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ABSTRACT. Hilbert modular forms and varieties are the natural gener-
alization of elliptic modular forms and curves, when the ground field of
rational numbers is replaced by a totally real number field. The aim of
these notes is to present the basics of their arithmetic theory and to de-
scribe some of the recent results in the area. A special emphasis will
be put on the following two subjects: images of Galois representations
associated to Hilbert modular forms and cohomology of Hilbert modular
varieties with integral coefficients.

The exposition follows the lectures given at the CRM Barcelona in
June 2010. We would like to thank the CRM for the excellent conditions
for research, as well as the programme coordinators Luis Dieulefait and
Victor Rotger for all their work and, of course, all the other participants
in the lectures.
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1. HILBERT MODULAR FORMS

Let F' be a totally real number field of degree d > 1, ring of integers O
and denote by Jr the set of all embeddings of F' into R.

The torus F* is quasi-split over Q and its group of characters can be
identified with Z[.Jp| as follows: for any k= __; k.7 € Z[Jr] and for any
Q-algebra A splitting F*, we consider the character z € (F ®g A)* + zF :=
[1.c), 7(x)* € A*. The norm character Ng/q : F* — Q* then corresponds
to the element ¢ := ) __, 7 € Z[Jp|.

1.1. Congruence subgroups. Denote by Z the profinite completion of Z.
The ring A of adeles of I is the product of finite adeles Ay = F' ® Z with
infinite adeles F.,, = F ®gR. Denote by Ff the open cone of totally positive

elements in F.
1



2 MLADEN DIMITROV

For an open compact subgroup U of (Op (}3)2)X we denote by Cy; (resp. Cfr)
the class group A* /F*UFJ (resp. the narrow class group A /F*UFY).

For an ideal integral ideal N of O, we consider the following open compact
subgroup of A}:

UN) = {cc € (Or ®L)"

x—lEN@Z},

and following open compact subgroups of GLa(Ay):

Ko(N) = {(Z Z) € GLy(Op ®7) ‘ c e/\/@i},

KN = {(ﬁ Z) e Ko(M)|d e U(/\/)} ,

Ku(\) = {(i Z) € Ki(N)

a€ U(N)} and

K(N) = {(Z fl) c Kll(/\/)}b eN@Z}.

1.2. Hilbert modular forms as automorphic forms on GLy(A). The
group G := FX SLy(F,) acts by linear fractional transformations on the
d-fold product of upper half planes:

Op=Fo+(10V-1)F. C F®yC.
Denote by K1 the stabilizer of 1 ® /-1 in GL.

Definition 1.1. A weight (k,wy) € Z[Jp| X Z is arithmetic (or cohomologi-
cal) if for all 7 € Jp, k. > 2 and k; = wy (mod 2).

Definition 1.2. The space M, (') of classical Hilbert modular forms of
arithmetic weight (k,wp) and level I' (a congruence subgroup of GLy(F') N
GLa(Af)GTE) consists of all holomorphic functions f : H — C such that for
every v = (2%) € I' we have

P = den) =P,

where j(v,2) = cz+d € (F ® C)* is the usual automorphic cocycle.
The subspace Sj 4, (I') of cuspforms consists of those f vanishing at all cusps
of f)F

Note that the action of I' on $H is via all the embedding of F' in R, hence
cannot be decomposed as a product.

The spaces My, ., (I') and S ., (I') are finite dimensional C-vector spaces,
but as it will become clear, they are not stable under the action of Hecke op-
erators in general, which motivates the use of the following adelic definition.



ARITHMETIC ASPECTS OF HILBERT MODULAR FORMS AND VARIETIES 3

Definition 1.3. The space M} ., (K) of (adelic) Hilbert modular forms of
weight (k,wp) and level K (an open compact subgroup of GL2(Ay)) consists
of all functions f : GLy(A) — C which are left GLy(F)-invariant, right K-
invariant and such that for all ¢ € GLy(Af) the function

v € GL — det(y) ™ M2j(y, 1@ V=1)k f(g7),

factors through a homolorphic function on G¥ /KT ~ $r, denoted by f,.
If moreover fF\A f(({%)g)dx =0 for all g € GLy(A) then f is called a

cuspform, and we denote by Sk ., (/) the space of cuspforms.

We say that a form f has central character ¢, a Hecke characters of F
of infinity type —wot, if f(y-) = ¥(y)f for all y € A™, and we denote by
Skwo (K, V) C Sk, (K) the corresponding subspace.

Using the strong approximation theorem for GLj, one can compare the
adelic and the classical definition as follows. Choose elements g; € GLa(Af),
1 <4 < h such that (det(g;))1<i<n forms a set of representatives of C:{et(K).

Then the map f +— (f,,)1<i<n induces isomorphisms

Mg g (K) = @ Mkﬂuo(rgi) and Sk’,wo (K) = @ Sk,wo (ng)’

1<i<h 1<i<h
where for g € GLy(Af) we put I'y := GLo(F) NgKg 'GL.

1.3. Hecke operators and newforms. The space My ,,(K) admits left
action of the Hecke algebra C.(K\ GLy(Af)/K) of bi-K-invariant compactly
supported functions on GL2(Af). In more concrete terms, for every g €
GL3(Ay), the Hecke operator [KgK]|, corresponding to the characteristic
function of KgK, sends f to >, f(-g;), where KgK = [], ;). The sub-
space S, (K) is stable under this action.

For a prime v, let w, denote an uniformizer of F,. The standard Hecke
operator [K, (§ 2 ) K,] is denoted by T, if K, is a maximal open compact
subgroup of GLy(F,), and by U, otherwise.

The Hecke algebra is not commutative in general and one rather works with
the commutative subalgebra generated by the standard Hecke operators and
the center.

There is a direct sum decomposition:

Sk,wo (K> = @ Sk,wo (K7 2/))7
(

where 1 runs over all Hecke characters of level K N A; and type —wgt at
infinity.
The Peterson inner product

(fi fo) = / £1(9)Fa(9)| det(g)[2°dg
GL2(F) A*\GL2(A)

endows Sk, (K, 1) with a structure of a hermitian space with respect to
which the operators 7, are normal. It follows that Sk ., () can be de-
composed as a direct sum of eigenspaces for all the T,’s. Note that while the
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U,’s form a commutative family of operators preserving this decomposition,
they are not semi-simple in general, hence Sy ., (K, %) does not always have
a basis of eigenforms for all standard Hecke operators.

The theory of Atkin and Lehner addresses this problem for K = K;(N).
More precisely, if one considers the subspace of primitive forms in Sy, (K71 (N)
(those orthogonal with respect to the Peterson inner product to all forms
coming from lower level), their theory implies that the standard Hecke oper-
ators preserve this space and are semi-simple. The Strong Multiplicity One
Theorem states that a primitive form f which is an eigenform for T, vt N,
is uniquely determined, up to a multiple, by its eigenvalues ¢(f,v) (hence it
is necessarily an eigenform for U,, v | N/, too).

Recall that the Weak Multiplicity One Theorem for GL, states that an
element of S ., (K1(N),9) which is an eigenform for T, (vt N') and for U,
(v | N) is uniquely determined, up to a multiple, by its eigenvalues.

A suitably normalized primitive eigenform in Sy, (K1(N), 1) is called a
newform.

There is a natural bijection between newforms f in Sk ., (K1(N),v) and
cuspidal automorphic representation 7 of GLg(A), of conductor N, central
character ¢ and such that m, belongs to the holomorphic discrete series
of arithmetic weight (k,wp) (see [3]). It is uniquely characterized by the

property that for all v 4 N, ¢(f,v) is the eigenvalue of T, acting on the new

) GL2(Op
line 7, 2(0r0)

2. (GALOIS REPRESENTATIONS ASSOCIATED TO HILBERT MODULAR
FORMS

The absolute Galois group of a field L is denoted by Gpr.

Recall that we have an exact sequence 1 — I, — G, — Z — 1 and that
the Weil group W, is defined as the inverse image of Z. The local class field
theory gives an isomorphism between F¢ and the maximal abelian quotient
of Wkg,, that we normalize so that w, is sent to a geometric Frobenius Frob,,.

2.1. Galois representations. Let m be a cuspidal automorphic represen-
tation of GLy(A) of conductor NV, such that 7., belongs to the holomorphic
discrete series of arithmetic weight (k,wg). The central character ¢ of 7 is a
Hecke character of weight —wyt, that is | - [{° is of finite order. In classical
terms, 7 corresponds to a Hilbert modular newform f over F of level N,
weight (k,wp) and central character ¢ (see §1.3).

For a prime p and an embedding ¢, : Q— @p one can associate to m and
t, a p-adic representation (cf [25, 26]):
(1) Prp - GF - GL?(Qp)7
which is irreducible, totally odd, unramified outside A/ p and characterized by
the property that for each prime v not dividing N p we have tr(p, ,(Frob,)) =
tp(c(f,v)). Moreover det pr, = 1x,, where X, denotes the p-adic cyclotomic
character.
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At all places v not dividing p, pxp|w,, is related to m, by the local Lang-
lands correspondence (see [5]).

The embedding ¢, defines a partition Jr = [[, JF,, where v runs over the
primes of F' dividing p and Jg, denotes the set of embeddings of F), in @p.

At places v dividing p, the representation pr p|q,, is known to be de Rham
of Hodge-Tate weights (on% + 1, “’O;kT)Te 7, and crystalline for p large
enough (cf [1], [2], [14] and [19]).

2.2. Images of Galois representations. The representation p., is de-
fined over the ring of integers O of a finite extension E of Q,. Let p, , :

Gr — GLy(F,) be the semi-simplification of the reduction of p,, modulo a
uniformizer w of O.

The following theorem established in [7, §3] generalizes results of Serre and
Ribet [22] on classical modular forms to the case of Hilbert modular forms.

Theorem 2.1. (i) For all but finitely many primes p, p.. ,, is irreducible.

(ii) Assume that m has no CM. Then for all but finitely many primes p,
the image of p,, contains (a conjugate of) SLy(IF,).

(iii) Assume that ™ has no CM and that it is not a twist of a base change.
Then for all but finitely many primes p, p = p,., fulfills the following
condition:

(LI;) the image of p contains SLy(F,) and none of its twists extends
to a representation of G for any strict subfield F' of F.

For the determination of image of p,, itself, we refer to [20, Appendix
B] where the author adapts the classical theory of inner twists for Hilbert
modular forms.

2.3. Modularity lifting theorems. A conjecture of Fontaine and Mazur
states (see [11] for F' = Q) that any two-dimensional, irreducible, totally odd
p-adic representation of GGr unramified outside a finite set of primes and de
Rham at all primes v dividing p, with distinct Hodge-Tate weights for each
F, — @p, is automorphic, that is to say can be obtained as in §2.1.

In the approach initiated by Wiles [30] and Taylor-Wiles [28], and ex-
tended by Diamond [6] and Fujiwara [12], this conjecture splits naturally
in two parts. The first is a conjecture of Buzzard, Diamond and Jarvis
[4], generalizing Serre’s modularity conjecture (now a theorem of Khare and
Wintenberger [16, 17]) to totally real number fields, stating that every two-
dimensional, irreducible, totally odd representation p of G over a finite field
has an automorphic lift. Since there is no a general result in this direction,
we consider the following assumption:

(Mod;) p is unramified in F' and there exists a cuspidal automorphic repre-
sentation 7 of level prime to p and weight (k, wp) such that wy = ngx(k,} —2),
T F

p—1>3 ., = andp,, ~p.
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The second part of the conjecture states that if p has an automorphic lift,
then all suitable lifts of p are automorphic. Here we quote one such result
(see [12], [15], [23, 24] and [27] for many other modularity lifting theorems):

Theorem 2.2. [8, Theorem A] Let p : Gp — GLy(F,) be a continuous
representation satisfying (LI;) and (Mod;). Then all crystalline lifts of p
of Hodge-Tate weights between 0 and p — 2 which are unramified outside a
finite set of primes are automorphic.

3. HILBERT MODULAR VARIETIES

3.1. Definition. For an open compact subgroup K of GLy(Af) we define
the Hilbert modular variety of level K as

Y = GLy(F)\GL2(A)/ KK,

where Kt = SOy(F)FX.
We define the adjoint Hilbert modular variety of level K as:

V4 = GLy(F)\GLy(A)/ A* KKT.

By definition there is a natural homomorphism Y — Y32 and the latter can
be rewritten in terms of the adjoint group PGLs as follows:

Y4 = PGLy(F)\PGLy(A) /K - PSOy(Fy),

where K is the image of K in PGLy(Aj).
The inclusion of open compact subgroups K’ C K induces natural homo-
morphisms Yz — Y and Y — V24,

3.2. Connected components. By the strong approximation theorem for
GLy, the set mo(Yy) of connected components of Yy is isomorphic to the
class group C;ret( K> whereas mo(Y;24) is isomorphic to the quotient of C(;“et( K)
by the image of A*?, hence it is a 2-group.
For any open compact subgroups K’ C K there are exact sequences:
det(K)
- 7 det(K7)(det(K) N F*Fx)
det(K)
T det (K (det(K) N A2 FX)

— mo(Yrr) = mo(Yie) — 1,

— (YD) — mo(YRY) — 1.

Ifdet(K) = (O ®z)X then 7y (Y ) is isomorphic to the narrow class group
CL of F, while mo(Y29) is isomorphic to the genus group C}. / C3 ~ C}. /(C+)?
of F.

We will now express each connected component of Yy in more classical
terms as a quotient of GI /KL ~ $p (the d-fold product of upper half
planes) by a certain congruence subgroup of the Hilbert modular group.

Choose elements g; € GLy(Ay), 1 <1 < h, such that (det(g;))1<i<n forms
a set of representatives of my(Yr) ~ ijet( ) By the strong approximation
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theorem for GLg, the maps v; € G, — g;v; € GLy(A), 1 <4 < h induce an
isomorphism:

3)  JJ Te\GL/EKL ~ [ GLa(P\GLy(F)giKGL/KKZ =Yg,

1<i<h 1<i<h

where for g € GLy(Af) we denote I'y = GLy(F) NgKg 'GL.

Similarly, each connected component of Y24 can be defined more classi-
cally using subgroups of the Hurwitz-Maass extension of the Hilbert modular
group (see [29, Chap.I]). Explicitely:

[T mh\GL/KL ~ J] GLa(F\GLy(F)giKGL/ A" KKL =Y,

1<i<h 1<i<h

where for g € GLy(Af) we denote I'' = GLy(F) N A* gKg~'GY, and the
gi € GLa(Ay), 1 < i < h are chosen so that (det(g;))1<i<n is a set of repre-
sentatives for mo(Y24).

3.3. Cusps and compactifications. The analytic varieties Yx and Y24 are
quasi-projective, but never projective. The minimal compactification of Yy
is defined using (3) as

Vi [ Ta\©rUP(F).

1<i<h

The complement of Y in Y consists of a finite number of points (the
cusps). Since d > 1, the cusps are always singular points. For a Hilbert
modular surface (d = 2) the resolution of the cusp singularities was found by
Hirzebruch (see [29, Chap.II]). The variety Yx has toroidal compactifications
Yk, depending on some combinatorial data (see [10, §3]). The varieties Yy
are proper and smooth at infinity (that is to say smooth if Yy is smooth).
There exists a projection pr : Vi — Y inducing identity on the open Yy
and such that pr~!({cusps}) is a divisor with normal crossings.

3.4. Smoothness. The analytic varieties Yx and Y24 are smooth if K is
sufficiently small in a sense that we will now make precise.

Definition 3.1. We say that K is neat if, for all g € GL2(Af), the quotient
of the group I'y = GLy(F)NgK g 'GL by its center F*NgKg ' FZ is torsion
free. Similarly, we say that A K is neat if, for all g € GLy(Ay), the group
(GLy(F)NA* gKg 'GL)/F* is torsion free.

Lemma 3.2. Let K' C K be two open compact subgroups of GLa(Af).
(i) The variety Yi (resp. Y2) is an orbifold.
(ii) The variety Yx (resp. Y4) is smooth if, and only if, K (resp. A* K )
18 neat.
(iti) If K is neat, then K' is neat. If A* K is neat, then A* K' and K
are neat too.
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Proof. (i) Recall that Y admits a complex uniformization as in (3). For
every g € GLa(Ay) the kernel of the action of I'y on G¥ /KT is precisely
given by its center F* N K F. The latter is a subgroup of OF of finite index.
It follows that for every v € GZ, locally at the point GLy(F)gyK KL, Yi
at is a quotient of GI /KL (the d-fold product of upper half planes) by the

group:

_ GLy(F) NgKg 'yKXy™
o FXNKEX '
We will now show that T’y , is finite. The determinant maps I'y - to

F*Ndet(K)F}
(F*NKEX)?

which is finite as a quotient of two finite index subgroups of Q5. Finally the
kernel of the determinant is generated by SLo(F) N gKg 'vKL~~! which is
finite since SLy(F) C SLy(A) is discrete while gK g 'yKIy~1 N SLy(A) is
compact. This shows that Y is an orbifold. Since Y2 is a quotient of Yx
by the finite group C A% it is an orbifold too.

(4) r

(ii) By (i), Yk is a manifold if, and only if, Iy, is trivial for all g and
7, which is equivalent to K being neat (one uses here that a finite order
linear fractional transformation of $x has a fixed point). Similarly, Y24 is a
manifold if, and only if,

GLy(F) N A* gKg 'vKiy™!
FX
is trivial for all g and ~, which is equivalent to A* K being neat.
Note that we have an exact sequence:

ad
Fgﬁ o

ad
l— FQKY - Fg,'y - CKHA}(’

where the last homomorphism in induced from:
A~ A~
A NgKgyKiy ' A NKFX
(iii) follows from the fact that for all g € GLy(Af) we have inclusions:
GLy(F)NgK'g'GE - GLy(F)NgKg G . GLy(F)NA* gKg 'GL
F*NgK'g'Ff F*xNgKg 'Ff Fx '

uk € A* gKg 'yKinv = ue

i

The following lemma can be easily deduced from [8, Lemmas 2.1, 2.2]
and shows that K (resp. A* K) will be neat if we carefully chose its local
component at one place.

Lemma 3.3. Let u be a prime ideal of F' satisfying Ng,g(u) = —1 (mod 4()
for all prime numbers ¢ such that [F(v/1) : F] = 2. Suppose that K =
Ko(u) x K™ C GLy(F,) x GLQ(A;“)), where Agcu) denotes the ring of finite
adeles outside u.
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(i) If the image of the uniformizer w, in Cyy is trivial, then A* K is
neat.

(ii) If the image of the uniformizer w, in the 2-part of Cr is trivial then
K is neat.

3.5. Etale coverings.

Proposition 3.4. Let K’ < K be two open compact subgroups of GLa(Ay).

(i) If Yk is smooth, then Yy is smooth and the natural morphism Yy —
Yk is etale with group K/K'(K N F*FY).
(i) If Y2 is smooth, then Y is smooth and the natural morphism Yy —
Y2 s etale with group C Kna-
(iii) If Y24 is smooth, then Y is smooth and the natural morphism
Vit — YR is etale with group K/K'(K NAY).

Proof. (i) The group K/K'(K N F*FZ) acts on the fibers of the morphism
Yk — Yk. Under the assumption that K is neat, we will show that the action
is free. Suppose that k € K fixes the point GLy(F)gyK'K} on Yy, where
g € GLy(Ay) and v € G, that is to say gkg™' € GLao(F)gK'g ' yKIy™
Since K is neat, the group I'y , defined in (4) is trivial, hence:
gKg "N GLy(F)yKiy ' = KNF*FX.

It follows immediately that gkg=' € gK'g7' (K N F*FX) hence k € K'(K N
F*FX) as desired.

Alternative one can reason component-wise using the fact that for g €
GL2(Ay) the fundamental group of T')\$) is I'y/(F* N KF}). By (2) the
claim would follow from the exactness of the following sequence:

Iy f K det det(K)
1— = — — 1
DF*NKEEZ)  K'(KNFXFX) det(K')(det(K) N F*F¥)

where f stands for the projection onto the finite adeles followed by the con-
jugation by g. The surjectivity is obvious, while the injectivity follows from:

GLy(F) N (9K'g ' GL(F* N KFY)) =T (F* N KFY).
Finally, the exactness in the middle is equivalent to det(f(I';)) = det(K) N
F*Ff. Let k € K be such that det(k) € F*FX. Then
SLy(F) N (4™ 0) gkg™' (9K g™" N SLy(Ay)) SLa(Fi) # 2,
as an intersection of a dense and an open subset, hence det(k) € det(f(I'y)).
(i) We already mentioned that the group C Knax acts on the fibers of

the morphism Yy — Y32 and we will now show that this action is free.
Suppose that u € A* fixes the point GLy(F)gyK KX, where g € GLy(Ay)
and v € G, that is to say u € GLy(F)gKg 'vKI~vy~!. Since A* K is neat,
the proof of lemma 3.2(ii) yields

GLy(F)NAX gKg 'yKiy™ = F*,
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hence GLy(F)gKg 'vKinyt N A = FX(¢gKg'yKIy ' NAY) and u €
F*(KFXNA™) as desired.

(iii) The group K/K'(K NAJ) acts on the fibers of the morphism Y3} —
Y24, The freeness of this action can be established either as in (i), by showing
for example the exactness of:

ng s K det det(K)
"ad / X / X2 1ix
r K'(K NAY) det(K")(det(K) NA*? Fx)

g

— 1,

or alternatively as follows. Consider the commutative diagram:

Yier
/
Yk Yf}c}
\ /
ypd

Since by (i) and (ii) we already know that the other three morphisms are
etale, to show that Y — Y is etale of group K/K'(K NAY) it is enough
to check that:

(K : K'(KNF*F)] = [K : K'(KNAY)] - [Cmm; :CKOA;} )
which is true, since [K'(K NAY): K'(KNF*F})] =
[KNAT  (KNF*FL)(K'NAY)] = [F*FX(KNA7) : FXFX(K' NAY)] .
O

From now on we will only consider open compact subgroups K which are
neat.

3.6. Integral models. Since Yy and Y are Shimura varieties for the alge-
braic groups GLy(F) and PGLy(F') over Q, they have canonical models over
a number field, which is Q if for example K = Ky(N) or K{(N).

Since Yz and Y24 turn out to be (course) moduli spaces classifying Hilbert-
Blumenthal abelian varieties with some additional structures, Mumford’s
Geometric Invariant Theory yields integral models which are smooth away
from the discriminant of F’ and away from primes v where K, is not maximal.

Finally, the Yx’s have smooth rational and integral models over the same
base as Y (see [21] for K = K(N) and [9] for K = Ko(N), K1(N) and
K11 (N)).

3.7. Betti cohomology with p-adic coefficients. We fix a prime p and
a p-adic field E containing the Galois closure of F' of @p, and denote by O
its ring of integers. We fix an embedding of Q in Q, allowing us to identify
GLy(OF ® O) with GLy(O)’r.
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For any arithmetic weight (k,wp) and any O-algebra A, we consider the
following algebraic representation of GLy(Op ®A) ~ GLy(A)’F:

wo—kr

(5) L (k,wo; A) = ® Det™ 2 ' ®SymF2(4?).

Te€Jp

Let L (k,wo; A) be the sheaf of locally constant sections of

where the action on L(k, wo; 4) is via Kj := [[,, Kv C GL2(Or ® Zy).

We consider Betti cohomology groups H* (Y, L (k, wo; O)) and their com-
pactly supported versions H?(Yx, Lx(k,wo; O)). We will see in §4.1 that
under certain conditions these groups will be torsion free.

3.8. Hecke correspondances. Note that for K’ C K, there is a natural
projection pr : Yx — Y and pr* Lk (k,wo; A) = Lk (k,we; A). For g €
GLy(Af) we define the Hecke correspondence [KgK| on Yy by the usual
diagram:

(6) Yirgrg—t —> Yyt igni

Ay &

Yi Yi

According to [13, §7], if g, € M2(Op ® Z,) then [Kg¢K]| induces an endo-
morphism of H*(Yy, L (k, wo; A)) and of HS (Yi, Lk (k, wo; A)).
If K, is maximal, we define the standard Hecke operators T, = [K,, ({ 2 ) K,] =

0 oy

(K, (% Y) K] and S, = [K, (1%” a(,]v ) K, = [(w()” £v ) K,]. For all other v we
define the Hecke operator U, = [K, (§ o, ) K,].

Similarly, we have Betti cohomology groups H*(Y2, L (k,wo; A)) and
Hecke action on them. In particular, if K, is maximal, there is a Hecke
operator T, (the operator S, acts by Ngqg(v)*).

3.9. Poincare duality. In this section we will endow the middle degree
cohomology of a Hilbert modular variety with various pairings coming from
the Poincare duality.

We consider the dual sheaves Lo = L(k, wo; O) and L) = L(k, —wy; O) on
Yk (see (5)). The cup product followed by the trace map induces a pairing:

(7) [, ]:HY Yk, Lo) x H Yk, L) — H* (Y, 0) — O,

which becomes perfect after extending scalars to E. The dual of the Hecke
operator [KgK] under this pairing is the Hecke operator [Kg~'K] (cf [12,
§3.4]). In particular, the dual of T, (resp. S,) is T,,S;! (resp. S;!) We
will modify the pairing (7) in a standard way, in order to make it Hecke
equivariant.

First, the involution g — ¢* = (det g)~'g of GL, induces a natural isomor-
phism HY (Y, £5) ~ HY(Yi-, Lo).
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Assume next that K has level A/, an ideal of O prime to p, in the sense
that ¢ K* = K, where ¢ = () ') Then t* Lo ~ Lo and there is a natural
isomorphism:

Hd<YK*a ﬁ@) = Hd(YLK*L*hEO) = Hd(YK7£O)‘

Since for all diagonal g we have 1g*.~! = g~! the following diagram com-
mutes:
(8)

d v * d [KKT] rd d
HYk, L5) HY Y+, Lo) HY Y, x+,-1, Lo) H Yk, Lo)

| a0 ey | can

d v d [KuK™] g d
H (YK,[,@) H (YK*7£@) H (YLK*LA,,C@) H (YK,,CO).

*

This shows that the modified Poincare pairing:
(9) < ) >:[’ Lo*]:Hg(YIOEO)XHd(YK"CO)_)O?

is equivariant for all the standard Hecke operators.
The interior cohomology group H{(Yx, L) is defined as the image of
Hg(YK, Lo) in Hd(YK, Lo). From commutativity of the diagram:

HY(Yk, Lo) @ H Yk, Lo) — H4 (Y, Lo) @ HY(Yk, Lo)

| l<,>

H(Yi, Lo) @ H (Y, Lo) ——— O

and from (9) we deduce a Hecke equivariant pairing:
(10) < , > . Hfl(YK,ﬁo) X H,d(YK,,C()) — 0.

We will see in §4.1 that under certain conditions this pairing will be perfect.

4. COHOMOLOGY OF HILBERT MODULAR VARIETIES

Let K =[], K, C GLa(Ay) be a neat open compact subgroup such that
K, is maximal for all primes v dividing p. Fix an arithmetic weight (&, wy)
and for every O-algebra A put L4 = L(k,wy; A).

Let p: Gp — GL2(F,) be a continuous representation such that (Mod;)
and (LI;) hold. Consider the maximal ideal

mﬁ - (w’ Tv - tr(ﬁ(FrObv))7 Sv - det(15<FrObv)>NF/Q<v)_1>

of the abstract Hecke algebra T := O[T, S,| K, maximal, v { p|.
The Betti cohomology groups H*(Yx, Lo) defined in §3.7 are T-modules
and we denote by H*(Yx, Lo); the localization at m.
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4.1. Freeness results. Under the above assumptions the following theorem
is proved in [7, Theorems 4.4, 6.6] and [8, Theorem 2.3] (see [18] for vanishing
theorems for the cohomology without localization).

Theorem 4.1.

(i) The O-module Ho(Yi, Lo), = H*(Yie, Lo), = H (Yie, Lo), is free of
finite rank.

(i) H(Yk, Lgj0); is a divisible O-module of finite corank and the Pon-
tryagin pairing H(Yi, Lo)y x H* (Y, Lpj0); — E/O is a perfect
duality.

(iii) The pairing (9) yields a perfect duality of free O-modules:

() H'(Yk, Lo)s x H'(Yk, Lo), — O.

Moreover, if K A™ is neat then (i) and (ii) remain valid when we replace Y
by Y.

4.2. Results on morphisms. Keep the assumptions from the beginning of
this section.

Theorem 4.2. [8, Theorem 2.4] Suppose given an etale morphism of smooth
Hilbert modular varieties Yir — Y with group A. Assume that A is an
abelian p-group and that O is large enough to contain the values of all its
characters. Then H'(Yy:, Lo), is a free O[A]-module and there is an iso-
morphism of T-modules:

Hd(YK/, ﬁo)p ®(’)[A} O ~ Hd(YK, ﬁ@)p.

Let v be a prime not dividing p. Assume that K, is maximal and consider
the degeneracy maps pry, pry : Y, () — Yx used to define the Hecke cor-
respondence 7}, in §3.8. The following theorem generalizes [hara’s lemma on
the first cohomology groups of modular curves to the middle degree coho-
mology of Hilbert modular varieties.

Theorem 4.3. [8, Theorem 3.1] The T-linear homomorphism:
pri + pry : HY (Y, Lo)P* — HY(Yknkow): £Lo)s

is injective with flat cokernel.
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