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Résumé: Cette thèse étudie les formes modulaires de Hilbert de poids arbitaire avec coeffi-
cients sur un corps fini de caractéristique p. En particulier, on calcule l’action des opérateurs de
Hecke, y compris aux places divisant p où ils ont été construit par Emerton, Reduzzi and Xiao,
sur les q-développement géometriques attachés à ces formes. Comme application nous montrons
que la représentation galoisienne attachée à une forme propre cuspidale de Hilbert mod p, qui a
poids parallel 1 en une place p divisant p, est non-ramifiée en p.

Abstract: This thesis studies Hilbert modular forms of arbitrary weight with coefficients
over a finite field of characteristic p. In particular, we compute the action on geometric q-
expansions attached to these forms of Hecke operators, including at places dividing p as con-
structed by Emerton, Reduzzi and Xiao. As an application, we prove that the Galois represen-
tation attached to a Hilbert cuspidal eigenform mod p, which has parallel weight 1 at a place p
dividing p, is unramified at p.



Ai miei genitori, Maria Pia e Cosimo
e a mio fratello Alberto.
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Introduction

This thesis is divided in two parts: in Part I, we study Galois representations of the absolute
Galois group GQ with coefficients modulo p-powers which are unramified at p, whereas in Part II
we study Hilbert modular forms of partial weight, posing particular attention to partial weight
one Hilbert modular forms modulo p.

In Part I, we put ouserselves in the context of Serre’s modularity conjecture for weight 1 forms
modulo prime powers. Serre’s modularity conjecture, now a theorem of Khare and Wintenberger
[KW09], states that a continuous irreducible odd Galois representation ρ : GQ → GL2(Fp) is
modular, i.e. it arises as the reduction modulo p of the Galois representation attached to a Katz
modular eigenform. In particular, Edixhoven’s formulation of the weight in Serre’s conjecture
states that those representations that are unramified at p correspond to Katz modular forms of
weight 1 with coefficients over Fp. This was proven by by Gross([Gro90]) in the p-distinguished
case, by Coleman and Voloch ([CV92]) for p ≥ 3 using companion forms. Wiese ([Wie14])
showed the unramifiedness at p of the representation attached to weight 1 forms without any
assumptions on the prime, i.e allowing p to be 2. In Part I, we prove one side of Serre’s modularity
correspondence for weight 1 forms modulo prime powers.

Theorem A. Let p ≥ 3. Let O be the ring of integers in a finite extension K of Qp, $ be a
uniformizer of O and O/$ = k. Let ρ : GQ → GL2(O/$mO) be a continuous representation
and ρ̄ : GQ → GL2(k) its residual representation of conductor N . Suppose that ρ̄ and ρ are such
that:

• ρ̄ is odd and irreducible;

• for all primes `, either ρ(I`)
∼−→ ρ̄(I`) or dim(ρI`) = dim(ρ̄I`);

• ρ is unramified at p.

Then ρ is modular of weight 1, i.e. there exist a modular curve X depending on ρ̄ and a normalized
eigenform f ∈M1(X,O/$mO) such that ρ is equivalent to ρf .

This result is an application of theR = T theorem of Calegari and Geraghty ([CG18, Theorem
1.3]). Calegari and Specter [CS19] show the other side of the Serre’s modularity correspondence,
in the sense that they show that Galois representations arising from modular forms of weight 1
with coefficients modulo $m are unramified at p.

The heart of this thesis is Part II, where we study Hilbert modular forms of arbitrary weight.
In the literature, most authors work with parallel weight Hilbert modular forms, whereas here
we want to work in arbitrary weight. We now proceed to present the setup of Part II.



2 Introduction

Let F be a totally real field of degree d > 0 and p be a rational prime. Denote by O the
ring of integers of a finite extension of Qp, by $ a uniformizer in O and let F := O/$O. Let Σ
denote the set of p-adic embeddings of F . The weights of our forms will be indexed by this set.
In particular, we decompose this set as follows Σ = ∪p|pΣp, where Σp is the subset of embeddings
inducing the place p. Moreover, we fix an ordering of Σp = {τ (i)

p,j : j = 1, . . . , fp and i = 1, . . . ep}
(see Notation for more details) and uniformizers $p of OF,p. Finally, let n denote an ideal of OF
prime to p, which will be our level.
Since we want to allow p to ramify in F , we will work with the Pappas-Rapoport model of
the Hilbert modular scheme over Spec(O), which we will denote Y (see Definition 2.1.1), as
constructed by Pappas and Rapoport in [PR05] and made explicit by Sasaki in [Sas19]. This
scheme classifies d-dimensional abelian schemes π : A → Spec(O) endowed with a prime-to-p
polarization, a n-level structure, and a filtration of the sheaf π∗Ω1

A/Spec(O), which depends on
the choice of ordering of Σ. The filtration is what allows us to work with primes p that ramify in
F , and we will describe it here over the universal abelian variety π : A → Y. One has a natural
direct sum decomposition

ωA/Y := π∗Ω
1
A/Y '

⊕
p|p

fp⊕
j=1

ωA/Y,p,j .

Then for each p and j ∈ {1, . . . fp}, we are given a filtration of the sheaf ωA/Y,p,j :

0 = F (0)
p,j ⊂ F

(1)
p,j ⊂ . . . ⊂ F

(ep)
p,j = ωA/Y,p,j ,

by OF -stable OY-subbundles, such that each subquotient is a locally free OY-module of rank one,
which is annihilated by the action of $p. Using this filtration and following Emerton, Reduzzi
and Xiao ([ERX17a]), we are able to define line bundles

ω̇
τ

(i)
p,j

:= F (i)
p,j/F

(i−1)
p,j ,

as successive quotients of the filtration. As said before, we are interested in working with arbitrary
weights, and in order to do so, one has to twist the sheaves ω̇τ by trivial line bundles coming
from the de Rham cohomology:

δ̇τ :=
(
∧2
OF⊗OY

H1
dR(A/Y)

)
⊗OF⊗OY,τ⊗1 OY .

These line bundles are trivial over Y, but they carry a non-trivial action of the unit group E :=
O×F,+/(O

×
F,n)

2 (see section 2.2.2). In fact, since we are interested in the Galois representations
attached to Hilbert modular forms, we will have to work with the Shimura variety associated
to ResFQ GL2,F . The group E acts on the points of Y (see Section 2.1.3) and if the level n
is sufficiently divisible (see Hypothesis 4), then the group E acts properly and discontinously
giving rise to an étale finite type scheme Sh := Y/E (see [RX17, Proposition 2.4]). Using the
theory of descent, one can then descend the bundles ω̇τ and δ̇τ to line bundles ωτ and δτ over Sh.
We have now all the ingredients to construct the sheaf of Hilbert modular forms for any O-algebra
R. Let (k, `) ∈ ZΣ × ZΣ, and we assume that k, ` ∈ ZΣ are such that uk+2` :=

∏
τ∈Σ τ(u)kτ+2`τ

is 1 in R, for all u ∈ O×F,n. Then we define the line bundle

ωk,`R :=
⊗
τ∈Σ

(
ω⊗kττ,R ⊗ShR δ

⊗`τ
τ,R

)
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and we will call Hilbert modular forms elements of

Mk,`(n;R) := H0(ShR, ω
k,`
R ).

The assumption that uk+2` is 1 in R is necessary to ensure that we are not only working with
zero global sections. Because of this condition, when working in characteristic 0, one is obliged
to work with paritious weights, i.e. weights k, ` ∈ ZΣ such that kτ + 2`τ = w ∈ Z for all τ ∈ Σ.
However, when working over F, one can work with non-paritious weights. A concrete example of
such forms can be found in the generalized partial Hasse invariants constructed by Reduzzi and
Xiao in [RX17].

We will now illustrate the main results of this thesis and the methods here used. In this thesis,
we are interested in computing the geometric q-expansions attached to Hilbert modular forms.
In the literature, authors often work with adelic q-expansions, which are a more compact type of
q-expansion that in the case of parallel weight forms contain all the information relative to the
eigenvalues of the forms. However, when working with arbitrary weights, the adelic coefficients
are not well defined (see discussion in Section 3.3.2), and therefore one is obliged to work with
geometric q-expansions. In sections 2.3 and 2.4 we detail how these q-expansions are constructed
starting from the cusps and Tate objects. We recall here the key steps that we take in order to
construct the module of q-expansions.

Let C be a fixed set of representatives of the narrow class group Cl+F and we assume without
loss of generality that elements c ∈ C are coprime with p. For every c ∈ C, one can construct
various cusps attached to c, however we will focus on the standard cusp at infinity, here denoted
by ∞(c). As described by Dimitrov in [Dim04], fixing a smooth admissible cone decomposition
of c+ gives rise to a Tate object Tatec,OF defined over a scheme Sc, depending on the cone
decomposition (see discussion before Proposition 2.3.3). In particular, one can trivialize the
sheaves ωTatec,OF /Sc

and H1
dR(Tatec,OF /Sc), giving rise to a canonical identification:

ω̇k,`Tatec,OF /Sc

can(c,OF )
= (c⊗O)k ⊗O (cd−1 ⊗O)` ⊗O OSc ,

where by (c⊗O)k ⊗O (cd−1 ⊗O)` we mean the free O-module of rank 1 defined as

(c⊗O)k ⊗O (cd−1 ⊗O)` :=
⊗
τ∈Σ

(c⊗O)⊗kττ ⊗O (cd−1 ⊗O)⊗`ττ ,

where (c⊗O)τ denotes the copy of O in (c⊗O) identified via the embedding τ . This description
is inspired by the works of Diamond and Sasaki in [DS17]. The coefficients of our geometric
q-expansions will live in the O-module (c⊗O)k ⊗O (cd−1 ⊗O)`, whereas the symbols q will live
in OSc . In Section 2.4, we show the following.

Theorem B. Let c ∈ C. The the module of q-expansions for Hilbert modular forms of weight
(k, `) at the infinity cusp ∞(c) is

Mk,`
∞ (c) =

{ ∑
ξ∈c+∪{0}

aξq
ξ

∣∣∣∣∣ aξ ∈ (c⊗O)k ⊗O (cd−1 ⊗O
)`

; aεξ = ε−`aξ for all ε ∈ O×F,+

}
.

This description of the module of q-expansion is a generalization of the description given by
Dimitrov in [Dim04]. Moreover, our description aligns with the one of Diamond and Sasaki in



4 Introduction

[DS17], where they assume that p is unramified in F and therefore use a different model for
the Hilbert modular variety. The main ingredients of the proof are the canonical identification
described above, and the action of the units O×F,+ over the cusps, given by Dimitrov in [Dim04].
We finish Chapter 2 by describing how changing cusps affects the canonical identifications and
the module of q expansions.

The goal of Chapter 3 is to describe the action on geometric q-expansions of the Hecke
operator at a prime p dividing p as defined by Emerton, Reduzzi and Xiao in [ERX17a]. The
lack of a good Tp operator was due to the fact that the projection maps from ShF(p), the Shimura
variery with extra level at p, to ShF are not finite flat. To overcome this issue, Emerton, Reduzzi
and Xiao use the dualizing trace map to construct a properly normalized Hecke operator T ◦p . We
therefore go through this construction with particular attention at what happens at the cusps and
translate it to the q-expansions for Hilbert modular forms with coefficients over Rm := O/$mO.
We point out a couple of technical details that are needed to achieve our goal. First of all,
we will have to work with normalized diamond operators S◦p . As explained in Section 3.1, the
normalization is essential to have invertible diamond operators at primes p dividing p. Secondly,
the construction of the Hecke operator T ◦p is done only for weights k ∈ ZΣ such that for every
p|p:

• k
τ

(i+1)
p,j

≥ k
τ

(i)
p,j

for all j = 1, . . . , fp and i = 1, . . . , ep − 1;

• pk
τ

(1)
p,j

≥ k
τ

(ep)

p,j−1

for all j = 1, . . . fp.

These weights are said to live in the minimal cone, denoted Cmin, defined by Diamond and
Kassaei in [DK17] and [DK20]. Assuming that the weight k belongs to the minimal cone is
essential in the construction of T ◦p by Emerton, Reduzzi and Xiao (see Proposition [ERX17a,
Proposition 3.11]). Using the description of the geometric q-expansion of Theorem B, we show
the following.

Theorem C. Let (k, `) ∈ ZΣ × ZΣ such that k ∈ Cmin and
∏
τ∈Σ τ(u)kτ+2`τ is 1 in R, for

all u ∈ O×F,n. Let f ∈ H0(ShRm , ω
k,`
Rm

) and let f =
(
fc
)
c∈C, where fc =

∑
ξ∈c+∪{0} aξq

ξ be its
geometric q-expansions at the cusp ∞(c). For a place p of F above p, let α, β ∈ F+ be such that
cp = αc′ and cp−1 = βc′′, for c, c′, c′′ ∈ C. Then for ξ ∈ c+

aξ
(
(T ◦p f)c

)
= Nm(p)−1

∏
τ∈Σp

τ($p)
−`τ

αk+`aα−1ξ(fc′)

+

∏
τ∈Σp

τ($p)
kτ+`τ

βk+`aβ−1ξ

(
(S◦pf)c′′

)
,

(1)

with aα−1ξ = 0 if α−1ξ /∈ c′. We recall that we denote by αk the element
∏
τ∈Σ τ(α)kτ .

The novelty of the above description of the action of T ◦p on geometric q-expansion lies in the
fact that it is given in its full generality, without restricting to an easier case. Emerton, Reduzzi
and Xiao do give briefly a descprition of the action of T ◦p for p inert (see [ERX17a, Remark 3.14])
using the description of Katz for Hilbert modular forms, i.e. by evaluating the form f at the Tate
object Tatec,OF , without constructing the module of q-expansion, as here is done in Theorem B.
In the proof of Theorem C, we describe how the maps in the Hecke correspondence change the
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cusps, and translate this change onto the modules of q-expansions, as described in Theorem B.
We would like to point out that such a concrete description of the action of the T ◦p operator on
q-expansions is essential if one desires to work with arbitrary weight Hilbert modular forms. We
therefore hope that our computations and methods will be useful to authors that wish to work
with geometric q-expansions. We end the Chapter 3 by conjugating our formula to known cases
and by discussing the adelic q-expansions, with a particular attention for the parallel weight case.

In Chapter 4, we present a direct application of our computations on geometric q-expansions
in the context of the Langlands correspondence. Under the Langlands correspondence, Hilbert
modular eigenforms of parallel weight one correspond to two dimensional totally odd Artin
representations. In particular, the local-global compatibility ensures that these representations
are unramified at all places outside the level n. Dimitrov and Wiese in [DW18] proved that
parallel weight 1 Hilbert modular forms modulo p give rise to Galois representations that are also
unramified at p. This was also proven independently by Emerton, Reduzzi and Xiao for p inert
in [ERX17a]. It is predicted by the local-global compatibility in the Langlands correspondence
that Hilbert modular forms of level prime to p and partial weight 1 at places corresponding to a
given prime p dividing p should still give rise to Galois representation which are unramified at p.
In characteristic 0, this refined version of the local-global compatibility is due to Saito ([Sai09])
and Skinner ([Ski09]) (see also results Hida in [Hid89a] and Wiles in [Wil88]). In Chapter 4,
we prove the analogous for Hilbert modular forms of partial weight 1 modulo p, which is not
covered by the characteristic 0 case, since these forms do not lift in characteristic 0 in general.
In particular, we prove the following.

Theorem D. Let p be a place above p. Let f be a Hilbert modular cuspidal eigenform of paritious
weight over a finite extension of Fp such that the weight above p is 1. Then the attached Galois
representation attached to f is unramified at p.

We will now explain the ingredients of the proof. In Chapter 4, we will only work with
paritious weights, since we need to lift Hilbert modular forms over F to Hilbert modular forms
over O for sufficently big weights. Then for (k, `) ∈ ZΣ × ZΣ a paritious weight, i.e. such that
kτ + 2`τ = w, we denote the sheaf of differentials of paritious weight (k,w) by

ω(k,w) :=
⊗
τ∈Σ

(
ω⊗kττ ⊗OShtor δ

⊗(w−kτ )/2
τ

)
.

and in particular we denote byMk,w(n;R) := H0
(

ShR, ω
(k,w)
R

)
the R-module of Hilbert modular

forms, and by Sk,w
(
n;R

)
the submodule of cuspidal forms.

In order to lift to characteristic 0, we will use an exceptional sheaf of paritious weights,
denoted (ex, 0) such that the weight ex belongs to the minimal cone (see Section 4.1.1). The sheaf
ω(ex,0) is inspired by the one used by Reduzzi and Xiao in [RX17]. In particular, for an integer r
sufficiently big, we will able to lift cuspidal forms of paritious weight (k+r ex,w) to characteristic
0 (see Lemma 4.1.6). Moreover, we will make use of the partial Hasse invariants defined by
Reduzzi and Xiao in [RX17] to construct a Hilbert modular form hex ∈ M(p−1) ex,0(n;F) (see
Lemma 4.2.2), which will allow us to bring forms to liftable weight. The final ingredient will be
a Frobenius operator at p, constructed using the Hecke operator Tp and the product of partial
Hasse invariants hex. The proof then follows from the doubling method as applied by Dimitrov
and Wiese in [DW18], which relies on the explicit description of the action of T ◦p in geometric
q-expansions as described in Theorem C. We end the Chapter by discussing a possible future
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application of these results to show the unramifiedness of the pseudo-representations attached
to Hecke algebra of paritious weights (k,w) such that kτ = 1 for all τ ∈ Σp.



Part I

Modular forms of weight one and Galois
representations modulo prime powers





Chapter 1

Modular forms of weight one and Galois
representations modulo prime powers

1.1 Introduction
Let p ≥ 3 be a prime number and O the valuation ring in a finite extension K of Qp. Let $ be
a uniformizer and k = O/$ the residue field. The question we want to answer is the following:
given a representation

ρ : GQ −→ GL2(O/$mO) ,

when is this representation modular of weight 1?
This question is part of the much larger picture of Serre’s modularity conjectures for weight

1 forms. Edixhoven’s formulation of the weight in Serre’s conjecture ([Edi92]) states that a
continuous irreducible odd Galois representation ρ : GQ → GL2(Fp) that is unramified at p
corresponds to a Katz modular forms of weight 1 with coefficients over Fp. Nowadays this is
entirely known. This was proven by Gross([Gro90]) in the p-distinguished case and by Coleman
and Voloch ([CV92]) for p ≥ 3 using companion forms. Wiese ([Wie14]) showed the unramified-
ness at p of the representation attached to weight 1 forms without any assumptions on the prime,
i.e allowing p to be 2. A sketch of the proof for the converse for p = 2 can be found in [Per]. A
proof of the modularity of an irreducible continuous odd Galois representation with coefficients
over Fp was given by Khare and Wintenberger [KW09].

The first step in answering the above question is to define the space of modular forms that will
correspond to ρ. In order to do so, one has to consider a modular curve X over Spec(O), which
depends on the representation ρ and construct Katz modular forms of weight 1 with coefficients
modulo $mO. We will here denote this space M1(X,O/$mO) (For a precise definition see
Definition 1.3.1 or Definition 1.4.2). It is important to remark that this construction depends
on the ramification of the residual representation ρ̄ : GQ → GL2(k). In particular, one has to be
careful with the set T (ρ̄) of so called vexing primes, which are defined at the beginning of section
1.2. Let us assume the following.

Hypothesis 1. Assume that the given continuous Galois representation ρ : GQ → GL2(O/$mO)
and its residual representation ρ̄ : GQ → GL2(k) satisfy the following:

• ρ̄ is odd and irreducible;

• for all primes ` such that ρ̄ is unramified and for all primes ` ∈ T (ρ̄), ρ(I`)
∼−→ ρ̄(I`);
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• for all ramification primes ` that are not vexing and for which ρ̄|G` is reducible, ρI` is a
rank 1 direct summand of ρ as an O-module;

• ρ is unramified at p.

The second step in answering this question is to say what it means for such representations
to be modular of weight 1. Given a normalized eigenform f ∈M1(X,O/$mO), Carayol [Car94]
shows that one can construct a Galois representation ρf : GQ → GL2(O/$mO), which is in par-
ticular unramified for primes away from p and from the level of f . Saying that the representation
ρ is modular of weight 1 means that there exists a normalized eigenform f ∈ M1(X,O/$mO)
such that the traces of ρf and ρ on almost all Frobenius elements coincide. In this sense we will
also say that ρ and ρf are equivalent.

The goal of this chapter is to show the following:

Theorem 1.1.1. Let p ≥ 3. Let O be the ring of integers in a finite extension K of Qp, $ be
a uniformizer of O and O/$ = k. Let ρ : GQ → GL2(O/$mO) be a continuous representation
and ρ̄ : GQ → GL2(k) its residual representation of conductor N . Suppose that ρ̄ and ρ satisfy
Hypothesis 1. Then ρ is modular of weight 1, i.e. there exist a modular curve X depending on ρ̄
and a normalized eigenform f ∈M1(X,O/$mO) such that ρ is equivalent to ρf .

We should point out that the main hypothesis is that p is not a ramification prime for ρ
and consequently for ρ̄. Moreover, by the results of [KW09], we do not have to assume that the
residual representation is modular. Finally, this result is an application of the R = T theorem of
Calegari and Geraghty in their article Modular Lifting beyond the Taylor-Wiles Methods, [CG18].

The converse of this problem is the following: given a modular form of weight 1 with co-
efficients over O/$mO, is the attached Galois representation unramified at p? This question
is answered by Calegari and Specter [CS19], who show that Galois representations arising from
modular forms of weight 1 are unramified at p.

1.2 Minimal Deformations
Let ρ : GQ −→ GL2(O/$mO) be a Galois representation and ρ̄ : GQ −→ GL2(k) its residual
representation, S(ρ̄) the set of primes at which ρ̄ is ramified. Following Diamond (see [Dia97,
Section 2]), one defines the set of vexing primes T (ρ̄) as the subset of S(ρ̄) of primes ` such that
` ≡ −1 mod p, ρ̄|G` is irreducible and ρ̄|I` is reducible. As in [CG18], let us suppose that the
residual representation ρ̄ of ρ : GQ −→ GL2(O/$mO) satisfies the following conditions:

1. ρ̄ is continuous, odd and absolutely irreducible;

2. p /∈ S(ρ̄);

3. If ` ∈ S(ρ̄) and ρ̄|G` is reducible, then ρ̄
I` 6= (0).

Remark 1.2.1. Remark that condition 3. is always satisfied by a twist of ρ̄ by a character unram-
ified outside of S(ρ̄). Moreover, for these primes the rank of ρ̄I` is necessarily 1 and therefore `
appears with a power `1 in the conductor of ρ̄.

Let us recall the definition of minimal deformation given in [CG18]. Let CO be the cate-
gory of complete Noetherian local O-algebras with residue field k with continuous O-algebra
homomorphisms. We will consider deformations of ρ̄ with coefficient rings in CO.
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Definition 1.2.2. Let R be an object of CO. A deformation ρ : GQ → GL2(R) of ρ̄ is called
minimal if it satisfies the following conditions:

(a) the determinant det ρ is the Teichmüller lift of det ρ̄;

(b) for ` /∈ S(ρ̄), ρ|G` is unramified;

(c) for ` ∈ T (ρ̄), ρ(I`)
∼−→ ρ̄(I`);

(d) if ` ∈ S(ρ̄) \ T (ρ̄) and ρ̄|G` is reducible, then ρ
I` is a rank one direct summand of ρ as an

R-module.

Remark 1.2.3. Remark that condition (b) implies that ρ is unramified at p. Moreover, condition
(d) tells us that the representation ρ as a lift of ρ̄ not only maintains the same ramification
primes, but also the same inertia invariants at those primes.

This defines a deformation problem which is representable1 by a complete Noetherian local
O-algebra, denoted Rmin and called the universal minimal deformation ring.

One can easily check that, in the setting of Theorem 1.1.1, Hypothesis 1 implies that ρ :
GQ → GL2(O/$mO) is a minimal deformation of its residual representation ρ̄.

We will now distinguish two cases:

(Case I) : The representation ρ̄ has no vexing primes;

(Case II) : The representation ρ̄ can have vexing primes.

We will see that the second case requires an automorphic approach, passing by the local
Langlands correspondence.

1.3 Case I: No Vexing Primes
Throughout this section we will make the following assumption:

Hypothesis 2. The set of vexing primes T (ρ̄) = ∅ .

Following [CG18], most definitions in this section are given for a general modular curve
satisfying a moduli problem. In the presence of vexing prime the considered modular curve will
be a quotient of the standard modular curve X1(N) for the modular group Γ1(N) to include the
restrictions arising from these vexing primes. Moreover, one will have to change also the sheaf of
definition of modular forms, but this can be done so that in the case where Hypothesis 2 holds,
one still gets the same definitions as in this section.

1.3.1 Modular Curves
Let N be an integer, N ≥ 5 such that (N, p) = 1. This will later be the conductor of our
representation ρ̄. Following [CG18], fix H to be the p-part of (Z/NZ)×. The quotient X of the
modular curve X1(N) over Spec(O) by the action of H is the moduli space of generalized elliptic
curves with ΓH(N)-level structure, where ΓH(N) :=

{(
a b
c d

)
∈ Γ0(N) such that dmodN ∈ H

}
.

1This follows from Theorem 2.41 of [DDT97].
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Let π : E → X denote the universal generalized elliptic curve and set

ω := π∗ωE/X ,

where ωE/X is the relative dualizing sheaf. Recall that the Kodaira-Spencer map (see [Kat77],
A1.3.17) extends to an isomorphism ω2 ' Ω1

X/O(∞), where∞ is the reduced divisor supported on
the cusps. Let A be an O-module and L a coherent sheaf onX, then we denote by2 LA := L⊗OA.

Definition 1.3.1. Let A be anO-module. We will callmodular forms of weight 1 with coefficients
in A elements of H0(X,ωA). We will denote this moduleM1(X,A).

In Section 3.2.2. of [CG18], Calegari and Geraghty consider ωK/O, which can be identified
with the direct limit lim−→

m

ωO/$m . Here we will pass through the sheaf ωK/O to get information on

ωO/$m . In particular, one has that H0(X,ωO/$m) ' H0(X,ωK/O)[$m], where this last module
denotes the kernel of the morphism of sheaves ‘multiplication by $m’.

1.3.2 The Hecke Algebras
In [CG18], Calegari and Geraghty define Hecke operators T` for ` prime such that (`,Np) = 1
and diamond operators 〈a〉 for a an integer with (a,N) = 1 on the cohomology Hi(X,LA), for
i = 0, 1 and A any O-module (one generally takes L to be the sheaf ωn or ωn(−∞), for some
n ≥ 1). To do so, one considers the universal Hecke algebra, Tuniv, which is the commutative
polynomial algebra over O[(Z/NZ)×] with indeterminates T` for ` prime such that (`,Np) = 1.
If a ∈ (Z/NZ)×, we denote by 〈a〉 the corresponding element in Tuniv. Then one defines an
action of Tuniv on H0(X,LA). Let T∅ ⊂ EndO H0(X,ωK/O) be generated by the prime-to-pN
Hecke operators and the prime-to-N diamond operators. Let m∅ be a maximal non-Eisenstein
ideal of the Hecke algebra T∅. This ideal gives rise 3 to a maximal ideal m of Tuniv and one can
assume, extending O if necessary, that Tuniv/m ' k. The following is a particular case of part
(2) of Lemma 3.7 in [CG18].

Proposition 1.3.2. For i = 0, 1, there is an isomorphism

Hi(X,ω(−∞)K/O)m
∼−−→ Hi(X,ωK/O)m .

1.3.3 Homology and Verdier Duality
We recall that given a profinite O-module or a discrete torsion O-module M , one defines the
Pontryagin dual by

M∨ := HomO(M,K/O) .

Moreover, for these modules one has that (M∨)∨ ' M . Now, following [CG18], one defines
homology groups of modular forms as follows.

Definition 1.3.3. Let X be a modular curve and L be a vector bundle on X, one sets for i = 0, 1

Hi(X,L) := Hi
(
X, (Ω1 ⊗ L∗)K/O

)∨
,

where L∗ is the dual bundle and Ω1 ' ω⊗2(−∞).4

2On open sets, LA = L ⊗O A corresponds to the sheaf tensor product over OX? of L and Ã, the
sheafification of A pulled back on X?.

3see discussion before Lemma 3.7 in [CG18]
4this is induced by the Kodaira-Spencer map.
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In this section, we are interested in the case whereX is the modular curve defined in the previ-
ous section and L is just ω. The Hecke algebra T∅ ⊂ EndO H0(X,ωK/O) = EndO(M1(X,K/O)),
defined above, acts also on H0(X,ω). In fact, by the above definition

H0(X,ω) = HomO

(
H0
(
X, (Ω1 ⊗ ω∗)K/O

)
,K/O

)
,

and, by looking at the sheaf Ω1⊗ω∗, using Kodaira-Spencer and the fact that ω is an invertible
sheaf, one gets

Ω1 ⊗ ω∗ ' ω2(−∞)⊗ ω−1

' ω(−∞) = ω ⊗ L−1
∞ ,

where L∞ denotes the invertible sheaf associated to the divisor ∞. When tensoring with K/O,
one gets that (ω ⊗ L−1

∞ )K/O = ωK/O ⊗ L−1
∞ . Therefore one has

HomO

(
H0
(
X,ω(−∞)K/O

)
,K/O

)
= H0(X,ω) .

By Proposition 1.3.2, when we localize at the maximal ideal m∅, one has that the homology
H0(X,ω)m∅ is the actual dual of the cohomology H0(X,ωK/O)m∅ , so one still has an action of
T∅,m∅ on H0(X,ω)m∅ . Finally, by a theorem of [CG18], which will be recalled in the next section,
the Hecke algebra T∅,m∅ acts freely on H0(X,ω)m∅ .

Verdier duality ([Har66], Cor.11.2(f)) establishes an isomorphism

D : Hi(X,L)
∼−→ H1−i(X,L) ,

which is not Hecke-equivariant when L is either ω⊗n or ω⊗n(−∞). In fact, one gets the following
relations involving the so called transposed Hecke operators T ′`:

• for primes ` such that (`, pN) = 1, D ◦ T` = T ′` ◦D;

• for integers (a,N) = 1, D ◦ 〈a〉 = 〈a〉−1 ◦D.

Let us suppose that O contains a primitive N -th root of unity ξ, we have the extra operator Wξ

for which the transposed Hecke operators are conjugated by Wξ to the ‘usual’ Hecke operators,
therefore the Hecke algebras generated by these operators are the isomorphic.

1.3.4 Results of Calegari and Geraghty in [CG18]
Let X be the modular curve of level ΓH(N) for N = N(ρ̄) the Artin conductor of ρ̄ defined
above, T∅ the Hecke algebra on H0(X,ωK/O) generated by the prime-to-pN operators. As in
[CG18], let m∅ be the maximal ideal5 corresponding to ρ̄. This ideal is generated by $, by
T` − tr(ρ̄(Frob`)) for primes (`, pN) = 1, and by 〈a〉 − det(ρ̄(Froba)) for integers (a,N) = 1.

Theorem 1.3.4 (Theorem 3.11 of [CG18] for the set Q = ∅6). There exists a minimal deforma-
tion

ρ∅ : GQ −→ GL2(T∅,m∅)

5This exists thanks to the works in [KW09], [Gro90] and [CV92].
6The reader will notice the absence of the twist by η, where η2 = 1

det(ρ∅)
〈det(ρ̄)〉 and 〈det(ρ̄)〉 is the

Teichmüller lift of det(ρ̄). Going through the proof, one sees that η2 is unramified outside Q and of
p-power order, therefore for Q = ∅, this twist is trivial.
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of ρ̄ unramified outside N and determined by the fact that for all primes ` such that (`,Np) = 1,
tr(ρ∅(Frob`)) = T`.

The minimal deformation ρ∅ induces a surjective CO-morphism

ϕ : Rmin � T∅,m∅ .

Using their patching method, Calegari and Geraghty show the following:

Theorem 1.3.5 (Theorem 3.25 in [CG18].). The map ϕ : Rmin → T∅,m∅ obtained by the universal
property of Rmin is an isomorphism. Moreover, T∅,m∅ acts freely on H0(X,ω)m∅.

From its proof (see discussion at the end of Section 3.8 of [CG18]) they deduce:

Corollary 1.3.6. H0(X,ω)m∅ has rank 1 as a T∅,m∅-module.

1.3.5 Proof of Theorem 1.1.1
The goal of this section is to prove Theorem 1.1.1 under Hypothesis 2. First we present a
commutative algebra lemma that will be used to prove a q-expansion principle for these forms.

Lemma 1.3.7. Let M be a discrete torsion O-module. Then

M∨/$m ' (M [$m])∨ .

Proof. It suffices to show that if N is a profinite O-module, then one has that

N∨[$m] ' (N/$m)∨ ,

because then if we take N to be M∨, using the above equation one gets that

M [$m] = N∨[$m] ' (N/$m)∨ = (M∨/$m)∨

and dualizing again will give the result. Let us now prove that N∨[$m] ' (N/$m)∨. By
definition:

N∨[$m] = HomO(N,K/O)[$m]

= {f : N → K/O such that $m · f = 0}
= {f : N → K/O such that f($mx) = 0 for all x ∈ N} .

Any such f is trivial on $mN and therefore factors through the quotient N/$mN , defining an
O-morphism f̄ : N/$mN → K/O, i.e. an element of (N/$m)∨. The converse is obvious, so
that the last term in the equality is (N/$m)∨.

Now, we takeXU in the theorem to be just the modular curveX defined above, and Lσ = OX .
We can then consider T∅,m∅ the Hecke algebra acting on H0(X,ωK/O)m∅ = M1(X,K/O)m∅
generated by prime-to-p Hecke operators.

Lemma 1.3.8. We have an analogue of the q-expansion principle, i.e. a perfect pairing

H0(X,ωO/$mO)m∅ ×T∅,m∅/$
m −→ O/$mO .
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Proof. By Corollary 1.3.6, we know that T∅,m∅ and H0(X,ω)m∅ =
(
H0(X,ωK/O)m∅

)∨ (this equal-
ity is by definition) are isomorphic as O-modules. By Pontryagin duality, we get a perfect pairing
of O-modules:

T∅,m∅ ×H0(X,ωK/O)m∅ −→ K/O .

We want to show that we can get a perfect pairing

T∅,m∅/$
m ×H0(X,ωK/O)m∅ [$

n] −→ K/O[$m] =
1

$m
O/O ' O/$mO .

Since T∅,m∅ '
(
H0(X,ωK/O)m∅

)∨, one has to show that we get an isomorphism(
H0(X,ωK/O)m∅

)∨
/$m '

(
H0(X,ωK/O)m∅ [$

m]
)∨
,

which is true by Lemma 1.3.7 for M = H0(X,ωK/O)m∅ . Now one easily sees that

(M [$m])∨ = HomO(M [$m],K/O[$m])

and one can conclude using the fact that H0(X,ωK/O)[$m] = H0(X,ωO/$mO) .

Remark 1.3.9. By the previous Lemma, a morphism of O-modules

T∅,m∅/$
m → O/$mO

corresponds to a simultaneous normalized Hecke eigenvector in H0(X,ωO/$m), thus to a normal-
ized eigenform.

Now we can present a proof of Theorem 1.1.1 under Hypothesis 2. Let Rmin be the minimal
universal deformation ring for ρ̄. Then applying the universal property to ρ, one gets a morphism
in CO

Rmin −→ O/$mO .

By composing with the inverse of the isomorphism of Theorem 1.3.5, we get a CO-morphism

T∅,m∅ −→ O/$
mO ,

which is determined by T` 7→ tr(ρ(Frob`)), by Theorem 1.3.4. One can factor this homomorphism
through the quotient T∅,m∅/$

m and by the previous lemma, this morphism defines a normalized
eigenform f in H0(X,ωO/$mO)m∅ of weight 1 with coefficients in O/$mO. By the universal
property of the universal deformation ring, the eigenform f corresponds to a minimal deformation
ρf of ρ̄ with the above conditions on images of Frobenius elements. By Chebotarev’s theorem
the set of Frobenii of unramified primes is dense in GQ, therefore ρ ∼ ρf .

1.4 Case II: Vexing Primes
As Calegari and Geraghty explain, the problem that arises when the set of vexing primes is not
empty is that to realize ρ̄ by a modular form, one has to cut out a smaller space of modular
forms using the local Langlands correspondence. We recall here how Calegari and Geraghty do
so.
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1.4.1 Modular Curves
Let S(ρ̄) and T (ρ̄) be respectively the set of ramification primes and the set of vexing primes for
ρ̄, as above. We set

P (ρ̄) := {` ∈ S(ρ̄) \ T (ρ̄) such that ρ̄|G` is reducible} .

For each prime ` ∈ S(ρ̄), let c` denote the Artin exponent of ρ̄|G` , i.e. N(ρ̄) =
∏
`6=p `

c` . Note
that c` is even for ` ∈ T (ρ̄). We define local subgroups U`, V` ⊂ GL2(Z`).

• If ` ∈ P (ρ̄), we set

U` = V` =

{
g ∈ GL2(Z`) : g ≡

(
∗ ∗
0 d

)
mod(`c`), where d ∈ (Z/`c`Z)×has p-power order

}
.

• If ` ∈ T (ρ̄), let U` = GL2(Z`) and

V` = ker
(

GL2(Z`) −→ GL2

(
Z/`

c`
2 Z
))

.

• If ` ∈ S(ρ̄) \
(
T (ρ̄) ∪ P (ρ̄)

)
then set

U` = V` =

{
g ∈ GL2(Z`) : g ≡

(
∗ ∗
0 1

)
mod(`c`)

}
.

• If ` /∈ S(ρ̄), then set U` = V` = GL2(Z`).

Now set
U =

∏
`

U` and V =
∏
`

V` .

Let us point out that these groups depend not only on N , but really on the behaviour of the
ramification primes of ρ̄. Let ? be either U or V . We let X? denote respectively the smooth
projective modular curve over Spec(O) which is the moduli space of generalized elliptic curve
with level ? structure.7 These curves are quotients of the usual modular curve X1(N) for the
modular group Γ1(N). Let π : E → X? be the universal generalized elliptic curve and set

ω = π∗ωE/X? ,

where ωE/X? is the relative dualizing sheaf. Let ∞ denote the reduced divisor supported on
cusps. If M is an O-module and L is a sheaf of O-modules, we denote LM the sheaf L ⊗O M
on X?. There is a natural action of G = U/V =

∏
`∈T (ρ̄) GL2(Z/`c`/2Z) on XV , which gives

an isomophism XV /G
∼−→ XU (see Section IV of [DR73].). Let σ` be the representation of

GL2(Z/`c`/2Z) with image in an O-module Wσ` as in Section 5 of [CDT99]. Then σ = (σ`)`∈T (ρ̄)

is a representation of G on a finite free O-module Wσ. Let f denote the natural map XV → XU ,
Calegari and Geraghty in Section 3.9.1 define vector bundles on XU

Lσ := (f∗(OXV ⊗O Wσ))G and Lsub
σ := (f∗(OXV (−∞)⊗O Wσ))G ,

where G acts diagonally in both cases.
7Making the needed arrangements when these curves are stacks and not proper schemes, see the

discussion in Remark 3.10 in [CG18].
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Lemma 1.4.1 (Lemma 3.27 of [CG18].). The sheaves Lσ and Lsub
σ defined above are locally free

of finite rank on XU .

We will now consider the following modular forms.

Definition 1.4.2. Given an O-module A, we call modular forms of weight 1 and level N = N(ρ̄)
with coefficients in A elements of H0(XU , (ω⊗Lσ)A). We will denote this module byM1(XU , A)

Remark 1.4.3. We remark that under Hypothesis 2, the curve XU is just the curve X = XH(N)
defined at the beginning of section 1.3.1 and the vector bundle Lσ is just the trivial sheaf OX .
Therefore the above definition and Definition 1.3.1 of modular forms of weight 1 with coefficients
in an O-module A agree.

1.4.2 Hecke Algebras and Homology
In [CG18], Calegari and Geraghty construct Hecke operators T` for primes ` /∈ S(ρ̄) ∪ {p} and
diamond operators 〈a〉 for integers a coprime to elements of S(ρ̄) acting on the spaces of modular
formsM1(XU ,K/O) = H0(XU , (ω ⊗ Lσ)K/O).

Let σ∗ := HomO(Wσ,O) be the dual representation of σ and let L∗σ be the dual bundle.
Then Calegari and Geraghty8 show that there is an injection Lσ∗ ↪→ L∗σ that restricts to an
isomorphism

Lsub
σ∗

∼−→ L∗σ(−∞) .

Consider now the homology H0(XU , ω ⊗ Lσ). Using Kodaira-Spencer, one has that

Ω1
XU/O ⊗ L

∗
σ ' ω2(−∞)⊗ L∗σ ' ω2 ⊗ Lsub

σ∗ .

Now, using the same reasoning as in section 1.3.3, one has

H0(XU , ω ⊗ Lσ) =
(
H0(XU , (ω ⊗ Lsub

σ∗ )K/O)
)∨
.

Let T∅ denote the ring of Hecke operators acting on M1(XU ,K/O) = H0(XU , (ω ⊗ Lσ)K/O)
generated by Hecke operators away from S(ρ̄) ∪ {p}; and m∅ the non-Eisenstein ideal generated
by $, T`− tr(ρ̄(Frob`)) for primes outside S(ρ̄)∪{p}, 〈a〉−det(ρ̄(Froba)) for integers a coprime
to elements in S(ρ̄). Then one has an isomorphism (See proof of Theorem 3.30 in [CG18].)(

H0(XU , (ω ⊗ Lsub
σ )K/O)

)
m∅

∼−→
(
H0(XU , (ω ⊗ Lσ)K/O)

)
m∅
,

which allows us to endow H0(XU , ω ⊗ Lσ) with a Hecke action of T∅,m∅ .

In the proof of Theorem 3.30 of [CG18], Calegari and Geraghty show that there exists a
minimal deformation of ρ̄

ρ∅ : GQ −→ GL2(T∅,m∅) ,

which is in particular unramified at all primes ` /∈ S(ρ̄)∪{p} and at these primes tr(ρ∅(Frob`)) =
T`. From this, they deduce:

Theorem 1.4.4 (Theorem 3.30 of [CG18]). The surjective map ϕ : Rmin → T∅,m∅ is an isomor-
phism in CO. Moreover T∅,m∅ acts freely on H0(XU , ω⊗Lσ)m∅. In particular, H0(XU , ω⊗Lσ)m∅
is a T∅,m∅-module of rank 1, when H0(XU , ωK ⊗ Lσ)m∅ is not zero.

Following the steps of Section 1.3.5 and using the above result, one gets a proof of Theorem
1.1.1, without Hypothesis 2.

8Lemma 3.28 of [CG18].
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Introduction
In this introduction, we briefly summarize what is done in the various Chapters of Part II of this
thesis.

In Chapter 2, we recall the various models for the Hilbert moduli variety and we discuss
the construction of the Shimura variety associated to the group ResFQ GL2,F . We will consider
Hilbert modular forms à la Wiles living on an automorphic line bundle on the Shimura variety.
This is done in order to have a good Hecke theory, in the sense of the attached Galois represen-
tations. We then proceed to recall how to construct the cusps of the Hilbert modular variety, the
associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric q-expansions and by
showing how changing cusps changes the q-expansion.

In Chapter 3, we compute the action on geometric q expansions of the normalized Tp operator
defined by Emerton, Reduzzi and Xiao in [ERX17a]. We first recall how to properly normalize
diamond operators, and we then proceed to recall the construction of Tp. Following this con-
struction, we will be able to compute its action on geometric q-expansion on Hilbert modular
forms modulo $m.

Finally, in Chapter 4, we will prove that a partial weight one Hilbert modular form, with
parallel weight one for the places above a prime p, has associated modulo $ Galois representation
that is unramified at p. In order to prove this theorem, we will use generalized partial Hasse
invariants as defined by Reduzzi and Xiao in [RX17] and an exceptional sheaf adapted from their
work. We will then apply the strategy of Dimitrov and Wiese in [DW18] to prove our theorem.
We will make use of the computations of Chapter 3.
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Notation
Let F be a totally real field of degree d ≥ 2, with ring of integers OF and different d = dF/Q.
For any x ∈ F , we will denote Nm(x) := NmF/Q(x), and for any fractional ideal I of F , we will
also denote by Nm(I) the ideal norm. Let p be a rational prime and take n an integral ideal of
OF coprime with p. This will be the level of our Hilbert modular forms. Let O×F,n denote the
set of totally positive units u ∈ O×F,+ such that u ≡ 1 mod n. We will need the group of units
E := O×F,+/(O

×
F,n)

2.
We fix C = {c1, . . . , ch+} a set of representatives of the elements of the narrow class group

Cl+F . Without loss of generality we can suppose c ∈ C to be coprime with p. We will denote with
c+ = c ∩ F×+ the cone of totally positive elements.

Let Q denote the algebraic closure of Q in C. We fix an algebraic closure Qp of Qp, together
with an embedding Q ↪→ Qp. Let Σ denote the set of embeddings F ↪→ Q, which is also identified
with the set of embeddings of F into Qp and C.

Let K be a finite extension of Qp such that τ(F ) ⊂ K for all τ ∈ Σ. Let O denote its ring of
integers of uniformizer $ and residue field F = O/$. We will also identify Σ with the following
sets {τ : F ↪→ K} and {τ : OF ↪→ O}. For µ ∈ F and k = (kτ )τ ∈ ZΣ, we set µk :=

∏
τ∈Σ τ(µ)kτ .

The weights of our Hilbert modular forms will be elements (k, `) ∈ ZΣ × ZΣ. In particular, we
will denote by t ∈ ZΣ the weight vector which has 1 in all entries.

Let p a prime inOF above p and let ep denote its absolute ramification index and fp its residue
degree. We will denote Σp the subset of Σ consisting of all p-adic embeddings of F inducing the
p-adic place p. Let Fr denote the arithmetic Frobenius on Fp and let us label the embeddings
of Fp = OF /p ↪→ F as {τp,j : j ∈ Z/fpZ} so that Fr ◦τp,j = τp,j+1 for all j ∈ Z/fpZ. For each
j ∈ {1, . . . , fp}, there are exactly ep elements in Σp that induce the embedding W (OF /p)→ O,
which we will denote {τ (1)

p,j , . . . , τ
(ep)
p,j }. For every p in OF , we fix a uniformizer $p for OF,p.



Chapter 2

Geometric Hilbert Modular Forms

In this chapter, we will recall the geometric construction of Hilbert modular forms. In particular,
we will recall and describe the Pappas-Rapoport ([PR05]), the Deligne-Pappas ([DP94]) and the
Rapoport ([Rap78]) models for the Hilbert-Blumenthal moduli space. We will then proceed
to construct and compare the toroidal and minimal compactifications of the obtained Hilbert
modular varieties. Finally, we will discuss the construction and the properties of the automorphic
sheaves of modular forms.
We point out to the reader that we will mainly work with à la Wiles Hilbert modular forms,
which correspond to Katz modular forms that are invariant under the action of a finite group of
units of the totally real number field F . This is necessary in order to have a good Hecke theory,
in the sense of attached Galois representations. These forms will be global sections of a line
bundle living on a Shimura variety associated to ResFQ GL2,F .
Finally, we will recall in Section (2.3) how to construct the cusps of the Hilbert modular variety,
the associated Tate objects and how to trivialize the sheaf of Hilbert modular forms at the cusps.
We will finish this chapter by giving an explicit construction of geometric q-expansions and by
showing how changing cusps changes the q-expansion.

2.1 Hilbert modular varieties and Shimura varieties

2.1.1 Hilbert-Blumenthal Abelian Schemes
Let S be a locally Noetherian O-scheme. A Hilbert-Blumenthal abelian scheme (HBAS) over
S is an abelian scheme π : A → S of relative dimension d, together with a ring embedding
OF ↪→ End(A/S) (also called real multiplication by OF ). For any HBAS A/S, we have a natural
direct sum decomposition

π∗Ω
1
A/S =

⊕
p|p

ωA/S,p =
⊕
p|p

fp⊕
j=1

ωA/S,p,j ,

where each ωA/S,p,j is locally free OS-module of rank ep and in particular, W (Fp) ⊆ OF,p acts
on each ωA/S,p,j via τp,j . One also has a natural direct sum decomposition of the first degree de
Rham cohomology

H1
dR(A/S) =

⊕
p|p

fp⊕
j=1

H1
dR(A/S)p,j ,
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where each H1
dR(A/S)p,j is a locally free OS-module of rank 2ep, since H1

dR(A/S) is locally free
of rank 2 over OF ⊗ZOS ([Rap78, Lemme 1.3]). Again W (Fp) ⊆ OF,p acts on each H1

dR(A/S)p,j
via τp,j .
Let c ∈ C be a fractional ideal of F and A a Hilbert-Blumenthal abelian scheme over S. We
recall that the functor on S-schemes (A⊗OF c), given by A(T )⊗OF c, is representable by a HBAV
over S. A c-polarization on a Hilbert-Blumenthal abelian scheme A/S is an S-isomorphism

λ : A⊗OF c
∼−→ A∨ ,

such that the induced OF -linear isomorphism HomOF (A,A ⊗OF c) ' HomOF (A,A∨) maps c,
respectively c+, onto the OF -module of symmetric elements Sym(A/S), respectively onto the
cone of polarizations Pol(A/S).
Let n be an ideal of OF coprime with p. A µn-level structure on a Hilbert-Blumenthal abelian
scheme A/S is an OF -linear closed immersion of group S-schemes

µ : µn ⊗ d−1 ↪→ A ,

where µn denotes the reduced sub-scheme of Gm ⊗ d−1 defined as the intersection of the kernels
of multiplication by elements of n.
Throughout the thesis, we will make the following assumption.

Hypothesis 3. Assume that n does not divide 2, 3 nor Nm(d).

2.1.2 Models of the Hilbert Modular Variety
Historically, the first model for the Hilbert-Blumenthal moduli space YR was introduced by
Rapoport ([Rap78, Definition 1.1]), where he supposed that the points of the moduli space,
which are HBAS π : A→ S, are such that the cotangent space π∗Ω1

A/S is a locally free OF ⊗OS-
module of rank 1 (see Definition 2.1.3). In particular, YR is a smooth Z [1/Nm(n)]-scheme
([Rap78, Lemme 1.23]). However, for characteristics dividing the different d it is not a proper
scheme (singularité à distance finie). This was first remarked by Deligne et Pappas, who de-
fined a new moduli problem giving rise to a proper smooth Z[1/Nm(nd)]-scheme1 YDP ([DP94,
Théorème 2.2]), which is also normal ([DP94, Corollaire 2.3]) and admits YR as an open dense
subscheme. The Deligne-Pappas model is not ideal when working in characteristic p|Nm(d), since
YDP

F is not smooth, and for such a prime p ramifying in F there is a lack of partial Hasse invari-
ants as defined by Andreatta and Goren ([AG05, Section 7]). Pappas and Rapoport ([PR05])
then introduced what is now known as the splitting model for Hilbert modular varieties, denoted
here by YPR, which was later made explicit by Sasaki ([Sas19]). The advantage of this moduli
space is that it allows us to work also with primes p that ramify in F . Moreover, YPR is smooth
over O ([Sas19, Proposition 6] or [RX17, Theorem 2.9]), and Reduzzi and Xiao constructed in
[RX17, Section 3] partial Hasse invariants living on YPR

F . In what follows, we will make all of
the above explicit working over Spec(O).

Let us start by defining the splitting model of the Hilbert modular variety as introduced by
Pappas-Rapoport ([PR05]), as defined by Reduzzi and Xiao in ([RX17, Section 2.2]).

Definition 2.1.1. For a fractional ideal c ∈ C, letMPR
c = MPR

c (n) be the functor associating
to an O-scheme S the set of isomorphism classes of data (A, λ, µ,F), where

1This explains Hypothesis 3.
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• (A, λ) is a c-polarized HBAS over S;

• µ is a µn level structure.

• F is a collection (F (i)
p,j )p|p;j=1,...,fp;i=1,...,ep of locally free sheaves over S such that

– 0 = F (0)
p,j ⊂ F

(1)
p,j ⊂ . . . ⊂ F

(ep)
p,j = ωA/S,p,j and each F (i)

p,j is stable under OF -action;

– each subquotient F (i)
p,j/F

(i−1)
p,j is a locally free OS-module of rank one (and hence the

rank of F (i)
p,j is i);

– the action of OF on each subquotient F (i)
p,j/F

(i−1)
p,j factors through τ

(i)
p,j : OF ↪→ O,

or equivalently, F (i)
p,j/F

(i−1)
p,j is annihilated by [$p]− τ (i)

p,j ($p), where [$p] denotes the
action of $p as an element of OF,p.

Under Hypothesis 3, this functor is representable by anO-scheme of finite type that we will denote
YPR

c ([RX17, Proposition 2.4 (1)]). Moreover, YPR
c is a smooth O-scheme ([Sas19, Proposition

6]). We call the space

YPR :=
∐
c∈C

YPR
c

the Pappas-Rapoport moduli space. For any O-algebra R, we will denote YPR
R the base change of

the moduli space to R.

We point out that in general the Pappas-Rapoport functor MPR
c depends on the choice of

ordering {τ (1)
p,j , . . . , τ

(ep)
p,j } of the p-adic embeddings of F for every p|p (see Notation). The depen-

dence disappears when one base changes to F, however Hilbert modular forms over F will still
depend on this ordering, since they are defined through the integral model (see ([RX17, Remark
2.3])).

Let us now introduce the Deligne-Pappas model, which can be obtained from the Pappas-
Rapoport model by forgetting the filtration.

Definition 2.1.2. For a fractional ideal c ∈ C, let MDP
c = MDP

c (n) denote the scheme repre-
senting the functor associating to an O-scheme S the set of isomorphism classes of data (A, λ, µ),
where

• (A, λ) is a c-polarized HBAS over S;

• µ is a µn level structure.

Again, under Hypothesis 3, this functor is representable by an O-scheme of finite type ([RX17,
Proposition 2.4 (1)]) that we will denote YDP

c and by [DP94, Corollaire 2.3] it is a normal
O-scheme. We call the space YDP :=

∐
c∈C YDP

c the Deligne-Pappas moduli space.

As remarked in the introduction of this section, the Deligne-Pappas moduli space is not
smooth, but it admits an open dense subscheme which is smooth.
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Definition 2.1.3. Let YR
c denote the open subscheme of YPR

c classifying c-polarized HBAS
π : A→ S satisfying the following, called Rapoport condition2

π∗Ω
1
A/S is a locally free OF ⊗Z OS-module of rank 1. (R)

The open subscheme YR
c is called the Rapoport locus. The scheme YR :=

∐
c YR

c is the smooth
locus of YDP.

It is clear from the definiton of YDP
c and YPR

c that for every c ∈ C, there is a natural forgetful
map

πc : YPR
c � YDP

c ,

which is projective and it induces an isomorphism from an open subscheme of YPR
c to the open

subscheme YR
c of YDP

c ([RX17, Proposition 2.4]).

Let us now recall here some of the properties of the above defined schemes.

• For characteristics away from Nm(d), the Deligne-Pappas and Rapoport moduli spaces
coincide (see [DP94, Section 2.10]). When p ramifies in F , the Rapoport locus YR

F is open
and dense in YDP

F with a complement of dimension 2 ([DP94, Théorème 2.2]).

• When p is unramified in F , the models agree over O (and in particular over F) in the sense
that YPR = YDP = YR ([RX17, Introduction]).

2.1.3 Unit Actions and Shimura Variety
As already explained in the introduction, for ? ∈ {R,DP,PR} the moduli spaces Y? do not have
a good Hecke theory and therefore one has to work with the corresponding Shimura varieties,
which will be quotients of Y? by a finite group of totally positive units of OF . Here we detail
the action of O×F,+ and the construction of the corresponding Shimura varieties.

The functorsMPR
c andMDP

c carry an action of O×F,+. An element ε ∈ O×F,+ acts via

ε : (A, λ, µ,F) 7→ (A, ελ, µ,F) . (2.1)

In particular, this action is trivial on the subgroup (O×F,n)2 ⊂ O×F,+, where O
×
F,n := {u ∈ OF :

u ≡ 1 mod n}. In fact, for u ∈ (O×F,n)2 one has an isomorphism of (A, λ, µ,F) ' (A, u2λ, uµ,F).
Let us see why. For an abelian scheme A, multiplication by u ∈ O×F,n defines an isomorphism of
S-schemes A ·u−→

∼
A, which induces an isomorphism on the dual abelian scheme A∨ ·u←−

∼
A∨ . This

isomorphism gives rise to the following commutative diagram for the c-polarization λ:

A⊗OF c A⊗OF c

A∨ A∨

u⊗1

u2λ λ

·u

2This originates from [Rap78, Définition 1.1].
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Therefore, (A, λ) and (A, u2λ) belong to the same isomorphism class.
Moreover for u ∈ O×F,n, one has that the level structure uµ, constructed via the commutative
diagram

µn ⊗ d−1 A

A

µ

uµ
·u

is such that uµ = µ, since u ≡ 1 mod n. Therefore for an element u ∈ O×F,n, one has that

u2 : (A, λ, µ,F) 7→ (A, u2λ, µ,F) = (A, u2λ, uµ,F) ' (A, λ, µ,F),

so u2 acts trivially on geometric points of YPR
c and of YDP

c .
In what follows, we will denote

E := O×F,+/(O
×
F,n)

2 , (2.2)

and we will denote by [ε] the action of ε ∈ E on geometric points of YPR
c or of YDP

c :

[ε] : (A, λ, µ,F) 7→ (A, ελ, µ,F) . (2.3)

Proposition 2.1.4 (Reduzzi-Xiao, Proposition 2.4.(4) [RX17]). For n sufficiently divisible, the
group E acts freely on the geometric points of YDP

c and YPR
c . In particular, the corresponding

quotients:
ShPR

c = YPR
c /E and ShDP

c = YDP
c /E

are O-schemes of finite type and the quotient morphisms are étale.

Form now on, we will assume the following:

Hypothesis 4. Assume Hypothesis 3 and that n is sufficiently divisible3, as in the sense of
Emerton, Reduzzi and Xiao (see [ERX17b, Section 2.1.1]).

For ? ∈ {PR,DP}, we set
Sh? :=

∐
c∈C

Sh?
c .

These varieties are Shimura varieties for the group ResFQ GL2, which explains the notation.

2.1.4 Compactifications
Rapoport ([Rap78, Section 5]) was the first to construct a toroidal compactification for YR, which
over C reduces to a toroidal Mumford compactification. This construction was later extended
to the Deligne-Pappas models and to the associated Shimura varieties by works of Dimitrov
([Dim04]). We will mainly focus in this section to recall the construction of ShPR,tor, without
going in the details of how toroidal compactifications are constructed, which can be found in
[Dim04].
For any c ∈ C fix a rational polyhedral admissible cone decomposition for each isomorphism class
of a cusp (see Section 2.3), which here we omit from the notation. By [Dim04, Théorème 7.2

3This is defined in [ERX17b, 2.1.1]. An ideal n of OF is said to be sufficiently divisible if for any
CM-extensions L/F such that O×F ( O×L and for any α ∈ O×L /O

×
F , n ⊂ q for all primes q of F , inert in

L and such that the image of α in (OL/q)× does not belong to (OF /q)×.
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(i)], there exists a smooth O-scheme YR,tor
c containing YR

c as a fiberwise dense open subscheme,
and by construction of YR,tor

c the group E acts freely on it. The toroidal compactification blows
up singularities to resolve them, i.e. it replaces cusps with tori (see [Dim04, Section 2]).
For ? ∈ {PR,DP}, we will denote by Y?,tor

c the scheme obtained by gluing YR,tor
c to Y?

c over YR
c .

Moreover, for ? ∈ {DP,PR}, we will denote

Y?,tor :=
∐
c∈C

Y?,tor
c and Sh?,tor :=

∐
c∈C

Y?,tor
c /E .

The schemes Sh?,tor
c := Y?,tor

c /E are proper ([Dim04, Théorème 7.7]) and smooth over Spec(O)
([Dim04, Corollaire 7.5]).
The toroidal compactification is not canonical in any way, since it depends on the chosen poly-
hedral admissible cone decomposition. However, every choice of such a decomposition gives rise
to a smooth O-scheme.
The boundary of the toroidal compactification of Y

Ḋ := Y?,tor −Y?

is a relative simple normal crossing divisor on Y?,tor. The boundary divisor of the corresponding
Shimura variety

D := Sh?,tor−Sh? (2.4)

is the quotient of Ḋ by the action of the group E and it is a divisor with simple normal crossings.
We will use it later to define Hilbert modular cuspforms.

For every c ∈ C and for ? ∈ {PR,DP,R}, let A?
c denote the universal abelian scheme over Yc.

Then there exists a semi-abelian scheme A?,tor
c → Y?,tor

c extending the universal abelian scheme
A?

c → Y?
c ([Dim04, Théorème 7.2]). Set

A?,tor :=
∐
c∈C
A?,tor

c ,

which is the universal object over Y?,tor, but it might not descend to Sh?.

Following Chai ([Cha90, Section 4]) and Dimitrov ([Dim04, Théorème 8.6]), one defines the
minimal compactification4 of YDP

c by

YDP,min
c := Proj

⊕
k≥0

H0

(
YDP

c ,
(
∧dO

YDP
c

π∗ΩADP
c /YDP

c

)⊗k) ,

where π : ADP
c → YDP

c denotes the universal abelian scheme over YDP
c . The scheme YDP,min

c

is projective, normal and of finite type ([Dim04, Théorème 8.6.(iii)]). Moreover, by [Dim04,
Théorème 8.6. (ii)] for any smooth toroidal compactification YDP,tor

c there is a canonical projec-
tion

YDP,tor
c � YDP,min

c .

The minimal compactification YDP,min
c is not smooth and the boundary of YDP,min

c is a union of
points, which has codimension d. In particular, toroidal compactifications can be seen as explicit

4This is also known as the Bailly-Borel-Satake compactification.
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desingularizations of the minimal compactification at its cusps. By construction (see [FC90,
Chapter V.2]), one has that for any smooth toroidal compactification

YDP
c YDP,tor

c YDP,min
c .

Proj

This does not translate to the Pappas-Rapoport model, i.e. the minimal compactification of YPR

cannot be constructed via the Proj. This is because the semi-abelian varieties over points of YDP
c

are actual abelian varieties, and ∧dO
YDP
c

π∗ΩADP
c /YDP

c
is trivial when restricted to the boundary of

YDP,tor
c ([Cha90, 4.4.3]). On the Pappas-Rapoport model the singularities at finite distance do

contract, and ∧dO
YDP
c

π∗ΩAPR
c /YPR

c
is not generated by its global sections. One then defines the

minimal compactification of the Pappas-Rapoport model, denoted YPR,min
c by gluing YPR

c with
YDP,min

c over the Rapoport locus YR
c .

The action of the group E extends to an action on YDP,min
c , and therefore the minimal

compactification ShDP,min
c of ShDP

c is defined as the quotient YDP,min
c /E (see [Dim04, Théorème

8.6 (iii)]). Denote ShPR,min
c := YPR,min

c /E the minimal compactification of the Shimura variety
of the Pappas-Rapoport model. Again as before, for ? ∈ {PR,DP} one sets

Y?,min :=
∐
c∈C

Y?,min
c and Sh?,min :=

∐
c∈C

Sh?,min
c .

The minimal compactification does not admit a universal object over Y?
c for d > 1 (see [Cha90]).

However, this compactification is necessary to detect ampleness of sheaves, and we will use it
later in Section 4.1

We conclude this section with a commutative diagram connecting most of the objects defined
up until now. Let R be any O-algebra and recall that the subscript R denotes base change. One
has the following commutative diagram of O-schemes:

YPR,tor
R YDP,tor

R

ShPR,tor
R ShDP,tor

R

YPR,min
R YDP,min

R

ShPR,min
R ShDP,min

R

where the horizontal lines are given by forgetful maps, the vertical maps are projections, and the
diagonal maps are the quotient maps with Galois group E.
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2.2 Automorphic Sheaves and Geometric Hilbert Mod-
ular Forms

We will from now on focus on the Pappas-Rapoport model and we now proceed to define the
sheaf of Hilbert modular forms over Y = YPR and give conditions for its existence, via descent,
over Sh = ShPR.

2.2.1 Automorphic line bundles over YPR

Recall that we denote by Ac → Yc the universal abelian scheme over Yc, and by π : A =
∐

cAc →
Y the universal abelian scheme over Y. Let e be the zero-section of π : A → Y, then

ωA/Y := e∗Ω1
A/Y ' π∗Ω

1
A/Y .

Denote by F = (F (i)
p,j )p|p;j=1,...,fp;i=1,...,ep the universal filtration of ωA/Y. For each p-adic embed-

ding τ = τ
(i)
p,j of F into Q̄p, following [RX17, Section 2.2], we set

ω̇τ := F (i)
p,j/F

(i−1)
p,j , (2.5)

which is an automorphic5 line bundle on Y. As explained in [RX17, Notation 2.6] each ω̇τ does
not descend in general to the Deligne-Pappas model YDP. This is because the Deligne-Pappas
model does not see the filtration. However, since ⊗τ∈Σ ω̇τ = ∧dωA/Y is the Hodge bundle, it
does descend to YDP. Following [RX17] and [ERX17a], the dot notation will be reserved for
sheaves over the moduli space Y, while the notation without a dot will later denote sheaves on
the Shimura variety Sh.
For a p-adic embedding τ of F and for each c ∈ C, we set

δ̇τ :=
(
∧2
OF⊗OYc

H1
dR(Ac/Yc)

)
⊗OF⊗OYc ,τ⊗1 OYc ,

which is a trivial line bundle over OYc , since by [RX17, Lemma 2.5], one has the following
canonical isomorphism

δ̇τ '
(
cd−1 ⊗Z OYc

)
⊗OF⊗ZOYc ,τ⊗1 OYc . (2.6)

One extends the line bundle δ̇τ to a trivial line bundle on Y, still denoted by δ̇τ . In particular,
for τ ∈ Σ, ω̇τ ⊗OY

δ̇τ ' ω̇τ .
By [RX17, Theorem 2.9], the sheaf of relative differentials Ω1

YPR/O admits a canonical Kodaira-
Spencer filtration whose successive subquotients are given by

ω̇⊗2
τ ⊗OYPR

δ̇⊗(−1)
τ for τ ∈ Σ. (2.7)

We will now proceed to recall, following [RX17, Section 2.11], how to construct line bundles
ω̇tor, δ̇tor on the toroidal compatification Ytor that agree with the above defined ones when re-
stricted to Y. Let us point out that, when considering Hilbert modular forms, by the Köcher
principle the forms will be the same whether they are defined over the toroidal compactification
or on the non-compactified moduli space.

5The adjective automorphic here refers to the fact that global sections of this line bundle are auto-
morphic forms.
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Let AR,tor → YR,tor denote the semi-abelian scheme extending the universal abelian scheme
AR → YR, and let e denote its unit section. The sheaf

ω̇R,tor := e∗ΩAR,tor/YR,tor

is a locally free of rank one OF ⊗Z OYR,tor-module over YR,tor. For τ ∈ Σ, we set

ω̇R,tor
τ := ω̇R,tor ⊗OF⊗ZO

Y
R,tor
c ,τ⊗1

OYR,tor .

In particular, one has that ω̇R,tor
τ and ω̇τ (defined in Equation 2.5) agree when they are both

restricted to the open subscheme YR. Now, gluing ω̇τ with ω̇R,tor
τ over the Rapoport locus YR

gives a line bundle denoted ω̇tor
τ over Ytor. In the same fashion, one extends the trivial line

bundle δ̇τ on Yc to a (trivial) line bundle

δ̇tor
τ '

(
cd−1 ⊗Z OYtor

c

)
⊗OF⊗ZOYtor

c
,τ⊗1 OYtor

c
.

We will drop the notation tor from the bundles, when it is obvious to which bundles we are
refering.

As explained by Emerton, Reduzzi and Xiao in [ERX17a, Section 2.8], using results of Tian
and Xiao (see [TX16, Section 2.11(4)]), one deduces from the Kodaira-Spencer filtration (Equa-
tion 2.7) canonical isomorphisms:

K̇S : ∧dOYtor
Ω1

Ytor/O(Ḋ) '
⊗
τ∈Σ

(
ω̇⊗2
τ ⊗OYtor δ̇

⊗(−1)
τ

)
(2.8)

and
KS : ∧dOShtor

Ω1
Shtor /O(D) '

⊗
τ∈Σ

(
ω⊗2
τ ⊗OShtor δ

⊗(−1)
τ

)
(2.9)

2.2.2 Unit Action and line bundles over Sh

Let us now proceed to see how the action defined in Equation (2.3) translates on sheaves and we
will provide the sheaves ω̇τ , δ̇τ with an action of E := OF,+/(O×F,n)2.
Following Dimitrov and Tilouine (see [DT04, Section 4]), one provides the sheaves ω̇τ with an
action of O×F,+: a positive unit ε ∈ O×F,+ maps a local section s of ω̇τ to τ(ε)−1/2[ε]∗s (see
Equation 2.3 for the definition of [ε]). Let us explain why this action is trivial for the subgroup
(O×F,n)2. Let u ∈ O×F,n. We know that u2 acts trivially on points of Y, because (A, λ, µ,F) has
the same isomorphism class as (A, u2λ, uµ,F). However, we recall that on the actual HBAS A
the action maps A to uA, which is isomorphic to A. Therefore, on open sets U = SpecR, this

action is given by the isomorphism of O-modules R
·τ(u)−−−→ R, which induces an isomorphism of

sheaves (u2)∗ω̇τ (U) = (ω̇τ (U)⊗R (τ(u)R)) = τ(u)ω̇τ (U). So τ(u)−1(u2)∗s = τ−1(u)τ(u)s = s
for any local section s of ω̇τ . Therefore the action we provided ω̇τ with factors through the
group E. Moreover, this action is well defined over K, which we can suppose to contain, via the
embeddings τ ∈ Σ, the field extension F (

√
ε, ε ∈ O×F,+).

We provide also the invertible sheaf δ̇τ with a non-trivial action of E: an element ε ∈ E maps
a local section s of δ̇τ to τ(ε)−1[ε]∗s. In particular, the invertible sheaves ω̇τ and δ̇τ descend to
invertible sheaves denoted respectively ωτ and δτ on Sh, by Lemma B.1.1 and properties of the
descent (see Appendix B for more details).
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Lemma 2.2.1. Let R be any O-algebra. Then the descent of

ω̇k,`R :=
⊗
τ∈Σ

(
ω̇⊗kττ,R ⊗OYR

δ̇⊗`ττ,R

)
,

over YR to ShR has non-zero global sections only if uk+2` =
∏
τ∈Σ τ(u)kτ+2`τ is 1 in R for all

u ∈ O×F,n.

Proof. Let ωk,`R denote the sheaf
⊗

τ∈Σ

(
ω⊗kττ,R ⊗OShR

δ⊗`ττ,R

)
over ShR. By properties of the descent

of sheaves through a finite étale map (see Equation B.1), one can identify

H0(ShR, ω
k,`
R ) = H0(YR, ω̇

k,`
R )E,

which are invariant global sections under the E-action. Therefore, if an element u2, for u ∈ O×F,n,
does not act trivially on ω̇k,`R the R-module of global sections H0(ShR, ω

k,`
R ) will only contain

the zero element. In particular, a section s of the sheaf ω̇k,`R is mapped by the action of u2 to∏
τ∈Σ τ(u)kτ+2`τ s. The Lemma follows.

Remark 2.2.2. If R is a ring of characteristic 0, the above lemma is verified if and only if
kτ + 2`τ = w ∈ Z an integer independent of the embeddings. Such weights are called paritious,
see Definition 2.2.3.
In characteristic p, one has more freedom on the weights, as long as the condition of Lemma
2.2.1 is satisfied. Forms of non-paritious weights do exists, a concrete example are the generalized
partial Hasse invariants constructed by Reduzzi and Xiao in [RX17, Section 3].

For any τ ∈ Σ, the line bundles ω̇tor
τ , δ̇tor

τ constructed in the previous section descend to line
bundles over the Shimura variety Shtor, where we will denote them respectively ωτ and δτ . In
particular, the line bundle δτ may not be trivial over Shtor, whereas ⊗τ∈Σδτ is, since O×F,+ acts
on it as the naïve pullback (see discussion before [ERX17a, Remark 2.6]).

2.2.3 Geometric Hilbert Modular Forms
For k, ` ∈ ZΣ, we define a line bundle over Ytor

ω̇k,` :=
⊗
τ∈Σ

(
ω̇⊗kττ ⊗OYtor δ̇

⊗`τ
τ

)
,

where by the definition of the action of E an element u ∈ O×F,n acts via multiplication by
uk+2` :=

∏
τ∈Σ τ(u)kτ+2`τ . Moreover, for k, ` ∈ ZΣ, we set

ωk,` :=
⊗
τ∈Σ

(
ω⊗kττ ⊗OShtor δ

⊗`τ
τ

)
.

As explained in Lemma 2.2.1, in order to possibly have global section of the descended sheaf,
one has to carefully choose the weights (k, `) according to the base one is working with. For any
O-algebra R, we will suppose the following.

Hypothesis 5. Let R any O-algebra. We assume that k, ` ∈ ZΣ are such that uk+2` is 1 in R,
for all u ∈ O×F,n.



2.2 Automorphic Sheaves and Geometric HMF 33

Under Hypothesis 5 and by Lemma 2.2.1, the line bundle ωk,`R is an invertible line bundle on
ShR and it might contain non-zero Hilbert modular forms.

We will be interested in working over O, and therefore we make the following definition.

Definition 2.2.3. Given k, ` ∈ ZΣ, we say that the weight (k, `) is paritious if kτ + 2`τ = w for
all τ ∈ Σ, where w ∈ Z is an integer independent of τ .

In particular, when working over O we will be obliged to work with paritious weights.
We now have all the ingredients to define geometric Hilbert modular forms. Recall that

D := Shtor−Sh, which is a divisor with simple normal crossing on Shtor.

Definition 2.2.4. Let (k, `) ∈ ZΣ×ZΣ be a paritious weight. A geometric Hilbert modular form
of paritious weight w = k+2` and level n with coefficients over O is an element of H0(Shtor, ωk,`).
We will denote this module byMk,w(n;O).
A cuspidal Hilbert modular form of paritious weight w = k+ 2` and level n with coefficients over
O is an element of H0(Shtor, ωk,`(−D)). We denote the submodule of cuspidal Hilbert modular
forms by Sk,w(n;O).

More in general, we define Hilbert modular forms of arbitrary weight on an O-algebra R
satisfying Hypothesis 5.

Definition 2.2.5. For a weight (k, `) ∈ ZΣ×ZΣ and for any O-algebra R satisfying Hypothesis
5, a geometric Hilbert modular form of weight (k, `) and level n with coefficients over R is an
element of H0(Shtor

R , ωk,`R ). We will denote this module byMk,`(n;R). A cuspidal Hilbert modular
form is an element of the sudmodule H0(Shtor

R , ωk,`R (−D)), which we will denote Sk,`(n;R).

By definition of the Shimura variety Shtor
R , it is clear that Mk,`(n;R) is a direct sum as an

R-module of H0(Shtor
c,R, ω

k,`
R ), whose elements are called c-polarized Hilbert modular forms, over

the fixed set of representatives C.
To give a better understanding of these elements, one can use Katz’s description of c-polarized
Hilbert modular forms ([Kat78, 1.2]), which we here recall as given by Reduzzi and Xiao in
[RX17, Section 2.12].

Let R be an O-algebra and let k, ` ∈ ZΣ satisfying Hypothesis 5. Let R′ be an R-algebra
and let c ∈ C. A c-polarized test object over R′ is a tuple (A, λ, µ,F , s, t), where (A, λ, µ,F) is a
c-polarized HBAS with a level n structure µ and filtration F as described above; s = (sτ )τ∈Σ is
a choice of generators for each free rank one R′-module ω̇A/R′,τ and analogously t = (tτ )τ∈Σ is a
choice of generators for each free rank one R′-module δ̇A/R′,τ .

Definition 2.2.6. A c-polarized Katz Hilbert modular form over R of level n and weights (k, `)
is a rule f which assigns to any Noetherian R-algebra R′ and to any c-polarized test object
(A, λ, µ,F , s, t) over R′ an element f(A, λ, µ,F , s, t) ∈ R′ such that

(i) f(A, λ, µ,F , s, t) depends only on the isomorphism class of (A, λ, µ,F , s, t);

(ii) it is compatible with base change in R′;

(iii) it satisfies f(A, ελ, µ,F , s, t) = f(A, λ, µ,F , s, t) for any ε ∈ O×F,+,

(iv) it satisfies

f(A, λ, µ,F , α s, β t) =

(∏
τ∈Σ

α−kττ β−`ττ

)
f(A, λ, µ,F , s, t)

for all α = (ατ )τ∈Σ and β = (βτ )τ∈Σ in (R′×)Σ, where α s = (ατsτ )τ∈Σ and β t = (βτ tτ )τ∈Σ.
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Remark 2.2.7. Forms not satisfying condition (iii) are elements of H0(Yc,R, ω
k,`
c,R).

2.3 Cusps and Tate Varieties
In this section, we will recall the definition of cusps for the Hilbert modular variety Y, which
are used in the construction of the toroidal compactification of this variety. We will mainly be
following work of Dimitrov ([Dim04]). For a fractional ideal a of F , we will denote a∗ = (ad)−1.

Definition 2.3.1 (Dimitrov, Définition 3.2 [Dim04]). Let c ∈ Cl+F , a c-cusp of level n is an
equivalence class of tuples C = (a, b, H, i, j,Λ, γ) where:

(i) a, b are fractional ideals of F coprime with p such that c = ab−1;

(ii) H is an OF -lattice of F 2 that sits in the exact sequence of OF -modules 0 → a∗
i−→ H

j−→
b→ 0;

(iii) Λ : ∧2
OFH

∼−→ c∗ is an isomorphism of OF -modules;

(iv) γ : n−1d−1/d−1 ↪→ n−1H/H is an injective morphism of OF -modules.

for the following equivalence relation: (a, b, H, i, j,Λ, γ) and (a′, b′, H ′, i′, j′,Λ′, γ′) are equivalent
if all the following are verified:

1. a = a′ and b = b′;

2. there exists a commutative diagram of OF -modules

0 a∗ H b 0

0 (a′)∗ H ′ b′ 0

i j

i j

where the vertical maps are isomorphism;

3. the isomorphism ∧2
OFH ' ∧

2
OFH

′ induces, via Λ and Λ′, an automorphism of c∗ given by
an element of O×F,+;

4. the reduction modulo n of the isomorphism H ' H ′ makes the following diagram commu-
tative

n−1H/H n−1H ′/H ′

n−1d−1/d−1 .

∼

γ γ′

Moreover, we associate to C the fractional ideal b′ ⊃ b such that b′/b = j(im(γ)) and the
fractional ideal X = cbb′. The cusp is said to be unramified if b′ = b.

Remark 2.3.2. The lattice H is non-canonically isomorphic to b⊕ a∗. By definition X ⊃ ab. For
unramified cusps, X = ab.
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Let C be a c-cusp, with associated a, b, X and consider S := Spec(O[[qξ; ξ ∈ X+]]). One fixes
a smooth rational polyhedral admissible cone decomposition ofX∗+ giving rise by the construction
of [Dim04, Section 2] to a Tate object Tatea,b defined over a suitable scheme SX (This is a suitable
subring of O[[qξ; ξ ∈ X+]], which is denoted by S̄σ in [Dim04], where σ ∈ ΣC is an element of the
smooth rational polyhedral admissible cone decomposition of X∗+). Moreover, the Tate object
Tatea,b is a c-polarized abelian variety with n-level structure. In particular, one has the following
short exact sequence of SX -schemes,

0 −→ b
q−−→ Gm ⊗Z a∗ −→ Tatea,b −→ 0

This Tate object comes with additional structure (polarization, level structure, basis for the
differential sheaf, see [Dim04, Proof of Théorème 7.2]), and is defined over any SX′ for X ′ a
fractional ideal of OF such that X ′ ⊃ ab.

Proposition 2.3.3. Let Tatea,b be a Tate object over the scheme SX . Then there are canonical
isomorphisms as OSX -modules

π∗Ω
1
Tatea,b /SX

' a⊗Z OSX (2.10)

∧2
OF⊗OYc

H1
dR(Tatea,b /SX) ' cd−1 ⊗Z OSX . (2.11)

Proof. For (2.10), see [Dim04, Équation (5)].
For (2.11), let A be an abelian scheme over a scheme S and consider the following short exact
sequence ([Rap78, See discussion after Lemme 1.3])

0→ Lie(A/S)∨ → H1
dR(A/S)→ Lie(A∨/S)→ 0 .

Recall that Lie(A/S) is the tangent space at 1 of the abelian scheme A/S, while ωA/S is the
cotangent space at 1 for the abelian scheme A/S. Then we can reinterpret this short exact
sequence as

0→ ωA/S → H1
dR(A/S)→ ω∨A∨/S → 0 .

Taking A = Tatea,b over S = SX , and knowing that Tate∨a,b ' Tateb,a, one gets

0→ ωTatea,b /SX → H
1
dR(Tatea,b /SX)→ ω∨Tateb,a /SX

→ 0 . (2.12)

Now by definition ω∨Tateb,a /SX
= HomOF (ωTateb,a ,OF ⊗ d−1). Therefore by the first trivialisation

(2.10),
ω∨Tateb,a /SX

' (b⊗Z OSX )∨ ' b∗ ⊗Z OSX .

Using (2.10) and the short exact sequence (2.12), one gets that

∧2
OF⊗OYc

H1
dR(Tatea,b /SX) ' (ab∗ ⊗Z OSX ) = cd−1 ⊗Z OSX .

This finishes the proof.

From now on, if not specified, tensor product will be taken over Z.
Remark 2.3.4. Recall that at the beginning of Section 2.1.1, wa have decomposed the sheaf

π∗Ω
1
A/S =

⊕
p|p

ωA/S,p =
⊕
p|p

fp⊕
j=1

ωA/S,p,j ,
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for any HBAS A over a scheme S. Applying this decomposition to the Tate object Tatea,b over
SX , using the definition of the ω̇τ for any τ = τ

(i)
p,j , and by the trivializations in Equations (2.10)

and (2.11), one has the following canonical identification

ω̇k,`Tatea,b /SX

can(a,b)
= (a⊗O)k ⊗O (cd−1 ⊗O)` ⊗O OSX , (2.13)

where by (a⊗O)k and (cd−1 ⊗O)` we mean the free O-module of rank 1 defined as

(a⊗O)k :=
⊗
τ∈Σ

(a⊗O)⊗kττ , and (cd−1 ⊗O)` :=
⊗
τ∈Σ

(cd−1 ⊗O)⊗`ττ ,

where (a⊗O)τ denotes the copy ofO identified via the embedding τ . In particular, the coefficients
of q-expansions will live in the rank one O-module (a⊗O)k ⊗O (ab∗ ⊗O)`, while the powers of
q will be elements of the power series ring OSX (see Proposition 2.4.1).

We take now the time to describe the effects on the line bundle ω̇k,` of multiplying either a
or b by p, i.e. the effects of isogenies between the corresponding Tate varieties. We will use these
results later when computing the effect of the Hecke operator at p on q-expansions.

Proposition 2.3.5. Let p be a prime in OF above p. Let a be a fractional ideal of F coprime
with p. Then the natural inclusion ap ↪→ a induces a commutative diagram of OSX -modules

ω̇k,`Tateap,b /SX
ω̇k,`Tatea,b /SX

(ap⊗O)k ⊗O (ab∗p⊗O)` ⊗O OSX (a⊗O)k ⊗O (ab∗ ⊗O)` ⊗O OSX

can(ap,b) can(a,b)

where X ⊇ ab.

Proof. Recall that the Tate object Tatea,b is defined over any SX , where X ⊇ ab (see Definition
2.3.1). Now, since apb ⊆ ab, the Tate varieties Tateap,b and Tatea,b can both be considered as
SX -schemes, for X ⊇ ab. The natural inclusion ap ↪→ a induces an SX -isogeny on the associated
tori

Gm ⊗ a∗ � Gm ⊗ (ap)∗ ,

which translates to an isogeny on the Tate varieties as SX -schemes:

Tatea,b Tateap,b

SX

Since differential forms and the sheaf ∧2
OF⊗OYc

H1
dR are contravariant, and using the identification

of Equation 2.13, the above isogeny induces an injective morphism of OSX -modules

(ap⊗O)k ⊗O (ab∗p⊗O)` ⊗O OSX ↪−→ (a⊗O)k ⊗O (ab∗ ⊗O)` ⊗O OSX ,

which gives the desired result.
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Proposition 2.3.6. Let p be a prime in OF above p. Let b be a fractional ideal of F coprime
with p. Then the natural inclusion ab∗p ↪→ ab∗ induces a commutative diagram of OSX -modules

ω̇k,`Tatea,bp−1 /SX
ω̇k,`Tatea,b /SX

(a⊗O)k ⊗O (ab∗p⊗O)` ⊗O OSX (a⊗O)k ⊗O (ab∗ ⊗O)` ⊗O OSX

can(a,bp−1) can(a,b)

where X ⊇ abp−1.

Proof. Again as in the previous proposition, since X contains abp−1 and ab ⊂ abp−1, both Tate
varieties are defined over SX . Now, since b ⊂ bp−1, one has an isogeny on the Tate varieties as
SX -schemes:

Tatea,b = (Gm ⊗ a∗)/q(b) (Gm ⊗ a∗)/q(bp−1) = Tatea,bp−1

SX

Note that by the canonical identification of Equation (2.13), on the ω̇ part of the sheaf we will
have an isomorphism, since the above isogeny does not have an effect on the group of characters
of a. However, it does have an effect on the periods, and using the equation (2.11), one gets the
desired map via the natural inclusion ab−1p ↪→ ab−1.

2.4 q-Expansions Rings
We recall that C is a fixed set of representatives of Cl+F . For every c ∈ C we have a collection of
c-cusps, C = (a, b, H, i, j, λ, α), obtained by varying a et b such that ab−1 = c. We set ∞(c) to
denote the standard c-cusp at infinity, i.e. the c-cusp where a = c and b = OF . Moreover, for
every cusp C, we have a Tate object Tatea,b over a scheme SX , which depends on the smooth
rational polyhedral admissible cone decomposition of the fractional ideal X, containing ab. We
will use these ingredients to make explicit the local completed module of the sheaf ωk,` over Shtor

along the cusp C.

Proposition 2.4.1. For a c-cusp, C = (a, b, H, i, j, λ, α) with associated fractional ideal X ⊃ ab,
the completion of ωk,` over Shtor at C is given by

Mk,`
a,b(X) :=

{ ∑
ξ∈X+∪{0}

aξq
ξ

∣∣∣∣∣ aξ ∈ (a⊗O)k ⊗O (cd−1 ⊗O
)`

; aεξ = ε−`aξ for all ε ∈ O×F,+

}
.

(2.14)
For the infinity cusp ∞(c), we will denote byMk,`

∞ (c) :=Mk,`
c,OF (c) and we will call it the module

of q-expansions at the cusp ∞(c).

We remark that the above description of the module of q-expansion agrees with the one given
by Diamond and Sasaki ([DS17, Proposition 9.1.2]), where they work with the Deligne-Pappas
model since they are assuming that p is unramified in F .
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Proof. In this proof we will use the notation and results of Dimitrov, in [Dim04]. Let C =
(a, b, H, i, j, λ, α) be a c-cusp and ΣC be a smooth rational polyhedral admissible cone decompo-
sition of X∗+. We will be working in a formal neighborhood of the cusp C, given by the formal
completed scheme S∧

ΣC
, which is the completion of the variety obtained by gluing all the toric im-

mersions at infinity. By [Dim04, Théorème 8.6 (v)], we know that the formal completion of Shtor

along the cusp C is canonically isomorphic to S∧
ΣC
/O×F,n×O

×
F,+, and in particular the completion

of ωk,` over Shtor at C can be identified with the global sections H0(S∧
ΣC
/O×F,n × O

×
F,+, ω

k,`).
Moreover, one can determine the set of global sections H0(S∧

ΣC
/O×F,n ×O

×
F,+, ω

k,`) by taking in-
variants under the action of O×F,n×O

×
F,+ of the set of global sections H0(S∧

ΣC
, ω̇k,`). As explained

in Remark 2.3.4, the module H0(S∧
ΣC
, ω̇k,`) can be described using the trivialisations (2.10) and

(2.11), as

ω̇k,`|S∧
ΣC

can(a,b)
= (a⊗Z O)k ⊗O (cd−1 ⊗Z O)` ⊗O OS∧

ΣC
.

An element in H0(S∧
ΣC
, ω̇k,`) is then a power series

∑
ξ∈X+∪{0} aξq

ξ, with aξ ∈ (a ⊗Z O)k ⊗O
(cd−1 ⊗Z O)`, which we recall is a free of rank one O-module. Now, let us recall that the group

O×F,n × O
×
F,+ acts on the cusp C via a matrix

(
εu 0
0 u−1

)
on the OF -lattice H ' b ⊕ a∗, as in

[Dim04, Proposition 3.3]. In particular, under this action, one has that a 7→ ua and b 7→ εub;
therefore we also have that c 7→ ε−1c and X 7→ (εu2)X. Therefore the Fourier coefficients must
satisfy the following

a(u2ε)ξ = ukε−`aξ .

The q-expansion ring for C is identified with

H0(S∧ΣC/O
×
F,n ×O

×
F,+, ω

k,`) =

{ ∑
ξ∈X+∪{0}

aξq
ξ

∣∣∣∣∣ aξ ∈ (a⊗O)k ⊗ (cd−1 ⊗O
)`

;

a(u2ε)ξ = ukε−`aξ for all ε ∈ O×F,+, u ∈ O
×
F,n

}
.

For a scalar matrix, i.e. for ε = u−2, the action on X is then trivial and in fact under the
Hypothesis 5, one has

a(u2ε)ξ = ukε−`aξ = uk+2`aξ = aξ .

Since scalar matrices act trivially, one can decompose the matrix
(
εu 0
0 u−1

)
=

(
u−1 0
0 u−1

)
·(

εu2 0
0 1

)
, and just look at the action of matrices of the form

(
ε 0
0 1

)
for ε ∈ O×F,+, which gives

that aεξ = ε`aξ and therefore the Proposition.

Corollary 2.4.2. Let R be a O-algebra satisfying Hypothesis 5. Then for a c-cusp, C =
(a, b, H, i, j, λ, α) with associated fractional ideal X ⊃ ab, the completion of ωk,`R over Shtor

R at C
is given by

Mk,`
a,b(X;R) :=

{ ∑
ξ∈X+∪{0}

aξq
ξ

∣∣∣∣∣ aξ ∈ ((a⊗O)k ⊗O (cd−1 ⊗O
)`)⊗O R;

aεξ = ε−`aξ for all ε ∈ O×F,+

}
.
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Proof. This follows immediatly from Proposition 2.4.1, and by the canonical identification

ω̇k,`|S∧
ΣC
×Spec(R)

can(a,b)
=

(
(a⊗O)k ⊗O (cd−1 ⊗O)`

)
⊗O R⊗O OS∧

ΣC
×Spec(R) .

induced by Equation (2.13).

We will mainly consider expansion rings for the standard cusps at infinity,∞(c). In particular
one has injective q-expansion maps

H0(Shtor, ωk,`) ↪→
⊕
c∈C
Mk,`
∞ (c) and H0(Shtor

R , ωk,`R ) ↪→
⊕
c∈C
Mk,`
∞ (c;R).

Since we are working over O, it will be very important for our computations on the q-expansion
to keep working with the set C of representatives coprime with p. However, we will have to
manipulate as seen in the previsous section, the p-isogenies on the Tate objects (see Proposition
2.3.5). We then end this chapter by showing what happens on q-expansions when we bring a
cusp to the fixed set of representatives C.

Lemma 2.4.3. Let c ∈ C and p a prime above p. Let α ∈ F+ such that cp = αc′, where c′ ∈ C
is a representative in Cl+F . We have the following morphism of O-modules:

Mk,`
∞ (c′)

·αk+`

−−−→Mk,`
∞ (cp)∑

ξ′∈c′+∪{0}

aξ′q
ξ′ 7−−−→

∑
ξ′∈c′+∪{0}

αk+`aξ′q
αξ′ =

∑
ξ∈(cp)+∪{0}

αk+`aα−1ξq
ξ.

Proof. In order to establish the morphism above, one has to look at the cusps ∞(cp) and ∞(c′),
and their associated Tate varieties. But first let us recall that the scheme SX is constructed
from the scheme Spec(O[[qξ : ξ ∈ X+]]), and that in particular this construction based on
the smooth rational polyhedral cone decomposition is functorial (see [Dim04, Section 2]). In
particular, the base sheaves Scp and Sc′ are isomorphic, where the isomorphism is induced by the
ring isomorphism

O[qξ
′

: ξ′ ∈ c′]
∼−−→ O[qξ : ξ ∈ cp] ,

qξ
′ 7−→ qαξ

′

qα
−1ξ ←− [ qξ .

We can then see the Tate variety Tatecp,OF as a variety over Sc′ via pullback in the following
cartesian square

Tatecp,OF (Gm ⊗ (cp)∗)/q(OF )

Sc′ Scp
∼

i.e. we can see Tatecp,OF as the Sc′-scheme
(
(Gm ⊗ (cp)∗)/q(OF )

)
×Scp Sc′ .6 We can then look

6Concretely, we are re-indexing the powers of q in the q-expansion.
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at both Tate varieties as Sc′-schemes and consider the following commutative diagram:

0 OF Gm ⊗ (cp)∗ Gm ⊗ (cp)∗/q(OF ) 0

Sc′

0 OF Gm ⊗ (c′)∗ Gm ⊗ (c′)∗/q(OF ) 0

1⊗α 1⊗α

Recall that ωτ and δτ are contravariant, and that by the canonical identification in (2.13), the
above diagram induces a morphism:

(c′ ⊗O)k ⊗O (c′d−1 ⊗O)` ⊗O OSc′ −→ (cp⊗O)k ⊗O (cpd−1 ⊗O)` ⊗O OSc′ (2.15)

For every embedding τ , one has the following commutative diagram of morphisms of O-modules:

(c′ ⊗O)τ Frac(O) = K (ξ′ ⊗ 1) τ(ξ′)

(cp⊗O)τ Frac(O) = K (αξ′ ⊗ 1) τ(αξ′)

·α τ(α) ·α ·τ(α)

which give morphisms on the O-modules:

(c′ ⊗O)k
·αk−−−→ (cp⊗O)k (c′d−1 ⊗O)`

·α`−−→ (cpd−1 ⊗O)`

So putting the two together, for ξ′ ∈ c′ one gets a morphism of the modules of coefficients,

(c′ ⊗O)k ⊗ (c′d−1 ⊗O)` −→ (cp⊗O)k ⊗ (cpd−1 ⊗O)`

aξ′ 7→ αk+`aξ′ .

Now using the morphism on the coefficients and Equation (2.15), one obtains the following
morphism of O-modules

Mk,`
∞ (c′)

·αk+`

−−−→Mk,`
∞ (cp)∑

ξ′∈c′+∪{0}

aξ′q
ξ′ 7−−−→

∑
ξ′∈c′+∪{0}

αk+`aξ′q
αξ′ =

∑
ξ∈(cp)+∪{0}

bξq
ξ

where bξ = αk+`aα−1ξ ∈ (cp⊗O)k⊗(cpd−1⊗O)` . In fact, this morphism respects the conditions
given by the O×F,+-action, as in Proposition 2.4.1: for ε ∈ O×F,+

bεξ = αk+`aεα−1ξ = αk+`aεξ′ = ε−`αk+`aξ′ = ε−`bξ ,

where the one before last equality is given by the fact that aξ′ satisfies aεξ′ = ε−`aξ′ for all
ε ∈ O×F,+ and ξ′ ∈ c′.

Remark 2.4.4. We remark that this is not an isomorphism because α has strictly positive p-adic
valuation. In fact vp(α) = 1, since αc′ = cp, and c, c′ ∈ C are coprime with p.
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The strategy of proof of Lemma 2.4.3 can be applied to see what happens on the q-expansion
when changing the representative of the class c ∈ C.

Lemma 2.4.5. Let c and νc, with ν ∈ F×+ , be two representatives of the same ideal class group
element, both coprime with p. Then we have an isomorphism

Mk,`
∞ (c)

·νk+`

−−−→
∼
Mk,`
∞ (νc)∑

ξ∈c+∪{0}

aξq
ξ 7−−−→

∑
ξ∈c+∪{0}

νk+`aξq
νξ

Proof. The proof goes exactly like in Lemma 2.4.3. However, this time one has an isomorphism
since ν is invertible in O, because νc is assumed to be coprime with p.
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Chapter 3

Action of the Tp operator on
q-expansions

In this chapter, we construct step by step the Hecke operator at p, for a prime p ⊂ OF dividing p,
acting on Hilbert modular forms and compute its action on geometric q-expansions. The Hecke
operator at p in characteristic p was first constructed for paritious weights by Emerton, Reduzzi
and Xiao (see [ERX17a, Section 3]). In particular, they construct a normalized Hecke operator
at p (see [ERX17a, Definition 3.12]) that acts on the whole cohomology H•(ShPR,tor

O/$mO, ω
k,`
O/$mO)

in positive characteristic. We will only be interested in the degree 0 cohomology, and we will
use their construction alongside some techniques of Dimitrov-Wiese (see [DW18, Section 3.3]) to
calculate the action of the Hecke operator at p on q-expansions for a generic partial weight (k, `)
as in Chapter 2.

The geometric construction of Emerton, Reduzzi and Xiao ([ERX17a]) gives rise to a Hecke
operator at p that we will denote T∨,◦p . The ◦ in this notation is to recall that this Hecke operator
is normalized in order for it to be optimally integral on O, and therefore to give rise to a non-
trivial operator modulo $. The dual is due to the fact that we are later interested to work with
Galois representations attached to Hilbert modular forms, where the dual operator of the one
constructed in [ERX17a] intervenes. The action of T∨,◦p on q-expansions is given in Theorem
3.3.4.

In general, Tp = T∨p ◦ 〈p〉, where 〈p〉 denotes the diamond operator at p. However, the
classical diamond operators, even if they come from a natural construction, do not give rise to
an automorphism over O for primes dividing p. One can overcome this issue by working with
paritious weights, i.e. weights (k, `) ∈ ZΣ × ZΣ such that kτ + 2`τ = w ∈ Z for all τ ∈ Σ, and
by normalizing by Nm(p)w (see Definition 3.1.1). We therefore set T ◦p := T∨,◦p ◦ 〈p〉w, where 〈p〉w
denotes the normalized diamond operator at p, and we compute its action on q-expansion in
Corollary 3.3.6.

Finally, we recall to the reader that we are not imposing p to be unramified in OF , and
therefore we are working with the Pappas-Rapoport model. In particular, from now on, we will
drop the PR from all notations.

3.1 Normalized diamond operators
As explained in the introduction, we want to work with normalized diamond operators. We
will recall here how the general diamond operator for a prime ideal q ⊂ OF not dividing n is
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constructed and we will explain why the normalization is essential to have an automophism on
H0(Sh, ωk,`), for paritious weights (k, `) ∈ ZΣ×ZΣ, i.e. such that kτ +2`τ = w ∈ Z for all τ ∈ Σ.
Let A be a HBAS over S, and let q be a prime ideal of OF . Let us consider the following exact
sequence of HBAS over S:

0→ A[q]→ A→ A⊗OF q−1 → 0, (3.1)

where A ⊗OF q−1 denotes the S-scheme representing the functor of points as in Section 2.1.1.
Since the Cartier dual of A[q] is (A⊗OF q−1)∨[q] (see [Hid04, Section 4.1.9]), dualizing the short
exact sequence (3.1) gives the following short exact sequence of HBAS over S:

0→ (A⊗OF q−1)∨[q]→ (A⊗OF q−1)∨ → A∨ → 0. (3.2)

Let us now suppose that A is c-polarized, with polarization λ. It then results from the natural S-
isogeny A→ A⊗OF q−1 and the short exact sequence (3.2) that there is a canonical isomorphism
(see [DW18, Equation 10])

(A⊗OF q−1)∨
∼−→ A∨ ⊗OF q. (3.3)

Let c′ ∈ C and θ ∈ F+ such that θc′ = cq2. Using the above equation, one sees that the HBAS
A⊗ q−1 admits a c′-polarization:

λ′ : (A⊗OF q−1)⊗OF c′
1⊗θ−−→
∼

A⊗OF cq
λ−→
∼
A∨ ⊗ q

∼−−→
3.3

(A⊗OF q−1)∨ (3.4)

(This can also be seen in [ERX17a, Section 2.9]). We then consider the isomorphism

ϕq : Yc −→ Yc′

(A, λ, µ,F) 7−→ (A′ := A⊗OF q−1, λ′, µ′,F ′),

where λ′ is the c′-polarization given in Equation (3.4) , µ′ is the µn-structure induced by µ
and (A ⊗OF q−1)[n] ' A[n] (for primes q coprime with n), and F ′ is induced filtration. This
isomorphism extends to an isomorphism on the toroidal compactifications Ytor

c
∼−→ Ytor

c′ , by
sending a c-cusp C = (a, b, H, i, j,Λ, γ) to the c′-cusp C′ = (aq, θbq−1, H ⊗ q−1, i ⊗ q−1, j ⊗
θq−1, θΛ, γ′), where γ′ is the obvious induced level structure (see discussion in [ERX17a, Section
2.9]).
Let us now see what happens on the sheaves. Let Ac and Ac′ denote the universal semi-abelian
varieties respectively over Ytor

c and Ytor
c′ . Then one has the following commutative diagram of

O-schemes:
Ac Ac ⊗OF q−1 Ac′

Ytor
c Ytor

c′
ϕq

∼

which induces a natural pullback morphism

Ṡ∨q : ϕ∗qω̇
tor
Ac′/Y

tor
c′
→ ω̇tor

Ac/Ytor
c
,

where we recall that ω̇tor
Ac/Ytor

c
denotes the sheaf of relative differentials over Ytor

c , constructed in
Section 2.2.1 from e∗Ω1

AR
c /Y

R,tor
c

. We recall that the dot in the notation is used to recall that we
are working over the moduli space Y, and not over the corresponding Shimura variety Sh. The
dual in the notation is again due to the fact that this operator turns out to be the inverse of the
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classical diamond operator.
Similarly, one has a natural morphism Ṡ∨q : ϕ∗q δ̇c′,τ → δ̇c,τ for any τ ∈ Σ. Let (k, `) ∈ ZΣ × ZΣ

be a paritious weight, with kτ + 2`τ = w for all τ ∈ Σ. One then has a natural isomorphism

Ṡ∨,◦q : ϕ∗q

(⊗
τ∈Σ

ω̇kτc′,τ ⊗OYtor
c′
δ̇`τc′,τ

)
(Nm q)−wṠ∨q−−−−−−−−→

∼

⊗
τ∈Σ

ω̇kτc,τ ⊗OYtor
c
δ̇`τc,τ .

We will explain in more details below why this is isomorphism. Taking the union over all c ∈ C,
gives an isomorphism

Ṡ∨,◦q : H0(Ytor
c′ , ω̇

k,`)
(Nm q)−wṠ∨q−−−−−−−−→

∼
H0(Ytor

c , ω̇k,`).

Moreover, this isomorphism passes to the quotient by the action of the group E (see [ERX17a,
Section 2.9]), giving rise to

S∨,◦q : H0(Shtor, ωk,`)
(Nm q)−wS∨q−−−−−−−−→

∼
H0(Shtor, ωk,`), (3.5)

by taking the disjoint union over the fixed set of representatives C. Moreover, the action of S∨,◦q

is indipendent of the choice of the element θ (see [ERX17a, Section 2.9]).

Definition 3.1.1. Let (k, `) ∈ ZΣ × ZΣ be a paritious weight, with kτ + 2`τ = w for all τ ∈ Σ.
Let R be any O-algebra. We then define the diamond operator

〈q〉w : H0(Shtor
R , ω̇k,`)→ H0(Shtor

R , ω̇k,`R )

to be 〈q〉w :=
(
Nm(q)−wS∨q

)−1, the inverse of the induced properly normalized isomorphism of
Equation 3.5.

We now explain why the normalization is essential by looking at what happens at the cusps.
Let us recall that the Tate object at the c-cusp C = (a, b, H, i, j,Λ, γ) is Gm ⊗ a∗/q(b) over
the base SX (see Section 2.3). The isomorphism ϕq send the c-cusp C to a cq2-cusp C′ =
(aq, bq−1, H ⊗ q−1, i ⊗ q−1, j ⊗ q−1,Λ, γ′), inducing the following commutative diagram of SX
schemes1:

0 b Gm ⊗ a∗ Gm ⊗ a∗/q(b) 0

SX

0 bq−1 Gm ⊗ (aq)∗ Gm ⊗ (aq)∗/q(bq−1) 0

q

1⊗q−1 1⊗q−1

q

where the second and third vertical maps are induced by the natural SX -isogeny from Equation
(3.1). Taking the c-cusp C to be the standard cusp at infinity ∞(c), this implies that there is a
morphism of Sc-schemes:

Tatec,OF → Tatecq,q−1

1We are supposing here for simplicity that the element cq2 belongs to our fixed set or representatives
C, since the induced action of S∨,◦q is independent of this choice.
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which induces, via the canonical identification (2.13), the following diagram

ωk,`Tatec,OF /SX
ωk,`Tatecq,q−1 /SX

(c⊗O)k ⊗O (cd−1 ⊗O)` ⊗O OSX (cq⊗O)k ⊗O (cq2d−1 ⊗O)` ⊗O OSX ,

Ṡq

can(c,OF ) can(cq,q−1)

Ṡq

(3.6)

where the bottom map is induced by the natural inclusions cq ⊂ c and cq2 ⊂ c. It is clear that
in the case of q = p, a prime above p, this natural inclusion would not induce an isomorphism
over O. In the case of a paritious weight (k, `), i.e. such that kτ + 2`τ = w ∈ Z for all τ ∈ Σ, the
introduced normalization is essential to make the diamond operator invertible on the sheaf of
paritious Hilbert modular forms over O for prime ideals of OF co-prime with n. For non-paritious
weights, it is not clear how to make the geometric operator Ṡp invertible, for places p dividing p.
Let us look at the map

(c⊗O)k ⊗O (cd−1 ⊗O)` ⊗O OSX
(Nm(q))−wṠq←−−−−−−−− (cq⊗O)k ⊗O (cq2d−1 ⊗O)` ⊗O OSX .

We recall that (c ⊗ O)k =
⊗

τ∈Σ(c ⊗ O)⊗kττ is an O-module of rank 1 (see Remark 2.3.4). In
particular, each (c ⊗ O)τ is a principal ideal in O. So we consider the following morphism of
O-modules: ⊗

τ∈Σ

(c⊗O)τ = (c⊗O)t ←− (cq⊗O)t =
⊗
τ∈Σ

(cq⊗O)τ

Nm(q)−1(aτ1 ⊗ . . .⊗ aτd)←− [ (aτ1 ⊗ . . .⊗ aτd)

, where t ∈ ZΣ denotes the weight vector with 1 in each entry. This is in particular an isomor-
phism for any prime ideal q of OF . In fact, for q not dividing p, this is clearly an isomorphism,
since Nm(q) ∈ O×. For q = p a prime above p, an element a ∈ (cp ⊗ O)t ' Nm(p)O has
p-valuation vp(a) ≥ 1, so the element Nm(p)−1 has p-valuation greater or equal to 0, and it
belongs to (c⊗O)t ' O. Since kτ + 2`τ = w ∈ Z, the map

(c⊗O)k ⊗O (cd−1 ⊗O)` ⊗O OSX ←− (cq⊗O)k ⊗O (cq2d−1 ⊗O)` ⊗O OSX∑
ξ∈X+

(Nm(q)−waξ)q
ξ ←− [

∑
ξ∈X+

aξq
ξ

is an isomorphism of O-modules. This extends to any O-module R.

For primes p ⊂ OF above p, one can construct normalized diamond operators also for non-
paritious weights, using the uniformizer $p. In particular, by applying the same reasoning as
above to the normalizing factor

∏
τ∈Σp

τ($p)
−(kτ+2`τ ) instead of Nm(p)−w, one gets an equivalent

of Equation 3.5 :

S∨,◦p : H0(Shtor, ωk,`)

∏
τ∈Σp

τ($p)−(kτ+2`τ )S∨p
−−−−−−−−−−−−−−−−→

∼
H0(Shtor, ωk,`). (3.7)

Definition 3.1.2. Let (k, `) ∈ ZΣ×ZΣ and let R be any O-algebra satisfying Hypothesis 5. Let
p ⊂ OF be a prime dividing p. We define the normalized diamond operator at p

〈p〉k,` : H0(Shtor
R , ω̇k,`)→ H0(Shtor

R , ω̇k,`R )

to be 〈p〉k,` :=
(∏

τ∈Σp
τ($p)

−(kτ+2`τ )S∨p

)−1
, the inverse of the properly normalized isomorphism

of Equation (3.7).



3.2 Hilbert Moduli Space with Iwahori level structure 47

3.2 Hilbert Moduli Space with Iwahori level structure
In order to construct Hecke operators at a prime p dividing p, one has to look at Hilbert modular
schemes with extra Γ0(p)- structure, which here will be taken to be the Iwahori level structures as
in [ERX17a, Section 3.1], first constructed by Pappas ([Pap95]) and Pappas-Rapoport ([PR05]).
Let p be a prime ideal in OF dividing p, f its residual degree and e its inertia degree. For a
chosen representative c ∈ C, let α ∈ F× be such that cp = αc′, for c′ ∈ C another representative
in Cl+F . The following definition is taken as in [ERX17a, Section 3.1].

Definition 3.2.1. LetMc(n; p) denote the functor associating to a locally noetherian O-scheme
S the set of isomorphism classes of tuples

(
(A, λ, µ,F); (A′, λ′, µ′,F ′);φ;ψ

)
, where

• (A, λ, µ,F) is an S-point of Yc;

• (A′, λ′, µ′,F ′) is an S-point of Yc′ ;

• φ : A→ A′ and ψ : A′ → A⊗ c(c′)−1 are OF -equivariant S-isogenies such that:

– deg(φ) = pf = deg(ψ);

– the compositions ψ ◦φ and (φ⊗ c(c′)−1)◦ψ are the natural isogenies A→ A⊗ c(c′)−1

and A′ → A′ ⊗ c(c′)−1 induced by OF ⊆ p−1 ·α' c(c′)−1;

– φ is compatible with polarizations, i.e. φ ◦ λ ◦ φ∨ = λ̃′, where λ̃′ : (A′)∨ → A′ ⊗ c is
the map induced by composing λ′ with c′

·α' cp ⊂ c;

– φ and ψ are compatible with level structures, i.e. φ ◦µ = µ′ and ψ ◦µ′ = µ⊗ c(c′)−1;

– φ and ψ are compatible with the filtrations, i.e. for any p′ dividing p, and for any
j ∈ {1, . . . fp′} the morphisms of S-modules

φ∗ : ωA′/S,p′,j → ωA/S,p′,j and ψ∗ : ωA/S,p′,j ' ωA/S,p′,j ⊗ c(c′)−1 → ωA′/S,p′,j ,

preserve the filtrations F•p′,j and F ′•p′,j .

This functor is representable by an O-scheme of finite type that we will denote Yc(p) ([ERX17a,
Section 3.1]).

There are two natural forgetful maps:

Yc(p)

Yc Yc′

π1,α π2,α (3.8)

induced by keeping only the appropriate data of HBAV, i.e.(
(A, λ, µ,F); (A′, λ′, µ′,F ′);φ;ψ

)
(A, λ, µ,F) (A′, λ′, µ′,F ′) .

π2,απ1,α
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As seen for Yc in Section ?? the group E acts freely on Yc(p), by acting at the same time on A
and A′, and hence we denote by Shc(p) the corresponding quotient. As before, we set

Y(p) =
∐
c

Yc(p) , Sh(p) =
∐
c

Shc(p) .

Since π1,α, π2,α are both equivariant under the action of E, we have induced projections:

Sh(p)

Sh Sh ,

π1 π2

which are independent of the choices of α by [ERX17a, Equation 3.1.2]. Moreover, by [ERX17a,
Proposition 3.7], these morphisms of O-schemes are finite and flat over the ordinary locus of
Sh(p). One can construct smooth toroidal compactifications for the splitting models with Iwahori
level structures as in [RX17, Section 2.11] and extend the above maps π1, π2 to maps Sh(p)tor →
Shtor, as in [ERX17a, Section 3.9], which may no longer be finite and flat over the ordinary locus.

3.3 Hecke Operator at p over O
We first recall the definition of the normalized Hecke operator at p as given by Emerton, Reduzzi
and Xiao. In their construction of the Hecke operator at p, Emerton, Reduzzi and Xiao have to
suppose the following for the weight k ∈ ZΣ (see [ERX17a, Conditions 3.11.1]).

Hypothesis 6. Assume that the weights kτ for τ ∈ Σp satisfy the following:

•
∑

τ∈Σp
kτ ≥ ef ;

• k
τ

(j+1)
p,i

≥ k
τ

(j)
p,i

for all i = 1, . . . , f and j = 1, . . . , e− 1;

• pk
τ

(1)
p,i

≥ k
τ

(e)
p,i

.

We would like to remark that by these conditions, one has that kτ ≥ 0 for all τ ∈ Σp.
Moreover, these conditions correspond to what Diamond-Kassaei define as minimal cone, in
[DK17] for unramified p and in [DK20] for general p, which we recall here.

Definition 3.3.1 (Diamond-Kassaei). We say that a weight k ∈ ZΣ belongs to the minimal
cone, denoted Cmin, if for every p|p:

• k
τ

(i+1)
p,j

≥ k
τ

(i)
p,j

for all j = 1, . . . , fp and i = 1, . . . , ep − 1;

• pk
τ

(1)
p,j

≥ k
τ

(ep)

p,j−1

for all j = 1, . . . fp.

We would like to stress that, in order to have a good theory of Hecke operators, one has to
work with minimal weights. In particular, in Chapter 4 we will mainly work with weights that
live in the minimal cone, or we will bring our forms to weights living in the minimal cone.
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Definition 3.3.2 (Definition 3.12 of [ERX17a]). Let (k, `) be a paritious weight, i.e. kτ + 2`τ =
w ∈ Z, satisfying Hypothesis 6. Let Rm := O/$mO. The action of the Hecke operator T∨,◦p on
the cohomology of ωk,`Rm is defined as the composition of the following maps:

Hi(Shtor, ωk,`Rm)
π∗2−→ Hi(Sh(p)tor, π∗2ω

k,`
Rm

)
π1,∗−−→ Hi(Shtor, Rπ1,∗π

∗
2ω

k,`
Rm

)
ηm−−→ Hi(Shtor, ωk,`Rm),

where ηm : Rπ1,∗π
∗
2ω

k,`
Rm
→ ωk,`Rm is a normalized morphism constructed from the dualizing trace

map (see Introduction, Section 3.10 and Proposition 3.11 of [ERX17a]).

We want to remark that we denote this geometric normalized Hecke operator with a dual
to distinguish it from the "arithmetic" normalized Hecke operator at p, which we will denote
T ◦p . The two are dual of each other, as in Equation (3.16). As said in the introduction of this
chapter, we want to work with "arithmetic" Hecke operators because they are the good ones to
consider when working with the Galois representations attached to Hilbert modular forms.

In what follows, we will go through the steps to construct the Hecke operator T∨,◦p , to
calculate its action on q-expansion. We maintain the generality of partial weights (k, `), because
we believe that the operator defined by Emerton, Reduzzi and Xiao can be extended to non-
paritious minimal weights as well.

In order to understand the effect of the Tp operator on q-expansions, it suffices to look first
at the varieties Yc(p) and their toroidal compactifications, and therefore at the projection maps
π1,α, π2,α defined in (3.8). We will later take into account the passage to quotient Shc and its
compactification.

Since we will be working with cusps cp and cp−1, which are not in our fixed set of represen-
tatives C, we will take α, β ∈ F× such that

cp = αc′ and cp−1 = βc′′ ,

where c′, c′′ are in the set of chosen representatives C, coprime with p.

Proposition 3.3.3. Let ∞(c) be the cusp at infinity and let Tatec,OF /Sc be the associated Tate
variety (see Section 2.3). Then the inverse image under π1,α of ∞(c) consists of two cusps,
which will be labeled ∞c and 0c, the ramified one. In particular the inverse image under π1,α of
Tatec,OF → Sc consists of

• an Sc-point on Yc(p), with A = (Gm ⊗ c∗)/q(OF ) and A′ = (Gm ⊗ (cp)∗)/q(OF ) over Sc;

• an Scp−1-point on Yc(p), with A = (Gm ⊗ c∗)/q(OF ) and A′ = (Gm ⊗ c∗)/q(p−1), over
Scp−1.

Proof. This follows from the construction of the Iwahori level structure and from [DW18, Propo-
sition 3.3].

To calculate the action of T∨,◦p on q-expansions on a form with coefficients in Rm = O/$mO,
we will work with the schemes SX over which the Tate object for the cusp∞(c) lives. In particu-
lar, the module of q-expansionsMk,`

∞ (c;Rm) can be injected in a completed ring R∧X ⊗ORm (see
the proof of Theorem 3.3.4), whose elements can be lifted in O. We will then follow the steps of
the construction of T∨,◦p over O and we will reduce modulo $m the obtain equation. This can
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be done because the operator T∨,◦p exists and is integral over O.

Following the definition of the maps π1, π2, and by the above proposition, one gets the
following diagram corresponding to the cusp ∞c:

(Gm ⊗ c∗)/q(OF ) (Gm ⊗ (cp)∗)/q(OF )

Sc

(Gm ⊗ c∗)/q(OF ) (Gm ⊗ (c′)∗)/q(OF )

Sc Sc′

π1

φ

π2

(3.9)
and the following diagram for the ramified cusp 0c:

(Gm ⊗ c∗)/q(OF ) (Gm ⊗ c∗)/q(p−1)

Scp−1

(Gm ⊗ c∗)/q(OF ) (Gm ⊗ c∗)/q(p−1)

Sc Scp−1

π1

φ

π2

(3.10)
Since we want to work only with the standard cusps at infinity, i.e. those cusps labeled ∞(c)
for c ∈ C, here we will use the natural diamond operator S∨q and the natural morpshim ϕq from
Section 3.1 to bring the cusp∞(cp, p−1), with corresponding Tate variety (Gm⊗c∗)/q(p−1)/Scp−1

to the cusp ∞(c′′). In this step, since we have fixed β ∈ F+ such that βc′′ = cp−1, we will see
the term β appear in the q-expansions.

3.3.1 Action on geometric q-expansions
We now have all the ingredients to prove the following

Theorem 3.3.4. Let Rm := O/$mO and let (k, `) ∈ ZΣ × ZΣ satisfying Hypothesis 5 and
Hypothesis 6. Let f ∈ H0(ShRm , ω

k,`
Rm

) and let f =
(
fc
)
c∈C, where fc =

∑
ξ∈c+∪{0} aξq

ξ be its
geometric q-expansions at the cusp ∞(c). For a place p of F above p, let α, β ∈ F+ be such that
cp = αc′ and cp−1 = βc′′, for c, c′, c′′ ∈ C. Then for ξ ∈ c+

aξ
(
(T∨,◦p f)c

)
= Nm(p)−1

∏
τ∈Σp

τ($p)
−`τ

αk+`aα−1ξ(fc′)

+

∏
τ∈Σp

τ($p)
kτ+`τ

βk+`aβ−1ξ

(
(S∨,◦p f)c′′

)
,

(3.11)
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with aα−1ξ = 0 if α−1ξ /∈ c′ and S∨,◦p is given in Equation 3.7. We recall that we denote by αk

the element
∏
τ∈Σ τ(α)kτ .

Remark 3.3.5. As we will see in the proof of Theorem 3.3.4, the formula in Equation 3.11 makes
sense as it is over O and in particular it is integral over O. Let us explain why. First of
all, the coefficients aα−1ξ(fc′) and aβ−1ξ

(
(S∨,◦p f)c′

)
live respectively in the rank one O-module

(c′ ⊗ O)k ⊗O (c′d−1 ⊗ O)` and (c′′ ⊗ O)k ⊗O (c′′d−1 ⊗ O)`, so they have non-negative $-adic
valuation. Let us remark that the normalization of the operator S∨,◦p is again essential for the term
aβ−1ξ

(
(S∨,◦p f)c′

)
to have non-negative p-valuation. In fact, thanks to the normalization, one has

an isomorphism of rank one O-modules (c′′p⊗O)k⊗O (c′′p2d−1⊗O)` −→ (c′′⊗O)k⊗O (c′′d−1⊗O)`.
Now let us proceed to calculate the p-adic valuation of each addend of Equation (3.11). Since
αc′ = cp and c, c′ are coprime with p, vp(α) = 1. Therefore the p-adic valuation of the first term
is

vp(first term) ≥ −ef −
∑
τ∈Σp

`τ +
∑
τ∈Σp

(kτ + `τ )

=
∑
τ∈Σp

kτ − ef ≥ 0.

The last equality is given by the first condition of Hypothesis 6.
Since βc′′ = cp−1 and c, c′′ are coprime with p, vp(β) = −1. Therefore the p-adic valuation of the
second term is

vp(second term) ≥
∑
τ∈Σp

kτ + `τ −
∑
τ∈Σp

(kτ + `τ ) = 0

Therefore, the above Equation (3.11) taken over O is integral.

Proof. Let us give an argument to why we can work over O and then reduce modulo $m. By the
construction of the toroidal compactification by Dimitrov ([Dim04, Théorème 7.2]), we can work
over the schemes SX at the chosen cusps. This is because the schemes SX are by construction
such that one has an open immersion SX ↪→ Shtor

c and by formal completion one has also a
morphism of schemes S∧X → SX , where S∧X = Spf(R∧X) denotes the formal completion of SX .
This induces for any O-algebra R the following commutative diagram:

H0(Shc,R, ω
k,`
R ) H0(SX × Spec(R), ωk,`R ) H0(S∧X × Spec(R), ωk,`R )

Mk,`
∞ (c;R) R∧X ⊗O R

In particular, elements of R∧X ⊗O Rm lift in characteristic 0 to R∧X . One has an action of the
Hecke operators T∨,◦p on the cusps (see for example Equation 3.9 and 3.10) and therefore over
R∧X ⊗O Rm. In particular, one has the following commutative diagram:

H0(Shc,Rm , ω
k,`
Rm

) Mk,`
∞ (c;Rm) R∧X ⊗O Rm

H0(Shc,Rm , ω
k,`
Rm

) Mk,`
∞ (c;Rm) R∧X ⊗O Rm

T∨,◦p T∨,◦p T∨,◦p
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where here we use red arrows to stress the fact that we are working over Rm, and that the vertical
maps correspond to the Hecke operator T∨,◦p acting on H0(Shc,Rm , ω

k,`
Rm

).
Moreover, over O, one has a normalized Hecke operator T∨,◦p on H0(Sh, ωk,`) which is defined, as
in Definition 3.3.2, as the composition (η ◦ π1,∗ ◦ π∗2). We point out that ηm in Definition 3.3.2
of T∨,◦p over H0(ShRm , ω

k,`
Rm

) is induced by the map η (see discussion before [ERX17a, Definition
3.12]). One has then the following commutative diagram:

R∧X Mk,`
∞ (c) H0(Shc, ω

k,`)

R∧X Mk,`
∞ (c) H0(Shc, ω

k,`)

(η◦π1,∗◦π∗2) (η◦π1,∗◦π∗2) (η◦π1,∗◦π∗2)

where here we use blue arrows to stress the fact that the vertical arrows are in characteristic 0,
corresponding to the Hecke operator T∨,◦p = (η ◦ π1,∗ ◦ π∗2) on H0(Sh, ωk,`). By construction, the

map R∧X
(η◦π1,∗◦π∗2)
−−−−−−−→R∧X reduces modulo $m to R∧X ⊗O Rm

T∨,◦p−−−→R∧X ⊗O Rm. Putting everything
together, one has the following commutative diagram:

R∧X Mk,`
∞ (c) H0(Shc, ω

k,`)

H0(Shc,Rm , ω
k,`
Rm

) Mk,`
∞ (c;Rm) R∧X ⊗O Rm

R∧X Mk,`
∞ (c) H0(Shc, ω

k,`)

H0(Shc,Rm , ω
k,`
Rm

) Mk,`
∞ (c;Rm) R∧X ⊗O Rm

(η◦π1,∗◦π∗2) (η◦π1,∗◦π∗2) (η◦π1,∗◦π∗2)

T∨,◦p T∨,◦p T∨,◦p

One can therefore look at the action of T∨,◦p on the O-module R∧X and then reduce modulo $m.
The existence of compatible operators on H0(Shc,Rm , ω

k,`
Rm

) and H0(Shc,R, ω
k,`
R ) by construction

of Emerton, Reduzzi and Xiao (see Definition 3.3.2) and the injectivity of the q-expansion maps
assure that the obtained result is the image under the operators T∨,◦p of the original modulo $m

modular form. Here, we will compute the action of T∨,◦p on the O-modules Mk,`
∞ (c) by doing

O-integral steps between these modules. We will at the end reduce the obtained equation modulo
$m.

We now follow diagrams (3.9) and (3.10) to compute the corresponding effect of q-expansions.
It will then suffice to add the results to obtained the desired equation.

Let us start by the cusp∞c. Following the diagram (3.9), the sheaf ωk,` can be trivialized as
explained in Remark 2.3.4, yielding the following chain of homomorpshims of O-modules (recall
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that the sheaves ωτ and δτ are contra-variant):

Mk,`
∞ (c′)

∑
ξ′∈c′+∪{0}

aξ′q
ξ′

Mk,`
cp,OF (cp)

∑
ξ∈(cp)+∪{0} α

k+`aα−1ξq
ξ

Mk,`
c,OF (c) αk+`

∑
ξ∈c+∪{0} aα−1ξq

ξ

Mk,`
∞ (c) Nm(p)−1

∏
τ∈Σp

τ($p)
−`ταk+`

∑
ξ∈c+∪{0} aα−1ξq

ξ

π∗2 Lemma 2.4.3

φ∗

Nm(p)−1(η◦π1,∗)

(3.12)

Let us recall that in the last step, the map η (see [ERX17a, Section 3.10]) is obtained via the
dualizing trace map and it contains the normalization factor

∏
τ∈Σp

τ($p)
−`τ . Moreover, the

middle step corresponding to the isogeny φ is the natural inclusion given by Proposition 2.3.5.
Let us now look at the cusp 0c. We first have to complete the diagram (3.10) in order to

start from a cusp at infinity, ∞(c′′). Recall that cp−1 = βc′′, so we first re-elaborate the Tate
object in order to write it over Sc′′ and then we apply the map ϕq (see Section 3.1).

Gm ⊗ c∗/q(p−1) Gm ⊗ (c′′p)∗/q(p−1) Gm ⊗ (c′′)∗/q(OF )

Scp−1 Sc′′

1⊗β ϕp

(3.13)

The last morphism is the one defining the operator S∨p identifying the q-expansion of a HMF f at
∞(c′′p2, p−1) with the q-expansion of

(
S∨p f

)
c′′

at∞(c′′), which we will write as
∑

ξ′′∈c′′+∪{0}
bξ′′q

ξ′′ .
In particular, since we haven’t yet normalized the operators S∨p , it is clear (see diagram (3.6))
that the elements bξ′′ come from the rank one O-module (c′′p ⊗ O)k ⊗O (c′′p2d−1 ⊗ O)` ↪→
(c′′ ⊗ O)k ⊗O (c′′d−1 ⊗ O)` and have p-valuation greater of equal than

∑
τ∈Σp

(kτ + 2`τ ). The
first square of diagram (3.13) induces, similarly to Lemma 2.4.3, a multiplication by βk+` on the
sheaves. In fact, staring from the following commutative diagram of short exact sequences

0 OF Gm ⊗ c∗ Gm ⊗ c∗/q(p−1) 0

Sc′′

0 OF Gm ⊗ (c′′p)∗ Gm ⊗ (c′′p)∗/q(p−1) 0

1⊗β 1⊗β

one obtains via the canonical identification 2.13a morphism on the O-modules of coefficients

(c′′p⊗O)k ⊗ (c′′p2d−1 ⊗O)` → (c⊗O)k ⊗ (cpd−1 ⊗O)`

bξ′′ 7→ βk+`bξ′′ ,
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which gives a morphism of O-modulesMk,`
c′′p,p−1(c′′)

·βk+`

−−−→Mk.`
c,p−1(cp−1), mapping∑

ξ′′∈c′′+∪{0}

bξ′′q
ξ′′ 7→

∑
ξ′′∈c′′+∪{0}

βk+`bξ′′q
βξ′′ =

∑
ξ∈(cp−1)+∪{0}

βk+`bβ−1ξq
ξ.

Now we can go through the diagram (3.10) for the cusp 0c:

Mk,`
c,p−1(cp−1)

∑
ξ∈(cp−1)+∪{0} β

k+`bβ−1ξq
ξ

Mk,`
c,p−1(cp−1)

∑
ξ∈(cp−1)+∪{0} β

k+`bβ−1ξq
ξ

Mk,`
c,OF (cp−1) βk+`

∑
ξ∈(cp−1)+∪{0} bβ−1ξq

ξ

Mk,`
∞ (c)

∏
τ∈Σp

τ($p)
−`τβk+`

∑
ξ∈c+∪{0} bβ−1ξq

ξ .

π∗2

φ∗

(η◦π1,∗)

(3.14)

We recall as above that in the last step the map η contains the normalization factor
∏
τ∈Σp

τ($p)
−`τ .

Moreover, the middle step corresponding to the isogeny φ is the natural inclusion given by
Proposition 2.3.6. We know what to rewrite the obtained factor using the normalized operator
S∨,circp as given in Equation 3.7. Recall that bξ′′ = aξ′′

(
(S∨p f)c′′

)
and in particular, one has that∏

τ∈Σp
τ($p)

−(kτ+2`τ )bξ′′ = aξ′′
(
(S∨,◦p f)c′′

)
. Therefore, the last equation of the above diagram

can be rewritten as ∏
τ∈Σp

τ($p)
kτ+`τβk+`

∑
ξ∈c+∪{0}

aξ
(
(S∨,◦p f)c′′

)
. (3.15)

Adding together the last equation of diagram 3.12 for the cusp ∞c and Equation 3.15 for the
cusp 0c gives the desired result.

We now assume that the weights (k, `) ∈ ZΣ×ZΣ, satisfying Hypothesis 6, are paritious, i.e.
kτ + 2`τ = w ∈ Z for all τ ∈ Σ. We then use the normalized diamond operator 〈p〉w, as defined
in Definition 3.1.1, to set the normalized Hecke operator at p to be

T ◦p = T∨,◦p ◦ 〈p〉w . (3.16)

To lighten the formulas, we will denote by $`p
p the product

∏
τ∈Σp

τ($p)
`τ .

Corollary 3.3.6. Let Rm := O/$mO and let (k, `) ∈ ZΣ × ZΣ be a paritious weight, i.e.
kτ + 2`τ = w for all τ ∈ Σ. Suppose that Rm and the weights (k, `) satisfy Hypothesis 5 and
Hypothesis 6. Let f ∈ H0(ShRm , ω

k,`
Rm

) and let f =
(
fc
)
c∈Cl+F

, where fc =
∑

ξ∈c+∪{0} aξq
ξ is its

geometric q-expansions at the cusp ∞(c). For a place p of F above p, let α, β ∈ F+ be such that
cp = αc′ and cp−1 = βc′′, for c, c′, c′′ ∈ Cl+F . Then for ξ ∈ c+

aξ
(
(T ◦p f)c

)
=Nm(p)w−1

(
Nm(c)

Nm(c′)

)w

$
−`p
p α−`aα−1ξ

((
〈p〉wf

)
c′

)
+

(
Nm(c)

Nm(c′′)

)w

$
−`p
p β−`aβ−1ξ(fc′′),

(3.17)
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with aα−1ξ = 0 if α−1ξ /∈ c′.

Let us remark that our geometric coefficients depend on the choice of fixed representatives
of Cl+F , so we can normalize the geometric coefficients to get better readable formulas.

Definition 3.3.7. Let (k, `) ∈ ZΣ×ZΣ be a paritous weight, i.e. kτ +2`τ = w for all τ ∈ Σ. Let
f ∈ H0(Sh, ωk,`) and let f =

(
fc
)
c∈Cl+F

, where fc =
∑

ξ∈c+∪{0} aξq
ξ be its geometric q-expansions

at the cusp ∞(c). We define the normalized geometric coefficients as

a◦ξ
(
fc
)

:= Nm(c)−waξ
(
fc
)
.

Remark 3.3.8. With this notation, one can re-write the above Equation (3.17) as

a◦ξ
(
(T ◦p f)c

)
= Nm(p)w−1$

−`p
p α−`a◦α−1ξ

((
〈p〉wf

)
c′

)
+$

−`p
p β−`a◦β−1ξ(fc′′) . (3.18)

Now, recalling that vp(α) = 1 and vp(β) = −1, it is clear that vp
(
a◦ξ
(
(Tpf)c

))
≥ 0. In fact,

vp
(
a◦ξ
(
(T ◦p f)c

))
≥ min

∑
τ∈Σp

(kτ + 2`τ )− ef −
∑
τ∈Σp

2`τ ,
∑
τ∈Σp

(−`τ + `τ )

 = 0 .

So for any c ∈ C and ξ ∈ c+, aξ
(
(T ◦p f)c

)
lies in O, making it possible to consider this operator

modulo $. Moreover, it is not the 0 operator modulo $.

Remark 3.3.9. We also would like to remark that the construction and the computations of
Theorem 3.3.4 work also for a prime q ⊂ OF not dividing p, with a non-normalized map η of
Definition 3.3.2. Therefore, one obtains the action of the Hecke operator Tq:

a◦ξ
(
(Tqf)c

)
= Nm(q)w−1α−`a◦α−1ξ

((
〈q〉wf

)
c′

)
+ β−`a◦β−1ξ(fc′′) , (3.19)

where now α, β ∈ F+ and c′, c′′ ∈ C are such that αc′ = cq and βc′′ = cq−1.

Let us now proceed with the proof Corollary 3.3.6.

Proof. First of all, let us look at the last equation of diagram 3.14 and recall that bξ′′ =

aξ′′
(
(S∨p f)c′′

)
. Since β ∈ F+ is such that βc′′ = cp−1, Nm(β) = Nm(c)

Nm(c′′) Nm(p)−1 and there-
fore the ast equation of diagram 3.14 becomes

$
−`p
p βk+` aβ−1ξ

(
(S∨p f)c′′

)
= $

−`p
p β−`βw aβ−1ξ

(
(S∨p f)c′′

)
= $

−`p
p β−`

(
Nm(c)

Nm(c′′)

)w

Nm(p)−w aβ−1ξ

(
(S∨p f)c′′

)
= $

−`p
p β−`

(
Nm(c)

Nm(c′′)

)w

aβ−1ξ

(
(Nm(p)−wS∨p f)c′′

)
.

Recall that 〈p〉w =
(
Nm(p)−wS∨p

)−1 (see Definition 3.1.1) and consider the modular form g :=
〈p〉−1

w f . Then the above term becomes

$
−`p
p βk+` aβ−1ξ

(
(S∨p f)c′′

)
= $

−`p
p β−`

(
Nm(c)

Nm(c′′)

)w

aβ−1ξ(gc′′) .
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Now, since T ◦p = T∨,◦p ◦ 〈p〉w, T ◦p (g) = T∨,◦p (f). So Equation (3.11) becomes

aξ
(
(T ◦p g)c

)
= Nm(p)−1$

−`p
p αk+` aα−1ξ

(
(〈p〉w g)c′

)
+ $

−`p
p β−`

(
Nm(c)

Nm(c′′)

)w

aβ−1ξ(gc′′) .

Now it suffices to recall that, since αc′ = cp and α ∈ F+, Nm(α) = Nm(c)
Nm(c′) Nm(p) and use this

relationship in the above equation to conclude the proof.

Remark 3.3.10. We now study with particular attention Equation (3.18) over F.

(a) If kτ ′ > 1 for a τ ′ ∈ Σp and kτ ≥ 1 for all other τ ∈ Σp, then for any c ∈ C and ξ ∈ c+

a◦ξ
(
(T ◦p f)c

)
= $

−`p
p β−`a◦β−1ξ(fc′′) , (3.20)

where c′′ ∈ C and β ∈ F+ are such that βc′′ = cp−1. This is because the p-valuation of the
first term of Equation (3.18) is

∑
τ∈Σp

kτ − ef , which is positive, by our assumption on the
weights kτ for τ ∈ Σp.

(b) For parallel weight 1 above p, i.e. for kτ = 1 for all τ ∈ Σp, one will have the two terms of
Equation 4.3. In fact, for c′, c′′ ∈ C and α, β ∈ F+ are such that αc′ = cp and βc′′ = cp−1. ,
one has that

vp

(
Nm(p)w−1$

−`p
p α−`a◦α−1ξ

(
(〈p〉wf)c′

))
=
∑
τ∈Σp

(kτ + 2`τ )− ef −
∑
τ∈Σp

2`τ

=
∑
τ∈Σp

1 − ef = 0 ,

and we already know that the second term has vp-valuation equal to 0. Therefore, for any
c ∈ C and ξ ∈ c+, the formula stays the same

a◦ξ
(
(T ◦p f)c

)
= Nm(p)w−1$

−`p
p α−`a◦α−1ξ

(
(〈p〉wf)c′

)
+$

−`p
p β−`a◦β−1ξ(fc′′) . (3.21)

Remark 3.3.11. We take a moment to compare our formula for the action of the normalized T ◦p
operator on geometric q-expansion with known cases.

(a) F = Q.
For F = Q, one has that $ = p, α = p and β = p−1. In this case, for w = k and for any
positive integer n, one gets the very well known formula.

an(Tpf) = pk−1ap−1n

(
〈p〉f

)
+ apn(f) .

(b) p inert in F .
If p is inert in F , then α = p, β = p−1 and $p = p. Moreover Nm(p) =

∏
τ∈Σ p and Σ = Σp.

For any ξ ∈ c+, one has then

aξ
(
(T ◦p f)c

)
=

(
Nm(c)

Nm(c)

)w ∏
τ∈Σ

pkτ+2`τ−1
∏
τ∈Σ

p−`τ
∏
τ∈Σ

p−`τap−1ξ

(
(〈p〉wf)c′

)
+

(
Nm(c)

Nm(c)

)w ∏
τ∈Σ

p−`τ
∏
τ∈Σ

p`τapξ(fc′′)

=

(∏
τ∈Σ

pkτ−1

)
ap−1ξ

(
(〈p〉wf)c′

)
+ apξ(fc) .

This matches the formula in Remark 3.14 of [ERX17a].
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(c) k parallel, i.e. kτ = k and `τ = 0 for all τ ∈ Σ.
Let ξ ∈ c+, then Equation (3.17) becomes

aξ
(
(Tpf)c

)
= Nm(p)k−1

(
Nm(c)

Nm(c′)

)k
aα−1ξ

(
(〈p〉wf)c′

)
+

(
Nm(c)

Nm(c′′)

)k
aβ−1ξ(fc′′) ,

and in particular

a◦ξ
(
(Tpf)c

)
= Nm(p)k−1a◦α−1ξ

(
(〈p〉wf)c′

)
+ a◦β−1ξ(fc′′) ,

which is the known formula. We will see in the following section that this formula translates
to the usual one on adelic q-expansions.

3.3.2 Adelic q-expansion
We will now end this chapter by looking at adelic q-expansions and in particular we will give the
action of the T ◦p -operator in terms of adelic q-expansions. Let m be an integral ideal of OF , then
one can write m = ξc−1 for a unique c ∈ Cl+F and ξ ∈ F×+ . For such an ideal and a modular form
f , we define

C (m, f) := Nm(c)−wξ`aξ(fc) = ξ`a◦ξ(fc), (3.22)

where aξ(fc) is the ξ coefficient of the q-expansion of f at c, and a◦ξ is the normalized geometric
coefficient as defined in Definition 3.3.7.

Remark 3.3.12. These adelic coefficients obviously make sense in a field of characteristic 0 for
any paritious weight, but in characteristic p, these coefficients make sense only in parallel weight,
i.e. when kτ = k and `τ = 0 for all τ ∈ Σ. This is the reason why we are obliged to work with
the geometric coefficients when dealing with partial weight. For the parallel case, the adelic
coefficients are more convenient because the formulas are more compact and clean.

Proposition 3.3.13. The above definition is independent of the choice of ξ and of the choice of
representative c.

Proof. Another choice of ξ is εξ for ε ∈ O×F,+. For such an element we have that aεξ = ε−`aξ.
Therefore

Nm(c)−w (εξ)` aεξ(fc) = Nm(c)−w (εξ)` ε−`aξ(fc) = Nm(c)−w ξ` aξ(fc) .

Another choice of a class representative for c is νc for ν ∈ F×+ . By Proposition ??, one has that

Nm(νc)−w(νξ)`aξ(fνc) = Nm(νc)−w(νξ)`νk+`aξ(fc) = Nm(c)−w ξ` aξ(fc) .

Remark 3.3.14. Our definition of C(m, f) differs from the one of Shimura ([Shi78, Equation 2.24])
in the normalization factor. In fact, Shimura normalizes the adelic coefficients by Nm(c)−k0/2,
where k0 is the maximum of the (kτ )τ∈Σ. This difference is due to the fact that Shimura
considers forms that are on the sheaf ωk ⊗ δk/2, while here we consider independent powers ` on
the determinant sheaf.
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Corollary 3.3.15. Let the weight (k, `) be paritious, i.e. kτ + 2`τ = w for all τ ∈ Σ and let
f ∈ H0(Sh, ωk,`) be a HMF. Then in K = Frac(O) one has that

C (m, Tq f) = Nm(q)w−1C
(
mq−1, 〈q〉w f

)
+ C (mq, f) ,

and
C (m, T ◦p f) = $

−`p
p

(
Nm(p)w−1C

(
mp−1, 〈p〉w f

)
+ C (mp, f)

)
.

In particular, for parallel weight (k, 0), one has that in O

C (m, Tq f) = Nm(q)k−1C
(
mq−1, 〈q〉k f

)
+ C (mq, f) ,

for any prime ideal q ⊂ coprime with pn and for q = p.

Proof. Consider Equation (3.19):

a◦ξ
(
(Tqf)c

)
= Nm(q)w−1α−`a◦α−1ξ

((
〈q〉wf

)
c′

)
+ β−`a◦β−1ξ(fc′′) ,

where α, β ∈ F+ are such that αc′ = cq and βc′′ = cq−1. Let us remark that for an integral ideal
m ⊂ OF , such that m = ξc−1, then

mq−1 = ξα−1(c′)−1 and mq = ξβ−1(c′′)−1 ,

and therefore by definition

C (mq−1, ·) = Nm(c′)−w(α−1ξ)`aα−1ξ(·)
C (mq, ·) = Nm(c′′)−w(β−1ξ)`aβ−1ξ(·)

Putting everything together, one gets that

C (m, Tq f) = ξ`a◦ξ
(
(Tqf)c

)
= Nm(q)w−1ξ`α−`a◦α−1ξ

(
〈q〉w f

)
c′

+ ξ`β−`aβ−1ξ(fc′′)

= Nm(q)w−1C
(
mq−1, 〈q〉w f

)
+ C (mq, f) .

The same arguments work for the normalized Hecke operator T ◦p = $
−`p
p Tp, using equation

(3.18).
For parallel weight (k, 0), the adelic coefficients C(m, Tqf) are by definition (see Equation (3.22))
given by a◦ξ((Tqf)c), where ξ ∈ F×+ is an element such that mc = (ξ). So in particular, these
coefficients are integral, since a◦ξ((Tqf)c) ∈ O. The formula follows from the adelic formula for
Tq. Let us also point out that for parallel weight T ◦p = Tp.

Remark 3.3.16. The formulas obtained in Corollary 3.3.15 are a generalization of previous known
formulas for parallel weight and non-normalized Tp Hecke operator, found for example in [DW18,
Theorem 1.2].



Chapter 4

Unramifiedness of Galois
representations modulo $

In this chapter we will only work with paritious weight forms, i.e. Hilbert modular forms of
weights (k, `) ∈ ZΣ × ZΣ. such that kτ + 2`τ is independent of τ , i.e. there exists a w ∈ Z such
that kτ + 2`τ = w for all τ ∈ Σ. It is clear that it is enough to consider a couple (k,w) ∈ ZΣ×Z
to describe such weights. Therefore in what follows we will denote the sheaf of differentials of
paritious weight (k,w) by

ω(k,w) :=
⊗
τ∈Σ

(
ω⊗kττ ⊗OShtor δ

⊗(w−kτ )/2
τ

)
.

Definition 4.0.1. We denote byMk,w(n;R) := H0
(

ShR, ω
(k,w)
R

)
the R-module of Hilbert mod-

ular forms of level n and paritious weight (k,w) with coefficients over an O-algebra R, and by
Sk,w

(
n;R

)
:= H0

(
ShR, ω

(k,w)
R (−D)

)
the submodule of cuspidal forms. (see Chapter 2 for more

details.)

Recall that we have Hecke operators Tq for q ⊂ OF a prime not dividing pn acting on
Mk,w(n;O). Moreover, in Chapter 3, we constructed normalized diamond operators 〈q〉w for
any prime ideal q ⊂ OF , and we have recalled the construction by Emerton-Reduzzi-Xiao of a
normalized Hecke operator T ◦p for p ⊂ OF a prime above p.
Our goal is to show the following generalization to non-parallel paritious weight 1 Hilbert mod-
ular forms of results of Dimitrov-Wiese ([DW18, Theorem 1.1]) and of Emerton-Reduzzi-Xiao
([ERX17a, Theorem 1.1]).

Theorem 4.0.2. Let p be a fixed prime of F above p. Let (k, 1) be a paritious weight such that
kτ = 1 for all τ ∈ Σp. Let f ∈ Sk,1(n,F) be a cuspidal Hilbert modular form and assume that
f is common eigenvector for the Hecke operators Tq and 〈q〉1 for all q outside a finite set S of
primes of F , containing {v : v a place of F, v 6= p and v |pn}. Then there exists a continuous
semi-simple representation

ρf : GF −→ GL2(F) ,

which is unramified at all primes q not dividing pn and at q = p, and is such that the trace of
ρf (Frobq) equals the eigenvalue of Tq on f for all such primes q.

In order to prove this theorem we will need many ingredients. Firstly, we will need a way to
lift modulo $ modular forms to characteristic 0. As explained in Chapter 2, one can only hope
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to lift paritious weight forms, this explains why we restrict to work with paritious weight forms
and not with general partial weight forms. Lifting forms will be achieved through an exceptional
sheaf of paritious weight 0, which will be described in the next section. This sheaf is a variation
of the exceptional sheaf defined in [RX17, Lemma 2.7]. Moreover, we will work in the generality
of Hilbert modular form modulo $m, in order to lay the fundation to extend the above result to
the entire Hecke algebra (see section 4.4). Secondly, we will need to work with the generalized
partial Hasse invariants as defined by Reduzzi and Xiao in [RX17, Section 3]. In Section 4.2, we
will recall and prove some of their properties. Finally, we will use the doubling method of Wiese
([Wie14]) and follow the strategy of Dimitrov-Wiese ([DW18]) to finish the proof to prove our
result. This will be done in the remaining sections.

4.1 Lifting modulo $m Hilbert Modular Forms
It is known that Hilbert modular forms mod $m of low weight are not necessarily all liftable in
characteristic 0. However, if one can embed those, e.g. via multiplication by powers of partial
Hasse invariants, as a Hecke stable subspace in liftable weight, then by a result of Deligne and
Serre ([DS74, Lemme 6.11]) the corresponding systems of eigenvalues would lift as well and thus
one can attach Galois representations to the original mod $m eigenforms. In particular, one
knows that for parallel weights, there always exists a big enough weight where the forms can
be lifted in characteristic 0, see [DDW19, Lemma 2.2]. This is not the case for partial weight
forms. Because of the description of the geometric q expansion (2.4.1), one can only hope to be
able to lift cuspforms for some "big" enough weights. This is the object of Proposition 4.6 of
[RX17], where Reduzzi and Xiao prove that all weights in a "sufficiently positive direction" are
liftable weights for cuspforms. This direction is given by a specific weight, denoted ex, which
looks mysterious at first. However this direction can be given a heuristic explanation by works of
Diamond and Kassaei ([DK17], [DK20]) since moving in the direction called ex by Reduzzi-Xiao
brings form in what Diamond and Kassaei call the minimal cone, where forms are liftable. Let
us recall the definition of Diamond and Kassaei (see [DK17] and [DK20] for unramified p) of the
minimal cone.

Definition (Definition 3.3.1). We say that a weight vector k ∈ ZΣ belongs to the minimal cone,
denoted Cmin, if for every p|p:

• k
τ

(i+1)
p,j

≥ k
τ

(i)
p,j

for all j = 1, . . . , fp and i = 1, . . . , ep − 1;

• pk
τ

(1)
p,j

≥ k
τ

(ep)

p,j−1

for all j = 1, . . . fp.

In what follows, we will construct an exceptional sheaf, along the lines of Reduzzi-Xiao
([RX17, Lemma 2.7]), show some of its properties and finally use this sheaf to prove a lifting
lemma for partious weight HMFs.

4.1.1 Exceptional Sheaf
Inspired by the exceptional sheaf of differentials defined by Reduzzi and Xiao in ([RX17, Lemma
2.7]), we set the exceptional weight to be the weight vector ex ∈ ZΣ such that ex

τ
(i)
p,j

= 2(2i−ep−1)

for all p|p, j = 1, . . . , fp and i = 1, . . . , ep. In particular, we will call exceptional sheaf on YPR
F
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the line bundle:

ω̇
(ex,0)
F =

⊗
p|p

fp⊗
j=1

ep⊗
i=1

(
ω̇
⊗2(2i−ep−1)

τ
(i)
p,j ,F

⊗O
YPR
F

δ̇
⊗(ep+1−2i)

τ
(i)
p,j ,F

)
, (4.1)

which descends to a line bundle on ShPR
F . We now proceed to adapt results and proofs of

Reduzzi-Xiao [RX17] to our exceptional sheaf.

Lemma 4.1.1. The line bundle ω̇(ex,0)
F is relatively ample with respect to the natural projection

YPR
F → YDP

F .

Proof. This follows exactly from the same argument as Lemma 2.7 of [RX17].

Lemma 4.1.2. The line bundle ω̇(ex,0)
F defined over YPR,tor

F descends to a line bundle, denoted
ω̇

(ex,0)
F,min, over the minimal compactification YPR,min

F , which is relatively ample with respect to the
natural projection YPR,min

F → YDP,min
F .

Proof. Since the sheaves δ̇τ are all trivial over OYPR
F

(see Equation 2.6), we will be interested
only in the k-part of the sheaves, i.e. in sheaves of the form ω̇k

YPR,tor =
⊗

τ∈Σ ω̇
kτ
τ . By works

of [Rap78] and [Cha90], we know that for k ∈ ZΣ, the sheaf ω̇k
YPR,tor descends to the minimal

compatification YPR,min if and only if k is parallel. However, the situation is different on the
special fiber, πF : YPR,tor

F → YPR,min
F . Going through the proof of [Dim04, Théorème 8.6 part

(vi)], for an O-algebra R, one sees that in general the sheaf ω̇k
YPR,tor
R

descends to an invertible

sheaf on YPR,min
R if and only if it can be trivialized on S∧

ΣC
/O×F,n×Spec(R), in the sense that it is

free of rank 1 on the structure sheaf O
YPR,tor
R

. Consider a cusp C = (a, b, H, i, j, λ, α) and let S∧
ΣC

be as in [Dim04, Théorème 7.2], then the pullback of ω̇
YPR,tor
R

to S∧
ΣC
× Spec(R) is canonically

trivial and isomorphic to
(a⊗O)k ⊗O R⊗O OS∧

ΣC
, (4.2)

which in particular tells us how a unit u ∈ O×F,n acts on this sheaf, i.e. via multiplication by
uk/2 :=

∏
τ∈Σ τ(u)kτ/2. In fact,

H0
(
S∧ΣC/O

×
F,n × Spec(R), ω̇k

YPR,tor
R

)
=

{ ∑
ξ∈X+∪{0}

aξq
ξ : aξ ∈ R, au2ξ = ukaξ for all u ∈ O×F,n

}
,

which is a projective module, but not free of rank 1. Actually, we want this module to be
isomorphic to

H0
(
S∧ΣC/O

×
F,n × Spec(R),O

YPR,tor
R

)
=

{ ∑
ξ∈X+∪{0}

aξq
ξ : aξ ∈ R, auξ = aξ for all u ∈ O×F,n

}
,

i.e. the line bundle ωk
YPR,tor
R

will descend to YPR,min
R if and only if uk/2 act trivially inR. Therefore,

in order to see if the line bundle ω̇ex descends to the minimal compactification YPR,min
F , it suffices
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to verify that uex /2 = 1 in F. In fact,

uex /2 =
∏
τ∈Σ

τ(u)exτ /2

=
∏
p|p

fp∏
j=1

ep∏
i=1

(
τ

(i)
p,j (u)

)2i−ep−1
,

and, since τ (i)
p,j ≡ τ

(i+1)
p,j mod $ for all i ∈ {1, . . . ep − 1}, the above product in F becomes:

uex /2 =
∏
p|p

fp∏
j=1

(
τ

(1)
p,j (u)

)∑ep
i=1(2i−ep−1)

= 1,

since
∑ep

i=1(2i− ep − 1) = 0. The relative ampleness of ω̇(ex,0)
F,min with respect to the natural map

YPR,min
F → YDP,min

F follows by the previous lemma.

4.1.2 Lifting Lemma
In order to achieve a lifting lemma, we want to transform the exceptional line bundle into an
ample line bundle on the minimal compactification YPR,min

F . We will denote by t the element
(1, . . . , 1) in ZΣ.

Lemma 4.1.3. There exists a positive integer N0 ∈ Z>0 such that for any N ≥ N0, the weight
vector Nt + ex lies in the minimal cone Cmin.

Proof. This follows immediately from the definition of the minimal cone, Definition 3.3.1, and
from the definition of the weight vector ex.

We fix once and for all such an integer N0.

Lemma 4.1.4. There exists an even integer N ≥ N0 such that the line bundle ω̇
(Nt+ex,0)
F on

YPR,tor
F descends to an ample line bundle on the minimal compactification YPR,min

F . Similarly,
for the same N, the line bundle ω

(Nt+ex,0)
F descends to an ample line bundle on the minimal

compactification ShPR,min
F .

Proof. This follows from the exact same argument as in [RX17, Lemma 4.5], using relative
ampleness from Lemma 4.1.2.

We fix once and for all an even integer N as in Lemma 4.1.4, i.e. such that the line
bundle ω(Nt+ex, 0)

F descends to an ample line bundle on the minimal compactification ShPR,min
F .

Lemma 4.1.5. For any paritious weight (k,w) ∈ ZΣ × Z, there is an integer r0 = r0(k,w) such
that for any r ≥ r0 and any i > 0 one has

Hi
(

ShPR,tor, ω(k+r(Nt+ex),w)(−D)
)

= 0 .

Proof. This follows form the exact same argument as in [ERX17b, Lemma 4.2.2], using the
ampleness from Lemma 4.1.4.



4.2 Generalized partial Hasse invariants 63

We now have all the ingredients to prove the following Lifting Lemma.

Lemma 4.1.6 (Lifting Lemma). For any paritiotus weight (k,w) ∈ ZΣ × Z, there exists an
integer r0 = r0(k,w) such that for any r ≥ r0 there is a natural Hecke equivariant isomorphism:

Sk+r·(Nt+ex),w (n;O)⊗O O/$mO ∼−→ Sk+r·(Nt+ex),w(n;O/$mO).

Proof. Let us set k̃ := k + r · (Nt + ex) and Rm := O/$mO. Recall that we denote by D the
divisor of the cusps. The sheaf ω(k̃,w) is a locally free OShtor-module of rank 1, and therefore one
has a short exact sequence of sheaves on Shtor

0 −→ ω(k̃,w)(−D)
·$mp−−−→ ω(k̃,w)(−D) −→ ω

(k̃,w)
Rm

(−D) −→ 0,

which induces a long exact sequence in cohomology

0 −→ H0(Sh, ω(k̃,w)(−D))
·$np−−→ H0(Sh, ω(k̃,w)(−D)) −→ H0(Sh, ω

(k̃,w)
Rm

(−D)) −→

−→ H1(Sh, ω(k̃,w)(−D))

Now for k̃ as defined as above, H1(Sh, ω(k̃,w)(−D)) = 0 by Lemma 4.1.5, and by definition of
cusp forms (see Definition 4.0.1), one has a short exact sequence of O-modules

0 −→ Sk̃,w(n;O)
·$np−−→ Sk̃,w(n;O) −→ Sk̃,w(n;O/$mO) −→ 0 ,

which yields the desired result.

4.2 Generalized partial Hasse invariants
In this section, we will recall the generalized partial Hasse invariants defined by Reduzzi and
Xiao (see [RX17, Section 3.1]) and we will use them to construct a form, whose weight is in the
"liftable direction".

Definition 4.2.1 (Section 3.1 [RX17]). For every τ ∈ Σ, there exists a Hilbert modular form

hτ ∈


H0

(
ShF, ω

⊗−1

τ
(1)
p,j ,F
⊗ ω⊗p

τ
(ep)

p,j ,F

)
, if τ = τ

(1)
p,j

H0

(
ShF, ω

⊗−1

τ
(i)
p,j ,F
⊗ ω⊗1

τ
(i−1)
p,j ,F

)
, if τ = τ

(i)
p,j for i 6= 1

called the generalized partial Hasse invariant. We will denote by wτ the weight of the generalized
partial Hasse invariant hτ .

In particular, the generalized partial Hasse is not a paritious weight form, and therefore it
cannot be lifted to characteristic 0. However, using the trivializations ([RX17, 3.2.1])

δ
τ

(1)
p,j ,F
⊗ δ⊗(−p)

τ
(ep)

p,j−1,F
' OShtor and δ

τ
(i)
p,j ,F
⊗ δ⊗−1

τ
(i−1)
p,j ,F

' OShtor ,
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one can view

h2
τ ∈


H0

(
ShF, ω

⊗−2

τ
(1)
p,j ,F
⊗ ω⊗2p

τ
(ep)

p,j ,F
⊗ δ

τ
(1)
p,j ,F
⊗ δ⊗−p

τ
(ep)

p,j−1,F

)
, if τ = τ

(1)
p,j

H0

(
ShF, ω

⊗−2

τ
(i)
p,j ,F
⊗ ω⊗2

τ
(i−1)
p,j ,F

⊗ δ
τ

(i)
p,j ,F
⊗ δ⊗−1

τ
(i−1)
p,j ,F

)
, if τ = τ

(i)
p,j for i 6= 1

as a paritious weight w = 0 Hilbert modular forms. In particular, h2
τ ∈ H0(ShF, ω

(2wτ ,0)
F ).

By Lemma 1.4 of [DDW19], for any τ ∈ Σ, the generalized partial Hasse invariant hτ has
geometric q-expansion equal to 1 at each cusp∞(c). Therefore, also h2

τ has geometric q-expansion
equal to 1 at every infinity cusp ∞(c). So multiplying Hilbert modular forms by these elements
will not change their q-expansions.

4.2.1 Working over F
The following lemma shows that there exists a product of generalized partial Hasse invariants
modulo p that lives in the direction of the liftable weight of the previous section.

Lemma 4.2.2. There exist a product of partial Hasse invariants hex lying in H0
(

ShF, ω
(κex,0)
F

)
,

where κex = (p− 1)(Nt + ex). Moreover, for any c ∈ C, the q-expansion of hex at the cusp ∞(c)
is 1.

Proof. This statement can be proven via linear algebra methods on the weights of the generalized
partial Hasse invariants of Definition 4.2.1. Let p|p be a fixed prime ideal of OF and let Wp be
the matrix of weights of generalized partial Hasse invariants hτ for τ ∈ Σp. Then Wp is of the
form

Wp =



−1 1
. . . . . .

. . . 1
−1 p

−1 1
. . . . . .

. . . 1
−1 p

−1 1
. . . . . .

. . . 1
p −1


where each block has dimension ep × ep and the matrix has dimension epfp. Let 1p denote the
vector of length epfp whose entries are all 1. Let us write the vector of weights corresponding to
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the sheaf ω(ex,0)
F at the prime ideal p as

exp =



2(−ep + 1)
2(−ep + 3)

...
2(ep − 1)

2(−ep + 1)
...
...

2(ep − 1)

2(−ep + 1)
2(−ep + 3)

...
2(ep − 1)



.

So we want to solve for all p|p the linear system 2Wp · x = (exp +N1p)(p− 1), which admits a Z
solution. In fact, Gauss reduction gives rise to the following equation:

(pfp − 1)xepfp =

(
(ep − 1) + p ·

ep∑
i=1

(
2i− ep − 1

)
+ p2 ·

ep∑
i=1

(
2i− ep − 1

)
+ . . .

. . .+ pfp ·
ep−1∑
i=1

(
2i− ep − 1

))
(p− 1)

+ N
(

1 + pep + p2ep + . . .+ pfp−1ep + pfp(ep − 1)
)

(p− 1) .

Recall that
∑ep

i=1

(
2i − ep − 1

)
= 0, therefore, after some computations, the above equation

becomes

(pfp − 1)xepfp =
(
pfp − 1

)(
1− ep

)
(p− 1) + N

(
pfp − 1

)
(1− p+ pep) ,

which cleary gives xepfp = (1− ep)(p− 1) + N(1− p+ pep). Now one can use the explicit form of
Wp to obtain the full vector x.
Now, for any c ∈ C, and for any τ ∈ Σ, the q-expansion of the partial Hasse invariant hτ at∞(c)
is 1, by [DDW19, Lemma 1.4]. Therefore, any product of partial Hasse invariants will still have
q-expansion at the cusp ∞(c) equal to 1.

Lemma 4.2.3. Let q ⊂ OF be a prime ideal not dividing pn. For any paritious weight (k,w) ∈
ZΣ × Z, and any form f ∈ Sk,w(n;F), one has that

hex

(
Tqf

)
= Tq

(
hexf

)
.

Proof. We will verify this on geometric q-expansion using the explicit description of the action
of Hecke operators given by Equation 3.18. Recall that the Hasse invariant hex has q-expansion
equal to 1 at all cusps ∞(c) (by [DDW19, Lemma 1.4]), therefore if fc =

∑
ξ∈c+ aξq

ξ for c ∈ C,
then

(
hexf

)
c

=
∑

ξ∈c+ aξq
ξ. Moreover, since hex has paritious weight 0, hexf is still paritious of
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weight w. Let q ⊂ OF be a prime ideal not dividing pn, and let c′, c′′ ∈ C and α, β ∈ F+ such
that cq = αc′ and cq−1 = βc′′. Then by Equation 3.18

a◦ξ

((
Tq(hexf)

)
c

)
= Nm(q)w−1α−(wt−k)/2+κex/2a◦α−1ξ

(
(〈q〉whexf)c′

)
+ β−(wt−k)/2+κex/2a◦β−1ξ

(
(hexf)c′′

)
.

Now let us look more closely at ακex = α(p−1)(Nt+ex). The same arguments will apply to β. As
already seen before

αex =
∏
p|p

fp∏
j=1

ep∏
i=1

τ
(i)
p,j (α)2(2i−ep−1)

=
∏
p|p

fp∏
j=1

τ
(1)
p,j (α)

∑ep
i=1 2(2i−ep−1) , because τ (i)

p,j ≡ τ
i+1
p,j mod $,

= 1 , because
ep∑
i=1

2(2i− ep − 1) = 0.

Moreover α(p−1)Nt = NmF/Q(α)(p−1)N ≡ 1 mod $, since vp(α) = 0. Therefore one has that:

a◦ξ

((
Tq(hexf)

)
c

)
= Nm(q)w−1α−`a◦α−1ξ

(
(〈q〉wf)c′

)
+ β−`a◦β−1ξ

(
fc′′
)

= a◦ξ
(
(Tqf)c

)
= a◦ξ

(
(hexTqf)c

)
.

4.2.2 Working in Rm = O/$mO
In order to work over rings Rm = O/$mO, one has to lift partial Hasse invariants and construct
a product of partial Hasse invariants living in liftable weight with coefficients over Rm.

Liftings of h2
τ modulo $m

We recall here how Reduzzi-Xiao (see [RX17, Section 3.13.1]), via a method of Emerton, Reduzzi
and Xiao (see [ERX17b, Section 3.3.1] construct lifts of the generalized partial Hasse invariants.
Recall that we denote by wτ the weight of the partial Hasse invariant hτ , for τ ∈ Σ (see Definition
4.2.1).

Lemma 4.2.4. Let M be a positive integer divisible by 2pm−1. For any τ ∈ Σ, there exists a
Hilbert modular form

h̃τ,M ∈ H0
(

ShRm , ω
(Mwτ ,0)
Rm

)
,

which is locally the M
2 th power of a lift of h2

τ ∈ H0(ShF, ω
(2wτ ,0)
F ).

Proof. Let U be an open affine covering of Shtor. Let U ∈ U be an open affine subscheme of Shtor

and let h2
τ,UF
∈ H0(UF, ω

(2wτ ,0)
F ) denote the restriction of the square of the generalized partial

Hasse invariant at τ to UF = U ×Spec(O) SpecF, for any τ ∈ Σ. The form h2
τ,UF

can be lifted
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arbitrarily to an element h̃τ,URm ∈ H0(URm , ω
(2wτ ,0)
Rm

), where URm = U ×Spec(O) Spec(Rm). Since
M is a positive integer divisible by pm−1, the lift h̃Mτ,URm is independent of this arbitrary choice.
We now deduce that the sections {h̃Mτ,URm}U∈U glue together into a global section

h̃τ,M ∈ H0(ShRm , ω
(Mwτ ,0)
Rm

) ,

which is independent of the choice of affine covering U of Shtor and locally is the M
2 th power of

a lift of h2
τ ∈ H0(ShF, ω

(2wτ ,0)
F ).

Lemma 4.2.5. For any integer m > 1, let κm = pm−1(p − 1)(Nt + ex). Then for any integer
m > 1, there exists a Hilbert modular form hex,m ∈ H0

(
ShRm , ω

(κm,0)
Rm

)
, which locally is the

pm−1-th power of a lift of hex. Moreover, for any c ∈ C, the q-expansion of hex,m at the cusp
∞(c) is 1.

Proof. By Lemma 4.2.4, we know that for any τ ∈ Σ, we can construct a Hilbert modular form
h̃τ,2pm−1 ∈ H0(ShRm , ω

(2pm−1wτ ,0)
Rm

), which is locally the pm−1-th power of h2
τ . In particular, it

will then have q-expansion equal to 1 at any cusp ∞(c) for any c ∈ C, since h2
τ has q-expansion

equal to 1 at any cusp ∞(c), by [DDW19, Lemma 1.4]. Moreover, by Lemma 4.2.2, we know
that there exists a product of generalized partial Hasse invariants hex ∈ H0

(
ShF, ω

(κex,0)
F

)
, with

κex = (p − 1)(Nt + ex). Let us write the product hex =
∏
τ∈Σ h

2cτ
τ , with cτ ∈ Z. Then taking

hex,m to be
∏
τ∈Σ h̃

cτ
τ,2pm−1 , which is an element of H0

(
ShRm , ω

((p−1)pm−1(Nt+ex),0)
Rm

)
, gives the

result.

Lemma 4.2.6. Let q ⊂ OF be a prime ideal not dividing pn, and let m be an integer m > 1.
For any paritious weight (k,w) ∈ ZΣ × Z, and any form f ∈ Sk,w(n;Rm), one has that

hex,m

(
Tqf

)
= Tq

(
hex,mf

)
.

Proof. We will verify this on geometric q-expansion using the explicit description of the action of
Hecke operators given by Equation 3.18. Recall that the Hasse invariant hex,m has q-expansion
equal to 1 at all cusps ∞(c), therefore if fc =

∑
ξ∈c+∪{0} aξq

ξ for c ∈ C, then
(
hex,mf

)
c

=∑
ξ∈c+∪{0} aξq

ξ. Moreover, since hex,m has paritious weight 0, hex,mf is still paritious of weight
w. Let q ⊂ OF be a prime ideal not dividing pn, and let c′, c′′ ∈ C and α, β ∈ F+ such that
cq = αc′ and cq−1 = βc′′. Then by Equation 3.18

a◦ξ

((
Tq(hex,mf)

)
c

)
= Nm(q)w−1α−(wt−k)/2+κm/2a◦α−1ξ

(
(〈q〉whex,mf)c′

)
+ β−(wt−k)/2+κm/2a◦β−1ξ

(
(hex,mf)c′′

)
.

Now let us look more closely at ακm = αp
m−1(p−1)(Nt+ex). The same arguments will apply to β.

As already seen in the proof of Lemma 4.2.3, since vp(α) = 0, α(p−1)(Nt+ex) ≡ 1 mod $ and
therefore αpm−1(p−1)(Nt+ex) ≡ 1 mod $m. The above equation then becomes

a◦ξ

((
Tq(hex,mf)

)
c

)
= Nm(q)w−1α−(wt−k)/2a◦α−1ξ

(
(〈q〉wf)c′

)
+ β−(wt−k)/2a◦β−1ξ

(
fc′′
)

= a◦ξ
(
(Tqf)c

)
= a◦ξ

(
(hexTqf)c

)
.
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4.3 Unramifiedness modulo $
Here we proceed to prove Theorem 4.0.2. The existence of the representation ρf : GF →
GL2(F) of Theorem 4.0.2 follows from a standard argument, which is presented in the following
Proposition. The difficulty of the proof of Theorem 4.0.2 lies in showing that the representation
ρf is unramified at p.

Proposition 4.3.1. Let p be a fixed prime of F above p and let S = Supp(pn). Let (k, 1) be
a paritious weight such that kτ = 1 for all τ ∈ Σp. Let f ∈ Sk,1(n,F) be an eigenform for all
Hecke operators Tq, with eigenvalues λ(f, q), and for diamond operators 〈q〉1, with eigenvalues
ε(q), for q a prime ideal of OF , q /∈ S. Then there exists a semi-simple Galois representation
ρf : GF → GL2(F), which is unramified at all q /∈ S and such that tr(ρf (Frobq)) = λ(f, q) and
det(ρf (Frobq)) = ε(q) Nm(q)w−1, for all q /∈ S.

Proof. By Lemma 4.1.6 there exists an integer r0 such that for all r ≥ r0, one can lift paritious
weight cuspidal Hilbert modular forms modulo p in characteristic 0, i.e.

Sk+r·(Nt+ex),w(n;O)⊗ F ' Sk+r·(Nt+ex),w(n;F) .

Moreover, by Lemma 4.2.3, one knows that for any integer r the form hrexf will still be an
eigenform for all Hecke operators Tq, for q as in the hypothesis, with same eigenvalues as f . Now
it suffices to lift hrexf for r ≥ r0 and to apply a theorem of Deligne-Serre [DS74, Lemme 6.11]
to obtain a Galois representation ρ : GF → GL2(O) such that tr(ρ(Frobq)) ≡ λ(f, q) mod $,
for all q /∈ S. Therefore we take ρf to be the semi-simplification of the reduction modulo $ of
the representation ρ given by Deligne-Serre. Moreover, the obtained representation is such that
det(ρf (Frobq)) corresponds to the eigenvalue of the operator 〈q〉w Nm(q)w−1.

In order to show that ρf is unramified at p, we will apply the doubling method, see [Wie14].
We will therefore need two ways to go in higher weight. One is given by multiplying by the Hasse
invariant hex and the second one is given by the the Frobenius Operator.

4.3.1 Frobenius Operator
Recall that p is a fixed prime of OF dividing p, we take a moment to recall here the action
of the normalized Hecke operator T ◦p on q-expansions, in the paritious weight (k,w) setting.
Let (k,w) ∈ ZΣ × Z be a paritious weight. Let f ∈ Sk,w(n;O) and let f = (fc)c∈C, where
fc =

∑
ξ∈c+ aξq

ξ is its geometric q-expansion at the cusp ∞(c). Recall that we denote by
a◦ξ(fc) = Nm(c)−waξ(fc) the normalized geometric coefficients. Let α, β ∈ F+ be such that
cp = αc′ and cp−1 = βc′′, for c, c′, c′′ ∈ C. Then for any ξ ∈ c+, Equation 3.18 can be written as

a◦ξ
(
(T ◦p f)c

)
= Nm(p)w−1$

(kp−wtp)/2
p α(k−wt)/2a◦α−1ξ ((〈p〉wf)c′) +$

(kp−wtp)/2
p β(k−wt)/2a◦β−1ξ (fc′′) .

(4.3)
Since we will be working between two sets of paritious weights, in what follows we will add the
weights to the notation of the Hecke operator, i.e. will write T ◦,(k,w)

p for the normalized Hecke
operator T ◦p acting onMk,w(n;R).

Definition 4.3.2. Let (k, 1) ∈ ZΣ×Z be a paritious weight such that kτ = 1 for all τ ∈ Σp. We
define the Frobenius operator at p on modulo p modular forms

Vp : S(k,1)(n;F) −→ Sk+κex,1(n;F)
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to be
Vp(f) := 〈p〉−1

1

(
hex · (T ◦,(k,1)

p f)− T ◦,(k+κex,1)
p (hex · f)

)
.1

We now proceed to calculate how the Frobenius operator acts on geometric q-expansions.

Proposition 4.3.3. Let (k, 1) ∈ ZΣ × Z be such that kτ = 1 for all τ ∈ Σp. Let f ∈ Sk,1(n,F)
with f = (fc)c∈C, where fc =

∑
ξ∈c+ aξq

ξ is its geometric q-expansion at the cusp ∞(c). Then for
any ξ ∈ c+

a◦ξ
(
(Vpf)c

)
= α−(t−k)/2a◦α−1ξ(fc′) ,

where α ∈ F+ and c′ ∈ C such that αc′ = cp, and aα−1ξ = 0 if α−1ξ /∈ c′.

Proof. Let us recall that the q-expansion of hexf and f are the same. Now since kτ +(p−1)(N+
exτ ) > 1 and kτ = 1 for all τ ∈ Σp, by Equation 3.20, one has that for ξ ∈ c+

a◦ξ
(
(T
◦,(k+κex,1)
p (hexf))c

)
= $

(p−1)(Ntp+exp)/2
p β−(wt−k)/2+κex/2a◦β−1ξ

(
(hexf)c′′

)
= $

(p−1)(Ntp+exp)/2
p βκex/2β−(wt−k)/2a◦β−1ξ(fc′′)

= β−(wt−k)/2a◦β−1ξ(fc′′).

where c′′ ∈ C′ and β ∈ F+ are such that βc′′ = cp−1. The last equality is given by the fact that
$

(p−1)(Ntp+exp)/2
p β(p−1)(Nt+ex)/2 = 1 in F. In fact, we already established that βex = 1 in F (see

for example proof of Lemma 4.2.3) and the same holds for $exp
p . It suffices then to show that

$
(p−1)Ntp/2
p β(p−1)Nt/2 = 1 in F. Let us first remark that

$
tp
p Nm(p)−1 ∈ Z×p

In fact, vp(Nm(p)) = vp(p
fp) = epfp = #Σp. Therefore, since we are now working with parallel

weights (p− 1)Ntp/2 and (p− 1)Nt/2, one has that

$
(p−1)Ntp/2
p β(p−1)Nt/2 = $

(p−1)Ntp/2
p Nm(β)(p−1)N/2

= $
(p−1)Ntp/2
p Nm(p)−(p−1)N/2

(
Nm(c)

Nm(c′′)

)(p−1)N/2

∈ Z×p

which is congruent to 1 modulo $, by Fermat’s little theorem.
Let us now look at the q-expansion of T ◦p f in S(k,1)(n;F). Since kτ = 1 for all τ ∈ Σp, for any
ξ ∈ c+ one has by Equation 4.3

a◦ξ
(
(hex(T

◦,(k,1)
p f))c

)
= a◦ξ

(
(T
◦,(k,1)
p f)c

)
= α−(wt−k)/2a◦α−1ξ

(
(〈p〉1f)c′

)
+ β−(wt−k)/2a◦β−1ξ(fc′′),

where c′ ∈ C′ and α ∈ F+ are such that αc′ = cp, and aα−1ξ = 0 if α−1ξ /∈ c′.
Combining the two formulae, one has that for any ξ ∈ c+,

a◦ξ
(
(hex(T

◦,(k,1)
p f)− T ◦,(k+κex,1)

p (hexf))c
)

= α−(wt−k)/2a◦α−1ξ

(
(〈p〉1f)c′

)
and therefore a◦ξ

(
(Vpf)c

)
= α−(wt−k)/2a◦α−1ξ(fc′).

1Recall that we have defined normalized diamond operators in Section 3.1.
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Remark 4.3.4. The adelic q-expansion for the action of the Frobenius operator makes sense only
for parallel weights (see Remark 3.3.12), since we are working modulo $. Therefore the HMF f
has weights w = 1, kτ = 1 for all τ ∈ Σ, and the action of the Frobenius operator is then:

C(m, Vpf) = Nm(c)−1aξ
(
(Vpf)c

)
= Nm(c′)−1aα−1ξ(fc) = C(mp−1, f) ,

for m an integral ideal of OF , and m = ξc−1 for unique c ∈ C and ξ ∈ c+. This is the same
formula of [DW18, Proposition 3.6] or as in [DDW19].

Proposition 4.3.5. Let (k, 1) ∈ ZΣ × Z be such that kτ = 1 for all τ ∈ Σp. Let f ∈ Sk,1(n;F),
then

T
◦,(k+κex,1)
p

(
Vpf

)
= hex · f .

Proof. It suffices to check this on q-expansions. So let c ∈ C and fc =
∑

ξ∈c+ aξq
ξ be the q-

expansion of f at the cusp ∞(c). Then for ξ ∈ c+, as in the proof of Proposition 4.3.3, one has
that

a◦ξ

((
T
◦,(k+κex,1)
p (Vpf)

)
c

)
= $

(p−1)(Ntp+exp)/2
p β(p−1)(Nt+ex)/2β−(wt−k)/2a◦β−1ξ

(
(Vpf)c′′

)
= β−(wt−k)/2a◦β−1ξ

(
(Vpf)c′′

)
,

where β ∈ F+ and c′′ ∈ C are such that βc′′ = cp−1. Now we want to apply the previous
Proposition to the cusp ∞(c′′), and since c′′p = β−1c, one has that

a◦ξ

((
T
◦,(k+κex,1)
p (Vpf)

)
c

)
= β−(wt−k)/2

(
β(w−k)/2a◦ξ(fc)

)
= a◦ξ(fc)

= a◦ξ
(
(hexf)c

)
.

Proposition 4.3.6. Let (k, 1) ∈ ZΣ × Z be such that kτ = 1 for all τ ∈ Σp. Let f ∈ Sk,1(n;F)
be an eigenform for all Tq, for q a prime of OF , q /∈ S, and suppose that it is also an eigenform
for T ◦,(k,1)

p with eigenvalue λ◦(f, p).

1. The forms hex · f and Vpf are F-linearly independent.

2. The F-vector space W := F
(
hex · f

)
⊕ F

(
Vpf

)
is stable under T ◦,(k+κex,1)

p , which acts via

the matrix

(
T
◦,(k,1)
p 1
−〈p〉1 0

)
with respect to the basis {hex, Vpf}. In particular, T ◦,(k+κex,1)

p is

invertible on W .

3. The Hecke operator Tq in weight (k + κex, 1) acts scalarly on W .

Proof. 1. Suppose that there exists λ ∈ F× such that Vpf = λhexf . Let c ∈ C and ξ ∈ c+,
then

a◦ξ
(
(Vpf)c

)
= λ a◦ξ

(
(hexf)c

)
= λ a◦ξ(fc) .

By Proposition 4.3.3, the above equation becomes

α−(wt−k)/2a◦α−1ξ(fc′) = λ a◦ξ(fc) ,



4.3 Unramifiedness modulo $ 71

where c′ ∈ C and α ∈ F+ are such that αc′ = cp, and aα−1ξ = 0 if α−1ξ /∈ c′. Let us consider
the set {n ∈ Z>0 : there exists c ∈ C et ξ ∈ c+ such that a◦ξ(fc) 6= 0 et vp(ξ) = n}. This
set is non-empty since f 6= 0, and therefore it admits a minimum, n0. Let c and ξ ∈ c+
the elements realizing the minimum n0. Then one has the following contradiction

0 6= λ a◦ξ(fc) = α−(wt−k)/2a◦α−1ξ(fc′) = 0 .

In fact, since vp(α) > 1, vp(α−1ξ) < n0, which by minimality implies that aα−1ξ(fc′) = 0.

2. Let us recall that by Proposition 4.3.5, we already know that T ◦,(k+κex,1)
p (Vpf) = hexf ∈W .

Now we will look at the action of T (k+κex,1)
p on hexf . By definition of Vp, we can write

〈p〉1Vpf = hex

(
T
◦,(k,1)
p f

)
− T ◦,(k+κex,1)

p (hexf),

which gives the desired result for the matrix

(
T
◦,(k,1)
p 1
−〈p〉1 0

)
. This also means that T ◦,(k+κex,1)

p

is annihilated by X2 − T ◦,(k,1)
p X + 〈p〉1 on W .

3. It follows directly from Lemma 4.2.3 and by commutativity of Hecke operators (see Propo-
sition C.1.1 and Proposition C.1.3).

4.3.2 Nearly-ordinary Hilbert modular forms
The following definition is due to Hida (see [Hid89b]) (cf. also [Dim05, Definition 1.3]).

Definition 4.3.7. Let f ∈ Sk,w(n;O) be a Hilbert modular eigenform. We suppose that O
contains all the Hecke eigenvalues of f . We say that f is nearly-ordinary at p if its T ◦p -eigenvalue
is a p-adic unit, i.e. it lies in O×.

We recall the reader that we work with arithmetic Frobenius elements, therefore we normalize
the Artin recipocity map so that a uniformizer $p is sent to an arithmetic Frobenius Frobp.
Moreover, we take a cyclotomic character χcyc corresponding via global class field theory to the
idele class character χcyc : F×+ \A×F,f → Z×p sending y to

∏
p|p Nm−1

Fp/Qp(yp)|yf |
−1
F . In particular,

it is such that χcyc($q) = Nm(q) for q not dividing p and χcyc($p) = Nm(p)
∏
τ∈Σp

τ($p)
−1.2

The following result is due results of Wiles ([Wil88, Theorem 2]) and Hida ([Hid89a, Theorem
I.]) and by local-global compatibility for Hilbert modular forms by works of Saito ([Sai09]) and
Skinner ([Ski09]).

Theorem 4.3.8 (Hida, Saito, Skinner, Wiles). Let (k,w) be a paritious weight such that kτ > 1
for all τ ∈ Σp. Let f ∈ Sk,w(n,O) be a nearly-ordinary at p Hilbert modular eigenform with
T ◦p -eigenvalue λ(f, T ◦p ) ∈ O× . Then the associated Galois representation ρf : GF → GL2(O) is
such that

ρf |Dp
∼
(
χ1 ?
0 χ2

)
2Our choice of cyclotomic character is the inverse of the cyclotomic character used by Barrera, Dimitrov

and Jorza (see [BDJ17, Notation]). This is because they work with geometric Frobenius and we want to
work with arithmetic Frobenius.
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where χ1 and χ2 are characters such that on the inertia they are respectively obtained by com-
posing the Artin reciprocity map Ip → O×F,p with the maps

χ̂1 : O×F,p → O
×, x 7→

∏
τ∈Σp

τ(x)(kτ+w−2)/2;

χ̂2 : O×F,p → O
×, x 7→

∏
τ∈Σp

τ(x)(w−kτ )/2.

Moreover, χ̂2($p) = α◦p, the unit root of the normalized Hecke polynomial

X2 − λ(f, T ◦p )X + ε(p)χw−1
cyc ($p)

∏
τ∈Σp

τ($p)
kτ−1, (4.4)

where ε(p) is the eigenvalue of f for the operator 〈p〉w.

Remark 4.3.9. Let us remark that by Equation 4.4, α◦p is congruent to λ(f, T ◦p ) modulo $. This
is due to the fact that we are supposing kτ > 1 for all τ ∈ Σp.
Remark 4.3.10. We take a moment to discuss the Hecke polynomials. By our choice of convention
and normalization, the representation ρf is such that the characteristic polynomial of ρf (Frobq)
is given by:

X2 − λ(f, Tq)X + ε(q) Nm(q)w−1, (4.5)

where ε(q) is the eigenvalue of 〈q〉w for the eigenform f . Now, the Hecke operator T ◦p is normalized
and by abuse of notation we can see it as

T ◦p =
∏
τ∈Σp

τ($p)
(kτ−w)/2Tp,

where the operator Tp is not well defined, but we use it here to highlight the different normal-
ization taken for the Hecke operator at p compared to the operator Tq. In particular, the Hecke
polynomial of Equation 4.5 will not have integral roots for q = p. So the polynomial of Equation
4.4 is obtained by multiplying the roots the Hecke polynomial of Equation 4.5 by the factor∏
τ∈Σp

τ($p)
(kτ−w)/2.

Remark 4.3.11. Let (k, 1) be a paritious weight such that kτ = 1 for all τ ∈ Σp. We remark that
for paritious weights (k + rκex, 1), the characters χ1 and χ2 of Theorem 4.3.8 are unramified
modulo $. In fact, for x ∈ O×F,p, one has that

χ̂2(x) =
∏
τ∈Σp

τ(x)
1−(kτ+rκex,τ )

2 , since w = 1

=
∏
τ∈Σp

τ(x)
−rκex,τ

2 , since kτ = 1 for all τ ∈ Σp

=

fp∏
j=1

ep∏
i=1

τ
(i)
p,j (x)−

r(p−1)
2

(N+2(2i−ep−1)) , (recall that N is even.)

≡
fp∏
j=1

τp,j(x)−
r(p−1)Nep

2 mod $ , since τ (i)
p,j ≡ τ

(i−1)
p,j mod $

≡ τp,1(x)−
rNep

2
(p−1)(1+p+...+pfp−1) mod $ , since τp,j ≡ τpp,j−1 mod $

≡ 1 mod $.
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The same calculations apply to χ̂1. Therefore, the characters χ1 mod $ and χ2 mod $ are
unramified at p.

4.3.3 Proof of Theorem 4.0.2
We will follow the strategy of the proof of [DW18, Theorem 1.1] to prove our result.

First, let us introduce a piece of notation. Let R be an O-algebra and le ε denote an R-
valued finite order Hecke character of F of conductor dividing n. We denote by Sk,w(n, ε;R) the
sub-R-module of Sk,w(n;R) of forms on which the operators 〈q〉w act via ε(q), for all prime ideals
q ⊂ OF coprime with n.

Now, let us recall that we are considering a cuspidal form f ∈ S(k,1)(n;F), which is a common
eigenvector for all Hecke operators T (k,1)

q for all q /∈ S ⊃ {v : a a place of F, v 6= p and v|pn}.
Since the diamond operators 〈q〉1 commute with all Hecke operators, there exists an F×-valued
Hecke character ε, whose conductor divides n and a form, still denoted f ∈ S(k,1)(n, ε;F), sharing
the same eigenvalues as f . So from now on, we will work with such an eigenform f ∈ S(k,1)(n, ε;F).
The following is a corollary of the previous theorem.

Corollary 4.3.12. Let f ∈ S(k,1)(n, ε;F) be an eigenvector for all Hecke operators T (k,1)
q , for

q /∈ S = supp(pn) and for T ◦,(k,1)
p with eigenvalues λ(f, q) and λ◦(f, p) respectively. Let α◦p ∈ F×

be a root of X2−λ◦(f, p)X+ε(p). Then ρf |Dp
: Dp → GL2(F) admits a 1-dimensional unramified

quotient on which Frobp acts by α◦p.

Proof. Let us construct the subspaceW := F(hexf)⊕F(Vpf) ⊂ Sk+κex,1(n, ε;F) as in Proposition
4.3.6. By part 2. of this Proposition, we know that T ◦,(k+κex,1)

p acts on this W via the matrix(
λ◦(f, p) 1
−ε(p) 0

)
, and by hypothesis α◦p is an eigenvalue of this matrix. Therefore there exists

fα◦p ∈ W which is an eigenform for all Hecke operators T (k+κex,1)
q with eigenvalues λ(f, q) for

q - np and for the Hecke operator T ◦,(k+κex,1)
p with eigenvalue α◦p ∈ F×. Multiplying by a big

enough power of hex, we can bring the system of eigenvalues of fα◦p to liftable weight and in
particular, by Lemma 4.1.6, there exists f̃ ∈ Sk+rκex,1(n, ε̃;O) with eigenvalues lifting those of
fα◦p , where ε̃ is a lift of ε. Moreover, f̃ is nearly-ordinary at p, since T ◦,(k+κex,1)

p f̃ = α̃◦pf̃ , where
α̃◦p ∈ O× is a lift of α◦p, which is not 0 in F. Now by Theorem 4.3.8, the Galois representation ρf̃
attached to f̃ is of the form

ρf |Dp
∼
(
χ1 ?
0 χ2

)
where χ1 and χ2 are characters such that they are unramified modulo $ by Remark 4.3.11.
Therefore, ρf admits an unramified quotient. Moreover, Frobp acts on this unramified quotient
via α◦p, since by Theorem 4.3.8 χ̂2($p) = α̃◦p ≡ α◦p mod $.

Now one has to distinguish two cases: when the polynomial X2 − λ◦(f, p)X + ε(p) admits
distinct roots α◦p 6= β◦p and when it has a double root α◦p.

Distinct roots α◦p 6= β◦p

If X2−λ◦(f, p)X + ε(p) has two distinct roots α◦p and β◦p , it suffices to apply Corollary 4.3.12 to
(f, α◦p) and to (f, β◦p ) to get that ρf |Dp

admits two distinct unramified quotients on which Frobp
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acts via α◦p and β◦p . Therefore ρf is unramified at p. Moreover, tr
(
ρf (Frobp)

)
= α◦p + β◦p =

λ◦(f, p). This proves the theorem in this case.

Double root α◦p

We now treat the case where X2 − λ◦(f, p)X + ε(p) = (X − α◦p)2, and we will need to introduce
some notation. Let

T(k,1) := im
(
O[T

(k,1)
q , 〈q〉1]q-pn → EndO

(
Sk,1(n;O)

))
denote the Hecke algebra acting on S(k,1)(n;O) and set T̃(k,1) := T(k,1)[T

◦,(k,1)
p ] inside the ring

EndO
(
Sk,1(n;O)

)
. Moreover, we will denote

T
(k,1)
F := im

(
O[T

(k,1)
q , 〈q〉1]q-pn → EndO

(
Sk,1(n;F)

))
and T̃

(k,1)
F := T

(k,1)
F [T

◦,(k,1)
p ] inside EndO

(
Sk,1(n;F)

)
. Recall that by Lemma 4.1.6, (k + rκex, 1)

is a liftable weight and therefore one has an isomorphism

T
(k+rκex,1)
F

∼−→ T(k+rκex,1) ⊗O F ,

which induces a surjection T(k+rκex,1) � T
(k+rκex,1)
F . Moreover, by Lemma 4.2.3, one has a

surjection T
(k+rκex,1)
F � T

(k,1)
F . To recap:

T(k+rκex,1) � T
(k+rκex,1)
F � T

(k,1)
F (4.6)

Let m denote the maximal ideal of T(k,1)
F corresponding to the Hilbert modular cuspform f ∈

S(k,1)(n;F) of Theorem 4.0.2. We will also denote by m the maximal ideal of T(k+rκex,1)
F or of

T(k+rκex,1) defined as the pullback of m ⊂ T
(k,1)
F , via the surjections in Equation (4.6). Let m̃

denote the maximal ideal of T̃(k,1)
F corresponding to (f, α◦p). We will still denote m̃ the ideal of

T̃
(k+rκex,1)
F or of T̃(k+rκex,1), defined as the pullback of m̃ ⊂ T̃

(k,1)
F .

Lemma 4.3.13. The Hecke operator T ◦,(k+κex,1)
p does not belong to T

(k+rκex,1)
m ⊗O F. Moreover,

it does not belong to T
(k+rκex,1)
m .

Proof. By the lifting Lemma 4.1.6, T(k+rκex,1)
F

∼−→ T(k+rκex,1)⊗O F. So if T ◦,(k+κex,1)
p belonged to

T
(k+rκex,1)
m , it would belong to T

(k+rκex,1)
F,m . Let us now proceed to show that this is impossible.

Let W ⊂ Sk+κex,1(n;F) denote the F-vector space of Proposition 4.3.6, and recall that on this
space the Hecke operators T (k+κex,1)

q act scalarly, while the operator T ((k+κex,1))
p acts with minimal

polynomial X2 − λ◦(f, p)X + ε(p) = (X − α◦p)2. One has the inclusion

hr−1
ex W ⊂ Sk+rκex,1(n;F)m ,

which is equivariant for all Hecke operators Tq, for q /∈ S. So if T ◦,(k+κex,1)
p belonged toT(k+rκex,1)

F,m ,

it would belong to the Hecke algebra generated by the operators T (k+rκex,1)
q for q /∈ S acting on

hr−1
ex W . But by what we have said before, we know that this algebra acts via a character, while
T
◦,(k+κex,1)
p does not act semi-simply.
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We can now proceed to complete the proof of Theorem 4.0.2 for the case where X2 −
λ◦(f, p)X + ε(p) = (X − α◦p)

2. Since T
(k+rκex,1)
m is torsion free and generated by Hecke op-

erators away from the level and p, one has that T(k+rκex,1)
m ⊗O K '

∏
g∈N K, where N denotes

the set of all newforms contributing to Sk+rκex,1(n;O)m, where we now suppose that O is big
enough to contain all eigenvalues of all newforms g ∈ N .

Recall that by Proposition 4.3.1 we already have constructed the Galois representation ρf
attached to f , which is semi-simple. If ρf is not irreducible, then it is the sum of two characters
χ1 ⊕ χ2. In particular, since the determinant of ρf is unramified at p, then the product χ1χ2 is
unramified at p. So if one of the two was ramified at p, so would the other, but this contradicts
the existence of an unramified quotient of Corollary 4.3.12. Therefore, the only possibility is
that both χ1 and χ2 are unramified at p, and hence ρf is unramified at p.

Let us suppose that the Galois representation ρf attached to f is absolutely irreducible, and
therefore by [Car94, Théorème 2], there exists a free of rank two T

(k+rκex,1)
m -module M with a

continuous action of GF such that the GF action onM induces a GF -equivariant isomorphism

M⊗O K '
∏
g∈N

V (g),

where V (g) denotes the K[Dp]-module corresponding to the Galois representation attached to
g. The T ◦,(k+κex,1)

p -eigenvalue for any g ∈ N is an element of O×, reducing to α◦p modulo $, i.e.
each g ∈ N is nearly-ordinary at p. Therefore, by Theorem 4.3.8, one has a short exact sequence
of K[Dp]-modules

0 −→ V (g)+ −→ V (g) −→ V (g)− −→ 0,

where V (g)+ and V (g)− have dimension 1 over K. Moreover, Dp acts on V (g)−/$V (g)− via
an unramified character mapping Frobp to α◦p ∈ F. Now, letM+ :=M∩

∏
g∈N V (g)+ and let

M− := Im
(
M→

∏
g∈N V (g)−

)
. Then the above exact sequence induces a short exact sequence

of T(k+rκex,1)
m [Dp]-modules

0 −→M+ −→M −→M− −→ 0.

Reducing modulo the maximal ideal m gives a short exact sequence of F[Dp]-modules

M+/mM+ −→M/mM−→M−/mM− −→ 0.

To prove that ρf is unramified at p, it now suffices to show that the F[Dp]-module M/mM is
isomorphic to its unramified quotientM−/mM−.
Let us then study the F[Dp]-moduleM−/mM−. SinceM− is not 0, by Nakayama’s lemma for
the local O-algebra T

(k+rκex,1)
m , the F[Dp]-moduleM−/mM− is not the 0 module. In particular,

as an F-vector space it has either dimension 1 or 2.
Suppose that dimFM−/mM− = 1, then Nakayama’s lemma produces a surjective homomor-
phism T

(k+rκex,1)
m � M− as T

(k+rκex,1)
m -modules. However, they have the same rank over O

and therefore M− is a free T
(k+rκex,1)
m -module of rank 1. In particular, by Theorem 4.3.8 the

uniformizer $p acts via local class field theory on M− via an element U ∈
(
T

(k+rκex,1)
m

)×
.

Since for every g ∈ N the eigenvalue of U on g is the unique unit root of the Hecke polynomial
X2 − T ◦,(k+κex,1)

p X + 〈p〉1
∏
τ∈Σp

τ($p)
kτ+rκex,τ−1 on g, one has that

T
(k+rκex,1)
m −→ T

(k+rκex,1)
F,m

U 7−→ T
◦,(k+κex,1)
p ,
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which implies that T ◦,(k+κex,1)
p ∈ T

(k+rκex,1)
F,m , but this contradicts Lemma 4.3.13.

Therefore dimFM−/mM− = 2, which implies that M/mM ' M−/mM−. Let us now look
at the action of Frobp on M/mM. We know that $p acts on each V (g)− via the unit root
α(g, p) of the polynomial X2− α̃◦pX + ε(p)

∏
τ∈Σp

τ($p)
rκex,τ and therefore α(g, p) reduces to α◦p

modulo $ and that Frobp acts on each V (g)−/mV (g)− via α◦p. Moreover, sinceM−/mM− is a

quotient of two lattices in
∏
g∈N V (g)−, Frobp acts onM/mM via a matrix

(
α◦p ∗
0 α◦p

)
, which

implies that tr
(
ρf (Frobp)

)
= 2α◦p = λ◦(f, p). This completes the proof.

4.4 Future Prospects
In this paragraph we illustrate future possible directions of the work of this thesis. Recall that
K is a finite extensions of Qp, containing the images of all embeddings of F in Q̄p, and that we
denote with O its valuation ring, $ a uniformizer and F = O/$. We denote then

Mk,w(n;K/O) := lim−→
m

Mk,w

(
n;

1

$m
O/O

)
' lim−→

m

Mk,w(n;O/$mO) . (4.7)

For any paritious weight (k,w), the R-module of Hilbert modular formsMk,w(n;R) is equipped
with a commuting family of Hecke operators Tq and normalized Diamond operators 〈q〉w (see
Section 3.1) for any prime ideal q ⊂ OF not dividing pn. We then define the paritious weight
(k,w) Hecke algebra as

T(k,w) := im
(
O[Tq, 〈q〉w]q-pn → EndO (Mk,w(n;K/O))

)
. (4.8)

Moreover, as detailed in Chapter 3, we recall that Emerton-Reduzzi-Xiao have constructed in
[ERX17a] the Hecke operator Tp for all primes p in OF above p.

Our future goal is to show the following generalization to non-parallel paritious weight 1
Hilbert modular forms of results of Dimitrov-Wiese ([DW18, Theorem 1.1]), Deo-Dimitrov-Wiese
([DDW19]) and of Emerton-Reduzzi-Xiao ([ERX17a, Theorem 1.1]).

Expected Theorem 4.4.1. Let p|p be a fixed prime in OF , and let (k, 1) ∈ ZΣ×Z be a paritious
weight such that kτ = 1 for all τ ∈ Σp. Then there exists a T(k,1)-valued pseudo-representation
P (k,1) of GF of degree 2 which is unramified at all primes q not dividing pn and also at q = p,
and such that P (k,1)(Frobq) = (Tq, 〈q〉), for any such q.

In particular, if the localisation of P (k,1) at a maximal ideal m of T(k,1) is residually absolutely
irreducible, then the corresponding representation

ρm : GF −→ GL2

(
T

(k,1)
m

)
exists and is unramified at all primes q not dividing pn and at q = p and satisfies tr(ρm(Frobq)) =
Tq and det(ρm(Frobq)) = 〈q〉, for all such primes q.

In Lemma 4.2.5, we already showed that there exists a product of partial Hasse invariants
hex,m that we can use to bring our forms modulo $m in liftable weight and then apply Lemma
4.1.6. One would then need to use partial Theta operators, as done by Deo, Dimitrov and Wiese
in [DDW19] and study p-ordinary pseudo-representations, to apply the strategy of Calegari and
Specter ([CS19]).



Appendix A

Some Algebraic Geometry

In this section we will recall and show some results of algebraic geometry used in this text.

A.1 The sheaf LM
Let A be a ring and X f−→ Spec(A) be a scheme over A. LetM be an A-module and L a coherent
sheaf on X. As explained in [Har77], one can construct a sheaf M̃ which is a OSpec(A)-module,
i.e. a sheaf of modules over OSpec(A). Moreover, M̃ is quasi-coherent as a sheaf of modules on
OSpec(A). Applying pullback, one gets f∗M̃ which is a quasi-coherent OX -module (again this is
shown in [Har77]). One can define

LM := L ⊗OX f
∗M̃

as the tensor product of two OX -modules which is a quasi-coherent OX -module. Now we want
to see how this sheaf looks on open sets U ⊂ X.

Claim A.1.1. For any open U ⊂ X, LM (U) ' L(U)⊗AM .

Proof. Recall that for V an open subset of Spec(A)

M̃(V ) = OSpec(A)(V )⊗AM

and for U an open subset of X

f∗M̃(U) = f−1M̃(U)⊗f−1OSpec(A)(U) OX(U) .

Let’s first try to calculate f−1M̃(U).

f−1M̃(U) = lim−→
V⊃f(U)

M̃(V )

= lim−→
V⊃f(U)

(
OSpec(A)(V )⊗AM

)
'
(

lim−→
V⊃f(U)

OSpec(A)(V )
)
⊗AM

= A⊗AM 'M
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Therefore, we have that
f∗M̃(U) 'M ⊗A OX(U) .

Using the definition of the tensor product of sheaves, one gets that

LM (U) = L(U)⊗OX(U)

(
M ⊗A OX(U)

)
' L(U)⊗AM .

Therefore, one can see the sheaf LM as L ⊗A M , which is the definition used in the text.
Moreover, one now knows that it’s a quasi-coherent sheaf on X.
If A is a local ring, which is the case for the main text, for every x ∈ X one gets that (LM )x =
Lx ⊗AM . In fact, by known results of algebraic geometry, one would have (LM )x = Lx ⊗Af(x)

Mf(x), but Af(x) = A since A is already a local ring, and therefore also Mf(x) = M .

A.2 Torsion in Cohomology Rings
Recall that X is a modular curve over Spec(O) and ω its sheaf of differential. By the previous
section, the sheaf ωK/O is well defined. One can see that it can be identified with the direct limit

lim−→
m

ωO/$mO .

Our interest is now to show that modular forms with coefficients in O/$m can be identified with
the $m-torsion of modular forms with coefficients in K/O.

Proposition A.2.1. There is a natural isomorphism

H0(X,ωO/$mO) ' H0(X,ωK/O)[$m]

Proof. To show this isomorphism we will proceed in different steps.

1. multiplication by $m is a morphism of sheaves.
Let us consider the map

·$m : ωK/O → ωK/O ,

defined on open sets U ⊂ X by

·$m(U) : ωK/O(U) −→ ωK/O(U)

x 7−→ x$m

as a homomorphism of O-modules. To show that it’s a morphism of pre-sheaf, one has to
check that this map commutes with restriction maps. Let V ⊂ U be affine open subsets
of X and αUV : ωK/O(U) → ωK/O(V ) the restriction map for ωK/O. One then considers
the following diagram

ωK/O(U) ωK/O(U)

ωK/O(V ) ωK/O(V )

·$m

αUV αUV

·$m
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By the previous section we know that ωK/O(U) ' ω(U)⊗O K/O and since U is an affine
open, this quantity can actually be seen as M ⊗O K/O, where M is an O-module. The
same can be done for V , i.e. one gets ωK/O(V ) ' N ⊗O K/O for some O-module N . In
particular αUV = αMN ⊗ id, where αMN : M → N is a morphism of O-modules. The
diagram above becomes

M ⊗O K/O M ⊗O K/O

N ⊗O K/O N ⊗O K/O

·$m

αMN⊗id αMN⊗id

·$m

which is clearly commutative.

2. ωO/$mO ' ωK/O[$m].
Now we want to show that ωO/$mO ' ωK/O[$m] as sheaves, which we will prove on the
stalks. Let us first recall that K/O[$m] = O/$mO. Recall that ωK/O[$m] is defined as
the sheaf kernel of the multiplication by $m; and that given a morphism ϕ : F → G of
sheaves, the stalk at a point x of the kernel presheaf is the kernel of ϕx. Looking at the
previous section, one can see that ωK/O[$m] = (ω⊗OK/O)[$m]. Since ω is an invertible
sheaf, its stalks are free modules, therefore flat. By the previous section we know that the
stalk of ωK/O at a point x ∈ X is isomorphic to the tensor product of the stalk of ω at x
with K/O. In other words, (ωK/O)x ' ωx⊗K/O. So, if we take the short exact sequence

0→ K/O[$m] ' O/$mO → K/O ·$m−−−→ ($m)K/O → 0

tensoring with the flat module ωx, we still get an exact sequence:

0→ ωx ⊗K/O[$m]→ ωx ⊗K/O
·$m−−−→ ωx ⊗ ($m)K/O → 0

Therefore (
ωx ⊗K/O

)
[$m] ' ωx ⊗K/O[$m]

' ωx ⊗O/$mO
=
(
ωO/$mO

)
x

which means that at every x ∈ X,
(
ωO/$mO

)
x
' (ωK/O[$m])x, which gives ωO/$mO '

ωK/O[$m].

3. H0(X,ωK/O[$m]) ' H0(X,ωK/O)[$m] Recall that the cohomology of level 0 is just the
global section. One has that H0(X,ωK/O[$m]) = ωK/O[$m](X) and H0(X,ωK/O)[$m] =
ωK/O(X)[$m]. Looking at the exact sequence of sheaves

0→ ωK/O[$m]→ ωK/O
·$m−−−→ ωK/O

and conjugating it for X

0→ ωK/O[$m](X)→ ωK/O(X)
·$m−−−→ ωK/O(X)

one gets that ωK/O[$m](X) is isomorphic to the kernel of the map ωK/O(X)
·$m−−−→ ωK/O(X)

which is exactly ωK/O(X)[$m].
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Appendix B

Descent

In this brief appendix, we will recall some results of Descent theory that we apply in the thesis.

Definition B.0.1. Let S be a scheme and let f : X → Y be a morphism of S-schemes. We say
that a quasi-coherent OX module F descends to Y , if there exists an OY -module G such that

f∗G ' F .

In general, the theory of descent studies the equivalence of fibered categories. Here we will
recall some results that can be applied in our case. We are particularly interested in two specific
case:

1. When Y is the quotient variety X/G by an (abelian) group G and f is a finite étale
covering;

2. When X and Y are respectively the toroidal and minimal compactification of a modular
variety and f is the corresponding map between the two compactifications (see Section
2.1.4 for more details).

B.1 Finite descent
The following is [Sta18, Lemma 35.6.2]

Lemma B.1.1. Let π : X → Y be a surjective finite étale morphism of S-schemes. Let G be a
finite group together with a group homomorphism Gopp ' AutY (X), mapping σ 7→ fσ, such that
the map

G×X → X ×Y X
(σ, x) 7→ (x, fσ(x))

is an isomorphism. Then The category of quasi-coherent OY -modules is equivalent to the category
of systems (F , (ϕσ)σ∈G) where

(i) F is a quasi-coherent OX-module;

(ii) ϕσ : F → f∗σF is an isomorphism of OX-modules;

(iii) ϕστ = f∗σϕτ ◦ ϕσ for all σ, τ ∈ G.

https://stacks.math.columbia.edu/tag/0D1V
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Let us recall that in our situation, we have provided the line bundles ω̇τ and δ̇τ defined over
Yc with an E-action, mapping respectively a local section s to τ(ε)−1/2[ε]∗s and a local section
s to τ(ε)−1[ε]∗s. This correspond to the isomoprhism ϕσ of the above lemma. It is easy to
check that these maps satisfy the conditions of Lemma B.1.1, since the group E is abelian, and
therefore they descend to line bundles ωτ and δτ over the quotient variety Sh.

In particular, for a finite abelian group G, one can see that if G is a quasi-coherent OY -
module corresponding to a system (F , (ϕσ)σ∈G), then

H0(Y,G) = H0(X,F)G, (B.1)

which is the set of global sections which are invariant under the action of G. Therefore, in
our case, the set of Hilbert modular forms H0(Sh, ωk,`) corresponds to the subset of elements in
H0(Y, ω̇k,`) which are invariant under the action of the group E.

B.2 Descent for the compactifications
As seen in Section 2.1.4, one can construct the toroidal and the minimal compactification of the
moduli space Yc, and moreover one has a surjectif morphism

π : Ytor
c � Ymin

c ,

which is an isomorphism on Yc.

Lemma B.2.1. The line bundle ω̇kc,R =
⊗

τ∈Σ(ωtor
c,R,τ )⊗kτ on Ytor

c,R descends to a line bundle on
Ymin

c,R if and only if uk/2 :=
∏
τ∈Σ τ(u)kτ/2 acts trivially in R, for all u ∈ O×F,n.

In characteristic 0, Lemma B.2.1 implies that the sheaf ω̇k descends to the minimal compact-
ification if and only if k is parallel (as stated in [Dim04, Théorème 8.6(vi)]).

Proof. We will prove this on formal schemes, and in particular on the formal completion at the
cusps. By [Dim04, Théorème 8.6(v)], we know that the formal completion of Ytor

c,R at the inverse
image π−1(C) of a cusp C of Yc,R, seen inside Ymin

c,R , is S∧
ΣC
/O×F,n × Spec(R). This tells us that

the sheaf ω̇kc,R will descend to an invertible sheaf on the minimal compactification Ymin
c,R if and

only if ω̇kc,R can be trivialized over S∧
ΣC
/O×F,n×Spec(R). Moreover, the formal completion of Ytor

c,R

at the cusp C of Yc,R, seen inside Ytor
c,R, is S

∧
ΣC
× Spec(R). In particular, we have the following

surjective morphism of formal schemes:

S∧ΣC × Spec(R) � S∧ΣC/O
×
F,n × Spec(R) (B.2)

As seen throughout the thesis (see Remark 2.3.4 and proof of Proposition 2.4.1), the sheaf ω̇kc,R
can be canonically trivialized over S∧

ΣC
× Spec(R) as follows:

ω̇kc,R|S∧
ΣC
×Spec(R) ' (a⊗O)k ⊗O R⊗O OS∧

ΣC
,

where C = (a, b, H, i, j, λ, α) (see Definition 2.3.1). Moreover, an element u ∈ O×F,n acts on this
sheaf via multiplication by uk/2 =

∏
τ∈Σ τ(u)kτ/2. In particular,

H0(S∧ΣC/O
×
F,n×Spec(R), ω̇kc,R) =

{ ∑
ξ∈X+∪{0}

aξq
ξ : aξ ∈ (a⊗O)k⊗OR, auξ = u2aξ for all u ∈ O×F,n

}
,



B.2 Descent for the compactifications 83

which is not a priori of rank 1 as a projective module. Therefore the pullback of ω̇kc,R to S∧
ΣC
×

Spec(R) via the map in Equation B.2 will be canonically trivial if and only if uk/2 acts trivially
in R.

We have applied this Lemma in the proof of Lemma 4.1.2 to descend the sheaf ω̇(ex, 0)
F to an

ample invertible sheaf over the minimal compactification.
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Appendix C

Extra Calculations with q-expansions

We collect in this appendix proofs by computations on q-expansions of well known relations
between the various operators defined throughout the thesis.

C.1 Proofs by calculations on q-expansions
We will use here the Notation of Chapter 4.

Proposition C.1.1. Let f ∈ Mk,w(n;R). Then Tr(Tqf) = Tq(Trf) for all r, q prime ideals of
OF , coprime with np.

Proof. We prove it on q-expansions for non-normalized Hecke operators, using Equation (3.19).
We want to show that for any c ∈ C and ξ ∈ c+

a◦ξ
((
Tr(Tqf)

)
c

)
= a◦ξ

((
Tq(Trf)

)
c

)
. (C.1)

Let us start by applying Equation (3.18) to the left hand side of the above equation. Recall that
we take c′, c′′ ∈ C and α, β ∈ F+ such that αc′ = cr and βc′′ = cr−1, then we have

a◦ξ
((
Tr(Tqf)

)
c

)
= Nm(r)w−1α−`a◦α−1ξ

(
(〈r〉wTqf)c′

)
+ β−`a◦β−1ξ

(
(Tqf)c′′

)
= Nm(r)w−1α−`

(
Nm(q)w−1α̃−`a◦(α̃α)−1ξ

(
(〈q〉w〈r〉wf)c̃′

)
+ β̃−`a◦

(β̃α)−1ξ
(〈r〉wfc̃′′)

)
+ β−`

(
Nm(q)w−1 ˜̃α−`a◦

( ˜̃αβ)−1ξ

(
(〈q〉w f)˜̃c′

)
+

˜̃
β−` a◦

(
˜̃
ββ)−1ξ

(f˜̃c′′)

)
,

where c′q = α̃c̃′ , c′q−1 = β̃c̃′′ c′′q = ˜̃α˜̃c′ and c′′q−1 =
˜̃
β˜̃c′′, for c̃′, c̃′′, ˜̃c′, ˜̃c′′ ∈ C and α̃, β̃, ˜̃α,

˜̃
β ∈ F+.

Rearranging the terms, one has that

a◦ξ
((
Tr(Tqf)

)
c

)
=
(

Nm(r) Nm(q)
)w−1

(α̃α)−`a◦(α̃α)−1ξ

(
(〈r〉w〈q〉wf)c̃′

)
+ Nm(r)w−1(β̃α)−` a◦

(β̃α)−1ξ

(
(〈r〉wf)c̃′′

)
+ Nm(q)w−1( ˜̃αβ)−`a◦

( ˜̃αβ)−1ξ

(
(〈q〉wf)˜̃c′

)
+ (

˜̃
ββ)−`a◦

(
˜̃
ββ)−1ξ

(f˜̃c′′) .
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Let us now look at the right hand side of Equation (C.1). Let c̄′, c̄′′ ∈ C and ᾱ, β̄ ∈ F+ such
that ᾱc̄′ = cq and β̄c̄′′ = cq−1. Then one has that c̄′r = α̃α

ᾱ c̃′, c̄′r−1 =
˜̃αβ
ᾱ

˜̃c′, c̄′′r = β̃α
β̄
c̃′′ and

c̄′′r−1 =
˜̃
ββ
β̄

˜̃c′′. Applying Equation (3.19) twice with these representatives, one gets that

a◦ξ
((
Tq(Trf)

)
c

)
=
(

Nm(r) Nm(q)
)w−1

(α̃α)−`a◦(α̃α)−1ξ

(
(〈r〉w〈q〉wf)c̃′

)
+ Nm(q)w−1( ˜̃αβ)−`a◦

( ˜̃αβ)−1ξ

(
(〈q〉wf)˜̃c′

)
+ Nm(r)w−1(β̃α)−`a◦

(β̃α)−1ξ

(
(〈r〉wf)c̃′′

)
+ (

˜̃
ββ)−`a◦

(
˜̃
ββ)−1ξ

(f˜̃c′′) ,

and therefore the commutativity of the operators.

The following Proposition is a direct consequence of Proposition 4.3.6(2). However, we show
it here via computations on q-expansions.

Proposition C.1.2. Let f ∈ Sk,1(n, ε;F) be an eigenform for all Tq, for q a prime of OF , q - np,
and suppose that it is also an eigenform for T ◦,(k,1)

p with eigenvalue λ◦(f, p). Then the T ◦,(k+κex,1)
p

operator is such that
(
T
◦,(k+κex,1)
p

)2
(hexf)− λ◦(f, p)T

◦,(k+κex,1)
p (hexf) + ε(p)(hexf) = 0.

Proof. Let us start by looking at the q-expansion of hexf for any c ∈ C.(
hexf

)
c

=
∑
ξ∈c+

a◦ξ
(
(hexf)c

)
qξ =

∑
ξ∈c+

a◦ξ(fc)q
ξ .

Now by Equation 4.3, one has that for ξ ∈ c+

a◦ξ
(
(T
◦,(k+κex,1)
p hexf)c

)
= $

(p−1)(Ntp+exp)
p β(k−t)/2+κex/2a◦β−1ξ

(
(hexf)c′′

)
= $

(p−1)(Ntp+exp)
p βκex/2β(k−t)/2a◦β−1ξ(fc′′) ,

where c′′ ∈ C′ and β ∈ F+ are such that βc′′ = cp−1. Recall that $(p−1)(Ntp+exp)
p βκex/2 ≡ 1

mod $ (see proof of Proposition 4.3.3), and therefore a◦ξ
(
(T
◦,(k+κex,1)
p hexf)c

)
= β(k−t)/2a◦β−1ξ(fc′′).

Now let us look at the action of T ◦,(k,1)
p on f : for any ξ ∈ c+, one has that

a◦ξ
(
(T
◦,(k,1)
p f)c

)
= α(k−t)/2a◦α−1ξ

(
(〈p〉wf)c′

)
+ β(k−t)/2a◦β−1ξ(fc′′)

= ε(p)α(k−t)/2a◦α−1ξ(fc′) + β(k−t)/2a◦β−1ξ(fc′′) ,

where c′ ∈ C′ and α ∈ F+ are such that αc′ = cp. Then we can re-write the action of T ◦,(k+κex,1)
p

on hexf via the action of T ◦,(k,1)
p on f as follows: let ξ ∈ c+, then

a◦ξ
(
(T
◦,(k+κex,1)
p hexf)c

)
= a◦ξ

(
(T
◦,(k,1)
p f)c

)
− ε(p)α(k−t)/2a◦α−1ξ(fc′)

If we transpose this to ξ ∈ c′′+, one gets that

a◦ξ
(
(T
◦,(k+κex,1)
p hexf)c′′

)
= a◦ξ

(
(T
◦,(k,1)
p f)c′′

)
− ε(p)β`aβξ(fc) .
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Let us now apply a second time the T ◦,(k+κex,1)
p operator to hexf : let ξ ∈ c+, then

a◦ξ
(
(T
◦,(k+κex,1)
p (T

◦,(k+κex,1)
p hexf))c

)
= β(k−t)/2a◦β−1ξ

(
(T
◦,(k+κex,1)
p hexf)c′′

)
= β(k−t)/2a◦β−1ξ

(
(T
◦,(k,1)
p f)c′′

)
− ε(p)aξ(fc) .

By hypothesis f is an eigenform for T ◦,(k,1)
p of eigenvalue λ◦(f, p). In particular, for any c ∈ C

and for any ξ ∈ c+, a◦ξ
(
(T
◦,(k,1)
p f)c

)
= λ◦(f, p)a◦ξ(fc). Therefore the above equation becomes:

a◦ξ
(
(T
◦,(k+κex,1)
p (T

◦,(k+κex,1)
p hexf))c

)
= λ◦(f, p)β(k−t)/2a◦β−1ξ(fc′′)− ε(p)aξ(fc)

= λ(f, p)a◦ξ
(
(T
◦,(k+κex,1)
p hexf)c

)
− ε(p)a◦ξ

(
(hexf)c

)
.

Therefore, one gets that T ◦,(k+κex,1)
p is annihilated by X2 − λ(f, p)X + ε(p) id.

The following Proposition is used in the proof of part (3) of 4.3.6.

Proposition C.1.3. Let f ∈ S(k,1)(n, ε,F) a Hilbert modular form of partial weight 1, with
parallel weight 1 over the fixed place p above p. Let q be an integral ideal of OF , coprime with
np. Then the operators Tq and Vp commute, i.e.

T
(k+κex,1)
q

(
Vpf

)
= Vp

(
T

(k,1)
q f

)
. (C.2)

Proof. We will prove it on geometric q-expansion, i.e. we want to show that for any ξ ∈ c+,
where c ∈ C, one has that

a◦ξ

((
T

(k+κex,1)
q (Vpf)

)
c

)
= a◦ξ

((
Vp(T

(k,1)
q f)

)
c

)
. (C.3)

Let us start on the right hand side. Let c′ ∈ C and α ∈ F+ such that αc′ = cp. By Proposition
4.3.3,

a◦ξ

((
Vp(T

(k,1)
q f)

)
c

)
= α(k−t)/2a◦α−1ξ

(
(T

(k,1)
q f)c′

)
Let c̃′, c̃′′ ∈ C and α̃, β̃ ∈ F+ such that c′q = α̃c̃′ and c′q−1 = β̃c̃′′. Then by Equation (3.19) and
since w = 1, one has that

a◦ξ

((
Vp(T

(k,1)
q f)

)
c

)
= α(k−t)/2

(
ε(q)α̃(k−t)/2a◦(α̃α)−1ξ(fc̃′) + β̃(k−t)/2a◦

(β̃α)−1ξ
(fc̃′′)

)
= ε(q)(α̃α)(k−t)/2a◦(α̃α)−1ξ(fc̃′) + (β̃α)(k−t)/2a◦

(β̃α)−1ξ
(fc̃′′) .

Let us now look at the left hand side of (C.3). Let c̄′, c̄′′ ∈ C and ᾱ, β̄ ∈ F+ be such that cq = ᾱc̄′

and cq−1 = β̄c̄′′. Then by Equation (3.19)

a◦ξ

((
T

(k+κex,1)
q (Vpf)

)
c

)
= ε(q)ᾱ(k−t)/2aᾱ−1ξ

(
(Vpf)c̄′

)
+ β̄(k−t)/2aβ̄−1ξ

(
(Vpf)c̄′′

)
Remark that c̄′p = αα̃

ᾱ c̃′ and that c̄′′p = αβ̃
β̄
c̃′′, and by Proposition 4.3.3, the above expression

becomes

a◦ξ

((
T

(k+κex,1)
q (Vpf)

)
c

)
=ε(q)ᾱ(k−t)/2

((
αα̃

ᾱ

)(k−t)/2
a(αα̃)−1ξ(fc̃′)

)

+ β̄(k−t)/2

(αβ̃
β̄

)(k−t)/2

a(αβ̃)−1ξ(fc̃′)

 .
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Therefore the left hand side

a◦ξ

((
T

(k+κex,1)
q (Vpf)

)
c

)
= ε(q)(α̃α)(k−t)/2a(α̃α)−1ξ(fc̃′) + (β̃α)(k−t)/2a(β̃α)−1ξ(fc̃′′) ,

coincides with the right hand side.

This in particular means that if f is an eigenform for T (k,1)
q , with eigenvalue λ(f, q), then Vp

is also an eigenform for T (k+κex,1)
q with same eigenvalue. In fact, T (k+κex,1)

q (Vpf) = Vp(T
(k,1)
q f) =

Vp(a(f, q)f) = λ(f, q)Vpf .
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