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Abstract. Hilbert modular forms and varieties are the natural gener-
alization of elliptic modular forms and curves, when the ground field of
rational numbers is replaced by a totally real number field. The aim of
these notes is to present the basics of their arithmetic theory and to de-
scribe some of the recent results in the area. A special emphasis will
be put on the following two subjects: images of Galois representations
associated to Hilbert modular forms and cohomology of Hilbert modular
varieties with integral coefficients.

The exposition follows the lectures given at the CRM Barcelona in
June 2010. We would like to thank the CRM for the excellent conditions
for research, as well as the programme coordinators Luis Dieulefait and
Victor Rotger for all their work and, of course, all the other participants
in the lectures.
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1. Hilbert modular forms

Let F be a totally real number field of degree d > 1, ring of integers OF

and denote by JF the set of all embeddings of F into R.
The torus F× is quasi-split over Q and its group of characters can be

identified with Z[JF ] as follows: for any k =
∑

τ∈JF
kττ ∈ Z[JF ] and for any

Q-algebra A splitting F×, we consider the character x ∈ (F ⊗QA)× 7→ xk :=∏
τ∈JF

τ(x)kτ ∈ A×. The norm character NF/ Q : F× → Q× then corresponds
to the element t :=

∑
τ∈JF

τ ∈ Z[JF ].

1.1. Congruence subgroups. Denote by Ẑ the profinite completion of Z.

The ring A of adeles of F is the product of finite adeles Af = F ⊗ Ẑ with
infinite adeles F∞ = F ⊗Q R. Denote by F+

∞ the open cone of totally positive
elements in F×

∞.
1
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For an open compact subgroup U of (OF ⊗Ẑ)× we denote by CU (resp. C+
U)

the class group A× /F×UF×
∞ (resp. the narrow class group A× /F×UF+

∞).
For an ideal integral idealN ofOF , we consider the following open compact

subgroup of A×
f :

U(N ) =
{
x ∈ (OF ⊗Ẑ)×

∣∣∣ x− 1 ∈ N ⊗Ẑ
}
,

and following open compact subgroups of GL2(Af ):

K0(N ) =

{(
a b
c d

)
∈ GL2(OF ⊗Ẑ)

∣∣∣ c ∈ N ⊗Ẑ
}
,

K1(N ) =

{(
a b
c d

)
∈ K0(N )

∣∣∣ d ∈ U(N )

}
,

K11(N ) =

{(
a b
c d

)
∈ K1(N )

∣∣∣ a ∈ U(N )

}
and

K(N ) =

{(
a b
c d

)
∈ K11(N )

∣∣∣ b ∈ N ⊗Ẑ
}
.

1.2. Hilbert modular forms as automorphic forms on GL2(A). The
group G+

∞ := F×
∞ SL2(F∞) acts by linear fractional transformations on the

d-fold product of upper half planes:

HF := F∞ + (1⊗
√
−1)F+

∞ ⊂ F ⊗Q C .

Denote by K+
∞ the stabilizer of 1⊗

√
−1 in G+

∞.

Definition 1.1. A weight (k, w0) ∈ Z[JF ]× Z is arithmetic (or cohomologi-
cal) if for all τ ∈ JF , kτ ≥ 2 and kτ ≡ w0 (mod 2).

Definition 1.2. The space Mk,w0(Γ) of classical Hilbert modular forms of
arithmetic weight (k, w0) and level Γ (a congruence subgroup of GL2(F ) ∩
GL2(Af )G

+
∞) consists of all holomorphic functions f : HF → C such that for

every γ = ( a bc d ) ∈ Γ we have

f

(
az + b

cz + d

)
= det(γ)(w0t−k)/2j(γ, z)kf(z),

where j(γ, z) = cz + d ∈ (F ⊗ C)× is the usual automorphic cocycle.
The subspace Sk,w0(Γ) of cuspforms consists of those f vanishing at all cusps
of HF .

Note that the action of Γ on HF is via all the embedding of F in R, hence
cannot be decomposed as a product.

The spaces Mk,w0(Γ) and Sk,w0(Γ) are finite dimensional C-vector spaces,
but as it will become clear, they are not stable under the action of Hecke op-
erators in general, which motivates the use of the following adelic definition.



ARITHMETIC ASPECTS OF HILBERT MODULAR FORMS AND VARIETIES 3

Definition 1.3. The space Mk,w0(K) of (adelic) Hilbert modular forms of
weight (k, w0) and level K (an open compact subgroup of GL2(Af )) consists
of all functions f : GL2(A) → C which are left GL2(F )-invariant, right K-
invariant and such that for all g ∈ GL2(Af ) the function

γ ∈ G+
∞ 7→ det(γ)(w0t−k)/2j(γ, 1⊗

√
−1)kf(gγ),

factors through a homolorphic function on G+
∞/K

+
∞ ' HF , denoted by fg.

If moreover
∫
F\A f (( 1 x

0 1 ) g) dx = 0 for all g ∈ GL2(A) then f is called a

cuspform, and we denote by Sk,w0(K) the space of cuspforms.
We say that a form f has central character ψ, a Hecke characters of F

of infinity type −w0t, if f(y·) = ψ(y)f for all y ∈ A×, and we denote by
Sk,w0(K,ψ) ⊂ Sk,w0(K) the corresponding subspace.

Using the strong approximation theorem for GL2, one can compare the
adelic and the classical definition as follows. Choose elements gi ∈ GL2(Af ),
1 ≤ i ≤ h such that (det(gi))1≤i≤h forms a set of representatives of C+

det(K).

Then the map f 7→ (fgi
)1≤i≤h induces isomorphisms

Mk,w0(K) '
⊕

1≤i≤h

Mk,w0(Γgi
) and Sk,w0(K) '

⊕
1≤i≤h

Sk,w0(Γgi
),

where for g ∈ GL2(Af ) we put Γg := GL2(F ) ∩ gKg−1G+
∞.

1.3. Hecke operators and newforms. The space Mk,w0(K) admits left
action of the Hecke algebra Cc(K\GL2(Af )/K) of bi-K-invariant compactly
supported functions on GL2(Af ). In more concrete terms, for every g ∈
GL2(Af ), the Hecke operator [KgK], corresponding to the characteristic
function of KgK, sends f to

∑
i f(·gi), where KgK =

∐
i giK. The sub-

space Sk,w0(K) is stable under this action.
For a prime v, let $v denote an uniformizer of Fv. The standard Hecke

operator [Kv ( 1 0
0 $v

)Kv] is denoted by Tv, if Kv is a maximal open compact
subgroup of GL2(Fv), and by Uv, otherwise.

The Hecke algebra is not commutative in general and one rather works with
the commutative subalgebra generated by the standard Hecke operators and
the center.

There is a direct sum decomposition:

Sk,w0(K) '
⊕
ψ

Sk,w0(K,ψ),

where ψ runs over all Hecke characters of level K ∩ A×
f and type −w0t at

infinity.
The Peterson inner product

(f1, f2) :=

∫
GL2(F ) A×\GL2(A)

f1(g)f2(g)| det(g)|w0
A dg

endows Sk,w0(K,ψ) with a structure of a hermitian space with respect to
which the operators Tv are normal. It follows that Sk,w0(K,ψ) can be de-
composed as a direct sum of eigenspaces for all the Tv’s. Note that while the
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Uv’s form a commutative family of operators preserving this decomposition,
they are not semi-simple in general, hence Sk,w0(K,ψ) does not always have
a basis of eigenforms for all standard Hecke operators.

The theory of Atkin and Lehner addresses this problem for K = K1(N ).
More precisely, if one considers the subspace of primitive forms in Sk,w0(K1(N ), ψ)
(those orthogonal with respect to the Peterson inner product to all forms
coming from lower level), their theory implies that the standard Hecke oper-
ators preserve this space and are semi-simple. The Strong Multiplicity One
Theorem states that a primitive form f which is an eigenform for Tv, v - N ,
is uniquely determined, up to a multiple, by its eigenvalues c(f, v) (hence it
is necessarily an eigenform for Uv, v | N , too).

Recall that the Weak Multiplicity One Theorem for GL2 states that an
element of Sk,w0(K1(N ), ψ) which is an eigenform for Tv (v - N ) and for Uv
(v | N ) is uniquely determined, up to a multiple, by its eigenvalues.

A suitably normalized primitive eigenform in Sk,w0(K1(N ), ψ) is called a
newform.

There is a natural bijection between newforms f in Sk,w0(K1(N ), ψ) and
cuspidal automorphic representation π of GL2(A), of conductor N , central
character ψ and such that π∞ belongs to the holomorphic discrete series
of arithmetic weight (k, w0) (see [3]). It is uniquely characterized by the
property that for all v - N , c(f, v) is the eigenvalue of Tv acting on the new

line π
GL2(OF,v)
v .

2. Galois representations associated to Hilbert modular
forms

The absolute Galois group of a field L is denoted by GL.

Recall that we have an exact sequence 1 → Iv → GFv → Ẑ → 1 and that
the Weil group WFv is defined as the inverse image of Z. The local class field
theory gives an isomorphism between F×

v and the maximal abelian quotient
of WFv , that we normalize so that $v is sent to a geometric Frobenius Frobv.

2.1. Galois representations. Let π be a cuspidal automorphic represen-
tation of GL2(A) of conductor N , such that π∞ belongs to the holomorphic
discrete series of arithmetic weight (k, w0). The central character ψ of π is a
Hecke character of weight −w0t, that is ψ| · |w0

A is of finite order. In classical
terms, π corresponds to a Hilbert modular newform f over F of level N ,
weight (k, w0) and central character ψ (see §1.3).

For a prime p and an embedding ιp : Q ↪→ Qp one can associate to π and
ιp a p-adic representation (cf [25, 26]):

(1) ρπ,p : GF → GL2(Qp),

which is irreducible, totally odd, unramified outsideN p and characterized by
the property that for each prime v not dividing N p we have tr(ρπ,p(Frobv)) =
ιp(c(f, v)). Moreover det ρπ,p = ψχp, where χp denotes the p-adic cyclotomic
character.
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At all places v not dividing p, ρπ,p|WFv
is related to πv by the local Lang-

lands correspondence (see [5]).
The embedding ιp defines a partition JF =

∐
v JFv , where v runs over the

primes of F dividing p and JFv denotes the set of embeddings of Fv in Qp.
At places v dividing p, the representation ρπ,p|GFv

is known to be de Rham

of Hodge-Tate weights (w0−kτ

2
+ 1, w0+kτ

2
)τ∈JFv

and crystalline for p large
enough (cf [1], [2], [14] and [19]).

2.2. Images of Galois representations. The representation ρπ,p is de-
fined over the ring of integers O of a finite extension E of Qp. Let ρπ,p :

GF → GL2(Fp) be the semi-simplification of the reduction of ρπ,p modulo a
uniformizer $ of O.

The following theorem established in [7, §3] generalizes results of Serre and
Ribet [22] on classical modular forms to the case of Hilbert modular forms.

Theorem 2.1. (i) For all but finitely many primes p, ρπ,p is irreducible.
(ii) Assume that π has no CM. Then for all but finitely many primes p,

the image of ρπ,p contains (a conjugate of) SL2(Fp).
(iii) Assume that π has no CM and that it is not a twist of a base change.

Then for all but finitely many primes p, ρ̄ = ρπ,p fulfills the following
condition:
(LIρ̄) the image of ρ̄ contains SL2(Fp) and none of its twists extends
to a representation of GF ′ for any strict subfield F ′ of F .

For the determination of image of ρπ,p itself, we refer to [20, Appendix
B] where the author adapts the classical theory of inner twists for Hilbert
modular forms.

2.3. Modularity lifting theorems. A conjecture of Fontaine and Mazur
states (see [11] for F = Q) that any two-dimensional, irreducible, totally odd
p-adic representation of GF unramified outside a finite set of primes and de
Rham at all primes v dividing p, with distinct Hodge-Tate weights for each
Fv ↪→ Qp, is automorphic, that is to say can be obtained as in §2.1.

In the approach initiated by Wiles [30] and Taylor-Wiles [28], and ex-
tended by Diamond [6] and Fujiwara [12], this conjecture splits naturally
in two parts. The first is a conjecture of Buzzard, Diamond and Jarvis
[4], generalizing Serre’s modularity conjecture (now a theorem of Khare and
Wintenberger [16, 17]) to totally real number fields, stating that every two-
dimensional, irreducible, totally odd representation ρ̄ of GF over a finite field
has an automorphic lift. Since there is no a general result in this direction,
we consider the following assumption:
(Modρ̄) p is unramified in F and there exists a cuspidal automorphic repre-
sentation π of level prime to p and weight (k, w0) such that w0 = max

τ∈JF

(kτ−2),

p− 1 >
∑

τ∈JF

w0+kτ

2
and ρπ,p ' ρ̄.
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The second part of the conjecture states that if ρ̄ has an automorphic lift,
then all suitable lifts of ρ̄ are automorphic. Here we quote one such result
(see [12], [15], [23, 24] and [27] for many other modularity lifting theorems):

Theorem 2.2. [8, Theorem A] Let ρ̄ : GF → GL2(Fp) be a continuous
representation satisfying (LIρ̄) and (Modρ̄). Then all crystalline lifts of ρ̄
of Hodge-Tate weights between 0 and p − 2 which are unramified outside a
finite set of primes are automorphic.

3. Hilbert modular varieties

3.1. Definition. For an open compact subgroup K of GL2(Af ) we define
the Hilbert modular variety of level K as

YK = GL2(F )\GL2(A)/KK+
∞,

where K+
∞ = SO2(F∞)F×

∞.
We define the adjoint Hilbert modular variety of level K as:

Y ad
K = GL2(F )\GL2(A)/A×KK+

∞.

By definition there is a natural homomorphism YK → Y ad
K and the latter can

be rewritten in terms of the adjoint group PGL2 as follows:

Y ad
K = PGL2(F )\PGL2(A)/K̄ · PSO2(F∞),

where K̄ is the image of K in PGL2(Af ).
The inclusion of open compact subgroups K ′ ⊂ K induces natural homo-

morphisms YK′ → YK and Y ad
K′ → Y ad

K .

3.2. Connected components. By the strong approximation theorem for
GL2, the set π0(YK) of connected components of YK is isomorphic to the
class group C+

det(K), whereas π0(Y
ad
K ) is isomorphic to the quotient of C+

det(K)

by the image of A×2, hence it is a 2-group.
For any open compact subgroups K ′ ⊂ K there are exact sequences:

1 → det(K)

det(K ′)(det(K) ∩ F×F+
∞)

→ π0(YK′) → π0(YK) → 1,

1 → det(K)

det(K ′)(det(K) ∩ A×2 F×)
→ π0(Y

ad
K′ ) → π0(Y

ad
K ) → 1.

(2)

If det(K) = (OF ⊗Ẑ)× then π0(YK) is isomorphic to the narrow class group
C+
F of F , while π0(Y

ad
K ) is isomorphic to the genus group C+

F / C
2
F ' C+

F /(C
+
F )2

of F .

We will now express each connected component of YK in more classical
terms as a quotient of G+

∞/K
+
∞ ' HF (the d-fold product of upper half

planes) by a certain congruence subgroup of the Hilbert modular group.
Choose elements gi ∈ GL2(Af ), 1 ≤ i ≤ h, such that (det(gi))1≤i≤h forms

a set of representatives of π0(YK) ' C+
det(K). By the strong approximation
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theorem for GL2, the maps γi ∈ G+
∞ 7→ giγi ∈ GL2(A), 1 ≤ i ≤ h induce an

isomorphism:

(3)
∐

1≤i≤h

Γgi
\G+

∞/K
+
∞ '

∐
1≤i≤h

GL2(F )\GL2(F )giKG
+
∞/KK

+
∞ = YK ,

where for g ∈ GL2(Af ) we denote Γg = GL2(F ) ∩ gKg−1G+
∞.

Similarly, each connected component of Y ad
K can be defined more classi-

cally using subgroups of the Hurwitz-Maass extension of the Hilbert modular
group (see [29, Chap.I]). Explicitely:∐

1≤i≤h

Γad
gi
\G+

∞/K
+
∞ '

∐
1≤i≤h

GL2(F )\GL2(F )giKG
+
∞/A×KK+

∞ = Y ad
K ,

where for g ∈ GL2(Af ) we denote Γad
g = GL2(F ) ∩ A× gKg−1G+

∞ and the
gi ∈ GL2(Af ), 1 ≤ i ≤ h are chosen so that (det(gi))1≤i≤h is a set of repre-
sentatives for π0(Y

ad
K ).

3.3. Cusps and compactifications. The analytic varieties YK and Y ad
K are

quasi-projective, but never projective. The minimal compactification of YK
is defined using (3) as

Y K '
∐

1≤i≤h

Γgi
\(HF ∪P1(F )).

The complement of YK in Y K consists of a finite number of points (the
cusps). Since d > 1, the cusps are always singular points. For a Hilbert
modular surface (d = 2) the resolution of the cusp singularities was found by
Hirzebruch (see [29, Chap.II]). The variety YK has toroidal compactifications

ỸK , depending on some combinatorial data (see [10, §3]). The varieties ỸK
are proper and smooth at infinity (that is to say smooth if YK is smooth).

There exists a projection pr : ỸK → Y K inducing identity on the open YK
and such that pr−1({cusps}) is a divisor with normal crossings.

3.4. Smoothness. The analytic varieties YK and Y ad
K are smooth if K is

sufficiently small in a sense that we will now make precise.

Definition 3.1. We say that K is neat if, for all g ∈ GL2(Af ), the quotient
of the group Γg = GL2(F )∩gKg−1G+

∞ by its center F×∩gKg−1F×
∞ is torsion

free. Similarly, we say that A×K is neat if, for all g ∈ GL2(Af ), the group
(GL2(F ) ∩ A× gKg−1G+

∞)/F× is torsion free.

Lemma 3.2. Let K ′ ⊂ K be two open compact subgroups of GL2(Af ).

(i) The variety YK (resp. Y ad
K ) is an orbifold.

(ii) The variety YK (resp. Y ad
K ) is smooth if, and only if, K (resp. A×K)

is neat.
(iii) If K is neat, then K ′ is neat. If A×K is neat, then A×K ′ and K

are neat too.
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Proof. (i) Recall that YK admits a complex uniformization as in (3). For
every g ∈ GL2(Af ) the kernel of the action of Γg on G+

∞/K
+
∞ is precisely

given by its center F×∩KF×
∞. The latter is a subgroup of O×

F of finite index.
It follows that for every γ ∈ G+

∞, locally at the point GL2(F )gγKK+
∞, YK

at is a quotient of G+
∞/K

+
∞ (the d-fold product of upper half planes) by the

group:

(4) Γg,γ =
GL2(F ) ∩ gKg−1γK+

∞γ
−1

F× ∩KF×
∞

.

We will now show that Γg,γ is finite. The determinant maps Γg,γ to

F× ∩ det(K)F+
∞

(F× ∩KF×
∞)2

which is finite as a quotient of two finite index subgroups of O×
F . Finally the

kernel of the determinant is generated by SL2(F ) ∩ gKg−1γK+
∞γ

−1 which is
finite since SL2(F ) ⊂ SL2(A) is discrete while gKg−1γK+

∞γ
−1 ∩ SL2(A) is

compact. This shows that YK is an orbifold. Since Y ad
K is a quotient of YK

by the finite group CK∩A×f
it is an orbifold too.

(ii) By (i), YK is a manifold if, and only if, Γg,γ is trivial for all g and
γ, which is equivalent to K being neat (one uses here that a finite order
linear fractional transformation of HF has a fixed point). Similarly, Y ad

K is a
manifold if, and only if,

Γad
g,γ =

GL2(F ) ∩ A× gKg−1γK+
∞γ

−1

F×

is trivial for all g and γ, which is equivalent to A×K being neat.
Note that we have an exact sequence:

1 → Γg,γ → Γad
g,γ → CK∩A×f

,

where the last homomorphism in induced from:

uk ∈ A× gKg−1γK+
∞γ

−1 7→ u ∈ A×

A× ∩gKg−1γK+
∞γ

−1
=

A×

A× ∩KF×
∞
.

(iii) follows from the fact that for all g ∈ GL2(Af ) we have inclusions:

GL2(F ) ∩ gK ′g−1G+
∞

F× ∩ gK ′g−1F+
∞

⊂ GL2(F ) ∩ gKg−1G+
∞

F× ∩ gKg−1F+
∞

⊂ GL2(F ) ∩ A× gKg−1G+
∞

F× .

�

The following lemma can be easily deduced from [8, Lemmas 2.1, 2.2]
and shows that K (resp. A×K) will be neat if we carefully chose its local
component at one place.

Lemma 3.3. Let u be a prime ideal of F satisfying NF/ Q(u) ≡ −1 (mod 4`)

for all prime numbers ` such that [F (
√̀

1) : F ] = 2. Suppose that K =

K0(u) ×K(u) ⊂ GL2(Fu) × GL2(A(u)
f ), where A(u)

f denotes the ring of finite
adeles outside u.
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(i) If the image of the uniformizer $u in CU(4) is trivial, then A×K is
neat.

(ii) If the image of the uniformizer $u in the 2-part of CF is trivial then
K is neat.

3.5. Etale coverings.

Proposition 3.4. Let K ′ CK be two open compact subgroups of GL2(Af ).

(i) If YK is smooth, then YK′ is smooth and the natural morphism YK′ →
YK is etale with group K/K ′(K ∩ F×F×

∞).
(ii) If Y ad

K is smooth, then YK is smooth and the natural morphism YK →
Y ad
K is etale with group CK∩A×f

.

(iii) If Y ad
K is smooth, then Y ad

K′ is smooth and the natural morphism
Y ad
K′ → Y ad

K is etale with group K/K ′(K ∩ A×
f ).

Proof. (i) The group K/K ′(K ∩ F×F×
∞) acts on the fibers of the morphism

YK′ → YK . Under the assumption thatK is neat, we will show that the action
is free. Suppose that k ∈ K fixes the point GL2(F )gγK ′K+

∞ on YK′ , where
g ∈ GL2(Af ) and γ ∈ G+

∞, that is to say gkg−1 ∈ GL2(F )gK ′g−1γK+
∞γ

−1.
Since K is neat, the group Γg,γ defined in (4) is trivial, hence:

gKg−1 ∩GL2(F )γK+
∞γ

−1 = K ∩ F×F×
∞.

It follows immediately that gkg−1 ∈ gK ′g−1(K ∩ F×F×
∞) hence k ∈ K ′(K ∩

F×F×
∞) as desired.

Alternative one can reason component-wise using the fact that for g ∈
GL2(Af ) the fundamental group of Γg\H is Γg/(F

× ∩ KF×
∞). By (2) the

claim would follow from the exactness of the following sequence:

1 → Γg
Γ′g(F

× ∩KF×
∞)

f→ K

K ′(K ∩ F×F×
∞)

det−→ det(K)

det(K ′)(det(K) ∩ F×F+
∞)

→ 1

where f stands for the projection onto the finite adeles followed by the con-
jugation by g. The surjectivity is obvious, while the injectivity follows from:

GL2(F ) ∩
(
gK ′g−1G+

∞(F× ∩KF×
∞)

)
= Γ′g(F

× ∩KF×
∞).

Finally, the exactness in the middle is equivalent to det(f(Γg)) = det(K) ∩
F×F+

∞. Let k ∈ K be such that det(k) ∈ F×F+
∞. Then

SL2(F ) ∩
(

det(k)−1 0
0 1

)
gkg−1(gKg−1 ∩ SL2(Af )) SL2(F∞) 6= ∅,

as an intersection of a dense and an open subset, hence det(k) ∈ det(f(Γg)).
(ii) We already mentioned that the group CK∩A×f

acts on the fibers of

the morphism YK → Y ad
K and we will now show that this action is free.

Suppose that u ∈ A× fixes the point GL2(F )gγKK+
∞, where g ∈ GL2(Af )

and γ ∈ G+
∞, that is to say u ∈ GL2(F )gKg−1γK+

∞γ
−1. Since A×K is neat,

the proof of lemma 3.2(ii) yields

GL2(F ) ∩ A× gKg−1γK+
∞γ

−1 = F×,
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hence GL2(F )gKg−1γK+
∞γ

−1 ∩ A× = F×(gKg−1γK+
∞γ

−1 ∩ A×) and u ∈
F×(KF×

∞ ∩ A×) as desired.
(iii) The group K/K ′(K ∩ A×

f ) acts on the fibers of the morphism Y ad
K′ →

Y ad
K . The freeness of this action can be established either as in (i), by showing

for example the exactness of:

1 →
Γad
g

Γ′ ad
g

f−→ K

K ′(K ∩ A×
f )

det−→ det(K)

det(K ′)(det(K) ∩ A×2 F×)
→ 1,

or alternatively as follows. Consider the commutative diagram:

YK′

yyrrrrr
&&MMMMM

YK
%%KKKKK Y ad

K′

yysssss

Y ad
K

Since by (i) and (ii) we already know that the other three morphisms are
etale, to show that Y ad

K′ → Y ad
K is etale of group K/K ′(K ∩ A×

f ) it is enough
to check that:[

K : K ′(K ∩ F×F×
∞)

]
=

[
K : K ′(K ∩ A×

f )
]
·
[
CK′∩A×f

: CK∩A×f

]
,

which is true, since
[
K ′(K ∩ A×

f ) : K ′(K ∩ F×F×
∞)

]
=[

K ∩ A×
f : (K ∩ F×F×

∞)(K ′ ∩ A×
f )

]
=

[
F×F×

∞(K ∩ A×
f ) : F×F×

∞(K ′ ∩ A×
f )

]
.

�

From now on we will only consider open compact subgroups K which are
neat.

3.6. Integral models. Since YK and Y ad
K are Shimura varieties for the alge-

braic groups GL2(F ) and PGL2(F ) over Q, they have canonical models over
a number field, which is Q if for example K = K0(N ) or K1(N ).

Since YK and Y ad
K turn out to be (course) moduli spaces classifying Hilbert-

Blumenthal abelian varieties with some additional structures, Mumford’s
Geometric Invariant Theory yields integral models which are smooth away
from the discriminant of F and away from primes v where Kv is not maximal.

Finally, the ỸK ’s have smooth rational and integral models over the same
base as YK (see [21] for K = K(N ) and [9] for K = K0(N ), K1(N ) and
K11(N )).

3.7. Betti cohomology with p-adic coefficients. We fix a prime p and
a p-adic field E containing the Galois closure of F of Q̄p, and denote by O
its ring of integers. We fix an embedding of Q̄ in Q̄p allowing us to identify
GL2(OF ⊗O) with GL2(O)JF .
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For any arithmetic weight (k, w0) and any O-algebra A, we consider the
following algebraic representation of GL2(OF ⊗A) ' GL2(A)JF :

(5) LK(k, w0;A) :=
⊗
τ∈JF

Det
w0−kτ

2
+1⊗ Symkτ−2(A2).

Let LK(k, w0;A) be the sheaf of locally constant sections of

GL2(F )\(GL2(A)× L(k, w0;A)) /KK+
∞ −→ YK ,

where the action on L(k, w0;A) is via Kp :=
∏

v|pKv ⊂ GL2(OF ⊗Zp).

We consider Betti cohomology groups H•(YK ,LK(k, w0;O)) and their com-
pactly supported versions H•

c(YK ,LK(k, w0;O)). We will see in §4.1 that
under certain conditions these groups will be torsion free.

3.8. Hecke correspondances. Note that for K ′ ⊂ K, there is a natural
projection pr : YK′ → YK and pr∗ LK(k, w0;A) = LK′(k, w0;A). For g ∈
GL2(Af ) we define the Hecke correspondence [KgK] on YK by the usual
diagram:

(6) YK∩gKg−1
pr1

wwooooooo

·g // Yg−1Kg∩K
pr2

''OOOOOOO

YK YK

According to [13, §7], if gp ∈ M2(OF ⊗Zp) then [KgK] induces an endo-
morphism of H•(YK ,LK(k, w0;A)) and of H•

c(YK ,LK(k, w0;A)).
IfKv is maximal, we define the standard Hecke operators Tv = [Kv ( 1 0

0 $v
)Kv] =

[Kv ($v 0
0 1 )Kv] and Sv = [Kv

(
$v 0
0 $v

)
Kv] = [

(
$v 0
0 $v

)
Kv]. For all other v we

define the Hecke operator Uv = [Kv ( 1 0
0 $v

)Kv].
Similarly, we have Betti cohomology groups H•(Y ad

K ,LK(k, w0;A)) and
Hecke action on them. In particular, if Kv is maximal, there is a Hecke
operator Tv (the operator Sv acts by NF/Q(v)w0).

3.9. Poincare duality. In this section we will endow the middle degree
cohomology of a Hilbert modular variety with various pairings coming from
the Poincare duality.

We consider the dual sheaves LO = L(k, w0;O) and L∨O = L(k,−w0;O) on
YK (see (5)). The cup product followed by the trace map induces a pairing:

(7) [ , ] : Hd
c(YK ,LO)× Hd(YK ,L∨O) → H2d

c (YK ,O) → O,

which becomes perfect after extending scalars to E. The dual of the Hecke
operator [KgK] under this pairing is the Hecke operator [Kg−1K] (cf [12,
§3.4]). In particular, the dual of Tv (resp. Sv) is TvS

−1
v (resp. S−1

v ) We
will modify the pairing (7) in a standard way, in order to make it Hecke
equivariant.

First, the involution g 7→ g∗ = (det g)−1g of GL2 induces a natural isomor-
phism Hd(YK ,L∨O) ' Hd(YK∗ ,LO).
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Assume next that K has level N , an ideal of OF prime to p, in the sense
that ιK∗ = Kι, where ι = ( 0 −1

N 0 ). Then ι∗ LO ' LO and there is a natural
isomorphism:

Hd(YK∗ ,LO) ' Hd(YιK∗ι−1 ,LO) = Hd(YK ,LO).

Since for all diagonal g we have ιg∗ι−1 = g−1 the following diagram com-
mutes:
(8)

Hd(YK ,L∨O)
∗ //

[Kg−1K]
��

Hd(YK∗ ,LO)
[KιK∗]

//

[K∗(g−1)∗K∗]
��

Hd(YιK∗ι−1 ,LO) Hd(YK ,LO)

[KgK]
��

Hd(YK ,L∨O)
∗ // Hd(YK∗ ,LO)

[KιK∗]
// Hd(YιK∗ι−1 ,LO) Hd(YK ,LO).

This shows that the modified Poincare pairing:

(9) 〈 , 〉 = [ , ι ◦ ∗] : Hd
c(YK ,LO)× Hd(YK ,LO) → O,

is equivariant for all the standard Hecke operators.
The interior cohomology group Hd

! (YK ,LO) is defined as the image of
Hd
c(YK ,LO) in Hd(YK ,LO). From commutativity of the diagram:

Hd
c(YK ,LO)⊗ Hd

c(YK ,LO) //

��

Hd
c(YK ,LO)⊗ Hd(YK ,LO)

〈 , 〉
��

Hd(YK ,LO)⊗ Hd
c(YK ,LO)

〈 , 〉
// O

and from (9) we deduce a Hecke equivariant pairing:

(10) 〈 , 〉 : Hd
! (YK ,LO)× Hd

! (YK ,LO) → O .

We will see in §4.1 that under certain conditions this pairing will be perfect.

4. Cohomology of Hilbert modular varieties

Let K =
∏

vKv ⊂ GL2(Af ) be a neat open compact subgroup such that
Kv is maximal for all primes v dividing p. Fix an arithmetic weight (k, w0)
and for every O-algebra A put LA = L(k, w0;A).

Let ρ̄ : GF → GL2(Fp) be a continuous representation such that (Modρ̄)
and (LIρ̄) hold. Consider the maximal ideal

mρ̄ = ($,Tv − tr(ρ̄(Frobv)), Sv − det(ρ̄(Frobv))NF/Q(v)−1)

of the abstract Hecke algebra T := O[Tv, Sv| Kv maximal, v - p].
The Betti cohomology groups H•(YK ,LO) defined in §3.7 are T-modules

and we denote by H•(YK ,LO)ρ̄ the localization at mρ̄.
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4.1. Freeness results. Under the above assumptions the following theorem
is proved in [7, Theorems 4.4, 6.6] and [8, Theorem 2.3] (see [18] for vanishing
theorems for the cohomology without localization).

Theorem 4.1.

(i) The O-module H•
c(YK ,LO)ρ̄ = H•(YK ,LO)ρ̄ = Hd(YK ,LO)ρ̄ is free of

finite rank.
(ii) Hd(YK ,LE/O)ρ̄ is a divisible O-module of finite corank and the Pon-

tryagin pairing Hd(YK ,LO)ρ̄ × Hd(YK ,LE/O)ρ̄ → E/O is a perfect
duality.

(iii) The pairing (9) yields a perfect duality of free O-modules:

〈 , 〉 : Hd(YK ,LO)ρ̄ × Hd(YK ,LO)ρ̄ → O .

Moreover, if K A× is neat then (i) and (ii) remain valid when we replace YK
by Y ad

K .

4.2. Results on morphisms. Keep the assumptions from the beginning of
this section.

Theorem 4.2. [8, Theorem 2.4] Suppose given an etale morphism of smooth
Hilbert modular varieties YK′ → YK with group ∆. Assume that ∆ is an
abelian p-group and that O is large enough to contain the values of all its
characters. Then Hd(YK′ ,LO)ρ̄ is a free O[∆]-module and there is an iso-
morphism of T-modules:

Hd(YK′ ,LO)ρ̄ ⊗O[∆] O ' Hd(YK ,LO)ρ̄.

Let v be a prime not dividing p. Assume that Kv is maximal and consider
the degeneracy maps pr1, pr2 : YK∩K0(v) → YK used to define the Hecke cor-
respondence Tv in §3.8. The following theorem generalizes Ihara’s lemma on
the first cohomology groups of modular curves to the middle degree coho-
mology of Hilbert modular varieties.

Theorem 4.3. [8, Theorem 3.1] The T-linear homomorphism:

pr∗1 + pr∗2 : Hd(YK ,LO)⊕2
ρ̄ → Hd(YK∩K0(v),LO)ρ̄

is injective with flat cokernel.
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[20] J. Nekovář, Level raising and Selmer groups for Hilbert modular forms of weight

two, preprint.
[21] M. Rapoport, Compactification de l’espace de modules de Hilbert-Blumenthal, Com-

positio Math., 36 (1978), pp. 255–335.
[22] K. Ribet, On modular representations of Gal(Q/ Q) arising from modular forms,

Invent. Math., 100 (1990), pp. 431–476.
[23] C. Skinner and A. Wiles, Residually reducible representations and modular forms,

Inst. Hautes Études Sci. Publ. Math., 89 (1999), pp. 5–126.
[24] , Nearly ordinary deformations of irreducible residual representations, Ann. Fac.

Sci. Toulouse, 10 (2001), pp. 185–215.
[25] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent.

Math., 98 (1989), pp. 265–280.
[26] , On Galois representations associated to Hilbert modular forms II, in Elliptic

Curves, Modular Forms & Fermat’s Last Theorem (Hong Kong, 1993), J. Coates and
S.-T. Yau, eds., International Press, 1997, pp. 333–340.

[27] , On the meromorphic continuation of degree two L-functions, Documenta Math-
ematica, Extra Volume: John Coates’ Sixtieth Birthday (2006), pp. 729–779.

[28] R. Taylor and A. Wiles, Ring-theoretic properties of certain Hecke algebras, Ann.
of Math., 141 (1995), pp. 553–572.

[29] G. van der Geer, Hilbert Modular Surfaces, Springer-Verlag, 1988.



ARITHMETIC ASPECTS OF HILBERT MODULAR FORMS AND VARIETIES 15

[30] A. Wiles, Modular Elliptic Curves and Fermat’s Last Theorem, Ann. of Math., 141
(1995), pp. 443–551.

E-mail address: dimitrov@math.jussieu.fr
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