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École Doctorale MADIS-631
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On functional equations of p-adic L-functions for GL2

Abstract

For a regular non-critical p-refinement of a cohomological cuspidal automorphic representation of
GL2 over a totally real number field, we prove a functional equation of its attached p-adic L-function.
We obtain it from the interpolation formula between p-adic and complex L-functions and the functional
equation of L-functions. We use this functional equation to prove the trivial zero conjecture at the central
critical point.

On the other hand, we develop a theory of overconvergent modular symbols with values in p-adic dis-
tributions on P1(Qp) inspired by Stevens’s overconvergent modular symbols and the idea of Colmez with
the hope that one can obtain some functional equations of p-adic L-functions involving the transformation
z 7→ 1

z on P1(Qp).

Sur les équations fonctionnelles des fonctions L p-adiques pour
GL2

Résumé

Pour un p-raffinement non-critique et régulier d’une représentation automorphe cuspidale cohomologique
de GL2 sur un corps de nombres totalement réel, nous prouvons une équation fonctionnelle de sa fonction
L p-adique attachée. Nous obtenons cela grâce à la formule d’interpolation entre les fonctions L p-adiques
et complexes et l’équation fonctionnelle des fonctions L. Nous utilisons cette équation fonctionnelle pour
prouver la conjecture du zéro trivial au point critique central.

D’autre part, nous développons une théorie des symboles modulaires surconvergents à valeurs dans
des distributions p-adiques sur P1(Qp) inspirée par les symboles modulaires surconvergents de Stevens
et l’idée de Colmez dans l’espoir d’obtenir certaines équations fonctionnelles des fonctions L p-adiques
faisant intervenir la transformation z 7→ 1

z sur P1(Qp).
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Introduction

The theory of p-adic L-functions plays an important role in number theory. For a p-adic representation
V of the absolute Galois group GQ such that Vp = V|GQp

is semi-stable and V is critical in the sense of

Deligne, let D ⊂ Dst(Vp) be a regular submodule in the sense of Perrin-Riou [PR]. Coates and Perrin-
Riou constructed a p-adic L-function Lp(V,D, s) satisfying an interpolation formula related to special
values of complex L-functions attached to V and a product of Euler factors.

For a p-refinement π̃ of an algebraic cuspidal automorphic representations π of a reductive group
over a number field F , Iwasawa theory tries to relate the properties of the attached p-adic L-function
Lp(π̃, s) to the arithmetic of the restriction of Vπ to the p-adic cyclotomic extension of F , where Vπ is the
conjectured p-adic Galois representation of GF attached to π. In the pioneer works of Amice-Vélu, Vishik
and Mazur-Tate-Teitelbaum (see [AV], [Vis], [MTT]) they associated a p-adic L-function to normalized
eigenforms of non-critical slope. These p-adic L-functions satisfy an interpolation formula related to
special values of complex L-functions. The functional equation of p-adic L-functions is deduced from the

functional equation of L-functions involving the twist of the matrice

(
1

−1

)
which corresponds to the

transformation z 7→ −1
z .

For an elliptic curve E over Q, Mazur, Tate and Teitelbaum constructed in [MTT] a p-adic L-function
Lp(E, s) having a trivial zero at s = 1 if E has split multiplicative reduction at p. Moreover, they stated
a p-adic analogue of the Birch-Swinnerton-Dyer conjecture relating the analytic properties of Lp(E, s),
namely the order of vanishing at s = 1 and the Fourier coefficients, and the arithmetic properties of E
such as the rank of its rational points. After that, Stevens gave an another construction of p-adic L-
functions attached to modular forms of non-critical slope by using his theory of overconvergent modular
symbols (see [PS11]). The theory of overconvergent modular symbols was generalized by Ash-Stevens and
Urban to the theory of overconvergent cohomology in [AS08] and [Urb]. Barrera-Dimitrov-Jorza applied
this idea in [BDJ] to construct p-adic L-functions for cuspidal automorphic representations of GL2 over
a totally real number field having an arbitrary cohomological weight.

The goal of this thesis is to study functional equations of p-adic L-functions attached to modular forms
for both classical and Hilbert modular forms. A p-adic L-function is a p-adic distribution on certain p-adic
space which is an open compact subset of Qdp for some d. This leads us to the study of p-adic distributions.
While the most popular p-adic distributions are those on Zp or Z×

p , one of our contributions is the study of
p-adic distributions on P1(Qp) inspired by the idea of Colmez. Contrary to Zp, the space P1(Qp) admits
the transformation z 7→ −1

z occurring in the functional equation of L-functions, this also motivates the
study of p-adic distributions on P1(Qp).

Let L be a finite extension of Qp and k be an integer. We denote by Ak(P1, L) the space of L-
valued functions on P1(Qp) which are locally analytic on Qp and meromorphic at infinity with a pole
of order ≤ k (see Definition 2.1.1). The space Dk(P1, L) of L-valued distributions on P1(Qp) is defined
as the continuous L-dual of Ak(P1, L) and is endowed with a right weight k action of GL2(Qp) (see

(2.5)). If k ≥ 0, let V†
k(L) be the L-dual of the space P†

k(L) of locally polynomial functions of degree

≤ k on P1(Qp) with coefficients in L. The natural inclusion P†
k(L) → Ak(P1, L) induces the dual map

ρk : Dk(P1, L)→ V†
k(L) which is equivariant for the action of GL2(Qp).

Stevens’s overconvergent modular symbols are elements of the space SymbΓ0
(Dk(Zp, L)) of modular

symbols on a congruence subgroup Γ0 ⊂ Γ0(p) with values in the space Dk(Zp, L) of L-valued p-adic
distributions on Zp (see §3.1.1 for the definition of abstract modular symbols). Here Dk(Zp, L) is endowed
with a right weight k action of a monoid Σ0(p) in SL2(Z) containing the group Γ0(p) (see §1.2.1). It is
natural to consider modular symbols with values in Dk(P1, L).

The overconvergent modular symbols with values in Dk(Zp, L) or Dk(P1, L) are endowed with a right

action of the Hecke operator Up given by the double coset Γ0

(
1 0
0 p

)
Γ0, where

(
1 0
0 p

)
∈ Σ0(p). The

1
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basic tool of Stevens’s construction is to establish a control theorem allowing to lift classical eigensymbols
of Up-small slope to overconvergent ones with values in Dk(Zp, L).

Consider the exact sequence

0→ D(Zp)
ext→ Dk(P1)

res→ D(Zp)→ 0, (1)

where the map ext is the extension map of distributions, the map res is the composition of the restric-
tion map of distributions from P1(Qp) to P1(Qp)\Zp followed by the isomorphism of distributions on
P1(Qp)\Zp and Zp induced by the transformation z 7→ 1

pz . It turns out that the map ext is equiv-

ariant for the action of Σ0(p), so D(Zp) is endowed with an another action of Σ0(p) for which the map
res : Dk(P1)→ D(Zp) is Σ0(p)-equivariant. The exact sequence (1) induces the exact sequence of modular
symbols:

0→ SymbΓ0
(Dk(Zp))

ext→ SymbΓ0
(Dk(P1))

res→ SymbΓ0
(Dk(Zp)),

where the map ext is Up-equivariant. Then we can equip SymbΓ0
(Dk(Zp)) a right operator Vp for which

the map res : SymbΓ0
(Dk(P1)) → SymbΓ0

(Dk(Zp)) is equivariant for the action of Up on the left space

and Vp on the right space. It turns out that Vp is induced by the double coset Γ0

(
p 0
0 1

)
Γ0. Although(

p 0
0 1

)
/∈ Σ0(p), the action of

(
p 0
0 1

)
on Dk(Zp) is defined almost the same as that of Σ0(p) (see 3.5).

For a rational number h ∈ Q we use the superscript ≤ h (resp. Vp ≤ h) to denote the subspace
of modular symbols of Up (resp. Vp)-slope ≤ h, which is the subspace where every eigenvalue of the
corresponding operator has p-adic valuation ≤ h (see Definition 3.1.2). We define similarly if ≤ is
replaced by <. The overconvergent modular symbols with values in Dk(Zp, L) and Dk(P1, L) are related
by the following theorem:

Theorem 0.0.1 (Corollary 3.3.10). For k ∈ Z\{0}, there is an exact sequence of modular symbols:

0→ SymbΓ0
(Dk(Zp, L))→ SymbΓ0

(Dk(P1, L))→ SymbΓ0
(Dk(Zp, L))→ 0

which is equivariant for the Up-action on the first two spaces and the Vp-action on the last space. The
restriction on the ≤ h-slope subspace is also exact:

0→ SymbΓ0
(Dk(Zp, L))≤h → SymbΓ0

(Dk(P1, L))≤h → SymbΓ0
(Dk(Zp, L))Vp≤h → 0,

and similar if ≤ h is replaced by < h.
If k = 0, the last space 0 in the above exact sequences is replaced by L.

We construct subspaces of SymbΓ0
(Dk(P1, L)) which are finite dimensional and Up-stable.

LetD(∞, 1) = {z ∈ P1(Qp), vp(z) ≤ −1}, where vp is the usual p-adic valuation. LetDk(D(∞, 1), L) ⊂
Dk(P1, L) be the subspace of distributions supported in D(∞, 1), endowed with the induced weight k
action of matrices. There is also an operator Vp acting on SymbΓ0

(Dk(D(∞, 1), L)) defined as above.

For h, h′ ∈ Q, denote by SymbΓ0
(Dk(P1, L))(Vp≤h′) the subspace of SymbΓ0

(Dk(P1, L)) consisting of
modular symbols Φ such that the restriction Φ|D(∞,1) ∈ SymbΓ0

(Dk(D(∞, 1), L)) has Vp-slope ≤ h′, and
putting

SymbΓ0
(Dk(P1, L))Up≤h,(Vp≤h′) = SymbΓ0

(Dk(P1, L))Up≤h ∩ SymbΓ0
(Dk(P1, L))(Vp≤h′).

Here is the main theorem of the first part about overconvergent modular symbols:

Main Theorem 0.0.2 (Theorem 3.3.20). For k ∈ Z and h, h′ ∈ Q such that k+1−h ≤ h′, the subspace
SymbΓ0

(Dk(P1))Up≤h,(Vp≤h′) of SymbΓ0
(Dk(P1)) is finite dimensional and Up-stable, and similar if ≤ is

replaced by <.
Moreover, if k ∈ N∗ and 0 ≤ h ≤ k + 1, there is an exact sequence:

0→ SymbΓ0
(Dk(Zp, L))≤h → SymbΓ0

(Dk(P1, L))Up≤h,(Vp≤h′) → SymbΓ0
(Dk(Zp, L))k+1−h≤Up≤h′

→ 0,

while if k = 0 the last space 0 is replaced by L.
In particular, there is an exact sequence:

0→ SymbΓ0
(Dk(Zp, L))≤k+1 → SymbΓ0

(Dk(P1, L))Up≤k+1,(Vp≤k+1) → SymbΓ0
(Dk(Zp, L))≤k+1 → 0

for any k ∈ N∗ and if k = 0 the last space 0 is replaced by L.
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Meanwhile try to improve the interpolation approach, we plan to pursue this result to construct and
prove functional equations of p-adic L-functions in future works. The exact sequence in the above theorem
can be seen as an analogue of Stevens’s control theorem for P1(Qp).

The second part of the thesis is devoted to prove the functional equation of p-adic L-functions by using
the interpolation formula and prove the trivial zero conjecture at central critical points as an application.

Let F be a totally real number field of different d. For each fractional ideal f of F , we choose an
element ϖf in the ring of finite adeles of F such that ϖvf = ϖv ·ϖf for any finite place v, where ϖv is
a uniformizer of the ring of integers Ov of Fv. For each finite place v of F dividing a prime number l,
denote by qv the residue degree of v and δv the valuation at v of the different d, and consider the additive
character ψv : Fv → C× given by the composition of the trace map from Fv to Ql and the character
ψ0,v : Ql → C× given by the value of exp(2πi·) at the l-non integer part of Ql.

Let Galp∞ be the Galois group of the maximal abelian extension of F which is unramified outside
p and ∞. Denote by Galcyc the Galois group of the cyclotomic Zp-extension Fcyc ⊂ F (µp∞) of F . Let
ωp be the Teichmüller lift of the cyclotomic character χcyc : Galp∞ → Gal(F (µp∞)/F )→ Z×

p . Then the
character ⟨·⟩p = χcycω

−1
p : Galp∞ → 1 + 2pZp factors through Galcyc.

Let π be a cuspidal automorphic representation of GL2 over F of tame conductor n and cohomological

weight (k,w) :=
(

w+kσ−2
2 , w+2−kσ

2

)
σ∈Σ

∈ (Z2)Σ with Σ = Hom(F,C), where kσ ≥ 2 and kσ ≡ w ≡
0 (mod 2) for any σ ∈ Σ. We assume further that

π has central character ωπ = ω2| · |wF , and πv is not supercuspidal for all v|p, (2)

where ω is a finite order character of Galp∞.
We choose a regular p-refinement π̃ = (π, {νv}v|p) of π, i.e., choosing a character νv of F×

v which
appears as a one dimensional sub of the Weil-Deligne representation attached to πv via the local Lang-
lands correspondence for GL2(Fv), for each place v of F above p. Assume that π̃ is non-critical in the
sense of Definition 5.1.8, then by [BDJ, (4.2)] we can attach a p-adic L-function Lp(π̃, ·) which is a
distribution on Galp∞. This p-adic L-function is the specialization of a multi-variable p-adic L-function
Lp ∈ D(Galp∞,O(X (π̃))), where X (π̃) is a family of non-critical p-refinements of cohomological cuspidal
automorphic representations indexed by a neighborhood of (k,w) in the weight space (see the paragraph
after Theorem 5.1.12).

Let Stp denote the set of places v above p such that πv is a special representation. We put

ε̃π⊗ω−1 = ε
(
π ⊗ ω−1,

1− w

2

) ∏
v∈Stp,νvω

−1
v unramified

ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
∈ {±1}.

We are ready to state our main theorem of the second part about the functional equation of p-adic L-
functions attached to automorphic representations of GL2, which is a generalization of [BDJ, Theorem
6.4].

Main Theorem 0.0.3 (Theorem 5.3.5). Suppose π satisfies (2). Then the sign ε̃πλ⊗ω−1 of π̃λ is indepen-
dent of the cohomological weight λ ∈ X (π̃). For any λ ∈ X (π̃), any continuous character f : Galcyc → L×

and any finite order character χ : Galp∞ → L×, one has

Lp(λ, χ · f) = ε̃π⊗ω−1 · (χωωw/2
p f)(−ϖn)⟨n⟩wλ/2

p Lp(λ, ω−2χ−wλ
cyc (χ · f)(·)−1).

We give an application of the above formula to the trivial zero conjecture. The cyclotomic p-adic
L-function attached to π̃ is defined as

Lp(π̃, s) = Lp(π̃, ω−1ω−w/2
p ⟨·⟩s−1

p ), where s ∈ OCp
.

Let E be the set of places v ∈ Stp such that νvω
−1
v is unramified and ε

(
πv ⊗ ω−1

v , 1−w
2 , ψv

)
= −1.

Theorem 0.0.4 (Theorem 6.0.1). Suppose π satisfies (2). The p-adic L-function Lp(π̃, s) has order of
vanishing at least e = |E| at 2−w

2 and

L
(e)
p

(
π̃, 2−w

2

)
e!

= L( ˜π ⊗ ω−1)
ω(ϖd)L

(
π ⊗ ω−1, 1−w

2

)
N

w/2
F/Q(id)Ω

ω∞ω
w/2
p,∞

π̃

· 2|{v∈Stp \E, νvω−1
v is unramified}|×

×
∏

v|p,πv⊗ω−1
v is unramified

(
1− q

−w/2
v

(νvω
−1
v )(ϖv)

)2 ∏
v|p,c

νvω
−1
v
>0

q
−

w·c
νvω

−1
v

+δv

2
v (νvω

−1
v )(ϖv)

δvτ(νvω
−1
v , ψv),
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where L( ˜π ⊗ ω−1) is the Fontaine-Mazur L-invariant (see [BDJ, Definition 5.3]), Ω·
π̃ is the Betti-Whittaker

period defined in [BDJ, Definition 1.14], ωp,∞ is the sign character on (F ⊗Q R)×, the symbol cνvω−1
v

denotes the conductor of νvω
−1
v and τ(νvω

−1
v , ψv) is the Gauss sum of νvω

−1
v with respect to ψv.

This result is a generalization of [BDJ, Theorem 7.1].
The thesis is structured as follows. In the first chapter we recall the definition and basic properties

of p-adic distributions on open compact subsets of Qdp, especially p-adic distributions on Zp and Z×
p . In

Chapter 2 we study p-adic distributions on P1(Qp). Chapter 3 is devoted to overconvergent modular
symbols with values in distributions on Zp or P1(Qp), and the proof of Theorems 0.0.1, 0.0.2. In Chapter
4 we review p-adic L-functions attached to modular forms and the well-known functional equation of
those functions (see Proposition 4.2.4). In Chapter 5 we prove our Main Theorem 0.0.3 about functional
equation of p-adic L-functions attached to automorphic representations of GL2. Finally, Chapter 6 is
devoted to prove Theorem 0.0.4 about the trivial zero conjecture at central critical points.

Notations

In this thesis, let p be a prime number. Let Q̄p denote the algebraic closure of the field Qp of p-adic
rational numbers, and Cp denotes the completion of Q̄p for p-adic norm. Let vp : Cp → Q ∪ {+∞} be
the normalized p-adic valuation such that vp(p) = 1, and denote by |·|p the corresponding p-adic norm

on Cp defined by |·|p = p−vp(·).

We fix an embedding ιp : Q̄→ Q̄p. Let L denote a finite extension of Qp.
For a ∈ Qp or Cp and r ∈ |C×

p |p, denote by D(a, r) (resp. B(a, r)) the closed (resp. open) disc of
center a and radius r.



Chapter 1

p-adic distributions on open compact
subsets of Qd

p

We consider p-adic distributions in the first two chapters which are the central object of this thesis.
In this chapter, we study p-adic distributions on p-adic spaces which are open compact subsets of Qdp for

some d ∈ N∗. We start by defining the general notion of distributions on an open compact subset of Qdp in
Section 1.1. In Section 1.2 we investigate distributions on Zp which are motivation for our consideration
of those on P1(Qp) in Chapter 2.

1.1 Generalities

Throughout this section, let X be an open compact subset of Qdp for d ∈ N∗. Roughly speaking, a
p-adic distribution on X is the continuous dual of the space of locally analytic functions on X.

For a finite extension L of Qp, let A(X,L) denote the space of locally analytic functions on X with
values in L. If the role of L is less important, we will omit it from notations, e.g., we write simply A(X)
for A(X,L). The set A(X) is naturally an L-vector space.

For each r ∈ |C×
p |p = pQ, putting

D[X, r] = {z ∈ Cdp ,∃ a ∈ X such that |z − a|p ≤ r},

where the norm |·|p on Qdp is the maximal of the norms of components. Then D[X, r] is the union in Cdp
of closed polydiscs of radius r and center in X. Denote by A(X)[r] the space of functions f ∈ A(X) such
that for every a ∈ X, the function f can be extended to a power series∑

i∈Nd

αi(a)(z1 − a1)i1 ...(zd − ad)id (1.1)

converging on the closed polydisc D(a, r)(Cp) = {z ∈ Cdp, |z − a|p ≤ r} in Cdp, where αi(a) ∈ L. In
other words, f ∈ A(X)[r] if f can be extended to an analytic function on D[X, r]. In particular, if
f ∈ A(X)[r], then f is analytic on every closed polydisc of radius r in X. We say that f is r-analytic on
X if f ∈ A(X)[r].

Since X is compact, D[X, r] is covered by finitely many closed polydiscs of radius r and center in X.
We define the supremum norm ∥ · ∥r on A(X)[r] by

∥f∥r = sup
z∈D[X,r]

|f(z)|p . (1.2)

If f has expansion (1.1) on each closed polydisc D(a, r)(Cp) with a ∈ X, then it is well-known that

∥f∥r = sup
a∈X,i∈Nd

|αi(a)|p r
i1+...+id . (1.3)

The space A(X)[r] endowed with this norm is an L-Banach algebra.
We denote by D(X)[r] the continuous L-dual of A(X)[r], endowed with the dual norm which we also

denote by ∥·∥r. Then D(X)[r] has the structure of Banach L-vector space.
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If f ∈ A(X)[r1] and r1 > r2 in |C×
p |p, since f is analytic on D[X, r1], its restriction on D[X, r2] is also

analytic, so f ∈ A(X)[r2]. We get a natural map A(X)[r1]→ A(X)[r2]. This map is clearly continuous,
injective and norm-decreasing, hence it induces the continuous dual map D(X)[r2]→ D(X)[r1] which is
also norm-decreasing.

Lemma 1.1.1. For an open compact subset X of Qdp and for any r1 > r2 in |C×
p |p, the inclusion map

A(X)[r1]→ A(X)[r2] has dense image, so the dual map D(X)[r2]→ D(X)[r1] is injective.

Proof. Since X is open compact in Qdp, we can write X as a disjoint union of finitely many closed polydiscs

Xi of radius r1 in Qdp. A function in A(X)[r1] is then determined uniquely by its restrictions on these
polydiscs Xi. So the Banach space A(X)[r1] is homeomorphic to the product of A(Xi)[r1]’s. Hence we
can assume that X is a closed polydisc of radius r1 in Qdp. By affine transformations, every bounded

closed polydisc in Qdp is homeomorphic to Zdp, which is the unit closed polydisc. Therefore, we can assume

that r1 = 1 and X = Zdp.
Since A(Zdp)[1] contains all polynomials, it suffices to show that the set of polynomials in d variables is

dense in A(Zdp)[r2]. Let f ∈ A(Zdp)[r2]. Regarding f as a function on D[Zdp, r2] = D[Zp, r2]d and writing

f(z) =
∑

a=(a1,...,ad)

(1D(a,r2)(Cp)fa)(z) =
∑

a=(a1,...,ad)

1D(a1,r2)(Cp)(z1) · · · 1D(ad,r2)(Cp)(zd)fa(z1, ..., zd),

where a runs through a finite set of representatives of Zdp for which the discs D(a, r2) cover Zdp, and fa is

the restriction of f on D(a, r2)(Cp). Then by (1.1), f is the limit in A(Zdp)[r2] of a sequence of functions
which are finite sums of the products of d locally polynomials on Zp which are r2-analytic. The space
of polynomials in one variable is dense in A(Zp)[r2] for all r2 ∈ |C×

p |p = pQ (if r2 ∈ p−N, a result of

Amice (see the proof in [Colm, Théorème I.4.7]) says that the binomial functions z 7→
(
z
n

)
, n ∈ N form

an orthogonal basis of A(Zp)[r2]). Therefore, f is the limit in A(Zdp)[r2] of a sequence of polynomials in
d variables. The injectivity of the dual map D(X)[r2]→ D(X)[r1] is clear.

Lemma 1.1.2. For an open compact subset X of Qdp, the inclusion map A(X)[r1]→ A(X)[r2] is compact
for any r1 > r2 in |C×

p |p. The dual map D(X)[r2]→ D(X)[r1] is also compact.

Proof. We can assume that d = 1. The compactness of the map on functions follows from [Bel, Lemma
V.1.20]. The compactness of the map on distributions is implied from Schauder’s lemma (see [Schn,
Lemma 16.4]).

Since X is compact, the space A(X) is the increasing union of the Banach spaces A(X)[r] when r
decreases to 0, we then equip A(X) the locally convex final topology (see [Schn, §5E ]). This is the finest
locally convex topology for which all the inclusion maps A(X)[r]→ A(X) are continuous.

Definition 1.1.3. Let D(X) denote the continuous L-dual of A(X). We call it the space of p-adic
distributions on X with values in L. The value of a distribution µ ∈ D(X) at a function f ∈ A(X) is
also written by

∫
X
f(z)µ(z) or

∫
X
f(z)dµ(z).

If Y ⊂ X is an open compact subset and if µ is a distribution on X, we denote by µ|Y the restriction
of µ on Y , i.e., µ|Y is the distribution on Y given by∫

Y

f(z)µ|Y (z) :=

∫
X

1Y (z)f(z)µ(z)

for f ∈ A(Y ), where 1Y is the characteristic function of Y .
The inclusion maps A(X)[r] → A(X) induce the dual maps from D(X) to D(X)[r], so D(X) is

endowed with a family of norms {∥·∥r} for r ∈ |C×
p |p.

Proposition 1.1.4. The family of norms {∥·∥r} makes D(X) into a Fréchet space. Moreover, D(X) is
canonically isomorphic (as topological vector spaces) to the projective limit of D(X)[r]’s endowed with its
locally convex inductive limit topology. The natural maps D(X) → D(X)[r2] → D(X)[r1] are injective
for any r1 > r2 in |C×

p |p.

Proof. The first two statements are direct applications of the conclusions ii., iii. in [Schn, Prop. 16.10].
The assumptions of that proposition are satisfied since A(X) is an increasing union of A(X)[r]’s when
r decreases to 0, and the inclusion maps A(X)[r1] → A(X)[r2] for r1 > r2 are all compact by Lemma
1.1.2.
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The natural map D(X)[r2] → D(X)[r1] for r1 > r2 is injective by Lemma 1.1.1. Since D(X) is the
projective limit ofD(X)[r]’s for r ∈ |C×

p |p and the transition maps are injective, the mapD(X)→ D(X)[r]
is injective for any r.

Definition 1.1.5. For u ≥ 0, a distribution µ ∈ D(X) is said to be u-admissible (or u-tempered) or of
order (of growth) ≤ u if there exists a constant C > 0 such that ∥µ∥r ≤ Cr−u as r → 0+. Equivalently,
µ has order ≤ u if there is C > 0 such that for any r ∈ |C×

p |p with r ≤ 1 and any f ∈ A(X)[r], we have

|µ(f)|p ≤ Cr
−u∥f∥r. (1.4)

A distribution of order ≤ 0 is called a measure. The set of u-admissible distributions on X is denoted by
D(X)≤u.

Lemma 1.1.6. A distribution µ ∈ D(X) has order ≤ u if and only if there exists C > 0 such that µ
satisfies (1.4) for any r ∈ p−N and any f ∈ A(X)[r].

Proof. Suppose µ satisfies (1.4) for any r ∈ p−N. Consider r ∈ |C×
p |p with r ≤ 1. Take n ∈ N such that

p−n−1 < r ≤ p−n. If f ∈ A(X)[r], then f ∈ A(X)[p−n−1], so

|µ(f)|p ≤ Cp(n+1)u∥f∥p−n−1 ≤ Cp(n+1)u∥f∥r ≤ Cpur−u∥f∥r

(the first inequality follows from (1.4)). Therefore, ∥µ∥r ≤ Cpur−u for any r ≤ 1, so µ has order ≤ u.

1.2 p-adic distributions on Zp
In this section we turn our attention to distributions on Zp which is an open compact subset of Qp.

We introduce an action of the monoid Σ0(p) on distributions in Subsection 1.2.1. In Subsection 1.2.2, we
discuss admissible distributions and prove an useful lemma on a criterion for the vanishing of admissible
distributions on Z×

p which will be used in the proof of the functional equation of p-adic L-functions
attached to automorphic representations in Chapter 5 (see Lemma 1.2.5). The rest of the section is
devoted to the Amice-Vélu and Mellin transforms of distributions on Zp.

In this section let k be an integer .

1.2.1 Actions of Σ0(p)

We set

Σ0(p) =

{
γ =

(
a b
c d

)
∈ M2(Zp) : p ∤ a, p | c, ad− bc ̸= 0

}
.

For a matrix γ =

(
a b
c d

)
∈ GL2(Qp), we put

γ∗ = det(γ) · γ−1 =

(
d −b
−c a

)
.

Define the right weight k action of Σ∗
0(p) = {γ∗, γ ∈ Σ0(p)} on A(Zp) by

f|kγ∗(z) = (a− cz)kf
(dz − b
a− cz

)
, (1.5)

where γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A(Zp). Note that a− cz ∈ Z×

p since p|c and p ̸ | a.

Then Σ0(p) acts on A(Zp) on the left and on D(Zp) on the right, given by

γ ·k f = f|kγ∗ = (a− cz)kf
(dz − b
a− cz

)
, (1.6)

µ|kγ(f) = µ(γ ·k f) = µ(f|kγ∗) = µ
(
(a− cz)kf

(dz − b
a− cz

))
, (1.7)

where µ ∈ D(Zp), f ∈ A(Zp), γ =

(
a b
c d

)
∈ Σ0(p). We denote Ak(Zp) (resp. Dk(Zp)) the space A(Zp)

(resp. D(Zp)) endowed with the above weight k action of Σ0(p).
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For k ∈ N, let Pk denote the space of polynomials of degree ≤ k in one variable with coefficients in
L, and denote by Vk its L-dual. Since Pk is embedded in Ak(Zp) which is stable by the action (1.6) of
Σ0(p), the natural map Dk(Zp)→ Vk given by the restriction of distributions to Pk is Σ0(p)-equivariant,
where Vk is endowed with action (1.7). Note that the action of Σ0(p) on Pk and Vk can be extended to
an action of GL2(Qp).

Proposition 1.2.1 ([Bel, Prop. and Def. V.4.3]). The formula (1.6) defines a continuous weight k
action of Σ0(p) on A(Zp)[r] for any r ∈ |C×

p |p. If pn divides exactly det γ and pnr < p, then for any
f ∈ A(Zp)[r], the function γ ·k f belongs to A(Zp)[pnr]. Moreover, ∥γ ·k f∥pnr = ∥f∥r. In particular, if
det γ = 1 and r < p, then γ acts by isometry on A(Zp)[r]. We denote by Ak(Zp)[r] the space A(Zp)[r]
endowed with this weight k action of Σ0(p).

Corollary 1.2.2 ([Bel, Proposition V.4.5]). The formula (1.7) defines a continuous weight k action of
Σ0(p) on D(Zp)[r] for any r ∈ |C×

p |p. Assume r < p. Let µ ∈ D(Zp)[r], γ ∈ Σ0(p) such that pn|det γ.

Then µ|kγ ∈ D(Zp)[r/pn]. If pn divides exactly det γ, then moreover
∥∥µ|kγ

∥∥
r/pn

= ∥µ∥r. In particular,

if det γ = 1, then γ acts by isometry on D(Zp)[r]. We denote by Dk(Zp)[r] the space D(Zp)[r] endowed
with this weight k action of Σ0(p).

Remark 1.2.3. For r1 > r2 in |C×
p |p, the inclusion maps A(Zp)[r1]→ A(Zp)[r2]→ A(Zp) and its duals

D(Zp)→ D(Zp)[r2]→ D(Zp)[r1] are Σ0(p)-equivariant.

1.2.2 Admissible distributions

We now investigate more deeply admissible distributions on Zp. Let u ≥ 0 and given a distribution
µ ∈ D(Zp) of order ≤ u (see Definition 1.1.5). For any a ∈ Zp, n, j ∈ N, in (1.4) if we take f to be the
function 1a+pnZp

· (z − a)j which belongs to A(Zp)[p−n], then there exists C > 0 such that∣∣µ(1a+pnZp · (z − a)j)
∣∣
p
≤ Cpn(u−j).

Conversely, if there is C > 0 such that µ satisfies this inequality for any a ∈ Zp, n, j ∈ N, then µ has
order ≤ u.

The following result says that an admissible distribution on Zp is uniquely determined by its values
on locally polynomial functions of bounded degree (the bound depends only on the order of distribution).

Theorem 1.2.4 (Vishik, Amice-Vélu). Let L be a finite extension of Qp and u ≥ 0.

i) Let µ ∈ D(Zp) be a distribution of order ≤ u with values in L and N be an integer greater or equal
to the integral part of u. Then µ is uniquely determined by the linear forms for a ∈ Zp and n ∈ N:

iµ,a+pnZp : PN (L)→ L

P 7→
∫
a+pnZp

P (z)dµ(z).

Here PN (L) is the space of polynomials of degree less than N with coefficients in L.

ii) Conversely, suppose we are given, for every disc a+pnZp in Zp, a linear form ia+pnZp
: PN (L)→ L

satisfying the additivity relation (for all a ∈ Zp, n ∈ N):

ia+pnZp
=

p−1∑
i=0

ia+pni+pn+1Zp
,

and suppose there exist constants C > 0 and u ≥ 0 such that for every a ∈ Zp, j, n ∈ N with j ≤ N :∣∣ia+pnZp

(
(z − a)j

)∣∣
p
≤ Cpn(u−j).

Then there exists a unique distribution µ on Zp of order ≤ u such that iµ,a+pnZp = ia+pnZp , and
for any n ∈ N one has

∥µ∥p−n ≤ Cpnu.

Proof. See [Bel, Theorem V.2.13].
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We now prove an useful lemma about a criterion for the vanishing of admissible distributions on Z×
p ,

this is a generalization of [Vis, Lemma 2.10] (compare with the part i) of the above theorem).

Lemma 1.2.5. Let u ≥ 0, let µ be a distribution of order ≤ u on Z×
p such that µ(χzj) = 0 for any

integer 0 ≤ j ≤ u and for all but finitely many Dirichlet characters χ : Z×
p → C×

p . Then µ = 0.

Proof. Denote k = [u] the integer part of u. Suppose that µ(χzj) = 0 for 0 ≤ j ≤ k and for all characters
χ of conductor ≥ pn0+1 for some n0 ∈ N. Then for any 0 ≤ j ≤ k and any n ≥ n0, we have∑

χ∈(Z/pnZ)∨
µ(χzj) =

∑
cond(χ)≤pn

µ(χzj) =
∑

cond(χ)≤pn0

µ(χzj) =
∑

χ∈(Z/pn0Z)∨
µ(χzj), (1.8)

where (Z/pnZ)∨ is the set of characters on (Z/pnZ)× with values in C×
p , and similar for (Z/pn0Z)∨.

On the other hand, ∑
χ∈(Z/pnZ)∨

µ(χzj) = µ
( ∑
χ∈(Z/pnZ)∨

χzj
)
= µ

(( ∑
χ∈(Z/pnZ)∨

χ
)
zj
)

= µ
(
pn−1(p− 1)11+pnZp

· zj
)

since
∑

χ∈(Z/pnZ)∨
χ(z) = 0 if z ̸≡ 1(mod pn) and

∑
χ∈(Z/pnZ)∨

χ(1) = |(Z/pnZ)×| = pn−1(p − 1). So for any

n ≥ n0 we obtain

pn−1(p− 1)µ
(
11+pnZp · zj

)
= pn0−1(p− 1)µ

(
11+pn0Zp · zj

)
,

hence µ
(
11+pnZp

· zj
)
= pn0−nµ

(
11+pn0Zp

· zj
)
for any n ≥ n0.

For each a ∈ Z×
p , since µ

(
χ
(
z
a

)
zj
)
= χ(a)−1µ(χzj) = 0 if cond(χ) > pn0 , we replace χ by χ

(
z
a

)
in

(1.8) to get

µ
(
1a+pnZp · zj

)
= pn0−nµ

(
1a+pn0Zp · zj

)
(1.9)

for any n ≥ n0 and 0 ≤ j ≤ k.
Since µ has order ≤ u, there exists a constant C > 0 such that for any a ∈ Z×

p and n, j ∈ N:

|µ(1a+pnZp
· (z − a)j)|p ≤ Cpn(u−j).

Take j = k, we have

|µ(1a+pnZp · (z − a)k)|p ≤ Cpn(u−k).

Moreover, for any a ∈ Z×
p and n ≥ n0, we have

µ
(
1a+pnZp

· (z − a)k
)
= µ

(
1a+pnZp

k∑
j=0

(
k

j

)
(−a)k−jzj

)

=

k∑
j=0

(
k

j

)
(−a)k−jpn0−nµ

(
1a+pn0Zp

· zj
)

(by (1.9))

= pn0−nµ
(
1a+pn0Zp · (z − a)k

)
.

So |µ(1a+pn0Zp
· (z − a)k)|p ≤ Cpn0+n(u−k−1) for any a ∈ Z×

p and n ≥ n0. Since u− k − 1 < 0, we imply

that µ
(
1a+pn0Zp

· (z − a)k
)
= 0 for any a ∈ Z×

p . Replace a by a + pn0b for b ∈ Zp with the note that
a+ pn0b+ pn0Zp = a+ pn0Zp, we obtain

µ
(
1a+pn0Zp

· (z − a− pn0b)k
)
= 0.

Therefore,

0 = µ
(
1a+pn0Zp

k∑
j=0

(
k

j

)
(−pn0b)j(z − a)k−j

)

=

k∑
j=0

(
k

j

)
(−pn0)jµ

(
1a+pn0Zp

· (z − a)k−j
)
· bj
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for any b ∈ Zp. Since the polynomial
k∑
j=0

(
k
j

)
(−pn0)jµ

(
1a+pn0Zp

· (z − a)k−j
)
Xj has infinitely many zeros

X ∈ Zp, it must be zero. We imply that

µ
(
1a+pn0Zp

· (z − a)j
)
= 0

for any a ∈ Z×
p and 0 ≤ j ≤ k, so µ

(
1a+pn0Zp · zj

)
= 0 for any a ∈ Z×

p and 0 ≤ j ≤ k since zj is a linear

combination of (z − a)i for 0 ≤ i ≤ j. By (1.9), we obtain

µ
(
1a+pnZp

· zj
)
= 0

for any a ∈ Z×
p , n ≥ n0 and 0 ≤ j ≤ k, hence for any n ∈ N since every characteristic function 1a+pnZp

for 0 ≤ n < n0 is the sum of characteristic functions of smaller discs b + pmZp for m ≥ n0. Therefore,
µ vanishes on the space of locally polynomial functions of degree ≤ k on Z×

p . Since µ has order ≤ u, we
conclude that µ = 0 by Theorem 1.2.4i).

1.2.3 Amice transform

Given µ ∈ D(Zp), we associate its Amice transform Aµ(T ) which is a formal power series defined by

Aµ(T ) =

+∞∑
n=0

(∫
Zp

(
z

n

)
dµ(z)

)
Tn =

∫
Zp

(1 + T )zdµ(z).

We now describe explicitly the set of Amice transforms of all elements in D(Zp).
Denote by R the L-algebra of formal power series with coefficients in L which converge on the open

unit disc of Cp.

Proposition 1.2.6. The map µ 7→ Aµ(T ) is an isomorphism of L-vector spaces D(Zp) and R.

Proof. Given µ ∈ D(Zp), we prove Aµ(T ) ∈ R.
Let T0 ∈ Cp such that |T0|p < 1, then vp(T0) > 0. Take h ∈ N such that vp(T0) >

1
ph(p−1)

. For

n ∈ N, the binomial function z 7→
(
z
n

)
has p−h-norm

∣∣[ n
ph
]!
∣∣−1

p
by [Colm, Théorème I.4.7], where [·]

denotes the integer part. In the view of µ as a distribution in D(Zp)[p−h], there exists C > 0 such that
|µ(f)|p ≤ C∥f∥p−h for any f ∈ A(Zp)[p−h]. Therefore,∣∣∣ ∫

Zp

(
z

n

)
dµ(z)

∣∣∣
p
=
∣∣∣µ((z

n

)) ∣∣∣
p
≤ C

∥∥∥(z
n

)∥∥∥
p−h

= C
∣∣∣[ n
ph
]
!
∣∣∣−1

p
= Cp

vp
(
[ n

ph
]!
)
.

Since vp
(
[ n
ph
]!
)
=

[ n

ph
]−Sp

(
[ n

ph
]
)

p−1 ≤ n
ph(p−1)

with Sp
(
[ n
ph
]
)
is the sum of digits of expansion of [ n

ph
] in the

base p, we obtain ∣∣∣ ∫
Zp

(
z

n

)
dµ(z)

∣∣∣
p
≤ Cp

n

ph(p−1) .

So
∣∣( ∫

Zp

(
z
n

)
dµ(z)

)
Tn0
∣∣
p
≤ Cp

n

ph(p−1) |T0|np = Cp
n
(

1

ph(p−1)
−vp(T0)

)
−→

n→+∞
0, hence Aµ(T ) converges at T0.

We conclude that Aµ(T ) ∈ R.
For each h ∈ N the binomial functions

(
z
n

)
with n ∈ N form an orthogonal basis of A(Zp)[p−h] by

ibid., so µ is determined by its values at these functions. Hence the map µ 7→ Aµ(T ) is injective.

Conversely, given an element A(T ) =
+∞∑
n=0

anT
n ∈ R, we prove that the linear form µA on A(Zp)

given by µA
((
z
n

))
= an for each n ∈ N is a distribution, i.e., µA is continuous on A(Zp). Since A(Zp)

has the locally convex final topology induced by the inclusion maps A(Zp)[r] → A(Zp) for r ∈ |C×
p |p, it

suffices to show that µA is continuous on A(Zp)[p−h] for any h ∈ N. Since the set of functions [ n
ph
]!
(
z
n

)
for n ∈ N is an orthonormal basis of A(Zp)[p−h] by ibid., we need to show the existence of a constant
C > 0 (depends on h) such that∣∣∣µA([ n

ph
]
!

(
z

n

)) ∣∣∣
p
=
∣∣[ n
ph
]
!
∣∣
p
|an|p ≤ C
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for all n ∈ N. This is equivalent to

|an|p ≤ C
∣∣[ n
ph
]
!
∣∣−1

p
= Cp

[ n
ph

]−Sp([ n
ph

])

p−1 . (1.10)

Since the formal power series
+∞∑
n=0

anT
n converges in the open unit disc of Cp, for any r ∈ |C×

p |p with

r < 1, we have |an|p · rn → 0 as n → +∞, so |an|p = o(r−n) for any r < 1. Take r ∈ |C×
p |p such that

1 < r−1 < p
1
2

1

ph(p−1) , we imply the existence of a constant C satisfying (1.10).

We now find the set of Amice transforms of admissible distributions on Zp. For u ≥ 0, denote by

R≤u ⊂ R the subset consisting of formal power series
+∞∑
n=0

anT
n such that |an|p = O(nu).

Proposition 1.2.7. A distribution µ ∈ D(Zp) is of order ≤ u if and only if its Amice transform belongs
to R≤u.

Proof. Let µ ∈ D(Zp). By Lemma 1.1.6 and [Colm, Théorème I.4.7], µ has order ≤ u if and only if there
exists C > 0 such that for any n, h ∈ N:∣∣∣µ([ n

ph
]
!

(
z

n

)) ∣∣∣
p
≤ Cphu. (1.11)

Suppose µ has order ≤ u. Then there is C > 0 such that∣∣∣µ((z
n

)) ∣∣∣
p
≤ C

∣∣[ n
ph

]!
∣∣−1

p
phu = Cp

[ n
ph

]−Sp([ n
ph

])

p−1 phu ≤ Cp
n

ph(p−1)
+hu

for any n, h ∈ N. Take h = [ lognlog p ] we imply that
∣∣µ ((zn)) ∣∣p = O(nu). Therefore, Aµ(T ) ∈ R≤u.

Conversely, suppose Aµ(T ) ∈ R≤u. Take C1 > 0 such that
∣∣µ ((zn)) ∣∣p ≤ C1n

u for all n ∈ N. The real

function x ∈ R+ 7→ g(x) = n
2x(p−1) +u

log x
log p attains its minimum at x = n log p

2u(p−1) with the value u logn
log p +C2

for C2 = u
log p +

u
log p [log log p− log(2u(p− 1))]. For n, h ∈ N, we have

∣∣∣µ([ n
ph
]
!

(
z

n

)) ∣∣∣
p
≤ C1

∣∣[ n
ph
]
!
∣∣
p
· nu = C1 · p−

[ n
ph

]−Sp([ n
ph

])

p−1 nu ≤ C1 · p−
n
ph

−1−Sp([ n
ph

])

p−1 nu

= C1 · p
1

p−1 · p−
n

2ph(p−1) · p
Sp([ n

ph
])− n

2ph

p−1 · pu
log n
log p

= C1 · p
1

p−1 · p
Sp([ n

ph
])− n

2ph

p−1 · puh−g(p
h)+u log n

log p

≤ C1 · p
1

p−1 · p
Sp([ n

ph
])− n

2ph

p−1 · puh−C2

(the last inequality comes from the fact g(ph) ≥ u logn
log p + C2 for any h ∈ N). Since Sp(a) − a

2 ≤
p−1
2 for

any a ∈ N, we get
∣∣µ([ n

ph

]
!
(
z
n

)) ∣∣
p
≤ Cphu with C = C1 · p

1
p−1+

1
2−C2 , for any n, h ∈ N. Since µ satisfies

(1.11), it has order ≤ u.

1.2.4 Mellin transform

We now study the Z×
p -part (i.e. the restriction to Z×

p ) of distributions on Zp. Since Z×
p is compact and

abelian, any locally analytic function on Z×
p is an infinite linear combination of characters Z×

p → C×
p , so

the restriction to Z×
p of a distribution on Zp is uniquely determined by its values on the set of characters

Z×
p → C×

p .

Definition 1.2.8. The (p-adic) weight spaceW is the rigid analytic space Homcont(Z×
p ,Gm) of continuous

group homomorphisms from Z×
p to the multiplicative group Gm. If A is a Banach algebra over Qp, the

set of A-points of W is given by

W(A) = Homcont(Z×
p , A

×).
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We describe the rigid analytic structure of W by considering its Cp-points. Let q = p if p ̸= 2 and
q = 4 if p = 2. There is a canonical isomorphism

Z×
p
∼= (Z/qZ)× × (1 + qZp)

z 7→ (ω(z), ⟨z⟩p),

where ω(z) is the Teichmüller lift of z mod p, that is the unique element in Z×
p congruent to z modulo p

such that ω(z)ϕ(q) = 1, and ⟨z⟩p = z/ω(z).
From this isomorphism, every continuous character χ : Z×

p → C×
p is given by a character χ1 :

(Z/qZ)× → C×
p and a continuous character χ2 : 1 + qZp → C×

p . There are finitely many choices of χ1.
We consider χ2. The multiplicative group 1 + qZp is isomorphic to the additive group Zp by the p-adic
logarithm map logp, so 1 + qZp is procyclic with a generator γ. Hence χ2 is determined uniquely by

its image at γ. Since χ2 is continuous and γp
n → 1 as n → +∞, it follows that χ2(γ)

pn → 1 and this
condition is equivalent to |χ2(γ) − 1|p < 1 (see [Schi, Theorem 32.2]). So χ2 corresponds to an element
in the open disc B(1, 1)(Cp). Therefore, W(Cp) is the finite disjoint union of components indexed by
characters (Z/qZ)× → C×

p , each of them is homeomorphic to B(1, 1)(Cp). This identification depends
on the choice of uniformizer γ ∈ 1 + qZp.

Lemma 1.2.9 ([Bel, Theorem V.3.4]). Any continuous character Z×
p → C×

p is locally analytic as a
function on Z×

p .

We can see each p-adic distribution on Z×
p as a function on W.

Definition 1.2.10. If µ ∈ D(Zp) with values in L, we call its p-adic Mellin transform the function Mµ

on W(L) given by: if χ ∈ W(L) = Homcont(Z×
p , L

×), putting

Mµ(χ) =

∫
Z×
p

χ(z)dµ|Z×
p
(z).

We say that a distribution µ ∈ D(Zp) has support in Z×
p if µ = µ|Z×

p
, i.e. µ|pZp

= 0. The following

result says that the map µ 7→Mµ gives a characterization of distributions on Zp supported in Z×
p .

Proposition 1.2.11 (Vishik, Amice-Vélu). The p-adic Mellin transform gives a homeomorphism of
Fréchet spaces between the space of L-valued distributions on Zp with support in Z×

p and the space R′ of
L-analytic functions on the weight space W(L).

Proof. This is Proposition II.2.2 in [AV], we explain here why Mellin transforms are analytic functions
on the weight space. Let µ ∈ D(Zp) with support in Z×

p . In the view of the rigid analytic structure of
W, consider an arbitrary component B(1, 1)(L) of W(L) indexed by a character κ : (Z/qZ)× → L×, for
each element x belonging to this component, denote by χx the unique character 1 + qZp → L× given by
χx(γ) = x, where γ is a fixed generator of 1 + qZp. Consider the function x ∈ B(1, 1)(L) 7→ Mµ(x) =∫
Z×
p
(κχx)(z)dµ|Z×

p
(z). For every R ∈ |C×

p |p such that R < 1, we show that Mµ(x) is analytic on the

closed disc D(1, R) ⊂ L.

Lemma 1.2.12. The expression expp(logp(x)logp(z)/logp(γ)) defines an analytic function in two vari-

ables x ∈ L×, z ∈ Z×
p such that |x−1|p < 1, |z−1|p < 1, |logp(x)logp(z)|p < p−1/(p−1)|logp(γ)|p. Moreover,

for x fixed in L satisfying |x − 1|p < 1, we get an analytic function in z which equals χx for z ∈ Z×
p

sufficiently close to 1.

Proof. See the proof of [Bel, Theorem V.3.4].

From this lemma, we deduce that the function (κχx)(z) is analytic on x ∈ D(1, R) ⊂ L and on z
belonging to closed discs of radius p−m in Z×

p for m ∈ N big enough depending only on R (note that

|logp(z)|p = |z − 1|p if |z − 1|p < p
−1
p−1 by [Bel, (V.3.2)]). We have

∫
Z×
p

(κχx)(z)dµ|Z×
p
(z) =

pm−1∑
a=1

∫
a+pmZp

(κχx)(z)dµ|Z×
p
(z) =

pm−1∑
a=1

κ(a)

∫
a+pmZp

χx(z)dµ|Z×
p
(z).

For each 1 ≤ a ≤ pm− 1 with (a, p) = 1, since the function (x, z) 7→ χx(z) is analytic on x ∈ D(1, R) ⊂ L

and on z ∈ a + pmZp ⊂ Z×
p , writing the restriction of χx(z) on a + pmZp by

+∞∑
n=0

αn,a(z)(x − 1)n where
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αn,a(z) is analytic on a+p
mZp (seen as a function in A(Z×

p )[p
−m] by extending by zero outside a+pmZp)

such that ∥αn,a∥p−mRn → 0 when n→ +∞ for any a. Then

Mµ(x) =

pm−1∑
a=1

[
κ(a)

+∞∑
n=0

(∫
a+pmZp

αn,a(z)dµ|Z×
p
(z)
)
(x− 1)n

]
=

+∞∑
n=0

bn(x− 1)n

for x ∈ D(1, R), where bn =
pm−1∑
a=1

κ(a)
∫
a+pmZp

αn,a(z)dµ|Z×
p
(z). It follows that

|bn|p ·Rn ≤ ∥µ∥p−m ·max {∥αn,a∥p−m : 1 ≤ a ≤ pm − 1} ·Rn → 0 when n→ +∞,

so the Mellin transform Mµ of µ is analytic on D(1, R). Moreover,

∥Mµ(x)|D(1,R)∥R = sup
n∈N
|bn|p ·Rn ≤ ∥µ∥p−m · sup {∥αn,a∥p−mRn : 1 ≤ a ≤ pm − 1, n ∈ N}

= O(∥µ∥p−m)

for any distribution µ, where R ∈ |C×
p |p with R < 1 is arbitrary and m ∈ N big enough depending on R.

Hence the map µ 7→Mµ is continuous between Fréchet spaces.

We describe the Mellin transform of admissible distributions. Let u ≥ 0 serving as the order of growth.

Definition 1.2.13. An analytic function f(x) =
+∞∑
n=0

an(x−1)n on B(1, 1) has order ≤ u if |an|p = O(nu).

A function on the weight space W has order ≤ u if its restrictions to components of W isomorphic to
B(1, 1) have order ≤ u.

If u ∈ N, then an analytic function f on B(1, 1) has order ≤ u if and only if sup
|x−1|p≤R

|f(x)|p =

O( sup
|x−1|p≤R

|logp(x)u|p) as R → 1−. The following result is the content of Proposition II.2.4 in [AV], see

[Vis, Theorem 2.3] for the proof of one direction.

Proposition 1.2.14 (Vishik, Amice-Vélu). A distribution µ on Z×
p has order ≤ u if and only if Mµ has

order ≤ u.



Chapter 2

p-adic distributions on P1(Qp)

In this chapter, we consider p-adic distributions on the topological space P1(Qp) which is no longer
an open compact subset of Qdp for some d as in Chapter 1. The consideration of P1(Qp) is more general
than that of Zp since P1(Qp) can be seen as a gluing of two copies of Zp overlapping on Z×

p , where
one copy is the neighborhood Zp of 0 and the other one corresponds to the neighborhood D(∞, 0) :=
{z ∈ P1(Qp), vp(z) ≤ 0} of ∞, which is isomorphic to Zp via the transformation z 7→ 1

z . We begin by
introducing the definition of certain functions and distributions on P1(Qp) in Section 2.1. Then we define
an action of GL2(Qp) on these functions and distributions, and establish some results about an exact
sequence and the zeroth homology group of congruence subgroups of SL2(Z) involving distributions on
P1(Qp) insprired by those for distributions on Zp (see Proposition 2.2.4 and Theorem 2.2.11) in Section
2.2. We finish the chapter by discussing the notion of admissible distributions on P1(Qp) in Section 2.3.

We fix an integer k throughout this chapter. We extend the p-adic valuation vp to P1(Qp) by defining
vp(∞) = −∞.

2.1 Definition and the first results

In this section, we define some kind of functions and distributions on P1(Qp) due to Pierre Colmez.
We will see that these spaces of functions and distributions have a natural structure of locally convex
topology which makes them into Fréchet spaces.

Definition 2.1.1 (Colmez). An L-valued function f on P1(Qp) is said to be meromorphic at infinity

with a pole of order ≤ k if f is of the form f(z) =
k∑

i=−∞
aiz

i on a neighborhood of ∞, where the sum

−1∑
i=−∞

aiz
i converges in this neighborhood. In other words, f is meromorphic at infinity with a pole of

order ≤ k if the function zkf( 1z ) converges on a neighborhood of 0.

Let Ak(P1, L) denote the space of L-valued functions f on P1(Qp) such that f is locally analytic on
Qp and meromorphic with a pole of order ≤ k at ∞. If the role of L is less important, we will omit it
from notations, e.g., we write simply Ak(P1) for Ak(P1, L).

Remark 2.1.2. The condition
−1∑

i=−∞
aiz

i converges in a neighborhood of ∞ means there is some R > 0

such that
−1∑

i=−∞
aiz

i converges in {z ∈ Cp, |z|p ≥ R}, this is equivalent to |ai|pRi → 0 as i → −∞ (so

that the function
−1∑

i=−∞
ai
(
1
z

)i
=

+∞∑
n=1

a−nz
n converges in {z ∈ Cp, |z|p ≤ 1

R}).

Definition 2.1.3. For each r ∈ |C×
p |p with r < 1, denote Ak(P1)[r] ⊂ Ak(P1) the subspace of functions

f such that f is analytic on every closed disc of radius r in Qp and f is of the form
k∑

i=−∞
aiz

i on the

neighborhood {z ∈ P1(Qp), |z|p ≥
1
r} of ∞.

14
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Remark 2.1.4. If r ∈ |C×
p |p, r < 1 and if a ∈ Qp such that |a|p < 1

r (resp. |a|p ≥ 1
r ), then the closed

disc D(a, r) in Qp is contained in {z ∈ Qp, |z|p < 1
r} (resp. {z ∈ Qp, |z|p ≥ 1

r}) since if z ∈ D(a, r), then
|z − a|p ≤ r < 1

r , so |z|p <
1
r if |a|p < 1

r , and |z|p = |a|p ≥
1
r if |a|p ≥ 1

r .

Proposition 2.1.5. For r ∈ |C×
p |p, r < 1, a function f belongs to Ak(P1)[r] if and only if f is analytic

on every closed disc of radius r in {z ∈ Qp, |z|p < 1
r} and f is of the form

k∑
i=−∞

aiz
i converging on

{z ∈ P1(Qp), |z|p ≥
1
r}.

Proof. It suffices to prove that if f(z) =
k∑

i=−∞
aiz

i for z ∈ P1(Qp), |z|p ≥
1
r with r < 1, then f is analytic

on every closed disc of radius r in {z ∈ Qp, |z|p ≥
1
r}.

We can assume that k = −1. Consider a closed disc D(a, r) in {z ∈ Qp, |z|p ≥
1
r}. For i ∈ Z<0, the

function zi is analytic on D(a, r) with the Taylor expansion

zi =
( 1

(z − a) + a

)−i
=
( 1

a( z−aa + 1)

)−i
=
(1
a

+∞∑
n=0

(
− z − a

a

)n)−i
= ai

+∞∑
n=0

(
n− i− 1

−i− 1

)(
− z − a

a

)n
, (2.1)

note that | z−aa |p ≤
r

1/r = r2 < 1. We need the folowing lemma given in [Was, page 53].

Lemma 2.1.6. Let Pm(X) =
+∞∑
n=0

an,mX
n,m = 1, 2, ... be a sequence of power series which converge in

a fixed subset D of Cp and suppose

i) an,m → an,0 as m→ +∞ for each n, and

ii) for each X ∈ D and every ε > 0 there exists an n0 = n0(X, ε) such that |an,mXn|p < ε for all
n ≥ n0 and uniformly in m.

Then lim
m→+∞

Pm(X) = P0(X) =
+∞∑
n=0

an,0X
n for all X ∈ D.

Applying this lemma for Pm(z) =
−1∑

i=−m
aiz

i,m = 1, 2, ... with the expansion (2.1) of zi on the set D =

D(a, r). The coefficient of (z−a)n in the expansion of Pm(z) is an,m =
−1∑

i=−m
aia

i
(
n−i−1
−i−1

) (
− 1
a

)n
. For fixed

n, the sequence {an,m}∞m=1 converges to
−1∑

i=−∞
aia

i
(
n−i−1
−i−1

) (
− 1
a

)n
as m → +∞ since

∣∣aiai(n−i−1
−i−1

)∣∣
p
≤

|aiai|p → 0 as i→ −∞ (the limit is 0 since the sum
−1∑

i=−∞
aiz

i converges on {z ∈ P1(Qp), |z|p ≥ 1
r}). The

condition i) of Lemma 2.1.6 is satisfied.
Fix z ∈ D(a, r) and ε > 0, we have

|an,m(z − a)n|p =
∣∣ −1∑
i=−m

aia
i

(
n− i− 1

−i− 1

)(
− z − a

a

)n∣∣
p
≤ sup

i<0

{
|ai|p

(1
r

)i}∣∣z − a
a

∣∣n
p
< ε

for n big enough and for every m since | z−aa |p ≤
r

1/r = r2 < 1 and sup
i<0
|ai|p

(
1
r

)i
< +∞. The condition

ii) of Lemma 2.1.6 is satisfied. We deduce that the function
−1∑

i=−∞
aiz

i = lim
m→+∞

Pm(z) is analytic on

D(a, r).

If f ∈ Ak(P1)[r], then f is of the form
k∑

i=−∞
aiz

i on {z ∈ P1(Qp), |z|p ≥ 1
r}, so the function g(z) =

zkf
(
1
z

)
is analytic on the closed disc D(0, r) ⊂ Qp. We identify the restriction of f to {z ∈ P1(Qp), |z|p ≥
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1
r} with the function g on D(0, r). On the open disc B(0, 1r ) ⊂ Qp, the function f is r-analytic. There is
a canonical isomorphism of vector spaces:

Ak(P1)[r] ∼= A(D(0, r))[r]×A
(
B
(
0,

1

r

))
[r] (2.2)

f 7→
(
zkf

(1
z

)
|D(0,r)

, f|B(0, 1r )

)
.

We give Ak(P1)[r] the r-supremum norm ∥ · ∥r induced by that of the Banach space in the right hand
side of this isomorphism, i.e., for f ∈ Ak(P1)[r] we define

∥f∥r = max
{∥∥zkf(1

z

)
|D(0,r)

∥∥
r
,
∥∥f|B(0, 1r )

∥∥
r

}
. (2.3)

Then Ak(P1)[r] becomes a Banach space. Let Dk(P1)[r] be the continuous L-dual of Ak(P1)[r] endowed
with the dual norm which we still denote by ∥ · ∥r, so Dk(P1)[r] is also a Banach space.

Proposition 2.1.7. If r1, r2 ∈ |C×
p |p such that 1 > r1 > r2, then Ak(P1)[r1] ⊂ Ak(P1)[r2] and the

inclusion map Ak(P1)[r1] → Ak(P1)[r2] is continuous. The space Ak(P1) is the union of the subspaces
Ak(P1)[r] for r ∈ |C×

p |p, r < 1.

Proof. Suppose f ∈ Ak(P1)[r1], then f is r1-analytic on Qp and f is of the form
k∑

i=−∞
aiz

i on {z ∈

P1(Qp), |z|p ≥ 1
r1
}, hence on {z ∈ P1(Qp), |z|p ≥ 1

r2
} since 1

r2
> 1

r1
. The condition f is r1-analytic on Qp

implies that f is r2-analytic on Qp. Therefore, f ∈ Ak(P1)[r2]. So Ak(P1)[r1] is contained in Ak(P1)[r2].
We prove ∥f∥r2 ≤ 1

rk2
|f∥r1 for any f ∈ Ak(P1)[r1]. Firstly,

∥∥zkf(1
z

)
|D(0,r2)

∥∥
r2
≤
∥∥zkf(1

z

)
|D(0,r1)

∥∥
r1

since r2 < r1. Secondly, on the open disc B
(
0, 1

r1

)
of Qp, we have∥∥f|B(0, 1

r1
)

∥∥
r2
≤ ∥f|B(0, 1

r1
)∥r1 .

Finally, if a ∈ Qp such that 1
r1
≤ |a|p < 1

r2
and if z ∈ Cp with |z − a|p ≤ r2, then |z − a|p ≤ r2 < 1 <

1
r1
≤ |a|p, so |z|p = |a|p, hence 1

r1
≤ |z|p < 1

r2
. We get

∥f|{z∈Qp,
1
r1

≤|z|p< 1
r2

}∥r2 = sup
{
|f(z)|p : z ∈ Cp,∃ a ∈ Qp such that

1

r1
≤ |a|p <

1

r2
, |z − a|p ≤ r2

}
≤ sup

{
|f(z)|p : z ∈ Cp,

1

r1
≤ |z|p <

1

r2

}
= sup

{∣∣f(1
z

)∣∣
p
: z ∈ Cp, r2 < |z|p ≤ r1

}
≤ 1

rk2
sup

{∣∣zkf(1
z

)∣∣
p
: z ∈ Cp, r2 < |z|p ≤ r1

}
≤ 1

rk2
sup

{∣∣zkf(1
z

)∣∣
p
: z ∈ Cp, |z|p ≤ r1

}
=

1

rk2

∥∥zkf(1
z

)
|D(0,r1)

∥∥
r1
.

Combining all of the cases considered above we obtain ∥f∥r2 ≤ max (1, r−k2 )∥f∥r1 = r−k2 ∥f∥r1 . We
deduce that the inclusion map Ak(P1)[r1]→ Ak(P1)[r2] is continuous.

Now consider f ∈ Ak(P1). There exists r′ ∈ |C×
p |p, r′ < 1 such that f is of the form

k∑
i=−∞

aiz
i

on {z ∈ P1(Qp), |z|p ≥ 1
r′ }, so f is analytic on every closed disc of radius r′ contained in this set by

Proposition 2.1.5. Since f is locally analytic on Qp and the set {z ∈ Qp, |z|p < 1
r′ } is compact, there

exists 0 < r < r′ such that f is analytic on every closed disc of radius r in {z ∈ Qp, |z|p < 1
r′ }. So f is

analytic on every closed disc of radius r in Qp. Moreover, f(z) =
k∑

i=−∞
aiz

i on {z ∈ P1(Qp), |z|p ≥ 1
r}

since 1
r >

1
r′ . We deduce that f ∈ Ak(P1)[r]. Therefore, Ak(P1) is the union of the subspaces Ak(P1)[r]

for r < 1.
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Definition 2.1.8. We give Ak(P1) the locally convex final topology defined by the increasing union
Ak(P1) =

⋃
r<1
Ak(P1)[r] when r decreases to 0 (see [Schn, §5E]). This is the finest locally convex topology

for which all the inclusion maps Ak(P1)[r]→ Ak(P1) are continuous. We denote Dk(P1) the continuous
L-dual of Ak(P1) and call it the space of L-valued p-adic distributions on P1(Qp).

Since the inclusion map Ak(P1)[r1] → Ak(P1)[r2] is continuous for any r1, r2 ∈ |C×
p |p such that

1 > r1 > r2, it induces the continuous L-dual map Dk(P1)[r2]→ Dk(P1)[r1] on distributions on P1(Qp).

Proposition 2.1.9. The inclusion map Ak(P1)[r1]→ Ak(P1)[r2] is compact for any r1, r2 ∈ |C×
p |p such

that 1 > r1 > r2. The dual map Dk(P1)[r2]→ Dk(P1)[r1] is also compact.

Proof. By isomorphism (2.2) every function f ∈ Ak(P1)[r1] is identified with a pair of r1-analytic functions
(f∞, f0), where f∞(z) = zkf

(
1
z

)
is defined on D(0, r1) and f0 is the restriction of f to the open disc

B(0, 1
r1
). The r1-norm of f is defined by the maximal of the r1-norms of these two functions.

Consider a bounded sequence {fn}n∈N in Ak(P1)[r1]. Since the sequence
{
zkfn

(
1
z

) }
n∈N is analytic

and bounded on D(0, r1) for r1-norm, by Lemma 1.1.2, the sequence
{
zkfn

(
1
z

)
|D(0,r2)

}
n∈N of the restric-

tion to D(0, r2) is relatively compact for r2-norm. On {z ∈ Qp, |z|p < 1
r1
} the sequence {fn} is bounded

for r1-norm. By Remark 2.1.4, if a ∈ Qp such that 1
r1
≤ |a|p < 1

r2
, and if z ∈ Cp with |z − a|p ≤ r1, then

1
r1
≤ |z|p < 1

r2
. On {z ∈ Qp, 1

r1
≤ |z|p < 1

r2
}, we have

sup {∥fn|{z∈Qp,
1
r1

≤|z|p< 1
r2

}∥r1 : n ∈ N}

= sup
{
|fn(z)|p : n ∈ N, z ∈ Cp,∃ a ∈ Qp such that

1

r1
≤ |a|p <

1

r2
, |z − a|p ≤ r1

}
≤ sup

{
|fn(z)|p : n ∈ N, z ∈ Cp,

1

r1
≤ |z|p <

1

r2

}
= sup

{∣∣fn(1
z

)∣∣
p
: n ∈ N, z ∈ Cp, r2 < |z|p ≤ r1

}
≤ 1

rk2
sup

{∣∣zkfn(1
z

)∣∣
p
: n ∈ N, z ∈ Cp, r2 < |z|p ≤ r1

}
≤ 1

rk2
sup

{∣∣zkfn(1
z

)∣∣
p
: n ∈ N, z ∈ Cp, |z|p ≤ r1

}
=

1

rk2
sup

{∥∥zkfn(1
z

)
|D(0,r1)

∥∥
r1

: n ∈ N
}
< +∞.

So the sequence {fn} is bounded for r1-norm on {z ∈ Qp, |z|p < 1
r2
}. By Lemma 1.1.2, the sequence

of restriction of fn’s to {z ∈ Qp, |z|p < 1
r2
} is relatively compact for r2-norm. We conclude that {fn}

is relatively compact as a sequence in Ak(P1)[r2]. Hence the inclusion map Ak(P1)[r1] → Ak(P1)[r2] is
compact. The compactness of the dual map on distributions follows from Schauder’s lemma.

Proposition 2.1.10. For any r1, r2 ∈ |C×
p |p such that r1 > r2, the inclusion map Ak(P1)[r1] →

Ak(P1)[r2] has dense image.

Proof. Let f ∈ Ak(P1)[r2] and ε > 0. Since f is r2-analytic on Qp, it is r2-analytic on the open
disc B

(
0, 1

r1

)
of Qp. By Lemma 1.1.1, there exists an r1-analytic function g1 on B

(
0, 1

r1

)
such that∥∥g1 − f|B(0, 1

r1
)

∥∥
r2
< ε.

Lemma 2.1.11. The transformation z 7→ 1
z is a homeomorphism between {z ∈ P1(Qp), |z|p ≥ 1

r1
} and

{z ∈ Qp, |z|p ≤ r1}. It maps {z ∈ P1(Qp), |z|p ≥ 1
r2
} onto {z ∈ Qp, |z|p ≤ r2} and maps each closed disc

D(a, r2) ⊂ {z ∈ Qp, 1
r1
≤ |z|p < 1

r2
} onto the closed disc D

(
1
a ,

r2
|a|2p

)
contained in {z ∈ Qp, r2 < |z|p ≤ r1},

where r1, r2 ∈ |C×
p |p such that 1 > r1 > r2. We have the similar statements if we take the variable z in

Cp, not only in Qp.

Proof. Suppose a ∈ Qp such that 1
r1
≤ |a|p < 1

r2
and z ∈ D(a, r2) (z ∈ Cp or Qp). By Remark 2.1.4,

|z|p = |a|p. We have ∣∣∣1
z
− 1

a

∣∣∣
p
=
|z − a|p
|az|p

=
|z − a|p
|a|2p

≤ r2
|a|2p

,

so 1
z ∈ D

(
1
a ,

r2
|a|2p

)
.
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Conversely, if x ∈ D
(
1
a ,

r2
|a|2p

)
, let z = 1

x , we prove z ∈ D(a, r2). Since | 1z −
1
a |p ≤

r2
|a|2p

< | 1a |p
(r2 < 1 < 1

r1
≤ |a|p), we deduce that | 1z |p = |

1
a |p, so |z|p = |a|p. Therefore,

r2
|a|2p
≥
∣∣∣1
z
− 1

a

∣∣∣
p
=
|z − a|p
|az|p

=
|z − a|p
|a|2p

,

hence |z − a|p ≤ r2 and z ∈ D(a, r2). The lemma is proven.

Since f is of the form
k∑

i=−∞
aiz

i on {z ∈ P1(Qp), |z|p ≥ 1
r2
}, the function zkf

(
1
z

)
is analytic on the

closed disc D(0, r2) of Qp.
Since the set {z ∈ Qp, 1

r1
≤ |z|p < 1

r2
} is compact, it is the disjoint union of finitely many closed discs

D(a, r2) of radius r2. By the lemma, since f is analytic on each such D(a, r2) (f is r2-analytic on Qp),
the function zkf

(
1
z

)
is analytic on D

(
1
a ,

r2
|a|2p

)
.

By the lemma, the closed disc D(0, r1) of Qp is partitioned by the closed disc D(0, r2) and finitely
many closed discs D

(
1
a ,

r2
|a|2p

)
, where the closed discs D(a, r2) form a partition of {z ∈ Qp, 1

r1
≤ |z|p < 1

r2
}.

We have a family of analytic functions {zkf
(
1
z

)
|D(0,r2)

, zkf
(
1
z

)
|D
(

1
a ,

r2
|a|2p

)}a on the components of this

partition of D(0, r1). Since D(0, r1) is an open compact subset of Qp, by an argument similar to Lemma
1.1.1, there exists an analytic function h on D(0, r1) such that∥∥(h(z)− zkf(1

z

))
|D(0,r2)

∥∥
r2
< ε and

∥∥(h(z)− zkf(1
z

))
|D
(

1
a ,

r2
|a|2p

)∥∥ r2
|a|2p

< rk2ε.

Putting g2(z) = zkh
(
1
z

)
, then g2 is of the form

k∑
i=−∞

biz
i on {z ∈ P1(Qp), |z|p ≥ 1

r1
}. For every closed

disc D(a, r2) contained in {z ∈ Qp, 1
r1
≤ |z|p < 1

r2
}, we have

∥(g2 − f)|D(a,r2)∥r2 = sup
z∈Cp,|z−a|p≤r2

|g2(z)− f(z)|p = sup
z∈Cp,|z− 1

a |p≤ r2
|a|2p

∣∣g2(1
z

)
− f

(1
z

)∣∣
p

≤ 1

rk2
· sup
z∈Cp,|z− 1

a |p≤ r2
|a|2p

∣∣zkg2(1
z

)
− zkf

(1
z

)∣∣
p

=
1

rk2

∥∥(h(z)− zkf(1
z

))
|D
(

1
a ,

r2
|a|2p

)∥∥ r2
|a|2p

< ε.

Let g be the function on P1(Qp) given by g = g1 on B(0, 1
r1
) ⊂ Qp and g = g2 on {z ∈ P1(Qp), |z|p ≥ 1

r1
}.

Then g ∈ Ak(P1)[r1] and

∥g − f∥r2

= max
{∥∥(zkg(1

z

)
− zkf

(1
z

))
|D(0,r2)

∥∥
r2
, ∥(g − f)|D(a,r2)∥r2 : D(a, r2) ⊂

{
z ∈ Qp, |z|p <

1

r2

}}
= max

{∥∥(h(z)− zkf(1
z

))
|D(0,r2)

∥∥
r2
, ∥(g2 − f)|D(a,r2)∥r2 : D(a, r2) ⊂

{
z ∈ Qp,

1

r1
≤ |z|p <

1

r2

}
,

, ∥(g1 − f)|B(0, 1
r1

)∥r2
}

< ε.

Therefore, Ak(P1)[r1] is dense in Ak(P1)[r2].

Corollary 2.1.12. The dual map Dk(P1)[r2] → Dk(P1)[r1] is injective for any r1, r2 ∈ |C×
p |p such that

1 > r1 > r2.

Proof. It is immediate from Proposition 2.1.10.

The inclusion maps Ak(P1)[r] → Ak(P1) for r ∈ |C×
p |p, r < 1 induce the dual maps from Dk(P1) to

Dk(P1)[r], so Dk(P1) is endowed with a family of norms {∥·∥r : r ∈ |C×
p |p, r < 1}, where Dk(P1)[r] is

endowed with the dual norm of ∥ · ∥r on Ak(P1)[r] defined by (2.3).
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Corollary 2.1.13. This family of norms makes Dk(P1) into a Fréchet space. Moreover, Dk(P1) is
canonically isomorphic (as topological vector spaces) to the projective limit of Dk(P1)[r]’s, endowed with
its locally convex inductive limit topology (see [Schn, §5D]). The natural maps Dk(P1) → Dk(P1)[r2] →
Dk(P1)[r1] are injective for any 1 > r1 > r2 in |C×

p |p.

Proof. The first two statements are direct applications of the conclusions ii., iii. in [Schn, Prop. 16.10].
The assumptions of that proposition are satisfied since Ak(P1) is an increasing union of Ak(P1)[r]’s when
r decreases to 0 by Proposition 2.1.7, and the inclusion maps Ak(P1)[r1] → Ak(P1)[r2] are compact for
all 1 > r1 > r2 by Proposition 2.1.9. The injectivity of the map between distributions is implied from
Corollary 2.1.12.

2.2 Actions of GL2(Qp) and further results

In this section, after defining an action of GL2(Qp) on Ak(P1) and Dk(P1) (see (2.4) and (2.5)),
we set up some exact sequences involving functions and distributions on P1(Qp) (see Lemma 2.2.2 and
Proposition 2.2.4) which will be used to study overconvergent modular symbols with values in Dk(P1) in
Chapter 3. We compute the zeroth homology group of congruence subgroups of SL2(Z) with values in
Dk(P1) in Theorem 2.2.11. The results in this section are analogous versions for P1(Qp) of those for Zp.

One of the advantages of the space P1(Qp) is that it can be acted by any matrix in GL2(Qp) via linear
fractional transformations. The weight k action of GL2(Qp) on Ak(P1) and Dk(P1) is defined similarly
to (1.5), (1.7):

For γ =

(
a b
c d

)
∈ GL2(Qp), f ∈ Ak(P1) and µ ∈ Dk(P1), we set

f|kγ(z) = (cz + d)kf
(az + b

cz + d

)
, (2.4)

µ|kγ(f) = µ(f|kγ∗) = µ
(
(a− cz)kf

(dz − b
a− cz

))
, (2.5)

where γ∗ = det γ · γ−1 =

(
d −b
−c a

)
.

Let us consider the derivatives of functions in Ak(P1).

Lemma 2.2.1. If k ∈ N and f ∈ Ak(P1)[r] for r ∈ |C×
p |p, r < 1, then its (k + 1)-th derivative dk+1f

dzk+1

belongs to A−k−2(P1)[r]. The map
(
d
dz

)k+1
: Ak(P1)[r]→ A−k−2(P1)[r] is continuous.

Proof. Suppose f ∈ Ak(P1)[r] for r ∈ |C×
p |p, r < 1. Since f is locally analytic on Qp, it is C∞-

differentiable on Qp. The function f is of the form

f(z) =

k∑
i=−∞

aiz
i

on {z ∈ P1(Qp), |z|p ≥ 1
r}, where the coefficients ai satisfy the condition |ai|p

(
1
r

)i → 0 as i → −∞ (see

Remark 2.1.2)). Then dk+1f
dzk+1 = dk+1(

∑
i<0

aiz
i) for z ∈ P1(Qp), |z|p ≥ 1

r . The function

∑
i<0

i(i− 1)...(i− k) aizi−k−1

is convergent on {z ∈ P1(Qp), |z|p ≥ 1
r} since

|i(i− 1)...(i− k) ai|p
(1
r

)i−k−1

≤ |ai|p
(1
r

)i(1
r

)−k−1

→ 0 as i→ −∞.

By the proof of Proposition 2.1.7, the function
∑
i<0

aiz
i has the Taylor expansion

+∞∑
n=0

(∑
i<0

aia
i

(
n− i− 1

−i− 1

))(
− z − a

a

)n
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around each point a ∈ Qp with |a|p ≥ 1
r , hence

dk+1f
dzk+1 and

∑
i<0

i(i − 1)...(i − k) aizi−k−1 have the same

Taylor expansion around such those points a. We deduce that

dk+1f

dzk+1
=
∑
i<0

i(i− 1)...(i− k) aizi−k−1

on {z ∈ Qp, |z|p ≥ 1
r}. On the other hand, dk+1f

dzk+1 is r-analytic on Qp since f is. Therefore, dk+1f
dzk+1 ∈

A−k−2(P1)[r].

We compare the r-norms of f and dk+1f
dzk+1 . We have

∥∥z−k−2 · d
k+1f

dzk+1

(1
z

)
|D(0,r)

∥∥
r
= sup

i<0
|i...(i− k)ai|p

(1
r

)i+1

≤ sup
i<0
|ai|p

(1
r

)i+1

≤ sup
i≤k
|ai|p

(1
r

)i+1

=
(1
r

)k+1∥∥zkf(1
z

)
|D(0,r)

∥∥
r
.

On each closed disc D(a, r) inside B(0, 1r ) ⊂ Qp, if f has Taylor expansion
+∞∑
n=0

αn(z − a)n, then dk+1f
dzk+1 =

+∞∑
n=k+1

n(n− 1)...(n− k)αn(z − a)n−k−1 on D(a, r). Therefore,

∥∥dk+1f

dzk+1 |D(a,r)

∥∥
r
= sup
n≥k+1

|n...(n− k)αn|p · rn−k−1 ≤ sup
n≥0
|αn|p · rn−k−1 = r−k−1∥f|D(a,r)∥r.

We conclude that
∥∥dk+1f
dzk+1

∥∥
r
≤ 1

rk+1 ∥f∥r for any f ∈ Ak(P1)[r], hence the map
(
d
dz

)k+1
: Ak(P1)[r] →

A−k−2(P1)[r] is continuous.

Consider the map
(
d
dz

)k+1
: Ak(P1, L) → A−k−2(P1, L) for k ∈ N. Its kernel is obviously the space

P†
k(L) of locally polynomial functions of degree ≤ k on P1(Qp) with coefficients in L. We obtain the

following complex which is left exact for each k ∈ N:

0→ P†
k(L)

i→ Ak(P1, L)
( d

dz )
k+1

−→ A−k−2(P1, L)→ 0, (2.6)

where i is the inclusion map. It turns out that this complex is exact.

Lemma 2.2.2. The sequence (2.6) is exact, i.e., the map
(
d
dz

)k+1
: Ak(P1)→ A−k−2(P1) is surjective.

Moreover, this map is continuous and open.

Proof. Let g ∈ A−k−2(P1), then g ∈ A−k−2(P1)[r] for some r ∈ |C×
p |p, r < 1. Take 0 < r′ < r arbitrary.

We construct a function f in Ak(P1)[r′] such that dk+1f
dzk+1 = g.

If a ∈ Qp such that |a|p < 1
r′ , and if z ∈ D(a, r), then |z − a|p ≤ r < 1

r <
1
r′ , so |z|p <

1
r′ , hence the

closed disc D(a, r) in Qp is contained in B(0, 1
r′ ). The disc B(0, 1

r′ ) is the disjoint union of closed discs
D(a, r′) for a ∈ Qp with |a|p < 1

r′ . The restriction of g on D(a, r) for each such a is analytic, writing the
Taylor expansion of g on D(a, r) by

g|D(a,r)(z) =

+∞∑
n=0

αn(z − a)n,

where αn satisfies |αn|p · rn → 0 when n→ +∞. Then the function

fa,r′ =

+∞∑
n=k+1

αn−k−1

n(n− 1)...(n− k)
(z − a)n

is analytic on D(a, r′) since∣∣∣ αn−k−1

n(n− 1)...(n− k)

∣∣∣
p
(r′)n ≤ n...(n− k)

(r′
r

)n−k−1

|αn−k−1|p · rn−k−1(r′)k+1 −→
n→+∞

0.
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Moreover, the (k+1)-th derivative of fa,r′ equals g on D(a, r′). We define the restriction of f on B(0, 1
r′ )

by putting f = fa,r′ on each disc D(a, r′) ⊂ B(0, 1
r′ ).

On {z ∈ P1(Qp), |z|p ≥ 1
r} the function g is of the form

∑
i≤−k−2

aiz
i, where ai satisfies |ai|p

(
1
r

)i → 0

when i→ −∞. We define the restriction of f on {z ∈ P1(Qp), |z|p ≥ 1
r′ } by∑

i<0

ai−k−1

i(i− 1)...(i− k)
zi.

This function is convergent on {z ∈ P1(Qp), |z|p ≥ 1
r′ } since∣∣∣ ai−k−1

i(i− 1)...(i− k)

∣∣∣
p

( 1

r′

)i
≤ (−i)(−i+ 1)...(−i+ k)

( r
r′

)i−k−1

|ai−k−1|p
(1
r

)i−k−1( 1

r′

)k+1

−→
i→−∞

0.

It is obvious that dk+1f
dzk+1 = g =

∑
i≤−k−2

aiz
i on {z ∈ Qp, |z|p ≥ 1

r′ }. So dk+1f
dzk+1 = g on Qp. Moreover,

f ∈ Ak(P1)[r′] ⊂ Ak(P1). The surjectivity is proven.

The map
(
d
dz

)k+1
: Ak(P1)[r] → A−k−2(P1) is continuous for any r ∈ |C×

p |p, r < 1 since it is the

composition of the continuous map
(
d
dz

)k+1
: Ak(P1)[r] → A−k−2(P1)[r] (by Lemma 2.2.1) and the

inclusion map A−k−2(P1)[r] → A−k−2(P1), which is also continuous. Hence the inductive limit of these

maps,
(
d
dz

)k+1
: Ak(P1)→ A−k−2(P1), is continuous by [Schn, Lemma 5.1i.].

For the openness of
(
d
dz

)k+1
, we need to show that it sends any neighborhood of 0 in Ak(P1) to

a neighborhood of 0 in A−k−2(P1). A neighborhood of 0 in Ak(P1) is by definition a subset A such
that A ∩ Ak(P1)[r′] is a neighborhood of 0 in Ak(P1)[r′], for any r′ ∈ |C×

p |p, r′ < 1. Then A contains
an open ball of center 0 and radius R in Ak(P1)[r′]. For any r, r′ ∈ |C×

p |p such that r′ < r < 1, and

any g ∈ A−k−2(P1)[r], we have shown the existence of a function f ∈ Ak(P1)[r′] such that dk+1f
dzk+1 = g.

Moreover, it is easy to see that there exists a constant C = C(r, r′) > 0 depending only on r and r′ such
that

∥f∥r′ ≤ C∥g∥r.

If ∥g∥r < R/C, then ∥f∥r′ < R, so f ∈ A. Therefore, the image of A by
(
d
dz

)k+1
contains the open ball

of center 0 and radius R/C in A−k−2(P1)[r]. Hence the image of A is open in A−k−2(P1).

In the view of the exact sequence (2.6), the subspace P†
k(L) of Ak(P1, L) is stable by the weight k

action of GL2(Qp), defined by (2.4). We equip P†
k(L) the topology and the action of GL2(Qp) inherited

from Ak(P1, L). Then the inclusion P†
k(L) → Ak(P1, L) is continuous and GL2(Qp)-equivariant. We

want to make the second map of (2.6), i.e. the map
(
d
dz

)k+1
, becomes GL2(Qp)-equivariant.

Lemma 2.2.3. For each k ∈ N, the exact sequence

0→ P†
k(L)

i→ Ak(P1, L)
( d

dz )
k+1

−→ A−k−2(P1, L)⊗ detk+1 → 0 (2.7)

is GL2(Qp)-equivariant, where ⊗detk+1 means the action of GL2(Qp) is twisted by detk+1.

Proof. We follow the calculations in the proof of [Bel, Lemma V.4.13]. Although in ibid. it is made for
analytic functions on Zp and we are considering functions on P1(Qp), but the actions of matrices on both
kinds of functions are the same.

Dualizing the exact sequence (2.7), we get a complex of GL2(Qp)-equivariant maps. In fact, this dual
complex is exact.

Proposition 2.2.4. For each k ∈ N, there is a canonical GL2(Qp)-equivariant exact sequence:

0→ D−k−2(P1, L)⊗ detk+1 θk−→ Dk(P1, L)
ρk−→ V†

k(L)→ 0

which is the L-dual of (2.7), where V†
k(L) is the L-dual of P†

k(L) endowed with the weight k action of
GL2(Qp) defined similarly to (2.5).
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Proof. The injectivity of θk is obvious. The surjectivity of ρk is an application of Hahn-Banach’s theorem
(see [Schn, Corollary 9.4]), applicable here since the spaces P†

k(L) and Ak(P1, L) are locally convex, and
the base field L is spherically complete. We prove the exactness in the middle. Let µ ∈ Dk(P1, L)

such that ρk(µ) = 0. Then µ(P†
k(L)) = 0, so µ induces an L-linear form µ′ on A−k−2(P1, L) such

that µ = µ′ ◦
(
d
dz

)k+1
. We show that the form µ′ is continuous. If L0 ⊂ L is an open subset, then

(µ′)−1(L0) =
(
d
dz

)k+1
(µ−1(L0)) is open in A−k−2(P1, L) since µ−1(L0) is open in Ak(P1, L) and the map(

d
dz

)k+1
is open by Lemma 2.2.2. It follows that µ′ ∈ D−k−2(P1, L) and µ = θk(µ

′) ∈ Im θk.

For k ∈ Z, let A(−1)
k (P1) ⊂ Ak(P1) denote the subspace of functions f such that f is of the form∑

i≤k,i ̸=−1

aiz
i in a neighborhood of∞, endowed with the induced topology. Note that A(−1)

k (P1) = Ak(P1)

if k ≤ −2.

Proposition 2.2.5. Let ∆ be the operator on Ak(P1) given by ∆(f) = f(z + 1)− f(z). Then the image

of ∆ is the subspace A(−1)
k−1 (P1).

Proof. Let f ∈ Ak(P1), we prove ∆(f) ∈ A(−1)
k−1 (P1). There exists r ∈ |C×

p |p, r < 1 such that f ∈

Ak(P1)[r]. Since f is r-analytic in Qp, so is ∆(f). Suppose f(z) =
k∑

i=−∞
aiz

i for z ∈ P1(Qp) with

|z|p ≥ 1
r . We have

∆
(∑
i≤k

aiz
i
)
= ∆

( ∑
i≤min{−1,k}

aiz
i
)
+∆

( ∑
i≤k,i≥0

aiz
i
)
,

where we make the convention ∆
( ∑
i≤k,i≥0

aiz
i
)

= 0 if k < 0. If k ≥ 0, then ∆
( ∑
i≤k,i≥0

aiz
i
)

is a

polynomial of degree ≤ k − 1. If i ≤ −1, then for z ∈ P1(Qp) with |z|p ≥ 1
r , we have

∆(aiz
i) = ai(z + 1)i − aizi = aiz

i
( z

z + 1

)−i
− aizi = aiz

i
( 1

1 + z−1

)−i
− aizi

= aiz
i
( +∞∑
n=0

(−z−1)n
)−i
− aizi = aiz

i
( +∞∑
n=0

(
n− i− 1

−i− 1

)
(−z−1)n

)
− aizi =

∑
j<i

bi,jz
j ,

where bi,j = ai
(−j−1
−i−1

)
(−1)i−j . It follows that |bi,j |p ≤ |ai|p for all j. We get

∆
( ∑
i≤min{−1,k}

aiz
i
)
=

∑
i≤min{−1,k}

∆(aiz
i) = lim

n→+∞

∑
−n≤i≤min{−1,k}

∆(aiz
i)

= lim
n→+∞

∑
j<min{−1,k}

( ∑
max{−n,j+1}≤i≤min{−1,k}

bi,j

)
zj (2.8)

for z ∈ P1(Qp), |z|p ≥ 1
r . Let us apply an argument similar to Lemma 2.1.6, where we consider the

functions around ∞ with expansion by negative powers. For each j, the sequence∑
max{−n,j+1}≤i≤min{−1,k}

bi,j tends to
∑

j+1≤i≤min{−1,k}

bi,j as n→ +∞.

Moreover, if we fix z ∈ P1(Qp) such that |z|p ≥ 1
r and ε > 0, then for small j, we have∣∣∣( ∑

max{−n,j+1}≤i≤min{−1,k}

bi,j

)
zj
∣∣∣
p
≤ max
j<i<0

{|ai|p}
(1
r

)j
< ε

for all n (since |ai|p
(
1
r

)i → 0 as i→ −∞, and
(
1
r

)j
<
(
1
r

)i
for any j < i since 1

r > 1). Therefore, by the
spirit of Lemma 2.1.6 applying to the limit in (2.8), we obtain

∆
( ∑
i≤min{−1,k}

aiz
i
)
=

∑
j<min{−1,k}

( ∑
j+1≤i≤min{−1,k}

bi,j

)
zj
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for z ∈ P1(Qp), |z|p ≥ 1
r . Hence

∆(f) =
∑

j<min{−1,k}

( ∑
j+1≤i≤min{−1,k}

bi,j

)
zj +∆

( ∑
i≤k,i≥0

aiz
i
)

(2.9)

in {z ∈ P1(Qp), |z|p ≥ 1
r}. We deduce that ∆(f) ∈ A(−1)

k−1 (P1)[r], so ∆(f) ∈ A(−1)
k−1 (P1).

Let us prove that ∆ : Ak(P1) → A(−1)
k−1 (P1) is surjective. Let g ∈ A(−1)

k−1 (P1), then g ∈ A(−1)
k−1 (P1)[r]

for some r ∈ |C×
p |p, r < 1. Fix 0 < r′ < r with r′ = p−n0 for some n0 ∈ N∗, we show the existence of a

function f ∈ Ak(P1)[r′] such that ∆(f) = g.
Defining a relation ∼ on the family of closed discs of radius r′ in B(0, 1

r′ ) ⊂ Qp as follows: for
two discs D1, D2, we denote D1 ∼ D2 if there exist a ∈ B(0, 1

r′ ) and h ∈ Z such that D1 = D(a, r′)
and D2 = D(a + h, r′). This is equivalent to |z2 − z1 − h|p ≤ r′ for any z1 ∈ D1, z2 ∈ D2. So
this is an equivalence relation. There are exactly pn0 closed discs in each equivalence class, namely
D(a, r′), D(a+1, r′), ..., D(a+pn0 −1, r′) for some a ∈ B(0, 1

r′ ). To construct f on B(0, 1
r′ ), we construct

f on closed discs in each such class. Note that if a ∈ B(0, 1
r′ ), then a+ Z ⊂ B(0, 1

r′ ) since |Z|p ≤ 1 < 1
r′ .

If f is constructed and analytic on D(a, r′), then f is automatically determined on D(a + 1, r′) by
f(z) = f(z − 1) + g(z − 1) for z ∈ D(a + 1, r′) (note that z − 1 ∈ D(a, r′) if z ∈ D(a + 1, r′)). Similar,
f is automatically determined on every other disc in this class, given by f(z) = f(z − 1) + g(z − 1) =
f(z− 2)+ g(z− 2)+ g(z− 1) for z ∈ D(a+2, r′), and so on. Therefore, it suffices to construct f analytic
on D(a, r′) satisfying

f(z + pn0) = f(z + pn0 − 1) + g(z + pn0 − 1) = ...

= f(z) + g(z) + g(z + 1) + ...+ g(z + pn0 − 1) = f(z) + g0(z),

where g0(z) = g(z) + g(z + 1) + ...+ g(z + pn0 − 1) is analytic on D(a, r). Note that z + pn0 ∈ D(a, r′) if
z ∈ D(a, r′).

Suppose g0 has Taylor expansion g0(z) =
+∞∑
n=0

αn(z − a)n in D(a, r), where αn satisfies |αn|p · rn → 0

when n→ +∞.

Lemma 2.2.6. We can write g0 under the form g0(z) =
+∞∑
n=0

βn(z − a)[n] in D(a, r) for βn satisfies

|βn|p ·rn → 0 when n→ +∞, where z[n] := z(z−pn0)...(z− (n−1)pn0) (if n = 0 we make the convention
z[0] = 1). Moreover, the r-norm of g0 on D(a, r) equals sup {|βn|p · rn |n ∈ N}. Conversely, if g0 is of
this form, then g0 is analytic on D(a, r).

Proof. Consider z ∈ D(a, r). For each n ∈ N, the polynomial (z − a)n is the sum of (z − a)[n] and a
linear combination of (z − a)j for 1 ≤ j ≤ n− 1 with coefficient divisible by (pn0)n−j . The induction on
n yields an expansion of (z − a)n in terms of (z − a)[j] for 0 ≤ j ≤ n with integer coefficients:

(z − a)n =

n∑
j=0

γn,j(z − a)[j]

with γn,n = 1 and γn,j ∈ Z is divisible by (pn0)n−j for all j. We have

g0(z) =

+∞∑
n=0

αn(z − a)n = lim
N→+∞

N∑
n=0

αn(z − a)n = lim
N→+∞

N∑
j=0

( N∑
n=j

αnγn,j

)
(z − a)[j]. (2.10)

Let us apply an argument similar to Lemma 2.1.6. For j ∈ N fixed, the sequence
N∑
n=j

αnγn,j converges to

+∞∑
n=j

αnγn,j when N → +∞ since

|αnγn,j |p ≤ |αn|p(p−n0)n−j = |αn|p · (r′)n−j ≤ |αn|p · rn−j → 0 when n→ +∞.

Moreover, for every z ∈ D(a, r) and ε > 0, if j ∈ N is big and N ≥ j, then∣∣∣( N∑
n=j

αnγn,j

)
(z − a)[j]

∣∣∣
p
≤ max
j≤n≤N

{|αnγn,j |p} · |(z − a)[j]|p ≤ max
n≥j
{|αn|p(r′)n−j} · rj

≤ max
n≥j
{|αn|p · rn} < ε,
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here the second inequaliy is deduced from |γn,j |p ≤ (p−n0)n−j = (r′)n−j and |(z − a)[j]|p ≤ rj for any
j ∈ N. By the spirit of Lemma 2.1.6 applied to the limit (2.10), we obtain

g0(z) =

+∞∑
j=0

( +∞∑
n=j

αnγn,j

)
(z − a)[j] =

+∞∑
j=0

βj(z − a)[j],

where βj =
+∞∑
n=j

αnγn,j satisfying

|βj |p · rj ≤ sup
n≥j
{|αnγn,j |p} · rj ≤ sup

n≥j
{|αn|p(r′)n−j} · rj ≤ sup

n≥j
{|αn|p · rn} → 0 when j → +∞.

It follows that sup {|βj |p · rj | j ∈ N} ≤ sup {|αn|p · rn |n ∈ N}.

Conversely, if g0(z) =
+∞∑
n=0

βn(z − a)[n] for z ∈ D(a, r), then by the same argument we imply that g0

is analytic in D(a, r) with Taylor expansion
+∞∑
n=0

αn(z − a)n for the coefficients αn satisfying sup {|αn|p ·

rn |n ∈ N} ≤ sup {|βj |p · rj | j ∈ N}. Therefore,

∥g0|D(a,r)∥r = sup {|αn|p · rn |n ∈ N} = sup {|βj |p · rj | j ∈ N}.

The lemma is proven.

Writing g0(z) =
+∞∑
n=0

βn(z − a)[n] in D(a, r) where |βn|p · rn −→
n→+∞

0. We put

f(z) =

+∞∑
n=1

βn−1(z − a)[n]

npn0

in D(a, r′), then f satisfies f(z + pn0) = f(z) + g0(z) for z ∈ D(a, r) since (z + pn0 − a)[n] − (z − a)[n] =
npn0(z− a)[n−1] for any n ∈ N∗. The analyticity of f on D(a, r′) is deduced from Lemma 2.2.6 and from∣∣βn−1

npn0

∣∣
p
(r′)n ≤ npn0 |βn−1|p(r′)n = |βn−1|p · rn−1n

(r′
r

)n−1

−→
n→+∞

0,

since |βn−1|p · rn−1 −→
n→+∞

0 and n
(
r′

r

)n−1 −→
n→+∞

0. Moreover,

∥f|D(a,r′)∥r′ = sup
n≥1

∣∣βn−1

npn0

∣∣
p
(r′)n ≤ sup

n≥1

{
n
(r′
r

)n−1}
· sup
n≥1
|βn−1|p · rn−1

≤ sup
n≥1

{
n
(r′
r

)n−1}
∥g0|D(a,r)∥r ≤ sup

n≥1

{
n
(r′
r

)n−1}
∥g|B(0, 1

r′ )
∥r,

for any closed disc D(a, r′) inside B
(
0, 1

r′

)
. Hence

∥f|B(0, 1
r′ )
∥r′ ≤ sup

n≥1

{
n
(r′
r

)n−1}
∥g|B(0, 1

r′ )
∥r. (2.11)

It remains to construct f on X∞ = {z ∈ P1(Qp), |z|p ≥ 1
r′ }. The function g is of the form

g(z) =
∑

i≤k−1,i̸=−1

biz
i

on the set {z ∈ P1(Qp), |z|p ≥ 1
r} containing X∞, where bi satisfies |bi|p

(
1
r

)i → 0 when i → −∞. The

topological space X∞ is isomorphic to D(0, r′) via the transformation z 7→ 1
z . Setting g∞(z) = g

(
1
z

)
for

z ∈ D(0, r) and f∞(z) = f
(
1
z

)
for z ∈ D(0, r′), then

g∞(z) =
∑

i≤k−1,i̸=−1

biz
−i =

∑
0≤i≤k−1

biz
−i +

∑
i≤−2

biz
−i =

∑
0≤n≤k−1

bnz
−n +

∑
n≥2

b−nz
n

=:
∑

0≤n≤k−1

bnz
−n +

∑
n≥2

b̃nz
n =: g−∞(z) + g+∞(z),
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where g−∞(z) =
∑

0≤n≤k−1

bnz
−n, g+∞(z) =

∑
n≥2

b̃nz
n and b̃n = b−n for n ≥ 2. We want to construct a

meromorphic function f∞ on D(0, r′) with order of vanishing ord0(f∞) ≥ −k such that

g∞(z) = g
(1
z

)
= f

(1
z
+ 1
)
− f

(1
z

)
= f∞

( z

z + 1

)
− f∞(z) for z ∈ D(0, r′).

Putting R(z) = z
z+1 , the above condition rewrites

f∞(R(z))− f∞(z) = g∞(z) = g−∞(z) + g+∞(z) for z ∈ D(0, r′). (2.12)

By indution, for each n ∈ N∗, the composition R◦n(z) equals z
nz+1 , so

1
R◦n(z) = 1

z + n. We make the

convention R◦0(z) = 1. Since g−∞(z) is a polynomial of 1
z of degree ≤ k − 1, we can write g−∞(z) in the

form

g−∞(z) =

k−1∑
n=0

c−n

(1
z
+ 1
)(1

z
+ 2
)
...
(1
z
+ n

)
=

k−1∑
n=0

c−n
R(z)R◦2(z)...R◦n(z)

. (2.13)

We then put f−∞(z) =
k−1∑
n=0

c−n
n+1

1
zR(z)...R◦n(z) for z ∈ D(0, r′). It follows that

f−∞(R(z))− f−∞(z) = g−∞(z) (2.14)

for any z ∈ D(0, r′) since 1
R◦(n+1)(z)

− 1
z = n+ 1. The function f−∞(z) is a linear combination of negative

powers of z of degree between −k and −1. The following lemma will be used in the proof of Proposition
2.2.9:

Lemma 2.2.7. The r-norm on D(0, r) of the polynomial zk−1g−∞(z), where g−∞(z) is written in the form
(2.13), equals

max
0≤n≤k−1

|c−n |p · rk−1−n.

Proof. Since R◦n(z) = z
nz+1 and since |nz|p ≤ |z|p ≤ r < 1 if z ∈ D(0, r) ⊂ Cp, it follows that

|R◦n(z)|p = |z|p for any z ∈ D(0, r) ⊂ Cp and any n ∈ N. Hence

∥(zk−1g−∞(z))|D(0,r)∥r ≤ sup
z∈Cp,|z|p≤r,0≤n≤k−1

|c−n |p · |z|k−1
p

|R(z)...R◦n(z)|p
= sup
z∈Cp,|z|p≤r,0≤n≤k−1

|c−n |p · |z|k−1−n
p = max

0≤n≤k−1
|c−n |p · rk−1−n. (2.15)

Returning to the expansion g−∞(z) =
∑

0≤n≤k−1

bnz
−n =

∑
0≤n≤k−1

bn
(
1
z

)n
of g−∞. For n ∈ N, since

(
1
z

)n
is

the sum of
(
1
z +1

)(
1
z +2

)
...
(
1
z + n

)
and a polynomial of 1

z of degree ≤ n− 1 with integer coefficients, by
induction on k we can show that all the coefficients c−n in (2.13) are integer linear combinations of the
coefficients bn, bn+1, ..., bk−1. It follows that

|c−n |p ≤ max {|bn|p, |bn+1|p, ..., |bk−1|p}

for any 0 ≤ n ≤ k − 1. We get

max
0≤n≤k−1

|c−n |p · rk−1−n ≤ max
0≤n≤k−1

max {|bn|p, |bn+1|p, ..., |bk−1|p} · rk−1−n

≤ max
0≤n≤k−1

max
n≤i≤k−1

|bi|p · rk−1−i = max
0≤n≤k−1

|bn|p · rk−1−n = ∥(zk−1g−∞(z))|D(0,r)∥r.

Combining with (2.15) we get the desired formula.

By Lemma 2.2.7 and the construction of f−∞(z), we have

∥(zkf−∞(z))|D(0,r′)∥r′ = max
0≤n≤k−1

∣∣ c−n
n+ 1

∣∣
p
· (r′)k−1−n

≤ max
0≤n≤k−1

{
(n+ 1)

(r′
r

)k−1−n}
· max
0≤n≤k−1

{
|c−n |p · rk−1−n

}
= max

0≤n≤k−1

{
(n+ 1)

(r′
r

)k−1−n}
∥(zk−1g−∞(z))|D(0,r)∥r. (2.16)
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Lemma 2.2.8. The function g+∞ on D(0, r) can be written under the form

g+∞(z) =

+∞∑
n=2

c+n zR(z)...R
◦(n−1)(z),

where c+n satisfies |c+n |p·rn → 0 when n→ +∞. The r-norm of g+∞ on D(0, r) equals sup{|c+n |p·rn |n ≥ 2}.
Conversely, if g+∞ is of this form, then it is analytic in D(0, r) with order of vanishing ord0(g

+
∞) ≥ 2.

Proof. Recall that

g+∞(z) =
∑
n≥2

b̃nz
n,

where b̃n = b−n satisfying |b̃n|p ·rn → 0 when n→ +∞. We have seen that R◦n(z) = z
1+nz = z

+∞∑
j=0

(−nz)j

in D(0, r) for each n ∈ N, so R◦n(z) is analytic in D(0, r) with ord0(R
◦n(z)) = 1. Hence the function

zR(z)...R◦(n−1)(z) is analytic in D(0, r) with order of vanishing n at 0, for any n ≥ 2. Since zn is the
sum of zR(z)...R◦(n−1)(z) and an infinite linear combination of zn+1, zn+2, ... with integer coefficients,
by induction on j ≥ 2, we can write g+∞ in the form

g+∞(z) =

j∑
n=2

c+n zR(z)...R
◦(n−1)(z) +

+∞∑
n=j+1

dn,jz
n, (2.17)

where the coefficients c+n , dn,j are integer linear combinations of b̃2, ..., b̃n. It follows that |c+n |p, |dn,j |p ≤
max {|b̃2|p, ..., |b̃n|p}. Then for any z ∈ D(0, r) and any 2 ≤ j ≤ n− 1, we have

|dn,jzn|p ≤ max {|b̃2|p, ..., |b̃n|p} · rn −→
n→+∞

0,

since |b̃n|p · rn and rn tend to 0 when n→ +∞. Therefore, by (2.17) we imply

g+∞(z) = lim
j→+∞

j∑
n=2

c+n zR(z)...R
◦(n−1)(z) =

+∞∑
n=2

c+n zR(z)...R
◦(n−1)(z),

and |c+n |p · rn ≤ max {|b̃2|p, ..., |b̃n|p} · rn −→
n→+∞

0. We also have

sup {|c+n |p · rn |n ≥ 2} ≤ sup {|b̃n|p · rn |n ≥ 2} = ∥(g+∞)|D(0,r)∥r. (2.18)

Since |R◦n(z)|p = |z|p for any z ∈ Cp with |z|p ≤ r, we get

∥(g+∞)|D(0,r)∥r = sup
z∈Cp,|z|p≤r

|g+∞(z)|p ≤ sup
z∈Cp,|z|p≤r,n≥2

|c+n zR(z)...R◦(n−1)(z)|p ≤ sup
n≥2
|c+n |p · rn.

Combining with (2.18) we obtain ∥(g+∞)|D(0,r)∥r = sup
n≥2
|c+n |p · rn.

The inverse statement of the lemma is implied by Lemma 2.1.6 with the note that the function
zR(z)...R(n−1)(z) is analytic in D(0, r) with order of vanishing n at 0, for any n ≥ 1.

Writing g+∞(z) =
+∞∑
n=2

c+n zR(z)...R
◦(n−1)(z) for z ∈ D(0, r) as in Lemma 2.2.8. We then define

f+∞(z) =

+∞∑
n=1

c+n+1

zR(z)...R◦(n−1)(z)

−n

for z ∈ D(0, r′). This function satisfies

f+∞(R(z))− f+∞(z) = g+∞(z) (2.19)

since R◦n(z) − z = −nzR◦n(z) for any n ∈ N (recall that R◦n(z) = z
nz+1 , so

1
R◦n(z) = n + 1

z , hence
1

R◦n(z) −
1
z = n). The function f+∞(z) is analytic in D(0, r′) since

∣∣c+n+1

−n
∣∣
p
(r′)n ≤ |c+n+1|p · n(r′)n = |c+n+1|p · rn+1 · n

(r′
r

)n
r−1 −→

n→+∞
0,
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with the note that |c+n |p · rn −→
n→+∞

0 as in the proof of Lemma 2.2.8. It follows that

∥(zkf+∞(z))|D(0,r′)∥r′ = (r′)k sup
n≥1

∣∣c+n+1

−n
∣∣
p
(r′)n ≤ (r′)kr−1 sup

n≥1

{
n
(r′
r

)n}
· sup
n≥1
|c+n+1|p · rn+1

=
(r′
r

)k
sup
n≥1

{
n
(r′
r

)n}
· ∥(zk−1g+∞(z))|D(0,r)∥r. (2.20)

From (2.14) and (2.19), the function f∞ defined on D(0, r′) by f∞(z) = f−∞(z) + f+∞(z) satisfies the
condition (2.12). By the construction, f∞(z) is meromorphic of order of vanishing ord0(f∞) ≥ −k. The
function f on X∞ is defined by f(z) = f∞

(
1
z

)
, then ∆(f) = g on X∞ and f ∈ Ak(P1, L)[r′]. The

proposition is proven.

Proposition 2.2.9. The map ∆ : Ak(P1)→ A(−1)
k−1 (P1) is continuous and open for any k ∈ Z.

Proof. For the continuity of ∆, by the proof of Lemma 2.2.2, it suffices to show that the map ∆ :

Ak(P1)[r] → A(−1)
k−1 (P1)[r] is continuous for any r ∈ |C×

p |p, r < 1 (by the proof of Proposition 2.2.5 we

know that ∆ maps Ak(P1)[r] into A(−1)
k−1 (P1)[r]).

Let f ∈ Ak(P1)[r]. We compare the r-norms of f and ∆(f). We have

∥∆(f)|B(0, 1r )
∥r = sup {|(∆f)(z)|p : z ∈ Cp,∃ a ∈ Qp such that |a|p <

1

r
, |z − a|p ≤ r}

= sup {|f(z + 1)− f(z)|p : z ∈ Cp,∃ a ∈ Qp such that |a|p <
1

r
, |z − a|p ≤ r}

≤ sup {|f(z)|p : z ∈ Cp,∃ a ∈ Qp such that |a|p <
1

r
, |z − a|p ≤ r} = ∥f|B(0, 1r )

∥r. (2.21)

Suppose f is of the form
k∑

i=−∞
aiz

i in {z ∈ P1(Qp), |z|p ≥ 1
r}, then by (2.9) we know

∆(f) =
∑

j<min{−1,k}

( ∑
j+1≤i≤min{−1,k}

bi,j

)
zj +

∑
j≥0,j≤k−1

( ∑
i≥j,i≤k

ai

(
i

j

)
− aj

)
zj

=
∑

j≤k−1,j ̸=−1

b′jz
j

in {z ∈ P1(Qp), |z|p ≥ 1
r}, where bi,j = ai

(−j−1
−i−1

)
(−1)i−j , b′j =

∑
j+1≤i≤min{−1,k}

bi,j if j < −1 and

b′j =
∑

i≥j,i≤k
ai
(
i
j

)
− aj if 0 ≤ j ≤ k − 1. It follows that |b′j |p ≤ max

j≤i≤k
|ai|p. Then

∥∥zk−1 · (∆f)
(1
z

)
|D(0,r)

∥∥
r
= sup
j≤k−1,j ̸=−1

|b′j |p · rk−1−j ≤ sup
j≤k−1,j ̸=−1

{
max
j≤i≤k

|ai|p · rk−1−j}
≤ sup

i≤k
|ai|p · rk−1−i = r−1

∥∥zkf(1
z

)
|D(0,r)

∥∥
r
. (2.22)

Combining (2.21) and (2.22) we deduce that ∥∆(f)∥r ≤ ∥f∥r. Therefore ∆ is continuous.

We show the openness of ∆. In the proof of Proposition 2.2.5, for each g ∈ A(−1)
k−1 (P1)[r] and r′ ∈

|C×
p |p, r′ < r < 1 we have constructed a function f ∈ Ak(P1)[r′] such that ∆(f) = g. By (2.11) we have

∥f|B(0, 1
r′ )
∥r′ ≤ sup

n≥1

{
n
(r′
r

)n−1}
∥g|B(0, 1

r′ )
∥r

= sup
n≥1

{
n
(r′
r

)n−1}
·max {∥g|B(0, 1r )

∥r, ∥g|{z∈Qp,
1
r≤|z|p< 1

r′ }
∥r}.
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Since

∥g|{z∈Qp,
1
r≤|z|p< 1

r′ }
∥r} = sup

{
|g(z)|p : z ∈ Cp,∃ a ∈ Qp such that

1

r
≤ |a|p <

1

r′
, |z − a|p ≤ r

}
≤ sup

{
|g(z)|p : z ∈ Cp,

1

r
≤ |z|p <

1

r′

}
≤
( 1

r′

)k−1

sup
{∣∣ g(z)
zk−1

∣∣
p
: z ∈ Cp,

1

r
≤ |z|p <

1

r′

}
≤
( 1

r′

)k−1

sup
{∣∣ g(z)
zk−1

∣∣
p
: z ∈ Cp, |z|p ≥

1

r

}
=
( 1

r′

)k−1

sup
{∣∣zk−1g

(1
z

)∣∣
p
: z ∈ Cp, |z|p ≤ r

}
=
( 1

r′

)k−1∥∥zk−1g
(1
z

)
|D(0,r)

∥∥
r
,

we deduce that

∥f|B(0, 1
r′ )
∥r′ ≤ sup

n≥1

{
n
(r′
r

)n−1}
·max

{( 1

r′

)k−1

, 1
}
∥g∥r. (2.23)

On X∞ = {z ∈ P1(Qp), |z|p ≥ 1
r′ } the function f is constructed by f(z) = f∞

(
1
z

)
and f∞(z) =

f−∞(z) + f+∞(z), where the function f−∞(z) (resp. f+∞(z)) satisfies (2.14) (resp. (2.19)), and g−∞(z) (resp.
g+∞(z)) is the negative (resp. stricly positive)-powers part of g∞(z) = g

(
1
z

)
. The inequalities (2.16) and

(2.20) yield∥∥zkf(1
z

)
|D(0,r′)

∥∥
r′
= ∥(zkf∞(z))|D(0,r′)∥r′ = max {∥(zkf−∞(z))|D(0,r′)∥r′ , ∥(zkf+∞(z))|D(0,r′)∥r′}

≤ max
{

max
0≤n≤k−1

{
(n+ 1)

(r′
r

)k−1−n}
,
(r′
r

)k
sup
n≥1

{
n
(r′
r

)n}}
· ∥(zk−1g∞(z))|D(0,r)∥r

= max
{

max
0≤n≤k−1

{
(n+ 1)

(r′
r

)k−1−n}
,
(r′
r

)k
sup
n≥1

{
n
(r′
r

)n}}
·
∥∥zk−1g

(1
z

)
|D(0,r)

∥∥
r
. (2.24)

From (2.23) and (2.24) we imply that there exists a constant C > 0 depending only on r, r′, k such that

∥f∥r′ ≤ C∥g∥r for any g ∈ A(−1)
k−1 (P1)[r] and for f ∈ ∆−1(g) ∩ Ak(P1)[r′] determined by g.

Returning to the problem of openness of ∆. Let A be a neighborhood of 0 in Ak(P1). We prove

that ∆(A) is a neighborhood of 0 in A(−1)
k−1 (P1). It is equivalent to show that ∆(A) ∩ A(−1)

k−1 (P1)[r] is a

neighborhood of 0 in A(−1)
k−1 (P1)[r] for any r ∈ |C×

p |p, r < 1. Let r < 1 and choose 0 < r′ < r such that
r′ = p−n0 for some n0 ∈ N∗. Since A is a neighborhood of 0 in Ak(P1)[r′], there is a number R > 0

such that A contains an open ball of center 0 and radius R in Ak(P1)[r′]. If g ∈ A(−1)
k−1 (P1)[r] such that

∥g∥r < R/C, then there is a function f ∈ Ak(P1)[r′] such that ∆(f) = g and ∥f∥r′ ≤ C∥g∥r. It follows
that ∥f∥r′ < R, so f ∈ A, hence g ∈ ∆(A). Therefore, ∆(A) contains the open ball of center 0 and

radius R/C in A(−1)
k−1 (P1)[r], hence ∆(A) is a neighborhood of 0 in A(−1)

k−1 (P1)[r]. The openness of ∆ is
proven.

Proposition 2.2.5 yields the following exact sequence for each k ∈ Z:

0→ ker∆
i→ Ak(P1, L)

∆→ A(−1)
k−1 (P

1, L)→ 0,

where i is the inclusion map. Dualizing this exact sequence yields the follwing complex

0→ D(−1)
k−1 (P

1, L)
∆∗

−→ Dk(P1, L)
i∗→ Homcont(ker∆, L

×)→ 0, (2.25)

where D(−1)
k−1 (P1, L) is the continuous L-dual of A(−1)

k−1 (P1, L). It turns out that this dual complex is exact.

Lemma 2.2.10. If k ∈ Z<0, there is a canonical exact sequence

0→ D(−1)
k−1 (P

1, L)
∆∗

−→ Dk(P1, L)
i∗→

∏
D(α,1)⊂Qp

L→ 0 (2.26)

µ 7→ (µ(1D(α,1)))D(α,1)⊂Qp
.

If k ∈ Z≥0, the above exact sequence is replaced by

0→ D(−1)
k−1 (P

1, L)
∆∗

−→ Dk(P1, L)
i∗→ L×

∏
D(α,1)⊂Qp

L→ 0 (2.27)

µ 7→
(
µ(1D∞), (µ(1D(α,1)))D(α,1)⊂Qp

)
,

where D∞ is any open neighborhood of ∞ in P1(Qp).
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Proof. We show that the sequence (2.25) is exact. The injectivity of ∆∗ is obvious. The exactness in the

middle follows from the openness of ∆ : Ak(P1, L)→ A(−1)
k−1 (P1, L) by Proposition 2.2.9 (see the proof of

Proposition 2.2.4). The surjectivity of i∗ is a consequence of [Schn, Corollary 9.4], where the field L here
is spherically complete since it is a finite extension of Qp.

Let us determine the kernel of ∆ : Ak(P1, L) → A(−1)
k−1 (P1, L). Let f ∈ ker∆, then f(z + 1) = f(z)

for any z ∈ P1(Qp), so f(z + Z) = f(z) for all z ∈ P1(Qp). Since f is continuous, it follows that
f(z + Zp) = f(z) for any z ∈ P1(Qp), so f is constant in every closed disc of radius 1 in Qp. We prove
that f is constant in a neighborhood of ∞. Let f∞(z) = f

(
1
z

)
, defined in a neighborhood of 0. Then f∞

is meromorphic of order of vanishing ord0(f∞) ≥ −k. By (2.13) and Lemma 2.2.8, we can write f∞ in
the form

k−1∑
n=0

c−n
zR(z)R◦2(z)...R◦n(z)

+

+∞∑
n=0

c+n zR(z)...R
◦(n−1)(z),

where R(z) = z
z+1 . Since f∞(R(z)) = f∞(z), 1

R◦(n+1)(z)
− 1

z = n + 1 and R◦n(z) − z = −nzR◦n(z), it

follows that c−n = 0 for any 0 ≤ n ≤ k − 1 and c+n = 0 for any n ≥ 1. Therefore, f∞ is constant in a
neighborhood of 0, so f is constant in a neighborhood of ∞. Since ord0(f∞) ≥ −k, if k ≥ 0 this constant
can be arbitrary, while if k < 0 it must be 0.

In summary, if k < 0, the kernel of ∆ : Ak(P1, L)→ A(−1)
k−1 (P1, L) has the basis

{1D(α,1)}D(α,1)⊂Qp

consisting of characteristic functions of all closed discs of radius 1 in Qp, while if k ≥ 0 the basis of
ker∆ has one more function, that is the characteristic function of D∞. Note that if f = c ∈ L in the
neighborhood {z ∈ P1(Qp), |z|p ≥ R} of ∞ for R > 1 big enough, then the restriction of f on that
neighborhood equals the function

c · 1D∞ −
∑

D(α,1)⊂{z∈D∞,|z|p<R}

c · 1D(α,1).

If µ is an L-valued continuous linear form on ker∆, then µ is uniquely determined by the values µ(1D(α,1))
in L for D(α, 1) ⊂ Qp if k < 0, or one more value µ(1D∞) in L if k ≥ 0. Since the functions 1D(α,1) do not
belong simultaneously to Ak(P1, L)[r] for any r ∈ |C×

p |p, r < 1, it follows that the values µ(1D(α,1)) for
D(α, 1) ⊂ Qp can be chosen arbitrarily. This explains the appearance of the last space in the sequences
(2.26), (2.27).

The zeroth homology group of congruence subgroups of SL2(Z) with values in p-adic distributions on
P1(Qp) is computed in the following result:

Theorem 2.2.11. Let Γ ⊂ SL2(Z) be a congruence subgroup containing the matrix

(
1 1
0 1

)
.

i) For any k ∈ Z\{0}, one has H0(Γ,Dk(P1, L)) = 0.

ii) If Γ1(N) ∩ Γ1(p
r) ⊂ Γ ⊂ Γ0(N) ∩ Γ1(p

r) for N, r ∈ N∗ with (N, p) = 1, letting cr = p[
r
2 ] + pr−[ r2 ]−1

where [·] denotes the integral part, then

H0(Γ,D0(P1, L)) = Lcr .

If Γ1(N) ∩ Γ0(p
r) ⊂ Γ ⊂ Γ0(Np

r) for N, r ∈ N∗ with (N, p) = 1, then

H0(Γ,D0(P1, L)) =


L2r if p ̸= 2 or r = 1,

L3 if p = r = 2,

L2r−2 if p = 2 and r ≥ 3.

Finally, H0(SL2(Z),D0(P1, L)) = L.

Proof. Since the matrix

(
1 1
0 1

)
belongs to Γ, its inverse γ0 =

(
1 −1
0 1

)
also belongs to Γ. Recall that

H0(Γ, V ) = V/IV (resp. V/V|I) for a left (resp. right) Γ-module V , where I is the augmentation ideal of

Γ generated by elements γ − 1 for γ ∈ Γ. The inclusion A(−1)
k−1 (P1, L)→ Ak(P1, L) induces the dual map

Dk(P1, L)→ D(−1)
k−1 (P

1, L) (2.28)

which is surjective by [Schn, Corollary 9.4]. We consider the following cases:
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� k < 0. Combining the surjective map (2.28) with the exact sequence (2.26) yields the following
exact sequence:

Dk(P1, L)
∆∗

−→ Dk(P1, L)
i∗→

∏
D(α,1)⊂Qp

L→ 0

µ 7→ (µ(1D(α,1)))D(α,1)⊂Qp
,

where ∆∗ : Dk(P1, L) → Dk(P1, L) is the composition of (2.28) and the map ∆∗ : D(−1)
k−1 (P1, L) →

Dk(P1, L). Then ∆∗ : Dk(P1, L) → Dk(P1, L) is given by the right weight k action of γ0 − 1. We
get the isomorphism

Dk(P1, L)/Dk(P1, L)|kγ0−1
∼=

∏
D(α,1)⊂Qp

L (2.29)

µ 7→ (µ(1D(α,1)))D(α,1)⊂Qp
.

Let (xα) ∈
∏

D(α,1)⊂Qp

L. Choose a matrix γ =

(
a b
c d

)
in Γ such that p|c ̸= 0. For µ ∈ Dk(P1, L),

we have

µ|kγ−1(1D(α,1)) = µ((a− cz)k1D(α,1)(γ
−1z))− µ(1D(α,1))

= µ((a− cz)k1γ(D(α,1))(z))− µ(1D(α,1)), (2.30)

where γ acts on P1(Qp) by the linear fractional transformation.

The family of characteristic functions {1D(α,1) |D(α, 1) ⊂ Qp} is linear independent since the discs
D(α, 1) are pairwise disjoint, it spans the subspace V1 of Ak(P1, L). The family of functions

{(a− cz)k1γ(D(α,1))(z) |D(α, 1) ⊂ Qp}

is also linear independent, it spans the subspace V2 of Ak(P1, L). We show that the sum V1 + V2 is
direct, i.e., V1 ∩ V2 = {0}. Let f be a function in V1 ∩ V2. Since f ∈ V1, it has only finitely many
values. Since f ∈ V2, it has the form

f(z) =
∑

D(α,1)⊂Qp

tα(a− cz)k1γ(D(α,1))(z)

for tα ∈ L and tα = 0 for all but finitely many α. Since the sets γ(D(α, 1)) are pairwise disjoint, if
the coefficients tα are not simultaneously 0, then the function f would have infinitely many values
since c ̸= 0, k ̸= 0. Therefore, all the coefficients tα are 0, so f = 0. Hence V1 ∩ V2 = {0}.
Defining the L-linear form µ0 on V1 ⊕ V2 by

µ0|V1
= 0, µ0((a− cz)k1γ(D(α,1))(z)) = xα for anyD(α, 1) ⊂ Qp.

We will see that every linear form on V1⊕V2 is continuous, so we can extend µ0 to a continuous L-
linear form µ on Ak(P1, L) by [Schn, Corollary 9.4]. Then µ ∈ Dk(P1, L) and µ|kγ−1(1D(α,1)) = xα
for any D(α, 1) ⊂ Qp by (2.30). We deduce that the image of Dk(P1, L)|kΓ−1 by (2.29) is all of∏
D(α,1)⊂Qp

L. Therefore, H0(Γ,Dk(P1, L)) = 0.

To see that every linear form on V1 ⊕ V2 is continuous, we need the following lemma:

Lemma 2.2.12. Let γ =

(
a b
c d

)
∈ Γ0(p) such that c ̸= 0. For any α ∈ Qp such that vp(α) <

−vp(c), the linear fractional transformation of γ maps the disc D(α, 1) ⊂ Qp onto the disc D
(
γα, 1

|c|2p|α|2p

)
which is contained in {z ∈ Qp, vp(z) = −vp(c)}.

Proof. Since vp(α) < −vp(c) ≤ 0 ≤ vp(Zp), we imply that |α|p > 1 and the disc D(α, 1) = α + Zp
is contained in {z ∈ Qp, vp(z) = vp(α)}. If vp(z) = vp(α), then vp(cz) = vp(c) + vp(α) < 0 ≤ vp(d),
so vp(cz + d) = vp(cz). Since γ ∈ Γ0(p), it follows that p|c, so p ̸ | a, hence vp(az) = vp(z) for any
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z. Therefore, if vp(z) = vp(α), then vp(az) = vp(α) < −vp(c) ≤ 0 ≤ vp(b), so vp(az + b) = vp(az).
We get

vp(γz) = vp

(az + b

cz + d

)
= vp(az + b)− vp(cz + d) = vp(az)− vp(cz) = −vp(c)

if vp(z) = vp(α). Therefore, γ maps D(α, 1) into the set {z ∈ Qp, vp(z) = −vp(c)}. We have

γz − γα =
az + b

cz + d
− aα+ b

cα+ d
=

z − α
(cz + d)(cα+ d)

=
z − α

c2(z + d
c )(α+ d

c )

=
z − α

c2(α+ d
c )(z − α+ α+ d

c )
=

1

c2(α+ d
c )(1 +

α+ d
c

z−α )
. (2.31)

Since vp(α) < −vp(c) and vp(
d
c ) = vp(d) − vp(c) ≥ −vp(c), so vp(α) < vp(

d
c ), it follows that

vp(α+ d
c ) = vp(α), hence |α+ d

c |p = |α|p. If z ∈ D(α, 1), then |z − α|p ≤ 1, so

∣∣α+ d
c

z − a
∣∣
p
=

|α|p
|z − α|p

≥ |α|p > 1.

Hence ∣∣1 + α+ d
c

z − a
∣∣
p
=
∣∣α+ d

c

z − a
∣∣
p
=

|α|p
|z − α|p

.

Therefore,

|γz − γα|p =
|z − α|p
|c|2p|α|2p

≤ 1

|c|2p|α|2p
.

It follows that γz ∈ D
(
γα, 1

|c|2p|α|2p

)
. So γ maps the disc D(α, 1) into the disc D

(
γα, 1

|c|2p|α|2p

)
.

If x ∈ D
(
γα, 1

|c|2p|α|2p

)
, then x − γα = 1

c2(α+ d
c )y

for some y ∈ Qp such that |y|p ≥ |α|p (note that

|α+ d
c |p = |α|p). Writing y = 1 +

α+ d
c

z−α for z = α+
α+ d

c

y−1 ∈ D(α, 1) (since |y|p ≥ |α|p > 1, it follows

that |y − 1|p = |y|p). By (2.31) we see that x − γα = γz − γα, so x = γz. Therefore, γ(D(α, 1))
equals D

(
γα, 1

|c|2p|α|2p

)
.

By the lemma, if α→∞, then the radius of the disc γ(D(α, 1)) tends to 0, so there does not exist
r ∈ |C×

p |p, r < 1 such that the functions (a − cz)k1γ(D(α,1)) belong to Ak(P1, L)[r] for infinitely

many discs D(α, 1). Therefore, the values on the functions (a − cz)k1γ(D(α,1))(z) indexed by the
discs D(α, 1) of a continuous form µ0 on V2 can be arbitrary.

� k > 0. By (2.27), the isomorphism (2.29) is replaced by

Dk(P1, L)/Dk(P1, L)|kγ0−1
∼= L×

∏
D(α,1)⊂Qp

L (2.32)

µ 7→
(
µ(1D∞), (µ(1D(α,1)))D(α,1)⊂Qp

)
,

where D∞ is any open neighborhood of ∞ in P1(Qp). Let (x∞, (xα)) ∈ L ×
∏

D(α,1)⊂Qp

L. Fix a

matrix γ =

(
a b
c d

)
∈ Γ ∩ Γ0(p) such that c ̸= 0. If µ ∈ Dk(P1, L), we have

µ|kγ−1(1D∞) = µ((a− cz)k1D∞(γ−1z))− µ(1D∞)

= µ((a− cz)k1γ(D∞)(z))− µ(1D∞). (2.33)

Let V ′
1 ⊂ Ak(P1, L) be the subspace with the basis {1D(α,1) |D(α, 1) ⊂ Qp} ∪ {1D∞}. Let V ′

2 ⊂
Ak(P1, L) be the subspace with the basis

{(a− cz)k1γ(D(α,1))(z) |D(α, 1) ⊂ Qp} ∪ {(a− cz)k1γ(D∞)(z)}.
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Similar to the above case, the sum V ′
1 +V

′
2 in Ak(P1, L) is direct. We define the continuous L-linear

form µ′
0 on V ′

1 ⊕ V ′
2 by

µ′
0|V ′

1
= 0, µ′

0((a− cz)k1γ(D∞)(z)) = x∞, µ′
0((a− cz)k1γ(D(α,1))(z)) = xα.

Extending µ′
0 to a continuous L-linear form µ′ on Ak(P1, L) by [Schn, Corollary 9.4]. Then µ′ ∈

Dk(P1, L) and

µ′
|kγ−1(1D∞) = x∞, µ′

|kγ−1(1D(α,1)) = xα

for any D(α, 1) ⊂ Qp by (2.30) and (2.33). So the image of Dk(P1, L)|kΓ−1 by (2.32) is all of
L×

∏
D(α,1)⊂Qp

L. Therefore, H0(Γ,Dk(P1, L)) = 0.

� k = 0. Similar to (2.32) we have the isomorphism

D0(P1, L)/D0(P1, L)|0,γ0−1
∼= L×

∏
D(α,1)⊂Qp

L (2.34)

µ 7→
(
µ(1D(∞,2r)), (µ(1D(α,1)))D(α,1)⊂Qp

)
,

where for each integer r′ we set D(∞, r′) = {z ∈ P1(Qp), vp(z) ≤ −r′}. The set of closed discs
of radius 1 in Qp consists of Zp = D(0, 1) and the discs D(α, 1) = α + Zp for vp(α) ≤ −1. If
vp(α) = −n ≤ −1 for n ∈ N∗, then D(α, 1) is contained in {z ∈ Qp, vp(z) = −n}. The set
{z ∈ Qp, vp(z) = −n} is partitioned by discs D(p−nβ, 1) where β ∈ Z×

p runs through a complete
set of representatives of (Zp/pnZp)×.

Let Γ ⊂ Γ0(p) be a congruence subgroup. The weight 0 action of a matrix γ =

(
a b
c d

)
∈ Γ on

D0(P1, L) is given by

µ|0,γ(f) = µ(f(γ−1z)),

where µ ∈ D0(P1, L) and f ∈ A0(P1, L). Since Γ ⊂ Γ0(p) ⊂ Σ0(p) (see §1.2.1), every matrix in Γ
preserves Zp. We have

µ|0,γ−1(1Zp
) = µ(1γ(Zp))− µ(1Zp

) = 0 (2.35)

for any γ ∈ Γ and µ ∈ D0(P1, L). For the image of other closed discs of radius 1 in Qp by elements
of Γ , we need the following lemmas:

Lemma 2.2.13. Let γ =

(
a b
c d

)
∈ Γ0(p) with c ̸= 0. Inside the set {z ∈ Qp, vp(z) = −vp(c)},

there is exactly one closed disc of radius 1 (which is D(−dc , 1)) such that its image by γ is the
neighborhood D(∞, 2vp(c)) := {z ∈ P1(Qp), vp(z) ≤ −2vp(c)} of ∞, other closed discs of radius 1
are mapped either onto closed discs of radius ≥ p2 in {z ∈ Qp,−2vp(c) < vp(z) < −vp(c)} or onto
closed discs of radius 1 in {z ∈ Qp, vp(z) = −vp(c)} by γ.

Proof. Since p|c, we have (a, p) = (d, p) = 1, so vp(
−d
c ) = −vp(c) < 0, hence D(−dc , 1) =

−d
c +Zp ⊂

{z ∈ Qp, vp(z) = −vp(c)}. We show that γ maps D(−dc , 1) onto D(∞, 2vp(c)). Let z ∈ D(−dc , 1),

then z = −dc + z′ for some z′ ∈ Zp. We have

γz =
az + b

cz + d
=
az′ − 1

c

cz′
=
a

c
− 1

c2z′
.

Since vp(
a
c ) = −vp(c) and vp(

1
c2z′ ) = −2vp(c)− vp(z

′) ≤ −2vp(c) < −vp(c), it follows that vp(γz) =
vp(

1
c2z′ ) ≤ −2vp(c). We imply that if z′ runs through Zp, then γz runs through {vp(·) ≤ −2vp(c)}.

Therefore, γ maps D(−dc , 1) onto D(∞, 2vp(c)).

Consider a disc D(α, 1) ⊂ {z ∈ Qp, vp(z) = −vp(c)} different from D(−dc , 1), then γ(D(α, 1))
is disjoint from D(∞, 2vp(c)), hence γ(D(α, 1)) is contained in {z ∈ Qp, vp(z) > −2vp(c)}. Let
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z ∈ D(α, 1). Since vp(z) = −vp(c), it follows that vp(cz) = 0, so vp(cz+d) ≥ 0. On the other hand,
since vp(az) = vp(z) = −vp(c) < 0 ≤ vp(b), we have vp(az + b) = vp(az) = −vp(c). Therefore,

vp(γz) = vp

(az + b

cz + d

)
= vp(az + b)− vp(cz + d) ≤ vp(az + b) = −vp(c).

So γ maps D(α, 1) into the set {z ∈ Qp, vp(z) ≤ −vp(c)}. Moreover, since z ∈ D(α, 1) = α + Zp,
we have

cz + d ∈ cα+ d+ cZp = cα+ d+ pvp(c)Zp. (2.36)

If cα+d ∈ pZp, then cz+d ∈ pZp, so vp(γz) < −vp(c), hence the image of D(α, 1) by γ is contained
in {z ∈ Qp,−2vp(c) < vp(z) < −vp(c)}. Writing z = α+ z′ for z′ ∈ Zp, we have

γz − γα =
z − α

(cz + d)(cα+ d)
=

z′

(cz′ + cα+ d)(cα+ d)

=
1

cα+ d
· 1

c+ cα+d
z′

=
1

c(cα+ d)
· 1

1 +
α+ d

c

z′

.

Since α /∈ D(−dc , 1), we have vp(α + d
c ) < 0, so vp(

α+ d
c

z′ ) < 0 = vp(1), hence vp(1 +
α+ d

c

z′ ) =

vp(
α+ d

c

z′ ) ≤ vp(α + d
c ). Moreover, the set {1 +

α+ d
c

z′ | z
′ ∈ Zp} equals the set {z′′ ∈ Qp, vp(z′′) ≤

vp(α+ d
c )}. Therefore, γ(D(α, 1)) = D(γα, p2vp(cα+d)) is the closed disc of radius ≥ p2 if cα+ d ∈

pZp.
If cα+ d ∈ Z×

p , then cz + d ∈ Z×
p by (2.36), so vp(γz) = −vp(c), hence the image of D(α, 1) by γ is

contained in {z ∈ Qp, vp(z) = −vp(c)}. Since

γz − γα =
z − α

(cz + d)(cα+ d)

and cz + d, cα + d ∈ Z×
p , it follows that |γz − γα|p = |z − α|p ≤ 1, so γz ∈ D(γα, 1), hence

γ(D(α, 1)) ⊂ D(γα, 1). Similar, by considering γ−1 =

(
d −b
−c a

)
, we get γ−1(D(γα, 1)) ⊂ D(α, 1)

since −c(γα) + a = (cα + d)−1 ∈ Z×
p , so D(γα, 1) ⊂ γ(D(α, 1)). We dedude that γ(D(α, 1)) =

D(γα, 1) ⊂ {z ∈ Qp, vp(z) = −vp(c)} if cα+ d ∈ Z×
p .

Lemma 2.2.14. Let r ∈ N≥2 and n ∈ N∗ such that −r + 1 ≤ −n ≤ −1. Let γ ∈ Γ0(p
r). The

linear fractional transformation of γ on P1(Qp) has the following properties:

i) γ permutes the family of closed discs of radius 1 in {z ∈ Qp, vp(z) = −n}. Moreover, if
α0 ∈ Z×

p , then γ maps the disc D(p−nα0, 1) onto the disc D(p−nβ0, 1) for some β0 ∈ Z×
p such

that α0

β0
is a square modulo pr−n (note that r − n > 0 since −n ≥ −r + 1). In particular, if

−[ r2 ] ≤ −n ≤ −1, then α0

β0
is a square modulo pn.

Conversely, for any α0, β0 ∈ Z×
p such that α0

β0
is a square modulo pr−n, there exists a matrix

γ ∈ Γ(N) ∩ Γ0(p
r) mapping the disc D(p−nα0, 1) onto the disc D(p−nβ0, 1), where N ∈ N∗

such that (N, p) = 1. If moreover −[ r2 ] ≤ −n ≤ −1, then r − n ≥ n and we can reduce to the
condition α0

β0
is a square modulo pn.

ii) If moreover γ ∈ Γ1(p
r), then γ preserves closed discs of radius 1 in {z ∈ Qp, vp(z) = −n}

if −[ r2 ] ≤ −n ≤ −1 with r ≥ 2, and γ maps a disc D(p−nα0, 1) for α0 ∈ Z×
p onto the disc

D(p−nβ0, 1) for some β0 ∈ Z×
p congruence to α0 modulo pr−n if −r+1 ≤ −n ≤ −[ r2 ]− 1 with

r ≥ 3.

Conversely, for any α0, β0 ∈ Z×
p such that α0 ≡ β0 (mod pr−n) with −r + 1 ≤ −n ≤ −[ r2 ]− 1,

there is a matrix γ ∈ Γ(Npr) mapping the disc D(p−nα0, 1) onto the disc D(p−nβ0, 1), where
N ∈ N∗ such that (N, p) = 1. Note that the disc D(p−nβ0, 1) depends only on the congruence
class of β0 modulo pn, and r − n < n if −n ≤ −[ r2 ]− 1.

Proof. i) Consider r, n ∈ N∗ such that −r + 1 ≤ −n ≤ −1 and γ =

(
a b
c d

)
∈ Γ0(p

r). If

α ∈ Qp such that vp(α) = −n, then vp(α) ≤ −1 < 0, so the disc D(α, 1) is contained in
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{z ∈ Qp, vp(z) = −n}. If z ∈ Qp such that vp(z) = −n, then vp(cz) = vp(c)+vp(z) ≥ r−n ≥ 1.
Since γ ∈ Γ0(p

r) and r ≥ 1, it follows that p|c, so (a, p) = (d, p) = 1, hence cz + d ∈ Z×
p and

vp(az) = vp(z) = −n ≤ −1 < 0 ≤ vp(b). Therefore, vp(az + b) = vp(az) = −n. We get

vp(γz) = vp

(az + b

cz + d

)
= vp(az + b)− vp(cz + d) = −n.

Therefore, γ preserves the set {z ∈ Qp, vp(z) = −n}. We have

γz − γα =
z − α

(cz + d)(cα+ d)
.

We have seen that vp(cz + d) = vp(cα + d) = 0 if vp(z) = vp(α) = −n, so γz ∈ D(γα, 1)
if z ∈ D(α, 1), hence γ(D(α, 1)) ⊂ D(γα, 1). Similar, γ−1(D(γα, 1)) ⊂ D(α, 1). Therefore,
γ(D(α, 1)) = D(γα, 1). We conclude that γ permutes the family of closed discs of radius 1 in
{z ∈ Qp, vp(z) = −n} for any n such that −r + 1 ≤ −n ≤ −1.
Consider α0 ∈ Z×

p , then γ maps D(p−nα0, 1) onto D(γ(p−nα0), 1) = γ(p−nα0) +Zp. We have

γ(p−nα0) =
ap−nα0 + b

cp−nα0 + d
= p−n

aα0 + bpn

cp−nα0 + d
∈ p−n aα0

cp−nα0 + d
+ Zp, (2.37)

since cp−nα0 + d ∈ Z×
p . Therefore, γ(D(p−nα0, 1)) = D(p−nβ0, 1) for β0 = aα0

cp−nα0+d
. Since

pr|c, it follows that cp−nα0 + d ≡ d (mod pr−n). On the other hand, since ad = 1 + bc ≡
1 (mod pr), we have cp−nα0 + d ≡ a−1 (mod pr−n). Therefore, β0 ≡ a2α0 (mod pr−n), so α0

β0
is

a square modulo pr−n. If −[ r2 ] ≤ −n ≤ −1, then r − n ≥ n, so
α0

β0
is a square modulo pn.

Conversely, suppose α0, β0 ∈ Z×
p such that α0

β0
is a square modulo pr−n. By Chinese remainder

theorem, since (N, p) = 1, we can choose a ∈ Z ∩ Z×
p such that a ≡ 1 (modN) and a2 ≡

β0

α0
(mod pr−n). Since aα0

β0
≡ 1

a (mod pr−n), letting aα0

β0
= 1

a + xpr−n for x ∈ Zp. Since

(a,Np) = 1, we can choose c ∈ Z such that c ≡ pr xα0
(mod pn+r), c ≡ 0 (modN) and c ≡

1 (mod a). Then Npr|c and (a, c) = 1. Hence (a,Nprc) = 1. Taking d ∈ Z such that

ad ≡ 1 (modNprc). Letting b = ad−1
c ∈ NprZ, then the matrix γ =

(
a b
c d

)
belongs to

Γ(N) ∩ Γ0(p
r).

By (2.37), γ maps D(p−nα0, 1) onto D(p−n aα0

cp−nα0+d
, 1). By the construction, pn|(x−cp−rα0),

so pr|(xpr−n− cp−nα0), hence
aα0

β0
≡ 1

a + cp
−nα0 (mod pr). Since pr|c and c|(ad−1), it follows

that 1
a ≡ d (mod pr). Therefore, aα0

β0
≡ d + cp−nα0 (mod pr). So aα0

cp−nα0+d
≡ β0 (mod pr),

hence mod pn since r > n. We obtain that p−n aα0

cp−nα0+d
∈ p−nβ0 + Zp. We get

D
(
p−n

aα0

cp−nα0 + d
, 1
)
= p−n

aα0

cp−nα0 + d
+ Zp = p−nβ0 + Zp = D(p−nβ0, 1).

We conclude that γ maps the disc D(p−nα0, 1) onto D(p−nβ0, 1).

If −[ r2 ] ≤ −n ≤ −1 and α0

β0
is a square modulo pn, we construct as above accept the number

a is chosen so that a2 ≡ β0

α0
(mod pn) and the number c satisfies c ≡ p2n x

α0
(mod pn+r), where

x ∈ Zp is given by aα0

β0
= 1

a+xp
n. Then cp−nα0 ≡ pnx (mod pr), so cp−nα0 ≡ 0 (mod pn) since

r > n, hence aα0

cp−nα0+d
≡ aα0

d ≡ a
2α0 ≡ β0 (mod pn). Therefore, p−n aα0

cp−nα0+d
∈ p−nβ0 + Zp.

ii) Suppose γ ∈ Γ1(p
r) and α ∈ Qp such that vp(α) = −n. We have

γα− α =
aα+ b

cα+ d
− α =

α(−cα+ a− d) + b

cα+ d
. (2.38)

We have seen that cα + d ∈ Z×
p . Since a ≡ d ≡ 1 (mod pr), vp(a − d) ≥ r. Since vp(−cα) =

vp(c)+ vp(α) ≥ r−n, it follows that vp(−cα+ a− d) ≥ r−n, so vp(α(−cα+ a− d)) ≥ r− 2n.
Hence vp(γα− α) ≥ min (r − 2n, 0). Therefore, γα ≡ α (mod pmin(r−2n,0)).

If −[ r2 ] ≤ −n ≤ −1, then r − 2n ≥ 0, so γα− α ∈ Zp, hence

γ(D(α, 1)) = D(γα, 1) = γα+ Zp = α+ Zp = D(α, 1).
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If −r + 1 ≤ −n ≤ −[ r2 ] − 1, then r − 2n < 0, so γα ≡ α (mod pr−2n). If α = p−nα0 for
α0 ∈ Z×

p , then γα = p−nβ0 for some β0 ∈ Z×
p such that β0 ≡ α0 (mod pr−n). The image of the

disc D(p−nα0, 1) by γ is the disc D(γα, 1) which is D(p−nβ0, 1).

Conversely, consider −r + 1 ≤ −n ≤ −[ r2 ]− 1 and α0, β0 ∈ Z×
p such that α0 ≡ β0 (mod pr−n).

In the proof of part i), we have constructed a matrix γ =

(
a b
c d

)
∈ Γ(N) ∩ Γ0(p

r) mapping

the disc D(p−nα0, 1) onto the disc D(p−nβ0, 1), where b ∈ NprZ and the entry a is chosen so
that a ≡ 1 (modN) and a2 ≡ β0

α0
(mod pr−n). Since α0 ≡ β0 (mod pr−n), we can choose a such

that a ≡ 1 (mod pr), then γ ∈ Γ(Npr).

The lemma is proven.

Consider the congruence subgroup Γ such that Γ1(N) ∩ Γ1(p
r) ⊂ Γ ⊂ Γ0(N) ∩ Γ1(p

r), where
(N, p) = 1 and r ≥ 1. For µ ∈ D0(P1, L), γ ∈ Γ and α ∈ Qp, we have

µ|0,γ−1(1D(α,1)) = µ(1γ(D(α,1)))− µ(1D(α,1)), (2.39)

µ|0,γ−1(1D(∞,2r)) = µ(1γ(D(∞,2r)))− µ(1D(∞,2r)).

Since γ ∈ Γ ⊂ Γ1(p
r), by part ii) of Lemma 2.2.14, we have

µ|0,γ−1(1D(α,1)) = 0 (2.40)

if −[ r2 ] ≤ vp(α) =: −n ≤ −1, and for any α0 ∈ (Zp/pnZp)×,∑
β0∈(Zp/pnZp)×,β0≡α0 (mod pr−n)

µ|0,γ−1(1D(p−nβ0,1)) = 0 (2.41)

if −r + 1 ≤ −n ≤ −[ r2 ] − 1, since γ permutes the family of closed discs D(p−nβ0, 1) for β0 ≡
α0 (mod pr−n). Since Zp and the set {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1} are invariant by γ by Lemma
2.2.14i), it follows that γ preserves D(∞, r) which is the disjoint union of D(∞, 2r) and closed discs
of radius 1 in {z ∈ Qp,−2r < vp(z) ≤ −r}. So

µ|0,γ−1(1D(∞,2r)) +
∑

D(α,1)⊂{z∈Qp,−2r<vp(z)≤−r}

µ|0,γ−1(1D(α,1)) = µ|0,γ−1(1D(∞,r)) =

= µ(1γ(D(∞,r)))− µ(1D(∞,r)) = 0. (2.42)

Therefore, by (2.35), (2.40), (2.41), (2.42), the image via (2.34) of the subspace of D0(P1, L)
generated by distributions µ|0,γ−1 for µ ∈ D0(P1, L) and γ ∈ Γ is contained in the space of all
(x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L such that

x∞ +
∑

D(α,1)⊂{z∈Qp,−2r<vp(z)≤−r}

xα = 0, (2.43)

xα = 0 if D(α, 1) = Zp or−
[r
2

]
≤ vp(α) ≤ −1, (2.44)∑

β0∈(Zp/pnZp)×,β0≡α0 (mod pr−n)

xp−nβ0
= 0 for all α0 ∈ (Zp/pr−nZp)× (2.45)

and all n ∈ N∗ such that −r + 1 ≤ −n ≤ −[ r2 ] − 1. We show that this image is all of such
(x∞, (xα))’s.

Since the set {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1} and Zp are stable by the action of Γ0(p
r) by Lemma

2.2.14i), the complement D(∞, r) in P1(Qp) is also stable by Γ0(p
r). Therefore, the values of

D0(P1, L)|0,Γ−1 at functions supported in {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1} (resp. D(∞, r)) depend
only on the restrictions of D0(P1, L) on these subsets of P1(Qp).
We partition D(∞, r) by D(∞, 2r) and the two following families:

F1 =
{
D(α, 1) |D(α, 1) ⊂ {z ∈ Qp,−2r < vp(z) < −r}

}
,

F2 =
{
D(α, 1) |D(α, 1) ⊂ {z ∈ Qp, vp(z) = −r}

}
.
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Putting F3 =
{
D(α, 1) |D(α, 1) ⊂ {z ∈ Qp, vp(z) ≤ −2r}

}
. The family of closed discs of radius 1

in {z ∈ Qp, vp(z) ≤ −r} is F1 ∪ F2 ∪ F3.

The characteristic functions of D(∞, 2r) and all discs in F1 ∪ F2 ∪ F3 are linear independent in
A0(P1, L) since all discs in F1 ∪ F2 ∪ F3 are pairwise disjoint. Let E0 denote the subspace of
A0(P1, L) with the basis consisting of these characteristic functions. Let E ⊂ A0(P1, L) be the
subspace consisting of functions supported in D(∞, r), then E0 ⊂ E. Note that every L-linear
form on E0 is automatically continuous since the families F1,F2 are finite and every subspace
A0(P1, L)[r̃] of A0(P1, L) for r̃ ∈ |C×

p |p, r̃ < 1 does not contain an infinite number of discs in F3.

Fix a disc D0 ∈ F2.

For each disc D ∈ F1, taking a matrix γD ∈ Γ(N) ∩ Γ1(p
r) ⊂ Γ mapping D into D0 as in

Lemma 2.2.15i) below. Then γ−1
D (D0) contains D. So the image of D(∞, 2r) and every disc in

F1 ∪ (F2\{D0}) ∪ F3 by γ−1
D are disjoint from D. Defining the L-linear form µ′

D on E0 by

µ′
D(1D(∞,2r)) = 0, µ′

D(1D) = −1,
µ′
D(1D(α,1)) = 0 for anyD(α, 1) ∈ F3 ∪ F2 ∪ F1\{D}.

By [Schn, Corollary 9.4], we can extend µ′
D to a continuous L-linear form µD on E such that µD

is 0 outside D. Then

(µD)|0,γ−1
D −1(1D(∞,2r)) = µD(1γ−1

D (D(∞,2r)))− µD(1D(∞,2r)) = 0− 0 = 0,

(µD)|0,γ−1
D −1(1D) = µD(1γ−1

D (D))− µD(1D) = 0− (−1) = 1,

(µD)|0,γ−1
D −1(1D0

) = µD(1γ−1
D (D0)

)− µD(1D0
) = −1− 0 = −1,

(µD)|0,γ−1
D −1(1D(α,1)) = µD(1γ−1

D (D(α,1)))− µD(1D(α,1)) = 0− 0 = 0

for any D(α, 1) ∈ (F1\{D}) ∪ (F2\{D0}) ∪ F3.

The L-linear form µ′
∞ on E0 given by

µ′
∞(1D(∞,2r)) = −1, µ′

∞(1D(α,1)) = 0 for anyD(α, 1) ∈ F1 ∪ F2 ∪ F3.

can be extended to a continuous L-linear form µ∞ on E such that µ∞ = 0 outside D(∞, 2r) by
[Schn, Corollary 9.4]. Writing the center of the discD0 by p

−rx0 for x0 belongs to a congruence class
of Z×

p modulo pr. Defining c0 = Nprc′0 for some c′0 ∈ Z ∩ Z×
p such that c′0 ≡ −N−1x−1

0 (mod pr).
Then

−1
c0

=
−1

Nprc′0
= p−r

−1
Nc′0

.

Since −1
Nc′0
≡ x0 (mod pr), it follows that D(−1

c0
, 1) = D(p−rx0, 1) = D0. Let γ∞ ∈ Γ(N) ∩ Γ1(p

r)

such that its lower left (resp. right) entry is c0 (resp. 1). By Lemma 2.2.13, the image of D0 by γ∞
is D(∞, 2r). So the image by γ∞ of D(∞, 2r) and every disc in F1 ∪ (F2\{D0}) ∪ F3 are disjoint
from D(∞, 2r). We obtain

(µ∞)|0,γ∞−1(1D(∞,2r)) = µ∞(1γ∞(D(∞,2r)))− µ∞(1D(∞,2r)) = 0− (−1) = 1,

(µ∞)|0,γ∞−1(1D0
) = µ∞(1γ∞(D0))− µ∞(1D0

) = µ∞(1D(∞,2r))− µ∞(1D0
) = −1− 0 = −1,

(µ∞)|0,γ∞−1(1D(α,1)) = µ∞(1γ∞(D(α,1)))− µ∞(1D(α,1)) = 0− 0 = 0

for any D(α, 1) ∈ F1 ∪ (F2\{D0}) ∪ F3.

For each disc D′ ∈ F2\{D0}, taking a matrix γD′ ∈ Γ(N) ∩ Γ1(p
r) mapping D′ onto D0 as in

Lemma 2.2.15ii) below. Defining the L-linear form µ′
0 on E0 by

µ′
0(1D(∞,2r)) = 0, µ′

0(1D0
) = 1,

µ′
0(1D(α,1)) = 0 for anyD(α, 1) ∈ F1 ∪ (F2\{D0}) ∪ F3.

Extending µ′
0 to a continuous L-linear form µ0 on E such that µ0 = 0 outsideD0 by [Schn, Corollary

9.4]. Since γD′(D′) = D0, the image by γD′ of D(∞, 2r) and every disc in F1 ∪ (F2\{D′})∪F3 are
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disjoint from D0. We obtain

(µ0)|0,γD′−1(1D(∞,2r)) = µ0(1γD′ (D(∞,2r)))− µ0(1D(∞,2r)) = 0− 0 = 0,

(µ0)|0,γD′−1(1D′) = µ0(1γD′ (D′))− µ0(1D′) = µ0(1D0
)− µ0(1D′) = 1− 0 = 1,

(µ0)|0,γD′−1(1D0
) = µ0(1γD′ (D0))− µ0(1D0

) = 0− 1 = −1,
(µ0)|0,γD′−1(1D(α,1)) = µ0(1γD′ (D(α,1)))− µ0(1D(α,1)) = 0− 0 = 0

for any D(α, 1) ∈ F1 ∪ (F2\{D0, D
′}) ∪ F3.

For each (xα) ∈
∏

D(α,1)∈F3

L, defining the L-linear form µ′F3

(xα) on E0 by

µ′F3

(xα)(1D(∞,2r)) = 0, µ′F3

(xα)(1D(α,1)) = 0 for any D(α, 1) ∈ F1 ∪ F2,

µ′F3

(xα)(1D(α,1)) = −xα for any D(α, 1) ∈ F3,

and extending it to a continuous L-linear form µF3

(xα) on E such that µF3

(xα) = 0 outside D(∞, 2r)
by [Schn, Corollary 9.4]. Take a matrix γF3

∈ Γ(N) ∩ Γ1(p
r) such that the p-adic valuation of its

lower left entry is r. Then γF3
∈ Γ. The set D(∞, 2r) and all discs in F1 ∪ F3 are mapped by γF3

into the set {z ∈ Qp, vp(z) = −r} by Lemma 2.2.12. The discs in F2 are mapped by γF3
either

onto D(∞, 2r) or into the set {z ∈ Qp,−2r < vp(z) ≤ −r} by Lemma 2.2.13. Therefore,

µF3

(xα)(1γF3
(D(∞,2r))) = µF3

(xα)(1γF3
(D(α,1))) = 0 for anyD(α, 1) ∈ F1 ∪ F2 ∪ F3.

We get

(µF3

(xα))|0,γF3
−1(1D(∞,2r)) = µF3

(xα)(1γF3
(D(∞,2r)))− µF3

(xα)(1D(∞,2r)) = 0− 0 = 0,

(µF3

(xα))|0,γF3
−1(1D(α,1)) = µF3

(xα)(1γF3
(D(α,1)))− µF3

(xα)(1D(α,1)) = 0− 0 = 0 ∀D(α, 1) ∈ F1 ∪ F2,

(µF3

(xα))|0,γF3
−1(1D(α,1)) = µF3

(xα)(1γF3
(D(α,1)))− µF3

(xα)(1D(α,1)) = 0− (−xα) = xα ∀D(α, 1) ∈ F3.

Let F4 be the family of closed discs of radius 1 in {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1}. Let F0 ⊂
A0(P1, L) be the subspace with the basis consisting of characteristic functions of all discs in F4.
Let F ⊂ A0(P1, L) denote the subspace of functions supported in {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1}.
Then F0 ⊂ F . Every L-linear form on F0 is automatically continuous since F0 is finite dimensional.

For n ∈ N∗ with −r + 1 ≤ −n ≤ −[ r2 ] − 1, fix a representative α0 ∈ Z×
p of each congruence class

in (Zp/pr−nZp)×. For each β0 ∈ (Zp/pnZp)× such that β0 ≡ α0 (mod pr−n) and β0 ̸≡ α0 (mod pn)
(so that D(p−nβ0, 1) ̸= D(p−nα0, 1)), take a matrix γβ0

∈ Γ(Npr) ⊂ Γ mapping D(p−nβ0, 1) onto
D(p−nα0, 1) as in Lemma 2.2.14ii). Then the image by γβ0

of every disc in F4 different from
D(p−nβ0, 1) is a disc in F4 different from D(p−nα0, 1) by Lemma 2.2.14. Defining the L-linear
form µ′

α0
on F0 by

µ′
α0
(1D(p−nα0,1)) = 1, µ′

α0
(1D(α,1)) = 0 for anyD(α, 1) ∈ F4\{D(p−nα0, 1)}.

Extending µ′
α0

to a continuous L-linear form µα0
on F by [Schn, Corollary 9.4]. We have

(µα0
)|0,γβ0

−1(1D(p−nβ0,1)) = µα0
(1D(p−nα0,1))− µα0

(1D(p−nβ0,1)) = 1− 0 = 1,

(µα0
)|0,γβ0

−1(1D(p−nα0,1)) = µα0
(1γβ0

(D(p−nα0,1)))− µα0
(1D(p−nα0,1)) = 0− 1 = −1,

(µα0
)|0,γβ0

−1(1D(α,1)) = µα0
(1γβ0

(D(α,1)))− µα0
(1D(α,1)) = 0− 0 = 0

for any D(α, 1) ∈ F4\{D(p−nα0, 1), D(p−nβ0, 1)}.
Now let (x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L satisfying the conditions (2.43), (2.44), (2.45). The conditions

(2.43) rewrites x∞ +
∑

D(α,1)∈F1∪F2

xα = 0. Consider the distribution µ ∈ D0(P1, L) defined by

µ = (µF3

(xα))|0,γF3
−1 + x∞(µ∞)|0,γ∞−1 +

∑
D∈F1

xD(µD)|0,γ−1
D −1 +

∑
D′∈F2\{D0}

xD′(µ0)|0,γD′−1
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on D(∞, r), and

µ =

r−1∑
n=[ r2 ]+1

∑
α0∈(Zp/pr−nZp)×

∑
β0∈(Zp/pnZp)×,β0≡α0 (mod pr−n),β0 ̸≡α0 (mod pn)

xp−nβ0
(µα0

)|0,γβ0
−1

on {z ∈ Qp,−r + 1 ≤ vp(z) ≤ −1}, and µ = 0 on Zp. Then µ ∈ D0(P1, L)|0,Γ−1 and it is checked
easily that

µ(1D(∞,2r)) = x∞, µ(1D(α,1)) = xα for anyD(α, 1) ⊂ Qp.

We conclude that the image of the subspace of D0(P1, L) genereted by D0(P1, L)|0,Γ−1 via (2.34) is
all of such (x∞, (xα))’s. For each n ∈ N∗, every closed disc of radius 1 in {z ∈ Qp, vp(z) = −n} is
of the form D(p−nβ, 1) for β runs through a complete set of representatives of (Zp/pnZp)×. The
dimension of H0(Γ,D0(P1, L)) if Γ1(N) ∩ Γ1(p

r) ⊂ Γ ⊂ Γ0(N) ∩ Γ1(p
r) is thus

1 + 1 +

[ r2 ]∑
n=1

|(Zp/pnZp)×|+
r−1∑

n=[ r2 ]+1

|(Zp/pr−nZp)×| = p[
r
2 ] + pr−[ r2 ]−1.

If Γ1(N) ∩ Γ0(p
r) ⊂ Γ ⊂ Γ0(Np

r), by Lemma 2.2.14i), if n ∈ N∗ with −[ r2 ] ≤ −n ≤ −1, then
Γ permutes the family of discs D(p−nβ0, 1) for β0 ∈ Z×

p such that β0

α0
is a square modulo pn, for

each one of two equivalence classes up to square multiple of congruence classes α0 ∈ (Zp/pnZp)×
if p ̸= 2 or p = 2 and n > 1, while if p = 2 and n = 1 there is only one class α0 ∈ (Zp/pnZp)×;
if −r + 1 ≤ −n ≤ −[ r2 ] − 1, then Γ permutes the family of discs D(p−nβ0, 1) for β0 ∈ Z×

p such

that β0

α0
is a square modulo pr−n, for each one of two equivalence classes up to square multiple of

congruence classes α0 ∈ (Zp/pr−nZp)× if p ̸= 2 or p = 2 and −n > −r+ 1, or only one equivalence
class if p = 2 and −n = −r + 1. Note that the group (Zp/pnZp)× ∼= (Z/pnZ)× is cyclic of order
pn−1(p− 1) for any n ∈ N∗, and this order is even if and only if p ̸= 2 or p = 2 and n > 1.

Combining with (2.35) and (2.42) we deduce that the image via (2.34) of the subspace of D0(P1, L)
generated by D0(P1, L)|0,Γ−1 is contained in the space of all (x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L such that

xα = 0 if D(α, 1) = Zp, x∞ +
∑

D(α,1)⊂{z∈Qp,−2r<vp(z)≤−r}

xα = 0, (2.46)

∑
β0∈(Zp/pnZp)×,

β0
α0

is square (mod pn)

xp−nβ0
= 0 (2.47)

for any equivalence class up to square multiple of congruence classes α0 ∈ (Zp/pnZp)× and any
n ∈ N∗ such that −[ r2 ] ≤ −n ≤ −1 if r ≥ 2, and∑

β0∈(Zp/pnZp)×,
β0
α0

is square (mod pr−n)

xp−nβ0
= 0 (2.48)

for any equivalence class up to square multiple of congruence classes α0 ∈ (Zp/pr−nZp)× and any
n ∈ N∗ such that −r + 1 ≤ −n ≤ −[ r2 ]− 1 if r ≥ 3.

By the converse part of Lemma 2.2.14i) we can explain as above to imply that the image via (2.34)
of the subspace generated by D0(P1, L)|0,Γ−1 is all of (x∞, (xα)) satisfying the conditions (2.46),
(2.47), (2.48). Therefore, the dimension of H0(Γ,D0(P1, L)) if p ̸= 2 is

1 + 1 +

[ r2 ]∑
n=1

2 +

r−1∑
n=[ r2 ]+1

2 = 2r,

while if p = 2 the dimension is

1 + 1 +
(
1 +

[ r2 ]∑
n=2

2
)
+
(
1 +

r−2∑
n=[ r2 ]+1

2
)
=


2 if r = 1,

3 if r = 2,

2r − 2 if r ≥ 3.
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If Γ = SL2(Z), then Γ ⊃ Γ0(p). By (2.34) we have the following isomorphism:

D0(P1, L)/D0(P1, L)|0γ0−1
∼= L×

∏
D(α,1)⊂Qp

L (2.49)

µ 7→
(
µ(1D(∞,2)), (µ(1D(α,1)))D(α,1)⊂Qp

)
.

By (2.46), the image of the subspace of D0(P1, L) generated by D0(P1, L)|0,Γ0(p)−1 by (2.49) is the
space of all (x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L such that

xZp
= x∞ +

∑
D(α,1)⊂{z∈Qp,vp(z)=−1}

xα = 0, (2.50)

where xZp
corresponds to the disc Zp = D(0, 1). Since P1(Qp) is partitioned by Zp, D(∞, 2) and

the set {z ∈ Qp, vp(z) = −1}, for any µ ∈ D0(P1, L) and γ ∈ SL2(Z), we have

µ|0,γ−1(1Zp) + µ|0,γ−1(1D(∞,2)) +
∑

D(α,1)⊂{z∈Qp,vp(z)=−1}

µ|0,γ−1(1D(α,1))

= µ|0,γ−1(1P1(Qp)) = µ(1γ(P1(Qp)))− µ(1P1(Qp)) = 0.

Therefore, the image of the subspace of D0(P1, L) generated by D0(P1, L)|0,SL2(Z)−1 by (2.49) is
contained in the space of all (x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L such that

xZp + x∞ +
∑

D(α,1)⊂{z∈Qp,vp(z)=−1}

xα = 0, (2.51)

and this image contains all (x∞, (xα)) satisfying (2.50). Since the image of Zp by a matrix

γ ∈ SL2(Z) can be different from Zp (e.g. γ =

(
0 1
−1 0

)
), we can define an L-linear form µ

on the subspace of A0(P1, L) generated by the characteristic functions of Zp and γ(Zp) so that
µ|0,γ−1(1Zp) = µ(1γ(Zp)) − µ(1Zp) ̸= 0, and extending µ to a continuous L-linear form (which we
still denote by µ) on A0(P1, L) by [Schn, Corollary 9.4] to have a distribution µ ∈ D0(P1, L) such
that µ|0,γ−1(1Zp

) ̸= 0. We conclude that the image of the subspace of D0(P1, L) generated by
D0(P1, L)|0,SL2(Z)−1 by (2.49) is the space of all (x∞, (xα)) ∈ L×

∏
D(α,1)⊂Qp

L satisfying (2.51). So

the dimension of H0(SL2(Z),D0(P1, L)) is 1.

We finish the proof of theorem by proving the following lemma:

Lemma 2.2.15. Let N, r ∈ N∗ with (N, p) = 1.

i) For any closed disc D0 ⊂ {z ∈ Qp, vp(z) = −r} of radius 1 and any closed disc D ⊂ {z ∈
Qp,−2r < vp(z) < −r} of radius 1, there exists a matrix γ ∈ Γ(N)∩ Γ1(p

r) such that γ maps
D into D0.

ii) For any two closed discs D0, D of radius 1 in {z ∈ Qp, vp(z) = −r}, there exists a matrix
γ ∈ Γ(N) ∩ Γ1(p

r) mapping D onto D0.

Proof. i) Let D = D(p−r−nx, 1) and D0 = D(p−ry, 1), where x, y ∈ Z×
p and n ∈ N such that

0 < n < r. We choose c′ ∈ Z such that

c′ ≡ −p
n

x
+

1

y
(mod pr), c′ ≡ 0 (modN).

Putting c = prc′, then c ≡ 0 (modNpr). Taking a, d ∈ Z such that a ≡ d ≡ 1 (modNc),
then a ≡ d ≡ 1 (modNpr) and ad ≡ 1 (modNc). Letting b = ad−1

c ∈ NZ, then the matrix

γ =

(
a b
c d

)
belongs to Γ(N) ∩ Γ1(p

r).

We check that γ maps D into D0. We have

γ(p−r−nx) =
ap−r−nx+ b

cp−r−nx+ d
=
ax+ pr+nb

cx+ pr+nd
.
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Since vp(cx) = vp(c) = r < r + n = vp(p
r+nd), we have vp(cx + pr+nd) = vp(cx) = r, so

pr+nb
cx+pr+nd ∈ p

nZp ⊂ Zp. Therefore,

D(γ(p−r−nx), 1) = γ(p−r−nx) + Zp =
ax

cx+ pr+nd
+ Zp.

Since

ax

cx+ pr+nd
=

ax

prc′x+ pr+nd
= p−r

ax

c′x+ pnd

and since

ax

c′x+ pnd
≡ x

c′x+ pn
≡ y (mod pr)

by the construction of c′, we imply that D(γ(p−r−nx), 1) = p−ry + Zp = D0. By Lemma
2.2.12, the radius of γ(D) is strictly less than 1, so

γ(D) ⊂ D(γ(p−r−nx), 1) = D0.

ii) Suppose D = D(p−rx, 1) and D0 = D(p−ry, 1) for x, y ∈ Z×
p . Choosing c′ ∈ Z such that

c′ ≡ y−1 − x−1 (mod pr) and c′ ≡ 0 (modN). Putting c = prc′, then c ≡ 0 (modNpr). Taking
a, d ∈ Z such that a ≡ d ≡ 1 (modNc), then a ≡ d ≡ 1 (modNpr) and ad ≡ 1 (modNc).

Letting b = ad−1
c ∈ NZ, then the matrix γ =

(
a b
c d

)
belongs to Γ(N) ∩ Γ1(p

r).

Since c(p−rx) + d ≡ c′x+ 1 ≡ xy−1 (mod pr), we imply that c(p−rx) + y ∈ Z×
p . By the proof

of Lemma 2.2.13 we deduce that γ maps D onto the disc D(γ(p−rx), 1). We have

γ(p−rx) =
ap−rx+ b

cp−rx+ d
= p−r

ax

c′x+ d
+

b

cp−rx+ d
∈ p−r ax

c′x+ d
+ Zp

since cp−rx + d ∈ Z×
p . On the other hand, since ax

c′x+d ≡ ay ≡ y (mod pr), it follows that

γ(p−rx) ∈ p−ry + Zp. Therefore, γ(D) = p−ry + Zp = D0.

The lemma follows.

The theorem is proven.

2.3 Admissible distributions on P1(Qp)

If µ ∈ Dk(P1), then µ is uniquely determined by two distributions µ1, µ2 on Zp, where µ1 is the
restriction of µ on Zp and µ2 is defined by

µ2(f) =

∫
D(∞,0)

zkf
(1
z

)
dµ(z),

where D(∞, 0) = {z ∈ P1(Qp), vp(z) ≤ 0}. These two distributions are related by

µ1|Z×
p
(f) = µ2|Z×

p

(
zkf

(1
z

))
for any analytic function f on Z×

p .

Definition 2.3.1. For u ≥ 0, we say that a distribution µ ∈ Dk(P1) is u-admissible or of order ≤ u
if the distributions µ1, µ2 defined above have order ≤ u as distributions on Zp. We denote the set of
u-admissible distributions in Dk(P1) by Dk(P1)≤u.



Chapter 3

Overconvergent modular symbols

In this chapter, we study overconvergent modular symbols initiated by Glenn Stevens which give
a powerful tool to study p-adic L-functions attached to modular forms, which will be discussed in the
next chapter. In Section 3.1, we introduce the general notion of modular symbols. Then we define
the action of Hecke operators on modular symbols, especially the important operator Up, as well as
the notions of slopes and slope decompositions which are considered mainly for Up. In Section 3.2 we
investigate classical and overconvergent modular symbols with values in Dk(Zp), and their relation via
the specialization map. We state the slope decompositions for the latter modular symbols. Section 3.3 is
devoted to study overconvergent modular symbols with values in Dk(P1), which is one of the innovations
of this thesis.

We fix an integer k in this chapter.

3.1 Abstract modular symbols

3.1.1 Modular symbols and Hecke operators

The notion of modular symbols is defined in [AS86].
Let ∆0 = Div0(P1(Q)) denote the abelian group of divisors of degree 0 on P1(Q). The linear fractional

transformations of GL2(Q) on P1(Q) gives ∆0 the structure of Z[GL2(Q)]-module.
Let Γ be a congruence subgroup of SL2(Z) and V be a right Z[Γ]-module. The group of additive

homomorphisms Hom(∆0, V ) is endowed with the structure of a right Γ-module given by

(ϕ|γ)(D) := ϕ(γD)|γ

for ϕ ∈ Hom(∆0, V ), γ ∈ Γ and D ∈ ∆0.

Definition 3.1.1. A group homomorphism ϕ ∈ Hom(∆0, V ) is called a V -valued modular symbol on Γ
if ϕ|γ = ϕ for any γ ∈ Γ, i.e.,

ϕ(γD) = ϕ(D)|γ−1 for all γ ∈ Γ, D ∈ ∆0.

We denote by SymbΓ(V ) the space of all V -valued modular symbols on Γ.

If V is an R[Γ]-module for R a commutative ring with identity, then SymbΓ(V ) has the natural
structure of R-module.

By [AS86, Proposition 4.2], for H denotes the Poincaré upper half plane and V is the associated locally
constant sheaf of V on the modular curve H/Γ, there is a canonical isomorphism

SymbΓ(V ) ∼= H1
c (H/Γ,V)

if the order of any torsion element of Γ acts invertibly on V .
If Σ ⊂ SL2(Z) is a monoid acting on V and containing the group Γ and a matrice s, we define the

action of the Hecke operator [ΓsΓ] on SymbΓ(V ) given by the double coset ΓsΓ:

ϕ|[ΓsΓ] =
∑
i

ϕ|si , where ΓsΓ =
⊔
i

Γsi.

41
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If

(
1 0
0 l

)
∈ Σ for a prime number l, then we denote by Tl the Hecke operator acting on SymbΓ(V ) given

by the double coset Γ

(
1 0
0 l

)
Γ. For example, if Γ = Γ0(N) and l ̸ | N , then

ϕ|Tl
= ϕ∣∣ l 0

0 1

 +

l−1∑
a=0

ϕ∣∣1 a
0 l

.

If l divides the level of Γ, we write Ul instead of Tl and we have

ϕ|Ul
=

l−1∑
a=0

ϕ∣∣1 a
0 l

.

The Hecke operator Up will play an important role in this thesis.

If

(
1 0
0 −1

)
normalizes Γ, then the operator T∞ :=

[
Γ

(
1 0
0 −1

)
Γ
]
acts on SymbΓ(V ) by the action

of this matrix and this action is an involution. When 2 acts invertibly on V , we have a decomposition

SymbΓ(V ) = SymbΓ(V )+ ⊕ SymbΓ(V )−

into ±1-eigenspaces for T∞-action, given by ϕ = ϕ+ + ϕ− for ϕ ∈ SymbΓ(V ), where

ϕ± =
1

2

(
ϕ± ϕ∣∣1 0

0 −1


)
.

The operator T∞ is commutative with all Hecke operators Tl and Ul since the matrix

(
1 0
0 −1

)
commutes

with

(
1 0
0 l

)
for any l. Therefore, the subspaces SymbΓ(V )± are stable by the actions of Tl and Ul.

3.1.2 Slopes and slope decompositions

Definition 3.1.2 (Slopes). Let h be a rational number.

i) We say that a polynomial P (X) ∈ L[X] has slope ≤ h (resp. < h) if all its roots in Q̄p have p-adic
valuation ≤ h (resp. < h). The polynomial P is said to be of finite slope if it has slope ≤ h for
some h ∈ Q (i.e., P (0) ̸= 0).

ii) If M is an L-vector space with an endomorphism named U acting on it, we define its subspace of
vectors of slope ≤ h (resp. < h), denoted by MU≤h (resp. MU<h), as the sum of the subspaces
kerP (U) where P runs among monic polynomials of slope ≤ h (resp. < h). A vector in M is said
to be of finite slope if it has slope ≤ h for some h ∈ Q. Slope of a U -eigenvector is defined by the
p-adic valuation of its eigenvalue.

The notion of slope decompositions is introduced by Ash and Stevens, we follow [Urb] for its definition.

Definition 3.1.3 (Slope decompositions). Let M be a vector space over L and let U be a linear en-
domorphism of M . A ≤ h-slope decomposition of M with respect to U is a direct sum decomposition
M =M1 ⊕M2 such that

i) M1 and M2 are stable under the action of U .

ii) M1 is finite dimensional over L.

iii) The characteristic polynomial of U on M1 has slope ≤ h.

iv) For any polynomial Q ∈ L[X] of slope ≤ h, the restriction of Q(U) to M2 is an invertible endo-
morphism of M2.

We denote MU≤h for M1 and MU>h for M2. The subspace MU≤h is defined in Definition 3.1.2ii). Note
that the subspace MU>h is bigger than the subspace of vectors of finite slope > h.
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By a generalization of a result of Serre (see [Ser, Proposition 12] and [Buz, Theorem 3.3]), we imply
that any compact endomorphism of a Banach space admits a ≤ h-slope decomposition for any h, or more
general for any compact operator on a compact Fréchet space, in the sense of [Urb, §2.3.12].

The notions of slopes and slope decompositions will be considered mainly for the operator Up on
classical and overconvergent modular symbols. When we talk about the slope of a modular symbol
without mentioning operator acting on it, we mean Up-slope, e.g., we write SymbΓ0

(Dk(Zp))≤h for
SymbΓ0

(Dk(Zp))Up≤h.

3.2 Classical and overconvergent modular symbols with values
in Dk(Zp)

In this section, we define the classical and overconvergent modular symbols with values in Dk(Zp),
endowed with an action of Up, as well as the specialization map between them. This map gives us an
isomorphism when restricted to the subspace of small slope (see Theorem 3.2.1). We formulate the slope
decompositions of overconvergent modular symbols with values in Dk(Zp) in Proposition 3.2.3.

Throughout this section, let Γ ⊂ SL2(Z) be a congruence subgroup of level prime to p. We put
Γ0 = Γ ∩ Γ0(p).

For k ∈ N, since Γ0 ⊂ Σ0(p), it acts on the space Dk(Zp) of p-adic distributions on Zp, and on the
L-dual Vk of the space Pk ⊂ L[X] of polynomials of degree ≤ k with coefficients in L, by the weight k
actions defined by (1.7). The space of modular symbols with values in Vk (resp. Dk(Zp)) is called the
space of classical (resp. overconvergent) modular symbols.

The natural inclusion Pk → Ak(Zp) induces the Σ0(p)-equivariant dual map ρk : Dk(Zp)→ Vk, then
induces the map

ρk : SymbΓ0
(Dk(Zp))→ SymbΓ0

(Vk)

which is equivariant for Hecke operators and which we call the specialization map.

Theorem 3.2.1 (Stevens’s control theorem). The specialization map

ρk : SymbΓ0
(Dk(Zp))→ SymbΓ0

(Vk)

is surjective. Moreover, its restriction to the subspace of Up-slope < k + 1 is an isomorphism

ρk : SymbΓ0
(Dk(Zp))<k+1 ∼=→ SymbΓ0

(Vk)<k+1.

Proof. See [PS11, Theorem 5.1] for surjectivity, see [Ste, Theorem 7.1] or [PS13, Theorem 5.4] for the
isomorphism on small slope subspace.

A well-known result of Manin says that ∆0 is a finite Z[Γ]-module for any finite index subgroup
Γ ⊂ SL2(Z) (see [Man]), so ∆0 is finite Z[Γ0]-module. For each r ∈ |C×

p |p, r < p, since Γ0 acts isometrically
on Dk(Zp)[r] by Corollary 1.2.2, we get the space SymbΓ0

(Dk(Zp)[r]). The action of Σ0(p) on Dk(Zp)[r]
induces the action of Up on SymbΓ0

(Dk(Zp)[r]). The r-norm ∥ · ∥r on D(Zp)[r] induces the r-norm ∥·∥r
on SymbΓ0

(Dk(Zp)[r]) given by

∥Φ∥r = sup
D∈∆0

∥Φ(D)∥r ,

note that ∥Φ(γD)∥r = ∥Φ(D)∥r for any γ ∈ Γ0 and D ∈ ∆0 since Φ(γD) = Φ(D)|γ−1 and Γ0 acts by
isometry on Dk(Zp)[r]. Then SymbΓ0

(Dk(Zp)[r]) becomes a Banach space and it can be embedded to a
product of finite copies of D(Zp)[r] indexed by a finite family of generators of Z[Γ0]-module ∆0. Since
Dk(Zp) is the projective limit of Dk(Zp)[r]’s for r ∈ |C×

p |p, where the transition maps Dk(Zp)[r2] →
Dk(Zp)[r1] are injective, compact (by Lemmas 1.1.1, 1.1.2) and Σ0(p)-equivariant for any r2 < r1, we
have

SymbΓ0
(Dk(Zp)) = lim←−

r∈|C×
p |p,r<p

SymbΓ0
(Dk(Zp)[r])

and the transition maps are injective, compact and Up-equivariant. So SymbΓ0
(Dk(Zp)) has the structure

of a Fréchet space endowed with the family of norms {∥ · ∥r : r ∈ |C×
p |p, r < p}.
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Proposition 3.2.2. The Hecke oparator Up on SymbΓ0
(Dk(Zp)[r]) is compact for any r ∈ |C×

p |p, r < p.

Proof. Recall the action of Up on SymbΓ0
(Dk(Zp)[r]):

Φ|Up
(D) =

p−1∑
a=0

Φ|γa(D) =

p−1∑
a=0

Φ(γaD)|kγa ,

where Φ ∈ SymbΓ0
(Dk(Zp)[r]), D ∈ ∆0 and γa =

(
1 a
0 p

)
.

Since γa has determinant p and Φ(γaD) ∈ Dk(Zp)[r], the distribution Φ(γaD)|kγa belongs toDk(Zp)[r/p]
by Corollary 1.2.2. Therefore, Φ|Up

∈ SymbΓ0
(Dk(Zp)[r/p]). In other words, the operator Up factors

through

SymbΓ0
(Dk(Zp)[r])

Up−→ SymbΓ0
(Dk(Zp)[r/p])→ SymbΓ0

(Dk(Zp)[r]),

where the second map is induced by the dual map Dk(Zp)[r/p] → Dk(Zp)[r]. Since the second map is
compact, Up is compact as an endomorphism of SymbΓ0

(Dk(Zp)[r]).

Proposition 3.2.3. For each h ∈ Q≥0, there is a ≤ h-slope decomposition

SymbΓ0
(Dk(Zp)) = SymbΓ0

(Dk(Zp))≤h ⊕ SymbΓ0
(Dk(Zp))>h

and similar for SymbΓ0
(Dk(Zp)[r]), where the space SymbΓ0

(Dk(Zp))≤h is defined in Definition 3.1.2ii).
Moreover,

SymbΓ0
(Dk(Zp))≤h ∼= SymbΓ0

(Dk(Zp)[r])≤h

for any r ∈ |C×
p |p, r < p.

Proof. It follows by slope decompositions for compact operators on compact Fréchet spaces proved in
[Urb, Lemma 2.3.13]. Note that the Fréchet space SymbΓ0

(Dk(Zp)) is compact and the Hecke operator Up
on SymbΓ0

(Dk(Zp)) is compact by Proposition 3.2.2, in the sense of [Urb, §2.3.12]. The last isomorphism
follows from [Urb, Lemma 2.3.13].

3.3 Overconvergent modular symbols with values in Dk(P1)

As mentioned at the beginning of Chapter 2, the consideration of P1(Qp) promises a more general
framework than that of Zp, so it is useful to study overconvergent modular symbols with values in Dk(P1).

We establish an exact sequence involving overconvergent modular symbols with values in Dk(P1) in
Proposition 3.3.2. Like the case of Dk(Zp) in Section 3.2, there is also a Up-operator acting on these
overconvergent modular symbols. The difference is that this operator Up no longer admits the slope
decompositions, even the subspaces of bounded above slope are no longer finite dimensional (see Corollary
3.3.14). To get this result, we are led to the existence of a new operator Vp acting on overconvergent
modular symbols with values in Dk(Zp) on the right, and we realize that the composition Vp ◦Up equals
pk+1Id on these modular symbols (see Proposition 3.3.11). From this identity, we derive some corollaries
involving the operators Up, Vp (see Corollaries 3.3.12, 3.3.14, 3.3.16, 3.3.17). We define some finite
dimensional Up-stable subspaces of overconvergent modular symbols with values in Dk(P1) arising in an
exact sequence of modular symbols in Theorem 3.3.20.

In this section, we consider the congruence subgroup Γ = Γ1(N) or Γ0(N) for N prime to p. We put
Γ0 = Γ ∩ Γ0(p). Denote D(∞, 1) = {z ∈ P1(Qp), vp(z) ≤ −1}, the complement of Zp in P1(Qp).

Lemma 3.3.1. For any finite index subgroup Γ ⊂ SL2(Z) and short exact sequence

0→ V1 → V2 → V3 → 0

of Γ-modules such that the order of any torsion element of Γ acts invertibly on Vi’s, there is a canonical
long exact sequence

0→ SymbΓ(V1)→ SymbΓ(V2)→ SymbΓ(V3)→ H0(Γ, V1)→ H0(Γ, V2)→ H0(Γ, V3)→ 0.
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Proof. We have seen that the space of modular symbols is isomorphic to the first cohomology group with
compact support of the modular curve. The result follows from the long exact sequence of cohomology
with compact support associated to a short exact sequence of Γ-modules and the fact that

H0(Γ, Vi) ∼= H0(H/Γ,Vi) ∼= H2
c (H/Γ,Vi)

by Poincaré’s duality, where Vi is the locally constant sheaf associated to the module Vi for i = 1, 2, 3.
Note that H3

c (H/Γ,V1) = 0 since the real dimension of H/Γ is 2.

Proposition 3.3.2. For any k ∈ N, there is an exact sequence compatible with Hecke operators:

0→ SymbΓ0
(D−k−2(P1, L))(k + 1)→ SymbΓ0

(Dk(P1, L))
ρk→ SymbΓ0

(V†
k(L))→ 0

induced by the exact sequence in Proposition 2.2.4, where (k + 1) means the action of a Hecke operator
[Γ0sΓ0] for s ∈ GL2(Qp) is twisted by (det s)k+1.

Proof. We apply Lemma 3.3.1 for the short exact sequence of Γ0-modules in Proposition 2.2.4 with the
note that H0(D−k−2(P1, L)) = 0 by Theorem 2.2.11.

We denote Ak(D(∞, 1)) the subspace of Ak(P1) consisting of functions supported in D(∞, 1). A
function f ∈ Ak(P1) belongs to Ak(D(∞, 1)) if f|Zp

= 0. Since Γ0(p) preserves Zp, the weight k action
of Γ0(p) on Ak(P1) stabilizes Ak(D(∞, 1)), so it induces a weight k action on Ak(D(∞, 1)). We set
Dk(D(∞, 1)) the continuous dual of Ak(D(∞, 1)), endowed with the right weight k action of Γ0(p)
defined similarly to that on Dk(P1) (see (2.5)). We get the space SymbΓ0

(Dk(D(∞, 1))). The restriction
map

res : Dk(P1)→ Dk(D(∞, 1))
µ 7→ µ|D(∞,1)

on D(∞, 1) is Γ0(p)-equivariant since it is the dual of the inclusion map Ak(D(∞, 1))→ Ak(P1).
Consider the exact sequence of p-adic distributions

0→ Dk(Zp)
ext→ Dk(P1)

res→ Dk(D(∞, 1))→ 0, (3.1)

where the first map is the extension map given by ext(µ)(f) = µ(f|Zp
) for µ ∈ Dk(Zp) and f ∈ Ak(P1).

Lemma 3.3.3. The exact sequence (3.1) is equivariant with the weight k actions of Σ0(p), where the
weight k action of Σ0(p) on Dk(D(∞, 1)) is extended from the action of Γ0(p) by

µ|kγ(f) = µ(f|kγ∗) = µ

(
f∣∣

k

 d −b
−c a


)

= µ
(
1γ(D(∞,1))(z) · (a− cz)kf

(dz − b
a− cz

))
, (3.2)

where µ ∈ Dk(D(∞, 1)), γ =

(
a b
c d

)
∈ Σ0(p), f ∈ Ak(D(∞, 1)). Here we abuse the notation |k for the

above actions on µ and f since they are defined almost the same as (1.5), (1.7).

Proof. For µ0 ∈ Dk(Zp), f ∈ Ak(P1) and γ =

(
a b
c d

)
∈ Σ0(p), we have

ext(µ0|kγ)(f) = (µ0|kγ)(f|Zp
) = µ0

(
(a− cz)kf

(dz − b
a− cz

)
|Zp

)
=ext(µ0)

(
(a− cz)kf

(dz − b
a− cz

))
= ext(µ0)|kγ(f).

So ext(µ0|kγ) = ext(µ0)|kγ . The map ext is Σ0(p)-equivariant. Since Dk(D(∞, 1)) is isomorphic to the

quotient Dk(P1)/ext(Dk(Zp)) by (3.1), there is an action of Σ0(p) on Dk(D(∞, 1)) such that the map res
is Σ0(p)-equivariant. We check that this action is given by (3.2).

Let µ ∈ Dk(P1), f ∈ Ak(D(∞, 1)) and γ =

(
a b
c d

)
∈ Σ0(p). We have

res(µ|kγ)(f) = (µ|kγ)(1D(∞,1) · f) = µ
(
(a− cz)k1D(∞,1)(γ

−1z) · f
(dz − b
a− cz

))
= µ

(
(a− cz)k1γ(D(∞,1))(z) · f

(dz − b
a− cz

))
.
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We consider the condition z ∈ γ(D(∞, 1)). Since D(∞, 1) is the complement of Zp in P1(Qp), it is
equivalent to z /∈ γ(Zp). Since

γ−1(Zp) = γ∗(Zp) =
dZp − b
a− cZp

⊂ Zp (note that p|c, p ̸ | a),

it follows that Zp ⊂ γ(Zp), so z /∈ Zp, hence z ∈ D(∞, 1). Therefore, γ(D(∞, 1)) ⊂ D(∞, 1). We get
1γ(D(∞,1)) = 1D(∞,1) · 1γ(D(∞,1)). We obtain

res(µ|kγ)(f) = res(µ)
(
1γ(D(∞,1))(z) · (a− cz)kf

(dz − b
a− cz

))
= res(µ)|kγ(f).

The lemma follows.

Remark 3.3.4. The condition z ∈ γ(D(∞, 1)) ⊂ D(∞, 1) in (3.2) ensures that dz−b
a−cz ∈ D(∞, 1).

The action (3.2) of Σ0(p) on Dk(D(∞, 1)) induces the right action of Up on SymbΓ0
(Dk(D(∞, 1))).

Corollary 3.3.5. For any k ∈ Z\{0}, there is a Up-equivariant exact sequence of modular symbols:

0→ SymbΓ0
(Dk(Zp, L))

ext→ SymbΓ0
(Dk(P1, L))

res→ SymbΓ0
(Dk(D(∞, 1), L))→ 0.

If k = 0, the last space 0 in this exact sequence is replaced by L

Proof. We apply Lemma 3.3.1 for the short exact sequence (3.1) which is Σ0(p)-equivariant by Lemma
3.3.3, with the note that H0(Γ0,Dk(Zp, L)) = 0 for any k ∈ Z\{0} and H0(Γ0,D0(Zp, L)) = L by [PS13,
Lemma 5.2].

It is obvious that the functor which takes subspace of slope ≤ h (or < h) is left exact, so we get a
left exact sequence of ≤ h-slope modular symbols for Up-operator from the exact sequence in the above
corollary for each h ∈ Q and k ∈ Z:

0→ SymbΓ0
(Dk(Zp, L))≤h

ext→ SymbΓ0
(Dk(P1, L))≤h

res→ SymbΓ0
(Dk(D(∞, 1), L))≤h,

and similar if ≤ h is replaced by < h.

Proposition 3.3.6. For any h ∈ Q and k ∈ Z\{0}, the map

SymbΓ0
(Dk(P1, L))≤h

res→ SymbΓ0
(Dk(D(∞, 1), L))≤h

is surjective. Therefore, for k ∈ Z\{0}, there is a Up-equivariant exact sequence of ≤ h-slope modular
symbols:

0→ SymbΓ0
(Dk(Zp, L))≤h

ext→ SymbΓ0
(Dk(P1, L))≤h

res→ SymbΓ0
(Dk(D(∞, 1), L))≤h → 0.

If k = 0, the last space 0 in this exact sequence is replaced by L. We get the same results if ≤ h is replaced
by < h.

Proof. Consider k ̸= 0. Let Φ1 ∈ SymbΓ0
(Dk(D(∞, 1), L))≤h. There is a polynomial P (X) ∈ L[X] of

slope ≤ h such that Φ1|P (Up) = 0. By Corollary 3.3.5, there exists Φ ∈ SymbΓ0
(Dk(P1, L)) such that

res(Φ) = Φ1.
Since the map res is Up-equivariant, we have Φ|P (Up) ∈ ker (res) = Im (ext), so there is Φ0 ∈

SymbΓ0
(Dk(Zp, L)) such that Φ|P (Up) = ext(Φ0).

Recall the ≤ h-slope decomposition:

SymbΓ0
(Dk(Zp, L)) = SymbΓ0

(Dk(Zp, L))≤h ⊕ SymbΓ0
(Dk(Zp, L))>h.

Writing Φ0 = Ψ0+Θ0 where Ψ0 has slope ≤ h and Θ0 ∈ SymbΓ0
(Dk(Zp, L))>h. There exists a polynomial

Q(X) ∈ L[X] of slope ≤ h such that Ψ0|Q(Up) = 0. We have

Φ|(PQ)(Up) = (Φ|P (Up))|Q(Up) = ext(Φ0)|Q(Up)

= ext((Ψ0 +Θ0)|Q(Up)) = ext(Θ0|Q(Up)).
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Since PQ is of slope ≤ h, (PQ)(Up) acts invertibly on SymbΓ0
(Dk(Zp, L))>h which contains Θ0|Q(Up), so

there is Ξ0 ∈ SymbΓ0
(Dk(Zp, L))>h such that Ξ0|(PQ)(Up) = Θ0|Q(Up). We get

(Φ− ext(Ξ0))|(PQ)(Up) = 0,

so Φ− ext(Ξ0) ∈ SymbΓ0
(Dk(P1, L))≤h. Since Im (ext) = Ker (res), we have

res(Φ− ext(Ξ0)) = res(Φ) = Φ1.

So the map res restricted on the subspace of ≤ h-slope modular symbols is surjective. The exactness for
k ̸= 0 is followed from Corollary 3.3.5. For k = 0, the proof is the same.

Consider the canonical isomorphism ι : A(Zp)→ Ak(D(∞, 1)) given by

ι(f)(z) = zkf
( 1

Npz

)
for f ∈ A(Zp), z ∈ D(∞, 1) (note that (N, p) = 1).

Take the continuous dual, it induces an isomorphism of Fréchet spaces:

ι̂ : Dk(D(∞, 1))
∼=→ D(Zp) (3.3)

µ 7→ ι̂(µ) : f 7→ µ
(
zkf

( 1

Npz

))
,

where µ ∈ Dk(D(∞, 1)), f ∈ A(Zp) and z ∈ D(∞, 1). So D(Zp) is endowed with a weight k action of
Σ0(p) induced from the action (3.2) on Dk(D(∞, 1)). We determine this action.

Let τNp =

(
0 1
Np 0

)
. Define the right weight k action ·k of Σ0(p) on D(Zp) by

(µ ·k γ)(f) := (µ|kτNpγτ
−1
Np

)(f) = µ∣∣
k

 d c/(Np)
bNp a

(f) = µ

(
f∣∣

k

 a −c/(Np)
−bNp d


)

= µ

(
1 c

aNp+(ad−bc)Zp
(z) · (d− bNpz)kf

(az − c/(Np)
d− bNpz

))
, (3.4)

where µ ∈ D(Zp), γ =

(
a b
c d

)
∈ Σ0(p) and f ∈ A(Zp). Here we abuse the notation |k for the above

actions on µ and f since they are defined almost the same as (1.5), (1.7) (the condition z ∈ c
aNp + (ad−

bc)Zp for the action on f ensures that az−c/(Np)
d−bNpz ∈ Zp).

Denote D′
k(Zp) the space D(Zp) endowed with the action ·k of Σ0(p).

Lemma 3.3.7. The isomorphism (3.3) is Σ0(p)-equivariant for the action (3.2) on Dk(D(∞, 1)) and the
action (3.4) on D′

k(Zp).

Proof. For γ =

(
a b
c d

)
∈ Σ0 (p) , µ ∈ Dk(D(∞, 1)) and f ∈ A(Zp), we have

ι̂(µ|kγ)(f) = (µ|kγ)
(
zkf

( 1

Npz

))
= µ

(
1γ(D(∞,1))(z) · (a− cz)k

(dz − b
a− cz

)k
f
( a− cz
Np(dz − b)

))
= µ

(
1γ(D(∞,1))(z) · zk

(
d− bNp

Npz

)k
· f
( a
Npz −

c
Np

d− bNp
Npz

))

=: µ
(
zkg
( 1

Npz

))
= ι̂(µ)(g),

where g(z) = 1γ(D(∞,1))(
1

Npz ) · (d− bNpz)
k · f(az−c/(Np)d−bNpz ) for z ∈ Zp.

We simplify the condition 1
Npz ∈ γ(D(∞, 1)) = P1(Qp)\γ(Zp). We have

1

Npz
/∈ γ(Zp)⇔ γ−1

( 1

Npz

)
/∈ Zp ⇔ vp

( d
Npz − b
a− c

Npz

)
< 0⇔ vp

(d− bNpz
aNpz − c

)
< 0

⇔ vp

(aNpz − c
d− bNpz

)
> 0⇔ Npz − c/a

d− bNpz
∈ pZp (since p ̸ | a)⇔ bNpz − bc/a

bNpz − d
∈ bpZp

⇔ 1 +
d− bc/a
bNpz − d

∈ bpZp ⇔
d− bc/a
bNpz − d

∈ −1 + bpZp ⇔ bNpz − d ∈ d− bc/a
−1 + bpZp

.
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If x ∈ −1 + bpZp, then x = −1 + bpy for y ∈ Zp. Since |bpy|p < 1, we have

1

x
=

1

−1 + bpy
=

−1
1− bpy

= −(1 + bpy + (bpy)2 + ...) ∈ −1 + bpZp.

So 1
−1+bpZp

⊂ −1 + bpZp, hence −1 + bpZp ⊂ 1
−1+bpZp

. Therefore, 1
−1+bpZp

= −1 + bpZp. We obtain

bNpz − d ∈
(
d− bc

a

)
(−1 + bpZp) =

bc

a
− d+

(
d− bc

a

)
bpZp.

We deduce that z ∈ c
aNp + (ad− bc)Zp ⊂ Zp since p|c, p ̸ | aN . So

g(z) = 1 c
aNp+(ad−bc)Zp

· (d− bNpz)k · f
(az − c/(Np)

d− bNpz

)
= f∣∣

k

 a −c/(Np)
−bNp d

.

We obtain

ι̂(µ|kγ)(f) = ι̂(µ)(g) = ι̂(µ)∣∣
k

 d c/(Np)
bNp a

(f) = ι̂(µ)|kτNpγτ
−1
Np

(f).

Therefore, ι̂(µ|kγ) = ι̂(µ)|kτNpγτ
−1
Np

= ι̂(µ) ·k γ. Note that τNp normalizes Γ0.

We define as usual the Hecke operator Up acting on SymbΓ0
(D′

k(Zp)) on the right induced from the
action ·k of Σ0(p) on D′

k(Zp). We have

(Φ · Up)(D) =

p−1∑
a=0

(Φ · γa)(D) =

p−1∑
a=0

Φ(γaD) ·k γa =

p−1∑
a=0

Φ(γaD)|kτNpγaτ
−1
Np

for Φ ∈ SymbΓ0
(D′

k(Zp)) and D ∈ ∆0.

Corollary 3.3.8. For k ∈ Z\{0}, there is a Up-equivariant exact sequence of modular symbols:

0→ SymbΓ0
(Dk(Zp, L))

ext→ SymbΓ0
(Dk(P1, L))

res→ SymbΓ0
(D′

k(Zp, L))→ 0.

The restriction on the ≤ h-slope subspace is also exact:

0→ SymbΓ0
(Dk(Zp, L))≤h

ext→ SymbΓ0
(Dk(P1, L))≤h

res→ SymbΓ0
(D′

k(Zp, L))≤h → 0,

and similar if ≤ h is replaced by < h.
If k = 0, the last space 0 in the above exact sequences is replaced by L.

Proof. It is immediate from Corollary 3.3.5, Proposition 3.3.6 and Lemma 3.3.7.

Since

(
p 0
0 1

)
= τNp

(
1 0
0 p

)
τ−1
Np and

(
1 0
0 p

)
∈ Σ0(p), by (3.4), there is a right weight k action of(

p 0
0 1

)
on Dk(Zp) given by

µ∣∣
k

p 0
0 1

(f) = µ

(
f∣∣

k

1 0
0 p


)

= µ
(
pk1pZp

(z) · f
(z
p

))
, (3.5)

where µ ∈ Dk(Zp) and f ∈ Ak(Zp). This action is compatible with the action of Γ0(p). Let Vp be the

double coset operator

[
Γ0

(
p 0
0 1

)
Γ0

]
acting on SymbΓ0

(Dk(Zp)) on the right.

Let τNp =

(
0 1
Np 0

)
and γa =

(
1 a
0 p

)
. Since τNp normalizes Γ0, there is a decomposition:

Γ0

(
p 0
0 1

)
Γ0 = Γ0τNp

(
1 0
0 p

)
τ−1
NpΓ0 = τNpΓ0

(
1 0
0 p

)
Γ0τ

−1
Np

=

p−1⊔
a=0

τNpΓ0γaτ
−1
Np =

p−1⊔
a=0

Γ0 · τNpγaτ−1
Np. (3.6)

Therefore, Vp acts on SymbΓ0
(Dk(Zp)) by ϕ|Vp

=
p−1∑
a=0

ϕ|τNpγaτ
−1
Np

.



3.3. OVERCONVERGENT MODULAR SYMBOLS WITH VALUES IN DK(P1) 49

Lemma 3.3.9. There is a canonical isomorphism:

SymbΓ0
(D′

k(Zp))
∼=→ SymbΓ0

(Dk(Zp))
Φ 7→ Ψ : D 7→ Φ(τ−1

NpD) for D ∈ ∆0

which is equivariant for the action of Up on the left hand side and the action of Vp on the right hand side.
Therefore, for any h ∈ Q,

SymbΓ0
(D′

k(Zp))≤h ∼= SymbΓ0
(Dk(Zp))Vp≤h.

Proof. For Φ ∈ SymbΓ0
(D′

k(Zp)), since Φ is Γ0-invariant, for any D ∈ ∆0 and γ ∈ Γ0, we have

Φ(D) = (Φ · γ)(D) = Φ(γD) ·k γ = Φ(γD)|kτNpγτ
−1
Np
.

Replacing γ by τ−1
NpγτNp yields

Φ(D) = Φ(τ−1
NpγτNpD)|kγ .

For each D ∈ ∆0, let Ψ(D) = Φ(τ−1
NpD), then

Ψ(τNpD) = Ψ(γτNpD)|kγ .

Replacing D by τ−1
NpD, we get Ψ(D) = Ψ(γD)|kγ = Ψ|γ(D) for any D ∈ ∆0 and γ ∈ Γ0, hence Ψ ∈

SymbΓ0
(Dk(Zp)). Therefore, the correspondence Φ 7→ Ψ is an isomorphism between SymbΓ0

(D′
k(Zp))

and SymbΓ0
(Dk(Zp)).

Let Ψ1 be the image of Φ ·Up under the correspondence. We show that Ψ1 = Ψ|Vp
. For any D ∈ ∆0,

we have

Ψ1(D) = (Φ · Up)(τ−1
NpD) =

p−1∑
a=0

Φ(γaτ
−1
NpD) ·k γa =

p−1∑
a=0

Φ(γaτ
−1
NpD)|kτNpγaτ

−1
Np

=

p−1∑
a=0

Ψ(τNpγaτ
−1
NpD)|kτNpγaτ

−1
Np

=

p−1∑
a=0

Ψ|τNpγaτ
−1
Np

(D) = Ψ|Vp
(D).

The lemma is proven.

Corollary 3.3.10. For k ∈ Z\{0}, there is an exact sequence of modular symbols:

0→ SymbΓ0
(Dk(Zp, L))

ext→ SymbΓ0
(Dk(P1, L))

res→ SymbΓ0
(Dk(Zp, L))→ 0 (3.7)

which is equivariant for the Up-action on the first two spaces and the Vp-action on the last space. The
restriction on the ≤ h-slope subspaces for the corresponding operators is also exact:

0→ SymbΓ0
(Dk(Zp, L))≤h

ext→ SymbΓ0
(Dk(P1, L))≤h

res→ SymbΓ0
(Dk(Zp, L))Vp≤h → 0, (3.8)

and similar if ≤ h is replaced by < h.
If k = 0, the last space 0 in the above exact sequences is replaced by L.

Proof. It follows by Corollary 3.3.8 and Lemma 3.3.9.

The operators Up and Vp on SymbΓ0
(Dk(Zp)) are related by the following result:

Proposition 3.3.11. For any k ∈ Z and Φ ∈ SymbΓ0
(Dk(Zp)), we have

Φ|UpVp
:= (Φ|Up

)|Vp
= pk+1Φ.
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Proof. For any D ∈ ∆0, f ∈ Ak(Zp), we have

Φ|UpVp
(D)(f) =

p−1∑
a,b=0

Φ∣∣
k

1 a
0 p

∣∣
k

 p 0
bNp 1

(D)(f)

=

p−1∑
a,b=0

Φ∣∣
k

1 a
0 p


((

p 0
bNp 1

)
D

)(
1pZp(z) · (−bNpz + p)

k
f
( z

−bNpz + p

))

=

p−1∑
a,b=0

Φ

((
1 a
0 p

)(
p 0

bNp 1

)
D

)∣∣
k

1 a
0 p


(
1pZp

(z) · (−bNpz + p)kf
( z

−bNpz + p

))

=

p−1∑
a,b=0

Φ

((
p+ abNp a
bNp2 p

)
D

)(
1pZp

(pz − a) · (−bNp(pz − a) + p)kf
( pz − a
−bNp(pz − a) + p

))
.

Since the function 1pZp
(pz − a) on Zp is nonzero if and only if a = 0, we have

Φ|UpVp
(D)(f) =

p−1∑
b=0

Φ

((
p 0

bNp2 p

)
D

)(
(−bNp2z + p)kf

( pz

−bNp2z + p

))
=

p−1∑
b=0

Φ

((
1 0

bNp 1

)
D

)(
pk(−bNpz + 1)kf

( z

−bNpz + 1

))
=

p−1∑
b=0

Φ

((
1 0

bNp 1

)
D

)(
pkf∣∣

k

 1 0
−bNp 1


)

=

p−1∑
b=0

pkΦ

((
1 0

bNp 1

)
D

)∣∣
k

 1 0
bNp 1

 (f) =

p−1∑
b=0

pkΦ∣∣ 1 0
bNp 1

(D)(f).

Since

(
1 0

bNp 1

)
∈ Γ1(N) ∩ Γ0(p) ⊂ Γ0 for all b, we have Φ∣∣ 1 0

bNp 1

 = Φ for all b, so Φ|UpVp
=

pk+1Φ.

Corollary 3.3.12. The operator Up is injective on SymbΓ0
(Dk(Zp)). If Φ ∈ SymbΓ0

(Dk(Zp)) is an-
nihilated by P (Up) for some polynomial P ∈ L[X], then Φ is annihilated by Q(Vp) for the polyno-

mial Q(X) = XnP (p
k+1

X ), where n is the degree of P . In particular, if α is an eigenvalue of Up on

SymbΓ0
(Dk(Zp)), then α ̸= 0 and pk+1

α is an eigenvalue of Vp on SymbΓ0
(Dk(Zp)).

Proof. Up is injective on SymbΓ0
(Dk(Zp)) since Vp ◦ Up = pk+1Id is injective on it.

Suppose P splits in Q̄p as P (X) =
n∏
i=1

(X − αi) (we can assume that P is monic). Regarding Φ as an

element of SymbΓ0
(Dk(Zp))⊗Qp Q̄p, we have

Φ|(Up−α1)...(Up−αn) = 0.

Let Φ1 = Φ|(Up−α1)...(Up−αn−1), then Φ1|(Up−αn) = 0. So

0 = Φ1|(Up−αn)Vp
= Φ1|(pk+1−αnVp).

Let Φ2 = Φ|(Up−α1)...(Up−αn−2), then Φ1 = Φ2|(Up−αn−1)
and Φ2|(Up−αn−1)(pk+1−αnVp) = 0. So

0 = Φ2|(Up−αn−1)(pk+1−αnVp)Vp
= Φ2|(Up−αn−1)Vp(pk+1−αnVp)

= Φ2|(pk+1−αn−1Vp)(pk+1−αnVp).
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Repeating the process like this, we get Φ|(pk+1−α1Vp)...(pk+1−αnVp) = 0. Therefore, Φ is annihilated by
Q(Vp) where Q is the polynomial given by

Q(X) =

n∏
i=1

(pk+1 − αiX) = Xn
n∏
i=1

(pk+1

X
− αi

)
= XnP

(pk+1

X

)
.

If α is an eigenvalue of Up on SymbΓ0
(Dk(Zp)), then α ̸= 0 since Up is injective and there exists Φ ∈

SymbΓ0
(Dk(Zp))\{0} such that Φ|Up

= αΦ. Since Φ is annihilated by P (Up) where P is the polynomial

X − α, Φ is also annihilated by Q(Vp) where Q(X) = pk+1 − αX. Therefore, p
k+1

α is an eigenvalue of Vp
for the eigensymbol Φ.

Corollary 3.3.13. The endomorphism Vp on SymbΓ0
(Dk(Zp)) is open.

Proof. By [Schn, Prop. 8.2 and Prop. 8.6], every surjective continuous map between Fréchet spaces
is open. We get the conclusion since Vp is surjective on SymbΓ0

(Dk(Zp)) followed from the identity
Vp ◦ Up = pk+1Id by Proposition 3.3.11.

Corollary 3.3.14. For any h ∈ Q and k ∈ Z, we have

dimSymbΓ0
(Dk(P1, L))≤h = dimSymbΓ0

(Dk(Zp, L))Vp≤h = +∞.

Proof. Since Up acts compactly on the Fréchet space SymbΓ0
(Dk(Zp)) in the sense of [Urb, §2.3.12], by

the spectral theory of compact operators, Up has only a finite or countable number of eigenvalues on
SymbΓ0

(Dk(Zp)). In the latter case, the sequence of these eigenvalues tends to 0, so the sequence of its
slope tends to +∞. We show that this case happens. The slope of Up-eigenvalues can be determined by
the Newton polygon of the characteristic power series of Up.

Let P (X) = det(1−XUp) =:
∞∑
n=0

anX
n be the characteristic power series of Up on SymbΓ0

(Dk(Zp)).

Suppose that the Newton polygon of P (X) has a finite number of edges with a unique infinite edge D1,
as in the below image. Denote (n0, vp(an0)) the coordinates of the endpoint of D1, where n0 ∈ N. Let
(n0 + 1, α) be the point on D1 of abscissa n0 + 1. Let D2 denote the ray of endpoint (n0, vp(an0)) and
containing the point (n0 + 1, α+ 1). By the definition of Newton polygons, there is a sequence of points
{(ni, vp(ani

))}i lying between the rays D1 and D2 such that ni → +∞ when i → +∞, since otherwise
every point (n, vp(an)) will lie above the ray D2 for n big enough, so D1 will not be an edge of the Newton
polygon of P (X). Since the points (ni, vp(ani

)) lie below the ray D2, the values vp(ani
) are bounded

above linearly on ni, i.e., there are positive constants a, b such that vp(ani) ≤ a.ni + b for all i. We show
that this is impossible.

By [Wan, Lemma 3.1], there is a lower bound:

vp(an) ≥
p− 1

p+ 1

( l∑
i=0

imi + (l + 1)(n− dl)
)
− n

for dl ≤ n < dl+1, where di is the dimension of the spaceMk+2+i(p−1)(Γ1(N)) of classical modular forms
of weight k+2+i(p−1) and level Γ1(N), and mi = di−di−1 for i > 0. Note that the set of Up-eigenvalues
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of overconvergent modular forms of weight k + 2 is the same as that of overconvergent modular symbols
with values in Dk(Zp). Consider dl ≤ n < dl+1, we have

vp(an) ≥
p− 1

p+ 1

(
(l + 1)n−

l∑
i=0

di

)
− n ≥ p− 1

p+ 1

(
ln−

l−1∑
i=0

di

)
− n.

The dimension of a space of modular forms of given weight and level is given in [DS, Theorem 3.5.1 and
Theorem 3.6.1]. In particular, there exist positive constants c, d depend only on the level N such that
ck − d ≤ dimMk(Γ1(N)) ≤ ck + d for any k ≥ 0. So

c(k + 2 + i(p− 1))− d ≤ di ≤ c(k + 2 + i(p− 1)) + d

for any i ≥ 0. We get

vp(an) ≥
p− 1

p+ 1

[
ln− c

(
l(k + 2) + (p− 1)

l(l − 1)

2

)
− ld

]
− n

=
l(p− 1)

p+ 1

(
n− c(k + 2)− c(p− 1)(l − 1)

2
− d
)
− n.

Since n ≥ dl ≥ c(k + 2 + l(p− 1))− d, we have c(p− 1)(l − 1) ≤ n− c(k + 2) + d. So

vp(an) ≥
l(p− 1)

p+ 1
· n− c(k + 2)− 3d

2
− n.

Since n < dl+1 ≤ c(k + 2 + (l + 1)(p− 1)) + d, we have l ≥ n−c(k+2)−c(p−1)−d
c(p−1) . Hence

vp(an) ≥
n− c(k + 2)− c(p− 1)− d

c(p+ 1)
· n− c(k + 2)− 3d

2
− n > an+ b

for n big enough. We get a contradiction. So the Newton polygon of P (X) has infinitely many edges.
If a finite edge of the Newton polygon of P (X) has length M and slope λ (the length of a finite edge of
a Newton polygon is the absolute value of the difference of the abscissas of its endpoints), then P (X)
has exactly M roots of valuation −λ (counting with multiplicity), so Up has exactly M eigenvalues of p-
adic valuation λ on SymbΓ0

(Dk(Zp)). Therefore, Up has infinitely many eigenvalues on SymbΓ0
(Dk(Zp))

with arbitrarily large slope. We imply from Corollary 3.3.12 that Vp has infinitely many eigenvalues on
SymbΓ0

(Dk(Zp)) with arbitrarily small slope. Therefore, SymbΓ0
(Dk(Zp))Vp≤h is infinite dimensional,

then so is SymbΓ0
(Dk(P1, L))≤h by (3.8).

Remark 3.3.15. The above corollary is also true for the congruence subgroup Γ1(Nq) instead of Γ0 =
Γ1(N) ∩ Γ0(p). The crucial point is that the slope of eigenvalues of Up on SymbΓ1(Nq)(Dk(Zp)) can be
arbitrarily large, which can be deduced from [Cole, Proposition I4] and [PS13, Corollary 7.4].

Corollary 3.3.16. Let SymbΓ0
(Dk(Zp))<∞ denote the subspace of SymbΓ0

(Dk(Zp)) of modular symbols
of finite Up-slope. The space SymbΓ0

(Dk(Zp))<∞ is stable by the actions of Up and Vp. Moreover,
the operators Up and Vp, seen as endomorphisms on SymbΓ0

(Dk(Zp))<∞, are isomorphisms and satisfy
Up ◦ Vp = Vp ◦ Up = pk+1Id.

Proof. If Φ ∈ SymbΓ0
(Dk(Zp))<∞, then there exists a polynomial P (X) of finite slope such that Φ|P (Up) =

0. We have

(Φ|Up
)|P (Up) = (Φ|P (Up))|Up

= 0,

so Φ|Up
∈ SymbΓ0

(Dk(Zp))<∞. Therefore, SymbΓ0
(Dk(Zp))<∞ is stable by Up.

Consider Φ and P as above, since P (X) has finite slope, P (0) ̸= 0. Writing P (X) = a(1 +XQ(X)),
where a ̸= 0 is the constant coefficient of P . Then

0 = Φ|P (Up) = a(Φ + Φ|Q(Up)Up
),

so Φ = −Φ|Q(Up)Up
. Hence

Φ|Vp
= −(Φ|Q(Up))|Up|Vp

= −pk+1Φ|Q(Up) ∈ SymbΓ0
(Dk(Zp))<∞
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by Proposition 3.3.11 and SymbΓ0
(Dk(Zp))<∞ is Up-stable. Therefore, SymbΓ0

(Dk(Zp))<∞ is stable by
Vp.

By the same method, the subspace SymbΓ0
(Dk(Zp))≤h is stable by Up and Vp for any h ∈ Q. Since

Up is injective on the finite dimensional vector space SymbΓ0
(Dk(Zp))≤h by Corollary 3.3.12, Up is an

isomorphism on it. Combining with the identity Vp ◦Up = pk+1Id by Proposition 3.3.11, we deduce that
Vp is also an isomorphism and Up ◦Vp = pk+1Id on SymbΓ0

(Dk(Zp))≤h. Since SymbΓ0
(Dk(Zp))<∞ is the

union of SymbΓ0
(Dk(Zp))≤h’s, it follows that Up and Vp are isomorphisms on SymbΓ0

(Dk(Zp))<∞ and
Up ◦ Vp = Vp ◦ Up = pk+1Id on it.

For h ∈ Q, by Corollary 3.3.12, the space of modular symbols of finite Up-slope ≥ k + 1 − h in
SymbΓ0

(Dk(Zp)) is contained in the space SymbΓ0
(Dk(Zp))Vp≤h. If we impose the condition on the

upper bound for Up-slope on both spaces, then we get an equality. We have the following result:

Corollary 3.3.17. For h, h′ ∈ Q such that k + 1− h′ ≤ h, we have

SymbΓ0
(Dk(Zp))Up≤h,Vp≤h′

= SymbΓ0
(Dk(Zp))k+1−h′≤Up≤h,

where SymbΓ0
(Dk(Zp))Up≤h,Vp≤h′

= SymbΓ0
(Dk(Zp))Up≤h ∩ SymbΓ0

(Dk(Zp))Vp≤h′
and we denote by

SymbΓ0
(Dk(Zp))k+1−h′≤Up≤h the subspace of SymbΓ0

(Dk(Zp)) consisting of modular symbols of Up-slope
between k + 1− h′ and h.

Proof. We have seen that the right hand side is contained in the left hand side. We prove the opposite
inclusion.

Let Φ ∈ SymbΓ0
(Dk(Zp))Up≤h,Vp≤h′

. Then there is a polynomial P (X) of slope ≤ h′ such that
Φ|P (Vp) = 0. By Corollary 3.3.16, Up ◦ Vp = pk+1Id on SymbΓ0

(Dk(Zp))Up≤h. Using the method in
the proof of Corollary 3.3.12, the equality Φ|P (Vp) = 0 yields Φ|Q(Up) = 0 for the polynomial Q(X) =

XnP
(
pk+1

X

)
, where n is the degree of P . The polynomial Q(X) has finite slope ≥ k + 1− h′.

Since Φ ∈ SymbΓ0
(Dk(Zp))Up≤h, there is a polynomial R(X) of slope ≤ h such that Φ|R(Up) = 0.

Let S(X) = gcd(Q(X), R(X)), then S is of slope between k + 1− h′ and h since S|Q,S|R. We have
Φ|S(Up) = 0 since Φ|Q(Up) = Φ|R(Up) = 0 and there exist polynomials R1, R2 such that S = R1Q+ R2R.

Therefore, Φ ∈ SymbΓ0
(Dk(Zp))k+1−h′≤Up≤h.

Proposition 3.3.18. There are decompositions:

SymbΓ0
(Dk(Zp)) = ker(Vp)⊕ Im(Up),

SymbΓ0
(Dk(Zp)[r]) = ker(Vp)⊕ Im(Up)

for each r ∈ |C×
p |p with r < p−1, where Up and Vp are endomorphisms of SymbΓ0

(Dk(Zp)) in the
first decomposition and Up (resp. Vp ) is the map from SymbΓ0

(Dk(Zp)[r]) to SymbΓ0
(Dk(Zp)[r]) (resp.

SymbΓ0
(Dk(Zp)[pr])) in the second decomposition. Moreover, the kernel of Vp in the second decomposition

is infinite dimensional.

Proof. In Lemma 3.3.22 below we will see that Vp maps SymbΓ0
(Dk(Zp)[r]) into SymbΓ0

(Dk(Zp)[pr]) for
any r < p−1.

The decomposition SymbΓ0
(Dk(Zp)) = ker(Vp)⊕ Im(Up) is given by

Φ = p−(k+1)(Φ|(pk+1−VpUp) +Φ|VpUp
),

where Φ|(pk+1−VpUp) = pk+1Φ − (Φ|Vp
)|Up

∈ ker(Vp) since Vp ◦ Up = pk+1Id by Proposition 3.3.11, and
Φ|VpUp

= (Φ|Vp
)|Up
∈ Im(Up). The sum is direct since if Φ = (Φ0)|Up

∈ Im(Up) and if Φ ∈ ker(Vp), then

0 = Φ|Vp
= (Φ0)|UpVp

= pk+1Φ0,

so Φ0 = 0, hence Φ = 0. The decomposition for SymbΓ0
(Dk(Zp)[r]) is proven similarly.

Suppose ker(Vp) is finite dimensional in SymbΓ0
(Dk(Zp)[r]), then Im(Up) has finite codimension

in SymbΓ0
(Dk(Zp)[r]) by the decomposition. We imply that Im(Up) is closed in the Banach space

SymbΓ0
(Dk(Zp)[r]) by [Abr, Corollary 2.17]. So Im(Up) is itself a Banach space. The map Up from

SymbΓ0
(Dk(Zp)[r]) to Im(Up) is therefore open by the open mapping theorem. It is also compact by

Proposition 3.2.2, so the image of the open unit disc is open and relatively compact in Im(Up). By
Riesz’s theorem, we imply that Im(Up) is finite dimensional. Hence SymbΓ0

(Dk(Zp)[r]) is finite di-
mensional since Up is injective by Corollary 3.3.12, then so is SymbΓ0

(Dk(Zp)) since the natural map
SymbΓ0

(Dk(Zp))→ SymbΓ0
(Dk(Zp)[r]) is injective. We get a contradiction. Therefore, ker(Vp) is infinite

dimensional, where Vp is seen as a map on SymbΓ0
(Dk(Zp)[r]) for r < p−1.
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Proposition 3.3.19. For k ∈ Z\{0}, the set of nonzero eigenvalues of Up on SymbΓ0
(Dk(P1, L)) is the

union of the set of eigenvalues of Up on SymbΓ0
(Dk(Zp, L)) and the set of nonzero eigenvalues of Vp on

SymbΓ0
(Dk(Zp, L)).

If 0 is an eigenvalue of Up on SymbΓ0
(Dk(P1, L)), then 0 is an eigenvalue of Vp on SymbΓ0

(Dk(Zp, L))

Proof. We omit L from the notations for simplicity. Since Up is injective on SymbΓ0
(Dk(Zp)) by Corollary

3.3.12, every eigenvalue of Up on SymbΓ0
(Dk(Zp)) is nonzero.

Let α be an eigenvalue of Up on SymbΓ0
(Dk(P1)) associated with an eigensymbol Φ. Consider the

map res : SymbΓ0
(Dk(P1)) → SymbΓ0

(Dk(Zp)) in (3.7). Since it is equivariant for the action of Up on
the left hand side and that of Vp on the right hand side, we have

res(Φ)|Vp
= α · res(Φ).

If res(Φ) ̸= 0, then res(Φ) is an eigensymbol of Vp on SymbΓ0
(Dk(Zp)) with eigenvalue α. Otherwise,

Φ ∈ ker(res) = Im(ext), so Φ is an eigensymbol of Up on SymbΓ0
(Dk(Zp)) with eigenvalue α since

ext is injective and Up-equivariant. If α = 0, then the former case follows since Up is injective on
SymbΓ0

(Dk(Zp)).
Conversely, if α is an eigenvalue of Up on SymbΓ0

(Dk(Zp)) associated with an eigensymbol Φ0, then
α is an eigenvalue of Up on SymbΓ0

(Dk(P1)) associated with the eigensymbol ext(Φ0).
Now let α be a nonzero eigenvalue of Vp on SymbΓ0

(Dk(Zp)). Let Φ1 ∈ SymbΓ0
(Dk(Zp)) be a Vp-

eigensymbol with eigenvalue α, then Φ1 ∈ SymbΓ0
(Dk(Zp))Vp≤vp(α). Since res : SymbΓ0

(Dk(P1))≤vp(α) →
SymbΓ0

(Dk(Zp))Vp≤vp(α) is surjective by (3.8), there is Φ2 ∈ SymbΓ0
(Dk(P1))≤vp(α) such that res(Φ2) =

Φ1. We have

res(Φ2|Up−α) = res(Φ2)|Vp−α = Φ1|Vp−α = 0,

so Φ2|Up−α ∈ ker(res) = Im(ext). Let Φ2|Up−α = ext(Φ3) for Φ3 ∈ SymbΓ0
(Dk(Zp))≤vp(α) (since Φ2

has slope ≤ vp(α)). If α is an eigenvalue of Up on SymbΓ0
(Dk(Zp)), then α is an eigenvalue of Up

on SymbΓ0
(Dk(P1)). If not, then Up − α is an injective endomorphism of the finite dimensional space

SymbΓ0
(Dk(Zp))≤vp(α), so it is an isomorphism. Then there exists Φ4 ∈ SymbΓ0

(Dk(Zp))≤vp(α) such that
Φ3 = Φ4|Up−α. We have Φ2|Up−α = ext(Φ4)|Up−α, hence Φ2− ext(Φ4) ∈ ker(Up−α). On the other hand,
Φ2 − ext(Φ4) ̸= 0 since

res(Φ2 − ext(Φ4)) = res(Φ2) = Φ1 ̸= 0.

Therefore, α is an eigenvalue of Up on SymbΓ0
(Dk(P1)) associated to Φ2 − ext(Φ4).

For any h ∈ Q, the subspace of modular symbols of slope ≤ h (or < h) of SymbΓ0
(Dk(Zp)) is finite

dimensional and Up-stable. We find finite dimensional Up-stable subspaces of SymbΓ0
(Dk(P1)).

Recall the map

res : SymbΓ0
(Dk(P1))→ SymbΓ0

(Dk(D(∞, 1)))
Φ 7→ Φ|D(∞,1) : D 7→ Φ(D)|D(∞,1) (D ∈ ∆0)

induced by the restriction map onD(∞, 1) between distributions. The matrix

(
p 0
0 1

)
acts onDk(D(∞, 1))

on the right by

µ∣∣
k

p 0
0 1

(f) = µ

(
f∣∣

k

1 0
0 p


)

= µ
(
pkf

(z
p

))
,

where µ ∈ Dk(D(∞, 1)), f ∈ Ak(D(∞, 1)). This action is compatible with the action of Γ0(p), so we can

define the double coset operator Vp =

[
Γ0

(
p 0
0 1

)
Γ0

]
acting on SymbΓ0

(Dk(D(∞, 1))) by

Φ|Vp
=

p−1∑
a=0

Φ|τNpγaτ
−1
Np

=

p−1∑
a=0

Φ|τ−1
NpγaτNp

(see (3.6)),

note that τ−1
Np =

1
NpτNp.
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For h, h′ ∈ Q, denote by SymbΓ0
(Dk(P1))(Vp≤h′) the subspace of SymbΓ0

(Dk(P1)) consisting of mod-

ular symbols Φ such that Φ|D(∞,1) ∈ SymbΓ0
(Dk(D(∞, 1)))Vp≤h′

, and putting

SymbΓ0
(Dk(P1))Up≤h,(Vp≤h′) = SymbΓ0

(Dk(P1))Up≤h ∩ SymbΓ0
(Dk(P1))(Vp≤h′).

We define similarly if ≤ is replaced by <.

Theorem 3.3.20. For k ∈ Z and h, h′ ∈ Q such that k+1−h ≤ h′, the subspace SymbΓ0
(Dk(P1))Up≤h,(Vp≤h′)

of SymbΓ0
(Dk(P1)) is finite dimensional and Up-stable, and similar if ≤ is replaced by <.

Moreover, if k ∈ N∗ and 0 ≤ h ≤ k + 1, there is an exact sequence:

0→ SymbΓ0
(Dk(Zp, L))≤h → SymbΓ0

(Dk(P1, L))Up≤h,(Vp≤h′) → SymbΓ0
(Dk(Zp, L))k+1−h≤Up≤h′

→ 0,

while if k = 0 the last space 0 is replaced by L.
In particular, there is an exact sequence:

0→ SymbΓ0
(Dk(Zp, L))≤k+1 → SymbΓ0

(Dk(P1, L))Up≤k+1,(Vp≤k+1) → SymbΓ0
(Dk(Zp, L))≤k+1 → 0

for any k ∈ N∗ and if k = 0 the last space 0 is replaced by L.

Proof. We drop L from the notations for simplicity. We prove for the case k ̸= 0, the case k = 0 is proven
similarly. Recall the exact sequence (3.8):

0→ SymbΓ0
(Dk(Zp))≤h

ext→ SymbΓ0
(Dk(P1))≤h

res→ SymbΓ0
(Dk(Zp))Vp≤h → 0,

it induces an exact sequence

0→ SymbΓ0
(Dk(Zp))≤h

ext→ res−1(SymbΓ0
(Dk(Zp))Vp≤h,Up≤h′

)
res→ SymbΓ0

(Dk(Zp))Vp≤h,Up≤h′
→ 0, (3.9)

note that ext(SymbΓ0
(Dk(Zp))≤h) = ker(res) ⊂ res−1(SymbΓ0

(Dk(Zp))Vp≤h,Up≤h′
) and

SymbΓ0
(Dk(Zp))Vp≤h,Up≤h′

= SymbΓ0
(Dk(Zp))k+1−h≤Up≤h′

by Corollary 3.3.17. Since the spaces SymbΓ0
(Dk(Zp))≤h and SymbΓ0

(Dk(Zp))k+1−h≤Up≤h′
are finite

dimensional, so is the space res−1(SymbΓ0
(Dk(Zp))Vp≤h,Up≤h′

).

The subspace SymbΓ0
(Dk(Zp))k+1−h≤Up≤h′

is Vp-stable in SymbΓ0
(Dk(Zp)) since Vp is an automor-

phism on SymbΓ0
(Dk(Zp))<∞ given by Vp = pk+1U−1

p by Corollary 3.3.16. Since the map

res : SymbΓ0
(Dk(P1))→ SymbΓ0

(Dk(Zp))

is equivariant for the action of Up on the left hand side and that of Vp on the right hand side by Corollary

3.3.10, we deduce that res−1(SymbΓ0
(Dk(Zp))Vp≤h,Up≤h′

) is Up-stable in SymbΓ0
(Dk(P1)).

The map res : SymbΓ0
(Dk(P1))→ SymbΓ0

(Dk(Zp)) is the composition of

SymbΓ0
(Dk(P1))

res→ SymbΓ0
(Dk(D(∞, 1))) ≃→ SymbΓ0

(D′
k(Zp))

≃→ SymbΓ0
(Dk(Zp)),

where the first map is induced by the restriction map on D(∞, 1) between distributions, the second is
induced from the isomorphism ι̂ in (3.3) between distributions, and the last is given in Lemma 3.3.9.
Denote by θ : SymbΓ0

(Dk(D(∞, 1))) → SymbΓ0
(Dk(Zp)) the composition of the last two isomorphisms.

By construction, the isomorphism θ is given by

θ(Φ)(D)(f) = Φ(τ−1
NpD)

(
zkf

( 1

Npz

))
for Φ ∈ SymbΓ0

(Dk(D(∞, 1))), D ∈ ∆0, f ∈ Ak(Zp), z ∈ D(∞, 1). For any such Φ, D, f , we have

θ(Φ|Vp
)(D)(f) = Φ|Vp

(τ−1
NpD)

(
zkf

( 1

Npz

))
=

p−1∑
a=0

Φ(τ−1
NpγaτNpτ

−1
NpD)|kτ−1

NpγaτNp

(
zkf

( 1

Npz

))
=

p−1∑
a=0

Φ(τ−1
NpγaD)

(
zkf

( 1

Nz
− a
))

=

p−1∑
a=0

θ(Φ)(γaD)(f(pz − a)) = θ(Φ)|Up
(D)(f).
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Therefore, θ(Φ|Vp
) = θ(Φ)|Up

for any Φ ∈ SymbΓ0
(Dk(D(∞, 1))). We imply that a modular symbol Φ in

SymbΓ0
(Dk(P1)) belongs to SymbΓ0

(Dk(P1))(Vp≤h′) if and only if res(Φ) ∈ SymbΓ0
(Dk(Zp)) has Up-slope

≤ h′. Therefore, the inverse image of SymbΓ0
(Dk(Zp))Vp≤h,Up≤h′

under res in SymbΓ0
(Dk(P1))≤h is

SymbΓ0
(Dk(P1))Up≤h,(Vp≤h′). We conclude that SymbΓ0

(Dk(P1))Up≤h,(Vp≤h′) is finite dimensional and
Up-stable in SymbΓ0

(Dk(P1)).
The desired exact sequence is exactly (3.9), where we need the condition 0 ≤ h ≤ k + 1 since

SymbΓ0
(Dk(Zp))<0 = 0, note that Up has norm ≤ 1 on SymbΓ0

(Dk(Zp)[r]) for any r ∈ |C×
p |p by [Bel,

Lemma V.5.4]. Taking h = h′ = k + 1 yields the special case.

The problem of finding subspaces of SymbΓ0
(Dk(P1)) which are Up-stable and finite dimensional leads

to the following question:

Question 3.3.21. Is the subspace SymbΓ0
(Dk(P1))h1≤Up≤h2 of SymbΓ0

(Dk(P1)) finite dimensional for
h1 ≤ h2 ? Note that by Corollary 3.3.14 and (3.7), if we only impose one bound (upper or lower) for the
Up-slope, then we would not have a finite dimensional subspace.

Lemma 3.3.22. If Φ ∈ SymbΓ0
(Dk(Zp)[r]) for r ∈ |C×

p |p with r ≤ p−1, then Φ|Vp
∈ SymbΓ0

(Dk(Zp)[pr])
and

∥∥Φ|Vp

∥∥
pr
≤ p−k ∥Φ∥r .

Proof. The modular symbol Φ|Vp
is defined by

Φ|Vp
(D)(f) =

p−1∑
a=0

Φ∣∣ p 0
aNp 1

(D)(f)

=

p−1∑
a=0

Φ (Da)

(
1pZp(z) · (−aNpz + p)kf

( z

p(−aNz + 1)

))
,

where D ∈ ∆0, Da =

(
p 0

aNp 1

)
D, f ∈ A(Zp) (we will determine the radius of convergence of f).

We set ga(z) = 1pZp
(z) · (−aNpz + p)kf( z

p(−aNz+1) ).

If z ∈ pZp, then −aNz + 1 ∈ Z×
p , so | − aNz + 1|p = 1. The transformation z 7→ z

p(−aNz+1) maps a

closed disc of radius r in pZp = D(0, p−1) to a closed disc of radius pr in Zp since∣∣∣ z

p(−aNz + 1)
− e

p(−aNe+ 1)

∣∣∣
p
=
∣∣∣ z − e
p(−aNz + 1)(−aNe+ 1)

∣∣∣
p
= p|z − e|p for any z, e ∈ pZp.

It also maps a closed disc of radius r in {z ∈ Cp, |z|p ≤ p−1} to a closed disc of radius pr in Cp. Therefore,
if f ∈ A(Zp)[pr], then f( z

p(−aNz+1) ) ∈ A(Zp)[r] and ∥f(
z

p(−aNz+1) )∥r = ∥f∥pr by (1.2). We deduce that

ga ∈ A(Zp)[r] and ∥ga∥r = p−k ∥f∥pr for any a if f ∈ A(Zp)[pr], since | − aNz + 1|p = 1 for any z ∈ Cp
such that |z|p ≤ p−1. So Φ|Vp

∈ SymbΓ0
(Dk(Zp)[pr]) and

∥∥Φ|Vp

∥∥
pr

= sup
D∈∆0

sup
f∈A(Zp)[pr]\{0}

∣∣Φ|Vp
(D)(f)

∣∣
p

∥f∥pr

≤ max
0≤a≤p−1

sup
D∈∆0

sup
f∈A(Zp)[pr]\{0}

|Φ(Da)(ga)|p
pk ∥ga∥r

≤ p−k ∥Φ∥r .

The lemma follows.

Corollary 3.3.23. If Φ ∈ SymbΓ0
(Dk(Zp)) is a Vp-eigensymbol of slope ≤ h, then ∥Φ∥r/pn ≥ pn(k−h) ∥Φ∥r

for any r ∈ |C×
p |p with r ≤ 1 and n ∈ N.

Proof. Let Φ ∈ SymbΓ0
(Dk(Zp)) be a Vp-eigensymbol of eigenvalue α such that vp(α) ≤ h. For r ≤ 1, by

the above lemma, we have

∥Φ∥r = ∥α
−nΦ|V n

p
∥r ≤ |α−n|p · p−nk∥Φ∥r/pn ≤ pn(h−k)∥Φ∥r/pn .

Therefore, ∥Φ∥r/pn ≥ pn(k−h) ∥Φ∥r .
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Proposition 3.3.24. If h, h′ ∈ Q such that h+h′ ≤ k, then SymbΓ0
(Dk(Zp)≤h)Vp<h

′
= 0. In particular,

SymbΓ0
(Dk(Zp)≤k/2)Vp<k/2 = 0. Recall that Dk(Zp)≤h is the space of h-admissible distributions on Zp.

Proof. By Lemma 3.3.22, the action of Vp on SymbΓ0
(Dk(Zp)) stabilizes the subspace SymbΓ0

(Dk(Zp)≤h)
since

∥∥Φ|Vp

∥∥
r
≤ p−k ∥Φ∥r/p = O((r/p)−h) = O(r−h) as r → 0+ if Φ ∈ SymbΓ0

(Dk(Zp)≤h).
It suffices to show that if Φ ∈ SymbΓ0

(Dk(Zp)≤h) is a Vp-eigensymbol of slope < h′, then Φ = 0. Let
α be the eigenvalue of Φ. By Corollary 3.3.23, for any n ∈ N, we have

∥Φ∥1/pn ≥ p
n(k−vp(α)) ∥Φ∥1 .

On the other hand, since Φ ∈ SymbΓ0
(Dk(Zp)≤h), we have

∥Φ∥1/pn = O(pnh) as n→ +∞.

Since k − vp(α) > k − h′ ≥ h, we imply that ∥Φ∥1 = 0, so Φ = 0.

For k ∈ N, we have the following commutative diagrams which are compatible with the actions of
Σ0(p):

Dk(Zp) Dk(P1)

Vk

ext

ρ1,k
ρ2,k

Dk(Zp)≤h Dk(P1)≤h

Vk

ext

ρ1,k
ρ2,k

, where in the first diagram, the map ext is given in (3.1), the maps ρ1,k, ρ2,k are the duals of the
inclusions Pk → Ak(Zp) and Pk → Ak(P1), respectively; while the second diagram is induced from the
first by restricting on the subspace of h-admissible distributions.

Take modular symbols, we get the following commutative diagram which is Up-equivariant:

SymbΓ0
(Dk(Zp)) SymbΓ0

(Dk(P1))

SymbΓ0
(Vk)

ext

ρ1,k
ρ2,k

Take modular symbols of slope < h, we get the Up-equivariant commutative diagram

SymbΓ0
(Dk(Zp))<h SymbΓ0

(Dk(P1)≤h)
<h SymbΓ0

(Dk(P1))<h

SymbΓ0
(Vk)<h

ext

ρ1,k ρ2,k ρ2,k

(by [PS11, Lemma 6.2], all of values of a modular symbol in SymbΓ0
(Dk(Zp))<h are h-admissible distri-

butions, so the map ext takes the space SymbΓ0
(Dk(Zp))<h into SymbΓ0

(Dk(P1)≤h)
<h).

Proposition 3.3.25. The specialization maps

ρ2,k : SymbΓ0
(Dk(P1))→ SymbΓ0

(Vk),
ρ2,k : SymbΓ0

(Dk(P1))<h → SymbΓ0
(Vk)<h

are surjective for all h.
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Proof. The map ρ1,k : SymbΓ0
(Dk(Zp))→ SymbΓ0

(Vk) is surjective by [PS11, Theorem 5.1].
The map ρ1,k : SymbΓ0

(Dk(Zp))<h → SymbΓ0
(Vk)<h is surjective by [Bel, Proposition V.5.17].

Since ρ1,k = ρ2,k ◦ ext, ρ2,k is also surjective.

Proposition 3.3.26. The specialization map ρ2,k : SymbΓ0
(Dk(P1)≤h)

<h → SymbΓ0
(Vk)<h is an iso-

morphism for any k ∈ N and h ≤ k
2 .

Proof. Applying Proposition 3.3.24 and the left exact sequence

0→ SymbΓ0
(Dk(Zp))<h

ext→ SymbΓ0
(Dk(P1)≤h)

<h res→ SymbΓ0
(Dk(Zp)≤h)Vp<h

similar to (3.8), we get the isomorphism

ext : SymbΓ0
(Dk(Zp))<h ∼= SymbΓ0

(Dk(P1)≤h)
<h.

On the other hand, the specialization map ρ1,k : SymbΓ0
(Dk(Zp))<h → SymbΓ0

(Vk)<h is isomorphic by

Stevens’s control theorem, since h ≤ k
2 < k + 1. We get the desired result since ρ1,k = ρ2,k ◦ ext.



Chapter 4

Functional equation of p-adic
L-functions attached to modular
forms

In this chapter, we follow Stevens’s construction of p-adic L-functions attached to cuspidal normalized
eigenforms of non-critical slope via his theory of overconvergent modular symbols with values in Dk(Zp)
studied in Chapter 3. These p-adic L-functions satisfy an interpolation property related to special values
of L-functions of modular forms. From this interpolation formula and the functional equation of L-
functions of modular forms given in [Shi, Theorem 3.66], we deduce a functional equation of these p-adic
L-functions (see Proposition 4.2.4). In Section 4.1 we recall Stevens’s construction of p-adic L-functions
attached to modular forms. In Section 4.2 we prove a functional equation of these functions.

We fix a natural number k and a positive integer N prime to p in this chapter. Denote by H the
Poincaré upper half plane.

4.1 Stevens’s construction of p-adic L-functions

4.1.1 Some preparatory results

In this subsection, let Γ ⊂ SL2(Z) be a congruence subgroup of level N such that

(
1 0
0 −1

)
normalizes

Γ (e.g. Γ = Γ1(N)). Let Sk+2(Γ) denote the space of cuspidal modular forms of weight k + 2 and level
Γ. Denote by GL+

2 (Q) the subgroup of matrices of positive determinant in GL2(Q).
Recall the right weight m action of GL+

2 (Q) on a modular form f for each m ∈ Z:

f|mγ(z) = (detγ)m−1(cz + d)−mf
(az + b

cz + d

)
,

where γ =

(
a b
c d

)
∈ GL+

2 (Q) and z ∈ H (compare with the action |k of matrices on p-adic valued

functions on Zp or P1(Qp) in (1.5),(2.4)).
Modular forms and classical modular symbols are related via Eichler-Shimura map.

Lemma 4.1.1. There is a canonical map

Sk+2(Γ)→ SymbΓ(Vk(C))

f 7→ ϕf : D ∈ ∆0 7→
(
P ∈ Pk(C) 7→

∫
D

f(z)P (z)dz
)

which is compatible with all Hecke operators [ΓsΓ] for s ∈ GL+
2 (Q), where the integral

∫
D
f(z)P (z)dz is

defined by:

If D =
n∑
i=1

({bi} − {ai}) for ai, bi ∈ P1(Q), then we define
∫
D
f(z)P (z)dz =

n∑
i=1

∫ bi
ai
f(z)P (z)dz. Here∫ bi

ai
is the integral along the geodesic from ai to bi inside H̄ := H ∪ P1(Q).

59
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Proof. We follow the computations in the proof of [Bel, Lemma IV.3.1].

In the view of the decomposition SymbΓ(Vk(C)) = SymbΓ(Vk(C))+⊕SymbΓ(Vk(C))−, if f ∈ Sk+2(Γ),
then the modular symbol ϕf in the above lemma is decomposed by ϕ+f +ϕ−f , where ϕ

±
f ∈ SymbΓ(Vk(C))±

is given by

ϕ±f (D)(P ) =
1

2

(∫
D

f(z)P (z)dz ±
∫
D̄

f(z)P (−z)dz
)

for D ∈ ∆0 and P ∈ Pk(C), where D̄ =
∑
i

({−bi} − {−ai}) if D =
∑
i

({bi} − {ai}).

Lemma 4.1.2. The map

Sk+2(Γ)→ SymbΓ(Vk(C))
f 7→ ϕ±f

is compatible with the Hecke operators Tl and Ul.

Proof. Recall that ϕ±f = 1
2 (ϕf ± ϕf |T∞

), where T∞ acts via the matrix

(
1 0
0 −1

)
. The assertion is clear

since the map f 7→ ϕf is compatible with any double coset operator by Lemma 4.1.1 and the fact that
T∞ commutes with Tl and Ul for any l.

Now let f ∈ Sk+2(Γ) be a normalized eigenform. Let H denote the polynomial ring over Z in the
variables indexed by the Hecke operators Tl for l ̸ | N and Ul for l|N . Denote by λ : H → C the ring
homomorphism associated to the system of Hecke eigenvalues of f , i.e., λ(T ) is the eigenvalue of T on f
for any Hecke operator T generating H.

We let SymbΓ(Vk(C))±[λ] be the subspace of SymbΓ(Vk(C))± consisting of simultaneous Hecke eigen-
symbols of eigenvalues given by λ.

Lemma 4.1.3. The dimension of SymbΓ(Vk(C))±[λ] is 1.

Proof. See [Bel, Lemma IV.4.7].

This lemma is also true if we restrict coefficients to the number field Kf generated by Fourier coeffi-
cients of f .

Lemma 4.1.4. The dimension over Kf of SymbΓ(Vk(Kf ))
±[λ] is 1.

Proof. See [Bel, Lemma IV.4.8].

By Lemmas 4.1.2 and 4.1.3, the symbol ϕ±f is a basis of SymbΓ(Vk(C))±[λ]. By Lemma 4.1.4, there

exists a complex number Ω±
f ∈ C× such that

ϕ±f /Ω
±
f ∈ SymbΓ(Vk(Kf ))

±[λ].

We refer to Ω±
f as the periods of f . They are determined up to multiplication by elements of K×

f .

If f has the Fourier expansion
∞∑
n=1

anq
n with q = e2πiz for z ∈ H, we define its L-function by

L(f, s) =

∞∑
n=1

an
ns

for s ∈ C.

This function is convergent if Re(s) is big enough, and it can be extended to an entire function on C. If
χ : (Z/mZ)× → C× is a primitive Dirichlet character, we define the twisted L-function

L(f, χ, s) =

∞∑
n=1

χ(n)an
ns

.

Then L(f, χ, s) is the L-function of the modular form fχ given by

fχ(z) =
1

τ(χ−1)

∑
a(modm)

χ−1(a)f
(
z +

a

m

)
,

where τ(χ−1) is the Gauss sum of χ−1.
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4.1.2 Construction of p-adic L-functions

A p-adic L-function is a p-adic distribution on a p-adic space. The p-adic L-functions attached to
modular forms will be distributions on Z×

p .
In this subsection, let Γ0 = Γ1(N)∩Γ0(p). Denote by Sk+2(N, ϵ) the space of cuspidal modular forms

of weight k + 2, level N and nebentypus ϵ, for a Dirichlet character ϵ of (Z/NZ)×.
We start with a normalized eigenform f ∈ Sk+2(N, ϵ). Let ap be the p-th Fourier coefficient of f ,

which is also the Tp-eigenvalue of f .
Let α, β ∈ C be two complex roots of the polynomial

X2 − apX + ϵ(p)pk+1,

and defining the p-stabilizations (or p-refinements)

fα(z) = f(z)− βf(pz),
fβ(z) = f(z)− αf(pz)

of f . The functions fα and fβ belong to the space Sk+2(Np, ϵ), where the character ϵ of (Z/NpZ)× is
the lift of the character ϵ of (Z/NZ)×. They are also eigenforms of the same Hecke eigenvalues as f for
all operators Tl, Ul for l ̸= p. For the operator Up, we have

Lemma 4.1.5. The forms fα and fβ are eigenforms for Up of eigenvalues α and β, respectively.

Proof. See [Bel, Lemma V.7.2].

We see α and β as elements of Cp via the embedding ιp : Q̄ → Q̄p. Since α, β are algebraic integers
(since ap is), they belong to the ring of integers OCp

of Cp. Therefore, the p-adic valuations of α and β
satisfy

vp(α) ≥ 0, vp(β) ≥ 0,

vp(α) + vp(β) = k + 1.

We imply that 0 ≤ vp(α), vp(β) ≤ k + 1. If vp(α) < k + 1, the form fα is said to be of non-critical slope.
Otherwise, we say that it has critical slope. It is always true that at least one of the forms fα, fβ is of
non-critical slope. We choose one, say fα.

Stevens’s construction of the p-adic L-function attached to fα is as follows:
Step 1: We attach to fα the symbols ϕ±fα/Ω

±
fα
∈ SymbΓ0

(Vk(Kf,ϵ))
± which have the same Up-

eigenvalue α as fα by Lemmas 4.1.2 and 4.1.5, where Kf,ϵ is the number field generated by Fourier
coefficients of f and the values of ϵ. Let L be a finite extension of Qp containing the image of Kf,ϵ under
the embedding ιp. We see ϕ±fα/Ω

±
fα

as an element of SymbΓ0
(Vk(L))±. Since vp(α) < k + 1, we have

ϕ±fα/Ω
±
fα
∈ SymbΓ0

(Vk(L))<k+1.

Step 2: By Stevens’s control theorem (Theorem 3.2.1), there is a unique overconvergent modular
symbol Φ±

fα
∈ SymbΓ0

(Dk(Zp, L))<k+1 whose specialization is the symbol ϕ±fα/Ω
±
fα
. Let Φfα = Φ+

fα
+Φ−

fα
.

We define the p-adic L-function of fα by

Lp(fα, ·) = Φfα({∞} − {0})|Z×
p
∈ D(Z×

p , L).

Then Lp(fα) is a function on the weight space W(L). If χ : Z×
p → L× is a continuous character, we can

see that Φ±
fα
({∞} − {0})|Z×

p
(χ) = 0 if χ(−1) = ∓1. Therefore,

Lp(fα, χ) = Φ±
fα
({∞} − {0})|Z×

p
(χ)

for ± = χ(−1).
Since Φfα ∈ SymbΓ(Dk(Zp, L))<k+1, by [PS11, Lemma 6.2] we deduce that Lp(fα) has growth < k+1.

The p-adic L-function Lp(fα, ·) satisfies the following interpolation property:

Theorem 4.1.6. Let f ∈ Sk+2(N, ϵ) be a normalized eigenform. Let α be one of two roots of the
polynomial X2 − apX + ϵ(p)pk+1 such that vp(α) < k + 1, where ap is the p-th Fourier coefficient of f .
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Then for any finite order character χ : Z×
p → C×

p of conductor pn and any integer j such that 0 ≤ j ≤ k,
we have

Lp(fα, χz
j) = ep(f, α, χ, j)

pn(j+1)j!

αn(−2πi)j+1
τ (χ−1) Ω

χ(−1)(−1)j

fα

L
(
f, χ−1, j + 1

)
, (4.1)

where ep(f, α, χ, j) = 1 if χ is non trivial and ep(f, α,1, j) = (1− α−1ϵ(p)pk−j)(1− α−1pj).

Proof. See [Bel, Corollary V.7.10].

4.2 Functional equation of p-adic L-functions attached to mod-
ular forms

4.2.1 The operator WN on modular forms

Let WN =

(
0 −1
N 0

)
. The matrix WN normalizes the group Γ1(N) since

WN

(
a b
c d

)
W−1
N =

(
d −c/N
−Nb a

)
.

Hence the double coset operator [Γ1(N)WNΓ1(N)] on modular forms of level Γ1(N) is given by the action
of WN . The square of this action on modular forms of weight k + 2 is the multiplication by (−N)k.

Lemma 4.2.1. If T is a Hecke operator Tl or a diamond operator on cusp forms of level Γ1(N), then
the adjoint T ∗ of T equals WNTW

−1
N . Here the space of cusp forms has the structure of an inner product

space by Petersson scalar product.

Proof. If γ ∈ GL+
2 (Q) is diagonal, since WN normalizes Γ1(N), we have

WN · Γ1(N)γΓ1(N) ·W−1
N = Γ1(N) ·WNγW

−1
N · Γ1(N) = Γ1(N)γ∗Γ1(N),

where γ∗ = det(γ)·γ−1. By [DS, Proposition 5.5.2(b)] we imply that the operatorWN [Γ1(N)γΓ1(N)]W−1
N

on cusp forms of level Γ1(N) is adjoint of [Γ1(N)γΓ1(N)] if γ is diagonal. In particular, adjoint of the
Hecke operator Tl is WNTlW

−1
N for any prime l. By [DS, Proposition 5.5.2(a)] we deduce that adjoint of

the diamond operator ⟨a⟩ is WN ⟨a⟩W−1
N for any a ∈ (Z/NZ)×.

If f is a complex function on H, define the function fρ : H→ C by fρ(z) = f(−z̄).

Lemma 4.2.2. If f is a modular form, then fρ is also a modular form of the same weight and level as
f . If f has nebentypus ϵ, then the nebentypus of fρ is ϵ−1. The form fρ shares the same properties to be

cuspidal, normalized, eigenform, old form, newform as f . If f has Fourier expansion f(z) =
∞∑
n=0

anq
n,

then fρ(z) =
∞∑
n=0

ānq
n.

Proof. It follows from the identity

(fρ)∣∣
m

a b
c d

 =

(
f∣∣

m

 a −b
−c d


)
ρ

(4.2)

for any m ∈ Z and

(
a b
c d

)
∈ GL+

2 (Q). The Fourier expansion of fρ is clear.

Proposition 4.2.3 ([Bel, Proposition IV.3.24]). If f is a new form in Sk+2(Γ1(N)), then

f|k+2WN
=W (f)fρ,

where W (f) ∈ K×
f satisfies |W (f)| = Nk/2.

If f has moreover trivial nebentypus, then f|k+2WN
=W (f)f and W (f) = ±Nk/2.
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Proof. We follow the proof in loc. cit. Let ϵ be the nebentypus of f . We write f|WN
for f|k+2WN

.
By Lemma 4.2.2, fρ is a newform in Sk+2(N, ϵ

−1).
By [DS, Theorem 5.5.3], on the inner product space Sk+2(Γ1(N)), the diamond operators ⟨l⟩ and the

Hecke operators Tl for prime l ̸ | N have adjoints

⟨l⟩∗ = ⟨l⟩−1, T ∗
l = ⟨l⟩−1Tl.

So, for l ̸ | N , f is an eigenform of ⟨l⟩∗ with eigenvalue ϵ−1(l) and of T ∗
l with eigenvalue ϵ−1(l)al, where al

is the l-th Fourier coefficient of f . From the identity of Petersson scalar products (f|T∗
l
, f) = (f, f|Tl

), we

have ϵ−1(l)al = āl. By Lemma 4.2.1, for T = Tl or T = ⟨l⟩, it follows that f is an eigenform of WNTW
−1
N

with eigenvalue λT given by λT = ϵ−1(l) (resp. āl) if T = ⟨l⟩ (resp. Tl), for l ̸ | N . Therefore, f|WN
is an

engenform of any Hecke operator Tl and diamond operator with the same eigenvalues as fρ by Lemma
4.2.2.

We show that f|WN
is a newform. Let g ∈ Sk+2(Γ1(N)) is an old form. By [DS, Proposition 5.5.2(a)],

we have

(f|WN
, g) = (f, g|(−WN )) = (f, (−1)kg|WN

) = (−1)k(f, g|WN
).

If g ∈ Sk+2(Γ1(M)) for a proper divisorM ofN , then g|WM
∈ Sk+2(Γ1(M)), so g|WN

=
(
N
M

)k+1
(g|WM

)
(
N
M ·
)

is an old form. If g(z) = h(dz) for a modular form h ∈ Sk+2(Γ1(N/d)) and a divisor d > 1 of N , then
g|WN

= d−1h|WN/d
∈ Sk+2(Γ1(N/d)), so g|WN

is an old form. So g|WN
is an old form in any case, hence

(f, g|WN
) = 0 since f is a new form. Therefore, (f|WN

, g) = 0 for any old form g, so f|WN
is a new form.

Since f|WN
and fρ are new forms in Sk+2(Γ1(N)) with the same eigenvalues for the Hecke operators

Tl and diamond operators ⟨l⟩ with l ̸ | N , by [DS, Theorem 5.8.2] we imply that f|WN
=W (f)fρ for some

constant W (f) ∈ C. We have

(−N)kf = f|W 2
N
= (f|WN

)|WN
= (W (f)fρ)|WN

=W (f) · (f|(−WN ))ρ (by (4.2))

=W (f) · (−1)k(f|WN
)ρ =W (f) · (−1)k(W (f)fρ)ρ = |W (f)|2(−1)kf.

Therefore, |W (f)| = Nk/2.
Finally, if f has trivial nebentypus, since alϵ(l)

−1 = āl for any prime l ̸ | N as above (this is still true
if f is only an eigenform rather than a newform), we have al = āl for any l ̸ | N . By [DS, Theorem 5.8.2]
we deduce that fρ = f since they are newforms in Sk+2(Γ1(N)) with the same eigenvalues for Tl with
l ̸ | N and the same (trivial) nebentypus. Hence f|WN

= W (f)f . Since W 2
N acts on Sk+2(Γ1(N)) by

the multiplication by (−N)k = Nk (k is even since the nebentypus is trivial), we have W (f)2 = Nk, so
W (f) = ±Nk/2.

4.2.2 Functional equation of p-adic L-functions

In this subsection, we prove a formula of functional equation relating the values of p-adic L-functions
attached to a p-stabilization of f and f|WN

, where f ∈ Sk+2(N, ϵ) is a normalized eigenform. The idea is
to use the interpolation formula (4.1) relating the values of p-adic and complex L-functions, and apply
the functional equation of L-functions of modular forms given in [Shi, Theorem 3.66].

Let ap be the p-th Fourier coefficient of f . As before, we choose a root α of the polynomial X2 −
apX + ϵ(p)pk+1 such that vp(α) < k+1. Then we have defined the p-adic L-function Lp(fα, ·) ∈ D(Z×

p ).
By the proof of Proposition 4.2.3, f|WN

is a normalized eigenform in Sk+2(N, ϵ
−1) for the Hecke

operators Tl and ⟨l⟩ for all l prime to N , and its p-th Fourier coefficient is āp satisfying ϵ−1(p)ap = āp.
Consider the polynomial

X2 − āpX + ϵ−1(p)pk+1 = X2 − ϵ−1(p)apX + ϵ−1(p)pk+1, (4.3)

its set of roots is {ᾱ, β̄} = {ϵ−1(p)α, ϵ−1(p)β}, where α, β are two roots of X2 − apX + ϵ(p)pk+1.
Choose a root u of (4.3) such that vp(u) < k + 1 (e.g. u = ϵ−1(p)α), then we can attach the p-adic

L-function Lp((f|WN
)u, ·) to the p-stabilization (f|WN

)u of f|WN
and this p-adic L-function has order of

growth < k + 1. The functional equation of p-adic L-functions states

Proposition 4.2.4. Let f ∈ Sk+2(N, ϵ) be a normalized eigenform. By choosing appropriate periods,
for any finite order character χ : Z×

p →  L× of conductor pn and any integer 0 ≤ j ≤ k, where L is a
sufficiently large finite extension of Qp, one has

Lp(fα, χz
j) = −ep(α, u, χ, j)N−k

(ϵ(p)u
α

)n
Lp

(
(f|WN

)u, (Nz)
k · (χzj)

(
− 1

Nz

))
,
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where ep(α, u, χ, j) = 1 if χ is non trivial and ep(α, u,1, j) =
(1−α−1ϵ(p)pk−j)(1−α−1pj)

(1−u−1ϵ−1(p)pj)(1−u−1pk−j)
.

In particular, if u = ϵ−1(p)α, then

Lp(fα, χz
j) = −N−kLp

(
(f|WN

)ϵ−1(p)α, (Nz)
k · (χzj)

(
− 1

Nz

))
.

Proof. Let

R(f, χ, s) =
Γ (s)

(2π)
s

(
Np2n

)s/2
L (f, χ, s) . (4.4)

By (4.1), we have

Lp(fα, χz
j) = ep(f, α, χ, j)

pn(j+1)(Np2n)−(j+1)/2

αn(−i)j+1τ(χ−1)Ω
χ(−1)(−1)j

fα

R
(
f, χ−1, j + 1

)
. (4.5)

Similar,

Lp((f|WN
)u, χ

−1zk−j) = ep(f|WN
, u, χ, k − j) pn(k+1−j)(Np2n)−(k+1−j)/2

un(−i)k+1−jτ(χ)Ω
χ(−1)(−1)k−j

(f|WN
)u

×

×R
(
f|WN

, χ, k + 1− j
)
. (4.6)

By [Shi, Theorem 3.66], we have

R(f, χ−1, j + 1) = ik+2ϵ(p)nχ−1(N)τ(χ−1)2p−nN−k/2R(f|WN
, χ, k + 1− j), (4.7)

note that the weight k + 2 action of GL+
2 (Q) on modular forms in this thesis differs by that in [Shi] by

the multiple Nk/2.
From (4.5), (4.6), (4.7) and the identity τ(χ)τ(χ−1) = χ(−1)pn, we obtain

Lp(fα, χz
j) = − ep(f, α, χ, j)

ep(f|WN
, u, χ, k − j)

·
Ω
χ(−1)(−1)k−j

(f|WN
)u

Ω
χ(−1)(−1)j

fα

(
ϵ(p)u

α

)n
(−N−1)jχ−1(−N)×

× Lp((f|WN
)u, χ

−1zk−j)

= −ep(α, u, χ, j)
Ω
χ(−1)(−1)k−j

(f|WN
)u

Ω
χ(−1)(−1)j

fα

N−k
(
ϵ(p)u

α

)n
Lp

(
(f|WN

)u, (Nz)
k · (χzj)

(
− 1

Nz

))
.

We show that the above quotient of periods can be removed for well-chosen periods. Choose an integer
0 ≤ j′ ≤ k such that (−1)j′ = χ(−1)(−1)j . By a theorem of Manin-Shokurov (see [Bel, Theorem
IV.4.11]), we have

L(fα, j
′ + 1)

Ω
χ(−1)(−1)j

fα
(πi)j′+1

∈ Kfα ⊂ L,
L((f|WN

)u, k − j′ + 1)

Ω
χ(−1)(−1)k−j

(f|WN
)u

(πi)k−j′+1
∈ K(f|WN

)u ⊂ L

if L contains the image by ιp of α and the fields Kf ,Kf|WN
. We get

Ω
χ(−1)(−1)k−j

(f|WN
)u

Ω
χ(−1)(−1)j

fα

· L(fα, j
′ + 1)

(2πi)j′+1
:
L((f|WN

)u, k − j′ + 1)

(2πi)k−j′+1
∈ L.

By (4.4) and (4.7), we obtain

L(fα, j
′ + 1)

(2πi)j′+1
:
L((f|WN

)u, k − j′ + 1)

(2πi)k−j′+1
∈ L,

note that L(fα, s) = (1+(α−ap)p−s)L(f, s) (since L(f(pz), s) = p−sL(f, s)), and similar for L((f|WN
)u, s).

We deduce that

Ω
χ(−1)(−1)k−j

(f|WN
)u

Ω
χ(−1)(−1)j

fα

∈ L.
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Since the periods Ω±
fα
,Ω±

(f|WN
)u

are determined up to multiplication by elements inK×
fα
,K×

(f|WN
)u
, respec-

tively, which are contained in L, we conclude that the quotient
Ω

χ(−1)(−1)k−j

(f|WN
)u

Ω
χ(−1)(−1)j

fα

in the functional equation

can be removed. We get the desired formula.
If u = ϵ−1(p)α, then ep(α, u, χ, j) = 1 for any χ.

Corollary 4.2.5. For any locally analytic function g : Z×
p → Cp, one has

Lp(fα, g) = −N−kLp

(
(f|WN

)ϵ−1(p)α, (Nz)
kg
(
− 1

Nz

))
. (4.8)

Proof. Since the expressions in the left and right hand sides of (4.8) are distributions on Z×
p of order

< k + 1 in the variable g by the construction, it suffices to prove for locally polynomial functions g of
degree ≤ k by Theorem 1.2.4i). Therefore, we can assume that g(z) = 1a+pnZp

(z) · zj for a ∈ Z×
p , n ∈

N∗, j ∈ N, 0 ≤ j ≤ k. By Proposition 4.2.4, (4.8) is true for any g is of the form χzj , where χ is a finite
order character Z×

p → C×
p and j is an integer such that 0 ≤ j ≤ k. We show that the function 1a+pnZp

is a finite linear combination of finite order characters χ : Z×
p → C×

p .

Lemma 4.2.6. Denote by (Z/pnZ)∨ the group of characters on (Z/pnZ)× ∼= (Zp/pnZp)×. For a ∈ Z×
p

or a ∈ Z, (a, p) = 1, we have

∑
χ∈(Z/pnZ)∨

χ(a) =

{
pn−1(p− 1) , if a ≡ 1(mod pn),

0 , otherwise.

Proof. For every ψ ∈ (Z/pnZ)∨, since (Z/pnZ)∨ = {χψ |χ ∈ (Z/pnZ)∨}, we have∑
χ∈(Z/pnZ)∨

χ(a) =
∑

χ∈(Z/pnZ)∨
(χψ)(a) = ψ(a)

∑
χ∈(Z/pnZ)∨

χ(a).

If a ̸≡ 1(mod pn), there exists a character ψ such that ψ(a) ̸= 1, so
∑

χ∈(Z/pnZ)∨
χ(a) = 0. If a ≡ 1(mod pn),

then χ(a) = 1 for any χ ∈ (Z/pnZ)∨, so∑
χ∈(Z/pnZ)∨

χ(a) = |(Z/pnZ)∨| = pn−1(p− 1).

By the lemma, we have

1a+pnZp(z) = 11+pnZp

(z
a

)
=

1

pn−1(p− 1)

∑
χ∈(Zp/pnZp)∨

χ
(z
a

)
=

∑
χ∈(Zp/pnZp)∨

χ(z)

pn−1(p− 1)χ(a)
.

The assertion is proven.

Corollary 4.2.7. If f ∈ Sk+2(N, ϵ) is a new form, then

Lp(fα, χz
j) = −ep(α, u, χ, j) ·W (f)N−k

(
ϵ(p)u

α

)n
Lp

(
(fρ)u, (Nz)

k · (χzj)
(
− 1

Nz

))
for any finite order character χ : Z×

p → C×
p of conductor pn and any integer 0 ≤ j ≤ k, where W (f) is

given in Proposition 4.2.3.
If moreover f has trivial nebentypus, then

Lp(fα, g) = −W (f)−1Lp

(
fα, (Nz)

kg
(
− 1

Nz

))
for any locally analytic function g on Z×

p with values in Cp.
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Proof. If f is a new form, then f|WN
= W (f)fρ by Proposition 4.2.3. The first formula is clear by

Proposition 4.2.4.
If moreover f has trivial nebentypus (i.e. ϵ = 1), then ϵ−1(p)α = α and f|WN

= W (f)f with

W (f) = ±Nk/2. By Corollary 4.2.5, we have

Lp(fα, g) = −N−kW (f) · Lp
(
fα, (Nz)

kg
(
− 1

Nz

))
for any locally analytic function g : Z×

p → Cp. The second formula follows sinceN−kW (f) =W (f)−1.



Chapter 5

Functional equation of p-adic
L-functions attached to automorphic
representations of GL2

Throughout this chapter, let F be a totally real number field and π be a cohomological cuspidal
automorphic representation of GL2 over F (see Definition 5.1.2), such that πv is not supercuspidal for
any place v of F dividing p. We choose a regular p-refinement π̃ of π, i.e., choosing a character νv of F×

v

which appears as a one dimensional sub of the Weil-Deligne representation attached to πv via the local
Langlands correspondence for GL2(Fv), for each place v of F above p.

Assume that π̃ is non-critical (see Definition 5.1.8), by using the theory of automorphic symbols,
Barrera, Dimitrov and Jorza in [BDJ] have constructed a p-adic L-function Lp(π̃, ·) as a distribution on
the Galois group Galp∞ of the maximal abelian extension of F which is unramified outside p and infinite
places, and they have shown an interpolation formula between p-adic and complex L-functions of π (see
Theorem 5.3.2). Moreover, they proved the following functional equation:

Theorem 5.0.1 ([BDJ, Theorem 6.4]). Let π̃ be a regular non-critical p-refinement of a cohomological
self-dual cuspidal automorphic representation π of GL2 over F with tame conductor n, such that πv is
Iwahori spherical for any place v above p. For any p-adic valued continuous character f on Galcyc and
any finite order character χ on Galp∞, one has

Lp(π̃, χ · f) = ε̃π · (χ · f)(−ϖn)Lp(π̃, (χ · f) ◦ (·)−1),

where ϖn is a uniformizer corresponding to the ideal n and ε̃π = ε
(
π, 12

) ∏
v|p,πvis special

ε
(
πv,

1
2

)
is a product

of ε-factors. Here Galcyc denotes the Galois group of the cyclotomic Zp-extension Fcyc ⊂ F (µp∞) of F .

This chapter is devoted to prove a generalization of the above theorem where the hypothesis on the
Iwahori sphericality of πv for v|p is reduced to the case πv is not supercuspidal and the central character
of π is allowed to have the form ω2 for a finite order character ω of Galp∞ (see Theorem 5.3.5). Similar to
the proof in [BDJ] of the above theorem, we will prove its more general version not only for individual π
but also for a family of automorphic representations in a neighborhood of π in the eigenvariety indexing by
cohomological weights. The key ingredient of the proof is the following generalization to our hypotheses
of [BDJ, Corollary 6.3]:

Theorem 5.0.2. Suppose π̃ satisfies the hypotheses in Theorem 5.0.1 except that πv is not supercuspidal
for any place v above p rather than Iwahori spherical. Then

Lp(π̃, χ⟨·⟩r−1
p ) = ε̃π · χ(−ϖn) · ⟨n⟩r−1

p Lp(π̃, χ−1⟨·⟩1−rp )

for any finite order character χ of Galp∞ with p-adic values and any integer r critical for the cohomological
weight of π (see Definition 5.3.1), where ⟨·⟩p = χcycω

−1
p : Galp∞ → 1 + 2pZp is the character on Galp∞

given by the quotient of the cyclotomic character χcyc by the Teichmüller lift ωp of χcyc mod p.

Theorem 5.0.1 is implied from Theorem 5.0.2 for representations having very non-critical slope in
the family (see Definition 5.1.6) by applying [Vis, Theorem 2.3] and Lemma 1.2.5, and we deduce from

67
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the continuity of p-adic L-functions when the weights vary. The strategy to prove Theorem 5.0.2 is as
follows: as before, we will prove for a family of automorphic representations in a neighborhood of π in
the eigenvariety, so we can assume that π̃ has very non-critical slope. Firstly, we prove for characters χ
such that χv is highly ramified (i.e. the conductor of χv is big enough) for all v|p. To do this, we apply
the interpolation formula relating p-adic and complex L-functions of π given in [BDJ, Theorem 4.2], and
we deduce from the functional equation L(π, s) = ε(π, s)L(π∨, 1 − s) of L-functions, where π∨ is the
contragredient of π. Then we obtain the desired formula by applying Lemma 1.2.5.

Here is the outline of the chapter. In Section 5.1, we introduce the notion of cohomological and
non-critical automorphic representations, and cite a result about the existence of families of such repre-
sentations. In Section 5.2, we study ε-factors for GL1 and GL2. We finish the chapter with the functional
equation given in Section 5.3.

Notations

In the sequel, let d = [F : Q] and we denote OF the ring of integers of F and d its different. Denote
by AF the ring of adeles of F and AF,f the ring of finite adeles. Then AF = A⊗QF and AF,f = Af ⊗QF ,
where A = AQ and Af = AQ,f . Let F∞ = F ⊗Q R.

For each finite place v, denote by qv the cardinal of the residue field of F at v, and denote δv the
valuation at v of the different d.

Let Σ be the set of infinite places of F which are embeddings of F in the algebraic closure Q̄ of Q in
C. Composing with the embedding ιp : Q̄ → Q̄p yields a partition Σ = ⊔v∈SpΣv, where Sp is the set of

places of F above p, and a place σ belongs to Σv if v is the kernel of the composition OF
ιp◦σ−→ Z̄p ↠ F̄p.

For each fractional ideal f of F , we choose an element ϖf ∈ A×
F,f such that ϖvf = ϖv · ϖf for any

finite place v, where ϖv is a uniformizer of the ring of integers Ov of Fv.
Recall that Galp∞ denotes the maximal abelian extension of F which is unramified outside p and

infinity. By class field theory, there is a correspondence between finite order characters of Galp∞ and
finite order Hecke characters of F which are unramified outside p. The cyclotomic character χcyc :
Galp∞ ↠ Gal(F (µp∞)/F )→ Z×

p corresponds via class field theory to the character χcyc : F
×
+ \A×

F,f → Z×
p

mapping y to
∏
v∈Sp

NFv/Qp
(yv)|yf |F , where F×

+ is the set of totally positive elements of F . We extend

the Teichmüller lift ωp to F×
∞ by the sign character. The character ⟨·⟩p = χcycω

−1
p can be seen as the

projection on the Galois group Galcyc = Gal(Fcyc/F ) of the cyclotomic Zp-extension Fcyc ⊂ F (µp∞) of
F .

We consider the additive character ψ : AF /F → C× given by the composition of the trace map of
adeles from F to Q followed by the usual additive character ψ0 on AQ/Q given by ψ0|R = exp(−2πi·) and
ψ0|Ql

is the value of exp(2πi·) at the l-non integer part of Ql for every prime number l. The conductor
of ψv is −δv for any finite place v.

If χv is a character of F×
v of conductor cχv

for a finite place v, we define its local Gauss sum by

τ(χv, ψv) =

∫
ϖ

−cχv−δv
v O×

v

χv (x)ψv (x) dvx

which is independent of the choice of uniformizer, where dv is the Haar measure on Fv giving Ov volume

q
−δv/2
v . If χv is unramified, then τ(χv, ψv) = χv(ϖv)

−δvq
δv/2
v . The Haar measure on F×

v is considered to
be d×v x = dvx

|x|v
.

For a Hecke character χ : A×
F /F

× → C× of conductor cχ, we define the global Gauss sum

τ(χ) =
∏
v ̸ |∞

τ(χv, ψv) =
∏
v|cχ

τ(χv, ψv)
∏

v ̸ |cχ∞

χv(ϖv)
−δvqδv/2v .

5.1 Families of cohomological cuspidal automorphic representa-
tions

As introduced in the beginning of the chapter, we will prove a functional equation of p-adic L-functions
attached to a family of certain cuspidal automorphic representations of GL2(AF ). In this section, we
consider a family of partial non-critical refinements of cohomological cuspidal automorphic representations
of GL2(AF ) which are not supercuspidal above p.
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5.1.1 Cohomology of Hilbert modular varieties

Let G = ResOF /ZGL2. Let K∞ = O2(F∞)F×
∞. Denote by K+

∞ the connected component of the unit
in K∞, then K+

∞ = SO2(F∞)F×
∞.

For an open compact subgroup K of G(Af ), we define the Hilbert modular variety of level K as

YK = G(Q)\G(A)/KK+
∞.

It projects to C+K := F×\A×
F /det(K)F+

∞ by the determinant map. The fiber YK [α] = det−1([α]) of each
class [α] ∈ C+K has the structure of a symmetric space by the isomorphism

Γα\G+
∞/K

+
∞
∼= YK [α]

g∞ 7→ g∞

(
α 0
0 1

)
,

where Γα = G(Q) ∩
(
α 0
0 1

)
K

(
α 0
0 1

)−1

G+
∞. Therefore, YK is a complex manifold.

In the sequel we assume that K is small enough such that for all g ∈ G(A):

G(Q) ∩ gKK+
∞g

−1 = F× ∩KF×
∞. (5.1)

Given a left K-module V such that

F× ∩KF×
∞ acts trivially on V, (5.2)

then the group G(Q) ∩ gKK+
∞g

−1 acts trivially on V . We get the local system V:

G(Q)\(G(A)× V )/KK+
∞ → YK

defined by γ(g, v)k = (γgk, k−1v), where γ ∈ G(Q), g ∈ G(A), v ∈ V and k ∈ KK+
∞.

We also denote by V the sheaf of locally constant sections on YK .

5.1.2 Cohomological cuspidal automorphic representations

Let B ⊂ G be the Borel subgroup of upper triangular matrices and T be the torus of diagonal matrices.
An element k =

∑
σ∈Σ

kσσ ∈ Z[Σ] can be identified with a character of ResF/QGm as follows: for any

Q-algebra A, we define the character

x ∈ (F ⊗Q A)
× 7→ xk =

∏
σ∈Σ

σ(x)kσ ∈ A×.

Integral weights of G are characters of T of the form diag(a, d) 7→ akdk
′
for (k, k′) ∈ Z[Σ]2. Such a

weight is called dominant if kσ ≥ k′σ for any σ ∈ Σ. Each dominant weight (k, k′) induces an irreducible
algebraic representation of G(A) given by⊗

σ∈Σ

(Symkσ−k′σ ⊗ detk
′
σ )(A2).

Suppose that (k, k′) is dominant. For a Q-algebra A, we define the representation Lk,k′(A) of G(A)
consisting of polynomials P of degree at most (kσ− k′σ)σ∈Σ in the variables z = (zσ)σ∈Σ with coefficients
in A, where the action of G(A) ∼= GL2(A)

Σ is given by

P|γ(z) = (det γ)k
′
(cz + d)k−k

′
P
(az + b

cz + d

)
for γ =

(
a b
c d

)
∈ G(A). (5.3)

The dual L∨
k,k′(A) = HomA(Lk,k′(A), A) is induced a left action of G(A) given by

(γ · µ)(P ) = µ(P|(det γ)−1·γ), (5.4)

where γ ∈ G(A), µ ∈ L∨
k,k′(A), P ∈ Lk,k′(A). It follows that

L∨
k,k′(A)

∼=
⊗
σ∈Σ

(Symkσ−k′σ ⊗ det−kσ )(A2).
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Definition 5.1.1. A dominant weight of G is cohomological if it is of the form(w+ kσ − 2

2
,
w+ 2− kσ

2

)
σ∈Σ

,

where (k,w) ∈ Z[Σ]×Z satisfying kσ ≥ 2 and kσ ≡ w (mod 2) for any σ ∈ Σ. We will write simply (k,w)
for this weight.

The left G(A)-module L∨
k,w(A) induces the sheaf L∨

k,w(A) on YK . The condition (5.2) for L∨
k,w(A) is

equivalent to

Nw
F/Q(x) = 1 for any x ∈ F× ∩KF×

∞.

If (k,w) is a cohomological weight and σ ∈ Σ, we consider the induction from Bσ to Gσ of the
character which is trivial on the unipotent radical and given on Tσ by

diag(a, d) 7→ a(w+kσ−2)/2d(w+2−kσ)/2
∣∣∣a
d

∣∣∣1/2.
It has a unique non-trivial finite dimensional quotient which is Lkσ,w(C) and the kernel is denoted by
πkσ,w.

Definition 5.1.2. We say that an automorphic representation π of GL2(AF ) has cohomological weight
(k,w) if π∞ ∼= ⊗

σ∈Σ
πkσ,w.

Cohomological automorphic representations of weight (k,w) play an important role since they con-
tribute to the cuspidal cohomology group Hd

cusp(YK ,L∨
k,w(C)) in the following decomposition:

Hd
cusp(YK ,L∨

k,w(C)) =
⊗
π

Hd(g∞,K
+
∞, L

∨
k,w(C)⊗ π∞)⊗ πKf ,

where π runs over all cuspidal automorphic representations of G(A) and g∞ denotes the complexified Lie
algebra of G∞.

Definition 5.1.3. Let π be a cuspidal automorphic representation of G(A) and let v ∈ Sp. We say that

i) πv is regular if either it is a twist of the Steinberg representation or it is a principal series repre-
sentation associated to two different characters.

ii) If πv is not supercuspidal, a refinement of πv is a one dimensional sub νv of the Weil-Deligne
representation attached to πv via the local Langlands correspondence for GL2(Fv).

iii) For S ⊂ Sp, an S-refinement of π is a pair π̃S = (π, {νv}v∈S) where νv is a refinement of πv for
each v ∈ S. From now on, if S = Sp we will omit it from the notations, e.g. we write π̃ for π̃Sp

and call it a p-refinement of π.

5.1.3 Partial non-critical refinements and its families

We introduce the notion of partial non-critical refinements of automorphic representations of G(A)
which is crucial for the existence of p-adic L-functions of Hilbert cusp forms constructed in [BDJ]. We
state a theorem about the existence of such families indexing by cohomological weights. The definitions
in this subsection follow from [BDJ].

Let S ⊂ Sp. Let π̃ = (π, {νv}v∈Sp) be a regular p-refinement of a cuspidal automorphic representation
of cohomological weight (k,w) and tame conductor n which is not supercuspidal above p.

For an ideal f of OF we consider the following open compact subgroups of G(Ẑ):

K0(f) =

{(
a b
c d

)
∈ G(Ẑ) | c ∈ f

}
, K1(f) =

{(
a b
c d

)
∈ G(Ẑ) | c ∈ f, d ∈ 1 + f

}
.

The double coset operator K1(n)xK1(n) = ⊔iK1(n)xi for x ∈ G(Af ) acts on automorphic forms of level
K1(n) on the right by

g|K1(n)xK1(n)(·) =
∑
i

g(·x−1
i ).
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For each finite place v of F , we define the Hecke operator Tv given by the double coset operator

K1(n)

(
ϖv 0
0 1

)
K1(n) and for v not dividing n we let Sv =

[
K1(n)

(
ϖv 0
0 ϖv

)
K1(n)

]
.

Consider v ∈ Sp. If πv is a twist of the Steinberg representation we let Kv = K0(v), if πv is a principal
series attached to characters χ1,v, χ2,v we let Kv = K0(v) ∩ K1(v

mv ), where mv is the conductor of
χ1,v/χ2,v. Let

K ′
v = ker (Kv

det−→ O×
v

νv−→ C×).

For a uniformizer ϖv ∈ Ov and δ ∈ O×
v we define the Hecke operators

Uϖv
=

[
K ′
v

(
ϖv 0
0 1

)
K ′
v

]
and Uδ =

[
K ′
v

(
δ 0
0 1

)
K ′
v

]
.

Remark 5.1.4. By the abuse of notation, the Hecke operator Up on automorphic forms is defined by

the matrix

(
p 0
0 1

)
, while we use the matrix

(
1 0
0 p

)
for the action of Up on p-adic distributions, since

the matrices act on automorphic forms on the left and on distributions on the right.

We fix a prime ideal u of F such that:

i) If K is an open compact subgroup of G(Af ) with Ku = K0(u), then K satisfies (5.1),

ii) u is unramified and πu is an unramified principal series with Hecke parameters αu ̸= βu.

The existence of u follows from [Dim09, Lemma 2.1].

Definition 5.1.5. Let E be a number field containing the Galois closure of F , the rationality field of πf ,
the Hecke parameters of πu and the values of the characters νv for v ∈ Sp.

Let mπ be the maximal ideal corresponding to πf of the Hecke algebra T = E[Tv, Sv | v ̸ | nup].
For S ⊂ Sp, we consider the maximal ideal

mπ̃S
= (mπ, Uu − αu, Uϖv − νv(ϖv), Uδ − νv(δ) | δ ∈ O×

v , v ∈ S)

of the Hecke algebra T̃S = T[Uu, Uϖv
, Uδ | δ ∈ O×

v , v ∈ S].

We consider the following open compact subgroup of G(Af ):

K(π̃S , u) = K0(u)
∏

v/∈S∪{u}

K1(v
mv )

∏
v∈S

K ′
v,

where mv is the conductor of πv.

Definition 5.1.6. The slope hπ̃v
of π̃v = (πv, νv) is the p-adic valuation of

νv(ϖv)
∏
σ∈Σv

σ(ϖv)
(kσ+w−2)/2.

This slope is independent of the choice of uniformizer.
We say that π̃v has non-critical slope if evhπ̃v

< min
σ∈Σv

(kσ − 1), where ev is the ramification index of

p at v.
For S ⊂ Sp, we say that π̃S has non-critical slope if π̃v has non-critical slope for any v ∈ S.
We say that π̃ has very non-critical slope if∑

v∈Sp

evhπ̃v < min
σ∈Σ

(kσ − 1).

Consider the monoid

ΛS =
∏

v∈Sp\S

GL2(Fv)
∏
v∈S

GL2(Fv) ∩
(
F×
v

(
Ov Ov

ϖvOv O×
v

))

which contains the partial Iwahori subgroup IS = ΛS ∩G(Zp) =
∏

v∈Sp\S
GL2(Ov)

∏
v∈S

K0(v).
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For a finite extension L of Qp, we let

AS,(k,w) = A(OF,S , L)⊗L
⊗

σ∈ΣSp\S

Lkσ,w(L)

be the space of L-valued analytic functions onOF⊗Zp which are polynomial of degree at most (kσ−2)σ∈Σv

in the variables (zσ)σ∈Σv
for v ∈ Sp\S. Denote by DS,(k,w) its continuous L-dual.

We define a continuous right action of IS on AS,(k,w) given by

f|γ(z) = (det γ)((w+2−kσ)σ∈Σ)/2(cz + d)k−2f
(az + b

cz + d

)
,

where f ∈ AS,(k,w), γ =

(
a b
c d

)
∈ IS , z ∈ OF ⊗ Zp. We extend to an action of ΛS by putting

f∣∣ϖr
v 0
0 ϖs

v

(z) = f(ϖr−s
v z) for all v ∈ S and integers r ≥ s.

It induces a continuous left action of ΛS on DS,(k,w), given by

(γ · µ)(f) = µ(f|(det γ)−1·γ) for γ ∈ ΛS , µ ∈ DS,(k,w), f ∈ AS,(k,w).

The natural inclusion Lk,w(L) → AS,(k,w) induces the dual map ρS : DS,(k,w) → L∨
k,w(L) which is

equivariant for the action of IS (see (5.3) and (5.4)) but it is not ΛS-equivariant. More explicitly, for all
v ∈ S and µ ∈ DS,(k,w), one has

ρS

((
ϖv 0
0 1

)
· µ
)

=
∏
σ∈Σv

σ(ϖv)
(w+kσ−2)/2

(
ϖv 0
0 1

)
· ρS(µ).

Now let K ⊂ G(Af ) be an open compact subgroup satisfying (5.1) and Kp ⊂ IS . The homomorphism
ρS induces a homomorphism on the cohomology:

ρS : H ·
c(YK ,DS,(k,w))→ H ·

c(YK ,L∨
k,w(L)) (5.5)

which is equivariant for the action of Uϖv
on the left space and the action of the normalized Hecke

operator U◦
ϖv

=
( ∏
σ∈Σv

σ(ϖv)
(w+kσ−2)/2

)
Uϖv

on the right space, for any place v ∈ S.

Let hS = (hv)v∈S ∈ QS≥0. By [Urb, Lemma 2.3.13], the cohomology group H ·
c(YK ,DS,(k,w)) admits a

≤ hS-slope decomposition

H ·
c(YK ,DS,(k,w)) = H ·

c(YK ,DS,(k,w))
≤hS ⊕H ·

c(YK ,DS,(k,w))
>hS ,

where H ·
c(YK ,DS,(k,w))

≤hS denotes the subspace of elements having slope ≤ hv with respect to Uϖv
for

all v ∈ S.
Henceforth we consider K = K(π̃S , u). The following theorem generalizes Stevens’s control theorem

for overconvergent modular symbols (see Theorem 3.2.1).

Theorem 5.1.7 ([BDJ, Theorem 2.7]). Let hS = (hv)v∈S ∈ QS≥0 be such that evhv < min
σ∈Σv

(kσ − 1) for

any v ∈ S. Then (5.5) induces an isomorphism of ≤ hS-slope subspaces

ρS : H ·
c(YK ,DS,(k,w))

≤hS → H ·
c(YK ,L∨

k,w(L))
≤hS ,

where we consider the operators {Uϖv , v ∈ S} on the left hand side and {U◦
ϖv
, v ∈ S} on the right hand

side.

Definition 5.1.8. We say that π̃S is non-critical if the localization

ρS : H ·
c(YK ,DS,(k,w))m◦

π̃S
→ H ·

c(YK ,L∨
k,w(L))mπ̃S

of (5.5) is an isomorphism, where m◦
π̃S

is the normalization of mπ̃S
with the components Uϖv

− νv(ϖv)

of mπ̃S
for v ∈ S are replaced by Uϖv − νv(ϖv)

∏
σ∈Σv

σ(ϖv)
(w+kσ−2)/2. When S = Sp we say that π̃ is

non-critical.
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Corollary 5.1.9. If π̃S has non-critical slope, then π̃S is non-critical.

Proof. It is immediate from Theorem 5.1.7.

Definition 5.1.10 (Weight space). Let X be the (d+ 1)-dimensional rigid analytic space over Qp such
that

X (Cp) =
{
λ ∈ Homcont(T (Zp),C×

p ) | ∃wλ ∈ Homcont(Z×
p ,C×

p ), λ

((
z

z

))
= wλ(NF/Q(z))

}
.

We let kλ(z) = λ

((
z

z−1

))
N2
F/Q(z). There is a morphism

X (Cp)→ Homcont((OF ⊗ Zp)× × Z×
p ,C×

p )

λ 7→ (kλ,wλ). (5.6)

The space X contains all cohomological weights of G which are very Zariski dense in it.

Definition 5.1.11. Fix a cohomological weight (k,w). Given a subset S of Sp, we let XS, resp. X ′
S

denote the rigid analytic subspaces of X consisting of weights which coincide with (k,w) on∏
v∈Sp\S

(
O×
v 0
0 O×

v

)
, resp.

∏
v∈Sp\S

(
O×
v 0
0 1

)
.

We are ready to state a result about the existence of families of partial non-critical refinements
indexing by cohomological weights.

Theorem 5.1.12 ([BDJ, Theorem 2.14(iii)]). Suppose that π̃S is non-critical. There exists an affinoid
neighborhood US of (k,w) in XS such that we can attach to any cohomological weight λ ∈ US a non-critical
S-refined weight λ cuspidal automorphic representation π̃λ,S of G(A).

By the above theorem, we can take an affinoid neighborhood X (π̃) of (k,w) in the weight space X
such that for any cohomological weight λ ∈ X (π̃), π̃λ is non-critical, the map λ 7→ (kλ,wλ) defined in
(5.6) is injective on X (π̃) and wλ ◦ωp = ωw

p . By [BDJ, Lemma 5.1], we can further assume that the tame
conductor of πλ equals n for every cohomological λ ∈ X (π̃).

We consider the subset of X (π̃) consisting of weights parametrized by the variables ((kλ,σ)σ∈Σ,wλ)
which correspond via (5.6) to characters of the form

z = ((zv)v∈Sp , z0) ∈
∏
v∈Sp

O×
v × Z×

p 7→ (k,w)(z) · ⟨z0⟩wλ−w
p

∏
v∈Sp

∏
σ∈Σv

σ(⟨zv⟩v)kλ,σ−kσ ∈ C×
p ,

where ⟨·⟩v : O×
v → 1+ϖvOv is the natural projection map. We denote by X an(π̃) ⊂ X (π̃) a neighborhood

of (k,w) in the space
∏
σ∈Σ(kσ + 2pOCp

)× (w +OCp
) of these analytic weights.

5.2 ε-factors for GL1 and GL2

The ε-factors appear in the functional equation of L-functions of cuspidal automorphic representations.
In this section, we recall and list some properties of ε-factors for GL1 and GL2.

Let χ be a Hecke character of F and π be a cuspidal automorphic representation of GL2(AF ). Then
χ = ⊗

v
χv and π = ⊗

v
πv where v runs through all places of F and χv (resp. πv) is the local component at

v of χ (resp. π).
For a locally constant function Φ on F×

v with compact support, we define its Fourier transform as

Φ̂(x) =

∫
Fv

Φ(y)ψv(xy)dvy.

It follows that
ˆ̂
Φ(x) = Φ(−x). By [Tat67, Theorem 2.4.1], there is a meromorphic function γ(χv, s, ψv)

with s ∈ C such that∫
F×

v

Φ̂(x)χ−1
v (x) |x|1−sv d×v x = γ(χv, s, ψv)

∫
F×

v

Φ(x)χv(x) |x|sv d
×
v x
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for any test function Φ. We define the local ε-factor ε(χv, s, ψv) by

ε(χv, s, ψv) = γ(χv, s, ψv)
L(χv, s)

L(χ−1
v , 1− s)

,

where the local L-functions for GL1 are defined by

L(χv, s) =


(1− χv(ϖv)q

−s
v )−1 if v ̸ | ∞ andχv is unramified,

1 if v ̸ | ∞ andχv is ramified,

π−(s+t)/2 Γ
(
s+t
2

)
if v is real and χv = | · |tR,

π−(s+t+1)/2 Γ
(
s+t+1

2

)
if v is real and χv = sgn | · |tR.

The global ε-factor of χ is

ε(χ, s) =
∏
v

ε(χv, s, ψv).

By the same way, we can attach to πv an ε-factor ε(πv, s, ψv) for any place v of F and attach to π a
global ε-factor ε(π, s).

We list some properties of local ε-factors for GL1 and GL2. Let v be a finite place of F . From now
on we will use the symbol c (resp. c) to denote the local (resp. global) conductor of Hecke characters
and automorphic representations of GL2 over F (e.g. the conductor of χv (resp. πv) will be denoted by
cχv

(resp. cπv
)).

i) If χv is unramified, by the formulas (3.4.6), (3.2.6.3) and (3.2.6.1) in [Tat79], for any s ∈ C and any
character µv on F×

v of conductor cµv , one has

ε(πv ⊗ χv, s, ψv) = χv(ϖv)
cπv+2δvε(πv, s, ψv), (5.7)

ε(χvµv, s, ψv) = χv(ϖv)
cµv+δvε(µv, s, ψv),

ε(χv, s, ψv) = χv(ϖv)
δvq−δv(s−1/2)

v .

(Note that we take the Haar measure dxv giving Ov volume q
−δv/2
v but in [Tat79] they consider the

Haar measure giving Ov volume 1). Therefore, for any t ∈ C, we have

ε(πv, s+ t, ψv) = ε(πv ⊗ |·|tv , s, ψv) = q
−t(cπv+2δv)
v ε (πv, s, ψv) , (5.8)

ε(χv, s+ t, ψv) = ε(χv |·|tv , s, ψv) = q
−t(cχv+δv)
v ε(χv, s, ψv)

for any πv and any χv.

ii) For any χv, by [Tat79, (3.2.6.2)], one has

ε(χv, s, ψv) =

∫
ϖ

−cχv−δv
v O×

v

χ−1
v (x) |x|−sv ψv (x) dvx = q

−s(cχv+δv)
v τ(χ−1

v , ψv). (5.9)

So τ(χvµv, ψv) = χv(ϖv)
−(cµv+δv)τ(µv, ψv) if χv is unramified and µv is any character of F×

v .

From the identity of local ε-factors (see [Schm, (7) and (12)]):

ε(χv, s, ψv) ε(χ
−1
v , 1− s, ψv) = χv(−1), (5.10)

ε(πv, s, ψv) ε(π
∨
v , 1− s, ψv) = ωπv

(−1)

(where π∨
v is the contragredient representation of πv and ωπv

is the central character of πv), we get
the identity of local Gauss sums:

q
−cχv−δv
v τ(χv, ψv)τ(χ

−1
v , ψv) = χv(−1). (5.11)

The identities of global ε-factors for GL1 and GL2 state

ε(χ, s) ε(χ−1, 1− s) = 1,

ε(π, s) ε(π∨, 1− s) = 1. (5.12)

iii) If χv is highly ramified, by [JS, Proposition 2.2], for all characters α, β of F×
v such that αβ = ωπv

,
one has

ε(πv ⊗ χv, s, ψv) = ε(χvα, s, ψv) · ε(χvβ, s, ψv). (5.13)

In particular, ε(πv ⊗ χv, s, ψv) = ε(χvωπv , s, ψv) · ε(χv, s, ψv) if χv is highly ramified.



5.3. FUNCTIONAL EQUATION OF P -ADIC L-FUNCTIONS 75

5.3 Functional equation of p-adic L-functions

This section is devoted to the proof of a generalization of Theorem 5.0.1 (see Theorem 5.3.5). Through-
out this section let π̃ = (π, {νv}v∈Sp

) be a regular non-critical p-refinement of a cuspidal automorphic
representation π of G(A) of cohomological weight (k,w) and tame conductor n such that

π has central character ωπ = ω2| · |wF with w even, and πv is not supercuspidal for any v ∈ Sp, (5.14)

where ω is a finite order character of Galp∞ corresponding to a Hecke character which is unramified
outside p.

By the assumption about ωπ, the twist π ⊗ ω−1 |·|−w/2
F is self-dual, its root number is given by

επ⊗ω−1 = ε
(
π ⊗ ω−1,

1− w

2

)
∈ {±1}.

(the fact that επ⊗ω−1 ∈ {±1} follows from (5.12) where we take s = 1
2 ).

Denote by Stp ⊂ Sp the subset of places v such that πv is the twist (by νv) of the unitary Stein-
berg representation . We let Stv denote the Steinberg representation at v. If v ∈ Sp\Stp, then

πv = π(νv |·|1/2v , αv |·|1/2v ) is a principal series, where αv = ωπv
ν−1
v |·|

−1
v .

Let L be a finite extension of Qp containing the image by ιp of the number field E in Definition
5.1.5. The non-criticality of π̃ allows us to attach a p-adic L-function Lp(π̃, ·) defined in [BDJ, (4.2)],
which is a p-adic distribution on Galp∞ with values in L. This p-adic L-function is the specialization of
a multi-variable p-adic L-function Lp ∈ D(Galp∞,O(X (π̃))) (see [BDJ, (4.8)]).

Definition 5.3.1. We say that an integer r is critical for the cohomological weight (k,w) if

0 ≤ r − 1 +
w + kσ − 2

2
≤ kσ − 2 for all σ ∈ Σ.

The p-adic L-function Lp(π̃, ·) satisfies the following interpolation formula:

Theorem 5.3.2 ([BDJ, Theorem 4.2]). Let χ be a finite order character of Galp∞ and for v dividing
p denote by cv the conductor of χvνv. Let r be a critical integer for (k,w). Letting NF/Q(i) = id and
denote by Ω·

π̃ the period defined in [BDJ, Definition 1.14], one has

Lp(π̃, χ · χr−1
cyc ) =

Nr−1
F/Q (id)χ

(
ϖ−1

d

)
Ω
χ∞ωr−1

p,∞
π̃

L
(
π ⊗ χ, r − 1

2

) ∏
v∈Sp

E (π̃v, χv, r),where

E (π̃v, χv, s) =



qscvv (χvνv)(ϖ
δv
v )q

−(cv+δv/2)
v τ(χvνv, ψv) if cv ≥ 1 and χvωπv

ν−1
v ramified,(

1− (χvωπvν
−1
v )(ϖv)

qs−1
v

)
qscvv (χvνv)(ϖ

δv
v ) τ(χvνv,ψv)

q
(cv+δv/2)
v

if cv ≥ 1 and χvωπv
ν−1
v unramified,(

1− (χvωπvν
−1
v )(ϖv)

qs−1
v

)(
1− qs−1

v

(χvνv)(ϖv)

)
if πv ⊗ χv is unramified,(

1− qs−1
v

(χvνv)(ϖv)

)
otherwise.

Note that the first and second expressions for the values of E-factors in the above theorem are

multiples of those in [BDJ] by the factor q
cv+δv/2
v since our Gauss sums differ from those in [BDJ] by the

multiplication q
cv+δv/2
v .

We now prove a more general version of the formula comparing special values of Lp(π̃, ·) given in
[BDJ, Corollary 6.3]. Note that in ibid. they assume that π satisfies their condition (4.12), while we
assume only the condition (5.14).

Proposition 5.3.3. Suppose π satisfies (5.14). Let χ : Galp∞ → L× be a finite order character and let
r be an integer critical for (k,w). Then

Lp(π̃, χ⟨·⟩r−1
p ) = ε̃π⊗ω−1 · (χωωw/2

p )(−ϖn) · ⟨n⟩r+w/2−1
p Lp(π̃, χ−1ω−2ω−w

p ⟨·⟩1−r−w
p ), (5.15)

where ε̃π⊗ω−1 = επ⊗ω−1 ·
∏

v∈Stp,νvω
−1
v unramified

ε
(
πv ⊗ ω−1

v , 1−w
2 , ψv

)
∈ {±1}.
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Proof. We will prove not only for individual π̃ but also for any π̃λ where λ ∈ X (π̃) is cohomological. We
remark that the slope is constant in the family and equals

∑
v∈Sp

evhπ̃v
(see Definition 5.1.6). Since the

cohomological weights having very non-critical slope are Zariski dense in X (π̃), we can assume that (k,w)
is such a weight. Regarding both sides of (5.15) as functions of χ⟨·⟩r−1

p , since Lp(π̃, ·) ∈ D(Galp∞, L) has
growth at most

∑
v∈Sp

evhπ̃v
< min

σ∈Σ
(kσ − 1), by Lemma 1.2.5 it suffices to prove for characters χ such that

χv is highly ramified for any v ∈ Sp. Suppose that χ is such a character.
By the functional equation of the Jacquet-Langlands global L-functions:

L(π, s) = ε(π, s)L (π∨, 1− s)

(see [JL, Theorem 11.1]), we have

L
(
π ⊗ χ, r − 1

2

)
= ε
(
π ⊗ χ, r − 1

2

)
· L
(
π∨ ⊗ χ−1,

3

2
− r
)

= ε
(
π ⊗ χ, r − 1

2

)
· L
(
π ⊗ ω−1

π χ−1,
3

2
− r
)

= ε
(
π ⊗ χ, r − 1

2

)
· L
(
π ⊗ χ−1ω−2,

3

2
− r − w

)
. (5.16)

Combining with Theorem 5.3.2, we obtain

Lp(π̃, χχr−1
cyc ) = N2r−2+w

F/Q (id) · (χ2ω2)(ϖ−1
d )ε

(
π ⊗ χ, r − 1

2

)
×

×
∏
v∈Sp

E (π̃v, χv, r)

E
(
π̃v, χ

−1
v ω−2

v , 2− r − w
)Lp(π̃, χ−1ω−2χ1−r−w

cyc ). (5.17)

For v ∈ Sp, since χv is highly ramified, it follows that the characters χvνv and χvωπv
ν−1
v are all ramified

with the same conductor which equals the conductor cχv
of χv. So

E(π̃v, χv, r) = q
rcχv
v (χvνv)(ϖ

δv
v )q

−(cχv+δv/2)
v τ(χvνv, ψv),

E(π̃v, χ
−1
v ω−2

v , 2− r − w) = q
(2−r−w)cχv
v (χ−1

v ω−2
v νv)(ϖ

δv
v )q

−(cχv+δv/2)
v τ(χ−1

v ω−2
v νv, ψv).

Hence

E(π̃v, χv, r)

E(π̃v, χ
−1
v ω−2

v , 2− r − w)
= q

(2r+w−2)cχv
v (χvωv)(ϖv)

2δv
τ(χvνv, ψv)

τ(χ−1
v ω−2

v νv, ψv)

= q
(2r+w−2)cχv
v (χvωv)(ϖv)

2δvτ(χvνv, ψv)τ(χvω
2
vν

−1
v , ψv)q

−(cχv+δv)
v (χvω

2
vν

−1
v )(−1) (by (5.11)).

Since χv is highly ramified, by (5.9) and (5.13), we have

τ(χvνv, ψv)τ(χvω
2
vν

−1
v , ψv) = τ(χvωv, ψv)

2.

Therefore,∏
v∈Sp

E(π̃v, χv, r)

E(π̃v, χ
−1
v ω−2

v , 2− r − w)
= (χν−1)(−1)N2r+w−2

F/Q (cχ)
∏
v∈Sp

q
−(cχv+δv)
v (χ2

vω
2
v)(ϖ

δv
v )τ(χvωv, ψv)

2.

(5.18)

Lemma 5.3.4. Suppose π satisfies (5.14). Let χ be a character of Galp∞ such that χv is highly ramified
for all v ∈ Sp. Denote by cχ =

∏
v∈Sp

vcχv the conductor of χ, one has

ε
(
π ⊗ χ, r − 1

2

)
= ε̃π⊗ω−1 · (νω−1)(−1) · (χω)(ϖn)N

1−r−w/2
F/Q (n) ·N1−2r−w

F/Q (cχ)×

×
∏
v ̸ |p∞

q(2−2r−w)δv
v (χvωv)(ϖv)

2δv
∏
v∈Sp

q(1−2r−w)δv
v τ(χ−1

v ω−1
v , ψv)

2.

Proof. For an infinite place v, since πv is a discrete series, the value ε(πv, s, ψv) is independent of s and
of twisting πv by any character of F×

v (see [Kna, (3.7)]). So

ε
(
πv ⊗ χv, r −

1

2
, ψv

)
= ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
. (5.19)
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If v is a finite place not above p, then χv and ωv are unramified since they are characters of Galp∞, so
πv ⊗ ω−1

v and πv have the same conductor cπv⊗ω−1
v

= cπv
. We have

ε
(
πv ⊗ χv, r −

1

2
, ψv

)
= ε
(
πv ⊗ ω−1

v ⊗ χvωv, r −
1

2
, ψv

)
= ε
(
πv ⊗ ω−1

v , r − 1

2
, ψv

)
(χvωv)(ϖv)

cπv+2δv (by (5.7))

= ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
q
(1−r−w/2)(cπv+2δv)
v (χvωv)(ϖv)

cπv+2δv (by (5.8)). (5.20)

For v ∈ Sp, since χv is highly ramified, applying (5.13) with α = ω| · |wv and β = ω, we get

ε
(
πv ⊗ χv, r −

1

2
, ψv

)
= ε
(
χvωv, r −

1

2
+ w, ψv

)
ε
(
χvωv, r −

1

2
, ψv

)
= q

(1−2r−w)(cχv+δv)
v τ(χ−1

v ω−1
v , ψv)

2 (by (5.9)), (5.21)

note that cχvωv
= cχv

since χv is highly ramified.
We claim that

ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
=

{
(νvω

−1
v )(−1) if v ∈ Sp\ Stp or v ∈ Stp and νvω

−1
v is ramified,

−(νvω−1
v )(ϖv)q

w/2
v if v ∈ Stp and νvω

−1
v is unramified.

(5.22)

Indeed, if v ∈ Sp\ Stp, then πv = π(νv |·|1/2v , ωπv
ν−1
v |·|

−1/2
v ) is a principal series. So πv ⊗ ω−1

v =

π(νvω
−1
v |·|

1/2
v , ωvν

−1
v |·|

w−1/2
v ). By [JL, Proposition 3.5], we get

ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
= ε
(
νvω

−1
v |·|

1/2
v ,

1− w

2
, ψv

)
ε
(
ωvν

−1
v |·|

w−1/2
v ,

1− w

2
, ψv

)
= ε
(
νvω

−1
v , 1− w

2
, ψv

)
ε
(
ωvν

−1
v ,

w

2
, ψv

)
= (νvω

−1
v )(−1) (by (5.10)).

Consider v ∈ Stp, then πv ⊗ ω−1
v = νvω

−1
v Stv. If νvω

−1
v is ramified, by [JL, Proposition 3.6], we have

ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
= ε
(
νvω

−1
v |·|

1/2
v ,

1− w

2
, ψv

)
ε
(
νvω

−1
v |·|

−1/2
v ,

1− w

2
, ψv

)
= ε
(
νvω

−1
v , 1− w

2
, ψv

)
ε
(
ν−1
v ωv,

w

2
, ψv

)
(since ν2v = ωπv = ω2

v |·|
w
v )

= (νvω
−1
v )(−1) (by (5.10)).

If v ∈ Stp and νvω
−1
v is unramified, again by [JL, Proposition 3.6], we obtain

ε
(
πv ⊗ ω−1

v ,
1− w

2
, ψv

)
= ε
(
νvω

−1
v |·|

1/2
v ,

1− w

2
, ψv

)
ε
(
νvω

−1
v |·|

−1/2
v ,

1− w

2
, ψv

)L(ν−1
v ωv |·|−1/2

v , 1+w
2

)
L
(
νvω

−1
v |·|−1/2

v , 1−w
2

)
= (νvω

−1
v )(−1) · (1− (ν−1

v ωv)(ϖv)q
−w/2
v )−1

(1− (νvω
−1
v )(ϖv)q

w/2
v )−1

= −(νvω−1
v )(ϖv)q

w/2
v .

The lemma follows from (5.19),(5.20), (5.21) and (5.22).

From (5.17), (5.18) and Lemma 5.3.4, we obtain

Lp(π̃, χχr−1
cyc ) = ε̃π⊗ω−1 · (χω)(−ϖn)N

1−r−w/2
F/Q (−n)Lp(π̃, χ−1ω−2χ1−r−w

cyc ),

where we used the formula q
−(cχv+δv)
v τ(χvωv, ψv)τ(χ

−1
v ω−1

v , ψv) = (χvωv)(−1) for any v ∈ Sp (see (5.11))
with the note that cχvωv

= cχv
since χv is highly ramified.

We get the desired formula (5.15) by replacing χ by χω1−r
p with the note that χcycω

−1
p = ⟨·⟩p is an

even character.

We are now ready to prove a functional equation of p-adic L-functions attached to automorphic
representations.
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Theorem 5.3.5. The sign ε̃πλ⊗ω−1 of π̃λ is independent of the cohomological weight λ ∈ X (π̃). For any
λ ∈ X (π̃), any continuous character f : Galcyc → L× and any finite order character χ : Galp∞ → L×,
we have

Lp(λ, χ · f) = ε̃π⊗ω−1 · (χωωw/2
p f)(−ϖn)⟨n⟩wλ/2

p Lp(λ, ω−2χ−wλ
cyc (χ · f)(·)−1). (5.23)

Proof. We prove the assertion about the functional equation. We can assume that λ is cohomological
having very non-critical slope since such weights are Zariski dense in X (π̃). Fix χ and regard both sides of
(5.23) as functions of f . Since the distributions Lp(λ, χ·) and Lp(λ, ω−2χ−wλ

cyc χ−1·) in D(Galcyc, L) have
growth at most

∑
v∈Sp

evhπ̃v
< min

σ∈Σ
(kλ,σ−1), by [Vis, Theorem 2.3, Lemma 2.10] it suffices to check (5.23)

for f is of the form χ′⟨·⟩r−1
p , where r is a critical integer for (kλ,wλ) and χ

′ is a finite order character of
Galcyc. This is exactly formula (5.15) applied to χχ′, except that ε̃π⊗ω−1 is replaced by ε̃πλ⊗ω−1 .

For the assertion about the sign, we follow the proof of [BDJ, Theorem 6.4]. The key ingredient is
the following function:

ε(λ, s) =
⟨n⟩1−s−wλ/2

p Lp(λ, χω−1ω
−w/2
p ⟨·⟩s−1

p )

χ(−ϖn)Lp(λ, χ−1ω−1ω
−w/2
p ⟨·⟩1−wλ−s

p )

which is well-defined, non-identically zero and meromorphic in the variables (λ, s) ∈ X (π̃)×OCp . More-
over, by (5.23), ε(λ, s) = ε̃πλ⊗ω−1 ∈ {±1} for any cohomological weight λ ∈ X (π̃) having very non-critical
slope such that ε(λ, s) is well-defined. The Zariski density of such weights deduces that ε(λ, s) is constant
with value ε̃ ∈ {±1}, independent of χ and λ.

Definition 5.3.6. The cyclotomic (resp. multi-variable) p-adic L-function attached to π̃ is defined by

Lp(π̃, s) = Lp(π̃, ω−1ω−w/2
p ⟨·⟩s−1

p ), resp. Lp(λ, s) = Lp(λ, ω−1ω−w/2
p ⟨·⟩s−1

p ), where s ∈ OCp , λ ∈ X (π̃).

By (5.23), we have

Lp(π̃λ, s) = ε̃π⊗ω−1⟨n⟩s+wλ/2−1
p Lp(π̃λ, 2− wλ − s) (5.24)

as analytic functions in s. By [BDJ, (6.5)], for z ∈ OCp
and (kλ,wλ) ∈ X an(π̃) such that (kλ,wλ⟨·⟩2zp ) ∈

X an(π̃), one has

Lp((kλ,wλ + 2z), s) = Lp((kλ,wλ), s+ z). (5.25)

Proposition 5.3.7 ([BDJ, Remark 4.11]). For any regular non-critical cohomological p-refinement π̃
and any finite order character χ : Galp∞ → L×, one has

Lp(π̃ ⊗ χ, ·) = Lp(π̃, χ·) in D(Galcyc, L).

Proof. We will prove for the family of weights in X (π̃). By analyticity it suffices to prove for cohomological
weights λ ∈ X (π̃) such that π̃λ has very non-critical slope since such weights are very Zariski dense in
X (π̃). So we can assume that π̃ has such property.

Since the infinity part of π is a discrete series, and since the discrete series are invariant under twisting
by the sign character, it follows that π ⊗ χ has the same cohomological weight as π for any finite order
character χ of Galp∞. Moreover, πv⊗χv has the same slope as πv for any v ∈ Sp since χv(ϖv) is a p-adic
unit. By [Vis, Theorem 2.3, Lemma 2.10] it suffices to check

Lp(π̃ ⊗ χ, χ′⟨·⟩r−1
p ) = Lp(π̃, χχ′⟨·⟩r−1

p )

for any r ∈ Z critical for the weight of π̃ and any finite order character χ′ of Galcyc. By [BDJ, Theorem
4.2], we have

Lp(π̃ ⊗ χ, χ′⟨·⟩r−1
p ) = Lp(π̃ ⊗ χ, χ′ω1−r

p χr−1
cyc )

=
Nr−1
F/Q(id) · (χ

′ω1−r
p )(ϖ−1

d )

Ω
χ′
∞
π̃⊗χ

L
(
π ⊗ χ⊗ χ′ω1−r

p , r − 1

2

) ∏
v∈Sp

E( ˜πv ⊗ χv, χ′
vω

1−r
p,v , r)

=
Nr−1
F/Q(id) · (χχ

′ω1−r
p )(ϖ−1

d )

Ω
χ∞χ′

∞
π̃

L
(
π ⊗ χχ′ω1−r

p , r − 1

2

) ∏
v∈Sp

E(π̃v, χvχ
′
vω

1−r
p,v , r)

= Lp(π̃, χχ′ω1−r
p χr−1

cyc ) = Lp(π̃, χχ′⟨·⟩r−1
p ),
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where we used the equality E( ˜πv ⊗ χv, χ′
vω

1−r
p,v , r) = E(π̃v, χvχ

′
vω

1−r
p,v , r) which is obvious from the defi-

nition of E-factors and the equality Ω
χ′
∞
π̃⊗χ

= χf (ϖd)Ω
χ∞χ′

∞
π̃ followed from [BDJ, Proposition 1.15].

Corollary 5.3.8. For any λ ∈ X (π̃), one has

Lp(π̃λ, s) = Lp( ˜πλ ⊗ ω−1, ω−w/2
p ⟨·⟩s−1

p ). (5.26)

Proof. It is obvious from the above proposition and the definition of cyclotomic p-adic L-functions.

Remark 5.3.9. If ωπ = ω2| · |w where ω is any Hecke character (not only characters of Galp∞), we take
the right hand side of (5.26) for the definition of the cyclotomic p-adic L-functions Lp(π̃λ, s).



Chapter 6

The trivial zero conjecture at the
central critical point

We keep the hypotheses in Chapter 5, §5.3.
Denote by E ⊂ Sp the set of places v at which the local interpolation E-factor of Lp(π̃, s) vanishes

at the central point 2−w
2 . By Corollary 5.3.8 and [BDJ, Corollary 6.2], E consists of places v ∈ Stp such

that νvω
−1
v is unramified and ε

(
πv ⊗ ω−1

v , 1−w
2 , ψv

)
= −1. Our main goal is to prove the following result:

Theorem 6.0.1 (Trivial zero conjecture at the central critical point). Suppose π satisfies (5.14). The
p-adic L-function Lp(π̃, s) has order of vanishing at least e = |E| at 2−w

2 and

L
(e)
p

(
π̃, 2−w

2

)
e!

= L( ˜π ⊗ ω−1)
ω(ϖd)L

(
π ⊗ ω−1, 1−w

2

)
N

w/2
F/Q(id)Ω

ω∞ω
w/2
p,∞

π̃

· 2|{v∈Stp \E, νvω−1
v is unramified}|×

×
∏

v∈Sp,πv⊗ω−1
v is unramified

(
1− q

−w/2
v

(νvω
−1
v )(ϖv)

)2 ∏
v∈Sp,cνvω

−1
v
>0

q
−

w·c
νvω

−1
v

+δv

2
v (νvω

−1
v )(ϖv)

δvτ(νvω
−1
v , ψv),

where L( ˜π ⊗ ω−1) is the Fontaine-Mazur L-invariant (see [BDJ, Definition 5.3]).

This is a generalization of [BDJ, Theorem 7.1]. By Corollary 5.3.8 and [BDJ, Proposition 1.15], we
can assume that ω is trivial. From now on we suppose that ω = 1.

Lemma 6.0.2 ([BDJ, Lemma 7.2]). Let S = Sp\{v} for some v ∈ Stp such that πv is an unramified twist
of the Steinberg representation. After possibly shrinking X (π̃), for any cohomological λ ∈ XS ∩X (π̃), the
local representation πλ,v is also an unramified twist of the Steinberg representation.

Given u ∈ 4OCp and x = (xv)v∈E ∈ (2pOCp)
E . For any subset S ⊂ E we let xS = (xv)v∈S and define

λSx,u = (kλ,wλ) ∈ X an(π̃) by

wλ = w − u and kλ,σ =


kσ , for σ ∈ ΣSp\E ,

kσ + u , for σ ∈ ΣE\S ,

kσ + xv , for σ ∈ ΣS .

Letting Lp(x, u) = ⟨n⟩u/4p Lp(λ
E
x,u,

2−w
2 ), (5.24) and (5.25) imply that

Lp(x,−u) = ε̃ · Lp(x, u), with ε̃ = (−1)eεπ.

Then we write Lp(x, u) =
∑
i≥0

Ai(x)u
i, where Ai(x) is analytic in (xv)v∈E and the sum runs over i even

(resp. odd) if ε̃ = 1 (resp. ε̃ = −1). By (5.25), we have

Lp(π̃, s) = ⟨n⟩(2s+w−2)/4
p Lp((0)v∈E , 2− w − 2s).

Since λSx,u ∈ X an(π̃) ∩ X ′
S⊔(Sp\E), we let

LS(xS , u) = ⟨n⟩u/4p LS⊔(Sp\E)

(
λSx,u,1,

2− w

2

)
, (6.1)
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where LS⊔(Sp\E) is the improved p-adic L-function (see [BDJ, §4.3]).
By [BDJ] we know that Lp(x, u) = LE(x, u) and by [BDJ, Theorem 4.13(i)], for any S ⊂ E we have

Lp((xS , (u)v∈E\S), u) = LS(xS , u)
∏

v∈E\S

(1− ν−1
v (λSx,u)(ϖv)q

−w/2
v ), (6.2)

where νv(λ
S
x,u) is the refinement at v of the weight λSx,u.

Writing the power series expansion

Ai(x) =
∑
n∈ZE

≥0

ai(n)x
n, where xn =

∏
v∈E

xnv
v with n = (nv)v∈E .

For a multi-index n = (nv)v∈E we denote |n| =
∑
v∈E

nv and ∥n∥ = |{v ∈ E |nv ̸= 0}|.

Proposition 6.0.3 ([BDJ, Proposition 7.5]). i) If ∥n∥ < e− i, then ai(n) = 0.

ii) For any i < e, we have
∑

|n|=e−i
ai(n) = 0.

The following result generalizes [BDJ, Lemma 7.7].

Lemma 6.0.4. Keeping the hypotheses and notations of Theorem 6.0.1 except that ω is trivial (then
ωπ = | · |wF ), the analytic function Lp((u)v∈E , u) vanishes at u = 0 to order at least e and

(−2)e

e!
· d

e

due
Lp((u)v∈E , u)|u=0 = L(π̃) ·

L
(
π, 1−w

2

)
N

w/2
F/Q(id)Ω

ω
w/2
p,∞
π̃

· 2|{v∈Stp \E,cνv=0}|×

×
∏

v∈Sp,πv is unramified

(
1− q

−w/2
v

νv(ϖv)

)2 ∏
v∈Sp,cνv>0

q
−w·cνv+δv

2
v νv(ϖv)

δvτ(νv, ψv).

Proof. Since λØ(0),0 = (k,w), by (5.22), for any v ∈ E we have

νv(λ
Ø
(0),0)(ϖv) = q−w/2

v .

Combining with (6.2), we get

Lp((u)v∈E , u) = LØ(u)
∏
v∈E

(
1−

νv(λ
Ø
(0),0)(ϖv)

νv(λ
Ø
(u),u)(ϖv)

)
= LØ(u)

∏
v∈E

(
νv(λ

Ø
(u),u)(ϖv)− νv(λØ(0),0)(ϖv)

νv(λ
Ø
(u),u)(ϖv)

)
.

Since each interpolation factor indexed by a place v ∈ E vanishes at u = 0, we deduce that the order
of vanishing of Lp((u)v∈E , u) at u = 0 is at least e. Differentiating e times at u = 0, we imply from (6.1)
that

de

due
Lp((u)v∈E , u)|u=0 = e!LSp\E

(
π̃,1,

2− w

2

)
×

×
∏
v∈E

1

νv(k,w)(ϖv)

d

du
νv((k,w) + u((1)σ∈ΣE

, (0)σ∈ΣSp\E ,−1))(ϖv).

By [BDJ, Prop. 5.2, Def. 5.3], we obtain

de

due
Lp((u)v∈E , u)|u=0 = L(π̃) e!

(−2)e
LSp\E

(
π̃,1,

2− w

2

)
. (6.3)

By [BDJ, Theorem 4.13(ii)] and the definition of E-factors in Theorem 5.3.2, we have

LSp\E

(
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2

)
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L
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2

)
N
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F/Q(id)Ω
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Consider v ∈ Sp\E such that νv is unramified. If v ∈ Stp \E, then ε
(
πv,

1−w
2 , ψv

)
= 1. By (5.22) we

deduce that νv(ϖv) = −q−w/2
v . If v ∈ Sp\Stp, then πv is a principal series, hence πv is an unramified

principal series since νv and ωπv
are unramified. Therefore,

LSp\E

(
π̃,1,

2− w

2

)
=

L
(
π, 1−w

2

)
N

w/2
F/Q(id)Ω

ω
w/2
p,∞
π̃

· 2|{v∈Stp \E,cνv=0}|
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v∈Sp,cνv>0

q
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2
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δvτ(νv, ψv)×

×
∏

v∈Sp,πv is unramified

(
1− q

−w/2
v

νv(ϖv)

)2
. (6.4)

We get the desired formula of eth Taylor coefficient from (6.3) and (6.4).

Proof of Theorem 6.0.1

Recall that we have assumed ω = 1. Since Lp(π̃, s) = ⟨n⟩(2s+w−2)/4
p Lp((0)v∈E , 2− w − 2s), we have

L(m)
p (π̃, s)|s= 2−w

2
=

m∑
k=0

(
m
k

)(1
2
logp⟨n⟩p

)m−k
(−2)k d

k

duk
Lp((0)v∈E , u)|u=0.

The expansion Lp(x, u) =
∑
i≥0

Ai(x)u
i yields dk

dukLp((0)v∈E , u)|u=0 = k!Ak((0)v∈E) = k!ak((0)v ∈ E). By

Proposition 6.0.3 these derivatives vanish for any k < e, so the order of vanishing of Lp(π̃, s) at s =
2−w
2

is at least e and

L(e)
p (π̃, s)|s= 2−w

2
= (−2)e d

e

due
Lp((0)v∈E , u)|u=0 = (−2)ee!Ae((0)v∈E) = (−2)ee!ae((0)v∈E).

Differentiating the power series expansion of Lp((u)v∈E , u), we get

de

due
Lp((u)v∈E , u)|u=0 = e!

e∑
i=0

∑
|n|=e−i

ai(n).

By Proposition 6.0.3, we obtain

de

due
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Therefore,

L(e)
p (π̃, s)|s= 2−w

2
= (−2)e d

e

due
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Theorem 6.0.1 then follows from Lemma 6.0.4.



Bibliography

[Abr] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in
Mathematics, vol. 50, American Mathematical Society, (2002).

[Ami] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92, 117-180 (1964).

[AS86] A. Ash and G. Stevens, Modular forms in characteristic l and special values of theirs L-functions,
Duke Math. J 53, no. 3, 849-868 (1986).

[AS08] ——, p-adic deformations of arithmetic cohomology, preprint 2008.
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