p-ADIC L-FUNCTIONS FOR HILBERT MODULAR FORMS

MLADEN DIMITROV

The use of modular symbols to attach p-adic L-functions to Hecke eigenforms goes back
to the work of Manin et al in the 70s. In the 90s Stevens proposed a new approach
based on his theory of overconvergent modular symbols, which was successfully used to
construct p-adic L-functions on the eigencurve for GLo over Q. Recently, building on
Urban’s construction of eigenvarieties for general reductive groups and on the author’s
theory of automorphic symbols for GLo over a totally real number field, Barrera gave a
new construction of p-adic L-functions for Hilbert modular forms using the overconvergent
compactly supported cohomology of Hilbert modular varieties.

In addition to giving an overview of these topics, the lecture notes also contain some orig-
inal results such as the precise correspondence between automorphic and modular symbols

for GLo over totally real number fields.

1. p-ADIC L-FUNCTIONS FOR ELLIPTIC MODULAR FORMS

In this section we present the main steps in Stevens’ construction of p-adic L-functions

of elliptic modular forms, following [S], [PS] and [Be].

1.1. Modular symbols. The group GLa(Q) acts on the left on P*(Q) by linear fractional

transformations, hence acts on the group of degree 0 divisors:

Divo(]P’l(Q)) = Z myx|my € Z,m, = 0 for all but finitely many z, Z my =0
zeP1(Q) z€P1(Q)

For any congruence subgroup I' C SL9(Z) and any right I-module M, I' acts on the
right on Hom(Div?(P1(Q)), M) by:

(¢,)(D) = ¢(y - D)}, for all v € T', ¢ € Hom(Div"(P'(Q)), M) and D € Div’(P'(Q)).
Definition 1.1. The space of M-valued modular symbols on I' is defined as:

Symby (M) = Homgz(Div®(P(Q)), M)" = Homgzp (Div’(P*(Q)), M).
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It follows from the definition that for any commutative ring R and any R[[']-module
M, Symbp (M) inherits an R-module structure. Moreover any flat ring homomorphism

R — R’ induces a natural isomorphism:
Symbp (M) ®g R = Symbp(M ®p R).

1.2. Hecke action. Suppose that M is a right module over the monoid A generated by
I' and some = € GL2(Q) N Ma(Z). The Hecke operator [I'zI'] sends ¢ € Symbp (M) to

P|[rar] = Z Plo; » Where I'zl’ = HF:ci.

For ' =Ty(NV) or I';(N) and a prime ¢ 1 N, the Hecke operator Ty is defined as:

I

For I' =T'g(IV) or I'y(N) and a prime p | N, the Hecke operator U, is defined as:

p—1
2) rlor:Hrla.
0 p o 0 p
Remark 1.2. For any ¢ € Symb(Z) ~ Hom(T' \ Div?(P!(Q)), Z) one has:

p—1
(¢10,)(T(00 = 0)) = Y ¢(T'(00 — 2)).
a=0
1.3. Duals. Given any right R[I']-module M, I' acts on the right on the dual module
MY = Homg (M, R) by letting A, (m) = X(m),-1) and the canonical pairing
Mx MY — R, (m,\)— \(m)

is I'-equivariant.

Assume that I' is preserved by the anti-involution
(3) y=(ah) = =det(yr = (47
Then any right R[I']-module M, can be seen as a left R[I'|-module by letting:
Y M= My

and vice-versa. In particular the left R[[']-module M* = Homp(M, R) for the action
(v - A)(m) = A(my,) can be viewed as right R[[']-module via (A x v)(m) = A(my,-). If we
assume further that M has a central character wjs, then one has an isomorphism of right
R[I']-modules:

(4) M*ZM\/@LUM.
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1.4. Sheaf cohomology. Assume that I' is torsion free (for example I' C I'1(N) with
N > 3). Then I' acts freely (by linear fractional transformations) on the upper half-plane
H in C, and the modular curve Yy = I' \ 'H admits H as a covering space.

Given a right I'-module M, we consider the local system:
r \(H x M ) — YF

with left I'-action given by v - (z,m) = (v - z,m},-). Denote by M the sheaf of locally
constant sections, where M is endowed with the discrete topology. It is well known that

for x € {@, ¢} one has a natural Hecke equivariant isomorphism:
H(T, M) — HS (Y, M).
The following result is due to Ash and Stevens (see [AS]):
Theorem 1.3. There exists a Hecke equivariant isomorphism tp : Symbp (M) = HY(T, M).

1.5. Symbols for modular forms. For k& > 0, we let Vi (R) denote the ring of polyno-
mials of degree at most k over a commutative ring R. If we set for v € GL2(Q) N Ma(Z)
and P € Vi(R)

(5) P (2) = (cz + d)*P (Zig) .

we obtain a right action of GL2(Q) N M2(Z) on Vi (R). By the discussion in §1.3, V;*(R)
has also a right action of v € GL2(Q) N M2(Z) sending ¢ € V;*(R) to

(6) (0,)(P) = 6(P.) = ¢ <(a kP (dz - b)) .

a— Ccz

Let Sk12(I") denote as usual the complex space of cuspforms of weight k+ 2 and level T.
For any f € Ski2(T) and any D € Div?(P}(Q)) we consider ¢¢(D) € V*(R) such that

¢r(D)(P) = Re </ f(z)P(z)dz> for all P € Vi(R).
D
A direct computation shows that ¢ € Symbp (V' (R)).

Theorem 1.4. There exists a commutative diagram:

1)
Spra(T) —— H/(I, VF(R))

| |

Symbp (Vi (R)) —— HY(T, V¢ (R))

where dr is the Fichler-Shimura isomorphism.
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Assume in the sequel that (§ ° ) normalises I'. Then Yy is defined over R and the Hecke

1 0 1 0
T. =T ="
> <0 —1) (0 —1)

commutes with those introduced in (1) and (2).
For any f € Sy42(T') and any D € Div?(P!(Q)) define ¢ (D) € V;7(C) by

operator

(7) ¢ (D)(P) = /Df(z)P(z)dzi /_D f(2)P(=2)dz, for all P € V;(C).

Theorem 1.5. There exists a commutative diagram:

+
T

Ska2(T) — H/(D, V¥ (C))* ,

| |

Symbi (V(C)) —= Hi(I', Vi (C))*

where + denotes the subspace on which Ty = £1.

1.6. Complex L-functions. The complex L-function of f(z) = 3, o, an€?™* € Sp2(T)
is defined for Re(s) > (k + 3)/2 by the absolutely convergent Dirichlet series:
L) =Y %,
n>1
which admits an analytic continuation to the entire complex plane and satisfies a functional
equation relating s to k+ 2 — s.
More generally, given any Dirichlet character y we define the imprimitive L-function of
f twisted by x as: -
L = GnXAT)
(fix,8) ; e
The main ingredient in computing special values of L-functions via modular symbols is

the Mellin transform formula which states that in the domain of absolute convergence:

(2m)* [, -1
(8) L(f,s) = fliy)y™ dy.
I'(s) Jo

Another important ingredient is the following result, known under the name of Birch’s

lemma, allowing to compute twisted L-values using modular symbols (see [MTT]).

Lemma 1.6. If x is a primitive Dirichlet character of conductor m, then L(f,x,s) =
L(fy,s) where

"= Yo xX@f+E), adr(x)= > xla)e*/m

a modm a modm
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Assume now that f is a newform of level N, that is a normalised primitive eigenform
for all the Hecke operators, and denote by K¢ the Hecke field Q(a,,n > 1). By Theorem
1.5 gb}? is a non-zero vector of the complex line Symbljfl( N)(Vk*(C))[ f], where [f] denotes
the subspace on which the Hecke operators act by the same eigenvalues as on f. It follows
that there exists a period Q]jf € C* which is uniquely determined up to multiplication by

an element of K Jf and such that
) Symb v (Vi (Kp)If] = K - 6% /92,

The following result, due to Manin, establishes the rationality of the critical values of

L(f,x,s) and is a prerequisite for attaching a p-adic L-function to f via interpolation.

Theorem 1.7. For any 0 < j < k and for any Dirichlet character x one has

L(f,x,j+1)

W € K¢(x), where + = (—1)7x(=1).

1.7. Distributions. We fix, once and for all, an embedding ¢, : Qc @p. Denote by v,
the unique valuation on @p that extends the p-adic valuation on Q,, and we denote by |- |,
the corresponding norm.

Let L be a finite extension of Q) and choose an open compact subset X of Qj,.

We consider the space A(X,L) = lim A (X, L) of locally L-analytic functions on X.
By definition f € A, (X, L) if for each a € X there exist coefficients ¢,,(a) € L indexed by
m € N” such that

f(z) = Z em(a)(x —a)™, forallz € X, |z —alp, <p™".
meN”
For each integer n > 1, A, (X, L) is a L-Banach space for the norm:
Hf”n = sup <|cm(a)|pp7”2i:1 mz) )
acX,meN"

The natural inclusion A, (X, L) C A,4+1(X, L) is compact, hence completely continuous
(with dense image, since polynomials are dense).
The continuous linear L-dual D, (X, L) of A,(X, L) is a L-Banach space for the norm:

il = sup Dl
feanx,ny flln

The natural restriction maps Dy, +1(X, L) C D, (X, L) are injective and compact, hence
D(X,L) = limD, (X, L) is a compact Frechet L-vector space, endowed with a family of

norms ||pln = {414, x,2)lIn-

Definition 1.8. The Frechet D(X, L) is the space of L-valued distributions on X.
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1.8. Admissibility of a distribution.

Definition 1.9. Let h € Q>¢. A distributions p € D(X, L) is called h-admissible if there
exists C' > 0 such that ||u||, < C -p"™, for all n > 1. A O-admissible (i.e. bounded)

distribution is called a measure.

Theorem 1.10 (Amice-Vélu [AV], Visik [V]). For any h € N, an h-admissible distribution
€ D(Zy, L) is uniquely determined by ,u(]laﬂ,nzpzj) where 0 < j < h,n €N and a € Z).

1.9. Slope decomposition. Suppose given an L-Banach space V and a completely con-
tinuous endomorphism u of V.

A classical result of Serre asserts that for any polynomial @ € L[T] there exists a u-
stable direct sum decomposition V' = Vg @ Vc/g’ with Vg finite dimensional, such that Q(u)
is nilpotent (resp. invertible) on Vg (resp. on V7). This is called the Riesz decomposition

and has been extended by Stevens and Urban (see [U]) to compact Frechet spaces.

Definition 1.11. For h € Q>¢ and V as above, we let V<" be the sum of Vo when @ runs

over polynomials whose roots in Qp have all valuation < h.
The space V<" is a finite dimensional L-vector space.

1.10. Overconvergent cohomology. Let T be the standard diagonal torus of GL2 and
denote by B (resp. B) the standard Borel (resp. the opposite Borel) containing T. Let
Ly Ly
Any continuous character A : T(Z,) — L* can be extended to a character of B(Q,) NI
by making the unipotent radical of B(Q,) act trivially. Consider space

VA
I= < P "] be the standard Iwahori subgroup on GLa(Z,).

A\(L) = {f : I — L locally analytic and f(bg) = A(b)f(g),Vb € B(Q,)NI}.

Restriction to the unipotent radical ((1) le) of B(Z,) induces an isomorphism between
A\(L) and A(Z,, L).
In the sequel we assume that A (* ;) = a* for some k € N. The left action of I on A (L)

(by right translation of the argument) corresponds to the following action on A(Z,, L):

(10) ((24)- ) <z>—<a—cz>’ff(dz‘b),

a—cz
and extends by the same formula to an action of the monoid
7x 7
A = GLo (Qp) N P P
Py Ly
Note that A is generated as a monoid by I and ((1] g). Denote by Ay the space A(Zy, L)

endowed with the left action (10). The right action of v € A on its dual, which we denote
by Dy, then sends p € D(Zyp, L) to ju, such that ju,(f) = pu(y - f).
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Lemma 1.12. The element ((1)2) € A sends f € Apy to f(-p) € Apn—1 and induces a

compact operator on Dy.

The natural restriction map:

(11) Dy — Vi(L),  p my(r)

is A-equivariant for the respective actions defined here above and in (6).

Stevens shows that one has an exact sequence
0— ngfk(k—i- 1) — Dy — V]:(L) —0

where (k4 1) denotes the twist with the (k 4+ 1)-th power of the determinant, and uses it

to establish the following crucial for his construction of p-adic L-functions result.

Theorem 1.13 (Stevens [S]). For any k € N the map
Symbi: (Dy,) ¥ — Symbi (Vi (L)) <**
induced by (11) is an isomorphism.

1.11. p-adic L-functions. Recall that a p-stabilised newform is a normalised eigenform
having the same eigenvalues as a given newform for all Hecke operators outside p, and
which is in addition an eigenvector for U,. Any newform of level N divisible by p is a
p-stabilised newform itself. All other p-stabilised newforms f have level N exactly divisible
by p and are constructed as follows. One starts with a newform g of level N/p and for any
root a of X2 — a,X + ¢(p)p**! one considers f(z) = g(z) — e(p)p*Tta~t f(p2).

In the sequel we fix a p-stabilised newform f € Si42(I'1(N)) whose Up,-eigenvalue « has
valuation h < k4 1 (this is referred to as the non-critical slope condition). Note that this

implies in particular that a # 0. By (9) one has elements
o7 /5 € Symbp (Vi (L)) <F

and by Theorem 1.13 there exists a unique @jf € Synrlbljfl(]\,)(D/€)<’“Jrl mapping to ¢?/Q}t

Definition 1.14. The p-adic L-function L;)t(f) of f is defined as the restriction of the
distribution @?(oo —0) to Zj.

Theorem 1.15 (Stevens). The distribution L;t(f) is h-admissible. Moreover it is uniquely
determined by the following interpolation formula: for all 0 < j < k and for all Dirichlet
characters x : Z, — @If of conductor p™ one has

p"Utht L@ x4+ 1)
—2im)iT(X) ij ’

L;)t(fa Z]X) = Lp (Zp : (

where + = (~1Yx(~1) and Z, = (1 — S22"2)q _ )

al”
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2. CYCLES ON HILBERT MODULAR VARIETIES

In this section we will recall the definition of automorphic cycles on Hilbert modular
varieties introduced in [D1] and relate those to the modular cycles considered earlier by
Manin [M] and Oda [O].

2.1. Notations. Let F' be a totally real number field of degree d, ring of integers o and
denote by X be the set of its infinite places.

For any finite set of places S, we denote by A(5) (resp. Ag) the topological ring of adeles
of Q outside S (resp. at S). Let Ap = A®g F = A%OO) X Fso be the ring of adeles of F'.

We denote by Z = [1,Z, the profinite completion of Z and for any fractional ideal ¢ of
Fwepitc=2Z®c.

We let 9 denote the different of F, and for any fractional ideal ¢ of F we let ¢* = ¢~ 'o~L.
Further we denote by ¢, = ¢ N F the cone of totally positive elements of ¢. The narrow
class group CE; of F', which is the set of equivalence classes of ¢ modulo the action of
F, can be naturally identified with the strict idele class group F*\ Ay /0% F

o, where

F} denotes the connected component of identity in F. Fix a set of representatives ¢;,
1 <i<h,of CE; and for each ¢ let n; € A%OO)X be an idele generating c;, i.e. ¢; = FnnoF ..
If H is an algebraic group over Q and S a finite set of places of Q, the two natural

projections induce an isomorphism:
H(A) = H(Ag) x HA®),  h i (hg, k).

By a slight abuse of notation we will also denote hg (resp. h() the element (hg,e®))
(resp. (es,h™))) of H(A), where e denotes the identity element of H(A).

The mirabolic group M is defined as the semi-direct product G,, x G,, where G,, acts
on G, by multiplication. We denote by s : M — GLs the natural inclusion sending (y, z)
to (7).

Given an integral ideal f of F' we let M (f) = U(f) x 0, where U(f) consists of elements
in 0 which are congruent to 1 modulo f. Denote by E(f) the subgroup of 07 of elements
congruent to 1 modulo §, i.e. E(f) = F* NU(f)F4%.

2.2. Hilbert modular varieties. Let G, denote the connected component of identity
in GLy(Fx). The group G acts transitively by linear fractional transformations on the
unbounded hermitian symmetric domain $Hr = Foo ® F1i C F ® C where i = 1 ® Vv—-1.
We have Hp ~ 5’)2, where ) is Poincare’s upper half-plane, the isomorphism being given
by £ ® z — (0(£)2)sen, for £ € F and z € C. The stabiliser K of i in G is the product

of its center by its standard maximal compact subgroup, and there is an isomorphism:

GL/KL — 9r, goo ™ goo i
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For an open compact subgroup K of GLo (A%oo)), the adelic Hilbert modular variety of

level K is defined as the locally symmetric space
Y := GLy(F)\ GLy(Ap)/KKY = GLI (F)\($r x GLa(A)/K),

where GL3 (F) denotes the subgroup of GLy(F) of elements with determinant in F/*.

Given a level n, an integral ideal of o, we consider the open compact subgroup:

b ~ ~ ~
Ki(n) = {(Z d> € GLy(o)|cen,d—1¢€ n},

and denote by Y7(n) the corresponding Hilbert modular variety.
By Strong Approximation Theorem for SLy /F, the fibres of the map:

det : Yi(n) — F*\ A}/ 0% F%,

are connected, hence (Y1 (n)) ~ Cl}.
For 1 < i < h the connected component Y;(¢c;,n) = det ™ (F*n;0XF%) is classically

described as a quotient of $Hr by the congruence subgroup
, -1 *
P(eim) = GLa(F) 1 (5 9) K (71 0) G = {(25) € ((onr%a) | ad—beeor}.
More precisely, there is an isomorphism:
(12) L(ci,M)\Or — Yi(ci,n), Zoo + Yool — GLo(F) (V5" ) KK,

In general Y7 (c;,n) is only a complex orbifold. In the sequel we assume that n is suffi-
ciently divisible in the sense of [D2, Lemma 2.1(iii)]. Then, for all 1 < ¢ < h, the group
[(¢;,n)/(C(c;,n) N F*) is torsion free, implying than Yj(¢;,n) is a hyperbolic manifold
admitting Hr as a universal covering space with this group.

Put % = 9 [[P(F). The minimal compactification Y7 (c;,n)* of Y1(c;,n) is defined
as I'1(c;,n)\H%. It is an analytic normal projective space whose boundary I'y (¢;, n)\P!(F)
is a finite union of points, called the cusps. We let Yi(n)* = H?:l Yi(c;,n)*.

2.3. Modular cycles. Given an integral ideal f and a fractional ideal ¢ of F', let I" be a

congruence subgroup of GLa(F') containing s(E(f) x ¢*).

Lemma 2.1. Let x € F and let f be the integral ideal of F' such that xo + ¢* = (f¢)*. The
map

factors through E(f)\F%. The resulting map CL : E(H\FL — T'\$Hr is finite and called

the classical modular cycle.
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Proof. The map CL is well defined since for all € € E(f), the element (8 (6_11):”) € I sends
Yool — Too 10 €EcolYool — Too-

Let C be the closure of a Shintani cone in —zs, + Fi modulo E(f). To show that CL
is finite, one has to show that for any given yo, € Ff the set ' (ool — Too) N C is finite.

As well known I'\ 7, is separated for the Satake topology, hence each cusp has a neigh-
bourhood which is disjoint from I' - (yoo? — Zoo). Recall that a basis of neighbourhoods of
the cusp at oo is given by sets of the form {z € Hp|[],cxIm(2s) > A} with A > 0. It
follows that a basis of neighbourhoods of the cusp at co (resp. at —z) in C is given by sets
of the form {z € C|[[,cx Im(z5) > A} (resp. {z € C|[],ex Im(25) < A’}) where A, A" > 0.
It follows that there exist A, A’ > 0 such that

T (Yool — Too) NC =T+ (Yool — Too) N {z € C|A" < [ Tm(2,) < A}.
oEY

Since {z € C|A" <[], ex Im(25) < A} is compact and since T is acting properly discontin-
uously on $},, it follows that I' - (yooi — Zoo) N C is a finite set. O

2.4. Automorphic cycles. We will now present the cycles introduced in [D1, §1] and
establish some of their basic properties.
Let f be an integral ideal of F. The the narrow ray class group C(L(f) = F* \ AX /U(f)F;

fits in the following short exact sequence:
(13) 1 — E(f)\FL — AX/F*U(f) — ClL() — 1.

Denote by S be the set of places dividing § and choose an idele ¢ € A} generating f.
The map:

(14)  Cy: A% /FXU(f) — M(F)\ M(Ap)/M(0) . y = M(F)(y, yp5") M (o)
is well defined, since for all £ € F* and u € U(f) we have
(Eyu, Eyupg’) = (£,0)(y yes") (u, (u—1)pg")
where (£,0) € M(F) whereas (u, (u — 1)pg') € M(o).
Definition 2.2. For any n € AX we define C,, as the composed map
B(\FS, 5 A% JF*U(§) 2% M(F)\ M(Ar)/M (o).

Lemma 2.3. If n and 1 have the same image in CEJIS(f), then here is an orientation
preserving homotopy between Cy, ;) and C, .

For any ¢' € A} generating §, one has Cy, p, = Col et /o
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Proof. Suppose that 7' = Enuze with € € F*, u € U(f) and 2o, € Ff. For all yoo € F5

(Yoo, 105" = (£,0) (Moo 200, 195 ) (1, (u — 1)pgh),

where (u — 1)¢g' € 0. Hence Cyy (E(f)yos) = Copn(E(f)Yoo?00) showing the first claim,
since multiplication by z. € FJ induces an orientation preserving homotopy equivalence
of E(f)\F5. The second claim follows from the identity

1

_ _ _ -1 _
(MYoos 05 ") = (' 0 oo, ' 010l )0’ ™, 0),

since o' "' € U(0), so that (w¢' ™', 0) € M(o). O

Definition 2.4. For any n € A* denote by [n] its image in C¢}.(f). The automorphic cycle
of level f is defined as:

Cy = Z Csom[mo_l]-
nECLL(f)

Lemma 2.3 implies that, up to orientation preserving homotopy, C; only depends on f
and not on the particular choices of ¢ or 7.

For any open compact subgroup K of GLj (A%Oo)) containing s(M (o)), s induces a well
defined map

sk M(F)\M(Ap)/M(o) — Yk.

Definition 2.5. The automorphic cycle Cgm is defined as the composed map of C,, with

the map sk

2.5. Comparison of modular and automorphic cycles. Let K be an open compact

subgroup of GLQ(A%OO)) containing s(M(0)). The connected components of Yx are in

bijection with T\$r, 1 < i < h (see §2.2), where I'; = GLo(F) N (% 9) K (m-;l (1)) G
To be able to make the comparison, we define classical modular symbols taking values

in the mirabolic group. Recall that 7; generates the fractional ideal c;.
Lemma 2.6. For all x € F' such that xo + ¢} = (f¢;)*, the map

C(ni,x) : E(\F — M(F)\M(Ap)/M(0), Yoo = (1Yo, —Too)
1s well defined, injective and fits in the following commutative diagram:

(15) E(\FS, ) M(F\M(AR)/M (o)

o&l (10} J/SK

T\SF = TAGL/KL —— Vic
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Proof. Note that by definition yo (resp. o) is 1 (resp. 0) at all finite places.
For any € € E(f) we have the following equalities in M (Ar):

(e,z(e = 1)) - (NiYoo, —Too) = (emyoo,e(o")x(oo) —x) =

Since (¢, z(e — 1)) € M(F), while €(®) € 3%, 1, 12(>) € =15 and (¢(>*) — 1) € ©0, one has
(), m; 12>V () — 1)) € M (o)

which proves the first part of the lemma. The commutativity is straightforward.
For the injectivity one needs to show that if (7;y.,, %) € (@, b)(NiYoo, —Too) M (0) with
(a,b) € M(F) then v/ yz! € E(f). Projecting to M(Fs) implies that as = 3\ y= € F

and bso = (aoo — 1)Zoo, hence b = (a — 1)x. Further projecting to M(A%OO)) yields
(al), (@) = 1)2>®In1) € M (o),
hence a(®) € U(o) C 0 and a(>®) — 1 € 7'n;0. Since 0 + xn; '0 = 10 this implies that
al® —1esnz'no =0
showing that a € F* N (U(0) N (1 + ¢0))FL = F*NU(f)EL = E(f) as desired. O

Proposition 2.7. Given n € A%OO)X

there exists a unique 1 < i < h such that n and n;
map to the same element ofCZJFr, i.e. n = a'®nu with a € F{ andu € U(o). For S and ¢
as in §2.4 and for any x € (f¢;)* whose image in (fe;)* /¢ equals um«pgl, the multiplication
by aso € F induces an orientation preserving homotopy between C,, (resp. Cg,n) and

C(ni,x) (resp. (19)-CLi). In other terms, there is a commutative diagram:

01
(16) E(f)\F, - E(f\Fin
T.aw C(Cfp:) lap
E()\F: L M(F)\M (Ar)/M (o)

Proof. Since n = a(®)n;u, a direct computation shows the following identity in M (Ag):

(nyooaooa 779051) = (a7ax)<77iyooa _moo)(uvuSpgl - ni_lx(oo)>

where (a,az) € M(F). Moreover the assumption on x implies that upg' —n; 'z(>) € o,
so that (u, ugogl —n; '2(%)) € M (o). This proves the commutativity of the lower triangle
in the diagram, while the commutativity of the other triangle follows directly from the
definition of C,,,. Finally, the comparison between C%, and Cy' follows from (15), (16)
and Definition 2.5. g
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Corollary 2.8. Up to orientation preserving homotopy the cycle C(n;,x) depends only on

the image of x in the group:
((Fee)™/¢})™ /E (o).

Remark 2.9. Note that whereas the automorphic cycles of level | are indexed by the

middle term of the short exact sequence:
(17) 1= (0/f)* /o) — CLH(F) — Clp — 1,

the modular ones are indexed by elements of C£} x (0/f)*/E(0). In fact the elements of
C@C are represented by 7;, 1 < ¢ < h, while multiplication by n,” Lo induces an isomorphism

((fei)™/e7)* /E(0) — (0/f)" /E(o0).
Therefore the automorphic cycles are more intrinsic than the modular cycles.

In view of Lemma 2.1, Proposition 2.7 has another consequence.

Corollary 2.10. The automorphic cycle C’ff,n (see Definition 2.5) is finite as a map.

3. p-ADIC L-FUNCTIONS FOR HILBERT MODULAR FORMS

3.1. Cohomological weights. The characters of the Q-torus F'* can be identified with
Z[Y)] as follows: for any k = ) .5 koo € Z[X] and for any Q-algebra A splitting F*, we
consider the character k € (F ®g A)* — 2* = [[,c5,0(x)* € A*. The norm character
Np/g : F* — Q* then corresponds to the element ¢t = Y .0 € Z[X].

Any algebraic character of the diagonal torus of GLy(F) is of the form (8 3) — akd¥ for
some (k, k') € Z[X]?. Characters such that k, > k! for all o € ¥ are called dominant with
respect to upper triangular Borel and parametrise the irreducible representation of the
algebraic Q-group GLo(F). Explicitly, for any Q-algebra A splitting F'*, the irreducible
representation of GLa(A) of highest weight (k, k') is given by

® (Symf,”_k:’ ®Det]§é) (A?).
ocEY

Definition 3.1. A dominant weight of T is cohomological if it is of the form (WL, wi=k)

where (k,w) € Z[X] x Z is such that for all ¢ € ¥ we have k, > 0 and k, = w (mod 2).
We denote
Viw = ® Symfﬁf’ <§©Det((,""t_k")/2
oceEX
the corresponding irreducible representation of GG. For any Q-algebra A splitting F'* write
Viw(A) for its A-valued points.
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Note that a dominant weight is cohomological if, and only if, the central character
of the corresponding representations of GLy(F') factors through the norm. Under this
assumption the center of any (sufficiently small) congruence subgroup of GLy(F') will act
trivially, ensuring the existence of a local system Vj ,, on Yk attached to Vj .

The left A[GL2(F ®g A)]-module V},(A) can be realised as the space of polynomials
of degree (ky)sex in 2 = (25)0ex over A on which vy = (24) € GLy(F ®g A) ~ GLy(A)*>
acts by:

(18) (- P)(2) = (ad — be)™=R/2(q — cz)k P (dz — b) .

a—cz
3.2. Local systems and cohomology. Consider a left GLy(F)-module V such that
(19) F* N KF acts trivially on V.

For K sufficiently small we have GLo(F)NgKKLg™! = F* N KFZ which by (19) acts

trivially on V. Therefore one has a local system
GLo(F)\(GL2(AF) x V)/KKZ — Yk
with left GLo(F)-action and right K KT -action given by:

v(g,v)k = (vgk, 7 - v).

We will denote by V the corresponding sheaf of locally constant sections on Yy and
will consider the usual (resp. compactly supported) cohomology groups H!(Yx,V) (resp.
H!(Yx,V)). In particular, for any cohomological weight (k,w) and any Q-algebra A split-
ting F* we will denote Vi (A) the sheaf associated to Vj w(A).

There is another construction of sheaves. Namely, given a left K-module V satisfying

(19), one can consider the local system
GLo(F)\(GLa(Ap) x V)/KLK — Y
with left GLy(F)-action and right K K -action given by:

7(g7v)k - (’nga k_l 'U)'

When the actions of GLy(F) and KK on V in the above two definitions can be ex-
tended compatibly into a left action of GLa(Af), then the resulting two local systems are
isomorphic by (g,v) — (g,g7 ' - v).

We will be particularly interested in the case where A is a p-adic field and both GLa(F')
and K, act compatibly on V}, ,,(4). The GLo(F)-action will be used to define H* (Y, Vi w(C))
which admits an interpretation in terms of automorphic forms on GLa(Ap) while the K-

action will be used to interpolate H' (Y, Vi w(L)) where L is a p-adic field.
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3.3. Overconvergent cohomology of Hilbert modular varieties. Given a cohomo-
logical weight (k,w) and a p-adic field L containing the Galois closure of F', we let Dy,
denote the space D(0 ® Zj,, L) of L-values distributions on o ® Z, (see §1.7) on which the
Iwahori subgroup I C GL3(0 ® Z,) acts on the right as follows:

(20) i ) D) = (0 =) P2 ety (£22))

¢ d a—cz
Furthermore, for p | p we fix an uniformizer wy of Fy and define:

(21) N|<1 0 )(f(z)) = p(f(@p2)),

0
where wy, € 0 ® Z, is considered to be 1 at all components p’ | p, p’ # p.

The actions (20) and (21) extend compatibly into an action on Dy, of the monoid A
generated by I and the matrices ((1) m(,)p ), for p | p.

For any open compact subgroup K of GLQ(A;—»OO)) whose image into GLa(F ®q Qp) is
contained in I one can associate to Dy, a local system Dy, on Yx and consider the
compactly supported sheaf cohomology groups H'(Y, D )-

Asin §1.10 the element ((1) 2) € Ainduces a compact operator U, on Dy, , and Hi(YK, Diw)
admits a slope decomposition with respect to it. As for H.(Yz, Vyw(L)) we consider slope
decomposition with respect to the operator U]? = plk—wt)/ 2Up.

The natural restriction map:
(22) Digw = Vew(L)y 1> P = [ (2= o)t du(o)
0QZy
is I-equivariant. Moreover the induced homomorphism:
(23) H(Yic, Diw) — He(Yie, Viw(L))

is compatible with slope decompositions with respect to U, for HZ(YK,D;QW) and with
respect to U for H!(Yk, Viw(L)). Stevens’ Theorem 1.13 has the following generalisation
when Q is replaced by an arbitrary totally real number field F'.

Theorem 3.2 (Barrera [B]). For any h € Q1 such that h < ko + 1 for all 0 € 3, (23)

induces an isomorphism:
HL(Yic, Diw) =" = He(Yi, View(L)) ="

3.4. p-adic L-functions for Hilbert modular forms. In this final section we give a brief
sketch of Barrera’s construction of p-adic L-functions for Hilbert modular forms based on
the cycles considered in §2.

Consider a cuspidal cohomological automorphic representation m of GLa(Ar) of conduc-

tor n and of infinity type (k + 2¢,w), where w denotes the purity weight of .
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According to Deligne [De], the integer 1 is critical for the motive attached to 7 exactly

when (k,w) is critical in the sense of the following definition.
Definition 3.3. A cohomological weight (k,w) is critical if |w| < minyex (ko).

Let f be a p-stabilisation of the new-vector in m, so that U, f = apf for all primes p
dividing p. Let K be the subgroup of Kj(n) obtained by intersecting its p-component
with /. Using a result of Matsushima-Shimura and Harder, as worked out in Hida [H],
there exists a class (5? in the complex line H, (Y, VS w(©)If]T. Assume further that L

contains all the Hecke eigenvalues of f. Dividing 5;[ by a period Q}“ € C* yields a class

¢r € HE(Yie, View (L) [f1T.

Assume the following non-critical condition:

ko - .
(24) h=y " TS vliplap))ep < min(k, + 1),
oes plp 7

where e, denotes the ramification index, so that (p) = [, p.

By Theorem 3.2 there exists a unique class
®; € HY (Y, Dr) /17

which maps to ¢; under (23).
Evaluating ®; on the modular cycles on Yx of p-power conductor (see Definition 2.4),
Barrera constructs a distribution pp € D(C{f(p™), L) and proves that it is h-admissible.

Using the computations performed in [D1, §2] he proves the following theorem.

Theorem 3.4 (Barrera [B]). For any finite order Hecke character x : CLL(p>) — L* such
that xo(—1) =1 for each o € ¥ we have:

®) (1 P
pp(x) = tp (L ( (8;#’ 2 (X)> HZp,
f

plp

where LP) (TR, s) is the L-function of w twisted by x without the Euler factor at all places
diwviding p, T(x) is the Gauss sum, dy is the valuation of the different of F,/Qp, and:

1p () ~eondxe) . if xXp is ramified, and
Zp —

L—tp(ap) ™ xp (@p) ' Npsg(p) !

—d .
=0 (o) () Xp(wp) ™% , otherwise.

Note that (in the non-ordinary case) the interpolation property proved in Theorem 3.4

does not guarantee the uniqueness of py. This problem is settled in [BDJ].
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