ON THE LOCAL STRUCTURE OF ORDINARY HECKE
ALGEBRAS AT CLASSICAL WEIGHT ONE POINTS

MLADEN DIMITROV

ABSTRACT. The aim of this paper is to explain how one can obtain information
regarding the membership of a classical weight one eigenform in a Hida family
from the geometry of the Eigencurve at the corresponding point. We show, in
passing, that all classical members of a Hida family, including those of weight

one, share the same local type at all primes dividing the level.

1. INTRODUCTION

Classical weight one eigenforms occupy a special place in the correspondence
between Automorphic Forms and Galois Representations since they yield two di-
mensional Artin representations with odd determinant. The construction of those
representations by Deligne and Serre [5] uses congruences with modular forms of
higher weight. The systematic study of congruences between modular forms has
culminated in the construction of the p-adic Eigencurve by Coleman and Mazur
[4]. A p-stabilized classical weight one eigenform corresponds then to a point on
the ordinary component of the Eigencurve, which is closely related to Hida theory.

An important result of Hida [11] states that an ordinary cuspform of weight at
least two is a specialization of a unique, up to Galois conjugacy, primitive Hida
family. Geometrically this translates into the smoothness of the Eigencurve at that
point (in fact, Hida proves more, namely that the map to the weight space is etale
at that point). Whereas Hida’s result continues to hold at all non-critical classical
points of weight two or more [13], there are examples where this fails in weight
one [6]. The purely quantitive question of how many Hida families specialize to
a given classical p-stabilized weight one eigenform, can be reformulated geomet-
rically as to describe the local structure of the Eigencurve at the corresponding

point. An advantage of the new formulation is that it provides group theoretic
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and homological tools for the study of the original question thanks to Mazur’s the-
ory of deformations of Galois representations. Moreover, this method gives more
qualitative answers, since the local structure of the Eigencurve at a given point
contains more information than the collection of all Hida families passing through
that point.

The local structure at weight one forms with RM was first investigated by Cho
and Vatsal [3] in the context of studying universal deformation rings, who showed
that in many cases the Eigencurve is smooth, but not etale over the weight space,
at those points. The main result of a joint work with Joél Bellaiche [1] states
that the p-adic Eigencurve is smooth at all classical weight one points which are
regular at p and gives a precise criterion for etalness over the weight space at those
points. The author has learned recently that the work [10] of Greenberg and Vatsal
contains a slightly weaker version of this result. It would be interesting to describe
the local structure at irregular points, to which we hope to come back in a future
work.

The paper is organized as follows. Section 2 describes some p-adic aspects in
the theory of weight one eigenforms. Sections 3 and 4 introduce, respectively, the
ordinary Hecke algebras and primitive Hida families, which are central objects in
Hida theory [12]. In section 5 various Galois representations are studied with em-
phasis on stable lattices, leading to the construction of a representation (10) which
is a bridge between a primitive Hida family and its classical members. This is used
in section 6 to establish the rigidity of the local type in a Hida family, including
in weight one (see Proposition 6.5). The last section 7 quotes the main results of
[1] and describes their consequences in classical Hida theory (see Corollary 7.7).
The latter would have been rather straightforward, should the Eigencurve have
been primitive, in the sense that the irreducible component of its ordinary locus
would have corresponded (after inverting p) to primitive Hida families. Lacking a
reference for the construction of such an Eigencurve, we establish a local isomor-
phism, at the points of interest, between the reduced Hecke algebra, used in the
definition of the Eigencurve, and the new quotient of the full Hecke algebra, used

in the definition of primitive Hida families (see Corollary 7.6).
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2. ARTIN MODULAR FORMS AND THE EIGENCURVE

We let Q C C be the field of algebraic numbers, and denote by Gal(Q/ Q) the
absolute Galois group of Q. For a prime ¢ we fix a decomposition subgroup Gy
of Gal(Q/ Q) and denote by I its inertia subgroup and by Frob, the arithmetic
Frobenius in G,/I,.

We fix a prime number p and an embedding Q — @p.

Let f(2) =), 51 anq” be a newform of weight one, level M and central character
€. Thus a; =1 and for every prime ¢ 4 M (resp. ¢ | M) f is an eigenvector with
eigenvalue a, for the Hecke operator T, (resp. U;). By a theorem of Deligne and

Serre [5] there exists a unique continuous irreducible representation:

(1) py + Gal(Q/ Q) — GLy(C),

such that its Artin L-function L(py, s) equals

L(f,s) =Y Z—” =TT — et + e()e>) T — aet )"

UM oM

It follows that if a, # 0 for ¢ | M, then a, is the eigenvalue of p(Frob,) acting
on the unique line fixed by I,. Since p; has finite image, a, is an eigenvalue of a
finite order matrix, hence it is root of unity.

Similarly, for £4 M the characteristic polynomial X? — a,X + €(£) of ps(Frob,)
has two (possibly equal) roots oy and [, which are both roots of unity.

In order to deform f p-adically, one should first choose a p-stabilization of f
with finite slope, that is an eigenform of level I'y(M) N I'y(p) sharing the same
eigenvalues as f away from p and having a non-zero U,-eigenvalue. By the above
discussion if such a stabilization exists, then it should necessarily be ordinary. We
distinguish two cases:

If p does not divide M, then f has two p-stabilizations f,(2) = f(z) — B,f(pz)
and fg(z) = f(2) — a, f(pz) with U,-eigenvalue «, and [3,, respectively.

If p divides M and a, # 0, then f is already p-stabilized. We let then o, = a,
and f, = f.

Denote by N the prime to p-part of M.

Definition 2.1. We say that f, is regular at p if either p divides M and a, # 0,
or p does not divide M and o, # 3,.
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The Eigencurve C of tame level I'; (V) is a rigid analytic curve over Q,, parametriz-
ing systems of eigenvalues for the Hecke operators T, (¢ 1 Np) and U, appearing
in the space of finite slope overconvergent modular forms of tame level dividing
N. We refer to the original article of Coleman and Mazur [4] for the case N = 1
and p > 2, and to Buzzard [2] for the general case. Recall that C is reduced and
endowed with a flat and locally finite weight map s : C — W, where W is the rigid
space over Q, representing homomorphisms Z; x(Z /N Z)* — G,

The p-stabilized newform f, defines a point on the ordinary component of C,

whose image by k is a character of finite order.

Theorem 2.2. [1] Let f be a classical weight one cuspidal eigenform form which
s reqular at p. Then the Eigencurve C is smooth at the point defined by f,, so
there is a unique irreducible component of C containing that point. In particular,
if f has CM by a quadratic field in which p splits, then all classical points of that
component also have CM by the same field.

Moreover, C s etale over the weight space W at the point defined by f., unless
f has RM by a quadratic field in which p splits.

In section 7 we will revisit this theorem from the perspective of Hida families.

3. ORDINARY HECKE ALGEBRAS

The results in this and following two sections are due to Hida [11, 12] when p is
odd and have been completed for p = 2 by Wiles [18] and Ghate-Kumar [8].

Let A = Z,[[Gal(Q. /Q)]] ~ Z,[[1 + p”Z,]] be the Iwasawa algebra of the
cyclotomic Z, extension Q. of Q, where v = 2 if p = 2 and v = 1 otherwise.
It is a complete local Z,-algebra which is an integral domain of Krull dimension
2. Let Xcye be the universal A-adic cyclotomic character obtained by composing
Gal(Q/Q) — Gal(Q,, /Q) with the canonical continuous group homomorphism
from Gal(Q,, / Q) to the units of its completed group ring A.

We say that a height one prime ideal p of a finite A-algebra T is of weight k
(an integer > 1) if P = pNA is the kernel of a Z,-algebra homomorphism A — @p
whose restriction to a finite index subgroup of 1+ p” Z,, is given by x +— z*~1. Such
an ideal p induces a Galois orbit of Z,-algebra homomorphisms T — T /p — @p
called specializations in weight k.

By definition a A-adic ordinary cuspform of level N (a positive integer not di-

visible by p) is a formal ¢g-expansion with coefficients in the integral closure of A in
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some finite extension of its fraction field, whose specialization in any weight k& > 2
yield the g-expansion of a p-stabilized, ordinary, normalized cuspform of tame level
N and weight k. However, specializations in weight one are not always classical.

The ordinary Hecke algebra Ty of tame level N is defined as the A-algebra
generated by the Hecke operators Uy (resp. Ty, (¢)) for primes ¢ dividing Np (resp.
not dividing Np) acting on the space of A-adic ordinary cuspforms of tame level N.
Hida proved that T is free of finite rank over A and its height one primes of weight
k > 2 are in bijection with the (Galois orbits of) classical ordinary eigenforms of
weight k£ and tame level dividing N.

A A-adic ordinary cuspform of level IV is said to be N-new if all specializations in
weights > 2 are p-stabilized, ordinary cuspforms of tame level N which are N-new.

Define T\ as the quotient of Ty acting faithfully on the space of A-adic ordinary
cuspforms of level N, which are N-new. A result of Hida (see [12, Corollaries 3.3
and 3.7]) states that T\" is a finite, reduced, torsion free A-algebra, whose height
one primes of weight £ > 2 are in bijection with with the Galois orbits of classical

ordinary eigenforms of weight k£ and tame level N which are N-new.

4. PRIMITIVE HIDA FAMILIES

A primitive Hida family F' = )", A,¢" of tame level N is by definition a A-
adic ordinary cuspform, new of level N and which is a normalized eigenform for all
the Hecke operators, i.e., a common eigenvector of the operators Uy, T, and (f) as
above. The relations between coefficients and eigenvalues for the Hecke operators
are the usual ones for newforms. One can see from [12, p.265] that primitive Hida
families can be used to write down a basis of the space of A-adic ordinary cuspforms
in the same fashion as classically newforms can be used to write down a basis of
the space of cuspforms.

The central character ¢p : (Z /Np”)* — C* of the family is defined by ¥ p(f) =
eigenvalue of ().

Galois orbits of primitive Hida families of level N are in bijection with the
minimal primes of T = T\". More precisely, a primitive Hida family determines
and is uniquely determined by a A-algebra homomorphism T — W(A), sending
each Hecke operator to its eigenvalue on F', whose kernel is a minimal prime a C T.

Since T is a finite and reduced A-algebra, its localization T, is a finite field extension
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of Frac(A). Hence, we obtain the following homomorphisms of A-algebras:

2) T—T/a—T/a— Te> Kp C Frac(h),

—_~—

where T / a denotes the integral closure of the domain T / a in its field of fractions
T,. In particular, the image Kp of T, in Frac(A) is a finite extension of Frac(A)
generated by the coefficients of F'.

By definition all specializations of F' in weight k > 2 yield p-stabilized, ordinary
newforms of tame level N and weight k. In weight one, there are only finitely
many classical specializations, unless F' has CM by a quadratic field in which p
splits (see [9] and [6]). Nevertheless, a theorem of Wiles [18] asserts that any p-
stabilized newform of weight one occurs as a specialization of a primitive Hida
family:.

Given a primitive Hida family F' = > _. A,¢" of level N, Hida constructed in

n>1
[11, Theorem 2.1] an absolutely irreducible continuous representation:

(3) pr - Gal(Q/ Q) — GLy(Kp),

unramified outside Np, such that for all ¢ not dividing Np the trace of the image of
Frob, equals Ay. Moreover det pp = ¥pXcye. Finally by Wiles [18, Theorem 2.2.2]

the space of I,-coinvariants is a line on which Frob, acts by A,,.

5. GALOIS REPRESENTATIONS

5.1. Minimal primes. The total quotient field of T is given by T ®, Frac(A) ~
I, Ta where the product is taken over all minimal primes of T. The representation

(3) can be rewritten as

(4) pa: Gal(Q/ Q) — GLy(T,)

and by putting those together we obtain a continuous representation
(5) pr : Gal(Q/ Q) — GLy(T ®, Frac(A))

unramified outside Np, such that for all £ not dividing Np the trace of the image
of Frob, equals T;. Moreover the space of I,-coinvariants is free of rank one and

Frob, acts on it as U),.
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5.2. Maximal primes. Since T is a finite A-algebra, it is semi-local, and is iso-
morphic to the direct product [ ], T where the product is taken over all maximal

primes. By composing (5) with the canonical projection, one obtains:
(6) pm : Gal(Q/ Q) — GLy(Ty, @ Frac(A))

The composition:
(7) Gal(@/Q) ") T, - T /m.

is a pseudo-character taking values in a field and sending the complex conjuga-
tion to 0. By a result of Wiles [18, §2.2] it is the trace of a unique semi-simple

representation:
(8) Pm - Gal(Q/ Q) — GLy(T /m).

Note that whereas each minimal prime a C T is contained in a unique maximal
prime, there may be several minimal primes contained in a given maximal prime
m, those corresponding to primitive Hida families sharing the same residual Galois

representation pp.

5.3. Galois stable lattices. A lattice over a noetherian domain R (or R-lattice)
is a finitely generated R-submodule of a finite dimensional Frac(R)-vector space
which spans the latter. This definition extends to a noetherian reduced ring R
and its total quotient field [], R4, where a runs over the (finitely many) minimal
primes of R.

The continuity of p, implies the existence of a Galois stable ']I/'ﬁ—lattice in T2,
and similar statements hold for pp, pr and p,. It is worth mentioning that pr
cannot necessarily be defined over the normalization of T in [ [, T4 In other words
pa does not necessarily stabilize a free WI/‘\//CL—lattice. There is an exception: if
Kpr = Frac(A) and p > 2 the regularity of A implies that pr always admits a
Galois stable free A-lattice (see [11, §2]).

If m is a maximal prime such that the residual Galois representation p,, is abso-
lutely irreducible, then by a result of Nyssen [15] and Rouquier [16] py, stabilizes a
free T-lattice. It follows that for every minimal prime a C m, the representation

pa stabilizes a free lattice over Ty, /a =T /a.
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5.4. Height one primes. Let f be a p-stabilized, ordinary, newform of tame
level N and weight k. It determines uniquely a height one prime p C T and an
embedding of T, /p into Qp, although not every height one prime of T of weight
one is obtain in this way. Our main interest is in the structure of the Ap-algebra
T,, where P = pNA. The ring T, is local, noetherian, reduced of Krull dimension
1, but is not necessarily integrally closed. It might even not be a domain, since
f could be a specialization of several, non Galois conjugate, Hida families (see [6,
§7.4]), hence there may be several minimal primes a of T contained in p.

Let p; : Gal(Q/Q) — GL»(Q,) be the continuous irreducible representation
attached to f by Deligne when k& > 2 and by (1) when k£ = 1 via the fixed
embeddings C D Q — @p. Since ps is odd, it can be defined over the ring
of integers of the subfield of @p generated by its coefficients, hence defines an

isomorphic representation:

(9) pp: Gal(Q/ Q) — GLo(T, /p),

admitting a model over the integral closure of T /p in its field of fractions Ty / p.

The normalization of Ty, in its total quotient field [] ., Tq is given by [[,., Tp / @,

acp

acp
—_ —_ N —

where Ty, /a =~ (T / a),, is the integral closure of T, /a >~ (T / a), in T.

—_~——

Denote by m the completion of the discrete valuation ring T, / a. Note that
they share the same residue field which is a finite extension of T, / p and that there
is a natural bijection between the set of fp\//a—lattices in a given T,-vector space V'
and the set of m—lattices in V®r, Frac(m). Since p, is absolutely irreducible
and m is local and complete, by a result of Nyssen [15] and Rouquier [16] the
representation pg ®7, Frac(ﬁ/\a) stabilizes a free m—lattice. The latter lattice
yields (by intersection) a free m-lattice stable by p4. In other terms there exists

a unique, up to conjugacy, continuous representation:

e~

(10) i+ Gal(Q/ Q) — CLa(T, / a).

such that py ®m Ty =~ pg and p, mod p =~ p,.
This representation is a bridge between a form and a family and will be used in
86 to transfer properties in both directions.
The exact control theorem for ordinary Hecke algebras, proved by Hida for p > 2

and by Ghate-Kumar [8] for p = 2, has the following consequence:
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Theorem 5.1. [11, Corollary 1.4] Assume that k > 2. Then the local algebra T,
1s etale over the discrete valuation ring Ap. In particular, f is a specialization of
a unique, up to Galois conjugacy, Hida family corresponding to a minimal prime

a.

Assume for the rest of this section that T} is a domain. Then the field of fractions
of T, is isomorphic to Tg, where a is the unique minimal prime of T contained in p.
Since normalization and localization commute, we have (']I‘%p ~ (mp ~ ﬁ‘;.
Therefore, the collection of representations (10) are replaced by a unique, up to

conjugacy, continuous representation:

(11) pp - Gal(Q/ Q) — GLy(T,),

such that p, R T, ~ pq and p, mod p =~ p,.
If we further assume that T, is etale over Ap, then T, is itself a discrete valuation

ring, hence Ty, ~ T,,.

6. RIGIDITY OF THE AUTOMORPHIC TYPE IN A HIDA FAMILY

By definition, all specializations in weight at least two of a primitive Hida family
F of level N share the same tame level. Also, by [7, Proposition 2.2.4], the tame
conductor of pr equals N. The aim of this section is to show that the tame level of
all classical weight one specializations of F' is also N, and to show that all classical
specializations of F' (including those of weight one) share the same automorphic

type at all primes dividing V.

6.1. Minimally ramified Hida families. Recall that a newform f is said to be
minimally ramified if it has minimal level amongst the underlying newforms of all

its twists by Dirichlet characters.

Lemma 6.1. Let F' be a primitive Hida family and let x be a Dirichlet character of
conductor prime to p. There exists a unique primitive Hida family F, underlying
F ® x, in the sense that the p-stabilized, ordinary newform underlying a given

specialization of F' ® x can be obtained by specializing F,.

Proof. By [12, p.250] one can write any A-adic ordinary cuspform as a linear com-
bination of translates of primitive Hida families of lower or equal level. Since F'® x

is an eigenform for all but finitely many Hecke operators, it is necessarily a linear
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combination of translates of the same primitive Hida family, denoted F). It fol-
lows that any specialization of F) in weight at least two is the p-stabilized, ordinary

newform underlying the corresponding specialization of F' ® . (I

Definition 6.2. We say that a primitive Hida family F' of level N is minimally
ramified if for every Dirichlet character x of conductor prime to p, the level of F)

is a multiple of N.

As for newforms, it is clear that any primitive Hida family admits an unique
twist which is minimally ramified.

Lemma 6.1 implies that being minimally ramified is pure with respect to spe-
cializations in weight at least two, that is to say, all specializations of a minimally
ramified primitive Hida family are minimally ramified, and a primitive Hida family
admitting a minimally ramified specialization is minimally ramified. This obser-
vation together with the classification of automorphic representations on GL(2),

easily implies:

Lemma 6.3. Let F = Zn21 Anq" be a minimally ramified, primitive Hida family
of level N and let ¢ be a prime dividing N. Denote by unr(C) the unramified
character of Gy sending Frob, to C.

(i) If ¥r is unramified at £ and €* does not divide N, then every specialization
in weight at least two correspond to an automorphic form which is special
at 0. In particular Ay # 0 and the restriction of pr to Gy is an unramified
twist of an extension of 1 by unr({).

(ii) If the conductor of v and N share the same (-part, then every specializa-
tion in weight at least two corresponds to an automorphic form which is a
ramified principal series at . In particular Ay, # 0 and the restriction of
pr to Gy equals unr(Ay) @ unr(By)Yr, for some By € K.

(iii) In all other cases, every specialization in weight at least two corresponds
to an automorphic form which is supercuspidal at £. In particular Ay = 0

and the restriction of pr to Gy s irreducible.
6.2. General case.

Definition 6.4. Let F' be a primitive Hida family of level N and let ¢ be a prime
dividing N. We say that F' is special (resp. ramified principal series or supercus-
pidal) at ¢, if a minimally ramified twist of F' falls in case (i) (resp. (ii) or (iii)) of

lemma 6.3.
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It follows from lemma 6.3, that being special, principal series or supercuspidal is
pure with respect to specializations, that is to say, all specializations in weight at
least two are of the same type. We will now describe the local automorphy type in

greater detail and deduce information about classical weight one specializations.

Proposition 6.5. Let F' be a primitive Hida family of level N and let ¢ be a prime
dividing N. If F' is special at £, so are all its specializations in weight at least two
and F does not admit any classical weight one specialization. Otherwise, pp(ly) is
a finite group invariant under any classical specialization, including in weight one.

More precisely

(i) If F is a ramified principal series at £, then the restriction of pr to Gy is
isomorphic to @ @ ¢y, where @, and ¢, are characters whose restrictions
to inertia have finite order.

(ii) If F is supercuspidal at £, then either the restriction of pr to Gy is induced
from a character ®, of an index two subgroup of Gy whose restriction to
inertia has finite order, or £ = 2 and all classical specializations of F' are

extraordinary supercuspidal representations at 2.

In particular, all classical weight one specializations of F' have tame level N.

Proof. Although parts of the proposition seem to be well-known to experts, for the
commodity of the reader, we will give a complete proof.

If F' is special at ¢, then the claim about specializations in weight at least two
follows directly from lemma 6.3(i). Moreover in this case pp|g, is by definition
reducible and the quotient of the two characters occurring in its semi-simplification
equals unr(¢). Since ¢ is not a root of unity, ' does not admit any classical weight
one specializations.

Suppose now that F' is not special at ¢. Since ¢ # p and pp is continuous,
Grothendieck’s f-adic monodromy theorem implies that pg(Iy) is finite. Let p be
a height one prime of T corresponding to a classical cusp form f of weight k,
containing the minimal prime a defined by F. Denote by L the free rank two
ﬁ\//a—lattice on which py acts (see (10)). Recall that p; mod p >~ p, and consider

the natural projection:

(12) pr(Le) = pp(1e) = pp(le) = ps(Le),

which we claim is an isomorphism. In fact, an eigenvalue ( of an element of the

kernel has to be a root of unity since the latter is a finite group, in particular
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¢ € Q,. Since by assumption (( — 1)* € p, the product of all its G,-conjugates
belongs to pNQ,, which is {0} because T, is a Q,-algebra. Hence { = 1 which
implies that the kernel is trivial.

The claim (i) follows directly from 6.3(ii), so we can assume for the rest of the
proof that F' is supercuspidal at ¢. Denote by W, the wild inertia subgroup of I,.
Suppose first that pe|w, is reducible, isomorphic to &, @ ¥, with &, # /. Since W,
is normal in Gy, it follows easily that ®, extends to an index two subgroup of Gy,
as claimed. If p4|w, is reducible and isotropic, then by taking an eigenvector for
a topological generator of I,/W, one sees that p,|;, is reducible too, which allows
us to conclude as in the previous case. Suppose finally that p,|w, is irreducible.
Then by a classical result on hyper-solvable groups its image is a dihedral group,
hence ¢ = 2. Assume further pq|¢, is not dihedral, since this case can be handled as
above. Then, any specializations in weight at least two of F' yields an eigenform f
which is an extraordinary supercuspidal representation at £ = 2. The isomorphism
(12) implies that all other classical specializations of F' are also extraordinary
supercuspidal representations at £ = 2 (we refer to [17] and [14, §5.1] for a detailed

analysis of this case). d

7. LOCAL STRUCTURE OF THE ORDINARY HECKE ALGEBRAS AT CLASSICAL
WEIGHT ONE POINTS

7.1. A deformation problem. Let f, be a weight one p-stabilized newform of
tame level N as in §2. Assume that f is regular at p. By ordinarity the restriction
of ps to G is a sum of two characters v, and 12, and by regularity exactly one
of those characters, say 1, is the unramified character sending Frob, to «,. By
(9) the Galois representation py is defined over a finite extension £ = T, /p of Q,,
where p denotes the height one prime of T determined by f.

Consider the functor D sending a local Artinian ring A with maximal ideal m 4
and residue field A/my = E to the set of strict equivalence classes of representa-
tions 5 : Gal(Q/ Q) — GLy(A) such that 5 mod mu =~ p; and fitting in an exact

sequence
0= thy — fp— b — 0
of A[G,]-modules, free over A, and such that ¢y is an unramified character whose

reduction modulo my equals ¥,. We define D’ as the subfunctor of D consisting of

deformation with constant determinant. Finally, define Dy, (resp. Dl ;) as the

min
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subfunctor of D (resp. D') of deformations p such that for all ¢ dividing N such
that a, # 0, the [,-invariants in p is a free A-module of rank one.

The functors D and D,,;, are pro-representable by a local noetherian complete
E-algebras R and Ry, while D' and D/ are representable by a local Artinian
E-algebras R' and R!_. . Denote by tp the tangent space of D, etc.

Using the interpretation of ¢p and ¢y in terms of Galois cohomology groups, the

main technical result of [1] states:

Theorem 7.1. If f is reqular at p, then dimtp = 1. If we further assume that f
does not have RM by a quadratic field in which p splits, then tpy = 0.

7.2. Modular deformations. Denote by ﬁ‘\p the completion of T,. The compo-
sition:

(13) Cal(Q/Q & T T, - T,

is a two dimensional pseudo-character taking values in a complete local ring and
whose reduction modulo the maximal ideal is the trace of the absolutely irre-

ducible representation p,. By a result of Nyssen [15] and Rouquier [16] the pseudo-

character (13) is the trace of a two dimensional irreducible representation:

(14) 7 : Gal(Q/ Q) — GLy(T,).

This representation contains more information than the collection ( pg)acp and plays
a central role in the analysis of the p-adic deformation of f.
Note that Ap is formal power series over its residue field Ap/P ~ Ap/P which

is a finite extension of Q,. Consider the local Artinian Q,-algebra
(15) T =T,®5 Ap/P.

Reducing (14) modulo P yields a continuous representation:
(16) pr: Gal(Q/ Q) — GLy(T),

such that det(pr) = det(ps). In fact, for all £ € (Z /Np)*, the image of (¢) in 7 is
given by the henselian lift of its image in 7 /p, hence is fixed.

As in [1], one can describe the local behavior of p, at bad primes.

Proposition 7.2. (i) For all ¢ dividing N such that a; # 0, the space of

Iy-invariants in py, is free of rank one and Frob, acts on it as Uy.
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(i) Assume that f is reqular at p. Then p, is ordinary, in the sense that the

space of I,-coinvariants is free of rank one and Frob, acts on it as U,.

By proposition 7.2 the Galois representation (14) (resp. (16)) defines a point
of Dpin (resp. of D, ;). One deduces the following surjective homomorphisms of

local reduced /{;—algebras (resp. local Artinian F-algebras):
R — Ruin — T, , and
R - Ry —> 7T .

min

(17)

7.3. Smoothness and Etaleness.
Lemma 7.3. The Ap-algebra T, is etale if, and only if, T is a field.

Proof. Since T is flat over A, so is T®aAp over Ap. The algebra T® Ap is
unramified over Ap if, and only if, T ®,Ap/P is unramified over Ap/P, that is to

say is a product of fields. Since T @ \Ap = H T,, we have
pNA=P

H ’]Tp@APAP/P:T@AAP/PZTQ?AK]\D/P: H ﬁ@@/{;/f’.

pNA=P pNA=P

One deduces that T, is unramified over Ap if, and only if, ﬁ is unramified over
Ap if, and only if, 7 = T, @, K;/P is a field. O

Proposition 7.4. Suppose that f is reqular at p. Then T, is a discrete valuation
ring and the homomorphisms in (17) are isomorphisms. Moreover, if f does not
have RM by a quadratic field in which p splits, then T, is etale over Ap, and
otherwise, under the additional assumption that dimgp R’ < 2, the ramification

index of T, over Ap equals 2.

Proof. Since f is regular at p, theorem 7.1 implies that dimtp = 1. Since dimq/fp >
0, one deduces that the natural surjective homomorphism R —» ﬁ is an isomor-
phism of discrete valuation rings, hence T, is a discrete valuation ring too. By
reducing the isomorphism R ~ ﬁ modulo P we obtain the isomorphism R’ ~ 7.

If tpy = 0, by Nakayama’s lemma the structural homomorphisms £ — R’ and
K]\a — R are isomorphisms. By lemma 7.3, it follows that T, is etale over Ap, as
claimed.

Assume now that dimtp = 1, in which case theorem 7.1 implies that f has

RM by a quadratic field in which p splits. Since dimg R’ < 2 by assumption and
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dimg 7 > 2 by [6, Proposition 2.2.4], we deduce that the ramification index is
2. ]

Remark 7.5. Cho and Vatsal [3] have proved that dimgp R’ < 2 under some
additional assumptions, and their method is expected to continue to work under

the only assumption of regularity at p.

7.4. Reduced Hecke algebras. Define the reduced ordinary Hecke algebra T' =
T’y of tame level N as the subalgebra of Ty generated over A by the Hecke operators
U,, Ty and (¢) for primes ¢ not dividing Np. By the theory of newforms, the natural

composition:

(18) Ty — Ty — [] To"

N'|N

is injective, in particular T’y is reduced.

A classical result from Hida theory says that the localization of (18) at any
height one prime of weight at least two yields an isomorphism. Let p be a height
one prime T corresponding to a p-stabilized classical weight one eigenform f, and

denote by p’ the corresponding height one prime of T'.

Corollary 7.6. Suppose that f is reqular at p. Then the localization of (18) yields

an isomorphism ']I';J, ~T,.

Proof. Proposition 6.5 implies T\, = {0} for all N" < N, hence localizing (18) at
p yields an injective homomomorphism Ty, < T,. Since T, and T, are finite over
the Zariski ring Ap, it is enough to check the surjectivity after completion. This

follows from proposition 7.4, since the surjective homomorphism R — ﬁ‘; factors
through T;,. O

We will conclude this paper, by giving a partial answer to the original question

that motivated this research.

Corollary 7.7. Let f be a classical weight one cuspidal eigenform form which
1s reqular at p. Then there exists a unique Hida family specializing to f,. In
particular, if f has CM by a quadratic field in which p splits, then the family has
also CM by the same field.
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