẑ))\M+

∞
� �·(ξ,0) //

����

M(F )\M(A)/M(a) // //

����

M(F )\M(A)/M(a)M+
∞

E(a)\F+
∞

� � ·ξ // A× /F×U(a) // // Cl+F (a)

where M+
∞ = F+

∞ n F∞.
Note that for any y = y∞ξ ∈ η̃ the element ya a−1 = (ξv$−avv )v| a has finite order in

A /(F + ξ(o⊗Ẑ)) ' (F ∩ ξ(o⊗Ẑ))\F∞,

and denote by x∞ ∈ F∞ any element in its coset. Clearly x∞ ∈ F and we will show that
CK(η)(yn) converges to the corresponding cusp. In fact, since limn NF/Q(ynξ−1) = 0,
the sequence (

0 1
−1 x∞

)(
yn (ξv$−avv )v| a
0 1

)
=
(

0 1
−yn 0

)
converges to cusp at infinity, hence CK(η)(yn) converges to the cusp determined by
x∞.

Since the map CK(η) is finite, to show its properness it is enough to prove that it is
closed. This follows easily from the fact that CK(η) is continuous and η compact. �

Definition 1.7. The automorphic symbol SK(η) ∈ Hd(Y K) is defined as the image of
1 ∈ Z ' Hd(η) by CK(η).

1.2.3. p-adic automorphic symbols. Let α ≥ 1 be an integer such that Kp ⊃ K11(pα).

Definition 1.8. For β ≥ α we define

SK,β =
∑

η∈Cl+F (pβ)

SK(η)[η] ∈ Hd(Y K ,O)[Cl+F (pβ)].

Remark 1.9. (i) Here one can see one advantage of the adelic approach. The
automorphic symbol is defined on the whole class group Cl+F (pβ) in contrast
with a collection of modular symbols, indexed by Cl+F (o), each one defined on
(o /pβ)×/E(o).
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(ii) Although some of the constructions are similar to those in [Ma] in order to
make the relations precise one has to choose representatives in class groups,
which would bring some cumbersome notations.

The compatibility of SK,β with respect to β, known as distribution property, is
governed by the Hecke operator Up =

∏
v|p U

ev
v , where ev denotes the inertia degree at

v, so that (p) =
∏
v|p v

ev . Assume for the rest of this section that for all v dividing p
we have $ev

v = p.

Lemma 1.10. For β ≥ α, the image of SK,β+1 by the natural projection induced by
pr : Cl+F (pβ+1)→ Cl+F (pβ) equals Up · SK,β.

Proof. It is enough to show that for all η ∈ Cl+F (pβ), Up · CK(η) and
∐

pr(η′)=η CK(η′)
define the same cycles on YK . We will check this by a computation in the mirabolic
group M(F )\M(A)/M(pα) on which Up acts according to the following double coset
decomposition:

M(pα)(p, 0)M(pα) =
∐

b (mod p)

(p, b)M(pα).

For y ∈ A we denote by yp the adele (yv)v|p. We have

Up ·
(
y ∈ A× /F×U(pβ) 7→M(F )(y, ypp−β)M(pα)

)
=

=
∐

b (mod p)

(
y ∈ A× /F×U(pβ) 7→M(F )(yp, yp(1 + bpβ)p−β)M(pα)

)
=

=
∐

b (mod p)

(
y ∈ A× /F×U(pβ) 7→M(F )(y(1 + bpβ), yp(1 + bpβ)p−(β+1))M(pα)

)
=

=
(
y ∈ A× /F×U(pβ+1) 7→M(F )(y, ypp−(β+1))M(pα)

)
.

�

Remark 1.11. When F = Q the image by Up of the geodesic from x ∈ Q to ∞ is a
union of p geodesics each joining x+b

p to∞ (b = 0, ..., p−1). When F 6= Q the situation
is quite different. For example if d = 2, for β large enough the image by Up of the 2-cycle
F+
∞/E(pβ) is a union of p2 2-chains piecing together into [Cl+F (pβ+1) : Cl+F (pβ)] = p

copies of the 2-cycle F+
∞/E(pβ+1). Note that, in some sense, applying Up reduces the

monodromy of the units.

By lemma 1.10 we can define the p-adic automorphic symbol of level K:

SK = lim←−
β

U−βp · SK,β ∈ e∗p Hd(Y K ,O)[[Cl+F (p∞)]],

where e∗p denotes Hida’s ordinary idempotent on the homology.
It is clear that the natural projection induced by Y1(pα+1)→ Y1(pα) sends SK1(pα+1)

to SK1(pα). The universal ordinary p-adic automorphic symbol is defined as:

lim←−
α

SK1(pα) ∈ lim←−
α

e∗p Hd(Y1(pα),O)⊗̂OO[[Cl+F (p∞)]].
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One can construct similarly automorphic symbols on adjoint Hilbert modular varieties
and define the universal nearly ordinary p-adic automorphic symbol as:

lim←−
α

Sad
K11(pα) ∈ lim←−

α

e∗p Hd(Y ad
11 (pα),O)⊗̂OO[[Cl+F (p∞)]].

1.3. Automorphic symbols in arbitrary level.

1.3.1. Automorphic cycles. We keep the notations from the previous section. In
particular we denote by av the valuation of a at v. For any ideal a′ ⊂ a we let
M(a, a′) = U(a′) n (a′ a−1⊗Ẑ). As in (3), the following map is well defined:

(6) C(a, a′) : A× /F×U(a′) −→M(F )\M(A)/M(a, a′) , y 7→
(
y, (yv$−avv )v| a

)
.

For any ideal a′′ ⊂ a′, the following diagram is commutative, where the vertical
maps are the natural projections:

A× /F×U(a′′)
C(a,a′′) //

��

M(F )\M(A)/M(a, a′′)

��
A× /F×U(a′)

C(a,a′) // M(F )\M(A)/M(a, a′).

For η′ ∈ Cl+F (a′) we denote by C(a, η′) the restriction of C(a, a′) to the inverse image
η̃′ of η′ using the short exact sequence (4).

For a prime w dividing a, the following lemma describes the action of Uw on an
automorphic cycle of level a.

Lemma 1.12. For all η ∈ Cl+F (a′) the cycles Uw ·C(a, η) and
∐

pr($−1
w η′)=η C(aw, η′) on

M(F )\M(A)/M(a, a′) are cohomologically equivalent, where pr : Cl+F (a′w) → Cl+F (a′)
denotes the natural projection.

Proof. Let a0 = valw(a′ a−1). For v dividing a put a′v = av + 1, if v = w, and a′v = av,
otherwise. We have the following double coset decomposition:

M(a, a′)($w, 0)M(a, a′) =
∐

b (mod w)

($w, b$
a0
w )M(a, a′).

Hence Uw · C(a, a′) = Uw ·
(
y ∈ A× /F×U(a′) 7→M(F )

(
y, (yv$−avv )v|a

)
M(a, a′)

)
=

=
∐

b (mod w)

(
y ∈ A× /F×U(a′) 7→M(F )

(
y$w, ξw,b(yv$−avv )v|a

)
M(a, a′)

)
,

where ξw,b is the idele equal to 1 + b$a0+aw
w at w and 1 at all other places. Since

a0 + aw = valw(a′), we have ξw,b ∈ U(a′), hence Uw · C(a, a′) equals:∐
b (mod w)

(
y ∈ A× /F×U(a′) 7→M(F )

(
ξw,by$w, ξw,b(yv$−avv )v|a

)
M(a, a′)

)
.
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By the change of variable y 7→ y$−1
w this is homologically equivalent to∐

b (mod w)

(
y ∈ A× /F×U(a′) 7→M(F )

(
ξw,by, (ξw,byv$−a

′
v

v )v|a
)
M(a, a′)

)
=

=
(
y ∈ A× /F×U(a′w) 7→M(F )

(
y, (yv$−a

′
v

v )v|a
)
M(a, a′)

)
,

which is the composition of C(w a, w a′) with the natural projection:

M(F )\M(A)/M(w a, w a′) −→M(F )\M(A)/M(a, a′).

�

1.3.2. Automorphic symbols for Hilbert modular varieties. Let K be any open compact
subgroup of GL2(Af ). Given integral ideals a′ ⊂ a such that K contains the image
of M(a, a′) = U(a′) n (a′ a−1⊗Ẑ) in GL2, we denote by CK(a, a′) the composition of
C(a, a′) with the following map coming from the natural inclusion M ⊂ GL2:

ιK : M(F )\M(A)/M(a, a′) −→ GL2(F )\GL2(A)/KK+
∞ = YK .

Definition 1.13. Let aK be an integral ideal of F , such that for any a, K contains
the image of M(a, a aK) in GL2, so that the map CK(a, a aK) is well defined.

For η′ ∈ Cl+F (a′) let CK(a, η′) = ιK ◦ C(a, η′) be the restriction of CK(a, a′) to η̃′.
As in lemma 1.6 one can prove the existence and uniqueness of a proper continuous

map CK(a, η′) : η′ → Y K extending CK(a, η′) and define SK(a, η′) ∈ Hd(Y K) as the
image of 1 ∈ Hd(η′) by CK(a, η′).

1.3.3. p-adic automorphic symbols. SinceRn.o
ρ̄,Σ is naturally aO[[Gal(F (pΣ)/F )]]-algebra,

it will be useful to define automorphic symbols indexed by Cl+F (p∞Σ) and not only by
Cl+F (p∞) as in §1.2.3. For this, we fix a finite set Σ of auxiliary primes not dividing p
and let Σ also denote their product.

Let K ⊂ GL2(Af ) be an open compact subgroup and fix an ideal aK as in definition
1.13.

Definition 1.14. Given an integer β ≥ 1, we define:

SΣ
K,β =

∑
η∈Cl+F (pβΣ aK)

SK(pβΣ, η)[ηΣ−1
∏
v|p

$−evβv ] ∈ Hd(Y K ,O)[Cl+F (pβΣ aK)]

Lemma 1.12 has the following consequence:

Corollary 1.15. The image of SΣ
K,β+1 by the natural projection induced by pr :

Cl+F (pβ+1Σ aK)→ Cl+F (pβΣ aK) equals Up · SΣ
K,β.

By corollary 1.15 we can define the p-adic automorphic symbol of level K:

(7) SΣ
K = lim←−

β

U−βp · SΣ
K,β ∈ e∗p Hd(Y K ,O)[[Cl+F (p∞Σ aK)]],

where e∗p denotes Hida’s ordinary idempotent on the homology.

1.4. Cohomology of Hilbert modular varieties.
11



1.4.1. Cohomological weights. The characters of the torus ResFQ Gm can be identified
with Z[I] as follows: for any w =

∑
τ∈I wττ ∈ Z[I] and for any Q-algebra A splitting

F×, we consider the character x ∈ (F ⊗Q A)× 7→ xw =
∏
τ∈I τ(x)wτ ∈ A×. The norm

character NF/Q : ResFQ Gm → Gm then corresponds to the element t =
∑

τ∈I τ ∈ Z[I].

Definition 1.16. (i) A weight (w,w0) ∈ Z[I]×Z is cohomological if for all τ ∈ I
we have wτ ≥ 0 and wτ ≡ w0 (mod 2).

(ii) A cohomological weight (w,w0) is critical if |w0| ≤ minτ∈I(wτ ). It is parallel
if w = w0t.

Remark 1.17. The correspondence with the classical notion of weight of a Hilbert
modular form is as follows. Let f be a Hilbert modular newform of weight (kτ )τ∈I , kτ ≥
2 of the same parity, generating a cuspidal automorphic representation π. According
to [Da] and [Pa], the value L(f,m) is critical, if for all τ we have k0−kτ

2 + 1 ≤ m ≤
k0+kτ

2 − 1, where k0 = maxτ (kτ ). Put w0 = k0 − 2m and wτ = kτ − 2 for τ ∈ I. Then

L(f,m) = L(π ⊗ | · |
k0−w0

2
−1

A , 1) where the automorphic representation π ⊗ | · |
k0−w0

2
−1

A
has cohomological weight (w,w0) which is critical (see definition 2.1).

An irreducible algebraic representation of ResFQ GL2 with central action factoring
through the norm is necessarily of the form⊗

τ∈I
Symwτ

τ ⊗det(w0−wτ )/2
τ ,

for some cohomological weight (w,w0) ∈ Z[I] × Z. For an O-module A we denote by
L(w,w0;A) the corresponding A[GL2(o⊗O)]-module, where we use the fixed embed-
ding of Q in Qp to identify GL2(o⊗O) with GL2(O)I . It can be realized as the space
of polynomials in (X = (Xτ )τ∈I , Y = (Yτ )τ∈I) which are homogeneous of degree wτ in
the variables (Xτ , Yτ ).

1.4.2. Sheaf cohomology. Let (w,w0) be a cohomological weight. Then

GL2(F )\GL2(A)× L(w,w0;A)/KK+
∞,

with KK+
∞ acting on L(w,w0;A) on the left via Kp, is a local system on YK , and we

denote by LK(w,w0;A) the corresponding sheaf of locally constant sections.
For K ′ ⊂ K, there is a natural projection pr : YK′ → YK and pr∗ LK(w,w0;A) =

LK′(w,w0;A). We denote H•(YK ,LK(w,w0;A)) the corresponding singular (or Betti)
cohomology groups, and by H•c(YK ,LK(w,w0;A)) the cohomology with compact sup-
port.

1.4.3. Hecke operators. For g ∈ GL2(Af ) we define the Hecke correspondence [KgK]
on YK by the usual diagram:

YK∩g−1Kg
pr1

wwooooooo

·g // YgKg−1∩K
pr2

''OOOOOOO

YK YK
12



We define the standard Hecke operators Tv = [Kv

(
1 0
0 $v

)
Kv], Sv = [Kv

(
$v 0
0 $v

)
Kv],

for v outside a certain finite set of bad primes, and Uv = [Kv

(
1 0
0 $v

)
Kv], for the

remaining v.
The Hecke correspondences at infinity are [K+

∞g∞K
+
∞], where g∞ is an element of

the group
(±1 0

0 1

)I ⊂ GL2(F∞).
The Betti cohomology groups H•(YK ,LK(w,w0;A)) admit a natural action of all

the Hecke correspondences and the induced endomorphisms commute with each other.

Definition 1.18. Let e∞ denote the idempotent on H•(YK ,LK(w,w0;A)) which cuts
out the part fixed by all the Hecke correspondences at infinity.

1.5. Evaluation of cohomology classes on automorphic symbols. As mentioned
in the introduction, when F 6= Q, the evaluation of cohomology classes on modular
symbols requires special care.

By definition the cycle CΣ
K,β = CK(pβΣ, pβΣ aK) yields a homomorphism:

CΣ∗
K,β : Hd

c(YK ,LK(w,w0;O))→ Hd
c(A× /F×U(pβΣ aK), CΣ∗

K,βLK(w,w0;O)).

The first difficulty comes from the fact that the local system CK(a, a′)∗LK(w,w0;O)
on A× /F×U(a′) is not trivial, because of the monodromy action of the units. Ex-
plicitely, it is given by

F×\
(
A××L(w,w0;O)

)
/U(a′),

where u ∈ U(a′) acts on L(w,w0;O) by
(
up ((uv−1)$−avv )v|p
0 1

)
whereas F× acts trivially

(we recall that up denotes the adele (uv)v|p). In particular

CΣ∗
K,βLK(w,w0;O) = F×\

(
A××L(w,w0;O)

)
/U(pβΣ aK),

where u ∈ U(pβΣ aK) acts on L(w,w0;O) by
(
up (up−1)p−β

0 1

)
.

Nevertheless, one can extract one coefficient (the critical one) as follows. We first
need to untwist this sheaf, an operation which for classical modular symbols is implicit
in the definition. The map (y, v) 7→ (y,

(
1 −p−β
0 1

)
· v) induces a homomorphism of

sheaves on A× /F×U(pβΣ aK):

tww,w0

β : CΣ∗
K,βLK(w,w0;O) −→ F×\

(
A××L(w,w0;E)

)
/U(pβΣ aK),

where u ∈ U(pβΣ aK) acts on L(w,w0;E) simply by(
1 −p−β
0 1

)(
up (up−1)p−β

0 1

)(
1 p−β

0 1

)
=
(
up 0
0 1

)
.

Suppose now that (w,w0) is critical, so that X(w−w0t)/2Y (w+w0t)/2 ∈ L(w,w0;O).
A direct computation shows that for any 0 ≤ j ≤ w,

(
up 0
0 1

)
acts by u(w+w0t)/2−j

p on
Xw−jY j ∈ L(w,w0;O). In particular,

(8)
(
up 0
0 1

)
acts trivially on X(w−w0t)/2Y (w+w0t)/2.

13



Therefore evaluating at the coefficient in front of X(w−w0t)/2Y (w+w0t)/2 induces the
following homomorphism of sheaves:

critw,w0

β : F×\
(
A××L(w,w0;E)

)
/U(pβΣ aK) −→ A× /F×U(pβΣ aK)× E.

Since pβ
w−w0t

2 (X − p−βY )(w−w0t)/2Y (w+w0t)/2 ∈ L(w,w0;O), we have the following:

Lemma 1.19. Assume that (w,w0) is critical. Then the map pβ
w−w0t

2 critw,w0

β ◦ tww,w0

β

takes values in A× /F×U(pβΣ aK)×O. Further composing with CΣ∗
K,β induces

(9) Hd
c(YK ,LK(w,w0;O)) −→ Hd

c(A× /F×U(pβΣ aK),O) = O[Cl+F (pβΣ aK)].

The second difficulty is related with the action of the Hecke operator Up on cycles
(see remark 1.11).

Consider the natural projection prββ+1 : Cl+F (pβ+1Σ aK) → Cl+F (pβΣ aK). Lemma
1.12 implies that the cycles Up ·CΣ

K,β and CΣ
K,β+1 are cohomologically equivalent. This

implies the commutativity of the upper square in the following diagram:
(10)

Hd
c(YK ,LK(w,w0;O))

p
w−w0t

2 Up=U0
p //

CΣ∗
K,β+1

��

Hd
c(YK ,LK(w,w0;O))

CΣ∗
K,β

��
Hd
c(A× /F×U(pβ+1Σ aK), CΣ∗

K,β+1LK)
p
w−w0t

2

“
p 0
0 1

”
//

p(β+1)
w−w0t

2 crit
w,w0
β+1 ◦ tw

w,w0
β+1

��

Hd
c(A× /F×U(pβΣ aK), CΣ∗

K,βLK)

pβ
w−w0t

2 crit
w,w0
β ◦ tw

w,w0
β

��
O[Cl+F (pβ+1Σ aK)]

prββ+1

// O[Cl+F (pβΣ aK)]

The commutativity of the lower square follows from the matrix computation:(
p 0
0 1

)(
1 −p−β−1

0 1

)
=
(

1 p−β

0 1

)(
p 0
0 1

)
,

and the fact that
(
p 0
0 1

)
acts trivially on X(w−w0t)/2Y (w+w0t)/2.

The ordinary idempotent ep acting on the cohomology of quaternionic Shimura
varieties (including Hilbert modular varieties) has been introduced by Hida in [H1]. In
parallel weight ep cuts out the maximal direct factor of the p-adic cohomology on which
Up is invertible (i.e. acts by a p-adic unit). In arbitrary cohomological weight (w,w0)
there is a shift by the lowest Hodge-Tate weight of the cohomology which is (w0t−w)/2
and one should consider instead the operator U0

p = p
w−w0t

2 Up which preserves the p-
adic integral structure in an optimal way. Usually one reserves the word ordinary for
level K1(pα) and uses the term nearly ordinary otherwise (some authors use the word
ordinary for both).

By (10) the maps

Sw,w0

K,Σ,β = pβ
w−w0t

2 critw,w0

β ◦ tww,w0

β ◦CΣ∗
K,β ◦ (U0

p )−β

form a projective system, leading to:
14



Definition 1.20. For critical (w,w0), we consider the homomorphism:

Sw,w0

K,Σ =
(
Sw,w0

K,Σ,β

)
β≥1

: ep Hd
c(YK ,LK(w,w0;O))→ O[[Cl+F (p∞Σ aK)]].

It will be used in §2.3 to attach p-adic L-functions to Hilbert automorphic forms.
In order to attach p-adic L-functions to newforms (see theorem 2.5), it is enough to

take K = K11(pα) ∩K1(n) and consider the homomorphism:

Sw,w0

K =
(
Sw,w0

K,∅,β

)
β≥α

: ep Hd
c(YK ,LK(w,w0;O))→ O[[Cl+F (p∞)]]

whose construction only relies on the automorphic symbols introduced in §1.2.

2. p-adic L-functions for nearly ordinary automorphic forms on GL2

We will construct p-adic L-functions for various nearly ordinary Hilbert automorphic
forms encoding both the vertical and the horizontal aspects of the theory.

By global class field theory, the maximal abelian pro-p quotient Gal(F (pΣ)/F ) of
GalF,pΣ is isomorphic to the maximal pro-p quotient Cl(p)F (p∞Σ) of Cl+F (p∞Σ) and the
character χω−1 can be seen as character of Cl(p)F (p∞Σ).

2.1. Automorphic representations.

2.1.1. Archimedean Euler factors. Let π be a cuspidal automorphic representation of
GL2(A) and let (w,w0) ∈ Z[I]× Z be a cohomological weight (see definition 1.16).

Definition 2.1. We say that π is cohomological of weight (w,w0) if for all τ ∈ I the
representation πτ is parabolically induced from the following character(

a ∗
0 d

)
7→ sgn(a)w0 |a|

1
2

(wτ+2−w0)|d|−
1
2

(wτ+2+w0).

In what follows we assume that π is cohomological of weight (w,w0). The definition
is justified by the fact that such a π contributes to Hd(YK ,LK(w,w0; C)) whenever
πKf 6= {0}. Moreover, the Harish-Chandra parameter of π∞ is given by (w + t, w0)
and it is known that such a π corresponds to a Hilbert modular newform of weight
(w + 2t, w0).

One can attach to π a Γ-factor, depending only on π∞, as follows:

(11) Γ(π, s) =
∏
τ∈I

ΓC

(
s− w0 − wτ

2

)
, where ΓC(s) = 2 · (2π)−sΓ(s).

The functional equation for π relates L(π, s) and L(π̌, 1 − s) = L(π,w0 + 2 − s),
hence the value of L(π, s) at s = 1 is critical in the sense of Deligne if neither Γ(π, s)
nor Γ(π,w0 + 2− s) has a pole at s = 1.

It is straightforward to check that L(π, 1) is critical in the sense of Deligne [De] if,
and only if, (w,w0) is critical in the sense of definition 1.16, that is |w0| ≤ minτ∈I(wτ ).
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2.1.2. Automorphic ordinariness. The fixed embeddings of Q in C and in Qp yield
a partition I =

∐
v|p Iv. It is a well known fact [H1, §3] that the Hecke operator

U0
v =

(∏
τ∈Iv $

ev
wτ−w0

2
v

)
Uv is a p-adically integral endomorphism of the cohomologi-

cal automorphic forms in weight (w,w0).

Definition 2.2. (i) For v dividing p, we say that πv is ordinary if, either πv is
ramified and the U0

v -eigenvalue on its new vector is a p-adic unit, or it is
unramified and its new vector has a U0

v -stabilization whose eigenvalue is a
p-adic unit.

(ii) For v dividing p, we say that πv is nearly ordinary if there exists a finite order
character νv : F×v → C× such that πv ⊗ ν−1

v is ordinary. If we further impose
νv($v) = 1, then νv is unique, called the ordinary twist type of πv with respect
to $v.

2.1.3. Adelic Mellin transform. Let φ be a finite order Hecke character over F . If φ is
everywhere unramified then it is well known (see [Bu]) that L(π ⊗ φ, 1) completed by
the Euler factors admits the following integral expression:∫

A× /F×
φ(y)f

(
y 0
0 1

)
d×y,

where f is a certain automorphic form in π and d×y denotes the Haar measure on Gm.
For arbitrary φ, one should consider the non-trivial additive unitary character of A /F :

ξ : A /F −→ AQ /Q −→ C×,
where the first map is the trace, whereas the second is the usual additive character ξ0 on
AQ /Q characterized by ker(ξ0|Q`) = Z` for every prime number ` and ξ0|R = exp(2iπ·).
We have ker(ξv) = ($−δvv ), where δv is the valuation at v of the different of F .

An automorphic form f admits an adelic Fourier expansion:

(12) f(g) =
∑
y∈F×

W
((

y 0
0 1

)
g
)
,

whereW (g) =
∫

A /F ξ(x)f (( 1 x
0 1 ) g) dx is the adelic Whittaker function of f with respect

to ξ. If f is holomorphic the above sum is in fact supported by F× ∩ F+
∞.

Given a ramified character µv of F×v , the local Gauss sum τv(µv, ξv) is given by:

(13)
∫
F×v

µv(y)ξv(y)d×y =
∫

o×v

µv

(
u

$
cond(µv)+δv
v

)
ξv

(
u

$
cond(µv)+δv
v

)
du.

Note that the local Gauss sums do not depend on the choice of the uniformizer $v.

2.2. p-adic L-functions attached to newforms. Let π be a cohomological cuspidal
automorphic representation of weight (w,w0). Assume that for every v dividing p, πv
is nearly ordinary and we let νv be as in definition 2.2. For every place v dividing
p denote by αv the eigenvalue of Uv acting on the ordinary Uv-stabilization of a new
vector in πv ⊗ ν−1

v . Since πv ⊗ ν−1
v is ordinary, αv is independent of the choice of $v.

Denote by n the prime to p part of the conductor of π.
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In addition to the idempotents ep and e∞ introduced earlier, let eπ be the idempotent
cutting out the π-eigenspace for the action of the Hecke operators Tv and Sv, where v
runs over the primes of F outside a sufficiently large finite set of primes (here one can
take the primes v not dividing n p).

By the theory of a new vector, for α large enough

(14) eπe∞ep Hd
c

(
YK1(n)∩K11(pα),LK(w,w0; C)

)
is a complex line having a basis δ∞(fπ), where δ∞ denotes the Matsushima-Shimura-
Harder isomorphism (see [H5] or [D2, §7.1]) and fπ is an automorphic form in π which
is nearly ordinary at all places dividing p, new outside p and normalized using its adelic
Fourier expansion (12). The complex line (14) contains a natural O-line, namely the
torsion-free part of

eπe∞ep Hd
c

(
YK1(n)∩K11(pα),LK(w,w0;O)

)
,

and we fix a basis bπ of the latter. An direct computation shows that Uv acts on bπ by
αvνv($v) = αv, if νv is the ordinary twist type for πv with respect to $v.

Definition 2.3. The Archimedean period Ωπ,∞ = δ∞(fπ)/bπ ∈ C× is well defined up
to an element of O×.

Definition 2.4. Assume that the weight (w,w0) is critical. The primitive (or new)
p-adic L-function Lp(π) ∈ O[[Cl(p)F (p∞)]] attached to π, is defined as the image of
Sw,w0

K1(n)∩K11(pα)(bπ) ∈ O[[Cl+F (p∞)]] by the natural projection (see definition 1.20).

Theorem 2.5. (i) Let φ : Cl+F (p∞) → O× be a p-power order character. Then
the image of Lp(π) by the resulting homomorphism O[[Cl(p)F (p∞)]]→ O equals:

L(p)(π ⊗ φ, 1)Γ(π, 1)
Ωπ,∞

∏
v|p

Zv, where for v dividing p we have

Zv =

{
α
− cond(φvνv)
v τv(φvνv, ξv), if φvνv is ramified, and
φv($v)−δv

(
1− (αvφv($v) NF/Q(v))−1

)
(1− αvφv($v))

−1 , otherwise.

(ii) If (w,w0−2) is critical too, the automorphism [a] 7→ (χω−1)(a)[a] of O[[Cl(p)F (p∞)]]
sends Lp(π) to Lp(π ⊗ | · |Aω−1).

Remark 2.6. (i) The first part of the theorem uniquely determines Lp(π), with-
out assuming Leopoldt’s conjecture.

(ii) If π is ordinary at all places v dividing p (that is νv = 1), the interpolation
formula has a particularly simple form since

∏
v|p τv(φv, ξv) = τ(φ, ξ) is a

global Gauss sum.
(iii) It follows from the interpolation formula that Lp(π) does not depend upon

the choice of uniformizers $v, for v | p.

Proof. (i) Fix β ≥ α so that φ can be seen as a character of Cl+F (pβ). By (8),(
yp ypp−β

0 1

)(
1 −p−β
0 1

)
=
(
yp 0
0 1

)
acts trivially on X(w−w0t)/2Y (w+w0t)/2.
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By unwinding the definition one sees that the specialization of Lp(π) by φ equals

(15)

∏
v|p((φvνv)($v)αv)−evβ

Ωπ,∞

∫
A× /F×

φ(y)fπ,1
(
y ypp−β

0 1

)
d×y,

where for a character ε : {±1}I → {±1} we put fπ,ε(g) =
∑

J⊂I ε(J)fπ
(
g
(−1J 0

0 1

))
.

Put Wπ,ε(g) =
∑

J⊂I ε(J)Wπ

(
g
(−1J 0

0 1

))
. Using (12) the integral unfolds:∫

A× /F×
φ(y)fπ,1

(
y ypp−β

0 1

)
d×y =

∫
A×

φ(y)Wπ,1

(
y ypp−β

0 1

)
d×y.

Since φτ = 1 for all τ ∈ I, we have
∫

A× φ(y)Wπ,ε

(
y ypp−β

0 1

)
d×y = 0 unless ε = 1. From

this and the fact that 2dWπ =
∑

εWπ,ε the above integral equals

2d
∫

A×
φ(y)Wπ

(
y ypp−β

0 1

)
d×y = 2d

∫
A×f F

+
∞

φ(y)Wπ

(
y ypp−β

0 1

)
d×y,

the last equality coming from the fact that fπ is holomorphic. The following decom-
position can be found in [Bu, Thm 3.5.4] (see [D2, §7] for the normalization):

Wπ

(
y ypp−β

0 1

)
=
∏
τ

y
wτ−w0

2
+1

τ e−2πyτ
∏
v

Wv

(
yv ypp−β

0 1

)
,

and allows us to write the integral Ωπ,∞· (15) as a product
∏
τ∈I Zτ

∏
v Zv over all

places of F . The remaining part of the proof is about the computation of these local
integrals. At infinite places:

(16) Zτ = 2
∫

R×+
y
wτ−w0

2
+1

τ e−2πyτd×yτ = ΓC

(
wτ − w0

2
+ 1
)
.

It follows then from (11) that
∏
τ Zτ = Γ(π, 1).

At a finite place v the normalization of Wπ is such that Wv

(
$nv 0
0 1

)
= 0 for n < −δv

and Wv

(
$−δvv 0

0 1

)
= 1.

If v does not divide p (see [Bu] for the last equality):

(17) Zv =
∫
F×v

φv(yv)Wv

(
yv 0
0 1

)
d×yv =

∑
n∈Z

φv($n
v )Wv

(
$nv 0
0 1

)
= Lv(πv ⊗ φv, 1).

Finally for v dividing p, one has Wv

(
$n−δvv 0

0 1

)
=

{
αnv , n ≥ 0
0 , n < 0

, hence

Zv = (αvνv($v))−evβ
∫
F×v

φv(yv$−evβv )Wv

(
yv yv$

−evβ
v

0 1

)
d×yv =

= α−evβv

∫
F×v

(φvνv)(yv$−evβv )ξv(yv$−evβv )(ν−1
v ◦ det ·Wv)

(
yv 0
0 1

)
d×yv =

=
∑
n≥0

αn−evβv

∫
o×v

(φvνv)(u$n−evβ−δv
v )ξv(u$n−evβ−δv

v )du.
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If φvνv is ramified, then the latter integral is zero unless n − evβ = − cond(φvνv),
yielding Zv = α

− cond(φvνv)
v τv(φvνv, ξv) by (13).

If φvνv is unramified, since νv($v) = 1 by definition, we have:

Zv = φv($v)−δv
∑

n≥evβ−1

(αvφv($v))n−evβ
∫

o×v

ξv(u$n−evβ−δv
v )du =

= φv($v)−δv((1− αvφv($v))−1(1−NF/Q(v)−1)− (αvφv($v))−1 NF/Q(v)−1) =

= φv($v)−δv(1− (αvφv($v) NF/Q(v))−1)(1− αvφv($v))−1.

This together with (15), (16) and (17) completes the proof of (i).
(ii) The proof relies on the interpolation formula proved in (i). Put π′ = π⊗|·|Aω−1.

One has to compare the specialization of Lp(π) by φχω−1 with the specialization of
Lp(π′) by φ. First of all, we have Ωπ,∞ = Ωπ′,∞. In fact, since Kp ⊂ K11(p), the sheaf
LK(w,w0; C) on YK is canonically isomorphic to the sheaf LK(w,w0 − 2; C) twisted
by ω−1, hence bπ and bπ′ are basis of the same O-line. Moreover, since the ordinary
twist type of π′v is νvω−1, the local factors at v dividing p are the same. Finally, using
Manin’s trick (see [Ki, Lemma 4.6]), one finds the same L-functions and Γ-factors. �

2.3. Σ-stabilized p-adic L-functions. This section is preparatory for the construc-
tion of p-adic L-functions for Hida families of Hilbert automorphic forms. The natural
parameters on those families are a residual Galois representation ρ̄ (here equal to ρπ,p
mod p) and a fixed finite set Σ of primes of F not dividing p containing those dividing
the tame part of the conductor of π.

It turns out that in order to be able to put the periods Ωπ,∞ in a p-adic family, one
should modify them by replacing the newform fπ by a certain Σ-stabilized automorphic
form fΣ

π (see [D2, §7.1]). Such forms have already been used in [W2] and [DFG] (as
well as in [Fu] for the Hilbert modular case).

2.3.1. Tame level associated to ρ̄ and Σ. We define a tame level Kp
ρ̄,Σ =

∏
v-pKv as

follows. We denote by cv the minimal conductor of ρ̄v. Let ν̄v be a minimal twist
character of ρ̄v and let dv denote the dimension of inertia invariants in ρ̄v ⊗ ν̄−1

v (see
[D2, 4.1] for the terminology). For v ∈ Σ let

Kv = ker(K1(vcv+dv) det−→ o×v
eνv−→ O×),

where ν̃v denotes the Teichmüller lift of ν̄v.
To ensure the neatness of Kp

ρ̄,ΣKp we put Ku = K0(u) for place u chosen as in [D2,
Lemma 2.2] and fix a root αu of the Hecke polynomial at u. Finally, for all v /∈ Σ,
v - p u we put Kv = GL2(ov).

In addition to ep, e∞ and eπ, we introduce the following idempotent.

Definition 2.7. Denote by eΣ is the localisation at (Uu − αu, Uv; v ∈ Σ) followed by
the ν̃v-isotypic part for the action of the Hecke operators Uδ =

[
Kv

(
1 0
0 δ

)
Kv

]
for every

v ∈ Σ and δ ∈ o×v .
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Lemma 2.8. If K = Kp
ρ̄,ΣKp with Kp ⊃ K11(pα) and a = pβΣ with β ≥ α, then

the ideal aK from definition 1.13 can be chosen to divide the Artin conductor of ρ̄. In
particular Cl(p)F (p∞Σ aK) = Cl(p)F (p∞Σ).

2.3.2. For every v ∈ Σ, there is a canonical isomorpshism:

πKvv [ν̃v] ' (πv ⊗ ν̃−1
v )K1(vcv+dv ).

and the latter contains a unique line on which Uv acts as 0. It follows that for α large
enough

eΣeπe∞ep Hd
c

(
YKp

ρ̄,ΣK11(pα),LK(w,w0; C)
)

is a complex line having a basis δ∞(fΣ
π ), where δ∞ denotes the Matsushima-Shimura-

Harder isomorphism (see [H5] or [D2, §7.1]) and fΣ
π is an automorphic form in π which

is nearly ordinary at all places dividing p, Σ-stabilized, new outside pΣ and normalized
using its adelic Fourier expansion (12). This complex line contains a natural O-line,
namely the torsion-free part of

eΣeπe∞ep Hd
c

(
YKp

ρ̄,ΣK11(pα),LK(w,w0;O)
)
,

and we denote by bΣπ a basis of the latter.

Definition 2.9. The Archimedean period ΩΣ
π,∞ = δ∞(fΣ

π )/bΣπ ∈ C× is well defined up
to an element of O×.

Definition 2.10. Assume that the weight (w,w0) is critical. The Σ-stabilized p-
adic L-function LΣ

p (π) ∈ O[[Cl(p)F (p∞Σ)]] attached to π, is defined as the image of
Sw,w0

Kp
ρ̄,ΣK11(pα),eΣ(bΣπ ) (see definition 1.20), where

(18) Σ̃ =
∏
v∈Σ

vbv , with bv = max(1, cond(ν̄v)).

Let νv and αv for v dividing p be as in §2.2.

Theorem 2.11. (i) Let φ : Cl+F (p∞Σ)→ O× be a p-power order character. Then
the image of LΣ

p (π) by the resulting homomorphism O[[Cl(p)F (p∞Σ)]] → O
equals:

L(pΣ)(π ⊗ φ, 1)Γ(π, 1)
ΩΣ
π,∞

∏
v|pΣ

Zv,

where for v dividing p, Zv is as in theorem 2.5 and for v dividing Σ we have:

Zv =

{
τv(φvν̃v, ξv) if φvν̃v is ramified,
−NF/Q(v)−1φv($v)−1−δv otherwise.

(ii) If (w,w0−2) is critical too, the automorphism [a] 7→ (χω−1)(a)[a] of O[[Cl(p)F (p∞Σ)]]
sends LΣ

p (π) to LΣ
p (π ⊗ | · |Aω−1).
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Proof. (i) As in the proof of theorem 2.5 the specialization of LΣ
p (π) by φ equals

φ(Σ̃−1)
∏
v|p((φvνv)($v)αv)−evβ

ΩΣ
π,∞

∫
A× /F×

φ(y)fΣ
π,1

(
y ypΣp

−β eΣ−1

0 1

)
d×y.

The integral naturally decomposed as a product (ΩΣ
π,∞)−1 ·

∏
τ Zτ

∏
v Zv over the places

of F and for v /∈ Σ the computation of the local term Zv is as in the proof of theorem
2.5. Since the automorphic form fΣ

π is Σ-stabilized, the local component at v dividing
Σ of its adelic Whittaker function WΣ

π is given by the formula

WΣ
v

(
$n−δvv 0

0 1

)
=

{
1, n = 0
0, n 6= 0

, hence

Zv =
∫
F×v

φv(yv$−bvv )WΣ
v

(
yv yv$

−bv
v

0 1

)
d×yv =

∫
o×v

(φvν̃v)(u$−δv−bvv )ξv(u$−δv−bvv )du.

If φvν̃v is ramified, then bv = cond(φvν̃v) and Zv = τv(φvν̃v, ξv) by (13). Othewise φv
and ν̃v have to be both unramified, hence bv = 1 and Zv = −NF/Q(v)−1φv($v)−1−δv .

(ii) is proved as in theorem 2.5. �

We will see that the p-adic L-functions LΣ
p (π) behave well when π varies in a Hida

family.

3. Exact control theorem for the nearly ordinary cohomology of
Hilbert modular varieties

The main result in this section is an exact control for the nearly ordinary Betti
cohomology of a Hilbert modular variety with coefficients in O, after localization at a
certain maximal ideal of the Hecke algebra. The proofs rely on results established in
[D1, D2] on the (absence of) torsion in these cohomology groups under the assumptions
(?) and (??), hence rely indirectly on the fact that the Hilbert modular varieties admit a
canonical model over Q allowing to interpret Betti cohomology with p-adic coefficients
as etale cohomology and further as de Rham cohomology after extending the scalars
to a Fontaine ring of periods.

Henceforth p is assumed to be odd.

3.1. Towers of Hilbert modular varieties. Since we are mostly interested in p-adic
cohomological interpolation, we will fix a tame level Kp and vary the level at p.

For ? ∈ {0, 1, 11} we denote by Y?(pα) the Hilbert modular variety of level KpK?(pα)
and by Y ad

? (pα) its adjoint counterpart. By [D2, Lemmas 2.1,2.2] the groups of the
abelian coverings

Y11(pα)→ Y ad
0 (pα), Y1(pα)→ Y ad

0 (pα) and Y ad
11 (pα)→ Y ad

0 (pα)

are respectively isomorphic to

A×f K0(pα)/F×K11(pα), A×f K0(pα)/F×K1(pα) and K0(pα)/K11(pα)(o⊗Zp)×.
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We identify the standard torus of GL2 with G2
m via (u, z) 7→ ( uz 0

0 z ). This leads to
the following identifications:

A×f K0(pα)/F×K1(pα) ' A×f /F
×(A×f ∩K

pK1(pα)) and K0(pα)/K11(pα)(o⊗Zp)× ' (o /pα)×,

hence A×f K0(pα)/F×K11(pα) ' A×f /F
×(A×f ∩K

pK1(pα))× (o /pα)×.

We define the following semi-local p-adic Iwasawa O-algebras:

Λ1 = O

[[
lim←−
α≥1

A×f /F
×(A×f ∩K

pK1(pα))

]]
= O

[[
z; z ∈ A×f /F×(A×f ∩Kp)

]]
,

Λad = O

[[
lim←−
α≥1

(o /pα)×
]]

= O[[u;u ∈ (o⊗Zp)×]] and Λ11 = Λ1⊗̂Λad.

3.2. Hida’s stabilization lemma. For a cohomological weight (w,w0) define:

H11(w,w0) = HomO

(
lim−→
α≥1

ep H•c(Y11(pα),L(w,w0;E/O)), E/O

)
,

H1(w,w0) = HomO

(
lim−→
α≥1

ep H•c(Y1(pα),L(w,w0;E/O)), E/O

)
and

Had(w,w0) = HomO

(
lim−→
α≥1

ep H•c(Y
ad

11 (pα),L(w,w0;E/O)), E/O

)
,

where ep denotes Hida’s (nearly) ordinary idempotent. It follows from §3.1 that
H?(w,w0) is naturally a Λ?-module, for ? ∈ {11, 1, ad}.

By Hida’s stabilization lemma H?(w,w0) is independent of (w,w0) in the following
sense:

Theorem 3.1. Let (w,w0) ∈ N[I]× Z be a cohomological weight.
(i) ([H3, (3.3)]) There is an isomorphism of Λ11-modules

H11(w,w0) ' H11(0, 0)⊗O O Y w,

where [u, z] ∈ Λ11 acts by u
w0t−w

2 χ(z)w0ω(z)−w0 on the lowest weight vector
Y w ∈ L(w,w0;O).

(ii) ([H1, Thm 8.6]) There is an isomorphism of Λ1-modules

H1(w + t, w0 + 1) ' H1(w,w0)⊗O O Y,

where [z] ∈ Λ1 acts Y by χ(z)ω(z)−1.
(iii) There is an isomorphism of Λad-modules

Had(w,w0) ' Had(|w0|t, w0)⊗O O Y w−|w0|t,

where [u] ∈ Λad acts on Y w−|w0|t by u
|w0|t−w

2 .
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3.3. Exact control theorem. Our exact control theorem will only hold after applying
a certain idempotent eρ̄, analogous the Mazur’s non-Eisenstein idempotent, that we
will now define. Given a finite set of primes Σ outside p and a continuous representation
ρ̄ : GalF,pΣ → GL2(Fp) we consider the following maximal ideal:

mρ̄ =
(
$,Tv − Tr(ρ̄(Frobv)), Sv −Det(ρ̄(Frobv)) NF/Q(v)

)
of the abstract Hecke algebra TΣ = O[Tv, Sv ; v /∈ Σ, v - p], where $ denotes a
uniformizer of O.

In addition to its Λ?-module structure, H?(w,w0) is endowed with an action of TΣ

and of Uv and Uδ = [Kv

(
1 0
0 δ

)
Kv] for every v dividing p and δ ∈ o×v .

Definition 3.2. Assume that ρ̄ satisfies (??), so that there exists a cohomological
cuspidal automorphic representation π̄ of weight (w̄, w̄0) which is nearly ordinary at v
dividing p with U0

v -eigenvalue α0
v, and such that ρ̄ ' ρπ̄,p mod p.

Define eρ̄ as the idempotent corresponding to the localization at

(mρ̄, U
0
v − α0

v, Uδ − δ(w̄−w̄0t−w+w0t)/2; v | p, δ ∈ o×v ).

Remark 3.3. The weight of π̄ as in (??) is denoted (w̄, w̄0) since it only depends on ρ̄.
In fact by remark 4.2 for all primes v dividing p, the nearly ordinariness of πv implies
the reducibility of ρπ̄,p|GalFv

(hence of ρ̄|GalFv
) and the fact that the weights are smaller

than p − 1 allows them to be recovered from ρ̄. On the other hand, the reduction α0
v

(mod $) cannot be retrieved from ρ̄ in general, hence there is a slight abuse in the
notation eρ̄.

Definition 3.4. For a cohomological weight (w,w0) define:

Hn.o
ρ̄ (w,w0) = HomO

(
lim−→
α≥1

eρ̄ H•c(Y11(pα),L(w,w0;E/O)), E/O

)
,

Hord
ρ̄ (w,w0) = HomO

(
lim−→
α≥1

eρ̄ H•c(Y1(pα),L(w,w0;E/O)), E/O

)
and

Hdet
ρ̄ (w,w0) = HomO

(
lim−→
α≥1

eρ̄ H•c(Y
ad

11 (pα),L(w,w0;E/O)), E/O

)
.

Remark 3.5. The localization at (Uδ − δ(w̄−w̄0t−w+w0t)/2; v | p, δ ∈ o×v ) is superfluous
for the definition of Hord

ρ̄ (w,w0), but not a priori for Hdet
ρ̄ (w,w0) and Hn.o

ρ̄ (w,w0).

We define the local p-adic Iwasawa O-algebra Λn.o = Λord⊗̂Λdet, where

Λord = O
[[
z; z ∈

(
A×f /F×(A×f ∩Kp)

)p−part
]]

and Λdet = O
[[
u;u ∈ (o⊗Zp)×p−part

]]
.

By global class field theory, the character det(ρ̄) · χ̄ : GalF,pΣ → F×p factors through

the prime to p-part of the class group A×f /F×(A×f ∩Kp), hence its Teichmüller lift

d̃et(ρ̄)ω induces a surjective homomorphism Λ1 � Λord.
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The Teichmüller lift of the character (o⊗Zp)× → F×p , u 7→ ū(w̄−w̄0t−w+w0t)/2 induces
a surjective homomorphism Λad � Λdet.

From the above two surjective homomorphisms one deduces a third one:

Λn.o = Λord⊗̂Λdet � Λ11 = Λ1⊗̂Λad.

The idempotent eρ̄ determines residually the eigenvalues of Sv, for v outside a finite
set, hence by weak approximation determines the central action residually. Moreover,
it imposes residually the action of Uδ for all δ ∈ (o⊗Zp)×. Since the residual char-
acteristic is p, it follows that the idempotent eρ̄ fixes the action of the prime to p

parts of (o⊗Zp)× and of the class group A×f /F×(A×f ∩Kp). We record this fact in the
following proposition.

Lemma 3.6. (i) The action of Λ1 on Hord
ρ̄ (w,w0) is via the above Λ1 � Λord.

(ii) The action of Λad on Hdet
ρ̄ (w,w0) is via the above Λad � Λdet.

(iii) The action of Λ11 on Hn.o
ρ̄ (w,w0) is via the above Λ11 � Λn.o.

Definition 3.7. For α ≥ 1 and ? ∈ {n. o, ord,det} denote by P ?
α ⊂ Λ? the kernel of

the homomorphism induced by [u, z] 7→ [u mod pα, z mod pα].

Theorem 3.8. Suppose that (?) and (??) hold.
(i) For ? ∈ {n. o, ord,det} and for all α ≥ 1 we have exact control:

H?
ρ̄(w̄, w̄0) ⊗

Λ?
Λ?/P ?

α ' HomO(eρ̄ Hd(Y?(pα),L(w̄, w̄0;E/O)), E/O).

(ii) For ? ∈ {n. o, ord,det} the Λ?-module H?
ρ̄(w̄, w̄0) is free of finite rank.

(iii) Given a cohomological weight (w,w0), for all α ≥ 1 we have exact control:

Hn.o
ρ̄ (w,w0) ⊗

Λn.o
Λn.o/P n.o

α ' HomO(eρ̄ Hd(Y11(pα),L(w,w0;E/O)), E/O).

(iv) Given a cohomological weight (w,w0) ∈ (w̄, w̄0) + Z(t, 1), for all α ≥ 1 we
have exact control:

Hord
ρ̄ (w,w0) ⊗

Λord
Λord/P ord

α ' HomO(eρ̄ Hd(Y1(pα),L(w,w0;E/O)), E/O).

(v) If (w, w̄0) is a cohomological weight then for all α ≥ 1 we have exact control:

Hdet
ρ̄ (w, w̄0) ⊗

Λdet
Λdet/P det

α ' HomO(eρ̄ Hd(Y ad
11 (pα),L(w, w̄0;E/O)), E/O).

Proof. (i) follows from Hida’s exact control criterion [H6, lemma 7.1] and the fact
that the Pontryagin dual of eρ̄ Hd(YKp GL2(o⊗Zp),L(w̄, w̄0;E/O) is isomorphic to the
torsion free O-module eρ̄ Hd(YKp GL2(o⊗Zp),L(w̄, w̄0;O)) (see [D2, §2]).

(ii) follows from (i) by a commutative algebra argument as in the proof of [MT,
Thm 9]

(iii),(iv) and (v) follows from (i) together with theorem 3.1, as in the last paragraph
of the proof of [H6, Thm 7.1]. �

As a corollary we obtain the freeness of the nearly ordinary part of the cohomology
of a Hilbert modular variety without assuming that it has good reduction at p and
that the weight of the local system is p-small, thus generalizing [D2, Theorem 2.3].
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Corollary 3.9. If ρ̄ satisfies (?) and (??), then eρ̄ Hd(Y11(pα),L(w,w0;O)) is a free
O-module of finite rank, whose Pontryagin dual is eρ̄ Hd(Y11(pα),L(w,w0;E/O)).

4. Freeness and R = T theorems

4.1. Universal nearly ordinary deformation rings. Let Σ be a finite set of primes
outside p and let ρ̄ : GalF,pΣ → GL2(Fp) be a continuous irreducible representation
which is nearly ordinary and distinguished at p, meaning for every v dividing p there
exist two distinct characters ψ̄1,v and ψ̄2,v of the absolute Galois group GalFv of Fv,
such that

ρ̄|GalFv
'
(
ψ̄1,v ∗

0 ψ̄2,v

)
.

Let Rn.o
ρ̄,Σ be Mazur’s universal O-algebra parametrizing deformations ρ′ of ρ̄ which

are nearly ordinary at all v dividing p, in the sense that ρ′|GalFv
'
(
ψ′1,v ∗

0 ψ′2,v

)
, where

ψ′i,v is a lift of ψ̄i,v (i = 1, 2).
Denote by ρR the universal deformation. For every v dividing p, by nearly ordinar-

iness, ρR|GalFv
'
(
ψ′1,v ∗

0 ψ′2,v

)
, hence by local class field theory ψ′2,vψ̃

−1
2,v is a character

of o
×p−part
v , where ψ̃2,v denotes the Teichmüller lift of ψ̄2,v. This endows Rn.o

ρ̄,Σ with
O[[(o⊗Zp)×p−part]]-algebra structure. It comes from the forgetful functor taking the
restriction to decomposition groups at primes dividing p.

The character det(ρR) ˜det(ρ̄)−1χω−1 : GalF,pΣ → Rn.o×
ρ̄,Σ factors through Gal(F (pΣ)/F ),

hence endows Rn.o
ρ̄,Σ with O[[Gal(F (pΣ)/F )]]-algebra structure. It comes from the for-

getful functor taking the determinant twisted by χ.
Therefore Rn.o

ρ̄,Σ is naturally a module over the complete local Iwasawa algebra

Λ = O[[Gal(F (pΣ)/F )× (o⊗Zp)×p−part]],

which appears naturally in the class field theory of F .

Definition 4.1. An O-algebra homomorphism Λ → Qp is algebraic if for some coho-
mological weight (w,w0) its restriction to Gal(F (pΣ)/F ) (resp. to (o⊗Zp)×p−part) is
the product of a finite order character with the character χ−w0 (resp. x 7→ x(w−w0t)/2).

4.2. Universal nearly ordinary Hecke rings. Following Fujiwara [Fu] we define the
universal nearly ordinary Hecke algebra as the maximal Λ⊗TΣ-algebra Tn.o

ρ̄,Σ with the
following property: any homomorphism Tn.o

ρ̄,Σ → Qp whose restriction to Λ is algebraic
of weight (w,w0) comes from a cuspidal automorphic representation π of GL2(A) which
is cohomological of weight (w,w0), nearly ordinary at all places dividing p and such
that ρπ,p is a deformation of ρ̄.

By a theorem of Hida [H2] and Wiles [W1], for all primes v dividing p, the nearly
ordinariness of πv implies the reducibility of ρπ,p|GalFv

. The converse is a theorem of
Saito [Sa].
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Remark 4.2. If πv is ordinary and unramified, then there is a more precise statement,

namely, ρπ,p|GalFv
'
(
ψ1,v ∗

0 ψ2,v

)
where (via local class field theory) the restrictions

of (ψ1,v)v|p and (ψ2,v)v|p to inertia groups at primes dividing p are given by:

(ψ1,v)v|p : (o⊗Zp)× → Z×p , x 7→ x
w0t+w

2
+1 and

(ψ2,v)v|p : (o⊗Zp)× → Z×p , x 7→ x
w0t−w

2 .

Wiles’ method of pseudo representations yields a deformation of ρ̄:

ρR : GalF,pΣ → GL2(Tn.o
ρ̄,Σ),

hence, by universal property, a surjective Λ-algebra homomorphism Rn.o
ρ̄,Σ � Tn.o

ρ̄,Σ.

Theorem 4.3. (Fujiwara [Fu]) Assume that ρ̄ is distinguished and that its restric-
tion to Gal(Q/F (ζp)) is irreducible. Then the natural surjection Rn.o

ρ̄,Σ � Tn.o
ρ̄,Σ is an

isomorphism of algebras which are finite flat of complete intersection over Λ.

4.3. Nearly ordinary cohomology modules. We will give a concrete realization
of the universal nearly ordinary Hecke algebras encountered in §4.2 by the method of
p-adic cohomological interpolation described in §3.

We will first realize the groups Gal(F (pΣ)/F ) ' Cl(p)F (p∞Σ) and (o⊗Zp)×p−part as
groups of towers of Hilbert modular varieties (see §3.1). For this purpose we fix ρ̄ as
in §4.1 and choose the tame level Kp = Kp

ρ̄,Σ. In addition to the Hilbert modular
varieties Y?(pα) and Y ad

? (pα) defined in §2.3.1, we denote by Yρ̄,Σ the Hilbert modular
variety of level GL2(o⊗Zp)Kp

ρ̄,Σ which has good reduction at p.
Since the intersection of A×f ∩K1(pα)Kp

ρ̄,Σ and U(pαΣ) has prime to p index in each
of them, it follows that(

A×f K0(pα)/F×K1(pα)
)p−part

= Cl(p)F (pαΣ), hence

Λord = O[[Cl(p)F (p∞Σ)]], Λdet = O[[(o⊗Zp)×p−part]] and Λn.o = Λord⊗̂Λdet ' Λ.
There are exact sequences:

1→ (o⊗Zp)×/E(Σ)→ Cl+F (p∞Σ)→ Cl+F (Σ)→ 1,

1→
∏
v∈Σ

(o /v)× → Cl+F (p∞Σ)→ Cl+F (p∞)→ 1,

that remain exact after taking pro-p parts.

Definition 4.4. Consider the idempotent e = eρ̄ · e∞ · eΣ, with e∞ as in definition
1.18, eΣ as in definition 2.7 and eρ̄ as in definition 3.2. For a cohomological weight
(w,w0) define:

Hn.o
ρ̄,Σ(w,w0) = HomO

(
lim−→
α≥1

eH•c(Y11(pα),L(w,w0;E/O)), E/O

)
,

Hord
ρ̄,Σ(w,w0) = HomO

(
lim−→
α≥1

eH•c(Y1(pα),L(w,w0;E/O)), E/O

)
and
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Hdet
ρ̄,Σ(w,w0) = HomO

(
lim−→
α≥1

eH•c(Y
ad

11 (pα),L(w,w0;E/O)), E/O

)
.

By lemma 3.6, for any ? ∈ {n. o, ord, det}, H?
ρ̄,Σ(w,w0) is endowed with a structure

of Λ?-algebra.

Definition 4.5. For a cohomological weight (w,w0) and ? ∈ {ord,det,n. o} let T ?
ρ̄,Σ(w,w0)

denote the Λ?-algebra generated by TΣ acting on H?
ρ̄,Σ(w,w0).

4.4. Freeness theorem. Put T n.o
ρ̄,Σ = T n.o

ρ̄,Σ(0, 0) and Hn.o
ρ̄,Σ = Hn.o

ρ̄,Σ(0, 0).

Theorem 4.6. Assume (?) and (??). Then Hn.o
ρ̄,Σ is free of rank one over T n.o

ρ̄,Σ and
there exist a natural isomorphism Rn.o

ρ̄,Σ
∼−→ T n.o

ρ̄,Σ of algebras which are finite flat of
complete intersection over Λn.o.

Proof. The proof follows the same strategy as in [Ti]. By theorems 3.1(i) and 3.8(iii)
any homomorphism T n.o

ρ̄,Σ → Qp whose restriction to Λn.o is algebraic of weight (w,w0)
comes from a cuspidal automorphic representation contributing to eHd(Y11(pα),L(w,w0;O)).
It follows from the universal property of Tn.o

ρ̄,Σ defined in §4.2 that there exists Λn.o-linear
surjective homomorphism Rn.o

ρ̄,Σ � Tn.o
ρ̄,Σ � T n.o

ρ̄,Σ.
The proof then proceeds by specialization to weight (w̄, w̄0). Denote by P the kernel

of the algebraic homomorphism Λn.o → O induces by the following character:

Cl(p)F (p∞Σ)× (o⊗Zp)×p−part → O×, (z, u) 7→ u(w̄0t−w̄)/2
(

det(ρπ̄,p) ˜det(ρ̄)−1χω−1
)

(z).

Then Rρ̄,Σ = Rn.o
ρ̄,Σ /P Rn.o

ρ̄,Σ classifies deformations ρ of ρ̄ of determinant det(ρπ̄,p)
whose restriction to decomposition groups at primes dividing p is as in remark 4.2.
Since for all τ ∈ I, w̄τ > 0, it is then a standard fact from Fontaine’s theory that ρ is
cristalline at all primes dividing p.

By the control theorem 3.8 there is a Hecke equivariant isomorhism of free O-
modules:

Hn.o
ρ̄,Σ /P Hn.o

ρ̄,Σ ' eHd(Y0(p),L(w̄, w̄0;O)),

where Y0(p) denotes the Hilbert modular variety of level K0(p)Kp
ρ̄,Σ. It is well known

that if π is a cuspidal automorphic representation of cohomological weight strictly
bigger than 0 such that πv is nearly ordinary and π

K0(v)
v 6= 0, then πv is unramified.

Hence:
eHd(Y0(p),L(w̄, w̄0;O)) ' eHd(Yρ̄,Σ,L(w̄, w̄0;O)).

Then one has a commutative diagram:

Rn.o
ρ̄,Σ /P Rn.o

ρ̄,Σ
// // T n.o

ρ̄,Σ /P T n.o
ρ̄,Σ

//

����

EndΛn.o/P Λn.o

(
Hn.o
ρ̄,Σ /P Hn.o

ρ̄,Σ

)

Rρ̄,Σ // // Tρ̄,Σ
� � // EndO

(
eHd(Yρ̄,Σ,L(w̄, w̄0;O))

)
,

where Tρ̄,Σ denotes the image of TΣ acting on eHd(Yρ̄,Σ,L(w̄, w̄0;O)).
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Under the assumptions (?) and (??), we are now in position to apply [D2, Thm
6.6] and deduce that Rρ̄,Σ ' Tρ̄,Σ and that eHd(Yρ̄,Σ,L(w̄, w̄0;O)) is free of rank
one over Rρ̄,Σ. By the above diagram, it follows that Rn.o

ρ̄,Σ /P Rn.o
ρ̄,Σ is isomorphic

to T n.o
ρ̄,Σ /P T n.o

ρ̄,Σ and Hn.o
ρ̄,Σ /P Hn.o

ρ̄,Σ is free of rank one. It is enough then to apply
Nakayama’s lemma to deduce the desired result (see [Ti, 3.2] for details). �

Corollary 4.7. Exact control holds for T n.o
ρ̄,Σ(w,w0), that is for all α ≥ 1:

T n.o
ρ̄,Σ(w,w0) ⊗

Λn.o
Λn.o/P n.o

α ' T n.o
α (w,w0),

where T n.o
α (w,w0) denotes the Hecke algebra acting on eHd(Y11(pα),L(w,w0;O)).

4.5. Variants. The algebraic homomorphism

Λdet → O, [u] 7→ u(w0t−w)/2

yields a surjective homomorphism Λn.o = Λdet⊗̂Λord → Λord used implicitly in the
following definition:

(19) Rord
ρ̄,Σ((w0t− w)/2) = Rn.o

ρ̄,Σ⊗Λn.oΛord.

The Λord-algebra Rord
ρ̄,Σ((w0t − w)/2) parametrizes ordinary deformations of slope

(w0t − w)/2 (see [H1]). In parallel weight (wτ = w0 for all τ) the corresponding ho-
momorphism Λdet → O is the trivial one. The ring Rord

ρ̄,Σ = Rord
ρ̄,Σ(0) then parametrizes

deformations which are locally reducible at all places dividing p with unramified one
dimensional quotients. By adapting the proof of theorem 4.6 we obtain:

Corollary 4.8. Assume (?) and (??) with an ordinary π̄. Then Hord
ρ̄,Σ(w̄, w̄0) is free of

rank one over T ord
ρ̄,Σ(w̄, w̄0) and the natural surjection Rord

ρ̄,Σ((w̄0t−w̄)/2) � T ord
ρ̄,Σ(w̄, w̄0)

is an isomorphism of algebras which are finite flat of complete intersection over Λord.
If w̄ = w̄0t then for every w0 ≥ 0 the module Hord

ρ̄,Σ(w0t, w0) is free of rank one over
T ord
ρ̄,Σ(w0t, w0) and the natural surjection Rord

ρ̄,Σ � T ord
ρ̄,Σ(w0t, w0) is an isomorphism of

algebras which are finite flat of complete intersection over Λord.

The algebraic homomorphism Λord → O induced by

det(ρπ̄,p) ˜det(ρ̄)−1χω−1 : GalF,pΣ → O×

yields a surjective homomorphism Λn.o = Λord⊗̂Λdet → Λdet used implicitly in the
following definition:

(20) Rdet
ρ̄,Σ = Rn.o

ρ̄,Σ⊗Λn.oΛdet

The Λdet-algebra Rdet
ρ̄,Σ parametrizes nearly ordinary deformations of ρ̄ with deter-

minant equal to det(ρπ̄,p). Again, by adapting the proof of theorem 4.6 we obtain:

Corollary 4.9. Under (?) and (??), the module Hdet
ρ̄,Σ(w, w̄0) is free of rank one over

T det
ρ̄,Σ(w, w̄0) and the natural surjection Rdet

ρ̄,Σ � T det
ρ̄,Σ(w, w̄0) is an isomorphism of al-

gebras which are finite flat of complete intersection over Λdet.
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5. Analytic p-adic L-function for Hida families

In this last section of the article we will apply the results obtained in the previous
sections to the construction of analytic p-adic L-functions for Hida families of Hilbert
automorphic forms. Partial results in the ordinary case can be found in [DO] where
Kitagawa’s classical approach has been generalized. A different rather technical ap-
proach using p-adic Rankin-Selberg convolution has been used by [M1] in the ordinary
case, and is also expected to work in the nearly ordinary case along the lines of [H4].

5.1. Universal nearly ordinary p-adic automorphic symbol. In this section we
will describe a p-adic limit interpolation procedure that allows to extract the lowest
coefficient of the local system LK(w,w0;E/O) even if it is not critical.

For β and γ large enough so that Kp contains M(pβ, pβ+γ), consider the following
map defined in §1.3.2

CΣ,γ
K,β = CK(pβΣ, pβ+γΣ aK) : A× /F×U(pβ+γΣ aK)→ YK .

Since for all u ∈ U(pβ+γΣ aK) one has
(
up (up−1)p−β

0 1

)
≡ ( 1 0

0 1 ) (mod pγ) one de-

duces that the sheaf CΣ,γ∗
K,β LK(w,w0; p−γ/O) is trivial, yielding an evaluation map on

cohomology:

SΣ,γ
K,β(w,w0) : Hd

c(YK ,LK(w,w0; p−γ/O))→ L(w,w0; p−γ/O)[[Cl+F (pβ+γΣ aK)]].

By lemma 1.12 and the fact that p
w−w0t

2 ( p ?0 1 ) acts trivially on the lowest weight
vector Y w ∈ LK(w,w0; p−γ/O) follows the commutativity of the diagram:
(21)

Hd
c(YK ,LK(w,w0; p−γ/O))

p
w−w0t

2 Up=U0
p //

SΣ,γ
K,β+1(w,w0)

��

Hd
c(YK ,LK(w,w0; p−γ/O))

SΣ,γ
K,β(w,w0)

��
L(w,w0; p−γ/O)[[Cl+F (pβ+1+γΣ aK)]]

low
w,w0
β+1

��

L(w,w0; p−γ/O)[[Cl+F (pβ+γΣ aK)]]

low
w,w0
β

��
(p−γ/O)[Cl+F (pβ+1+γΣ aK)]

prββ+1 // (p−γ/O)[Cl+F (pβ+γΣ aK)]

where loww,w0

β is the projection to the coefficient of the lowest weight vector. If follows

that the maps loww,w0

β ◦SΣ,γ
K,β(w,w0) ◦ (U0

p )−β form a projective system with respect to
β and by passing to the limit we obtain:

(22) SΣ,γ
K (w,w0) : ep Hd

c(YK ,LK(w,w0; p−γ/O))→ p−γ/O[[Cl+F (p∞Σ aK)]].

It is clear that (SΣ,γ
K (w,w0))K,γ form an inductive system with respect to γ and

the maps induced by the natural projections YK′ → YK , for K ′ ⊂ K. We are now in
position to study the variation of p-adic automorphic symbol whenKp shrinks. Namely,
under a mild restrictions on K allowing to ignore aK , we have a homomorphism(

SΣ,γ
K (w,w0)

)
K,γ

: lim−→
K

ep Hd
c(YK ,LK(w,w0;E/O))→ E/O[[Cl(p)F (p∞Σ)]].
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where YK runs over a given tower of Hilbert modular varieties.

5.2. Analytic p-adic L-functions for ordinary families. Let Σ be a finite set of
primes outside p and ρ̄ : GalF,pΣ → GL2(Fp) be a representation, satisfying (?) and
(??) with ordinary π̄ of parallel weight (w̄ = w̄0t).

5.2.1. Construction. Let Y1(pα) be the Hilbert modular variety of levelKα = Kp
ρ̄,ΣK1(pα)

(see §2.3.1). By lemma 2.8 we have Cl(p)F (p∞Σ aK) = Cl(p)F (p∞Σ).
For every w ∈ N, the universal ordinary p-adic automorphic symbol Sord

Σ (wt,w) is
defined as the inductive limit over α and γ of the maps (SΣ,γ

Kα
(wt,w))α,γ from (22):

Sord
Σ (wt,w) : lim−→

α,γ

ep Hd
c(Y1(pα),LK(wt,w; p−γ/O))→ E/O[[Cl(p)F (p∞Σ)]].

In the notations of §3.2 we have

Sord
Σ (wt,w) ∈ H1(wt,w)⊗̂OO[[Cl(p)F (p∞Σ)]].

By corollary 4.8, Hord
ρ̄,Σ = Hord

ρ̄,Σ(0, 0) is free of rank one over T ord
ρ̄,Σ = T ord

ρ̄,Σ(0, 0).

Denote by bord
ρ̄,Σ a basis. Let Sord

ρ̄,Σ be the image of Sord
Σ (0, 0) in Hord

ρ̄,Σ ⊗̂OO[[Cl(p)F (p∞Σ)]].

Definition 5.1. We define the universal ordinary p-adic L-function

Lord
p = Lord

p (ρ̄,Σ) ∈ T ord
ρ̄,Σ[[Cl(p)F (p∞Σ)]]

as the coordinate of Sord
ρ̄,Σ in the basis bord

ρ̄,Σ ⊗ 1.

Remark 5.2. Although Λord andO[[Cl(p)F (p∞Σ)]] are abstractly isomorphic, the action
of the former on Rn.o

ρ̄,Σ is defined using the determinant, while the action of the latter
is defined using twists.

5.2.2. Dependence on the weight. One of the main features of Hida’s theory is that
objects constructed in one given weight can be transfered to other weights. We will
now show that Lord

p has this feature too.
By theorem 3.1(ii) there is a natural isomorphism Hord

ρ̄,Σ
∼→ Hord

ρ̄,Σ(wt,w), compatible
with the isomorphism of Hecke algebras

(23) T ord
ρ̄,Σ

∼→ T ord
ρ̄,Σ(wt,w),

itself compatible with the algebra automorphism of Λord given by [z] 7→ χ(z)−wω(z)w[z].
The image bord

ρ̄,Σ(w) of bord
ρ̄,Σ under this isomorphism is clearly a basis of Hord

ρ̄,Σ(wt,w) over
T ord
ρ̄,Σ(wt,w).

Denote by Sord
ρ̄,Σ(wt,w) the image of Sord

Σ (wt,w) in Hord
ρ̄,Σ(wt,w)⊗̂OO[[Cl(p)F (p∞Σ)]]

and define the p-adic L-function

Lord
p (w) = Lord,w

p (ρ̄,Σ) ∈ T ord
ρ̄,Σ[[Cl(p)F (p∞Σ)]]

as the coordinate of Sord
ρ̄,Σ(wt,w) in the basis bord

ρ̄,Σ(w)⊗ 1.
In vertu of the above choices of basis we have:
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Lemma 5.3. The natural isomorphism

jw : T ord
ρ̄,Σ ⊗̂OO[[Cl(p)F (p∞Σ)]] ∼−→ T ord

ρ̄,Σ(wt,w)⊗̂OO[[Cl(p)F (p∞Σ)]]

induced by (23) sends Lord
p to Lord

p (w).

5.2.3. Proof of theorem 0.3. We are now is position to prove interpolation property in
any parallel weight. Let π be a cohomological cuspidal automorphic representation of
weight (wt,w), ordinary of level K1(pα) at p and such that ρπ,p is a deformation of
ρ̄. It defines an algebra homomorphism T ord

ρ̄,Σ(wt,w) −→ O extending naturally to a
homomorphism:

θπ : T ord
ρ̄,Σ(wt,w)[[Cl(p)F (p∞Σ)]]→ O[[Cl(p)F (p∞Σ)]].

Since the constructions from §1.5 and §5.1 coincide in parallel (critical) weight
(wt,w), we have θπ(Lord

p (w)) = LΣ
p (π), hence θπ(jw(Lord

p )) = LΣ
p (π) (see lemma 5.3).

Theorem 0.3 then follows from the fact that T ord
ρ̄,Σ is isomorphic to Rord

ρ̄,Σ as a Λord-
algebra (see corollary 4.8).

Using theorem 2.11 one can further specialize Lord
p by a character of Cl(p)F (p∞Σ)

obtaining the following:

Corollary 5.4. For any w0 ∈ Z such that |w0| ≤ w and for any finite order character
φ of Cl(p)F (p∞Σ), ramified at all the places dividing pΣ, the specialization of Lord

p by(
[a] 7→ χ(a)

w−w0
2 ω(a)−

w−w0
2 φ(a)

)
◦ θπ ◦ jw equals

L(pΣ)(π ⊗ φω−
w−w0

2 , w−w0
2 + 1)Γ(π, w−w0

2 + 1)
ΩΣ
π,∞

τ(φ, ξ)
∏
v|p

α− cond(φv)
v .

Hence Lord
p = Lord

p (ρ̄,Σ) is rightfully called a p-adic L-function, since it is uniquely
determined by p-adic interpolation of special values of classical L-functions, and is
also rightfully called universal, since it can be specialized to the p-adic L-function
associated to any ordinary cuspidal automorphic representation lifting ρ̄.

5.3. Analytic p-adic L-function for nearly ordinary families. Let Σ be a finite
set of primes outside p and ρ̄ : GalF,pΣ → GL2(Fp) be a representation satisfying (?)
and (??). Since ρ̄ is nearly ordinary and distinguished, by §4.1 there exists a universal
nearly ordinary deformation ring Rn.o

ρ̄,Σ. Since p is odd, every deformation of ρ̄ has a

twist by a character of Galab,p−part
F,pΣ ' Cl(p)F (p∞Σ) having determinant det(ρπ̄,p). Hence

we have a canonical isomorphism:

Rn.o
ρ̄,Σ = Rdet

ρ̄,Σ[[Cl(p)F (p∞Σ)]].

Let Y ad
11 (pα) denote the Hilbert modular variety of level Kα = Kp

ρ̄,ΣK
ad
11 (pα) (see

§2.3.1). By lemma 2.8 we have Cl(p)F (p∞Σ aK) = Cl(p)F (p∞Σ).
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The universal nearly ordinary p-adic automorphic symbol Sn.o
Σ is defined as the

inductive limit over α and γ of the maps (SΣ,γ
Kα

(w̄0t, w̄0))α,γ from (22):

Sn.o
Σ : lim−→

α,γ

ep Hd
c(Y

ad
11 (pα),LK(w̄0t, w̄0; p−γ/O))→ E/O[[Cl(p)F (p∞Σ)]].

In the notations of §3.2 we have

Sn.o
Σ ∈ Had(w̄0t, w̄0)⊗̂OO[[Cl(p)F (p∞Σ)]].

Denote by Sn.o
ρ̄,Σ the image of Sn.o

Σ in Hdet
ρ̄,Σ(w̄0t, w̄0)⊗̂OO[[Cl(p)F (p∞Σ)]].

By corollary 4.9, Hdet
ρ̄,Σ(w̄0t, w̄0) is free of rank one over T det

ρ̄,Σ(w̄0t, w̄0) with basis bdet
ρ̄,Σ

and T det
ρ̄,Σ(w̄0t, w̄0) is isomorphic to Rdet

ρ̄,Σ as a Λdet-algebra.

Definition 5.5. We define the p-adic nearly ordinary L-function

Ln.o
p (ρ̄,Σ) ∈ T det

ρ̄,Σ(w̄0t, w̄0)[[Cl(p)F (p∞Σ)]] ' Rn.o
ρ̄,Σ,

as the coordinate of Sn.o
ρ̄,Σ in the basis bdet

ρ̄,Σ ⊗ 1.

Let π be a nearly ordinary cuspidal automorphic representation of GL2(A) of weight
(w̄0t, w̄0) such that ρπ,p is a deformation of ρ̄ with determinant det(ρπ̄,p). It defines an
algebra homomorphism

θπ : T det
ρ̄,Σ(w̄0t, w̄0) −→ O .

Since the constructions from §1.5 and §5.1 coincide in weight (w̄0t, w̄0) we have

θπ(Ln.o
p (ρ̄,Σ)) = LΣ

p (π)

as claimed in theorem 0.2.
Hence Ln.o

p = Ln.o
p (ρ̄,Σ) is rightfully called a p-adic L-function, since it is uniquely

determined by p-adic interpolation of special values of classical L-functions.
Contrary to the ordinary case, we do not know whether the specialization of Ln.o

p by
an arbitrary algebraic homomorphism Rdet

ρ̄,Σ → O yields a p-adic L-function associated
to some nearly ordinary cuspidal automorphic representation of GL2(A). We believe
that the resolution of this question should involve a new construction allowing to lift
(non-canonically) these measures to measures in 2d-variables, similarly to Shintani’s
and Deligne-Ribet’s construction of the p-adic L function of a totally real number field.
This is a subtle issue to which we hope to come back in a future work.
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