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RESUME: Cette thése étudie les formes modulaires de Hilbert de poids arbitaire avec coeffi-
cients sur un corps fini de caractéristique p. En particulier, on calcule I'action des opérateurs de
Hecke, y compris aux places divisant p ot ils ont été construit par Emerton, Reduzzi and Xiao,
sur les g-développement géometriques attachés a ces formes. Comme application nous montrons
que la représentation galoisienne attachée & une forme propre cuspidale de Hilbert mod p, qui a
poids parallel 1 en une place p divisant p, est non-ramifiée en p.

ABSTRACT: This thesis studies Hilbert modular forms of arbitrary weight with coefficients
over a finite field of characteristic p. In particular, we compute the action on geometric ¢-
expansions attached to these forms of Hecke operators, including at places dividing p as con-
structed by Emerton, Reduzzi and Xiao. As an application, we prove that the Galois represen-
tation attached to a Hilbert cuspidal eigenform mod p, which has parallel weight 1 at a place p
dividing p, is unramified at p.
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Introduction

This thesis is divided in two parts: in Part [, we study Galois representations of the absolute
Galois group G with coefficients modulo p-powers which are unramified at p, whereas in Part [[]]
we study Hilbert modular forms of partial weight, posing particular attention to partial weight
one Hilbert modular forms modulo p.

In Part[l] we put ouserselves in the context of Serre’s modularity conjecture for weight 1 forms
modulo prime powers. Serre’s modularity conjecture, now a theorem of Khare and Wintenberger
[KW09], states that a continuous irreducible odd Galois representation p : Gg — GLa(F,) is
modular, i.e. it arises as the reduction modulo p of the Galois representation attached to a Katz
modular eigenform. In particular, Edixhoven’s formulation of the weight in Serre’s conjecture
states that those representations that are unramified at p correspond to Katz modular forms of
weight 1 with coefficients over F,,. This was proven by by Gross(|[Gro90]) in the p-distinguished
case, by Coleman and Voloch (JCV92|) for p > 3 using companion forms. Wiese ([Wield])
showed the unramifiedness at p of the representation attached to weight 1 forms without any
assumptions on the prime, i.e allowing p to be 2. In Part [} we prove one side of Serre’s modularity
correspondence for weight 1 forms modulo prime powers.

Theorem A. Let p > 3. Let O be the ring of integers in a finite extension K of Qp,, @ be a
uniformizer of O and OJw = k. Let p : Gg — GL2(O/w™QO) be a continuous representation
and p : Gg — GLa(k) its residual representation of conductor N. Suppose that p and p are such
that:

e p is odd and irreducible;
e for all primes ¢, either p(I;) = p(I;) or dim(p’?) = dim(p'*);
e p is unramified at p.

Then p is modular of weight 1, i.e. there exist a modular curve X depending on p and a normalized
eigenform f € M1(X,O0/w™O) such that p is equivalent to py.

This result is an application of the R = T theorem of Calegari and Geraghty (JCG18, Theorem
1.3]). Calegari and Specter [CS19] show the other side of the Serre’s modularity correspondence,
in the sense that they show that Galois representations arising from modular forms of weight 1
with coefficients modulo @™ are unramified at p.

The heart of this thesis is Part [T, where we study Hilbert modular forms of arbitrary weight.
In the literature, most authors work with parallel weight Hilbert modular forms, whereas here
we want to work in arbitrary weight. We now proceed to present the setup of Part [[I]



2 Introduction

Let F be a totally real field of degree d > 0 and p be a rational prime. Denote by O the

ring of integers of a finite extension of Q,, by w a uniformizer in O and let F := O/wO. Let ¥
denote the set of p-adic embeddings of F'. The weights of our forms will be indexed by this set.
In particular, we decompose this set as follows 3 = Uy, Xy, where Yy is the subset of embeddings
inducing the place p. Moreover, we fix an ordering of ¥, = {TP(ZJ) cj=1,..., fpandi=1,...¢e}
(see for more details) and uniformizers @y, of OFy. Finally, let n denote an ideal of Op
prime to p, which will be our level.
Since we want to allow p to ramify in F, we will work with the Pappas-Rapoport model of
the Hilbert modular scheme over Spec(Q), which we will denote Y (see Definition , as
constructed by Pappas and Rapoport in [PR05] and made explicit by Sasaki in [Sas19]. This
scheme classifies d-dimensional abelian schemes 7 : A — Spec(O) endowed with a prime-to-p
polarization, a n-level structure, and a filtration of the sheaf W*Qh / Spec(O)? which depends on
the choice of ordering of 3. The filtration is what allows us to work with primes p that ramify in
F, and we will describe it here over the universal abelian variety = : A — Y. One has a natural
direct sum decomposition

fe

- 1 ~ )
wapy =1y =~ DD warvpg
blp =1

Then for each p and j € {1,... fp}, we are given a filtration of the sheaf w4,y , ;:

_ (0 (1) (ep) _
0=F,  CF,/ C...CF, ) =wavpj:
by Op-stable Oy-subbundles, such that each subquotient is a locally free Oy-module of rank one,
which is annihilated by the action of w,. Using this filtration and following Emerton, Reduzzi
and Xiao (JERX17a)]), we are able to define line bundles

o @), 1)
W= FpilFpy
as successive quotients of the filtration. As said before, we are interested in working with arbitrary
weights, and in order to do so, one has to twist the sheaves w, by trivial line bundles coming
from the de Rham cohomology:

Or == (Adpeoy Hir(A/Y)) ®0peoy ro1 Oy -

These line bundles are trivial over Y, but they carry a non-trivial action of the unit group E :=
O;} L/ (O§7n)2 (see section . In fact, since we are interested in the Galois representations
attached to Hilbert modular forms, we will have to work with the Shimura variety associated
to Resg GLa r. The group E acts on the points of Y (see Section and if the level n
is sufficiently divisible (see Hypothesis , then the group E acts properly and discontinously
giving rise to an étale finite type scheme Sh := Y/E (see |[RX17, Proposition 2.4]). Using the
theory of descent, one can then descend the bundles w, and 57 to line bundles w; and 8, over Sh.
We have now all the ingredients to construct the sheaf of Hilbert modular forms for any O-algebra
R. Let (k,() € Z* x Z*, and we assume that k, ¢ € Z* are such that uF+2¢ =[] s 7(u)k~ 26
is 1in R, for all u € (’);n. Then we define the line bundle

kil _ ®k QL
W = ® (wT,RT ®ShR 67',]{)
TEL
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and we will call Hilbert modular forms elements of

M o(n; R) == H(Shp, wh").
The assumption that ©*+2¢ is 1 in R is necessary to ensure that we are not only working with
zero global sections. Because of this condition, when working in characteristic 0, one is obliged
to work with paritious weights, i.e. weights k, ¢ € Z* such that k, + 20, =w € Z for all 7 € X.
However, when working over [F, one can work with non-paritious weights. A concrete example of
such forms can be found in the generalized partial Hasse invariants constructed by Reduzzi and
Xiao in [RX17].

We will now illustrate the main results of this thesis and the methods here used. In this thesis,
we are interested in computing the geometric q-expansions attached to Hilbert modular forms.
In the literature, authors often work with adelic g-expansions, which are a more compact type of
g-expansion that in the case of parallel weight forms contain all the information relative to the
eigenvalues of the forms. However, when working with arbitrary weights, the adelic coefficients
are not well defined (see discussion in Section , and therefore one is obliged to work with
geometric g-expansions. In sections 2.3 and we detail how these g-expansions are constructed
starting from the cusps and Tate objects. We recall here the key steps that we take in order to
construct the module of g-expansions.

Let € be a fixed set of representatives of the narrow class group Cl;; and we assume without
loss of generality that elements ¢ € € are coprime with p. For every ¢ € €, one can construct
various cusps attached to ¢, however we will focus on the standard cusp at infinity, here denoted
by oo(c). As described by Dimitrov in [Dim04], fixing a smooth admissible cone decomposition
of ¢, gives rise to a Tate object Tate, o, defined over a scheme S;, depending on the cone
decomposition (see discussion before Proposition . In particular, one can trivialize the
sheaves WTate, 0, /St and ”HcllR(Tatec’oF /S¢), giving rise to a canonical identification:

ke can(c,Op) B
Wratecop /S @0 20 (07! ®0) 00 O, ,

where by (¢ ® O)* @0 (07! ® O) we mean the free O-module of rank 1 defined as

(c®0)f @0 (7' ®0) = R)(c® O)F go (' @ 0)",
TEY

where (¢® O), denotes the copy of O in (¢® O) identified via the embedding 7. This description
is inspired by the works of Diamond and Sasaki in [DS17]. The coefficients of our geometric
g-expansions will live in the O-module (¢ ® O)F @p (07 ® O)¢, whereas the symbols ¢ will live
in Og,. In Section 2.4} we show the following.

Theorem B. Let ¢ € €. The the module of q-expansions for Hilbert modular forms of weight
(k,?) at the infinity cusp oo(c) is

M'&’f(t)—{ > agd

gec U{0}

ag € (c ® (’))k R0 (co_l ® (’))e;asg = 6‘%5 for all € € C’);,Jr} )

This description of the module of g-expansion is a generalization of the description given by
Dimitrov in [Dim04]. Moreover, our description aligns with the one of Diamond and Sasaki in
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IDS17], where they assume that p is unramified in F' and therefore use a different model for
the Hilbert modular variety. The main ingredients of the proof are the canonical identification
described above, and the action of the units (’); . over the cusps, given by Dimitrov in [Dim04].
We finish Chapter [2 by describing how changing cusps affects the canonical identifications and

the module of ¢ expansions.

The goal of Chapter |3] is to describe the action on geometric g-expansions of the Hecke
operator at a prime p dividing p as defined by Emerton, Reduzzi and Xiao in [ERX17a]. The
lack of a good T}, operator was due to the fact that the projection maps from Shg(p), the Shimura
variery with extra level at p, to Shy are not finite flat. To overcome this issue, Emerton, Reduzzi
and Xiao use the dualizing trace map to construct a properly normalized Hecke operator Ty. We
therefore go through this construction with particular attention at what happens at the cusps and
translate it to the g-expansions for Hilbert modular forms with coefficients over R,,, := O/w™O.
We point out a couple of technical details that are needed to achieve our goal. First of all,
we will have to work with normalized diamond operators Sy. As explained in Section , the
normalization is essential to have invertible diamond operators at primes p dividing p. Secondly,
the construction of the Hecke operator T is done only for weights k € 7> such that for every

plp:

o k iy >k @ forallj=1,...,fpandi=1,...,¢, — 1;
Tp.d o,

° pk‘Tu) >k (e forall j=1,...f.
p.J Tp,i—1
These weights are said to live in the minimal cone, denoted C™™", defined by Diamond and
Kassaei in [DK17] and [DK20]. Assuming that the weight k& belongs to the minimal cone is
essential in the construction of Ty by Emerton, Reduzzi and Xiao (see Proposition [ERX17al,
Proposition 3.11]). Using the description of the geometric g-expansion of Theorem [B| we show
the following.

Theorem C. Let (k,{) € Z* x Z* such that k € C™® and [[ o 7(uw)* "2 is 1 in R, for
k,l

all u € Op,. Let f € HO(ShRm,wR’m) and let f = (ff)cecf where fo = 3 cec, u{0} agqs be its

geometric q-expansions at the cusp co(c). For a place p of F' above p, let a, B € Fy be such that

ep = ad and cp~! = B¢, for ¢, " € €. Then for £ € ¢y

ag((Ty f)e) = Nm(p) ™" | T 7(=p) ™ | & ag-1¢(fe)

TEYp

+ HT(wp)kﬁeT B ag-1¢((Sgf)er),

TEYX
with ag—1¢ = 0 if 1€ ¢ . We recall that we denote by o the element [] s T(c)™ .

The novelty of the above description of the action of 77 on geometric g-expansion lies in the
fact that it is given in its full generality, without restricting to an easier case. Emerton, Reduzzi
and Xiao do give briefly a descprition of the action of 7}; for p inert (see [ERX17a, Remark 3.14])
using the description of Katz for Hilbert modular forms, i.e. by evaluating the form f at the Tate
object Tate, 0,,, without constructing the module of g-expansion, as here is done in Theorem @
In the proof of Theorem [C] we describe how the maps in the Hecke correspondence change the
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cusps, and translate this change onto the modules of g-expansions, as described in Theorem [B]
We would like to point out that such a concrete description of the action of the 7)) operator on
g-expansions is essential if one desires to work with arbitrary weight Hilbert modular forms. We
therefore hope that our computations and methods will be useful to authors that wish to work
with geometric g-expansions. We end the Chapter [3| by conjugating our formula to known cases
and by discussing the adelic g-expansions, with a particular attention for the parallel weight case.

In Chapter [4] we present a direct application of our computations on geometric g-expansions
in the context of the Langlands correspondence. Under the Langlands correspondence, Hilbert
modular eigenforms of parallel weight one correspond to two dimensional totally odd Artin
representations. In particular, the local-global compatibility ensures that these representations
are unramified at all places outside the level n. Dimitrov and Wiese in [DW18] proved that
parallel weight 1 Hilbert modular forms modulo p give rise to Galois representations that are also
unramified at p. This was also proven independently by Emerton, Reduzzi and Xiao for p inert
in [ERX17al]. It is predicted by the local-global compatibility in the Langlands correspondence
that Hilbert modular forms of level prime to p and partial weight 1 at places corresponding to a
given prime p dividing p should still give rise to Galois representation which are unramified at p.
In characteristic 0, this refined version of the local-global compatibility is due to Saito ([Sai09])
and Skinner ([Ski09]) (see also results Hida in [Hid89a] and Wiles in [Wil88]). In Chapter
we prove the analogous for Hilbert modular forms of partial weight 1 modulo p, which is not
covered by the characteristic 0 case, since these forms do not lift in characteristic 0 in general.
In particular, we prove the following.

Theorem D. Let p be a place above p. Let f be a Hilbert modular cuspidal eigenform of paritious
weight over a finite extension of Fy, such that the weight above p is 1. Then the attached Galois
representation attached to f is unramified at p.

We will now explain the ingredients of the proof. In Chapter [ we will only work with
paritious weights, since we need to lift Hilbert modular forms over F to Hilbert modular forms
over O for sufficently big weights. Then for (k,£) € Z* x Z* a paritious weight, i.e. such that
kr 4+ 20, = w, we denote the sheaf of differentials of paritious weight (k,w) by

kW) . ® (w§k7 ® 040 5§(W_k7)/2) ‘
TEY
and in particular we denote by My, (n; R) := HO(ShR, w%’w)) the R-module of Hilbert modular
forms, and by Sj (n; R) the submodule of cuspidal forms.

In order to lift to characteristic 0, we will use an exceptional sheaf of paritious weights,
denoted (ex, 0) such that the weight ex belongs to the minimal cone (see Section. The sheaf
w(®%0) is inspired by the one used by Reduzzi and Xiao in [RX17]. In particular, for an integer r
sufficiently big, we will able to lift cuspidal forms of paritious weight (k-7 ex, w) to characteristic
0 (see Lemma . Moreover, we will make use of the partial Hasse invariants defined by
Reduzzi and Xiao in [RX17] to construct a Hilbert modular form hex € M,_1)exo(F) (see
Lemma , which will allow us to bring forms to liftable weight. The final ingredient will be
a Frobenius operator at p, constructed using the Hecke operator T}, and the product of partial
Hasse invariants hex. The proof then follows from the doubling method as applied by Dimitrov
and Wiese in [DWI8]|, which relies on the explicit description of the action of Ty in geometric
g-expansions as described in Theorem [C] We end the Chapter by discussing a possible future
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application of these results to show the unramifiedness of the pseudo-representations attached
to Hecke algebra of paritious weights (k,w) such that k. =1 for all 7 € X,,.
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Chapter 1

Modular forms of weight one and (Galois
representations modulo prime powers

1.1 Introduction

Let p > 3 be a prime number and O the valuation ring in a finite extension K of Q,. Let @ be
a uniformizer and k = O/w the residue field. The question we want to answer is the following:
given a representation

p: G@ — GLQ(O/me) s

when is this representation modular of weight 17

This question is part of the much larger picture of Serre’s modularity conjectures for weight
1 forms. Edixhoven’s formulation of the weight in Serre’s conjecture (JEdi92|) states that a
continuous irreducible odd Galois representation p : Gg — GL2(F,) that is unramified at p
corresponds to a Katz modular forms of weight 1 with coefficients over F,. Nowadays this is
entirely known. This was proven by Gross(|[Gro90]) in the p-distinguished case and by Coleman
and Voloch (JCV92|) for p > 3 using companion forms. Wiese (|[Wield]) showed the unramified-
ness at p of the representation attached to weight 1 forms without any assumptions on the prime,
i.e allowing p to be 2. A sketch of the proof for the converse for p = 2 can be found in [Per|. A
proof of the modularity of an irreducible continuous odd Galois representation with coefficients
over [F,, was given by Khare and Wintenberger [KW09)].

The first step in answering the above question is to define the space of modular forms that will
correspond to p. In order to do so, one has to consider a modular curve X over Spec(Q), which
depends on the representation p and construct Katz modular forms of weight 1 with coefficients
modulo @w™@. We will here denote this space M;(X,O/w™O) (For a precise definition see
Definition or Definition . It is important to remark that this construction depends
on the ramification of the residual representation p : Gg — GLa(k). In particular, one has to be
careful with the set T'(p) of so called vexing primes, which are defined at the beginning of section
Let us assume the following.

Hypothesis 1. Assume that the given continuous Galois representation p : Gg — GL2(O/@w™O)
and its residual representation p : Gg — GLa(k) satisfy the following:

e p is odd and irreducible;

e for all primes £ such that p is unramified and for all primes ¢ € T(p), p(I;) = p(Iy);
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e for all ramification primes ¢ that are not vexing and for which pg, is reducible, plt is a
rank 1 direct summand of p as an O-module;

e p is unramified at p.

The second step in answering this question is to say what it means for such representations
to be modular of weight 1. Given a normalized eigenform f € M;(X, O/w™O), Carayol [Car94|
shows that one can construct a Galois representation py : Gg = GL2(O/@w™Q), which is in par-
ticular unramified for primes away from p and from the level of f. Saying that the representation
p is modular of weight 1 means that there exists a normalized eigenform f € M1(X,O/@w™O)
such that the traces of py and p on almost all Frobenius elements coincide. In this sense we will
also say that p and py are equivalent.

The goal of this chapter is to show the following:

Theorem 1.1.1. Let p > 3. Let O be the ring of integers in a finite extension K of Q,, w be
a uniformizer of O and OJ/w = k. Let p : Gg — GL2(O/w™O) be a continuous representation
and p : Gg — GLa(k) its residual representation of conductor N. Suppose that p and p satisfy
Hypothesis[1. Then p is modular of weight 1, i.e. there exist a modular curve X depending on p
and a normalized eigenform f € Mi(X,0/w™O) such that p is equivalent to py.

We should point out that the main hypothesis is that p is not a ramification prime for p
and consequently for p. Moreover, by the results of [KW09|, we do not have to assume that the
residual representation is modular. Finally, this result is an application of the R = T theorem of
Calegari and Geraghty in their article Modular Lifting beyond the Taylor- Wiles Methods, [CG18§].

The converse of this problem is the following: given a modular form of weight 1 with co-
efficients over O/w™Q, is the attached Galois representation unramified at p? This question
is answered by Calegari and Specter [CS19|, who show that Galois representations arising from
modular forms of weight 1 are unramified at p.

1.2 Minimal Deformations

Let p : Gg — GL2(O/@w™O) be a Galois representation and p : Gg — GLa(k) its residual
representation, S(p) the set of primes at which p is ramified. Following Diamond (see [Dia97,
Section 2]), one defines the set of vexing primes 7'(p) as the subset of S(p) of primes ¢ such that
= —1 mod p, p|g, is irreducible and p, is reducible. As in [CGIS], let us suppose that the
residual representation p of p : Gg — GL2(O/w™O) satisfies the following conditions:

1. p is continuous, odd and absolutely irreducible;

2. p¢S(p);
3. If £ € S(p) and p|g, is reducible, then plt # (0).

Remark 1.2.1. Remark that condition 3. is always satisfied by a twist of p by a character unram-
ified outside of S(p). Moreover, for these primes the rank of 5’¢ is necessarily 1 and therefore £
appears with a power ¢! in the conductor of p.

Let us recall the definition of minimal deformation given in [CG18|. Let Co be the cate-
gory of complete Noetherian local O-algebras with residue field k£ with continuous O-algebra
homomorphisms. We will consider deformations of p with coefficient rings in Cp.
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Definition 1.2.2. Let R be an object of Co. A deformation p : Gg — GL2(R) of p is called
minimal if it satisfies the following conditions:

(a) the determinant det p is the Teichmiiller lift of det p;

(b) for £¢ S(p), pc, is unramified;

(c) for £ € T(p), p(Is) = p(Iy);

(d) if £ € S(p) \ T(p) and p|g, is reducible, then p'* is a rank one direct summand of p as an
R-module.

Remark 1.2.3. Remark that condition (b) implies that p is unramified at p. Moreover, condition
(d) tells us that the representation p as a lift of p not only maintains the same ramification
primes, but also the same inertia invariants at those primes.

This defines a deformation problem which is representableE] by a complete Noetherian local
O-algebra, denoted R™™ and called the universal minimal deformation ring.

One can easily check that, in the setting of Theorem Hypothesis [I] implies that p :
Gg — GL2(O/@w™QO) is a minimal deformation of its residual representation p.

We will now distinguish two cases:

(Case I) : The representation p has no vexing primes;
(Case II) : The representation p can have vexing primes.

We will see that the second case requires an automorphic approach, passing by the local
Langlands correspondence.

1.3 Case I: No Vexing Primes
Throughout this section we will make the following assumption:
Hypothesis 2. The set of vexing primes T'(p) =0 .

Following [CGIS8|, most definitions in this section are given for a general modular curve
satisfying a moduli problem. In the presence of vexing prime the considered modular curve will
be a quotient of the standard modular curve X;(N) for the modular group I'1 (N) to include the
restrictions arising from these vexing primes. Moreover, one will have to change also the sheaf of
definition of modular forms, but this can be done so that in the case where Hypothesis [2| holds,
one still gets the same definitions as in this section.

1.3.1 Modular Curves

Let N be an integer, N > 5 such that (N,p) = 1. This will later be the conductor of our
representation p. Following [CGI1S|, fix H to be the p-part of (Z/NZ)*. The quotient X of the
modular curve X1 (N) over Spec(Q) by the action of H is the moduli space of generalized elliptic
curves with T'g(IV)-level structure, where T (N) := {(24)€ To(N) such that dmod N € H}.

!This follows from Theorem 2.41 of [DDT97].
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Let m: £ = X denote the universal generalized elliptic curve and set
W= MWe/x
where wg/x is the relative dualizing sheaf. Recall that the Kodaira-Spencer map (see [Kat77],

A1.3.17) extends to an isomorphism w? ~ Qﬁ( /O(oo), where oo is the reduced divisor supported on
the cusps. Let A be an O-module and £ a coherent sheaf on X, then we denote byE] La:=LR0A.

Definition 1.3.1. Let A be an O-module. We will call modular forms of weight 1 with coefficients
in A elements of HY(X,w4). We will denote this module M (X, A).

In Section 3.2.2. of [CGIS|, Calegari and Geraghty consider wg /o, which can be identified
with the direct limit hAl W /m- Here we will pass through the sheaf wx /o to get information on
m

wo/m- In particular, one has that H(X,we /mm) ~ HY(X, w/0)[@™], where this last module
denotes the kernel of the morphism of sheaves ‘multiplication by w™’.

1.3.2 The Hecke Algebras

In [CG18|, Calegari and Geraghty define Hecke operators Ty for ¢ prime such that (¢, Np) =1
and diamond operators (a) for a an integer with (a, N) = 1 on the cohomology H*(X, £4), for
i = 0,1 and A any O-module (one generally takes £ to be the sheaf w™ or w™(—00), for some
n > 1). To do so, one considers the universal Hecke algebra, T""V, which is the commutative
polynomial algebra over O[(Z/NZ)*| with indeterminates Ty for ¢ prime such that (¢, Np) = 1.
If a € (Z/NZ)*, we denote by (a) the corresponding element in T"V. Then one defines an
action of T"V on HY(X,L,). Let Ty C Endp HO(X, Wk /o) be generated by the prime-to-p/N
Hecke operators and the prime-to-N diamond operators. Let mp be a maximal non-Eisenstein
ideal of the Hecke algebra Ty. This ideal gives rise EI to a maximal ideal m of T"™V and one can
assume, extending O if necessary, that T"" /m ~ k. The following is a particular case of part
(2) of Lemma 3.7 in [CGI1S].

Proposition 1.3.2. For i = 0,1, there is an isomorphism

H' (X, w(—00) g /0)m — H (X, wi/0)m -

1.3.3 Homology and Verdier Duality

We recall that given a profinite O-module or a discrete torsion O-module M, one defines the
Pontryagin dual by
MY :=Homp(M,K/O) .

Moreover, for these modules one has that (MV)Y ~ M. Now, following [CGIS|, one defines
homology groups of modular forms as follows.

Definition 1.3.3. Let X be a modular curve and £ be a vector bundle on X, one sets for i = 0,1
Hi(X, L) == H'(X,(Q' ® L) k)0) "
where £* is the dual bundle and Q' ~ w®2(—o0)[]

20n open sets, L4 = L ®p A corresponds to the sheaf tensor product over Oy, of £ and ,ZL the
sheafification of A pulled back on X,.

3see discussion before Lemma 3.7 in [CGIS]

4this is induced by the Kodaira-Spencer map.
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In this section, we are interested in the case where X is the modular curve defined in the previ-
ous section and £ is just w. The Hecke algebra Ty C Endp H(X, wg/0) = Endo(M1(X, K/0)),
defined above, acts also on Ho(X,w). In fact, by the above definition

Ho (X, w) = Homp (HO (X, (' w*)K/O),K/O> ,

and, by looking at the sheaf Q! ® w*, using Kodaira-Spencer and the fact that w is an invertible
sheaf, one gets
A @w* ~w?(—o0)@w?
~w(—00) =w® Ly,

where L, denotes the invertible sheaf associated to the divisor co. When tensoring with K/O,
one gets that (w ® E;ol)K/O = wg/0 ® L. Therefore one has

Homo (HO (X, w(—o0) K/O),K/(’)) = Ho(X,w) .

By Proposition [I1.3.2] when we localize at the maximal ideal my, one has that the homology
Ho(X,w)m, is the actual dual of the cohomology H(X,wg/0)m,, so one still has an action of
T m, on Ho(X,w)m,. Finally, by a theorem of [CGI8|, which will be recalled in the next section,
the Hecke algebra Ty, acts freely on Ho(X,w)m,-

Verdier duality ([Har66], Cor.11.2(f)) establishes an isomorphism
D:H(X,£) S HT(X, L),

which is not Hecke-equivariant when £ is either w®™ or w®"(—o00). In fact, one gets the following
relations involving the so called transposed Hecke operators T:

e for primes ¢ such that (¢,pN) =1, Do T, =T, o D;
e for integers (a,N) =1, Do {(a) = (a) "1 o D.

Let us suppose that O contains a primitive N-th root of unity £, we have the extra operator W¢
for which the transposed Hecke operators are conjugated by W¢ to the ‘usual’ Hecke operators,
therefore the Hecke algebras generated by these operators are the isomorphic.

1.3.4 Results of Calegari and Geraghty in [CG18]|

Let X be the modular curve of level 'y (N) for N = N(p) the Artin conductor of p defined
above, Ty the Hecke algebra on H(X, wK/O) generated by the prime-to-p/N operators. As in
[CGI18], let my be the maximal idea]lﬂ corresponding to p. This ideal is generated by w, by
Ty — tr(p(Froby)) for primes (¢,pN) = 1, and by (a) — det(p(Frob,)) for integers (a, N) = 1.

Theorem 1.3.4 (Theorem 3.11 of [CG18| for the set Q = (ZED There exists a minimal deforma-
tion
po - Gg — GL(Tpm,)

5This exists thanks to the works in [KW09], [Gro90] and [CV92].

6The reader will notice the absence of the twist by 1, where n? = M(det(ﬁ» and (det(p)) is the

Teichmiiller lift of det(p). Going through the proof, one sees that 72 is unramified outside Q and of
p-power order, therefore for QQ = (3, this twist is trivial.
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of p unramified outside N and determined by the fact that for all primes £ such that (¢, Np) = 1,
tr(py(Froby)) = Ty.

The minimal deformation py induces a surjective Co-morphism
Y R™in _, Thmg -
Using their patching method, Calegari and Geraghty show the following:

Theorem 1.3.5 (Theorem 3.25 in [CGIY].). The map ¢ : R™" — Ty, obtained by the universal
property of R™™ is an isomorphism. Moreover, Ty,m, acts freely on Ho(X, W)m,-

From its proof (see discussion at the end of Section 3.8 of [CGI8|) they deduce:

Corollary 1.3.6. Ho(X,w)m, has rank 1 as a Ty, -module.

1.3.5 Proof of Theorem I.1.1

The goal of this section is to prove Theorem [I.1.I] under Hypothesis 2] First we present a
commutative algebra lemma that will be used to prove a g-expansion principle for these forms.

Lemma 1.3.7. Let M be a discrete torsion O-module. Then
MY o™ ~ (M[z™])" .
Proof. 1t suffices to show that if N is a profinite O-module, then one has that
N[ = (N/=™)Y
because then if we take N to be MV, using the above equation one gets that
M[&™) = NY[@™] = (N/@™)" = (MY /&™)

and dualizing again will give the result. Let us now prove that NV[w™] ~ (N/@™)Y. By
definition:

NY[@w™] = Homop (N, K/O)[x™]
={f: N — K/O such that @™ - f =0}
={f: N — K/O such that f(w™z)=0forall z € N} .
Any such f is trivial on @w™N and therefore factors through the quotient N/w™ N, defining an

O-morphism f : N/w™N — K/O, i.e. an element of (N/w™)". The converse is obvious, so
that the last term in the equality is (N/@™)". O

Now, we take Xy in the theorem to be just the modular curve X defined above, and £, = Ox.
We can then consider Ty, the Hecke algebra acting on HO(X, Wi/0)mg = M1(X, K/O)n,
generated by prime-to-p Hecke operators.

Lemma 1.3.8. We have an analogue of the q-expansion principle, i.e. a perfect pairing

HO(X, Wo /om0 )my X Tpm, /@™ — O/@w™O .
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Proof. By Corollary , we know that T 1, and Ho(X, w)m, = (H°(X, wK/O)mw)v (this equal-
ity is by definition) are isomorphic as O-modules. By Pontryagin duality, we get a perfect pairing
of O-modules:

Tpmy X H(X, wi/0)my — K/O.

We want to show that we can get a perfect pairing
1
T@,m@/wm X HO(X7WK/O)m@[wn] — K/O[wm] = 7m(9/0 ~ O/wmo .
w

Since T, = (HO(X, wK/O)m@)v, one has to show that we get an isomorphism

(HO(Xa WK/O)m@)V/wm = (HO(Xv WK/(’))mg) [wm])v )

which is true by Lemma for M = H(X,wg/0)m,- Now one easily sees that
(M[=™])" = Homo(M[="], K/Ol="™])
and one can conclude using the fact that HO(X, wg 0)[@™] = H)(X,wo /mmo) - O

Remark 1.3.9. By the previous Lemma, a morphism of O-modules
T@jmw/wm — O0/a™O

corresponds to a simultaneous normalized Hecke eigenvector in H?(X, wp /wm), thus to a normal-
ized eigenform.

Now we can present a proof of Theorem under Hypothesis . Let R™™ be the minimal
universal deformation ring for p. Then applying the universal property to p, one gets a morphism
in Co

R™N 5 O/w™O .

By composing with the inverse of the isomorphism of Theorem [1.3.5] we get a Co-morphism
T@,mm — (’)/wm(’) s

which is determined by Ty +— tr(p(Froby)), by Theorem|[1.3.4] One can factor this homomorphism
through the quotient Ty, /@™ and by the previous lemma, this morphism defines a normalized
eigenform f in H°(X,we Jwmo)my Of weight 1 with coefficients in O/@™0O. By the universal
property of the universal deformation ring, the eigenform f corresponds to a minimal deformation
py of p with the above conditions on images of Frobenius elements. By Chebotarev’s theorem
the set of Frobenii of unramified primes is dense in Gg, therefore p ~ py.

1.4 Case II: Vexing Primes

As Calegari and Geraghty explain, the problem that arises when the set of vexing primes is not
empty is that to realize p by a modular form, one has to cut out a smaller space of modular
forms using the local Langlands correspondence. We recall here how Calegari and Geraghty do
SO.
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1.4.1 Modular Curves

Let S(p) and T'(p) be respectively the set of ramification primes and the set of vexing primes for
p, as above. We set

P(p) :={t € S(p) \ T(p) such that p g, is reducible} .

For each prime £ € S(p), let ¢, denote the Artin exponent of pig,, i.e. N(p) = [[,, ¢ Note
that ¢, is even for £ € T'(p). We define local subgroups Uy, V; C GLa(Zy).

o If /€ P(p), we set

U=V, = {g € Gla(Zy) : g = <; 2) mod(¢°), where d € (Z/{*Z)  has p-power order} .

o If Ve T(ﬁ), let Uy = GLQ(ZZ) and

V; = ker (GLg(Zg) . GLy (Z/z%éz)) .

e If € S(p)\ (T(p)UP(p)) then set
U=V, = {g € CGLy(Zy) 1 g = <; ’{) mod(W)} .

o If 0 ¢ S(p), then set Uy = Vp = GLa(Zy).

Now set
U=]]v and v=][v.
¢ ¢

Let us point out that these groups depend not only on N, but really on the behaviour of the
ramification primes of p. Let x be either U or V. We let X, denote respectively the smooth
projective modular curve over Spec(Q) which is the moduli space of generalized elliptic curve
with level x structure.ﬂ These curves are quotients of the usual modular curve X;(N) for the
modular group I'1 (V). Let 7 : £ — X, be the universal generalized elliptic curve and set

w = W*WE/X* ,

where wg,x, is the relative dualizing sheaf. Let oo denote the reduced divisor supported on
cusps. If M is an O-module and L is a sheaf of O-modules, we denote Lj; the sheaf £L o M
on X,. There is a natural action of G = U/V = []jer(y GLy(Z/¢°/?7) on Xy, which gives
an isomophism Xy /G = Xy (see Section IV of [DR73|].). Let oy be the representation of
CLg(Z/0/?7) with image in an O-module W, as in Section 5 of [CDT99]. Then o = (00)eer(p)
is a representation of G on a finite free O-module W,,. Let f denote the natural map Xy — Xy,
Calegari and Geraghty in Section 3.9.1 define vector bundles on Xy

Lo = (f(Ox, ®0 Wo))C and L3 := (f.(Ox, (~00) ®0 We))®

where G acts diagonally in both cases.

"Making the needed arrangements when these curves are stacks and not proper schemes, see the
discussion in Remark 3.10 in [CGIS].
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Lemma 1.4.1 (Lemma 3.27 of [CG18].). The sheaves L, and L defined above are locally free
of finite rank on Xy.

We will now consider the following modular forms.

Definition 1.4.2. Given an O-module A, we call modular forms of weight 1 and level N = N (p)
with coefficients in A elements of H*( Xy, (wW® Ly)4). We will denote this module by M (X, A)

Remark 1.4.3. We remark that under Hypothesis , the curve Xy is just the curve X = Xp(N)
defined at the beginning of section [1.3.1] and the vector bundle L, is just the trivial sheaf Ox.
Therefore the above definition and Definition of modular forms of weight 1 with coefficients
in an O-module A agree.

1.4.2 Hecke Algebras and Homology

In [CG18|, Calegari and Geraghty construct Hecke operators T for primes ¢ ¢ S(p) U {p} and
diamond operators (a) for integers a coprime to elements of S(p) acting on the spaces of modular
forms Ml(XU7 K/O) = HO(_XU7 (w & »CJ)K/(’))~

Let 0* := Homp(W,,O) be the dual representation of ¢ and let £ be the dual bundle.
Then Calegari and Geraghtyﬂ show that there is an injection L,« — L that restricts to an
isomorphism

L3955 £¥ (—0) .
Consider now the homology Ho(Xy,w ® L,). Using Kodaira-Spencer, one has that
Dk, /0 ® Ly~ w(—00) @ L ~w® @ LI
Now, using the same reasoning as in section |1.3.3] one has
Ho(Xv,w @ L) = (H(Xv, (w ® L3) k/0))”

Let Ty denote the ring of Hecke operators acting on M;(Xy, K/0) = H)(Xy, (w ® Lo)k/0)
generated by Hecke operators away from S(p) U {p}; and my the non-Eisenstein ideal generated
by w, Ty — tr(p(Froby)) for primes outside S(p) U{p}, (a) — det(p(Frob,)) for integers a coprime
to elements in S(p). Then one has an isomorphism (See proof of Theorem 3.30 in [CGIS].)

(HY( Xy, (we ﬁfob)K/o))m@ = (H (X, (we EJ)K/O))m@ ,

which allows us to endow Ho(Xy,w ® £,) with a Hecke action of T,

In the proof of Theorem 3.30 of [C(G18|, Calegari and Geraghty show that there exists a
minimal deformation of p
Py - GQ — GLZ(TQ,m@) )

which is in particular unramified at all primes ¢ ¢ S(p) U{p} and at these primes tr(py(Froby)) =
Ty. From this, they deduce:

Theorem 1.4.4 (Theorem 3.30 of [CGIS8]). The surjective map o : R™™ — T, is an isomor-
phism in Co. Moreover Ty, acts freely on Ho(Xv,w® Ly)my - In particular, Ho(Xy, w ® Lo )m,
is a Ty, -module of rank 1, when Ho(Xy,wix ® Lg)m, is not zero.

Following the steps of Section [[.3.5 and using the above result, one gets a proof of Theorem
without Hypothesis

8Lemma 3.28 of [CGIS].
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Introduction

In this introduction, we briefly summarize what is done in the various Chapters of Part II of this
thesis.

In Chapter [2| we recall the various models for the Hilbert moduli variety and we discuss
the construction of the Shimura variety associated to the group Re56 GL2 r. We will consider
Hilbert modular forms & la Wiles living on an automorphic line bundle on the Shimura variety.
This is done in order to have a good Hecke theory, in the sense of the attached Galois represen-
tations. We then proceed to recall how to construct the cusps of the Hilbert modular variety, the
associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric g-expansions and by
showing how changing cusps changes the g-expansion.

In Chapter we compute the action on geometric g expansions of the normalized T}, operator
defined by Emerton, Reduzzi and Xiao in [ERX17a]. We first recall how to properly normalize
diamond operators, and we then proceed to recall the construction of T},. Following this con-
struction, we will be able to compute its action on geometric g-expansion on Hilbert modular
forms modulo w™.

Finally, in Chapter [l we will prove that a partial weight one Hilbert modular form, with
parallel weight one for the places above a prime p, has associated modulo w Galois representation
that is unramified at p. In order to prove this theorem, we will use generalized partial Hasse
invariants as defined by Reduzzi and Xiao in [RX17| and an exceptional sheaf adapted from their
work. We will then apply the strategy of Dimitrov and Wiese in [DW18] to prove our theorem.
We will make use of the computations of Chapter
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Notation

Let F' be a totally real field of degree d > 2, with ring of integers O and different d = dp/q.
For any x € F', we will denote Nm(z) := Nmpg/q(7), and for any fractional ideal I of F', we will
also denote by Nm(/) the ideal norm. Let p be a rational prime and take n an integral ideal of
OpF coprime with p. This will be the level of our Hilbert modular forms. Let (9;3,“ denote the
set of totally positive units u € (’);7 " such that « =1 mod n. We will need the group of units
E:= O;-&—/(O})‘%n)z'

We fix € = {¢1,...,c,+} a set of representatives of the elements of the narrow class group
Cl;i. Without loss of generality we can suppose ¢ € € to be coprime with p. We will denote with
¢4 = c¢N FY the cone of totally positive elements.

Let Q denote the algebraic closure of Q in C. We fix an algebraic closure Q,, of Q,, together
with an embedding Q — @p. Let ¥ denote the set of embeddings F' < Q, which is also identified
with the set of embeddings of F' into @p and C.

Let K be a finite extension of Q, such that 7(F) C K for all 7 € ¥. Let O denote its ring of
integers of uniformizer w and residue field F = O/w. We will also identify ¥ with the following
sets {7 : F < K} and {7 : Op = O}. For p € F and k = (k;). € Z*, we set ¥ := [ o5, 7(p)"*".
The weights of our Hilbert modular forms will be elements (k,¢) € Z* x Z*. In particular, we
will denote by t € Z* the weight vector which has 1 in all entries.

Let p a prime in O above p and let e, denote its absolute ramification index and f, its residue
degree. We will denote 3, the subset of ¥ consisting of all p-adic embeddings of F' inducing the
p-adic place p. Let Fr denote the arithmetic Frobenius on F, and let us label the embeddings
of Fy = Op/p — F as {1, : j € Z/f,Z} so that Fror, ; = 7 j41 for all j € Z/f,Z. For each
Jj€{1,..., fp}, there are exactly e, elements in 3, that induce the embedding W (Or/p) — O,
A (ep)

7,1’ }. For every p in Op, we fix a uniformizer w, for Op,.

which we will denote { i Tpd
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Geometric Hilbert Modular Forms

In this chapter, we will recall the geometric construction of Hilbert modular forms. In particular,
we will recall and describe the Pappas-Rapoport ([PR05|), the Deligne-Pappas (JDP94]) and the
Rapoport ([Rap78]) models for the Hilbert-Blumenthal moduli space. We will then proceed
to construct and compare the toroidal and minimal compactifications of the obtained Hilbert
modular varieties. Finally, we will discuss the construction and the properties of the automorphic
sheaves of modular forms.

We point out to the reader that we will mainly work with & la Wiles Hilbert modular forms,
which correspond to Katz modular forms that are invariant under the action of a finite group of
units of the totally real number field F'. This is necessary in order to have a good Hecke theory,
in the sense of attached Galois representations. These forms will be global sections of a line
bundle living on a Shimura variety associated to Res(g GLo F.

Finally, we will recall in Section how to construct the cusps of the Hilbert modular variety,
the associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric g-expansions and by
showing how changing cusps changes the g-expansion.

2.1 Hilbert modular varieties and Shimura varieties

2.1.1 Hilbert-Blumenthal Abelian Schemes

Let S be a locally Noetherian O-scheme. A Hilbert-Blumenthal abelian scheme (HBAS) over
S is an abelian scheme w : A — S of relative dimension d, together with a ring embedding
Op — End(A/S) (also called real multiplication by Of). For any HBAS A/S, we have a natural
direct sum decomposition

T
W*Qh/s = @WA/S,]J = @ @WA/&PJ ’

plp plp J=1

where each wy,g, ; is locally free Og-module of rank e, and in particular, W(Fy) € O, acts
on each wy/g, ;i via Ty ;. One also has a natural direct sum decomposition of the first degree de
Rham cohomology

fe
HéR(A/S) = @ @H(liR(A/S)p,j )

plp J=1
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where each H)z(A/9), ; is a locally free Og-module of rank 2e,, since Hjz(A4/9) is locally free
of rank 2 over Op ®z Og ([Rap78, Lemme 1.3]). Again W (F,) C Op, acts on each Hlig(4/9),
via Ty ;.

Let ¢ € € be a fractional ideal of F' and A a Hilbert-Blumenthal abelian scheme over S. We
recall that the functor on S-schemes (A®p,. ¢), given by A(T) ®0,, ¢, is representable by a HBAV
over S. A c-polarization on a Hilbert-Blumenthal abelian scheme A/S is an S-isomorphism

)\:A®0FC:>AV,

such that the induced Op-linear isomorphism Homp,.(4, A ®0, ¢) ~ Homp, (A, AY) maps ¢,
respectively ¢y, onto the Op-module of symmetric elements Sym(A/S), respectively onto the
cone of polarizations Pol(A/S).

Let n be an ideal of O coprime with p. A uy-level structure on a Hilbert-Blumenthal abelian
scheme A/S is an Op-linear closed immersion of group S-schemes

M:Mt‘l@ail(_}Av

where p,, denotes the reduced sub-scheme of G, ® 97! defined as the intersection of the kernels
of multiplication by elements of n.
Throughout the thesis, we will make the following assumption.

Hypothesis 3. Assume that n does not divide 2,3 nor Nm().

2.1.2 Models of the Hilbert Modular Variety

Historically, the first model for the Hilbert-Blumenthal moduli space YR was introduced by
Rapoport ([Rap78, Definition 1.1]), where he supposed that the points of the moduli space,
which are HBAS 7w : A — S, are such that the cotangent space 7'('*9114/5 is a locally free Op ® Og-

module of rank 1 (see Definition . In particular, YR is a smooth Z[1/Nm(n)]-scheme
([Rap78, Lemme 1.23|). However, for characteristics dividing the different 9 it is not a proper
scheme (singularité o distance finie). This was first remarked by Deligne et Pappas, who de-
fined a new moduli problem giving rise to a proper smooth Z[1/ Nm(nb)]—schem YPP (IDP94,
Théoréme 2.2]), which is also normal (JDP94, Corollaire 2.3]) and admits Y® as an open dense
subscheme. The Deligne-Pappas model is not ideal when working in characteristic p| Nm(9), since
YIIFDP is not smooth, and for such a prime p ramifying in F' there is a lack of partial Hasse invari-
ants as defined by Andreatta and Goren (JAGO5, Section 7]). Pappas and Rapoport ([PR05])
then introduced what is now known as the splitting model for Hilbert modular varieties, denoted
here by YPR | which was later made explicit by Sasaki ([Sas19]). The advantage of this moduli
space is that it allows us to work also with primes p that ramify in F. Moreover, YF® is smooth
over O (|Sasl9, Proposition 6| or [RX17, Theorem 2.9|), and Reduzzi and Xiao constructed in
[RX17, Section 3] partial Hasse invariants living on YER. In what follows, we will make all of
the above explicit working over Spec(QO).

Let us start by defining the splitting model of the Hilbert modular variety as introduced by
Pappas-Rapoport ([PR03]), as defined by Reduzzi and Xiao in (JRX17, Section 2.2]).

Definition 2.1.1. For a fractional ideal ¢ € €, let MER = MPE(n) be the functor associating
to an O-scheme S the set of isomorphism classes of data (A, A, u, F), where

IThis explains Hypothesis
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e (A, ) is a c-polarized HBAS over S;
e 4 is a uy level structure.

e F is a collection (‘Fp(,ig)‘)plp;jzl,..‘,fp;izl,...,e of locally free sheaves over S such that

p
0)

- 0= fé’j - fé’lj) C...C ]-"é?) = w4/s,p,; and each féz) is stable under Op-action;

J

— each subquotient ]-"p(? /]—"é? Yisa locally free Og-module of rank one (and hence the
rank of ]-"p(lj) is 7);

— the action of O on each subquotient féfj)/}"éfj_l) factors through 70 OF — O,

p7]
(4)

or equivalently, ]:é;) / ]-"p(fj_ Y is annihilated by [wy] — 7, ;(wp), where [wp] denotes the

p?
action of wy as an element of Op,.

Under Hypothesis[3] this functor is representable by an O-scheme of finite type that we will denote
YPR ([RX17, Proposition 2.4 (1)]). Moreover, Y'R is a smooth O-scheme ([Sas19, Proposition
6]). We call the space
Y =T YR
ced

the Pappas-Rapoport moduli space. For any O-algebra R, we will denote Y%R the base change of
the moduli space to R.

. . PR .
We point out that in general the Pappas-Rapoport functor M;* depends on the choice of

ordering {7'p(71j), e ,TP(;")} of the p-adic embeddings of F' for every p|p (see [Notation)). The depen-
dence disappears when one base changes to F, however Hilbert modular forms over F will still

depend on this ordering, since they are defined through the integral model (see (JRX17, Remark

2.3))).

Let us now introduce the Deligne-Pappas model, which can be obtained from the Pappas-
Rapoport model by forgetting the filtration.

Definition 2.1.2. For a fractional ideal ¢ € €, let MPP = MPP(n) denote the scheme repre-
senting the functor associating to an O-scheme S the set of isomorphism classes of data (A, \, i),
where

e (A, ) is a c-polarized HBAS over S;
e (i is a uy level structure.
Again, under Hypothesis |3, this functor is representable by an O-scheme of finite type (JRX17,

Proposition 2.4 (1)]) that we will denote YPY and by [DP94, Corollaire 2.3 it is a normal
O-scheme. We call the space YPY := [ece YPP the Deligne-Pappas moduli space.

As remarked in the introduction of this section, the Deligne-Pappas moduli space is not
smooth, but it admits an open dense subscheme which is smooth.
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Definition 2.1.3. Let Y® denote the open subscheme of Y'R classifying c-polarized HBAS
m: A — S satisfying the following, called Rapoport conditz’onﬂ

W*Qh/s is a locally free O ®7 Og-module of rank 1. (R)

The open subscheme YR is called the Rapoport locus. The scheme YR := L1, YR is the smooth
locus of YPP.

It is clear from the definiton of YPY and YFPR that for every ¢ € €, there is a natural forgetful
map
me: YER o YDPP

which is projective and it induces an isomorphism from an open subscheme of YfR to the open
subscheme Y& of YPP ([RX17, Proposition 2.4]).

Let us now recall here some of the properties of the above defined schemes.

e For characteristics away from Nm(?), the Deligne-Pappas and Rapoport moduli spaces
coincide (see [DP94} Section 2.10]). When p ramifies in F, the Rapoport locus Y§ is open
and dense in YET with a complement of dimension 2 ([DP94, Théoréme 2.2]).

e When p is unramified in F', the models agree over O (and in particular over F) in the sense
that YPR = YPP = YR ([RX17, Introduction]).

2.1.3 Unit Actions and Shimura Variety

As already explained in the introduction, for 7 € {R, DP, PR} the moduli spaces Y’ do not have
a good Hecke theory and therefore one has to work with the corresponding Shimura varieties,
which will be quotients of Y’ by a finite group of totally positive units of Op. Here we detail
the action of (’)}X,’ . and the construction of the corresponding Shimura varieties.

The functors MR and MPF carry an action of O . An element € € Op , acts via
e (AN u,F)— (Ajel u, F) . (2.1)

In particular, this action is trivial on the subgroup (O} ) C OF+, where (’);n ={u € Op :
u=1 mod n}. In fact, for u € (Oﬁn) one has an 1somorph1sm of (A, \, i, F) ~ (A, u?\,up, F).
Let us see why. For an abelian scheme A, multiplication by u € O;n defines an isomorphism of
S-schemes A —> A, which induces an isomorphism on the dual abelian scheme A" % AV . This

isomorphism gives rise to the following commutative diagram for the c-polarization )\

u®1

A ®(9F A ®(9F
Lﬂ)\ L\
AV ——— A

2This originates from |[Rap78, Définition 1.1].
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Therefore, (A, \) and (A4, u?)\) belong to the same isomorphism class.
Moreover for u € O, one has that the level structure up, constructed via the commutative
diagram

pn @ ot

Sk

is such that up = p, since u =1 mod n. Therefore for an element u € (’)}X,,n, one has that
u? s (A F) = (A D, F) = (A u? X up, F) o= (AN 1, F),

so u? acts trivially on geometric points of YP® and of YPF.
In what follows, we will denote
E:= 05 /(0F5.), (2.2)

and we will denote by [¢] the action of € € E on geometric points of YI'® or of YPP:
[e] : (A, A 1, F) = (A, ed i, F) (2.3)

Proposition 2.1.4 (Reduzzi-Xiao, Proposition 2.4.(4) [RX17]|). For n sufficiently divisible, the
group E acts freely on the geometric points of YP¥ and YFR. In particular, the corresponding

quotients:
SR = YPR/E  and ShPY = YPP/E

are O-schemes of finite type and the quotient morphisms are étale.
Form now on, we will assume the following:

Hypothesis 4. Assume Hypothesis |3 and that n is sufficiently divisibleﬂ as in the sense of
Emerton, Reduzzi and Xiao (see [ERX17b] Section 2.1.1]).

For ? € {PR,DP}, we set
Sh' =[] sh{ .

el

These varieties are Shimura varieties for the group Resg GLo, which explains the notation.

2.1.4 Compactifications

Rapoport ([Rap78|, Section 5|) was the first to construct a toroidal compactification for YR, which
over C reduces to a toroidal Mumford compactification. This construction was later extended
to the Deligne-Pappas models and to the associated Shimura varieties by works of Dimitrov
([Dim04]). We will mainly focus in this section to recall the construction of ShP®:*" without
going in the details of how toroidal compactifications are constructed, which can be found in
[Dim04).

For any ¢ € € fix a rational polyhedral admissible cone decomposition for each isomorphism class
of a cusp (see Section , which here we omit from the notation. By [Dim04, Théoréme 7.2

3This is defined in [ERXI7H, 2.1.1]. An ideal n of OF is said to be sufficiently divisible if for any
CM-extensions L/F such that O C OF and for any a € O /OF, n C q for all primes g of F, inert in
L and such that the image of « in (Or/q)* does not belong to (Or/q)*.
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(1)], there exists a smooth O-scheme Y& containing YR as a fiberwise dense open subscheme,
and by construction of Yf{’tor the group E acts freely on it. The toroidal compactification blows
up singularities to resolve them, i.e. it replaces cusps with tori (see [Dim04, Section 2|).

For ? € {PR,DP}, we will denote by YZ ' the scheme obtained by gluing Y?’tor to YZ over Y.

Moreover, for 7 € {DP, PR}, we will denote

Y?,tor — HYZ,tor and Sh?,tor — HYZ,tor/E _
e el

The schemes Sh*" := Y™ /E are proper (JDim04, Théoréme 7.7]) and smooth over Spec(O)
(|IDim04, Corollaire 7.5]).

The toroidal compactification is not canonical in any way, since it depends on the chosen poly-
hedral admissible cone decomposition. However, every choice of such a decomposition gives rise
to a smooth O-scheme.

The boundary of the toroidal compactification of Y

2

D = Y?,tor —Y!

. . . . . . ? o . .
is a relative simple normal crossing divisor on Y***. The boundary divisor of the corresponding

Shimura variety
D := Sh%tr — Sh’ (2.4)

is the quotient of D by the action of the group E and it is a divisor with simple normal crossings.
We will use it later to define Hilbert modular cuspforms.

For every ¢ € € and for 7 € {PR,DP,R}, let AZ denote the universal abelian scheme over Y.

Then there exists a semi-abelian scheme A" — Y ™" extending the universal abelian scheme
A? = Y? ([Dim04, Théoréme 7.2]). Set

? ?
A.,tor — HAé,tor ,

ce¢

which is the universal object over Y*'" but it might not descend to Sh’.

Following Chai (JCha90, Section 4|) and Dimitrov ([Dim04, Théoréme 8.6]), one defines the
minimal compactiﬁcationﬁ of YPP by

YPP’mm := Proj @HO <YPP5 (/\C(lOYDP 71'*QAPP/YPP) > ’
k>0 ‘

. . DP,mi
where 7 : APY — YPP denotes the universal abelian scheme over YPY. The scheme Y, ™"

is projective, normal and of finite type ([Dim04, Théoréme 8.6.(iii)|]). Moreover, by [Dim04,

Théoréme 8.6. (ii)] for any smooth toroidal compactification YPPT there is a canonical projec-
tion

YPP,tor _y YPP,min ]
The minimal compactification Y2T ™" is not smooth and the boundary of YP© ™™ is a union of

points, which has codimension d. In particular, toroidal compactifications can be seen as explicit

4This is also known as the Bailly-Borel-Satake compactification.
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desingularizations of the minimal compactification at its cusps. By construction (see [FC90,
Chapter V.2]), one has that for any smooth toroidal compactification

DP DP,tor DP,min
Yo —— Y, — Y, .

\/

Proj
This does not translate to the Pappas-Rapoport model, i.e. the minimal compactification of YFR
cannot be constructed via the Proj. This is because the semi-abelian varieties over points of Y
are actual abelian varieties, and /\?9 op ) ADP /yDP is trivial when restricted to the boundary of
YC C c

yPPhtor ([Cha90l, 4.4.3]). On the Pappas-Rapoport model the singularities at finite distance do
contract, and /\do op T8 4PR /yPR 18 not generated by its global sections. One then defines the
YC C c

minimal compactification of the Pappas-Rapoport model, denoted YE ™™ by gluing YPR with
DP,min R
Y. over the Rapoport locus Y.

The action of the group E extends to an action on YP P’min, and therefore the minimal

compactification ShPP’min.of ShPP is defined as the quotient y PP min /E (see [Dim04, Théoréme
8.6 (iii)]). Denote ShPRmin .— YR /B the minimal compactification of the Shimura variety
of the Pappas-Rapoport model. Again as before, for 7 € {PR, DP} one sets

o o - o
v 7min . _ HYc.,mm and Sh7min . H Shé’mm .
e el

The minimal compactification does not admit a universal object over Y? for d > 1 (see [Cha90]).
However, this compactification is necessary to detect ampleness of sheaves, and we will use it
later in Section [4.1]

We conclude this section with a commutative diagram connecting most of the objects defined
up until now. Let R be any O-algebra and recall that the subscript R denotes base change. One
has the following commutative diagram of O-schemes:

YgR,tor N Y]lgP,tor
™~ S
Shf};R,tor y Sh]}DzP,tor
|
Y}P%R,min y YEP,min
\ \
Sh}P;R,min Sth,min

where the horizontal lines are given by forgetful maps, the vertical maps are projections, and the
diagonal maps are the quotient maps with Galois group E.
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2.2 Automorphic Sheaves and Geometric Hilbert Mod-
ular Forms

We will from now on focus on the Pappas-Rapoport model and we now proceed to define the
sheaf of Hilbert modular forms over Y = YPR and give conditions for its existence, via descent,
over Sh = ShPR.

2.2.1 Automorphic line bundles over Y}

Recall that we denote by A. — Y the universal abelian scheme over Y, and by 7 : A =[]  Ac —
Y the universal abelian scheme over Y. Let e be the zero-section of 7 : 4 — Y, then

WAy = 6*Q}4/Y o~ W*Q}L\/Y .

Denote by F = (fp(,i])')p\p;j:l,“.,f,,;z'zl,...,ep the universal filtration of w 4,y. For each p-adic embed-

ding 7 = Télj) of F into Q,, following [RXI7, Section 2.2|, we set

T 25)

which is an automorphid’] line bundle on Y. As explained in [RX17, Notation 2.6] each @, does
not descend in general to the Deligne-Pappas model YPP. This is because the Deligne-Pappas
model does not see the filtration. However, since ®;cx @, = A%wy /vy is the Hodge bundle, it
does descend to YPP. Following [RX17] and [ERX1T7a], the dot notation will be reserved for
sheaves over the moduli space Y, while the notation without a dot will later denote sheaves on
the Shimura variety Sh.

For a p-adic embedding 7 of F' and for each ¢ € €, we set

57— = (/\?DF(X)OYC HéR(‘AC/YC)) ®OF®OY¢:T®1 OYc ’

which is a trivial line bundle over Oy, since by [RX17, Lemma 2.5], one has the following
canonical isomorphism

57 ~ (Ca_l X7 Oyt) ®OF®L0y,,m®1 OYC . (2.6)

One extends the line bundle §; to a trivial line bundle on Y, still denoted by .. In particular,
for 7 € ¥, w; ®oy, 5y~ ;.

By |[RX17, Theorem 2.9|, the sheaf of relative differentials Q#PR e admits a canonical Kodaira-
Spencer filtration whose successive subquotients are given by

G2 R0 oy 02V for 7 € X, (2.7)

We will now proceed to recall, following [RX17, Section 2.11], how to construct line bundles
whor, 8T on the toroidal compatification Y that agree with the above defined ones when re-
stricted to Y. Let us point out that, when considering Hilbert modular forms, by the Kécher
principle the forms will be the same whether they are defined over the toroidal compactification
or on the non-compactified moduli space.

5The adjective automorphic here refers to the fact that global sections of this line bundle are auto-
morphic forms.
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Let ARtor — yRtor denote the semi-abelian scheme extending the universal abelian scheme
AR — YR and let e denote its unit section. The sheaf

- R,t
WR7 or = e*QAR,tor/YR,tor

is a locally free of rank one O ®7 Oyr.or-module over YRT For 7 € 3, we set

- Ryjtor ,__ - R,tor
Wy = W ®0pEL0 p tor OyRitor .
¢ ,T®1

In particular, one has that W and @, (defined in Equation i agree when they are both
restricted to the open subscheme YR. Now, gluing w, with &' over the Rapoport locus YR
gives a line bundle denoted w!" over Y'™. In the same fashion, one extends the trivial line
bundle 4, on Y, to a (trivial) line bundle

Ss_or ~ (Ca—l ®7 OYEor) ®OF®ZOYg0r77'®1 OYgor .
We will drop the notation tor from the bundles, when it is obvious to which bundles we are
refering.

As explained by Emerton, Reduzzi and Xiao in [ERX17al Section 2.8], using results of Tian
and Xiao (see [TX16], Section 2.11(4)]), one deduces from the Kodaira-Spencer filtration (Equa-
tion canonical isomorphisms:

ES: A Qe 0(D) = &) (w;&z B0 5;@(—1)) (2.8)
TEY
and
KS N Qor 10(D) = @) (052 @0y, 05CY) (2.9)
TEYD

2.2.2 Unit Action and line bundles over Sh

Let us now proceed to see how the action defined in Equation translates on sheaves and we
will provide the sheaves @, ,d, with an action of E := O/ (O}X,’n)Q.

Following Dimitrov and Tilouine (see [DT04, Section 4]), one provides the sheaves w, with an
action of Of ,: a positive unit ¢ € Of, maps a local section s of w; to 7(e)"1/?[e]*s (see
Equation for the definition of [¢]). Let us explain why this action is trivial for the subgroup
((’);n)Q. Let u € (’);n. We know that u? acts trivially on points of Y, because (A, \, u, F) has
the same isomorphism class as (A, u?), upu, F). However, we recall that on the actual HBAS A

the action maps A to uA, which is isomorphic to A. Therefore, on open sets U = Spec R, this

action is given by the isomorphism of O-modules R ﬂ R, which induces an isomorphism of

sheaves (u?)*w(U) = (@, (U) ®g (T1(w)R)) = 7(u)io-(U). So 7(u)"t(u?)*s = 77 (u)r(u)s = s
for any local section s of w,. Therefore the action we provided w, with factors through the
group E. Moreover, this action is well defined over K, which we can suppose to contain, via the
embeddings 7 € ¥, the field extension F(\/¢, ¢ € Of ).

We provide also the invertible sheaf 4, with a non-trivial action of E: an element ¢ € E maps
a local section s of 0, to 7(¢)7![e]*s. In particular, the invertible sheaves &, and 5, descend to
invertible sheaves denoted respectively w; and d; on Sh, by Lemma and properties of the
descent (see Appendix [B| for more details).
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Lemma 2.2.1. Let R be any O-algebra. Then the descent of

N k,é -— M ®k57— ®£‘r
Wg = ® (wT,R Qoy,, 5T,R)’
TEX

over Yg to Shg has non-zero global sections only if uF+2¢ = [Les 7(u)* 2 s 1 in R for all
ue Op,.

Proof. Let w%e denote the sheaf @5, (w,‘?f{ OO, 6?%) over Shr. By properties of the descent
of sheaves through a finite étale map (see Equation [B.1)), one can identify

HO(ShR7 W%Z) = HO (YRa wzé)Ea

which are invariant global sections under the E-action. Therefore, if an element 42, for u € O;n,
does not act trivially on wﬁgf the R-module of global sections HO(ShR,w%E) will only contain

the zero element. In particular, a section s of the sheaf wgf is mapped by the action of u? to
| 7(u)* 265, The Lemma follows. 0

Remark 2.2.2. If R is a ring of characteristic 0, the above lemma is verified if and only if
kr + 20, = w € Z an integer independent of the embeddings. Such weights are called paritious,
see Definition 2.2.3]

In characteristic p, one has more freedom on the weights, as long as the condition of Lemma
[2.2.1)is satisfied. Forms of non-paritious weights do exists, a concrete example are the generalized
partial Hasse invariants constructed by Reduzzi and Xiao in [RX17, Section 3].

For any 7 € ¥, the line bundles w!, (ﬁor constructed in the previous section descend to line

bundles over the Shimura variety Sh*®", where we will denote them respectively w; and .. In
particular, the line bundle 6, may not be trivial over Sh*", whereas ®,cxd, is, since 05 , acts
on it as the naive pullback (see discussion before [ERX17al Remark 2.6]).

2.2.3 Geometric Hilbert Modular Forms

For k, ¢ € 7>, we define a line bundle over Y*tr

skl - Qk N4
w T ® (wT " ®Oytor 6T T))
TEY

where by the definition of the action of E an element v € Of, acts via multiplication by
ub 2 =T s 7(u)* 2. Moreover, for k, ¢ € Z=, we set

k. _ ®kr ®r
W= ® (wE ®Ogtor O7 ).
TEY

TE

As explained in Lemma [2.2.1] in order to possibly have global section of the descended sheaf,
one has to carefully choose the weights (k, £) according to the base one is working with. For any
Q-algebra R, we will suppose the following.

Hypothesis 5. Let R any O-algebra. We assume that k,¢ € Z* are such that ©*t2¢is 1 in R,
for all u € OF,.
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Under Hypothesis [5| and by Lemma the line bundle wf_-i’[ is an invertible line bundle on
Shp and it might contain non-zero Hilbert modular forms.
We will be interested in working over O, and therefore we make the following definition.

Definition 2.2.3. Given k, ¢ € Z*, we say that the weight (k, £) is paritious if k; + 2¢; = w for
all 7 € X, where w € Z is an integer independent of 7.

In particular, when working over O we will be obliged to work with paritious weights.
We now have all the ingredients to define geometric Hilbert modular forms. Recall that
D := Sh'" — Sh, which is a divisor with simple normal crossing on Sh*’*.

Definition 2.2.4. Let (k,f) € Z* x Z* be a paritious weight. A geometric Hilbert modular form
of paritious weight w = k+2¢ and level n with coefficients over O is an element of HO(Sh'T, k).
We will denote this module by My, ,(n; O).

A cuspidal Hilbert modular form of paritious weight w = k + 2¢ and level n with coefficients over
O is an element of H°(Sh*", w*¢(—D)). We denote the submodule of cuspidal Hilbert modular
forms by Siw(n; O).

More in general, we define Hilbert modular forms of arbitrary weight on an O-algebra R
satisfying Hypothesis
Definition 2.2.5. For a weight (k,£) € Z* x Z* and for any O-algebra R satisfying Hypothesis
a geometric Hilbert modular form of weight (k,f) and level n with coefficients over R is an
element of HO(Shf?", wg’z). We will denote this module by My, (n; R). A cuspidal Hilbert modular
form is an element of the sudmodule H?(Sh'", w%g(—D)), which we will denote Sy, ¢(n; R).

By definition of the Shimura variety Sh'S", it is clear that My ¢(n; R) is a direct sum as an
R-module of HO(Sth’é,wE’E), whose elements are called c-polarized Hilbert modular forms, over
the fixed set of representatives €.

To give a better understanding of these elements, one can use Katz’s description of ¢-polarized
Hilbert modular forms ([Kat78, 1.2]), which we here recall as given by Reduzzi and Xiao in
[IRX17, Section 2.12].

Let R be an (-algebra and let k, ¢ € Z* satisfying Hypothesis Let R’ be an R-algebra
and let ¢ € €. A c-polarized test object over R’ is a tuple (A, \, u, F, s,t), where (A, \, u, F) is a
c-polarized HBAS with a level n structure p and filtration F as described above; s = (s;)rex is
a choice of generators for each free rank one R'-module w4 /r + and analogously t = (t; )¢y is a

choice of generators for each free rank one R'-module 0 4 /R 7+

Definition 2.2.6. A c-polarized Katz Hilbert modular form over R of level n and weights (k,{)
is a rule f which assigns to any Noetherian R-algebra R’ and to any c-polarized test object
(A, N\, p, F,s,t) over R an element f(A,\, u, F,s,t) € R such that
(i) f(A, A\ p, F,s,t) depends only on the isomorphism class of (A, A, u, F, s,1);
) it is compatible with base change in R';
(iif) it satisfies f(A, e, p, F,s,t) = f(A, N\, p, F,8,t) for any e € Op
)

it satisfies

fOA N p, Foas, Bt) = <H 04?'“5%) F(A N 1, Fos,t)

TEX

forall @ = (ar)rex and B = (Br)rex in (R™)¥, where a s = (ar5;)rex and St = (Brtr)rex.
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Remark 2.2.7. Forms not satisfying condition are elements of H(Y. g, wf’é).

2.3 Cusps and Tate Varieties

In this section, we will recall the definition of cusps for the Hilbert modular variety Y, which
are used in the construction of the toroidal compactification of this variety. We will mainly be
following work of Dimitrov ([Dim04]). For a fractional ideal a of F, we will denote a* = (ad) 1.

Definition 2.3.1 (Dimitrov, Définition 3.2 [Dim04]). Let ¢ € Clf, a c-cusp of level n is an
equivalence class of tuples C = (a,b, H, 1, j, A,~y) where:

(i) a,b are fractional ideals of F' coprime with p such that ¢ = ab™!;

(ii) H is an Op-lattice of F? that sits in the exact sequence of Op-modules 0 — a* HHL
b—0;

(iii) A: /\%FH =5 ¢* is an isomorphism of Op-modules;
(iv) v:n" 1071 /o7 < n~1H/H is an injective morphism of Op-modules.

for the following equivalence relation: (a,b, H,i,7,A,~) and (a’,b', H' ', 5/, A’,+') are equivalent
if all the following are verified:

1. a=a and b = b/,

2. there exists a commutative diagram of Op-modules

0 - —— 5 H 150 0
| [
0 () —— H —5 ¢ 0

where the vertical maps are isomorphism;

3. the isomorphism /\%9 H ~ /\%9 H'’ induces, via A and A’, an automorphism of ¢* given by
F F

X .
an element of O P

4. the reduction modulo n of the isomorphism H ~ H’ makes the following diagram commu-
tative
n'H/H = n'H'/H'

n~ /ot

Moreover, we associate to C the fractional ideal b’ D b such that b’/b = j(im(y)) and the
fractional ideal X = ¢bb’. The cusp is said to be unramified if b’ = b.

Remark 2.3.2. The lattice H is non-canonically isomorphic to b @ a*. By definition X D ab. For
unramified cusps, X = ab.
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Let C be a c-cusp, with associated a, b, X and consider S := Spec(O[[¢%; ¢ € X,]]). One fixes
a smooth rational polyhedral admissible cone decomposition of X% giving rise by the construction
of [Dim04], Section 2| to a Tate object Tateq , defined over a suitable scheme Sy (This is a suitable
subring of O[[¢%; & € X, ]], which is denoted by S, in [Dim04], where o € X is an element of the
smooth rational polyhedral admissible cone decomposition of X7). Moreover, the Tate object
Tateqp is a c-polarized abelian variety with n-level structure. In particular, one has the following
short exact sequence of Sx-schemes,

O—>bi>Gm®Za*—>Tatea7b—>0

This Tate object comes with additional structure (polarization, level structure, basis for the
differential sheaf, see [Dim04, Proof of Théoréme 7.2]), and is defined over any Sx for X’ a
fractional ideal of O such that X’ O ab.

Proposition 2.3.3. Let Tateqp be a Tate object over the scheme Sx. Then there are canonical
isomorphisms as Og, -modules
s Qhaten o /5 = 0 @2 Osy (2.10)
Norooy, Hir(Tateqs /Sx) ~ 0~ @z Oy . (2.11)
Proof. For (2.10)), see [Dim04, Equation (5)].

For (2.11)), let A be an abelian scheme over a scheme S and consider the following short exact
sequence (|[Rap78, See discussion after Lemme 1.3|)

0 — Lie(A/S)Y — Hig(A/S) — Lie(AV/S) — 0.

Recall that Lie(A/S) is the tangent space at 1 of the abelian scheme A/S, while w, /g is the
cotangent space at 1 for the abelian scheme A/S. Then we can reinterpret this short exact
sequence as

0— wass = Hir(4/S) = wiv g — 0.

v ~Y
a,b —

Taking A = Tate,p over S = Sx, and knowing that Tate Tatep 4, one gets

0 = Wrate,, /Sx H(liR(Tatemb /Sx) — w%ateb’a/sx —0. (2.12)

Now by definition w)fateb /Sx = Homop,, (wTateh’a, Op ®071). Therefore by the first trivialisation

2.10),

w'\I/‘ate[ua /Sx ~ (b X7 OSX)V ~ b* Q7 OSX .
Using (2.10)) and the short exact sequence ([2.12)), one gets that
A%p@OYCH}iR(Tatea,b /Sx) ~ (ab* ®z Osy ) = ! ®z Osy -
This finishes the proof. O

From now on, if not specified, tensor product will be taken over Z.

Remark 2.3.4. Recall that at the beginning of Section 2.1.1] wa have decomposed the sheaf

fo
W*Q,lél/s = @MA/S:P = @ @WA/S,p,j ’

plp plp J=1
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for any HBAS A over a scheme S. Applying this decomposition to the Tate object Tatey over
(4)

Sx, usmg the definition of the w;, for any 7 = 7, 1 and by the trivializations in Equations (2.10
and (| , one has the following canonical identification

can(a,b _
’];‘zfteu o /Sx (o) (a®0)f o (7' ®0) ®0 Oy | (2.13)
where by (a ® 0)* and (¢~ ® 0)’ we mean the free O-module of rank 1 defined as

(@@ 0)f =X (a2 0)Z*  and ('@ 0)" :=K)(d " @ 0)¢",

TEX TED

where (a®QO); denotes the copy of O identified via the embedding 7. In particular, the coefficients
of g-expansions will live in the rank one O-module (a ® O)F ®o (ab* ® O)¢, while the powers of
g will be elements of the power series ring Og, (see Proposition [2.4.1]).

We take now the time to describe the effects on the line bundle w*¢ of multiplying either a
or b by p, i.e. the effects of isogenies between the corresponding Tate varieties. We will use these
results later when computing the effect of the Hecke operator at p on g-expansions.

Proposition 2.3.5. Let p be a prime in O above p. Let a be a fractional ideal of F coprime
with p. Then the natural inclusion ap — a induces a commutative diagram of Og, -modules

Lt . Lt
Tatea)J b /Sx Tateu b /Sx
can(ap,b) can(a,b)

(ap © 0)F @0 (ab*p ® O)f ®o Osy —— (a© 0)F ©o (ab* ® O)f @ Osy
where X D ab.

Proof. Recall that the Tate object Tate, p is defined over any Sx, where X D ab (see Definition
2.3.1). Now, since apb C ab, the Tate varieties Tateq, 5 and Tate,p can both be considered as
Sx-schemes, for X D ab. The natural inclusion ap — a induces an Sx-isogeny on the associated
tori

G ®a* — Gy @ (ap)*

which translates to an isogeny on the Tate varieties as Sx-schemes:

Tateq p » Tateqp,p

o~

Sx

Since differential forms and the sheaf /\(’) 20y HdR are contravariant, and using the identification
of Equation [2.13] u the above isogeny 1nduces an injective morphism of Og,-modules

(ap @ O)F @0 (ab*p @ 0)f ©p Os,, — (a® O)F ®p (ab* ® O) o O, ,

which gives the desired result. O
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Proposition 2.3.6. Let p be a prime in Op above p. Let b be a fractional ideal of F coprime
with p. Then the natural inclusion ab*p — ab* induces a commutative diagram of Og, -modules

wk! . y k N4
Tateuybp,l /Sx Tatea b /Sx
can(a,bp—1) can(a,b)

(a® 0)* @o (ab*p ® O)f ®o Os — (a® O)F @0 (ab* @ 0) @o Osy

where X D abp~™!

Proof. Again as in the previous proposition, since X contains abp~! and ab C abp~!, both Tate
varieties are defined over Sx. Now, since b C bp~!, one has an isogeny on the Tate varieties as
S'x-schemes:

Tateqp = (G @ a*)/q(b) (G ® a%)/q(bp~!) = Tatey py—1

Note that by the canonical identification of Equation , on the w part of the sheaf we will
have an isomorphism, since the above isogeny does not have an effect on the group of characters
of a. However, it does have an effect on the periods, and using the equation , one gets the
desired map via the natural inclusion ab~'p < ab™?. O

2.4 ¢-Expansions Rings

We recall that € is a fixed set of representatives of Cl;. For every ¢ € € we have a collection of
c-cusps, C = (a,b, H,i,j, \, ), obtained by varying a et b such that ab=! = ¢. We set oco(c) to
denote the standard c-cusp at infinity, i.e. the c-cusp where a = ¢ and b = Op. Moreover, for
every cusp C, we have a Tate object Tate,p over a scheme Sx, which depends on the smooth
rational polyhedral admissible cone decomposition of the fractional ideal X, containing ab. We
will use these ingredients to make explicit the local completed module of the sheaf w**¢ over Sh*°*
along the cusp C.

Proposition 2.4.1. For a c-cusp, C = (a,b, H, i, j, A\, a) with associated fractional ideal X D ab,
the completion of Wkt over Sh** at C is given by

M’;;f(X) ::{ S aegt

ag € (a® (’))k ®o (7' ® (’))E; Aeg = 6_£a§ for all e € O§7+} .
£eXU{0}

(2.14)
For the infinity cusp oo(c), we will denote by M&Z(c) = M]:éF(c) and we will call it the module
of g-expansions at the cusp oo(c).

We remark that the above description of the module of g-expansion agrees with the one given
by Diamond and Sasaki (|[DS17, Proposition 9.1.2]), where they work with the Deligne-Pappas
model since they are assuming that p is unramified in F'.
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Proof. In this proof we will use the notation and results of Dimitrov, in [Dim04]. Let C =
(a,b,H,i,j,\, a) be a c-cusp and Y€ be a smooth rational polyhedral admissible cone decompo-
sition of X¥. We will be working in a formal neighborhood of the cusp C, given by the formal

completed scheme Sgc, which is the completion of the variety obtained by gluing all the toric im-

mersions at infinity. By [Dim04, Théoréme 8.6 (v)|, we know that the formal completion of Sh*°*
along the cusp C is canonically isomorphic to S/E\c / (’);,i,n X (9;’ +» and in particular the completion
of Wk’ over Sh'®" at C can be identified with the global sections HO(ASYQC/(’)]‘,?’n x OF . ,whb).

wk?) by taking in-

Fit
Moreover, one can determine the set of global sections HO(SQC / (’)f,’n X (’);i, 4
. kl)

variants under the action of O x O | of the set of global sections HY(SAc, wh). As explained
in Remark the module HO(SQC,wk’Z) can be described using the trivialisations 1} and
1), as

. b B
ifgn ) (4 0y O)F 0o (0! @1 0) ®o Osy, -
b

»Co
(0! ®7 0)¢, which we recall is a free of rank one O-module. Now, let us recall that the group

u91> on the Op-lattice H ~ b @ a*, as in

An element in HO(S4.,w") is then a power series 2 oee X, u{o} agq®, with ag € (a ®z O)F ®o

. . f(eu
O, X (’)f7+ acts on the cusp C via a matrix (0

[Dim04, Proposition 3.3|. In particular, under this action, one has that a — ua and b +— cub;
therefore we also have that ¢ +— ¢~!c and X + (eu?)X. Therefore the Fourier coefficients must
satisfy the following
A(y2e)e = uks_gag .
The g-expansion ring for C is identified with
HO(S/E\C/(’)}X;’n x OF 1 wht) = { Z agg® | ag € (a® (’))k ® (o '® (’))e;
¢ex . U{0}

Uu2e)e = uPeag for all € € Op  u€ (9;,“} .

For a scalar matrix, i.e. for ¢ = u~2, the action on X is then trivial and in fact under the
Hypothesis [5] one has

Q(y2e)e = uke_zag = k2

¢ = ag -

. : iy . 0 Lo
Since scalar matrices act trivially, one can decompose the matrix (5(1; u_1> = <u0 u_1> .

2
<5u 0), and just look at the action of matrices of the form <€ 0) for e € O, which gives

0 1 0 1 Bt
that a.e = geag and therefore the Proposition. O

Corollary 2.4.2. Let R be a O-algebra satisfying Hypothesis [3.  Then for a c-cusp, C =
(a,b, H,1i,j, A, «) with associated fractional ideal X D ab, the completion of w%e over Shi$" at C
s given by

M];:f(X;R) ::{ Z agqé

£e X4 U{0}

ag € ((a® 0)f 0o (07 @ (’))e) ®o R;

ace = ¢ ‘ag for all e € OFH_} )
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Proof. This follows immediatly from Proposition and by the canonical identification

.k can(a

) -
Gl xspec(r) | = ((a ® 0)* o (0 ® (’))‘f) ®0 R ®0 g1, xSpec(R) -

induced by Equation ([2.13)). O

We will mainly consider expansion rings for the standard cusps at infinity, co(c). In particular
one has injective g-expansion maps

HO(Sh'", k) — @ MEL () and HO(Shig",wh’) — @D ME(; R).

el el

Since we are working over O, it will be very important for our computations on the g-expansion
to keep working with the set € of representatives coprime with p. However, we will have to
manipulate as seen in the previsous section, the p-isogenies on the Tate objects (see Proposition
. We then end this chapter by showing what happens on g-expansions when we bring a
cusp to the fixed set of representatives €.

Lemma 2.4.3. Let ¢ € € and p a prime above p. Let o € Fy such that ¢p = ac’, where ¢/ € €
1S a representative in Cl;. We have the following morphism of O-modules:

bt

ME() = MES (ep)
Z Clglqg — Z ak"'zagqo‘g = Z Oék+eaa—1§:q§.
ged, U{0} g/ec, U{0} ¢€(ep) +U{0)

Proof. In order to establish the morphism above, one has to look at the cusps co(c¢p) and oo(c'),
and their associated Tate varieties. But first let us recall that the scheme Sx is constructed
from the scheme Spec(O[[¢¢ : € € X.]]), and that in particular this construction based on
the smooth rational polyhedral cone decomposition is functorial (see [Dim04, Section 2]). In
particular, the base sheaves S, and Sy are isomorphic, where the isomorphism is induced by the
ring isomorphism

Ol¢* : ¢ ed] = Ol : ¢ ey,
q&'/ }H qOC&-/
T g

We can then see the Tate variety Tatey 0, as a variety over Sy via pullback in the following
cartesian square

Tateqp 0, —— (G @ (ep)*)/q(OF)

| |

SC/ = Scp

i.e. we can see Tateg o, as the Sy-scheme (G, ® (cp)*)/q(OF)) Xs,, Scxﬁ We can then look

SConcretely, we are re-indexing the powers of ¢ in the g-expansion.
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at both Tate varieties as S¢-schemes and consider the following commutative diagram:

0 Op Gm @ (ep)* —— Gy @ (ep)*/q(OF) 0
18a 18a > Ser
0 Or y G, @ () —— Gy, @ (¢)*/q(OF) 0

Recall that w, and §, are contravariant, and that by the canonical identification in (2.13)), the
above diagram induces a morphism:

(¢ ®0)F @0 (D' ®0) ®0 O, — (cp @ O)F @0 (p0~! ® 0)f @0 O, (2.15)

For every embedding 7, one has the following commutative diagram of morphisms of O-modules:

(! ®0); —— Frac(0) = K E®1) — 7(&)
B |7t [ |t
(cp ® O); —— Frac(0) = K (' ®1) —— 7(af)

which give morphisms on the O-modules:
(®0)" == (p®0) (271 ®0) == (epp~! © O)f

So putting the two together, for £ € ¢’ one gets a morphism of the modules of coefficients,

(R0 ([ ®0) = (p20)F e (pd! @ 0)
agr +— ak‘%ag .
Now using the morphism on the coefficients and Equation (2.15)), one obtains the following
morphism of O-modules

MEL() 25 Mt E(CP)
Z ag'q 5 e Z G,g/ = Z bgq5
§'ec u{0} §'ec, u{0} £€(ep)+U{0}

where be = of a1 € (pRO)* @ (cpp ® (9) In fact, this morphism respects the conditions
given by the (’) -action, as in Proposition for € € (’)X

bs§ = akJrzaeoFl& = ak+€a6£/ =€ Zak+£ Ggr = Eiebﬁ ’

where the one before last equality is given by the fact that ag satisfies a.er = E*Zagr for all
e€Op, and { ed. O

Remark 2.4.4. We remark that this is not an isomorphism because « has strictly positive p-adic
valuation. In fact vy(a) = 1, since ac’ = ¢p, and ¢, ¢’ € € are coprime with p.
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The strategy of proof of Lemma|[2.4.3 can be applied to see what happens on the g-expansion
when changing the representative of the class ¢ € €.

Lemma 2.4.5. Let ¢ and ve, with v € F*, be two representatives of the same ideal class group
element, both coprime with p. Then we have an isomorphism
ko Y ke
M (¢) —— MZ5(ve)

~

S oadt—— S g
gecs U{0} gecU{0}

Proof. The proof goes exactly like in Lemma [2.4.3] However, this time one has an isomorphism
since v is invertible in O, because vc¢ is assumed to be coprime with p. O
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Chapter 3

Action of the Ty operator on
g-expansions

In this chapter, we construct step by step the Hecke operator at p, for a prime p C Op dividing p,
acting on Hilbert modular forms and compute its action on geometric g-expansions. The Hecke
operator at p in characteristic p was first constructed for paritious weights by Emerton, Reduzzi
and Xiao (see [ERX17al Section 3]). In particular, they construct a normalized Hecke operator
at p (see [ERX1T7a), Definition 3.12]) that acts on the whole cohomology H'(Shgf/{;?,fo,wgfwmo)
in positive characteristic. We will only be interested in the degree 0 cohomology, and we will
use their construction alongside some techniques of Dimitrov-Wiese (see [DW18] Section 3.3]) to
calculate the action of the Hecke operator at p on g-expansions for a generic partial weight (k, £)
as in Chapter [2|

The geometric construction of Emerton, Reduzzi and Xiao (JERX17al) gives rise to a Hecke
operator at p that we will denote T, pv’o. The o in this notation is to recall that this Hecke operator
is normalized in order for it to be optimally integral on O, and therefore to give rise to a non-
trivial operator modulo w. The dual is due to the fact that we are later interested to work with
Galois representations attached to Hilbert modular forms, where the dual operator of the one
constructed in [ERX17a| intervenes. The action of Tpv’o on g-expansions is given in Theorem
B.3.4

In general, T, = Tpv o (p), where (p) denotes the diamond operator at p. However, the
classical diamond operators, even if they come from a natural construction, do not give rise to
an automorphism over O for primes dividing p. One can overcome this issue by working with
paritious weights, i.e. weights (k,¢) € Z* x Z* such that k, +2¢, =w € Z for all 7 € ¥, and
by normalizing by Nm(p)" (see Definition . We therefore set 1)) := Tpv’O o (p)w, where (p)y,
denotes the normalized diamond operator at p, and we compute its action on g-expansion in
Corollary [3.3.6]

Finally, we recall to the reader that we are not imposing p to be unramified in O, and
therefore we are working with the Pappas-Rapoport model. In particular, from now on, we will
drop the PR from all notations.

3.1 Normalized diamond operators

As explained in the introduction, we want to work with normalized diamond operators. We
will recall here how the general diamond operator for a prime ideal ¢ C Op not dividing n is
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constructed and we will explain why the normalization is essential to have an automophism on
HO(Sh, wk?), for paritious weights (k,£) € Z* x Z*, i.e. such that k, +2(, =w € Z forall 7 € .
Let A be a HBAS over S, and let q be a prime ideal of Op. Let us consider the following exact
sequence of HBAS over S:

0— Alg] = A— A®o, q ' =0, (3.1)

where A ®0,. ¢~ denotes the S-scheme representing the functor of points as in Section [2.1.1]
Since the Cartier dual of A[q] is (A ®e, 1)V [q] (see [Hid04, Section 4.1.9]), dualizing the short
exact sequence (3.1) gives the following short exact sequence of HBAS over S:

0= (A®o, ¢ Vg = (A®o, 1)V = AY = 0. (3.2)

Let us now suppose that A is c-polarized, with polarization A. It then results from the natural S-
isogeny A — A®p, q~! and the short exact sequence (3.2)) that there is a canonical isomorphism
(see [IDW18, Equation 10])

(A®op a7 )Y = AY @0, 4. (3.3)

Let ¢ € ¢ and § € Fy such that ¢’ = cq?. Using the above equation, one sees that the HBAS
A ® q~! admits a ¢-polarization:

X (Ao, a7 ") 8o, ¢ 25 Ao, cq > AV @ 2 (Aso, a7 ) (3:4)
(This can also be seen in [ERX17al Section 2.9]). We then consider the isomorphism

©q: Y — Yy
(A A 1, F) — (A= A®o, a7 N i/, F),

where )\ is the ¢’-polarization given in Equation , 1/ is the pp-structure induced by p
and (A ®0, q 1)[n] ~ A[n] (for primes q coprime with n), and F’ is induced filtration. This
isomorphism extends to an isomorphism on the toroidal compactifications Y& = YE,Or, by
sending a c¢-cusp C = (a,b, H,i,7,A,7) to the ¢-cusp ¢’ = (aq,0bq L, H®q 1 i®qtj®
691, 0A, "), where +/ is the obvious induced level structure (see discussion in [ERX17al, Section
2.9]).

Let us now see what happens on the sheaves. Let A, and Ay denote the universal semi-abelian
varieties respectively over Y and Y. Then one has the following commutative diagram of
O-schemes:

Ac — -Ac ®(’)F

T T

©
Yior — YT
which induces a natural pullback morphism
SV . k- tor - tor
Sq 1P, pyter = WA pyters

- tor

where we recall that w denotes the sheaf of relative differentials over Y, constructed in

A(/ygor
Section [2.2.1] from e*Q;R JyRetor- We recall that the dot in the notation is used to recall that we
are working over the moduli space Y, and not over the corresponding Shimura variety Sh. The

dual in the notation is again due to the fact that this operator turns out to be the inverse of the
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classical diamond operator. . _
Similarly, one has a natural morphism Sa/ g0 7 = Ocr for any 7 € . Let (k,0) € 7% x 7>
be a paritious weight, with k; + 2¢, = w for all 7 € X. One then has a natural isomorphism

(Nnu1 WSV
® wc/ ®OYtor ® wt T ®0Ytor

TEL TEX

We will explain in more details below why this is isomorphism. Taking the union over all ¢ € €,
gives an isomorphism

Nmq)~"SY
Ve HO(Y" 6o bty SmOT5

o W

0 kel
— HO(YEr wmh).

Moreover, this isomorphism passes to the quotient by the action of the group E (see [ERX17a,
Section 2.9]), giving rise to

(Nmq)~"Sy
—

Sy HO(Sh'", M) HO(Sh', "), (3.5)

~

by taking the disjoint union over the fixed set of representatives €. Moreover, the action of Sg/ °
is indipendent of the choice of the element 6 (see [ERX1T7al, Section 2.9]).

Definition 3.1.1. Let (k, /) € Z*” x Z* be a paritious weight, with k, + 2/, = w for all 7 € X.
Let R be any O-algebra. We then define the diamond operator

(@)w : HO(ShS", ) — HO(Shie", okt

to be (q)w = (Nm(q)™"Sy )71, the inverse of the induced properly normalized isomorphism of

Equation

We now explain why the normalization is essential by looking at what happens at the cusps.
Let us recall that the Tate object at the c-cusp C = (a,b, H,i,5,A,7) is G, ® a*/q(b) over
the base Sx (see Section . The isomorphism ¢4 send the c-cusp C to a ¢q?-cusp C' =
(aq, g7, H® g hi®qtj®q ' A +), inducing the following commutative diagram of Sx
scheme

0 b 1 y G @ af ——— Gy, ® a*/q(b) > 0
10q~1 1®q> Sx
0 —— bg~! Gy ® (ag)* —— G,y ® (aq)*/q(bg™1) » 0

where the second and third vertical maps are induced by the natural Sx-isogeny from Equation
(3.1). Taking the c-cusp C to be the standard cusp at infinity oo(c), this implies that there is a
morphism of Sc-schemes:

Tate, o, — Tateq 41

'We are supposing here for simplicity that the element cq? belongs to our fixed set or representatives
¢, since the induced action of Sc\|/ *° is independent of this choice.
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which induces, via the canonical identification (2.13), the following diagram

ot ) Sq ot
Tatec OF /Sx N Tatecq q—1 /Sx
can(c,Op) can(cq,q71) <36)

S
(c® O0)F @0 (071 ® 0)f ®o Osy +—— (cq® O)F @0 (cg*07! © 0)f ®o Osy,

where the bottom map is induced by the natural inclusions ¢q C ¢ and ¢q? C ¢. It is clear that
in the case of ¢ = p, a prime above p, this natural inclusion would not induce an isomorphism
over O. In the case of a paritious weight (k, ¢), i.e. such that k, +2¢, =w € Z for all T € X, the
introduced normalization is essential to make the diamond operator invertible on the sheaf of
paritious Hilbert modular forms over O for prime ideals of O co-prime with n. For non-paritious
weights, it is not clear how to make the geometric operator Sp invertible, for places p dividing p.
Let us look at the map

Nm
(c® 0 20 (07t ® 0) o Og & (cq® OV @0 (cg*0 ' @ 0) o O, ..

We recall that (¢ @ O)F = @, cx(c ® O)?kf is an O-module of rank 1 (see Remark [2.3.4). In
particular, each (¢ ® O); is a principal ideal in O. So we consider the following morphism of
O-modules:

®(c®(’))T: (c®O) «+— (cq®(’))t:®(cq®(’))T
TEX TEL
Nm(q) H(ar, ®...®ar,) ¢ (@, @ ... ar,)
, where t € Z* denotes the weight vector with 1 in each entry. This is in particular an isomor-
phism for any prime ideal q of Op. In fact, for q not dividing p, this is clearly an isomorphism,
since Nm(q) € O*. For q = p a prime above p, an element a € (¢p ® O)' ~ Nm(p)O has

p-valuation vy(a) > 1, so the element Nm(p)~! has p-valuation greater or equal to 0, and it
belongs to (¢ ® O)t ~ O. Since k; + 20, = w € Z, the map

(c® 0 20 (071 @ 0) @0 O, +— (cq® O)F 20 (cg®07 1 @ 0) ®p O,
> (Nm(q) ™ag)g® «— Y agq®
§eXt §eX+

is an isomorphism of O-modules. This extends to any O-module R.

For primes p C O above p, one can construct normalized diamond operators also for non-
paritious weights, using the uniformizer wy,. In particular, by applying the same reasoning as
above to the normalizing factor HTEE 7(wp) ~*r+26) instead of Nm(p) ™", one gets an equivalent

of Equation [3.5] :

HTEEp T(wp)*(kT +2£7) S;’/

Sy« HO(Sh'*", ™) HO(Sh'", ™). (3.7)

~

Definition 3.1.2. Let (k,¢) € Z* x Z* and let R be any O-algebra satisfying Hypothesis |5l Let
p C O be a prime dividing p. We define the normalized diamond operator at p

<p> E HO(Shtor ké)_>H0(Shtor kZ)

tobe (e = ([T es, T(@p)~ (kT“eT)Sg/ ) ~, the inverse of the properly normalized isomorphism
of Equatlon 1}
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3.2 Hilbert Moduli Space with Iwahori level structure

In order to construct Hecke operators at a prime p dividing p, one has to look at Hilbert modular
schemes with extra I'g(p)- structure, which here will be taken to be the Iwahori level structures as
in [ERX17a), Section 3.1], first constructed by Pappas ([Pap95]) and Pappas-Rapoport ([PR03]).
Let p be a prime ideal in O dividing p, f its residual degree and e its inertia degree. For a
chosen representative ¢ € €, let a € F* be such that ¢p = ac/, for ¢ € € another representative
in Clf. The following definition is taken as in [ERX17al Section 3.1].

Definition 3.2.1. Let M,(n;p) denote the functor associating to a locally noetherian O-scheme
S the set of isomorphism classes of tuples ((A, A, u, F); (A, N, i/, F'); ¢; 1), where

o (A A\ pu, F)is an S-point of Y;
o (AN, i/, F')is an S-point of Y/;
e ¢p:A— Aandp: A — AR ()"t are Op-equivariant S-isogenies such that:

— deg(¢) = p/ = deg(y);

— the compositions 1o ¢ and (¢ ®c¢(¢')~!) 01) are the natural isogenies A — A®c(c/) ™!
and A’ = A’ @ ¢(¢') ! induced by Op C p~t = ¢(¢) L,

— ¢ is compatible with polarizations, i.e. ¢oXo @Y = N, where X : (A')Y — A’ @ ¢ is
the map induced by composing A’ with ¢/ ~ cp C ¢;

— ¢ and v are compatible with level structures, i.e. oy = ' and Yoy’ = pc(c)~;

— ¢ and 1) are compatible with the filtrations, i.e. for any p’ dividing p, and for any
j€{1,... fy} the morphisms of S-modules

* * ~ N—1
¢ i warsy g Waysp and YT wa s e S Wass; © (€)= WS
preserve the filtrations 73, . and .7:;,' ;-

This functor is representable by an O-scheme of finite type that we will denote Y, (p) (JERX17a,
Section 3.1]).

There are two natural forgetful maps:

Ye(p)
7':7 Y‘a (3.8)
Y. Y.

induced by keeping only the appropriate data of HBAV, i.e.

(A, 1, F); (AL N !, F1); 590)

T1,« T2,

(A, A, F) (AN !, FT)
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As seen for Y, in Section ?? the group E acts freely on Y (p), by acting at the same time on A
and A’, and hence we denote by Sh¢(p) the corresponding quotient. As before, we set

Y(p) = Ye(p),  Sh(p) =]]She(p).
C C
Since 71 o, T2, are both equivariant under the action of E, we have induced projections:

Sh(p)
S
Sh Sh,
which are independent of the choices of o by [ERX17al, Equation 3.1.2]. Moreover, by [ERX17al,
Proposition 3.7|, these morphisms of O-schemes are finite and flat over the ordinary locus of
Sh(p). One can construct smooth toroidal compactifications for the splitting models with Iwahori

level structures as in [RX17, Section 2.11| and extend the above maps 71, 72 to maps Sh(p)** —
Sh'** | as in [ERX17al, Section 3.9], which may no longer be finite and flat over the ordinary locus.

3.3 Hecke Operator at p over O

We first recall the definition of the normalized Hecke operator at p as given by Emerton, Reduzzi
and Xiao. In their construction of the Hecke operator at p, Emerton, Reduzzi and Xiao have to
suppose the following for the weight k € Z* (see [ERX17a, Conditions 3.11.1]).

Hypothesis 6. Assume that the weights k; for 7 € 3, satisfy the following:

o« Yres, br Zef;

e k gy >k foralli=1,....,fand j=1,...,e—1;
pri Tp,i
* pkﬂg}z‘) = kﬂg,ei)'

We would like to remark that by these conditions, one has that k. > 0 for all 7 € X,.
Moreover, these conditions correspond to what Diamond-Kassaei define as minimal cone, in
IDK17] for unramified p and in [DK20] for general p, which we recall here.

Definition 3.3.1 (Diamond-Kassaei). We say that a weight & € Z* belongs to the minimal
cone, denoted C™™"_ if for every p|p:

. k7<¢+1) >k g forallj=1,...,fpandi=1,...,ep —1;
p.j b,

® pk (1) > k (ep) for allj: 1,...fp.
To.3 Tpi—1
We would like to stress that, in order to have a good theory of Hecke operators, one has to
work with minimal weights. In particular, in Chapter 4 we will mainly work with weights that
live in the minimal cone, or we will bring our forms to weights living in the minimal cone.
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Definition 3.3.2 (Definition 3.12 of [ERX17al). Let (k, ¢) be a paritious weight, i.e. k. + 2, =
w € Z, satisfying Hypothesis @ Let R, := O/w™0O. The action of the Hecke operator Tpv’O on

the cohomology of wg’i is defined as the composition of the following maps:

H(Sh'" wi’ ) =2 H(Sh(p)™", iy’ )
S HY(SK™T, Ry umwpyt ) 22 HI(Sh™, wi’ ),
where 7, : Rwlj*wé‘wz’i — wg’i is a normalized morphism constructed from the dualizing trace
map (see Introduction, Section 3.10 and Proposition 3.11 of [ERX17a]).

We want to remark that we denote this geometric normalized Hecke operator with a dual
to distinguish it from the "arithmetic" normalized Hecke operator at p, which we will denote
Ty. The two are dual of each other, as in Equation (3.16). As said in the introduction of this
chapter, we want to work with "arithmetic" Hecke operators because they are the good ones to
consider when working with the Galois representations attached to Hilbert modular forms.

In what follows, we will go through the steps to construct the Hecke operator Tpv . to
calculate its action on g-expansion. We maintain the generality of partial weights (k, ¢), because
we believe that the operator defined by Emerton, Reduzzi and Xiao can be extended to non-
paritious minimal weights as well.

In order to understand the effect of the T}, operator on g-expansions, it suffices to look first
at the varieties Y(p) and their toroidal compactifications, and therefore at the projection maps
1,05 T2, defined in . We will later take into account the passage to quotient Sh. and its
compactification.

Since we will be working with cusps ¢p and c¢p~!, which are not in our fixed set of represen-
tatives €, we will take o, 5 € F* such that

cp=ad and cpt=p,
where ¢/, ¢ are in the set of chosen representatives €, coprime with p.

Proposition 3.3.3. Let co(c) be the cusp at infinity and let Tate. o, /S. be the associated Tate
variety (see Section . Then the inverse image under m o of co(c) consists of two cusps,
which will be labeled oo and O, the ramified one. In particular the inverse image under m o of
Tate. 0, — S¢ consists of

e an Sc-point on Y(p), with A = (G, ® ¢*)/q(Op) and A" = (G, @ (¢p)*)/q(OFp) over S;

o an Sy-1-point on Y(p), with A = (G, @ ¢*)/q(Op) and A" = (Gp, @ ¢*)/q(p~"), over
Sep-1.

Proof. This follows from the construction of the Iwahori level structure and from [DW18, Propo-
sition 3.3|. O

To calculate the action of Tp\/’0 on g-expansions on a form with coefficients in R, = O/w™QO,
we will work with the schemes Sx over which the Tate object for the cusp oo(c) lives. In particu-
lar, the module of g-expansions ./\/llééf(c; Ry,) can be injected in a completed ring Ry ®0 Ry, (see
the proof of Theorem [3.3.4)), whose elements can be lifted in O. We will then follow the steps of
the construction of T, ® over O and we will reduce modulo @™ the obtain equation. This can
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be done because the operator T; p\/,o exists and is integral over O.

Following the definition of the maps m, 7, and by the above proposition, one gets the
following diagram corresponding to the cusp oo.:

G Q c* /q OF G ® C]J /q OF
(G, @ ¢*) /q(OF) )*)/a(OF)
Se Ser
(3.9)
and the following diagram for the ramified cusp 0,:
(G, @ ¢* /q (OF) LN (G ® ) /q(p™t)
/ SCP‘
(G @<¢*)/q(OF) (G ® ¢*)/q(p~
Se Sep—1
(3.10)

Since we want to work only with the standard cusps at infinity, i.e. those cusps labeled oo(¢)
for ¢ € €, here we will use the natural diamond operator SV and the natural morpshim ¢y from
Sectlonto bring the cusp oo(cp, p~1), with correspondlng Tate variety (G, ®c* )/q( 1)/ S
to the cusp oo(c¢”). In this step, since we have fixed 8 € F; such that S¢” = ¢p~!, we will see
the term 3 appear in the g-expansions.

3.3.1 Action on geometric g-expansions

We now have all the ingredients to prove the following

Theorem 3.3.4. Let R, := O/w™O and let (k,l) € 7> x 7> satisfying Hypothesis @ and
Hypothesis Ia Let f € HO(ShRm,wZ’i) and let [ = (f‘)ce€7 where f. = dec+u{0} a§q5 be its
geometric q-expansions at the cusp oo(c). For a place p of F above p, let a, B € Fy be such that
ep = ad and cp~! = B¢, for ¢, " € & Then for £ € ¢y

ag((Ty"°f)e) = Nm(p) ™" | ] 7(@p) ™ | " ag-1¢(fe)
e (3.11)

+ H T(Wp)kT_MT 5k+£a671£((5';/,0f)c”)7

TEY)
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with ag-1¢ = 0 if a"t¢ ¢ ¢ and Spv’o s given in Equation . We recall that we denote by o
the element [, s 7(c)b7.

Remark 3.3.5. As we will see in the proof of Theorem the formula in Equation [3.11] makes
sense as it is over O and in particular it is integral over . Let us explain why. First of
all, the coefficients a,-1¢(fr) and agflg((Spv’Of)c/) live respectively in the rank one O-module
(¢ ® 0 @0 (07! @ 0)f and (" @ O)F @ (07! ® 0)¢, so they have non-negative w-adic
valuation. Let us remark that the normalization of the operator Spv " is again essential for the term
ag-ig ((S;/ °f )c/) to have non-negative p-valuation. In fact, thanks to the normalization, one has
an isomorphism of rank one @-modules (¢"pRO)* @0 (¢"p?0 12 0) = ("®0)f @e (V12 0)".
Now let us proceed to calculate the p-adic valuation of each addend of Equation . Since
ac = cp and ¢, ¢ are coprime with p, vp(o) = 1. Therefore the p-adic valuation of the first term
is

vp(first term) > —ef — Z 0+ Z (kr +£7)

TEYp TEYp

=Yk —ef >0

TEYY

The last equality is given by the first condition of Hypothesis [6]
Since B¢” = ¢p~! and ¢, ¢” are coprime with p, v,(8) = —1. Therefore the p-adic valuation of the
second term is

vp(second term) > Z kr+0; — Z (kr +4;)=0
TEYY TEYY

Therefore, the above Equation (3.11)) taken over O is integral.

Proof. Let us give an argument to why we can work over O and then reduce modulo w™. By the
construction of the toroidal compactification by Dimitrov ([Dim04, Théoréme 7.2|), we can work
over the schemes Sx at the chosen cusps. This is because the schemes Sx are by construction
such that one has an open immersion Sy < Sh!®" and by formal completion one has also a
morphism of schemes S% — Sx, where S% = Spf(R%) denotes the formal completion of Sx.
This induces for any O-algebra R the following commutative diagram:

HO(Shc,R,wy) —— HO(Sy x Spec(R),wg’e) —— HO(S% x Spec(R),w%e)

I J

ME (e R) « Ry @0 R

In particular, elements of RY ®o Ry, lift in characteristic 0 to R%. One has an action of the
Hecke operators T, pv *® on the cusps (see for example Equation and | and therefore over
R ®0 Ry, In particular, one has the following commutative diagram:

HO(She,g,,, wh' ) = M&(¢; Ry) —— Ry ®0 R

V,0 V,o v,
lTn lTp lTp °

H°(She,g,,,, i’ ) = M&(¢; Rpy) —— Ry ®0 R
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where here we use red arrows to stress the fact that we are working over R,,, and that the vertical
maps correspond to the Hecke operator 7, p\/,o acting on H°(Sh,, Rm,w%i).

Moreover, over O, one has a normalized Hecke operator Tpv > on HY(Sh, wIM) which is defined, as
in Definition as the composition (o 7y 4 o w5). We point out that 7,, in Definition m
of Tp\/’O over HO(ShRm,wZ’i) is induced by the map 7 (see discussion before [ERX17a), Definition
3.12]). Omne has then the following commutative diagram:

Ry —— MEL(¢) «—— HO(Sh,,wh?)
J/(nom,*mr;) |tromom) l(nom,*cm;)

Ry +—— M&(¢) ¢—— HO(She,w"")

where here we use blue arrows to stress the fact that the vertical arrows are in characteristic 0,
corresponding to the Hecke operator Tp\/’O = (nom .« om) on HY(Sh, wk?). By construction, the

V,o
map R% R’ reduces modulo @™ to Ry ®o Ry——R5 ®0 Ry Putting everything
together, one has the following commutative diagram:

(nom1,.om3)

Ry« MEL() «= HO(Sh,, wh)

e

HO(She, g, wh' ) < M&(¢; Ry) < Ry ®0 R (nomy wom3) | (nom1 wom3) (nom1 xom})
,0 V,0 o
(8 Ty ) Ry ME(¢) «— HO(Sh,,wh?)

e

H°(She g, wp ) < M5 (¢; Rm) — Ry ®0 R,

One can therefore look at the action of Tpv’o on the O-module R% and then reduce modulo @w™.
The existence of compatible operators on H°(Sh,, Rm,w%i) and H(Sh,, R,wﬁ’g) by construction
of Emerton, Reduzzi and Xiao (see Definition and the injectivity of the g-expansion maps
assure that the obtained result is the image under the operators Tpv’O of the original modulo @™
modular form. Here, we will compute the action of Tpv’O on the O-modules Mlégf(c) by doing
O-integral steps between these modules. We will at the end reduce the obtained equation modulo

w.

We now follow diagrams ([3.9)) and (3.10]) to compute the corresponding effect of g-expansions.
It will then suffice to add the results to obtained the desired equation.

Let us start by the cusp oo.. Following the diagram (3.9)), the sheaf w®¢ can be trivialized as
explained in Remark yielding the following chain of homomorpshims of O-modules (recall
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that the sheaves w, and d, are contra-variant):

k.l /
M (¢) 2 ered, {0} agq°
L) lLemmam
k0
My 0, (ep) Leew)sufo @ aam1d®
e I
iy (3.12)
Mo, (€) oY cee, g0} Ba1ed”
Nm(p)~ (o) I
k¢ _ —0,
2% (¢) Nm(p)~* Hrezp 7(wp) okt E€€c+u{0} aa*lﬁqg

Let us recall that in the last step, the map 7 (see [ERX17al, Section 3.10]) is obtained via the
dualizing trace map and it contains the normalization factor [] cs 7(wy)~*. Moreover, the
middle step corresponding to the isogeny ¢ is the natural inclusion given by Proposition [2.3.5

Let us now look at the cusp 0.. We first have to complete the diagram in order to
start from a cusp at infinity, co(¢”). Recall that ¢p~! = B¢, so we first re-elaborate the Tate
object in order to write it over Sc» and then we apply the map ¢q (see Section .

Gm @ ¢ /q(p™Y) =225 G @ (¢"p)*/q(p™L) 22— G ® (¢")*/9(OF)

(3.13)

The last morphism is the one defining the operator S;/ identifying the g-expansion of a HMF f at

oo(¢"p?,p~ 1) with the g-expansion of (S, f)_, at co(¢”), which we will write as Zg"eclu{o} bengs .
In particular, since we haven’t yet normalized the operators Sy, it is clear (see diagram (3-6))
that the elements bgr come from the rank one O-module (¢'p ® O)F @o ('p*07! ® O)F —
(" @ O @0 (7t ® O)K and have p-valuation greater of equal than }° .y (k; +2¢;). The

first square of diagram (|3 induces, similarly to Lemma a multiplication by ¥ on the
sheaves. In fact, staring from the following commutative dlagram of short exact sequences

0 O y G @ ¢F ———— Gy @ ¢F/q(p~h) 0
1®8 1Q8 \ S
0 Op Gm @ (¢"p)* —— G @ (<"p)*/q(p™") 0

one obtains via the canonical identification morphism on the O-modules of coefficients
("p® 0 @ ("p*0 2 0) = (c0 O)F @ (cpo~! @ O)F
bf” —> /Bk—‘reb&'ll s
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.Rk+L
which gives a morphism of @-modules Mf,’,i p,l(c’ " REHANN Mff,l(cpfl), mapping
Z bg,,qfﬂ — Z IBkJerS”qﬁﬁN — Z Bk+€b5—1§q5-
¢"ecLU{0} e U{0} §€(ep~1)+U{0}
Now we can go through the diagram (3.10]) for the cusp 0,:
k,t _
Mpa(ep™) Pee(w1),ui0y B 0g-1¢a
T J’/
kt _
wal(m b de(cpflpu{o} Bk+éb5‘1§q€
e |
y (3.14)
Mo (™) B Vet uio) ba-1edt
| |
kt e,
Meo (c) Mres, 7(@p) ™7 B Yeee, Lgoy bo-164" -

We recall as above that in the last step the map 1 contains the normalization factor H’TGZp T(’Wp)_f".
Moreover, the middle step corresponding to the isogeny ¢ is the natural inclusion given by
Proposition [2.3.60 We know what to rewrite the obtained factor using the normalized operator
Spv ¢ as given in Equation . Recall that ber = agr ((S;/ f )c”) and in particular, one has that

[Lres, 7 () "k T2 )b = agu((S;/’of)cu). Therefore, the last equation of the above diagram

can be rewritten as
H T(wp)kT+ZTﬂk+€ Z ae ((S;/,of)c“) . (3.15)
TED, gec,uU{0}

Adding together the last equation of diagram for the cusp oo, and Equation for the
cusp 0, gives the desired result.

O

We now assume that the weights (k, £) € Z* x Z*, satisfying Hypothesis @ are paritious, i.e.
kr +2¢; =w € Z for all 7 € ¥. We then use the normalized diamond operator (p), as defined
in Definition to set the normalized Hecke operator at p to be

Ty =Ty o (P - (3.16)
To lighten the formulas, we will denote by wﬁp the product J[ 5, 7 ().
Corollary 3.3.6. Let R, := O/w™O and let (k,f) € Z” x Z* be a paritious weight, i.e.
kr + 20, = w for all T € 3. Suppose that R, and the weights (k,{) satisfy Hypothesis @ and
Hypothesis @ Let f € HO(ShRm,wg’é) and let f = (fc)cecﬁ’ where f, = dec+u{0} agq® is its
m F
geometric q-expansions at the cusp co(c). For a place p of F' above p, let a, B € Fy be such that
op=ad and cp~! = B, for ¢, ¢, " € Clf. Then for € €
1 (Nm(c)\" ¢ _
o _ 1 Y4
cel(730)0 =) () @ ag e (1),

N Vo e
+ () =8 a el

(3.17)
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with a,-1¢ =0 if 1€ ¢ ¢

Let us remark that our geometric coefficients depend on the choice of fixed representatives
of Cl;ﬂ, so we can normalize the geometric coefficients to get better readable formulas.

Definition 3.3.7. Let (k,{) € Z* x Z* be a paritous weight, i.e. k; +2¢, = w for all 7 € 3. Let
f € H(Sh, w®%) and let f = (fc)ce o> Where fo = E§€c+u{0} agq® be its geometric g-expansions
F

at the cusp oo(c). We define the normalized geometric coefficients as

ag (fe) == Nm(c) Vae(fe) -

Remark 3.3.8. With this notation, one can re-write the above Equation (3.17) as
o o w— —L —¢ o —L —{ o
ag((Tp f)t) = Nm(p) 1wp Pa eaa_1€<(<p>wf)c,) +w, '8 Zaﬁ—lg(fc”) . (3.18)

Now, recalling that vy(a) = 1 and v,(8) = —1, it is clear that v, (ag((Tpf)c)> > 0. In fact,

v (a2 ((Tyf)e)) =min [ Y (ke +20,) —ef = > 20, Y (~Lr+4;) | =0.

TEDp TEDY TEDp
So for any ¢ € € and £ € ¢, ag((Tpof)c) lies in O, making it possible to consider this operator
modulo w. Moreover, it is not the 0 operator modulo w.

Remark 3.3.9. We also would like to remark that the construction and the computations of
Theorem [3.3.4] work also for a prime q C O not dividing p, with a non-normalized map 7 of
Definition [3.3.2} Therefore, one obtains the action of the Hecke operator Ty:

ag ((Tyf)e) = Nm(q)W—la—fa;_lg (((wt) ) + 5_8“%—15(]%”) , (3.19)

where now o, 8 € F and ¢, ¢ € ¢ are such that ac’ = ¢q and B¢’ = ¢q~!.

Let us now proceed with the proof Corollary [3.3.6]

Proof. First of all, let us look at the last equation of diagram and recall that ber =
(Ig//((S;/f)c//). Since 8 € F, is such that B¢” = ¢p~!, Nm(B) = I\Tmm((cf,)) Nm(p)~! and there-
fore the ast equation of diagram becomes
—Lp pk+4 S\/ Ayt pw S\/
@y B ag-1e((Sy f)er) = @y PBTBY ag-1e((Sy fer)

_ Nm W
i <Nm(<;,>)> N ()™ az-1¢((SY fer)

= w;epﬁig (13;11’1((:”))) a5715((Nm(p)’WS;/f)cu) .

Recall that (p)w = (Nm(P)fwsg/)il (see Definition i and consider the modular form g :=
(p)w'f. Then the above term becomes

_ 0. o N v
wy "B agsg((S) Fer) =y 757 <Nnr?((cc//))> oelge).
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Now, since Ty = Tpv’O o (phw, Ty (g9) = Tpv °(f). So Equation (3 becomes

oc((T39)e) = Nm(p) ™', 0 amse (P a)e) + 5"~ (ﬁﬁ”)) agreler)

Now it suffices to recall that, since a¢’ = ¢p and o € Fy, Nm(a) = NNm((cc)) Nm(p) and use this

relationship in the above equation to conclude the proof. O

Remark 3.3.10. We now study with particular attention Equation (3.18]) over F.
(a) If ko > 1 for a 7' € 3, and k; > 1 for all other 7 € X, then for any ¢ € € and £ € ¢y

g ((Tg f)e) = @y B e fer) (3.20)

where ¢ € ¢ and 8 € F' are such that f¢” = c¢p~!. This is because the p-valuation of the
first term of Equation 1 is Zrezp k., — ef, which is positive, by our assumption on the
weights k. for 7 € Xy.

(b) For parallel weight 1 above p, i.e. for k- =1 for all 7 € ¥,,, one will have the two terms of
Equation [4.3] In fact, for ¢/,¢” € € and a, 3 € F* are such that ac’ = cp and B¢’ = cp~!
one has that

op (Nm()" "oy P~ a1 (Pw)e) ) = D (s +26) —ef = 3 2%

TEDY TEDY
= E 1 —ef=0,
TEY)

and we already know that the second term has vy-valuation equal to 0. Therefore, for any
¢ € Cand € € ¢y, the formula stays the same

a2 (T £)e) = Nm(p)" 'y Pa~lad (0w f)e) + @ * 6 a5 (fer) . (3.2D)

Remark 3.3.11. We take a moment to compare our formula for the action of the normalized 7}
operator on geometric g-expansion with known cases.

(a) F'=Q.
For F = Q, one has that w = p, @« = p and § = p~". In this case, for w = k and for any
positive integer n, one gets the very well known formula.

an(Tpf) = pk_lapfln(<p>f) + apn(f) .

-1

(b) p inert in F.
If pisinert in ', then a =p, B =p
For any ¢ € ¢4, one has then

(10 = (Kot} TLoA T TLo " se((hat)

TEY TEY TEY

( m(3> H “ P ape(fer)

TEX

- (Hka_l> ap—1e(((Pwf)er) + ape(fe) -

TED

~1 and w, = p. Moreover Nm(p) = [l.espand ¥ =3%,.

This matches the formula in Remark 3.14 of [ERX17al.
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(c) k parallel, i.e. k; =k and £ =0 for all 7 € X.
Let & € ¢, then Equation (3.17)) becomes

k k
ce((1,1) = Non) (G2 ) darel(@ahe) + (men ) aelio

and in particular

ag((Tpf)e) = Nm(p)* tadse ((Phwf)e) + afrg(fer) |

which is the known formula. We will see in the following section that this formula translates
to the usual one on adelic g-expansions.

3.3.2 Adelic ¢g-expansion

We will now end this chapter by looking at adelic g-expansions and in particular we will give the
action of the Ty-operator in terms of adelic g-expansions. Let m be an integral ideal of Op, then
one can write m = &c~! for a unique ¢ € Cl; and ¢ € F. For such an ideal and a modular form

f, we define
C(m, f) := Nm(c) “&lag(f.) = 'ag(f:), (3.22)

where ag(f.) is the £ coefficient of the g-expansion of f at ¢, and ag is the normalized geometric
coefficient as defined in Definition

Remark 3.3.12. These adelic coeflicients obviously make sense in a field of characteristic 0 for
any paritious weight, but in characteristic p, these coefficients make sense only in parallel weight,
i.e. when k; = k and £, = 0 for all 7 € 3. This is the reason why we are obliged to work with
the geometric coefficients when dealing with partial weight. For the parallel case, the adelic
coefficients are more convenient because the formulas are more compact and clean.

Proposition 3.3.13. The above definition is independent of the choice of & and of the choice of
representative c.

Proof. Another choice of ¢ is € for ¢ € O 4 For such an element we have that a.e = E_eag.
Therefore

Nm(c) ™™ (€€)" ace(fe) = Nm(c)™ (e€)" e ag(fe) = Nm(c) ™ & ae(fe) -

Another choice of a class representative for ¢ is ve for v € FJ*. By Proposition ??, one has that

Nm(ve) ™™ (v€) ag(foe) = Nm(ve) ™™ (v€) V" ag(fo) = Nm(c) ™™ £ ae(f) -
O

Remark 3.3.14. Our definition of C'(m, f) differs from the one of Shimura ([Shi78, Equation 2.24])
in the normalization factor. In fact, Shimura normalizes the adelic coefficients by Nm(c)~*0/2]
where ko is the maximum of the (k;);ex. This difference is due to the fact that Shimura
considers forms that are on the sheaf w* @ 6%/2, while here we consider independent powers £ on
the determinant sheaf.
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Corollary 3.3.15. Let the weight (k,) be paritious, i.e. kr + 20 = w for all 7 € ¥ and let
f € HO(Sh,w®*) be a HMF. Then in K = Frac(OQ) one has that

C(m, Ty f) = Nm(q)* ' C(ma~", (q)w f) + C(mq, f),

and

Cm, Ty f) =, (Nm(p)" € (mp~™", (phu f) + Clmp. ) -

In particular, for parallel weight (k,0), one has that in O

C(m, Ty f) = Nm(a)* C(mq ™" {a)s, f) + C(mq, f) .
for any prime ideal q C coprime with pn and for q = p.

Proof. Consider Equation (3.19):

a2((Taf)e) = Nm(@) o~ a1 (((hf) o ) + B~ a1 (fer) |

where o, 8 € F are such that ac¢’ = ¢q and S¢” = cq!. Let us remark that for an integral ideal
m C Op, such that m = £¢™!, then

mg~t =& ()7 and mg=¢871(")7,
and therefore by definition
C(mg~",) = Nm(¢) ™(a '¢) ag1¢(")
C(mq,-) = Nm(")™(57'6) ag1¢()

Putting everything together, one gets that

Cm, Ty f) = €€a2((qu)c)
= Nm(q)"~ "¢ a™a 1 ((ahw f) o + € B ag1¢(fer)
= Nm(q)" ' C(mq™", (q)w f) + C(maq, f) .

The same arguments work for the normalized Hecke operator Iy = @, EPTp, using equation
(3.18)).

For parallel weight (k,0), the adelic coefficients C(m, Ty f) are by definition (see Equation (3.22))
given by ag((Tyf)c), where { € F is an element such that me = (£). So in particular, these
coefficients are integral, since ag((13f)c) € O. The formula follows from the adelic formula for
Ty. Let us also point out that for parallel weight 77 = T;,. O

Remark 3.3.16. The formulas obtained in Corollary [3.3.15]are a generalization of previous known
formulas for parallel weight and non-normalized 7}, Hecke operator, found for example in [DW18,
Theorem 1.2].



Chapter 4

Unramifiedness of Galois
representations modulo @

In this chapter we will only work with paritious weight forms, i.e. Hilbert modular forms of
weights (k,£) € Z* x Z*. such that k, 4 2/, is independent of 7, i.e. there exists a w € Z such
that k, + 26, = w for all 7 € 3. It is clear that it is enough to consider a couple (k,w) € Z* x Z
to describe such weights. Therefore in what follows we will denote the sheaf of differentials of
paritious weight (k,w) by

) @ (08 0 824
TEX

Definition 4.0.1. We denote by My, (n; R) := HO(ShR,wg’W)) the R-module of Hilbert mod-

ular forms of level n and paritious weight (k,w) with coefficients over an O-algebra R, and by
Sew(n; R) = HO(ShR,wg’W)(—D)) the submodule of cuspidal forms. (see Chapter [2[ for more
details.)

Recall that we have Hecke operators Ty for ¢ C Op a prime not dividing pn acting on
My w(n; O). Moreover, in Chapter , we constructed normalized diamond operators (q), for
any prime ideal ¢ C Op, and we have recalled the construction by Emerton-Reduzzi-Xiao of a
normalized Hecke operator Ty for p C O a prime above p.

Our goal is to show the following generalization to non-parallel paritious weight 1 Hilbert mod-
ular forms of results of Dimitrov-Wiese ([DW18, Theorem 1.1]) and of Emerton-Reduzzi-Xiao
(JERX17al, Theorem 1.1]).

Theorem 4.0.2. Let p be a fized prime of F above p. Let (k,1) be a paritious weight such that
kr =1 forall 7 € Xy. Let f € Sp1(n,F) be a cuspidal Hilbert modular form and assume that
[ is common eigenvector for the Hecke operators Ty and (q)1 for all q outside a finite set S of
primes of F', containing {v : v a place of F,v # p and v|pn}. Then there exists a continuous

semi-simple representation
Py - GF — GLQ(F) s

which is unramified at all primes q not dividing pn and at q = p, and is such that the trace of
p¢(Frobg) equals the eigenvalue of Ty on f for all such primes q.

In order to prove this theorem we will need many ingredients. Firstly, we will need a way to
lift modulo @w modular forms to characteristic 0. As explained in Chapter |2 one can only hope
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to lift paritious weight forms, this explains why we restrict to work with paritious weight forms
and not with general partial weight forms. Lifting forms will be achieved through an exceptional
sheaf of paritious weight 0, which will be described in the next section. This sheaf is a variation
of the exceptional sheaf defined in [RX17, Lemma 2.7]. Moreover, we will work in the generality
of Hilbert modular form modulo @™, in order to lay the fundation to extend the above result to
the entire Hecke algebra (see section . Secondly, we will need to work with the generalized
partial Hasse invariants as defined by Reduzzi and Xiao in [RX17, Section 3|. In Section we
will recall and prove some of their properties. Finally, we will use the doubling method of Wiese
([Wield]) and follow the strategy of Dimitrov-Wiese ([DW18§]) to finish the proof to prove our
result. This will be done in the remaining sections.

4.1 Lifting modulo @™ Hilbert Modular Forms

It is known that Hilbert modular forms mod @™ of low weight are not necessarily all liftable in
characteristic 0. However, if one can embed those, e.g. via multiplication by powers of partial
Hasse invariants, as a Hecke stable subspace in liftable weight, then by a result of Deligne and
Serre ([DS74, Lemme 6.11]) the corresponding systems of eigenvalues would lift as well and thus
one can attach Galois representations to the original mod @™ eigenforms. In particular, one
knows that for parallel weights, there always exists a big enough weight where the forms can
be lifted in characteristic 0, see [DDW19, Lemma 2.2]. This is not the case for partial weight
forms. Because of the description of the geometric ¢ expansion , one can only hope to be
able to lift cuspforms for some "big" enough weights. This is the object of Proposition 4.6 of
[RX17], where Reduzzi and Xiao prove that all weights in a "sufficiently positive direction" are
liftable weights for cuspforms. This direction is given by a specific weight, denoted ex, which
looks mysterious at first. However this direction can be given a heuristic explanation by works of
Diamond and Kassaei ([DK17], [DK20]) since moving in the direction called ex by Reduzzi-Xiao
brings form in what Diamond and Kassaei call the minimal cone, where forms are liftable. Let
us recall the definition of Diamond and Kassaei (see [DK17]| and [DK20] for unramified p) of the
mainimal cone.

Definition (Definition [3.3.1). We say that a weight vector k € Z* belongs to the minimal cone,
denoted C™" _ if for every p|p:

o k iy >k gforallj=1,... frandi=1,...,¢e, — 1;
To.5 To.j

o pk 1) >k (¢ forallj=1,...f,.
To.5 To,j—1

In what follows, we will construct an exceptional sheaf, along the lines of Reduzzi-Xiao
(JRX17, Lemma 2.7]), show some of its properties and finally use this sheaf to prove a lifting
lemma for partious weight HMFs.

4.1.1 Exceptional Sheaf

Inspired by the exceptional sheaf of differentials defined by Reduzzi and Xiao in (JRX17, Lemma
2.7]), we set the exceptional weight to be the weight vector ex € Z* such that exX (i) = 2(2i—ep—1)
P

for all plp, j =1,..., fy and i = 1,...,e,. In particular, we will call ezception;zl sheaf on Y{;R
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the line bundle:

(exO ®2(2i—ep—1) +®(ep+1—21)
®®®( S o, 450 ) (4.1)

plp J=1 i=1

which descends to a line bundle on ShFR. We now proceed to adapt results and proofs of
Reduzzi-Xiao [RX17] to our exceptional sheaf.

Lemma 4.1.1. The line bundle o'J](FeX’O) 1s relatively ample with respect to the natural projection
YRR — YRP.

Proof. This follows exactly from the same argument as Lemma 2.7 of [RX17]. O

Lemma 4.1.2. The line bundle w(e %.0) deﬁned over Y;R’tor descends to a line bundle, denoted
(ex,0) PR,min

Wi mins OVET the minimal compactification Y
PR,min YDP min

natural projection Yy =Yg

, which is relatively ample with respect to the

Proof. Since the sheaves 5, are all trivial over OYgR (see Equation , we will be interested

only in the k-part of the sheaves, i.e. in sheaves of the form d)@pR,wr = Q,ex wljf. By works
of [Rap78] and [Cha90], we know that for k € Z*, the sheaf d}@m,mr descends to the minimal

compatification YFPR™IN if and only if k is parallel. However, the situation is different on the

special fiber, 7 : YIER’tor — YIER’min. Going through the proof of [Dim04, Théoréme 8.6 part
(vi)], for an O-algebra R, one sees that in general the sheaf Wk pr.tor descends to an invertible
R

sheaf on Y5, "™" if and only if it can be trivialized on S 8c/Of, % Spec(R), in the sense that it is
free of rank 1 on the structure sheaf O,, PR.tor- Consider a cusp C (a,b,H,7,j,\, ) and let Sé\c

be as in [Dim04, Théoréme 7.2|, then the pullback of waR wor 10 S&e X Spec(R) is canonically
trivial and isomorphic to

(a® 0)* ®o R®o Ose (4.2)

Wthh in particular tells us how a unit u € (’)Fn acts on this sheaf, i.e. via multiplication by
= [l ex 7(u) kr/2 In fact,

HO (SQC/OEn X Spec(R),wépR,mr) = { Z a5q5 tag € R, a2 = ukag for all u € (9;7“},
f cexX+U{0}

which is a projective module, but not free of rank 1. Actually, we want this module to be
isomorphic to

HO (SQC/O}X«“,n x Spec(R), OYER,tor> = { Z agg® s ag € R, aye = ag for all u € (’);’n},
EeX+U{0}
PR,min

k/2

i.e. the line bundle wYPR tor Will descend to Y act trivially in R. Therefore,
R

PR,min

if and only if u

in order to see if the line bundle w®* descends to the minimal compactification Yy , it suffices
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to verify that «®/2 =1 in F. In fact,

uex/Z _ H T(u)eXT /2

TEL
fo e @ 0 .
(] 1—€p—
=TI Gse)™ "
plp j=1i=1
and, since TP(? = TP(T;FI) mod w for all i € {1,...e, — 1}, the above product in F becomes:

fp € .
uex/2 _ H H (7_’3(71]) (u))ziil(%—ep—l) _ 1,

plp J=1

(ex,0)

Fomin With respect to the natural map

since Y ? (20 —ep — 1) = 0. The relative ampleness of &

YHER’min — Y]FD Pomin g0 ows by the previous lemma. O

4.1.2 Lifting Lemma

In order to achieve a lifting lemma, we want to transform the exceptional line bundle into an
ample line bundle on the minimal compactification YgR’mm. We will denote by t the element

(1,...,1) in Z*=,

Lemma 4.1.3. There exists a positive integer No € Z~qo such that for any N > Ngy, the weight
vector Nt + ex lies in the minimal cone C™™.

Proof. This follows immediately from the definition of the minimal cone, Definition [3.3.1] and
from the definition of the weight vector ex. O

We fix once and for all such an integer Nj.

Lemma 4.1.4. There exists an even integer N > Ny such that the line bundle (,L)I(FNHQX’O) on

Y;R’tor descends to an ample line bundle on the minimal compactification Y;R’min. Similarly,

for the same N, the line bundle w](FNt+eX’O) descends to an ample line bundle on the minimal

compactification ShFR’mm.

Proof. This follows from the exact same argument as in [RX17, Lemma 4.5|, using relative

ampleness from Lemma
[l

We fix once and for all an even integer N as in Lemma [4.1.4] i.e. such that the line

bundle wIE-NtJreX’ 9 descends to an ample line bundle on the minimal compactification Sth’min.

Lemma 4.1.5. For any paritious weight (k,w) € 7> x 7, there is an integer ro = ro(k, w) such
that for any v > ro and any i > 0 one has

Hi (ShPR,tor’ w(k+r(Nt+ex),w)(_D>) —0.

Proof. This follows form the exact same argument as in [ERX17b, Lemma 4.2.2], using the
ampleness from Lemma O
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We now have all the ingredients to prove the following Lifting Lemma.

Lemma 4.1.6 (Lifting Lemma). For any paritiotus weight (k,w) € Z> x 7Z, there exists an
integer ro = ro(k,w) such that for any r > ro there is a natural Hecke equivariant isomorphism:

Sk’—l—r‘(Nt—&—ex) (n O) ®o (9/7D 0= Sk’-l—r (Nt+ex), (n O/wmo)

Proof. Let us set k := k + 7 - (Nt + ex) and R, := O/w™O. Recall that we denote by D the

divisor of the cusps. The sheaf w®w) is 5 locally free Ogtor-module of rank 1, and therefore one

has a short exact sequence of sheaves on Sh'*

0 — wF) (—D) 2y Fm) (D) s ) (D) s 0,

which induces a long exact sequence in cohomology

0 — HO(Sh, w™*) (=D)) 25 HO(Sh, wF*) (~D)) — HO(Sh, w{F™) (—D)) —

— HY(Sh, w®") (~D))

Now for k as defined as above, Hl(Sh,w(’;’W)(—D)) = 0 by Lemma , and by definition of
cusp forms (see Definition [4.0.1)), one has a short exact sequence of O- moduleb

0— S, (10) =5 8 (0;0) — S, (1;0/m™O) — 0,

which yields the desired result.

4.2 Generalized partial Hasse invariants

In this section, we will recall the generalized partial Hasse invariants defined by Reduzzi and
Xiao (see [RX17, Section 3.1]) and we will use them to construct a form, whose weight is in the
"liftable direction".

Definition 4.2.1 (Section 3.1 [RX17|). For every 7 € X, there exists a Hilbert modular form

0 ®-1 (1)
H <Sh]F,WT(1) . ® w® (ep) F) , fr=7,

p.J’ Tpg o

(i )
<ShF’wT‘§’;,JF ® w® e 1)7F> ; T =7, fori#1
called the generalized partial Hasse invariant. We will denote by w” the weight of the generalized
partial Hasse invariant h,.

In particular, the generalized partial Hasse is not a paritious weight form, and therefore it
cannot be lifted to characteristic 0. However, using the trivializations (JRX17, 3.2.1])
® —
5 (1) ]F (s (ip) ) ~ OShtor and 6 ( )]F ® 5 (1 1) = OShtor 5
F J’ Tp,i—1° P J’ JF
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one can view

) ep) F ep) p.J
LI PJ 0 p,j—1

0 ®—2 ®2p ®—p e (1)
H <Sh]1r, wT(l) . & wT( ® 57'5’1;,1{? & 57( ) , ifr=r

h? e

T

HO <ShF, WL OWR ) @ 6,00 ® 5% IF) , ifr =7 fori#1
’. p‘] b

(i—1)
P, Tog oF 7

as a paritious weight w = 0 Hilbert modular forms. In particular, h2 € HO(Sh]F,wﬂ(fwT’O)).

By Lemma 1.4 of [DDW19], for any 7 € ¥, the generalized partial Hasse invariant h; has
geometric g-expansion equal to 1 at each cusp oo(c). Therefore, also h2 has geometric g-expansion
equal to 1 at every infinity cusp oco(c¢). So multiplying Hilbert modular forms by these elements
will not change their g-expansions.

4.2.1 Working over F

The following lemma shows that there exists a product of generalized partial Hasse invariants
modulo p that lives in the direction of the liftable weight of the previous section.

Lemma 4.2.2. There exist a product of partial Hasse invariants hex lying in H° (Shp, wI(FNe"’O)),

where kex = (p — 1)(Nt + ex). Moreover, for any ¢ € €, the q-expansion of hex at the cusp oo(c)
1s 1.

Proof. This statement can be proven via linear algebra methods on the weights of the generalized
partial Hasse invariants of Definition Let p|p be a fixed prime ideal of O and let W), be
the matrix of weights of generalized partial Hasse invariants h, for 7 € X,. Then W, is of the
form

-1 1

1
P -1

where each block has dimension e, x e, and the matrix has dimension e, f,. Let 1, denote the
vector of length e, f, whose entries are all 1. Let us write the vector of weights corresponding to
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the sheaf wu(fx’o) at the prime ideal p as

eXp —

2ep — 1)

So we want to solve for all p|p the linear system 2W, - x = (ex, +N1,)(p — 1), which admits a Z
solution. In fact, Gauss reduction gives rise to the following equation:

ep ep
(P — D)ze, s, = ((ep—l)—I—p-Z(Zi—ep—l)—I—pQ-Z(Qi—ep—l)—l—...
=1 =1
1 1
PP Y (Qi—ep—l))(p—l)
i=1

+N<1 +pep +pPep + ... +pP ey, + (e — 1)) (p—1).

Recall that Zfi 1 (271 —ep — 1) = 0, therefore, after some computations, the above equation
becomes

(P = Daeyp, = (PP —1)(1—e)(p—1) + N (pf" - 1) (1—p+pey) ,

which cleary gives z,,f, = (1 —€p)(p—1) +N(1 — p+ pey). Now one can use the explicit form of
W) to obtain the full vector x.

Now, for any ¢ € €, and for any 7 € ¥, the g-expansion of the partial Hasse invariant A, at oo(c)
is 1, by [DDW19, Lemma 1.4|. Therefore, any product of partial Hasse invariants will still have
g-expansion at the cusp oco(c) equal to 1. O

Lemma 4.2.3. Let q C Of be a prime ideal not dividing pn. For any paritious weight (k,w) €
ZE x 7, and any form f € Sgw(n;F), one has that

heX(qu) = Tq(hexf) :

Proof. We will verify this on geometric g-expansion using the explicit description of the action
of Hecke operators given by Equation |[3.18 Recall that the Hasse invariant heyx has g-expansion
equal to 1 at all cusps oo(c) (by [DDWI19, Lemma 1.4]), therefore if fo =3 ¢c., agq® for ¢ € €,

then (hexf)c = E§ec+ agqf. Moreover, since hex has paritious weight 0, hey f is still paritious of
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weight w. Let q¢ C O be a prime ideal not dividing pn, and let ¢/,¢” € € and o, € F, such
that ¢q = ac’ and ¢q~!' = S¢”. Then by Equation

a2 ((Ty(hex)) ) = Nm(q)"~ o~ (e0/205ex/262 , (((@hwhex o)
+ BRI (hex f)er) -

Nt+-ex)

Now let us look more closely at affex = /P~ The same arguments will apply to 8. As

already seen before

fv e
=TI e

plp j=11i=1
= H H T 2(2i—ep=1) hecause 7D = 71 04 w,
P.J p.J
plp =1

Ep
=1 , because 22(21' —e,—1)=0.
i=1

Moreover a(P~HNt — NmF/Q(oa)(pfl)N =1 mod w, since vy(a) = 0. Therefore one has that:

a2 ((Ty(hex ), ) = Nm(@)" a5 (@ )e) + B~ ah-1¢(fer)

4.2.2 Working in R,, = O/w™O

In order to work over rings R,,, = O/w™O, one has to lift partial Hasse invariants and construct
a product of partial Hasse invariants living in liftable weight with coefficients over R,,.

Liftings of h? modulo =™

We recall here how Reduzzi-Xiao (see [RX17, Section 3.13.1]), via a method of Emerton, Reduzzi
and Xiao (see [ERX17h, Section 3.3.1] construct lifts of the generalized partial Hasse invariants.
Recall that we denote by w” the weight of the partial Hasse invariant h., for 7 € ¥ (see Definition
1.2.1)).

m—1

Lemma 4.2.4. Let M be a positive integer divisible by 2p
Hilbert modular form

. For any 7 € 3, there exists a

hipas € HY (ShRm, Wi 0>),

which s locally the 4 =5 th power of a lift of h2 c HO(ShF, (2w, 0)).

Proof. Let U be an open affine covering of Sh*". Let U € U be an open affine subscheme of Sh*
and let h2 Us € HO (U, w(2w 0)) denote the restriction of the square of the generalized partial
Hasse invariant at 7 to Up = U Xgpec(0) SpecF, for any 7 € 3. The form hg v, can be lifted
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arbitrarily to an element h. Ur,, € H(Ug,,, gw 0)), where Ug,, = U Xgpec(0) Spec(Ly,). Since

M is a positive integer divisible by p™~!, the lift h%UR is independent of this arbitrary choice.

We now deduce that the sections {h Yueu glue together into a global section

TURy,

hirt € HO(Shp,,,wi %))

9

which is independent of the choice of affine covering U of Sh*" and locally is the %th power of
a lift of h2 € HO(Shy, wi™ ). O

Lemma 4.2.5. For any integer m > 1, let ki, = p™ 1(p — 1)(Nt + ex). Then for any integer
m > 1, there exists a Hilbert modular form hexm € HO (ShRm, l(;m’o)), which locally s the
p™ L -th power of a lift of hex. Moreover, for any ¢ € €, the q-expansion of hex,m at the cusp
oo(c) is 1.

Proof. By Lemma [4.2.4] we know that for any 7 € X, we can construct a Hilbert modular form
iLT’mefl € HO(ShRm,wgp wT’O)), which is locally the p™~!-th power of h2. In particular, it

will then have q—expansmn equal to 1 at any cusp co(c) for any ¢ € €, since h2 has g-expansion
equal to 1 at any cusp oo(c), by [DDW19, Lemma 1.4]. Moreover, by Lemma we know
that there exists a product of generalized partial Hasse invariants ey € H° (Sh w('{e"’o)), with
Kex = (p — 1)(Nt + ex). Let us write the product hex = [, oy A2, with ¢, € Z. Then taking
hex m to be HTez hT Topm—1 which is an element of H° (Sh m,wgp Dpm = (itex), 0)) gives the

result. O

Lemma 4.2.6. Let q C O be a prime ideal not dividing pn, and let m be an integer m > 1.
For any paritious weight (k,w) € Z* x Z, and any form f € Siw(n; Ry,), one has that

hex,m (qu) = Tq (hex,mf) :

Proof. We will verify this on geometric g-expansion using the explicit description of the action of
Hecke operators given by Equation . Recall that the Hasse invariant hex ,, has g-expansion
equal to 1 at all cusps oo(c), therefore if f. = Z§Ec+u{0} a£q5 for ¢ € €, then (hexymf)c
dec+u{0} agqf. Moreover, since hexm has paritious weight 0, hex,m f is still paritious of weight
w. Let q¢ C Op be a prime ideal not dividing pn, and let ¢’,¢” € € and o, € Fy such that
¢q = ac’ and c¢q~' = B¢”. Then by Equation [3.1§

a2 ((Tylhexmf), ) = Nim(@)" Lo~ =020 202 ((qhuhexn o)
+ 6_(Wt—k)/2+mm/2a%71§((hex’mf)cu) .
Now let us look more closely at o™ = P (=) (Wetex)  The same arguments will apply to 5.

As already seen in the proof of Lemma since vp(a) = 0, aP~DW+e) = 1 mod w and
therefore o™~ (P~DMt+ex) = | 16d ™. The above equation then becomes

ag(( i (hexnf)) ) = Nm(q)" o~ ™22, (((@hwf)e) + B 2a 1 (for)
= ag((Tyf)e)

¢
$((hexTyf)e) -

=a
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4.3 Unramifiedness modulo @

Here we proceed to prove Theorem @ The existence of the representation p; : Gp —
GL2(F) of Theorem follows from a standard argument, which is presented in the following
Proposition. The difficulty of the proof of Theorem [4.0.2] lies in showing that the representation
py is unramified at p.

Proposition 4.3.1. Let p be a fized prime of F above p and let S = Supp(pn). Let (k,1) be
a paritious weight such that k- = 1 for all T € ¥,. Let f € Sp1(n,F) be an eigenform for all
Hecke operators Ty, with eigenvalues A(f,q), and for diamond operators (q)1, with eigenvalues
€(q), for q a prime ideal of Op, q ¢ S. Then there exists a semi-simple Galois representation
pf : Grp — GLo(F), which is unramified at all ¢ ¢ S and such that tr(py(Frobg)) = A(f,q) and
det(ps(Frobg)) = €(q) Nm(q)" ™!, for all q ¢ S.

Proof. By Lemma [£.1.6] there exists an integer ro such that for all » > 7y, one can lift paritious
weight cuspidal Hilbert modular forms modulo p in characteristic 0, i.e.

5k+r-(Nt+ex),w(n§ O)®F ~ Sk+r-(Nt+ex),w(n§ F) .

Moreover, by Lemma [4.2.3] one knows that for any integer r the form hl f will still be an
eigenform for all Hecke operators Ty, for q as in the hypothesis, with same eigenvalues as f. Now
it suffices to lift Al f for r > ry and to apply a theorem of Deligne-Serre [DS74, Lemme 6.11]
to obtain a Galois representation p : Grp — GL2(O) such that tr(p(Froby)) = A(f,q) mod w,
for all g ¢ S. Therefore we take ps to be the semi-simplification of the reduction modulo @ of
the representation p given by Deligne-Serre. Moreover, the obtained representation is such that
det(ps(Frobg)) corresponds to the eigenvalue of the operator (q)w Nm(q)V~!. O

In order to show that ps is unramified at p, we will apply the doubling method, see [Wiel4].
We will therefore need two ways to go in higher weight. One is given by multiplying by the Hasse
invariant hex and the second one is given by the the Frobenius Operator.

4.3.1 Frobenius Operator

Recall that p is a fixed prime of Op dividing p, we take a moment to recall here the action
of the normalized Hecke operator T, on g-expansions, in the paritious weight (k,w) setting.
Let (k,w) € Z* x Z be a paritious weight. Let f € Skw(n;O) and let f = (f:)cce, Where
fo = Z£€c+ agq® is its geometric g-expansion at the cusp oo(c). Recall that we denote by
ag(fe) = Nm(c)™™ag(fc) the normalized geometric coefficients. Let o, 8 € F be such that
ep = ac and ¢p~! = B¢, for ¢, ¢/, ¢” € €. Then for any & € ¢, Equation can be written as
o o — kp— 2 — o kp— 2 — o

ag (T3 1)) = Nan(p)*~1eoy 2290202 1, (g f)er) + 02800 208 (for)

(4.3)
Since we will be working between two sets of paritious weights, in what follows we will add the

(k,w)

weights to the notation of the Hecke operator, i.e. will write T; ’ for the normalized Hecke

operator T acting on My, w(n; R).

Definition 4.3.2. Let (k, 1) € Z* x Z be a paritious weight such that k, = 1 for all T € ¥,. We
define the Frobenius operator at p on modulo p modular forms

Vot Sty (0 F) — Skprey,1 (5 F)
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to be
‘/P(f) = <p>1_1 (hex : (Tpo’(hl)f) - Tp07(k+nexyl) (hex . f))

We now proceed to calculate how the Frobenius operator acts on geometric g-expansions.

Proposition 4.3.3. Let (k,1) € Z* x Z be such that k; = 1 for all 7 € ¥y. Let f € Sp1(n,F)
with f = (fc)cee, where fo = dec+ a§q§ is its geometric q-expansion at the cusp oo(c). Then for
any € € ¢4

ag((%f)c) = a_(t_k)ﬂaz—lg(fc’) s

where o € Fy and ¢ € € such that a’ = ¢p, and a,-1 =0 if a1 ¢ ¢

Proof. Let us recall that the g-expansion of hex f and f are the same. Now since k; + (p—1)(N +
ex,) > 1 and k; =1 for all 7 € ¥, by Equation [3.20 one has that for £ € ¢

ag (17O D s f)e) = O TO g 208 (s f) o)
wép 1)(Ntp4-exyp) /QBneX/QB (wt— /C/Q o (fc”)

— Bf(Wtfk)/QaE_lg(ch)‘

where ¢ € ¢ and 8 € F, are such that ¢’ = c¢p~!. The last equality is given by the fact that

wgp —L)(0tpFexp)/ 2p(p=1)(Mt+ex)/2 — 1 in F. In fact, we already established that 8 = 1 in F (see
for example proof of Lemma D and the same holds for ng,, . It suffices then to show that

wgp_l)m"/zﬁ(p_l)m/? =1in F. Let us first remark that
@ Nm(p) ™! € ZX

In fact, vy(Nm(p)) = vy(p/*) = ey fy = #X,. Therefore, since we are now working with parallel
weights (p — 1)Nt, /2 and (p — 1)Nt/2, one has that

wép—l)mp/zﬁ(p_nmm _ wép—l)th/Q Nm(ﬁ)(p—l)N/2

(p—1)N/2
_ wép—l)th/Z Nm<p)—(p—l)N/2 (1\1?111:1((;”))) c 7.

which is congruent to 1 modulo w, by Fermat’s little theorem.
Let us now look at the g-expansion of 77 f in Sty (n;F). Since k; = 1 for all 7 € 3, for any
£ € ¢, one has by Equation

a2 ((hex(Ty "V 1)) = ag (T3 "V £)e) = =026 (o)1 f)e) + B0 205 (for),

where ¢/ € € and « € Fy are such that o’ = cp, and a,-1, =0 if a1 ¢ ¢'.
Combining the two formulae, one has that for any £ € ¢y,

JY\,O

ag((hex(Tpo,(k,l)f) . TpO,(kJrnex,l)(heXf))c) — af(wtfk)/QaZ_lg((<p>1f)c/)

and therefore ag((%f)c) = a*(Wt*k)/Zag_lg(fc:).

'Recall that we have defined normalized diamond operators in Section
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Remark 4.3.4. The adelic g-expansion for the action of the Frobenius operator makes sense only
for parallel weights (see Remark [3.3.12)), since we are working modulo w. Therefore the HMF f
has weights w = 1, k- = 1 for all 7 € X, and the action of the Frobenius operator is then:

C(m, V,f) = Nm(c) tag((Vpf)e) = Nm(c') tag-1¢(fe) = C(mp™, ),

for m an integral ideal of O, and m = &' for unique ¢ € € and & € c¢,. This is the same
formula of [DW18|, Proposition 3.6] or as in [DDW19].

Proposition 4.3.5. Let (k,1) € Z* x Z be such that k; =1 for all T € ¥y. Let f € Sg1(n;F),
then " y
0,(k+Kex,
T, (fo):hex‘f~

Proof. 1t suffices to check this on g-expansions. So let ¢ € € and f. = Z&w a£q5 be the ¢-
expansion of f at the cusp oo(c). Then for £ € ¢, as in the proof of Proposition [4.3.3] one has
that

ag ((T;,(k-&-mex,l)(%f))c) _ YD'gjofl)(thJreXp)/QIB(;D—l)(Nt—i-ex)/2ﬁ—(wt—k)/26%716((fo)cu)
— B_(Wt_k)/zagflg((%f)cﬁ) ,

where 8 € Fy and ¢’ € € are such that B¢ = ¢p~!. Now we want to apply the previous
Proposition to the cusp oo(¢”), and since ¢’p = ¢, one has that

ag((Tpo,(kJrnex,l)(%f))c) — g(wt—h)/2 (B(wfk)/Qaz(fc))
= ag(fo)
= ag ((hexf)c) .
O

Proposition 4.3.6. Let (k,1) € Z* x Z be such that k; =1 for all 7 € ¥y. Let f € Sp1(m;F)
be an eigenform for all Ty, for q a prime of O, q € S, and suppose that it is also an eigenform

for Tpo’(k’l) with eigenvalue A°(f,p).

1. The forms hex - f and V, f are F-linearly independent.

2. The F-vector space W := IF(heX . f) &) IF(fo) 15 stable under Tpo’(kJmeX’l), which acts via

o,(k,1) 1
the matriz P
—(p)1 0O

ivertible on W.

) with respect to the basis {hex, Vo f}. In particular, T;’(HK‘”"I) is

3. The Hecke operator Ty in weight (k + Kex, 1) acts scalarly on W.

Proof. 1. Suppose that there exists A € F* such that V,f = Mexf. Let ¢ € € and £ € ¢y,
then
ag((vpf)c) =A ag((hexf)c) =A ag(fc) .

By Proposition the above equation becomes

a—(Wt_k)/Qazflg(fc’) = A ag(f‘) ’
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where ¢ € € and o € F}. are such that a¢’ = ¢p, and a,-1 = 0if @7 '¢ ¢ ¢/, Let us consider
the set {n € Z>¢ : there exists ¢ € € et { € c; such that af(fc) # 0 et vy() = n}. This
set is non-empty since f # 0, and therefore it admits a minimum, ng. Let ¢ and £ € ¢4
the elements realizing the minimum ng. Then one has the following contradiction

0 # )\ ag(fc) — ai(Wtik)/2a(ol_1€(fc/) = 0 .
In fact, since vp() > 1, vy(a™*€) < no, which by minimality implies that a,-1¢(fe) = 0.

2. Let us recall that by Proposition we already know that T;’(Hﬂ“’l) (Vof) = hexf € W.

k+:"€ex71)

Now we will look at the action of T} on hey f. By definition of V,,, we can write

(01Vof = hex (T30 1) = T (hes ),

07(k71)
which gives the desired result for the matrix < p é) . This also means that Tpo (et e, 1)

—(p)

®DX 4 (p)y on W.

is annihilated by X2 — Tpo’

3. It follows directly from Lemma and by commutativity of Hecke operators (see Propo-

sition and Proposition |C.1.3)).
O

4.3.2 Nearly-ordinary Hilbert modular forms
The following definition is due to Hida (see [Hid89b|) (cf. also [Dim05, Definition 1.3]).

Definition 4.3.7. Let f € Siw(n;O) be a Hilbert modular eigenform. We suppose that O
contains all the Hecke eigenvalues of f. We say that f is nearly-ordinary at p if its T7-eigenvalue
is a p-adic unit, i.e. it lies in O*.

We recall the reader that we work with arithmetic Frobenius elements, therefore we normalize
the Artin recipocity map so that a uniformizer w, is sent to an arithmetic Frobenius Frob,.
Moreover, we take a cyclotomic character xcyc corresponding via global class field theory to the
idele class character xeye : FY\Af ; — Z) sending y to [],, Nm];pl/(@p (yp)|ys| 7. In particular,
it is such that Xcyc(wq) = Nm(q) for g not dividing p and Xeye(wy) = Nm(p) [ ], 5, 7 ()t
The following result is due results of Wiles ([Wil88, Theorem 2|) and Hida (|[Hid89a, Theorem
I.]) and by local-global compatibility for Hilbert modular forms by works of Saito ([Sai09]) and
Skinner ([Ski09]).

Theorem 4.3.8 (Hida, Saito, Skinner, Wiles). Let (k,w) be a paritious weight such that k; > 1
for all 7 € ¥,. Let f € Spw(n,O) be a nearly-ordinary at p Hilbert modular eigenform with
1y -eigenvalue A(f,Ty) € O™ . Then the associated Galois representation py : Gp — GLa(O) is

such that
X1 *

20ur choice of cyclotomic character is the inverse of the cyclotomic character used by Barrera, Dimitrov
and Jorza (see [BDJ17, Notation]). This is because they work with geometric Frobenius and we want to
work with arithmetic Frobenius.
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where x1 and x2 are characters such that on the inertia they are respectively obtained by com-
posing the Artin reciprocity map I, — O;p with the maps

X1 : Ol?m — 0%, H 7 () krtw=2)/2,
TEYp

X2 : (’)1?7p — 0%, H () Wko)/2,
TEY)

Moreover, x2(wy) = ay, the unit root of the normalized Hecke polynomial

X2 = MATHX + e(p)xte (@p) ] (=), (4.4)
TEYp

where €(p) is the eigenvalue of f for the operator (p)w.

Remark 4.3.9. Let us remark that by Equation ay is congruent to A(f,7;) modulo . This
is due to the fact that we are supposing k; > 1 for all 7 € X,.

Remark 4.3.10. We take a moment to discuss the Hecke polynomials. By our choice of convention
and normalization, the representation p; is such that the characteristic polynomial of p¢(Frobg)
is given by:

X2 = A(f, Ty) X + e(q) Nm(q)" ", (4.5)

where €(q) is the eigenvalue of (q)w for the eigenform f. Now, the Hecke operator T} is normalized
and by abuse of notation we can see it as

7y = [[ (@)1,
TEYp

where the operator T}, is not well defined, but we use it here to highlight the different normal-
ization taken for the Hecke operator at p compared to the operator Tj. In particular, the Hecke
polynomial of Equation [£.5 will not have integral roots for q = p. So the polynomial of Equation
[4:4] is obtained by multiplying the roots the Hecke polynomial of Equation [£.5] by the factor
[ cs, T(wp) k"2,

Remark 4.3.11. Let (k,1) be a paritious weight such that kr =1 for all 7 € £,. We remark that
for paritious weights (k + rkex, 1), the characters x; and x2 of Theorem are unramified
modulo w. In fact, for x € O;’p, one has that

~ 1_(1‘?T+T’€ex,7) .
x2(z) = H 7(z) 2 , sincew =1
TEYDy

= H 7(z) 5 , since kr =1 for all 7 € %,
TEYY

fo e B '
= H HTp(l]) ()~ B (02(2i e, -1)) , (recall that N is even.)
j=1i=1

f
o _7‘(1)*1)Nep . (l) . (1—1)
= H Tp.j (2) 2 mod @ , since 7, =7, mod w
Jj=1

CrNep fp—1 .
=7p1(z)” 2 (p=D(A+p+-4+p"")  110d | since Tpj = Tﬁj—l mod @

=1 mod w.
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The same calculations apply to x1. Therefore, the characters x; mod w and xs2 mod w are
unramified at p.

4.3.3 Proof of Theorem [4.0.2|

We will follow the strategy of the proof of [DWI8| Theorem 1.1] to prove our result.

First, let us introduce a piece of notation. Let R be an O-algebra and le € denote an R-
valued finite order Hecke character of F' of conductor dividing n. We denote by Sy w(n,€; R) the
sub-R-module of S, (n; R) of forms on which the operators (q)w act via e(q), for all prime ideals
q C Op coprime with n.

Now, let us recall that we are considering a cuspidal form f € S, 1)(n; F), which is a common
eigenvector for all Hecke operators Tq(k’l) for all ¢ S D {v : a a place of F,v # p and v|pn}.
Since the diamond operators (q); commute with all Hecke operators, there exists an F*-valued
Hecke character €, whose conductor divides n and a form, still denoted f € S 1)(n, €; F), sharing
the same eigenvalues as f. So from now on, we will work with such an eigenform f € S, 1)(n, &;F).
The following is a corollary of the previous theorem.

Corollary 4.3.12. Let f € S(k71)(n,e;lﬁ‘) be an eigenvector for all Hecke operators Tq(k’l), for

q ¢ S = supp(pn) and for Tpo’(k’l) with eigenvalues A(f,q) and \°(f,p) respectively. Let oy € F*
be a root of X2—X°(f,p)X +e(p). Then Ps1p, + Dy = GL2(F) admits a 1-dimensional unramified
quotient on which Froby acts by ay.

Proof. Let us construct the subspace W := F(hex f) BF(Vp f) C Sptrer,1(n, € F) as in Proposition
By part 2. of this Proposition, we know that T; (ktrexl) aets on this W via the matrix
<A°(f,p)

—e(p)

fa;; € W which is an eigenform for all Hecke operators Tq(kJr'(”e"’l
(k-‘r:‘fex,]-)

1 . : . . . .
0), and by hypothesis oy is an eigenvalue of this matrix. Therefore there exists

) with eigenvalues A(f,q) for

q 1 np and for the Hecke operator T; ’ with eigenvalue ayp € F*. Multiplying by a big
enough power of hex, we can bring the system of eigenvalues of fag to liftable weight and in

particular, by Lemma there exists f € Sktrre,1(n, € O) with eigenvalues lifting those of

fag, where € is a lift of e. Moreover, f is nearly-ordinary at p, since Tpo’(kJmC"’l)f = oy f, where

&vg € O is a lift of ay, which is not 0 in F. Now by Theorem [4.3.8] the Galois representation p 7
attached to f is of the form
X1 *

where x1 and yo are characters such that they are unramified modulo @w by Remark [4.3.11]
Therefore, py admits an unramified quotient. Moreover, Froby, acts on this unramified quotient

since by Theorem X2(wp) = &vg = ap mod w. O

: o
via ay,

Now one has to distinguish two cases: when the polynomial X2 — X°(f,p)X + e(p) admits
distinct roots ayy # B, and when it has a double root ay.

Distinct roots «a, # 3,

If X2 —X\°(f,p)X +¢(p) has two distinct roots ay and fy, it suffices to apply Corollary |4.3.12|to
(f;ap) and to (f, ;) to get that pgp, admits two distinct unramified quotients on which Frob,
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acts via ayp and ;. Therefore py is unramified at p. Moreover, tr (pf(Frobp)) =ap+ 8 =
A°(f,p). This proves the theorem in this case.

Double root a,‘j

We now treat the case where X2 — \°(f,p)X +¢(p) = (X — ag)Q, and we will need to introduce
some notation. Let

T*D = im <O[Tq(k71)7 (@)1]qtpn — Endo (Sg1(n; O»)

denote the Hecke algebra acting on S, 1y(n; O) and set Tk .= k1) [T:’(k’l)] inside the ring
Endo (Sk,1(n; O)). Moreover, we will denote

T]%k’l) = im (O[Tq(k’l)a (@)1]qipn — Endo (Ska(m; FD)

and ’T‘I(Fk’l) = Tﬁ;k’l)[TpO’(k’l)] inside Endo (Sk,1(n;F)). Recall that by Lemma (k + TKex, 1)

is a liftable weight and therefore one has an isomorphism
TI(Fk+7“neX71) o~ T(k+rmcx,1) Qo F,

which induces a surjection TH+7rexl) —, TI(FkereX’l). Moreover, by Lemma one has a
o (k+7ex,1) (k,1)
surjection Ty — T, To recap:

T(k‘+7”iexvl) _y T]g?k“r'rﬁex:l) N T]%kvl) (46)

Let m denote the maximal ideal of TI(Fk’l) corresponding to the Hilbert modular cuspform f €

Sk,1)(; F) of Theorem |4.0.2L We will also denote by m the maximal ideal of TI(FkereX’l) or of
T(k+7r5e01) defined as the pullback of m C TI(Fk’I), via the surjections in Equation 1} Let m
denote the maximal ideal of ’i‘I(Fk’l) corresponding to (f, o). We will still denote m the ideal of

’i‘gﬁwneml) or of 'f‘(kerex’l), defined as the pullback of m C T%k’l).

(k+HeX71) (k+7'l‘iexa1)

Lemma 4.3.13. The Hecke operator T;’ does not belong to Ty, Ko F. Moreover,

1t does not belong to TETIierex’l).

Proof. By the lifting Lemma TI(Fkere"’l) = mlbtrresl) @ F. So if Tpo’(kJme“l) belonged to

Tﬁﬁ”““’l), it would belong to TFk:;mC"’l). Let us now proceed to show that this is impossible.

Let W C Sktre,,1(n;F) denote the F-vector space of Proposition and recall that on this
k
T

space the Hecke operators Tq(kJme’“l) act scalarly, while the operator 7T, Freab) o cts with minimal

polynomial X2 — X°(f,p)X +¢€(p) = (X — a§)2. One has the inclusion

hg;lw C Sk-l—r/iex,l (n; IE?)m )

which is equivariant for all Hecke operators Ty, for q ¢ S. So if T; (i 1) belonged to TI(Fkl—;mex’l),
it would belong to the Hecke algebra generated by the operators for q ¢ S acting on

hL W, But by what we have said before, we know that this algebra acts via a character, while

Tpo,(k-i—liexvl) does not act Semi—SimPIY' )

T(k—l—rnex,l)
q
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We can now proceed to complete the proof of Theorem for the case where X2 —

2(f,p)X + €(p) = (X —ap)?. Since T#+rreel) s torsion free and generated by Hecke op-

erators away from the level and p, one has that T£ﬁ+mex’1) ®o K ~]] gEN K, where N denotes

the set of all newforms contributing to Skrx.,.1(n; O)m, where we now suppose that O is big
enough to contain all eigenvalues of all newforms g € V.

Recall that by Proposition we already have constructed the Galois representation py
attached to f, which is semi-simple. If p; is not irreducible, then it is the sum of two characters
X1 @ x2. In particular, since the determinant of p; is unramified at p, then the product x1x2 is
unramified at p. So if one of the two was ramified at p, so would the other, but this contradicts
the existence of an unramified quotient of Corollary Therefore, the only possibility is
that both x1 and x2 are unramified at p, and hence p; is unramified at p.

Let us suppose that the Galois representation py attached to f is absolutely irreducible, and

therefore by [Car94, Théoréme 2|, there exists a free of rank two TEFeeD)_module M with a

continuous action of G such that the G action on M induces a Gp-equivariant isomorphism

M®@o K ~ H V(g),
geN
where V(g) denotes the K[Dy]-module corresponding to the Galois representation attached to

g. The T;’(kJrHex’l)—eigenvalue for any g € N is an element of O*, reducing to ap modulo w, ie.

each g € N is nearly-ordinary at p. Therefore, by Theorem one has a short exact sequence
of K[Dy]-modules
0—V(g)" — V(g — V(g™ —0,

where V(g)™ and V(g)~ have dimension 1 over K. Moreover, D, acts on V(g)~ /wV (g)~ via
an unramified character mapping Froby to ay € F. Now, let M* := M N[ c\ V(g)" and let
M~ :=1Im (M — 11 gEN V(g)‘). Then the above exact sequence induces a short exact sequence
of Tiktreesl) [Dp]-modules
0—MH—M-— M —0.
Reducing modulo the maximal ideal m gives a short exact sequence of F[Dy]-modules
M/ mMT — M/mM — M™ /mM~ — 0.

To prove that py is unramified at p, it now suffices to show that the F[Dy]-module M/mM is
isomorphic to its unramified quotient M~ /mM ™.

Let us then study the F[D,]-module M~ /mM™. Since M~ is not 0, by Nakayama’s lemma for
the local O-algebra Titrrec) he F[D,]-module M~ /mM™ is not the 0 module. In particular,
as an F-vector space it has either dimension 1 or 2.

Suppose that dimp M™/mM™ = 1, then Nakayama’s lemma produces a surjective homomor-
phism TEﬁerc"’l) — M™ as TEﬁercx’l)—modules. However, they have the same rank over O

and therefore M~ is a free T,(rﬁere"’l)—module of rank 1. In particular, by Theorem the

uniformizer wy, acts via local class field theory on M™ via an element U € (T%ercx’l)

Since for every g € N the eigenvalue of U on g is the unique unit root of the Hecke polynomial
X2 - T;’(’H”ex’l)X + ()11 1res, 7(wp)FrHrRexr=1 on g, one has that

k ex;l k eX71
TSﬂ-l—rn ) T](F I—:"H )

Ov(k“!‘/‘iex»l)
Ur—1T, ,
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which implies that 7T, po’(kJme"’l) € T](Fk:;me"’l), but this contradicts Lemma [4.3.13|
Therefore dimp M~ /mM ™~ = 2, which implies that M/mM ~ M~ /mM~. Let us now look
at the action of Frob, on M/mM. We know that w, acts on each V(g)~ via the unit root

a(g,p) of the polynomial X2 — &EX +e(p) HTeZp 7(wwp)"e" and therefore a(g, p) reduces to aj
modulo @ and that Froby acts on each V(g)~/mV(g)~ via a. Moreover, since M~ /mM"™ is a

o

*
quotient of two lattices in [, V(g)™, Froby acts on M/mM via a matrix <083 a°>’ which
p

implies that tr (ps(Froby)) = 2ap, = A°(f,p). This completes the proof.

4.4 Future Prospects

In this paragraph we illustrate future possible directions of the work of this thesis. Recall that
K is a finite extensions of Q,, containing the images of all embeddings of F' in @5, and that we
denote with O its valuation ring, @ a uniformizer and F = O/w. We denote then

M (13 K /0) = Timn M <n; w{ﬂom) ~ lim My (n; O/™0) (A7)

For any paritious weight (k,w), the R-module of Hilbert modular forms My, (n; R) is equipped
with a commuting family of Hecke operators T; and normalized Diamond operators (q)w (see
Section for any prime ideal q¢ C Op not dividing pn. We then define the paritious weight
(k,w) Hecke algebra as

TH) = im (O[T, (@)wlgipn — Endo (M (n; K/0))) . (48)

Moreover, as detailed in Chapter [3] we recall that Emerton-Reduzzi-Xiao have constructed in
[ERX17a| the Hecke operator T}, for all primes p in O above p.

Our future goal is to show the following generalization to non-parallel paritious weight 1
Hilbert modular forms of results of Dimitrov-Wiese ([DW18, Theorem 1.1]), Deo-Dimitrov-Wiese
(IDDW19]) and of Emerton-Reduzzi-Xiao (JERX17a, Theorem 1.1]).

Expected Theorem 4.4.1. Let p|p be a fized prime in Op, and let (k,1) € Z* xZ be a paritious
weight such that k; = 1 for all T € X,. Then there exists a T®D yalued pseudo-representation
P®EY of G of degree 2 which is unramified at all primes q not dividing pn and also at q = p,
and such that PV (Froby) = (Ty, (q)), for any such q.

In particular, if the localisation of PV at a mazimal ideal m of T*V is residually absolutely
wrreducible, then the corresponding representation

pm: Grp — GlLo <T,(Hk1’1))

exists and is unramified at all primes q not dividing pn and at q = p and satisfies tr(pm(Frobg)) =
Ty and det(pm(Frobg)) = (q), for all such primes q.

In Lemma we already showed that there exists a product of partial Hasse invariants
hex,m that we can use to bring our forms modulo @™ in liftable weight and then apply Lemma
One would then need to use partial Theta operators, as done by Deo, Dimitrov and Wiese
in [DDW19| and study p-ordinary pseudo-representations, to apply the strategy of Calegari and
Specter (JCS19]).



Appendix A

Some Algebraic Geometry

In this section we will recall and show some results of algebraic geometry used in this text.

A.1 The sheaf L),

Let A be a ring and X ER Spec(A) be a scheme over A. Let M be an A-module and £ a coherent
sheaf on X. As explained in [Har77], one can construct a sheaf M which is a Ogpec(4)-module,
i.e. a sheaf of modules over Ogpec(a). Moreover, M is quasi-coherent as a sheaf of modules on

Ospec(4)- Applying pullback, one gets f *M which is a quasi-coherent Ox-module (again this is
shown in [Har77|). One can define

Ly:=L Koy f*M

as the tensor product of two Ox-modules which is a quasi-coherent Ox-module. Now we want
to see how this sheaf looks on open sets U C X.

Claim A.1.1. For any open U C X, Ly(U) ~ L(U) @4 M.

Proof. Recall that for V' an open subset of Spec(A)

M (V) = Ogpec(a)(V) @4 M
and for U an open subset of X
FFMU) = fMU) @104, 4 @) Ox (U) -
Let’s first try to calculate f_lﬂ(U).
FIMU) = lim M(V)
Vo)

=l (Ospec(y(V) @4 M)
VO rf(U)

o~ ( lim OSpec(A)(V)> ®a M
VD f(U)
=A QRKaM~M
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Therefore, we have that .
ffMU)~M®sO0x(U) .

Using the definition of the tensor product of sheaves, one gets that

La(U) = £{U) @0y @) (M @4 Ox (1))
~ L(U)®4 M.

O

Therefore, one can see the sheaf Ly as £L ® 4 M, which is the definition used in the text.
Moreover, one now knows that it’s a quasi-coherent sheaf on X.
If A is a local ring, which is the case for the main text, for every x € X one gets that (Lr), =
L, ®4 M. In fact, by known results of algebraic geometry, one would have (Lp), = L, ®4 =)
My, but Ay, = A since A is already a local ring, and therefore also Mg,y = M.

A.2 Torsion in Cohomology Rings

Recall that X is a modular curve over Spec(Q) and w its sheaf of differential. By the previous
section, the sheaf wg /o is well defined. One can see that it can be identified with the direct limit

hgl wo/wmo .

Our interest is now to show that modular forms with coefficients in O/@w™ can be identified with
the w™-torsion of modular forms with coefficients in K/O.

Proposition A.2.1. There is a natural isomorphism
HO(Xv wO/me) = HO(Xa wK/O)[wm]
Proof. To show this isomorphism we will proceed in different steps.

1. multiplication by @™ is a morphism of sheaves.
Let us consider the map

@ W0 = WK/O

defined on open sets U C X by

w™(U) : wijo(U) — wijo(U)

T — zw’

as a homomorphism of O-modules. To show that it’s a morphism of pre-sheaf, one has to
check that this map commutes with restriction maps. Let V C U be affine open subsets
of X and ayy : wg/0(U) = wi/o(V) the restriction map for wg/p. One then considers
the following diagram

wijo(U) ~Z wio(U)

\LQUV \LOCUV

wijo(V) ~Z% wijo(V)
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By the previous section we know that w0 (U) ~ w(U) ®o K/O and since U is an affine
open, this quantity can actually be seen as M ®p K/O, where M is an O-module. The
same can be done for V, i.e. one gets wK/O(V) ~ N ®o K/O for some O-module N. In
particular ayy = ayny ® id, where ayny : M — N is a morphism of O-modules. The
diagram above becomes

M @0 K/O - M @p K/O
la]\/IN®id lOlMN®id

N ®o K/O -2 N ®o K/O
which is clearly commutative.

2. wo/wmo = wijo[@™].
Now we want to show that wy/mmo =~ wi/p[w@™] as sheaves, which we will prove on the
stalks. Let us first recall that K/O[@w™] = O/@w™O. Recall that wg o[w™] is defined as
the sheaf kernel of the multiplication by w™; and that given a morphism ¢ : F — G of
sheaves, the stalk at a point z of the kernel presheaf is the kernel of ¢,. Looking at the
previous section, one can see that wg/p[@"™] = (w ®e K/O)[w™]. Since w is an invertible
sheaf, its stalks are free modules, therefore flat. By the previous section we know that the
stalk of wg /o at a point x € X is isomorphic to the tensor product of the stalk of w at
with K/O. In other words, (Wi /0)z =~ we ® K/O. So, if we take the short exact sequence

0= K/O[@™ ~ 0/m™0 — K/O =5 (@™)K/O — 0
tensoring with the flat module w,, we still get an exact sequence:
0= wy ® K/O[™] = wy ® K/O = w, @ (@™)K/O — 0
Therefore
(we ® K/O)[@"™] ~ w, ® K/O[w™]

~w, ®O0/w™O

= (W(’)/me)gC
which means that at every z € X, (wo /wmo)x ~ (wgo[@™])z, Which gives wp/omo =~
wi/o[@™].

3. HY(X,wk/ol@™]) ~ H(X,wk/0)[@™] Recall that the cohomology of level 0 is just the

global section. One has that H'(X, wg o[@™]) = wi/o[@™](X) and H)(X, wg/0)[@™] =
wr/o(X)[@™]. Looking at the exact sequence of sheaves

0— wK/O[wm] — WK/O E——) WK /0

and conjugating it for X
0 = wi/o[@™|(X) = wi/o(X) == wi/o(X)

one gets that wy o [@w™](X) is isomorphic to the kernel of the map wg /o (X) =, wi/0(X)
which is exactly wg /o (X)[@™].

O
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Appendix B

Descent

In this brief appendix, we will recall some results of Descent theory that we apply in the thesis.

Definition B.0.1. Let S be a scheme and let f : X — Y be a morphism of S-schemes. We say
that a quasi-coherent Ox module F descends to Y, if there exists an Oy-module G such that

G~ F.

In general, the theory of descent studies the equivalence of fibered categories. Here we will
recall some results that can be applied in our case. We are particularly interested in two specific
case:

1. When Y is the quotient variety X/G by an (abelian) group G and f is a finite étale
covering;

2. When X and Y are respectively the toroidal and minimal compactification of a modular
variety and f is the corresponding map between the two compactifications (see Section

for more details).

B.1 Finite descent

The following is [Stal§, Lemma 35.6.2]

Lemma B.1.1. Let 7 : X — Y be a surjective finite étale morphism of S-schemes. Let G be a
finite group together with a group homomorphism G°PP ~ Auty (X), mapping o — fo, such that
the map

GxX—XxyX
(0,2) = (2, fo(2))

is an isomorphism. Then The category of quasi-coherent Oy -modules is equivalent to the category
of systems (F, (¢o)occ) where

(i) F is a quasi-coherent Ox-module;
(i) @5 : F — fXF is an isomorphism of Ox-modules;

(111) Yor = fior 0@, forall o, € G.


https://stacks.math.columbia.edu/tag/0D1V
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Let us recall that in our situation, we have provided the line bundles w, and 5, defined over
Y, with an E-action, mapping respectively a local section s to 7(g)~1/2[¢]*s and a local section
s to 7(¢)71[e]*s. This correspond to the isomoprhism ¢, of the above lemma. It is easy to
check that these maps satisfy the conditions of Lemma [B.1.1], since the group E is abelian, and
therefore they descend to line bundles w; and d,; over the quotient variety Sh.

In particular, for a finite abelian group G, one can see that if G is a quasi-coherent Oy-
module corresponding to a system (F, (¢s)seq), then

HO(Y,G) = H(X, F)©, (B.1)

which is the set of global sections which are invariant under the action of G. Therefore, in
our case, the set of Hilbert modular forms H°(Sh,w**) corresponds to the subset of elements in
HO(Y, Wk ) which are invariant under the action of the group E.

B.2 Descent for the compactifications

As seen in Section [2.1.4] one can construct the toroidal and the minimal compactification of the
moduli space Y., and moreover one has a surjectif morphism

YR s ymin
which is an isomorphism on Y.

Lemma B.2.1. The line bundle &f , = ®Tez(wgoéj)®m on Y% descends to a line bundle on

Yf}f if and only if uF/? .= [Les 7(u)* /2 acts trivially in R, for all u € (’);}n.

In characteristic 0, Lemma implies that the sheaf w* descends to the minimal compact-
ification if and only if k is parallel (as stated in [Dim04, Théoréme 8.6(vi)]).

Proof. We will prove this on formal schemes, and in particular on the formal completion at the
cusps. By [Dim04, Théoréme 8.6(v)|, we know that the formal completion of Y% at the inverse
image m1(C) of a cusp C of Y g, seen inside Yglﬁl, is Séc/(’);’n x Spec(R). This tells us that
the sheaf wf p will descend to an invertible sheaf on the minimal compactification Yglli%n if and

only if wfi r can be trivialized over S§c/ O;‘,n x Spec(R). Moreover, the formal completion of Yaoé

at the cusp C of Y g, seen inside Y{%, is S§c x Spec(R). In particular, we have the following
surjective morphism of formal schemes:

S%e x Spec(R) — S5 /O, x Spec(R) (B.2)

As seen throughout the thesis (see Remark m and proof of Proposition , the sheaf wf R

can be canonically trivialized over Sgc x Spec(R) as follows:
Of rlsp, xspec(r) = (a® O)F @0 R®0 Oy,
where C = (a,b, H,1i,j, A\, ) (see Definition . Moreover, an element u € O acts on this
%y /2

sheaf via multiplication by u*/2 = [], .y, 7(u)*"/2. In particular,

HO(S/E\C/(’)}X;,“XSpeC(R),wf’R) = { Z agq® : ag € (a®0)* @o R, a,e = u?ag for all u € (’)}X,’n},
ce X u{o}
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which is not a priori of rank 1 as a projective module. Therefore the pullback of wf R to S/E\C X

Spec(R) via the map in Equation will be canonically trivial if and only if ©¥/2 acts trivially
in R. O

We have applied this Lemma in the proof of Lemma to descend the sheaf cbﬂ(;ex’ 9 to an
ample invertible sheaf over the minimal compactification.
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Appendix C

Extra Calculations with g-expansions

We collect in this appendix proofs by computations on g-expansions of well known relations
between the various operators defined throughout the thesis.

C.1 Proofs by calculations on g-expansions
We will use here the Notation of Chapter

Proposition C.1.1. Let f € My w(n;R). Then To(Tqf) = T4(Tif) for all ¢, q prime ideals of
Op, coprime with np.

Proof. We prove it on g-expansions for non-normalized Hecke operators, using Equation ([3.19).
We want to show that for any ¢ € € and £ € ¢

a¢ (L(Tef)) ) = a¢ (T(T21)),) - (C.1)

Let us start by applying Equation (3.18)) to the left hand side of the above equation. Recall that
we take ¢/, ¢’ € € and o, 8 € Fy Such that acd = cv and B¢” = v~ !, then we have

a¢ ((T(Tyf)),) = Nm(©)" o af (o f)e) + B agor (Tof)er)
= Nm(©)* o™ (Nm(@)" @ 05016 (@w(Oh o) + B 005, e ((Dufer))

+67 (Nm(Q)W_lé_EG?&ﬁ)—lé((<q>w M) +5 “ore e ))’

where ¢'q = ad’ = B¢ "q = ac’ and 'q~t = B¢, for &, ¢, € € and &, B, a4, B € Fy.
Rearranging the terms, one has that

ag ((T«(Tyf)),) = (N (t) m(Q))W_l(dO‘)_éa?da)—lg((<t>W<q>wf)E’)
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. Let @,¢" € € and &, f € F such
aac/ o _ iﬁ%/ e = ,Ba ¢ and

Let us now look at the right hand side of Equation (C.1))
~1. Then one has that ¢t =
twice with these representatives, one gets that

(((e)wladws)e)

ap)‘a a5 1e(((@whz)
3 o)1 (BwS)er)

(Ga)-1¢

that ac’ = ¢q and 3¢’ = ¢q
[ % Applying Equation (3.19
o w—1l,. (—
ag ((Ty(T:f)),) = (Nm(x) Nm(q))"" (aa) ‘a
+ Nm(q)"~(

(

+ Nm(t)" " 1(Ba)ta

2a\—£ 0 .
SCORCFNNI

O

and therefore the commutativity of the operators
The following Proposition is a direct consequence of Proposition M( ). However, we show

k+ﬁc>ul)( hexf) + €(p)(hexf) =0

it here via computations on g-expansions
Proposition C.1.2. Let f € S, 1(n, €;F) be an eigenform for all Ty, for q a prime of O, q 1 np,
and suppose that it is also an ezgenform for TO D) ith eigenvalue \°(f,p). Then the T, (ktties 1)

operator is such that (T, T2 (kFriexl) ) (hexf) = X°(f,p) T
Proof. Let us start by looking at the g-expansion of hey f for any ¢ € €
S(hex)e)d* =D ag(fo)d* .

(hexf)c = Z
§€ct

£€ct

(( exf)c”)

Now by Equation one has that for £ € ¢
l)hexf)c) — p 1)(th+exp)ﬁ (k— t)/2+nex/2 o
(p 1)(Ntp+exp) Bnex/25 (k—t) /2a% lg(fc”) ,

Ov(k‘i’ﬁex:l)

o 07(k+K/EX’
ag (T,

I / no_ o1 (p—D)(Ntptexp) ey /2 —
where ¢ € € and 8 € F are such that S¢” = c¢p™". Recall that w, 15} =1
mod w (see proof of Proposition|4.3.3|), and therefore aé(( 70kt rex1) hex[)e) = BE=D/240 1£(fc//)
Now let us look at the action of T;’(k D on f: for any £ € ¢, one has that

fe) O7 k),l e} e}
ag((T; V1)) = a®792a2 L ((phwf)e) + B0 0g(fer)
= e(p)al* 9205 (fo) + BETRafo (for)

where ¢ € ¢’ and « € Fy are such that ac
& on f as follows: let € € ¢, then

o k,1 — o
(( o( )f)) e(p)a (k t)/2aa71£(fc/)

on hexf via the action of T,
Tov(k"ﬁ“iex: exf) )

ag (T
", one gets that
ag (1" fen) = e(p)B ape ()

If we transpose this to £ € ¢
o 0,(k+Kex,1
((Tp (s exf)c”)

Gg

¢p. Then we can re-write the action of T,
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o,(k+£ex,1)

Let us now apply a second time the T, operator to hex f: let € € ¢y, then

ag((Tpo,(k—i-nex,l)(T;,(k—i-nex, hef))e ) 5 (k—t)/2, 2 5((Tpo,(/’c—i-mex,l)hexf)c”)
= 809208 (T3 ") f)eor) — ep)ag(fe) -

By hypothesis f is an eigenform for T; (kD) o eigenvalue \°(f,p). In particular, for any ¢ € €

and for any £ € ¢y, ag (1, o(k 1)f)c) = A°(f,p)ag(fc). Therefore the above equation becomes:
ag (T @ Dhee £))e) = X (£ )82 a e (fer) — elpag()
= A P)ag (1T Ve f)e) — elp)ag (hexf)e) -
Therefore, one gets that T, (tresd) 5o annihilated by X2 — \(f,p)X + €(p) id. O

The following Proposition is used in the proof of part (3) of

Proposition C.1.3. Let f € Sy 1)(n,6,F) a Hilbert modular form of partial weight 1, with
parallel weight 1 over the fixed place p above p. Let q be an integral ideal of O, coprime with
np. Then the operators Ty and V, commute, i.e.

T () = (1) ©2)

Proof. We will prove it on geometric g-expansion, i.e. we want to show that for any £ € ¢y,
where ¢ € €, one has that

a (@ =P Wp),) = a((%@),) - (C3)

Let us start on the right hand side. Let ¢ € € and a € F; such that ac’ = ¢p. By Proposition

— (k,1) k—t)/2 (k1)
0 (BT 1)) = a®972a8 (T 1))

Let ¢,¢ € € and &, § € Fy such that ¢q = a¢ and ¢/q~! = $¢’. Then by Equation (3.19) and
since w = 1, one has that

a2<(%(Tq(k,1)f))c> — o072 (e(q) (k— t)/2a?w lf(fc)_‘_ﬁk —t)/ (ﬂ . 1§(fc”)>
= e(a)(@) " %al; g (for) + (Ba) T 2as L (fer)

Let us now look at the left hand side of (C.3)). Let ¢,¢” € € and a, B € F, be such that cq = ac’
and ¢q~! = B¢”. Then by Equation (3.19)

aE((Tq(kJrnex,l)(%f))c) _ e(q)d(k—t)/2a&_1§((fo)y) + B(k_t)ﬂagflg((%f)zn)

Remark that ¢'p = %dE’ and that ¢'p = %ﬁE” , and by Proposition 4.3.3| the above expression

becomes

a

+ g0/ (aﬁ>(k_t)/2 5-1¢(fe)
B Uap)-1el]e

=\ (k—t)/2
ag (1= (%0), ) =e(a)alh=9"2 ((““) a<aa>—ls<fa>)
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Therefore the left hand side
o k Kex, ~ — > _
ag (T =D (1)), ) = @) (@) ™ 2aa0) ¢ fo) + (Be) =0 2a 5, ie(fer)
coincides with the right hand side. O

This in particular means that if f is an eigenform for Tq(k’l), with eigenvalue A(f,q), then V,
is also an eigenform for Tq(kJrF"ex’l) with same eigenvalue. In fact, Tq(kJme"’l)(VLf) = %(Ték’l)f) =

Vela(f,a)f) = A f,a)Vaf.
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