
p-ADIC L-FUNCTIONS FOR HILBERT MODULAR FORMS

MLADEN DIMITROV

The use of modular symbols to attach p-adic L-functions to Hecke eigenforms goes back
to the work of Manin et al in the 70s. In the 90s Stevens proposed a new approach
based on his theory of overconvergent modular symbols, which was successfully used to
construct p-adic L-functions on the eigencurve for GL2 over Q. Recently, building on
Urban’s construction of eigenvarieties for general reductive groups and on the author’s
theory of automorphic symbols for GL2 over a totally real number field, Barrera gave a
new construction of p-adic L-functions for Hilbert modular forms using the overconvergent
compactly supported cohomology of Hilbert modular varieties.

In addition to giving an overview of these topics, the lecture notes also contain some orig-
inal results such as the precise correspondence between automorphic and modular symbols
for GL2 over totally real number fields.

1. p-adic L-functions for elliptic modular forms

In this section we present the main steps in Stevens’ construction of p-adic L-functions
of elliptic modular forms, following [S], [PS] and [Be].

1.1. Modular symbols. The group GL2(Q) acts on the left on P1(Q) by linear fractional
transformations, hence acts on the group of degree 0 divisors:

Div0(P1(Q)) =

 ∑
x∈P1(Q)

mxx|mx ∈ Z,mx = 0 for all but finitely many x,
∑

x∈P1(Q)

mx = 0

 .

For any congruence subgroup Γ ⊂ SL2(Z) and any right Γ-module M , Γ acts on the
right on Hom(Div0(P1(Q)),M) by:

(φ|γ)(D) = φ(γ ·D)|γ for all γ ∈ Γ, φ ∈ Hom(Div0(P1(Q)),M) and D ∈ Div0(P1(Q)).

Definition 1.1. The space of M -valued modular symbols on Γ is defined as:

SymbΓ(M) = HomZ(Div0(P1(Q)),M)Γ = HomZ[Γ](Div0(P1(Q)),M).
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It follows from the definition that for any commutative ring R and any R[Γ]-module
M , SymbΓ(M) inherits an R-module structure. Moreover any flat ring homomorphism
R→ R′ induces a natural isomorphism:

SymbΓ(M)⊗R R′
∼→ SymbΓ(M ⊗R R′).

1.2. Hecke action. Suppose that M is a right module over the monoid ∆ generated by
Γ and some x ∈ GL2(Q) ∩M2(Z). The Hecke operator [ΓxΓ] sends φ ∈ SymbΓ(M) to

φ|[ΓxΓ] =
∑
i

φ|xi , where ΓxΓ =
∐
i

Γxi.

For Γ = Γ0(N) or Γ1(N) and a prime ` - N , the Hecke operator T` is defined as:

(1) Γ

(
1 0
0 `

)
Γ = Γ

(
` 0
0 1

)
Γ =

`−1∐
a=0

Γ

(
1 a

0 `

)∐
Γ

(
` 0
0 1

)
.

For Γ = Γ0(N) or Γ1(N) and a prime p | N , the Hecke operator Up is defined as:

(2) Γ

(
1 0
0 p

)
Γ =

p−1∐
a=0

Γ

(
1 a

0 p

)
.

Remark 1.2. For any φ ∈ SymbΓ(Z) ' Hom(Γ \Div0(P1(Q)),Z) one has:

(φ|Up)(Γ(∞− 0)) =
p−1∑
a=0

φ(Γ(∞− a
p )).

1.3. Duals. Given any right R[Γ]-module M , Γ acts on the right on the dual module
M∨ = HomR(M,R) by letting λ|γ(m) = λ(m|γ−1) and the canonical pairing

M ×M∨ → R, (m,λ) 7→ λ(m)

is Γ-equivariant.
Assume that Γ is preserved by the anti-involution

(3) γ =
(
a b
c d

)
7→ γ∗ = det(γ)γ−1 =

(
d −b
−c a

)
.

Then any right R[Γ]-module M , can be seen as a left R[Γ]-module by letting:

γ ·m = m|γ∗ .

and vice-versa. In particular the left R[Γ]-module M∗ = HomR(M,R) for the action
(γ · λ)(m) = λ(m|γ) can be viewed as right R[Γ]-module via (λ ∗ γ)(m) = λ(m|γ∗). If we
assume further that M has a central character ωM , then one has an isomorphism of right
R[Γ]-modules:

(4) M∗ 'M∨ ⊗ ωM .
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1.4. Sheaf cohomology. Assume that Γ is torsion free (for example Γ ⊂ Γ1(N) with
N > 3). Then Γ acts freely (by linear fractional transformations) on the upper half-plane
H in C, and the modular curve YΓ = Γ \H admits H as a covering space.

Given a right Γ-module M , we consider the local system:

Γ \(H×M)→ YΓ

with left Γ-action given by γ · (z,m) = (γ · z,m|γ∗). Denote by M the sheaf of locally
constant sections, where M is endowed with the discrete topology. It is well known that
for ∗ ∈ {∅, c} one has a natural Hecke equivariant isomorphism:

H•∗(Γ,M) ∼−→ H•∗(YΓ,M).

The following result is due to Ash and Stevens (see [AS]):

Theorem 1.3. There exists a Hecke equivariant isomorphism ιΓ : SymbΓ(M) ∼→ H1
c(Γ,M).

1.5. Symbols for modular forms. For k ≥ 0, we let Vk(R) denote the ring of polyno-
mials of degree at most k over a commutative ring R. If we set for γ ∈ GL2(Q) ∩M2(Z)
and P ∈ Vk(R)

(5) P|γ(z) = (cz + d)kP
(
az + b

cz + d

)
.

we obtain a right action of GL2(Q) ∩M2(Z) on Vk(R). By the discussion in §1.3, V ∗k (R)
has also a right action of γ ∈ GL2(Q) ∩M2(Z) sending ` ∈ V ∗k (R) to

(6) (`|γ)(P ) = `(P|γ∗) = `

(
(a− cz)kP

(
dz − b
a− cz

))
.

Let Sk+2(Γ) denote as usual the complex space of cuspforms of weight k+ 2 and level Γ.
For any f ∈ Sk+2(Γ) and any D ∈ Div0(P1(Q)) we consider φf (D) ∈ V ∗k (R) such that

φf (D)(P ) = Re
(∫

D
f(z)P (z)dz

)
for all P ∈ Vk(R).

A direct computation shows that φf ∈ SymbΓ(V ∗k (R)).

Theorem 1.4. There exists a commutative diagram:

Sk+2(Γ)
� _

φ

��

∼
δΓ // H1

! (Γ, V ∗k (R))

SymbΓ(V ∗k (R)) ∼
ιΓ // H1

c(Γ, V
∗
k (R))

OOOO
,

where δΓ is the Eichler-Shimura isomorphism.
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Assume in the sequel that
(

1 0
0 −1

)
normalises Γ. Then YΓ is defined over R and the Hecke

operator

T∞ = Γ

(
1 0
0 −1

)
Γ = Γ

(
1 0
0 −1

)
commutes with those introduced in (1) and (2).

For any f ∈ Sk+2(Γ) and any D ∈ Div0(P1(Q)) define φ±f (D) ∈ V ∗k (C) by

(7) φ±f (D)(P ) =
∫
D
f(z)P (z)dz ±

∫
−D

f(z)P (−z)dz, for all P ∈ Vk(C).

Theorem 1.5. There exists a commutative diagram:

Sk+2(Γ)
� _

φ±

��

∼

δ±Γ // H1
! (Γ, V ∗k (C))±

Symb±Γ (V ∗k (C)) ∼
ιΓ // H1

c(Γ, V
∗
k (C))±

OOOO
,

where ± denotes the subspace on which T∞ = ±1.

1.6. Complex L-functions. The complex L-function of f(z) =
∑

n≥1 ane
2iπnz ∈ Sk+2(Γ)

is defined for Re(s) > (k + 3)/2 by the absolutely convergent Dirichlet series:

L(f, s) =
∑
n≥1

an
ns
,

which admits an analytic continuation to the entire complex plane and satisfies a functional
equation relating s to k + 2− s.

More generally, given any Dirichlet character χ we define the imprimitive L-function of
f twisted by χ as:

L(f, χ, s) =
∑
n≥1

anχ(n)
ns

.

The main ingredient in computing special values of L-functions via modular symbols is
the Mellin transform formula which states that in the domain of absolute convergence:

(8) L(f, s) =
(2π)s

Γ(s)

∫ ∞
0

f(iy)ys−1dy.

Another important ingredient is the following result, known under the name of Birch’s
lemma, allowing to compute twisted L-values using modular symbols (see [MTT]).

Lemma 1.6. If χ is a primitive Dirichlet character of conductor m, then L(f, χ, s) =
L(fχ, s) where

fχ̄ =
1

τ(χ)

∑
a mod m

χ(a)f(z + a
m), and τ(χ) =

∑
a mod m

χ(a)e2iπa/m.
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Assume now that f is a newform of level N , that is a normalised primitive eigenform
for all the Hecke operators, and denote by Kf the Hecke field Q(an, n ≥ 1). By Theorem
1.5 φ±f is a non-zero vector of the complex line Symb±Γ1(N)(V

∗
k (C))[f ], where [f ] denotes

the subspace on which the Hecke operators act by the same eigenvalues as on f . It follows
that there exists a period Ω±f ∈ C× which is uniquely determined up to multiplication by
an element of K×f and such that

(9) Symb±Γ1(N)(V
∗
k (Kf ))[f ] = Kf · φ±f /Ω

±
f .

The following result, due to Manin, establishes the rationality of the critical values of
L(f, χ, s) and is a prerequisite for attaching a p-adic L-function to f via interpolation.

Theorem 1.7. For any 0 ≤ j ≤ k and for any Dirichlet character χ one has

L(f, χ, j + 1)
τ(χ)Ω±f (iπ)j+1

∈ Kf (χ), where ± = (−1)jχ(−1).

1.7. Distributions. We fix, once and for all, an embedding ιp : Q̄ ⊂ Q̄p. Denote by vp

the unique valuation on Q̄p that extends the p-adic valuation on Qp, and we denote by | · |p
the corresponding norm.

Let L be a finite extension of Qp and choose an open compact subset X of Qr
p.

We consider the space A(X,L) = lim
−→

An(X,L) of locally L-analytic functions on X.

By definition f ∈ An(X,L) if for each a ∈ X there exist coefficients cm(a) ∈ L indexed by
m ∈ Nr such that

f(x) =
∑
m∈Nr

cm(a)(x− a)m, for all x ∈ X, |x− a|p < p−n.

For each integer n ≥ 1, An(X,L) is a L-Banach space for the norm:

||f ||n = sup
a∈X,m∈Nr

(
|cm(a)|pp−n

Pr
i=1 mi

)
.

The natural inclusion An(X,L) ⊂ An+1(X,L) is compact, hence completely continuous
(with dense image, since polynomials are dense).

The continuous linear L-dual Dn(X,L) of An(X,L) is a L-Banach space for the norm:

||µ||n = sup
f∈An(X,L)

|µ(f)|p
||f ||n

.

The natural restriction maps Dn+1(X,L) ⊂ Dn(X,L) are injective and compact, hence
D(X,L) = lim

←−
Dn(X,L) is a compact Frechet L-vector space, endowed with a family of

norms ||µ||n = ||µ|An(X,L)||n.

Definition 1.8. The Frechet D(X,L) is the space of L-valued distributions on X.
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1.8. Admissibility of a distribution.

Definition 1.9. Let h ∈ Q≥0. A distributions µ ∈ D(X,L) is called h-admissible if there
exists C > 0 such that ||µ||n ≤ C · pnh, for all n ≥ 1. A 0-admissible (i.e. bounded)
distribution is called a measure.

Theorem 1.10 (Amice-Vélu [AV], Vǐsik [V]). For any h ∈ N, an h-admissible distribution
µ ∈ D(Zp, L) is uniquely determined by µ(1a+pnZpz

j) where 0 ≤ j ≤ h, n ∈ N and a ∈ Zp.

1.9. Slope decomposition. Suppose given an L-Banach space V and a completely con-
tinuous endomorphism u of V .

A classical result of Serre asserts that for any polynomial Q ∈ L[T ] there exists a u-
stable direct sum decomposition V = VQ⊕V ′Q, with VQ finite dimensional, such that Q(u)
is nilpotent (resp. invertible) on VQ (resp. on V ′Q). This is called the Riesz decomposition
and has been extended by Stevens and Urban (see [U]) to compact Frechet spaces.

Definition 1.11. For h ∈ Q≥0 and V as above, we let V <h be the sum of VQ when Q runs
over polynomials whose roots in Q̄p have all valuation < h.

The space V <h is a finite dimensional L-vector space.

1.10. Overconvergent cohomology. Let T be the standard diagonal torus of GL2 and
denote by B (resp. B̄) the standard Borel (resp. the opposite Borel) containing T . Let

I =

(
Z×p Zp
pZp Z×p

)
be the standard Iwahori subgroup on GL2(Zp).

Any continuous character λ : T (Zp)→ L× can be extended to a character of B̄(Qp) ∩ I
by making the unipotent radical of B̄(Qp) act trivially. Consider space

Aλ(L) =
{
f : I → L locally analytic and f(bg) = λ(b)f(g),∀b ∈ B̄(Qp) ∩ I

}
.

Restriction to the unipotent radical
(

1 Zp
0 1

)
of B(Zp) induces an isomorphism between

Aλ(L) and A(Zp, L).
In the sequel we assume that λ ( a d ) = ak for some k ∈ N. The left action of I on Ak(L)

(by right translation of the argument) corresponds to the following action on A(Zp, L):

(10)
((

a b
c d

)
· f
)

(z) = (a− cz)kf
(
dz − b
a− cz

)
,

and extends by the same formula to an action of the monoid

∆ = GL2(Qp) ∩

(
Z×p Zp
pZp Zp

)
.

Note that ∆ is generated as a monoid by I and
(

1 0
0 p

)
. Denote by Ak the space A(Zp, L)

endowed with the left action (10). The right action of γ ∈ ∆ on its dual, which we denote
by Dk, then sends µ ∈ D(Zp, L) to µ|γ such that µ|γ(f) = µ(γ · f).
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Lemma 1.12. The element
(

1 0
0 p

)
∈ ∆ sends f ∈ Ak,n to f(·p) ∈ Ak,n−1 and induces a

compact operator on Dk.

The natural restriction map:

(11) Dk → V ∗k (L), µ 7→ µ|Vk(L)

is ∆-equivariant for the respective actions defined here above and in (6).
Stevens shows that one has an exact sequence

0→ D−2−k(k + 1)→ Dk → V ∗k (L)→ 0

where (k + 1) denotes the twist with the (k + 1)-th power of the determinant, and uses it
to establish the following crucial for his construction of p-adic L-functions result.

Theorem 1.13 (Stevens [S]). For any k ∈ N the map

Symb±Γ (Dk)<k+1 → Symb±Γ (V ∗k (L))<k+1

induced by (11) is an isomorphism.

1.11. p-adic L-functions. Recall that a p-stabilised newform is a normalised eigenform
having the same eigenvalues as a given newform for all Hecke operators outside p, and
which is in addition an eigenvector for Up. Any newform of level N divisible by p is a
p-stabilised newform itself. All other p-stabilised newforms f have level N exactly divisible
by p and are constructed as follows. One starts with a newform g of level N/p and for any
root α of X2 − apX + ε(p)pk+1 one considers f(z) = g(z)− ε(p)pk+1α−1f(pz).

In the sequel we fix a p-stabilised newform f ∈ Sk+2(Γ1(N)) whose Up-eigenvalue α has
valuation h < k + 1 (this is referred to as the non-critical slope condition). Note that this
implies in particular that α 6= 0. By (9) one has elements

φ±f /Ω
±
f ∈ Symb±Γ1(N)(V

∗
k (L))<k+1.

and by Theorem 1.13 there exists a unique Φ±f ∈ Symb±Γ1(N)(Dk)<k+1 mapping to φ±f /Ω
±
f .

Definition 1.14. The p-adic L-function L±p (f) of f is defined as the restriction of the
distribution Φ±f (∞− 0) to Z×p .

Theorem 1.15 (Stevens). The distribution L±p (f) is h-admissible. Moreover it is uniquely
determined by the following interpolation formula: for all 0 ≤ j ≤ k and for all Dirichlet
characters χ : Z×p → Q̄×p of conductor pm one has

L±p (f, zjχ) = ιp

(
Zp ·

pm(j+1)j!
(−2iπ)jτ(χ̄)

· L(f ⊗ χ̄, j + 1)
Ω±f

)
,

where ± = (−1)jχ(−1) and Zp = 1
αm (1− ε(p)pk−j

α )(1− pj

α ).
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2. Cycles on Hilbert modular varieties

In this section we will recall the definition of automorphic cycles on Hilbert modular
varieties introduced in [D1] and relate those to the modular cycles considered earlier by
Manin [M] and Oda [O].

2.1. Notations. Let F be a totally real number field of degree d, ring of integers o and
denote by Σ be the set of its infinite places.

For any finite set of places S, we denote by A(S) (resp. AS) the topological ring of adeles
of Q outside S (resp. at S). Let AF = A⊗Q F = A(∞)

F × F∞ be the ring of adeles of F .
We denote by Ẑ =

∏
` Z` the profinite completion of Z and for any fractional ideal c of

F we put ĉ = Ẑ⊗ c.
We let d denote the different of F , and for any fractional ideal c of F we let c∗ = c−1d−1.

Further we denote by c+ = c ∩ F×+ the cone of totally positive elements of c. The narrow
class group C`+F of F , which is the set of equivalence classes of c modulo the action of
F×+ , can be naturally identified with the strict idele class group F× \A×F /ô

×F+
∞, where

F+
∞ denotes the connected component of identity in F×∞. Fix a set of representatives ci,

1 ≤ i ≤ h, of C`+F and for each i let ηi ∈ A(∞)×
F be an idele generating c∗i , i.e. ci = F∩ηiôF∞.

If H is an algebraic group over Q and S a finite set of places of Q, the two natural
projections induce an isomorphism:

H(A) ∼−→ H(AS)×H(A(S)), h 7→ (hS , h(S)).

By a slight abuse of notation we will also denote hS (resp. h(S)) the element (hS , e(S))
(resp. (eS , h(S))) of H(A), where e denotes the identity element of H(A).

The mirabolic group M is defined as the semi-direct product Gm n Ga, where Gm acts
on Ga by multiplication. We denote by s : M → GL2 the natural inclusion sending (y, x)
to ( y x0 1 ).

Given an integral ideal f of F we let M(f) = U(f) n ô, where U(f) consists of elements
in ô× which are congruent to 1 modulo f. Denote by E(f) the subgroup of o×+ of elements
congruent to 1 modulo f, i.e. E(f) = F× ∩ U(f)F+

∞.

2.2. Hilbert modular varieties. Let G+
∞ denote the connected component of identity

in GL2(F∞). The group G+
∞ acts transitively by linear fractional transformations on the

unbounded hermitian symmetric domain HF = F∞ ⊕ F+
∞i ⊂ F ⊗ C where i = 1 ⊗

√
−1.

We have HF ' HΣ, where H is Poincare’s upper half-plane, the isomorphism being given
by ξ ⊗ z 7→ (σ(ξ)z)σ∈Σ, for ξ ∈ F and z ∈ C. The stabiliser K+

∞ of i in G+
∞ is the product

of its center by its standard maximal compact subgroup, and there is an isomorphism:

G+
∞/K

+
∞

∼−→ HF , g∞ 7→ g∞ · i.
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For an open compact subgroup K of GL2(A(∞)
F ), the adelic Hilbert modular variety of

level K is defined as the locally symmetric space

YK := GL2(F )\GL2(AF )/KK+
∞ = GL+

2 (F )\(HF ×GL2(A(∞)
F )/K),

where GL+
2 (F ) denotes the subgroup of GL2(F ) of elements with determinant in F×+ .

Given a level n, an integral ideal of o, we consider the open compact subgroup:

K1(n) =

{(
a b

c d

)
∈ GL2(ô)|c ∈ n̂, d− 1 ∈ n̂

}
,

and denote by Y1(n) the corresponding Hilbert modular variety.
By Strong Approximation Theorem for SL2 /F , the fibres of the map:

det : Y1(n)→ F× \A×F / ô×F+
∞,

are connected, hence π0(Y1(n)) ' C`+F .
For 1 ≤ i ≤ h the connected component Y1(ci, n) = det−1(F×ηiô×F+

∞) is classically
described as a quotient of HF by the congruence subgroup

Γ(ci, n) = GL2(F ) ∩
(
ηi 0
0 1

)
K1(n)

(
η−1
i 0
0 1

)
G+
∞ =

{(
a b
c d

)
∈
(

o c∗i
cidn 1+n

) ∣∣∣ ad− bc ∈ o×+

}
.

More precisely, there is an isomorphism:

(12) Γ(ci, n)\HF → Y1(ci, n), x∞ + y∞i 7→ GL2(F ) ( y∞ηi x∞0 1 )KK+
∞.

In general Y1(ci, n) is only a complex orbifold. In the sequel we assume that n is suffi-
ciently divisible in the sense of [D2, Lemma 2.1(iii)]. Then, for all 1 ≤ i ≤ h, the group
Γ(ci, n)/(Γ(ci, n) ∩ F×) is torsion free, implying than Y1(ci, n) is a hyperbolic manifold
admitting HF as a universal covering space with this group.

Put H∗F = HF
∐

P1(F ). The minimal compactification Y1(ci, n)∗ of Y1(ci, n) is defined
as Γ1(ci, n)\H∗F . It is an analytic normal projective space whose boundary Γ1(ci, n)\P1(F )
is a finite union of points, called the cusps. We let Y1(n)∗ =

∐h
i=1 Y1(ci, n)∗.

2.3. Modular cycles. Given an integral ideal f and a fractional ideal c of F , let Γ be a
congruence subgroup of GL2(F ) containing s(E(f) n c∗).

Lemma 2.1. Let x ∈ F and let f be the integral ideal of F such that xo + c∗ = (fc)∗. The
map

F+
∞ → Γ\HF , y∞ 7→ Γ(y∞i− x∞),

factors through E(f)\F+
∞. The resulting map CΓ

x : E(f)\F+
∞ → Γ\HF is finite and called

the classical modular cycle.
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Proof. The map CΓ
x is well defined since for all ε ∈ E(f), the element

(
ε (ε−1)x
0 1

)
∈ Γ sends

y∞i− x∞ to ε∞y∞i− x∞.
Let C be the closure of a Shintani cone in −x∞ + F+

∞i modulo E(f). To show that CΓ
x

is finite, one has to show that for any given y∞ ∈ F+
∞ the set Γ · (y∞i− x∞) ∩ C is finite.

As well known Γ \H∗F is separated for the Satake topology, hence each cusp has a neigh-
bourhood which is disjoint from Γ · (y∞i− x∞). Recall that a basis of neighbourhoods of
the cusp at ∞ is given by sets of the form {z ∈ HF |

∏
σ∈Σ Im(zσ) > A} with A > 0. It

follows that a basis of neighbourhoods of the cusp at ∞ (resp. at −x) in C is given by sets
of the form {z ∈ C|

∏
σ∈Σ Im(zσ) > A} (resp. {z ∈ C|

∏
σ∈Σ Im(zσ) < A′}) where A,A′ > 0.

It follows that there exist A,A′ > 0 such that

Γ · (y∞i− x∞) ∩ C = Γ · (y∞i− x∞) ∩ {z ∈ C|A′ ≤
∏
σ∈Σ

Im(zσ) ≤ A}.

Since {z ∈ C|A′ ≤
∏
σ∈Σ Im(zσ) ≤ A} is compact and since Γ is acting properly discontin-

uously on H∗F , it follows that Γ · (y∞i− x∞) ∩ C is a finite set. �

2.4. Automorphic cycles. We will now present the cycles introduced in [D1, §1] and
establish some of their basic properties.

Let f be an integral ideal of F . The the narrow ray class group C`+F (f) = F× \A×/U(f)F+
∞

fits in the following short exact sequence:

(13) 1→ E(f)\F+
∞ → A×/F×U(f)→ C`+F (f)→ 1.

Denote by S be the set of places dividing f and choose an idele ϕ ∈ A×F generating f.
The map:

(14) Cϕ : A×/F×U(f) −→M(F ) \M(AF )/M(o) , y 7→M(F )(y, yϕ−1
S )M(o)

is well defined, since for all ξ ∈ F× and u ∈ U(f) we have

(ξyu, ξyuϕ−1
S ) = (ξ, 0)(y, yϕ−1

S )
(
u, (u− 1)ϕ−1

S

)
,

where (ξ, 0) ∈M(F ) whereas (u, (u− 1)ϕ−1
S ) ∈M(o).

Definition 2.2. For any η ∈ A× we define Cϕ,η as the composed map

E(f)\F+
∞

·η−→ A×/F×U(f)
Cϕ−→M(F ) \M(AF )/M(o).

Lemma 2.3. If η and η′ have the same image in C`+F (f), then here is an orientation
preserving homotopy between Cϕ,η and Cϕ,η′.

For any ϕ′ ∈ A×F generating f, one has Cϕ,η = Cϕ′,ηϕ′/ϕ.
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Proof. Suppose that η′ = ξηuz∞ with ξ ∈ F×, u ∈ U(f) and z∞ ∈ F+
∞. For all y∞ ∈ F+

∞

(η′y∞, η′ϕ−1
S ) = (ξ, 0)(ηy∞z∞, ηϕ−1

S )(u, (u− 1)ϕ−1
S ),

where (u − 1)ϕ−1
S ∈ ô. Hence Cϕ,η′(E(f)y∞) = Cϕ,η(E(f)y∞z∞) showing the first claim,

since multiplication by z∞ ∈ F+
∞ induces an orientation preserving homotopy equivalence

of E(f)\F+
∞. The second claim follows from the identity

(ηy∞, ηϕ−1
S ) = (ηϕ′ϕ−1y∞, ηϕ

′ϕ−1ϕ′S
−1)(ϕϕ′−1

, 0),

since ϕϕ′−1 ∈ U(o), so that (ϕϕ′−1, 0) ∈M(o). �

Definition 2.4. For any η ∈ A× denote by [η] its image in C`+F (f). The automorphic cycle
of level f is defined as:

Cf =
∑

η∈C`+F (f)

Cϕ,η[ηϕ−1].

Lemma 2.3 implies that, up to orientation preserving homotopy, Cf only depends on f

and not on the particular choices of ϕ or η.
For any open compact subgroup K of GL2(A(∞)

F ) containing s(M(o)), s induces a well
defined map

sK : M(F )\M(AF )/M(o)→ YK .

Definition 2.5. The automorphic cycle CKϕ,η is defined as the composed map of Cϕ,η with
the map sK .

2.5. Comparison of modular and automorphic cycles. Let K be an open compact
subgroup of GL2(A(∞)

F ) containing s(M(o)). The connected components of YK are in

bijection with Γi\HF , 1 ≤ i ≤ h (see §2.2), where Γi = GL2(F ) ∩
(
ηi 0
0 1

)
K
(
η−1
i 0
0 1

)
G+
∞.

To be able to make the comparison, we define classical modular symbols taking values
in the mirabolic group. Recall that ηi generates the fractional ideal c∗i .

Lemma 2.6. For all x ∈ F such that xo + c∗i = (fci)∗, the map

C(ηi, x) : E(f)\F+
∞ →M(F )\M(AF )/M(o), y∞ 7→ (ηiy∞,−x∞)

is well defined, injective and fits in the following commutative diagram:

(15) E(f)\F+
∞

C
Γi
x

��

C(ηi,x)
// M(F )\M(AF )/M(o)

sK

��
Γi\HF = Γi\G+

∞/K
+
∞

“
ηi 0
0 1

”
·

// YK

.
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Proof. Note that by definition y∞ (resp. x∞) is 1 (resp. 0) at all finite places.
For any ε ∈ E(f) we have the following equalities in M(AF ):

(ε, x(ε− 1)) · (ηiy∞,−x∞) = (εηiy∞, ε(∞)x(∞) − x) =

= (ηiy∞ε∞,−x∞)(ε(∞), η−1
i x(∞)(ε(∞) − 1)).

Since (ε, x(ε− 1)) ∈M(F ), while ε(∞) ∈ ô×, η−1
i x(∞) ∈ ϕ−1ô and (ε(∞) − 1) ∈ ϕô, one has

(ε(∞), η−1
i x(∞)(ε(∞) − 1)) ∈M(o)

which proves the first part of the lemma. The commutativity is straightforward.
For the injectivity one needs to show that if (ηiy′∞,−x∞) ∈ (a, b)(ηiy∞,−x∞)M(o) with

(a, b) ∈ M(F ) then y′∞y
−1
∞ ∈ E(f). Projecting to M(F∞) implies that a∞ = y′∞y

−1
∞ ∈ F+

∞
and b∞ = (a∞ − 1)x∞, hence b = (a− 1)x. Further projecting to M(A(∞)

F ) yields

(a(∞), (a(∞) − 1)x(∞)η−1
i ) ∈M(o),

hence a(∞) ∈ U(o) ⊂ ô and a(∞) − 1 ∈ x−1ηiô. Since ô + xη−1
i ô = ϕ−1ô this implies that

a(∞) − 1 ∈ ô ∩ x−1ηiô = ϕô

showing that a ∈ F× ∩ (U(o) ∩ (1 + ϕô))F+
∞ = F× ∩ U(f)F+

∞ = E(f) as desired. �

Proposition 2.7. Given η ∈ A(∞)×
F there exists a unique 1 ≤ i ≤ h such that η and ηi

map to the same element of C`+F , i.e. η = a(∞)ηiu with a ∈ F×+ and u ∈ U(o). For S and ϕ
as in §2.4 and for any x ∈ (fci)∗ whose image in (fci)∗/c∗i equals uηiϕ−1

S , the multiplication
by a∞ ∈ F+

∞ induces an orientation preserving homotopy between Cϕ,η (resp. CKϕ,η) and
C(ηi, x) (resp.

(
ηi 0
0 1

)
· CΓi

x ). In other terms, there is a commutative diagram:

(16) E(f)\F+
∞

·η
//

Cϕ,η

**UUUUUUUUUUUUUUUUU E(f)\F+
∞η

Cϕ
��

E(f)\F+
∞

·a∞

OO

C(ηi,x)
// M(F )\M(AF )/M(o)

.

Proof. Since η = a(∞)ηiu, a direct computation shows the following identity in M(AF ):

(ηy∞a∞, ηϕ−1
S ) = (a, ax)(ηiy∞,−x∞)(u, uϕ−1

S − η
−1
i x(∞))

where (a, ax) ∈ M(F ). Moreover the assumption on x implies that uϕ−1
S − η

−1
i x(∞) ∈ ô,

so that (u, uϕ−1
S − η

−1
i x(∞)) ∈M(o). This proves the commutativity of the lower triangle

in the diagram, while the commutativity of the other triangle follows directly from the
definition of Cϕ,η. Finally, the comparison between CKϕ,η and CΓi

x follows from (15), (16)
and Definition 2.5. �
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Corollary 2.8. Up to orientation preserving homotopy the cycle C(ηi, x) depends only on
the image of x in the group:

((fci)∗/c∗i )
× /E(o).

Remark 2.9. Note that whereas the automorphic cycles of level f are indexed by the
middle term of the short exact sequence:

(17) 1→ (o/f)×/E(o)→ C`+F (f)→ C`+F → 1,

the modular ones are indexed by elements of C`+F × (o/f)×/E(o). In fact the elements of
C`+F are represented by ηi, 1 ≤ i ≤ h, while multiplication by η−1

i ϕ induces an isomorphism

((fci)∗/c∗i )
×/E(o) ∼−→ (o/f)×/E(o).

Therefore the automorphic cycles are more intrinsic than the modular cycles.

In view of Lemma 2.1, Proposition 2.7 has another consequence.

Corollary 2.10. The automorphic cycle CKϕ,η (see Definition 2.5) is finite as a map.

3. p-adic L-functions for Hilbert modular forms

3.1. Cohomological weights. The characters of the Q-torus F× can be identified with
Z[Σ] as follows: for any k =

∑
σ∈Σ kσσ ∈ Z[Σ] and for any Q-algebra A splitting F×, we

consider the character k ∈ (F ⊗Q A)× 7→ xk =
∏
σ∈Σ σ(x)kσ ∈ A×. The norm character

NF/Q : F× → Q× then corresponds to the element t =
∑

σ∈Σ σ ∈ Z[Σ].
Any algebraic character of the diagonal torus of GL2(F ) is of the form

(
a 0
0 d

)
7→ akdk

′
for

some (k, k′) ∈ Z[Σ]2. Characters such that kσ ≥ k′σ for all σ ∈ Σ are called dominant with
respect to upper triangular Borel and parametrise the irreducible representation of the
algebraic Q-group GL2(F ). Explicitly, for any Q-algebra A splitting F×, the irreducible
representation of GL2(A) of highest weight (k, k′) is given by⊗

σ∈Σ

(
Symkσ−k′σ

σ ⊗Detk
′
σ
σ

)
(A2).

Definition 3.1. A dominant weight of T is cohomological if it is of the form (wt+k
2 , wt−k

2 )
where (k,w) ∈ Z[Σ] × Z is such that for all σ ∈ Σ we have kσ ≥ 0 and kσ ≡ w (mod 2).
We denote

Vk,w =
⊗
σ∈Σ

Symkσ
σ ⊗Det(wt−kσ)/2

σ

the corresponding irreducible representation of G. For any Q-algebra A splitting F× write
Vk,w(A) for its A-valued points.
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Note that a dominant weight is cohomological if, and only if, the central character
of the corresponding representations of GL2(F ) factors through the norm. Under this
assumption the center of any (sufficiently small) congruence subgroup of GL2(F ) will act
trivially, ensuring the existence of a local system Vk,w on YK attached to Vk,w.

The left A[GL2(F ⊗Q A)]-module Vk,w(A) can be realised as the space of polynomials
of degree (kσ)σ∈Σ in z = (zσ)σ∈Σ over A on which γ =

(
a b
c d

)
∈ GL2(F ⊗Q A) ' GL2(A)Σ

acts by:

(18) (γ · P )(z) = (ad− bc)(wt−k)/2(a− cz)kP
(
dz − b
a− cz

)
.

3.2. Local systems and cohomology. Consider a left GL2(F )-module V such that

(19) F× ∩KF×∞ acts trivially on V.

For K sufficiently small we have GL2(F ) ∩ gKK+
∞g
−1 = F× ∩KF×∞ which by (19) acts

trivially on V . Therefore one has a local system

GL2(F )\(GL2(AF )× V )/KK+
∞ → YK

with left GL2(F )-action and right KK+
∞-action given by:

γ(g, v)k = (γgk, γ · v).

We will denote by V the corresponding sheaf of locally constant sections on YK and
will consider the usual (resp. compactly supported) cohomology groups Hi(YK ,V) (resp.
Hi
c(YK ,V)). In particular, for any cohomological weight (k,w) and any Q-algebra A split-

ting F× we will denote Vk,w(A) the sheaf associated to Vk,w(A).

There is another construction of sheaves. Namely, given a left K-module V satisfying
(19), one can consider the local system

GL2(F )\(GL2(AF )× V )/K+
∞K → YK

with left GL2(F )-action and right KK+
∞-action given by:

γ(g, v)k = (γgk, k−1 · v).

When the actions of GL2(F ) and KK+
∞ on V in the above two definitions can be ex-

tended compatibly into a left action of GL2(AF ), then the resulting two local systems are
isomorphic by (g, v) 7→ (g, g−1 · v).

We will be particularly interested in the case where A is a p-adic field and both GL2(F )
andKp act compatibly on Vk,w(A). The GL2(F )-action will be used to define Hi(YK ,V∨k,w(C))
which admits an interpretation in terms of automorphic forms on GL2(AF ) while the Kp-
action will be used to interpolate Hi(YK ,Vk,w(L)) where L is a p-adic field.
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3.3. Overconvergent cohomology of Hilbert modular varieties. Given a cohomo-
logical weight (k,w) and a p-adic field L containing the Galois closure of F , we let Dk,w

denote the space D(o⊗ Zp, L) of L-values distributions on o⊗ Zp (see §1.7) on which the
Iwahori subgroup I ⊂ GL2(o⊗ Zp) acts on the right as follows:

(20) µ|
“
a b
c d

”(f(z)) = µ

(
(ad− bc)(wt−k)/2(a− cz)kf

(
dz − b
a− cz

))
.

Furthermore, for p | p we fix an uniformizer $p of Fp and define:

(21) µ|
“

1 0
0 $p

”(f(z)) = µ(f($pz)),

where $p ∈ o⊗ Zp is considered to be 1 at all components p′ | p, p′ 6= p.
The actions (20) and (21) extend compatibly into an action on Dk,w of the monoid ∆

generated by I and the matrices
(

1 0
0 $p

)
, for p | p.

For any open compact subgroup K of GL2(A(∞)
F ) whose image into GL2(F ⊗Q Qp) is

contained in I one can associate to Dk,w a local system Dk,w on YK and consider the
compactly supported sheaf cohomology groups Hi

c(YK ,Dk,w).
As in §1.10 the element

(
1 0
0 p

)
∈ ∆ induces a compact operator Up onDk,w and Hi

c(YK ,Dk,w)
admits a slope decomposition with respect to it. As for Hi

c(YK ,Vk,w(L)) we consider slope
decomposition with respect to the operator U0

p = p(k−wt)/2Up.
The natural restriction map:

(22) Dk,w → Vk,w(L), µ 7→ P (µ)(z) =
∫

o⊗Zp
(z − x)kdµ(x)

is I-equivariant. Moreover the induced homomorphism:

(23) Hi
c(YK ,Dk,w)→ Hi

c(YK ,Vk,w(L))

is compatible with slope decompositions with respect to Up for Hi
c(YK ,Dk,w) and with

respect to U0
p for Hi

c(YK ,Vk,w(L)). Stevens’ Theorem 1.13 has the following generalisation
when Q is replaced by an arbitrary totally real number field F .

Theorem 3.2 (Barrera [B]). For any h ∈ Q+ such that h < kσ + 1 for all σ ∈ Σ, (23)
induces an isomorphism:

Hi
c(YK ,Dk,w)≤h ∼−→ Hi

c(YK ,Vk,w(L))≤h.

3.4. p-adic L-functions for Hilbert modular forms. In this final section we give a brief
sketch of Barrera’s construction of p-adic L-functions for Hilbert modular forms based on
the cycles considered in §2.

Consider a cuspidal cohomological automorphic representation π of GL2(AF ) of conduc-
tor n and of infinity type (k + 2t,w), where w denotes the purity weight of π.
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According to Deligne [De], the integer 1 is critical for the motive attached to π exactly
when (k,w) is critical in the sense of the following definition.

Definition 3.3. A cohomological weight (k,w) is critical if |w| ≤ minσ∈Σ(kσ).

Let f be a p-stabilisation of the new-vector in π, so that Upf = αpf for all primes p

dividing p. Let K be the subgroup of K1(n) obtained by intersecting its p-component
with I. Using a result of Matsushima-Shimura and Harder, as worked out in Hida [H],
there exists a class δ+

f in the complex line Hd
cusp(YK ,V∨k,w(C))[f ]+. Assume further that L

contains all the Hecke eigenvalues of f . Dividing δ+
f by a period Ω+

f ∈ C× yields a class

φf ∈ Hd
c(YK ,Vk,w(L))[f ]+.

Assume the following non-critical condition:

(24) h =
∑
σ∈Σ

kσ − w

2
+
∑
p|p

vp(ιp(αp))ep < min
σ∈Σ

(kσ + 1),

where ep denotes the ramification index, so that (p) =
∏

p|p pep .
By Theorem 3.2 there exists a unique class

Φf ∈ Hd
c(YK ,Dk,w)[f ]+

which maps to φf under (23).
Evaluating Φf on the modular cycles on YK of p-power conductor (see Definition 2.4),

Barrera constructs a distribution µf ∈ D(C`+F (p∞), L) and proves that it is h-admissible.
Using the computations performed in [D1, §2] he proves the following theorem.

Theorem 3.4 (Barrera [B]). For any finite order Hecke character χ : C`+F (p∞)→ L× such
that χσ(−1) = 1 for each σ ∈ Σ we have:

µf (χ) = ιp

(
L(p)(π ⊗ χ, 1)τ(χ)

Ω+
f

)∏
p|p

Zp,

where L(p)(π⊗χ, s) is the L-function of π twisted by χ without the Euler factor at all places
dividing p, τ(χ) is the Gauss sum, dp is the valuation of the different of Fp/Qp, and:

Zp =


ιp(αp)−cond(χp) , if χp is ramified, and

1−ιp(αp)−1χp($p)−1NF/Q(p)−1

1−ιp(αp)χp($p) χp($p)−dp , otherwise.

Note that (in the non-ordinary case) the interpolation property proved in Theorem 3.4
does not guarantee the uniqueness of µf . This problem is settled in [BDJ].
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