AUTOMORPHIC SYMBOLS, p-ADIC L-FUNCTIONS AND

ORDINARY COHOMOLOGY OF HILBERT MODULAR VARIETIES

MLADEN DIMITROV

ABSTRACT. We introduce the notion of automorphic symbol generalizing the clas-
sical modular symbol and use it to attach very general p-adic L-functions to nearly
ordinary Hilbert automorphic forms. Then we establish an exact control theorem for
the p-adically completed cohomology of a Hilbert modular variety localized at a suit-
able nearly ordinary maximal ideal of the Hecke algebra. We also show its freeness
over the corresponding Hecke algebra which turns out to be a universal deformation
ring. In the last part of the paper we combine the above results to construct p-adic
L-functions for Hida families of Hilbert automorphic forms in universal deformation
rings of Galois representations.
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INTRODUCTION

Throughout this paper F' will denote a totally real number field of degree d > 1
and ring of integers 0. Let I be the set of its infinite places. Let p be a prime number
and let O be the ring of integers of a p-adic field E which is sufficiently large (to be
specified later). Let Q denote the field of algebraic numbers in C and let us fix an
embedding of Q in @p.

0.1. Automorphic symbols and p-adic L-functions. Modular symbols arise clas-
sically as first homology classes of modular curves, represented by geodesics connecting
rational points on the boundary of the upper half plane. In general, the closure of the
image of a standard Shintani cone in the compactified Hilbert modular variety yields
a d-cycle, hence an element in the d-th homology group that we call a Manin-Oda
modular symbol (see Oda’s book [Od] for the case of Hilbert modular surfaces). The
relations between those symbols remain mysterious even in the simplest case of a
Hilbert modular surface.

In the spirit of Tate’s thesis, we define in §1 an “adelic” counterpart of the Manin-
Oda modular symbols, called automorphic symbols. Their importance (in particular
their non-vanishing) will become visible in §2 where they are related to L-values. When
F # Q the presence of units and non-trivial class groups complicates substantially
the evaluation of cohomology classes on automorphic symbols. Those difficulties are
addressed and overcome in §1.5 which makes it a key part of our construction. Our
definition of automorphic symbol is group-theoretic and can be easily transposed to
other groups than GLs.

Analytic p-adic L-functions for classical modular forms have been extensively studied
by Mazur, Manin, Vishik, Amice-Velu et al. by means of modular symbols (we refer to
[MTT] for a complete exposition of their results). For Hilbert modular forms, besides
the precursory work of Manin [Ma], the question has been studied by Dabrowski [Da],
Panchishkin [Pa] and Mok [M1] using Rankin-Selberg convolution, and more recently
by Januszewski [Ja]. Nevertheless, prior to the present article several aspects of the
theory remained unavailable in the Hilbert modular setting, namely:

e allowing horizontal twists, that is, twists by characters ramified at some finite
set X of primes of F' not dividing p;
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e allowing nearly ordinary forms; note that a nearly ordinary Hilbert automor-
phic form is not necessarily a twist of an ordinary one by a Hecke character
unramified outside poo;

e allowing forms that are not necessarily new, namely forms whose Euler factors
are 1 at primes in X;

e in [Da, Pa] the level is prime to p, whereas in [M1] the weight is parallel and
in [Ja] the class number is not divisible by p.

We use the flexibility of our construction of automorphic symbols to prove the fol-
lowing theorem (see theorem 2.11 for more precise statement).

Theorem 0.1. Let 7 be a cohomological cuspidal automorphic representation of GLg /F
whose weight (w,wo) is critical (see definitions 1.16 and 2.1). Assume that 7 is nearly
ordinary at all places dividing p (see definition 2.2). Fix a finite set X of primes
not dividing p and let F®2) be the mazimal abelian pro-p extension of F' unrami-
fied outside pYXoo. Then there exists a p-adic L-function L3 (m) € O[[Gal(F®>) /F)]],
uniquely determined by the following interpolation property: for every finite order char-
acter ¢ : Gal(F®) /F) — O the image of LE(#) by the resulting homomorphism
O[[Gal(F®>) /F)]] — O equals:

L) (x @ ¢, ) (7, 1)
oz I 2.,

v|pX

where L®>) (T ® ¢, s) denotes the L-function whose Euler factors are 1 at primes di-
viding p¥, QF is an Archimedean period (see definition 2.9) and Z, are local terms.

Moreover, if (w,wo — 2) is critical too, then the automorphism [a] — (xw™1)(a)[a]
of O[[Gal(F®>)/F)]] sends Ly(m) to Ly (7 @ | - [aw™"), where x denotes the p-adic
cyclotomic character and w s the Teichmdiller character.

One reason to look for p-adic L-functions of Hilbert automorphic forms in that
generality is for the construction of p-adic L-functions of Hida families of Hilbert
automorphic forms (see theorems 0.2 and 0.3).

0.2. Ordinary cohomology. To any cohomological cuspidal automorphic represen-
tation m of GLy /F', one can attach a two-dimensional p-adic representation py , defined
over a p-adic field. In [H1, H3| Hida developed the theory of nearly ordinary families
of Hilbert automorphic forms and proved a control theorem for the nearly ordinary
p-adic Hecke algebras, which allowed him to construct two-dimensional Galois repre-
sentations over these algebras interpolating the pr,’s when 7 varies in a Hida family.
Hida’s proof relies, via the Jacquet-Langlands correspondence, on control theorems for
the nearly ordinary cohomology of Shimura varieties of dimension zero or one, coming
from quaternion algebras over F' which are totally definite, or indefinite but yielding
Shimura curves. The introduction of [H1] concludes with the hope that those results
could be extended to other quaternionic Shimura varieties. In §3 we extend Hida’s
results to the case of the indefinite quaternion algebra My (F') by proving an exact
control theorem for the nearly ordinary cohomology of Hilbert modular varieties (see
theorem 3.8). The proof proceeds by specialization to a well chosen finite level and
weight where the main results of [D1, D2] can be applied.
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The last decade has seen the emergence of p-adic and mod p Langlands programs.
Although they are widely conjectural for a general reductive algebraic group over a
number field, precise statements for GLo over Q have been proved by Breuil, Colmez,
Emerton and Kisin culminating in the proof of many cases of the Fontaine-Mazur
conjecture in dimension two (see [E2] and [K]). One of the main tools in these programs
is the completed cohomology introduced by Emerton [E1] and the associated spectral
sequence. Little is known about it in dimension > 1, in particular for GLy over a
totally real number field. Our theorem 3.8 implies the degeneracy of the simplest yet
non-trivial piece of Emerton’s spectral sequence for GLs over F', which is its nearly
ordinary part (on the Galois side, nearly ordinary means locally reducible at p).

0.3. p-adic L-functions in families. In this work, we call Hida family a local compo-
nent of the universal Hecke algebra. It turns out that under certain assumptions on the
residual representation pr, mod p such components can be identified with universal
deformation rings. As explained in [EPW], in the case F' = Q, the original definition
of a Hida family would then correspond to a branch of our family.

These families are parametrized by irreducible representations

p: Galp,pg — GLy (ﬁp),

which are nearly ordinary at all places dividing p and totally odd at infinity, where
Galppy, denotes the Galois group of the maximal extension of F'in Q unramified outside
P00,

Consider the following assumptions on p:

(%) no twist of p extends to a representation of Gal(Q/F’) for any strict subfield F’ of
F and its image contains SLy(IF)).

(xx) p is unramified in F' and p ~ pz, mod p for some cuspidal automorphic repre-
sentation 7 of GLg /F which is nearly ordinary and unramified at all places dividing p
and has cohomological weight (w, wp) such that w, > 0 for all 7 € I, Wy = max,¢(w;)
and p— 1> > (%0t 4 1),

Note that, if a cuspidal automorphic representation 7 of GLgy /F' is neither a theta
series, nor a twist of a base change, then pr, mod p satisfies (x) for all but finitely
many primes p.

The following theorems prove the existence of analytic p-adic L-functions for (nearly)
ordinary families of Hilbert automorphic forms, extending results of Kitagawa [Ki],
Greenberg-Stevens [GS] and Emerton-Pollack-Weston [EPW] for Q. A novelty of our
approach (even for F' = Q) is that the p-adic L-functions are naturally elements of
universal deformation rings of Galois representations, rather than abstract Iwasawa
algebras, which confirms an expectation of Greenberg [Gr, §4].

Let R;%: be the universal O[[Gal(FP¥) /F) x (0 ® Z,)*P~P¥*]|-algebra parametrizing
nearly ordinary deformations of p (see §4.1) and let Rg% be the O[[(o ® Z,)*P~P2]]-
algebra parametrizing those deformations having determinant det(pz ;) (see (20)).

Theorem 0.2. Under the assumptions (%) and (%), there exists a p-adic L-function

Ly°(p,%) € Rp$ = RpX[[Gal(F¥) /F)],
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. . det,x g . : det
unique up to an element in R@E , whose specialization by any homomorphism Rﬁfz —

O whose restriction to (0 ® Z,)*P P 4s q finite order character, yields the p-adic L-
function L? (m) of a nearly ordinary cuspidal automorphic representation ™ on GLgy /F
of parallel weight wy.

For ordinary p, let R%f% be the universal ordinary deformation O[[Gal(F®>)/F)]]-
algebra (see (19)). A homomorphism Rgf% — O is algebraic if its restriction to

Cal(F®>) /F) is the product of a finite order character with a non-positive integer
1

power of yw™".
Theorem 0.3. Assume that p satisfies (x) and (%%) with an ordinary 7 of paral-
lel weight. Then there exists a p-adic L-function LY (p,X) € chlfg[[Gal(F(pE)/F)]]

uniquely determined, up to an element in Rgrg’x, by the following universal property:

the specialization of Lgrd(ﬁ, Y) by any algebraic homomorphism Rgfg — O yields the
p-adic L-function LE(TF) of a parallel weight, ordinary, cuspidal automorphic represen-
tation ™ of GLg /F.

The proof of theorem 0.3 (resp. theorem 0.2) relies on the fact that T\’,%f% (resp.
53,) is canonically isomorphic to Hida’s universal (nearly) ordinary Hecke algebra
and that certain modules of (nearly) ordinary cohomology of Hilbert modular varieties
are free over these rings (see theorem 4.6 and corollaries 4.8, 4.9).

We believe that using some ideas of Ash-Stevens [AS] and Urban [Ur] would allow
to extend our results to the finite slope case, or at least to relax the assumptions (*)
and (xx) in the nearly ordinary case as in [GS] (see also [BL]).

Finally we hope that our p-adic L-functions will be useful for the study of higher
order partial derivatives as in [M2], and for a formulation and proof of Iwasawa Main
Conjectures for GLo over totally real fields.
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1.1. Hilbert modular varieties. The ring A of adeles of F' is the product of finite
adeles Ay = F'®Z and infinite adeles Foo = F' ®g R. We denote by F the connected
component of 1 in FJ.

Definition 1.1. For an open compact subgroup K of GLa(A) we define the analytic
Hilbert modular variety of level K as

Yi = GLy(F)\GLy(A)/ KK L

where KT is the subgroup of GLy(Fl ) generated by its center FX and by the connected
component of identity in the standard maximal compact Subgroup

The minimal (or Baily-Borel-Satake) compactification Y g of Yy is obtained by
adding finitely many points (the cusps). A basis of neighborhoods for the cusp at
infinity is given by the sets

(1) {GLQ(F) <yg° (1)> KK;’y € Fi, Np/g(yso) > H} , for H € RY,
and neighborhoods of other cusp are obtained by translating those by the group action.
The adjoint Hilbert modular variety of level K is defined as
= GLy(F)\GLy(A)/ A KK1.

We will only consider K factoring as a product [ [, K, over the finite places v of F
and such that Yﬁd is smooth. Then Yy is a finite abelian cover of Yj}d with group the
class group A7 /F* (AT NK).

Since our interest is in p-adic aspects, usually K, will be fixed for v not dividing p
and for a > 1, Yyp(p®), Y1(p%), Y11(p®) and Y (p®) will denote, respectively, the Hilbert

modular varieties whose level K, = Hv|p K, at p equals:

Ko(po‘):{ueGLg(o@Zpﬂuz(g :) (mod p® }
G 5) o)
(G 5) o)

K(p®) = {u € GLa(0 ® Zy)[u = (é 2) (mod pa>} .

Ki(p®) = {u € GLa(0® Zy)|u

K11(pa) = {u S GLQ(O ®Zp)|u

Remark 1.2. Classically Hilbert modular varieties are defined as quotients of the d-
fold product of upper half planes by congruence subgroups of SLa(0). These occur as
connected components of Y, but are not preserved by Hecke correspondences, hence
the importance of the above adelic definition.

1.2. Automorphic symbols in level K;. The automorphic symbols considered in
this section will be sufficient for the construction of the p-adic L-function of a nearly or-
dinary Hilbert automorphic newform (see theorem 2.5). The definition of automorphic
symbols in arbitrary level is postponed to §1.3 and can be skipped at first reading.
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1.2.1. Automorphic cycles and the mirabolic group. The mirabolic group M is defined
as the semi-direct product G,,, X G,, where G,, acts on G, by multiplication. A natural
embedding of M in GLg is given by (y,z) — ({71)-

Fix an integral ideal a of F' and denote by a, the valuation of a at a finite place
v. Put M(a) = U(a) x (0 ®Z), where U(a) is the open compact subgroup of (0 ®Z)*
whose elements are congruent to 1 modulo a. For all v, choose an uniformizer w, of
F,.

The map:

(3) Cla) : A JF*U(a) — M(F)\M(A)/M(a) , y = (4, (4@, " )ofa)
is well defined, since for all z € F* and u € U(a) we have
(Zyuv ((Zyu)vw;av)vl a) = (Z’ 0) (y’ (va;av)ﬂ a) (u’ ((uv - 1)w;av)v| a)

and (z,0) € M (F) whereas (u, ((uy — 1)@, *),q) € M(a).
Denote by F(a) the group of totally positive units in 0, congruent to 1 modulo a,
and by Cl}(a) the narrow ray class group A /F*U (a)F4.

Definition 1.3. For n) € Cl}.(a) we define C(n) as the restriction of C(a) to the inverse
image 77 of 1 using the short exact sequence

(4) 1 — FL/E(a) = A JF*U(a) — Clf(a) — 1.

Definition 1.4. Let n € Cl}.(a) and let K C GL2(Af) be an open compact subgroup
containing the image of M (a) by the natural inclusion of M in GLg. The automorphic
cycle Ck(n) on the Hilbert modular variety Yy is defined as the composed map of
C(n) with the map coming from the natural inclusion M C GLo:

LK M(F)\M(A)/M(a) — GLQ(F)\GLQ(A)/KK;; = YK.

1.2.2. Automorphic symbols for Hilbert modular varieties. As mentioned in the intro-
duction, the natural generalization in the Hilbert modular case of the geodesic between
the cusps 0 and oo in the upper half plane is the Shintani cone F.f /E(a). In order to
define the corresponding automorphic symbol, it needs to be compactified.

By (4), for any choice of an idele & € N A;, the map Yoo — Yool yields an

isomorphism Ff/E(a) ~ 7, hence there is a continuous map:
(5) 71— RS, y— Npolyé™h).
By Dirichlet’s unit theorem F/E(a) ~ (R/Z)%! x RX.

Definition 1.5. Denote by 7 the compactification of 7 — (R /Z)¢~! x R obtained
by adding two points (zero and infinity).

If d = 2 then 77 is homeomorphic to a sphere. In general, it is homeomorphic to the
suspension of the torus (R /Z)%!, hence

Z for ¢ =0,
H;(m) ~ <0 fori=1,
Hi_l((R/Z)d_l) for 2 <7 <d.
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Any ¢ induces the same orientation on 7, in particular, for any d > 2 we can
canonically identify Hg(77) = Hy (77, {0, 00}) and Z.

Lemma 1.6. Ck(n) extends uniquely to a continuous proper map Ci(n) : 7 — Y .

Proof. The uniqueness is clear. For the existence of a continuous map Cx (1) one has
to show that the image by Ck (n) of any sequence (yy,)n>1 of points in 7 tending to zero
or infinity, converges to a cusp in Y x. Suppose first that lim,, NF/Q(ynf_l) = +o0.
It follows then from (1) that the sequence Ck(n)(yn) converges to the cusp at infinity
(on the connected component of Y corresponding to §).

Suppose next that lim, Ng/q(yné ~1) = 0 and consider the following diagram:

(FNE(0RZ))\Fu AJ(F+&(0®L))

i i

E(a) x (F N €(0 ©Z)\ M2 M(F)\M(A)/M(a) —= M(F)\M(A)/M(a) Mz

| | H

B(a)\FiC < AX /FXU(a) Clh(a)

where M} = Ff x Fo.
Note that for any y = yoo& € 7] the element yoa~! = (§um@, ) y| o has finite order in

A/(F +E£(0©Z)) = (FNE(0@Z))\Foo,

and denote by z, € Fi, any element in its coset. Clearly xo, € F and we will show that
Cr (1)(yn) converges to the corresponding cusp. In fact, since lim, Np/q(yn§ 1y =0,

the sequence
0 1 Yn (@ ™)y _ [ 0 1
-1 zs 0 1 —yn O

converges to cusp at infinity, hence Ck(n)(yn) converges to the cusp determined by

Too-

Since the map Ck(n) is finite, to show its properness it is enough to prove that it is

closed. This follows easily from the fact that C'x(n) is continuous and 7 compact. [

Definition 1.7. The automorphic symbol Sk (n) € Hyq(Y k) is defined as the image of

1 € Z ~ Hq() by Ck(n).
1.2.3. p-adic automorphic symbols. Let o > 1 be an integer such that K, D> Ki1(p*).
Definition 1.8. For 5 > o we define

Skp= Y. Sk €HyYk,O)ClE@")].
neClf (p?)

Remark 1.9. (i) Here one can see one advantage of the adelic approach. The
automorphic symbol is defined on the whole class group Cl}, (p®) in contrast
with a collection of modular symbols, indexed by Cl;,:(o), each one defined on

(0 /p)/E(0).
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(ii) Although some of the constructions are similar to those in [Ma] in order to
make the relations precise one has to choose representatives in class groups,
which would bring some cumbersome notations.

The compatibility of Sk g with respect to 3, known as distribution property, is
governed by the Hecke operator U, = Hv‘p USv, where e, denotes the inertia degree at

v, so that (p) = [],, v®. Assume for the rest of this section that for all v dividing p
we have wiv = p.

Lemma 1.10. For 8 > «, the image of Sk g1 by the natural projection induced by
pr: CLE(p?*Y) — CLE(pP) equals U, - Sk .

Proof. Tt is enough to show that for all € Cl5(p”), U, - Ck(n) and e (y=n Crc (1)
define the same cycles on Y. We will check this by a computation in the mirabolic
group M (F)\M(A)/M (p*) on which U, acts according to the following double coset
decomposition:

M) p,o)Mp*) = [ @bME®).
b (mod p)

For y € A we denote by y, the adele (yy),,- We have

vlp-
Up- (v € &% /FXUG) = M(F)(y,upp )M (™)) =

= I (vea /P ue®) = ME)wpyp(1+bp" ") M) =
b (mod p)

= I (y € A JFXUP?) = M(F)(y(1+bp”), yp(1 + bpﬁ)p‘(ﬁ“))M(po‘)> =
b (mod p)

= (y € A JF*U (Pt — M(F)(y, ypp“ﬁ“))M(pa)) :
O

Remark 1.11. When F' = Q the image by U, of the geodesic from z € Q to oo is a
union of p geodesics each joining %‘b tooo (b=0,...,p—1). When F # Q the situation
is quite different. For example if d = 2, for § large enough the image by U, of the 2-cycle
FY/E(p?) is a union of p? 2-chains piecing together into [Cl5(p®*1) : CIL(p%)] = p
copies of the 2-cycle Fit/E(p®t1). Note that, in some sense, applying U, reduces the
monodromy of the units.

By lemma 1.10 we can define the p-adic automorphic symbol of level K:

Sk =limU, " Sk € e Ha(Vie, O)[[CLL(0™)],
B
where e, denotes Hida’s ordinary idempotent on the homology.

It is clear that the natural projection induced by Y1 (p**1) — Y1 (p®) sends Sk, (pat1)
to Sk, (pe). The universal ordinary p-adic automorphic symbol is defined as:
lim S, (pey € lim e Ha(Y1(p®), O)®0 O[[CLE(p™)]]-

ot o
9



One can construct similarly automorphic symbols on adjoint Hilbert modular varieties
and define the universal nearly ordinary p-adic automorphic symbol as:

lim S, e € limej Ha(Yii (p), 0)@0 O[[CLE(p™)]].

«

1.3. Automorphic symbols in arbitrary level.

1.3.1. Automorphic cycles. We keep the notations from the previous section. In
particular we denote by a, the valuation of a at v. For any ideal ' C a we let
M(a,d') =U(a’) x (¢’ a=t ®Z). As in (3), the following map is well defined:

(6)  Cla,a): A /F*U(d") — MF)N\M(A)/M(a,0') , y = (4, (%@, *)oa) -

For any ideal a” C d, the following diagram is commutative, where the vertical
maps are the natural projections:

AX JFXU(a") AT M(F)\M(A)/M(a,d")
\L C(a,d) i/ ,
A JF*U(d) M(F)\M(A)/M(a,da).

For n/ € Clf(a') we denote by C(a,7’) the restriction of C(a,a’) to the inverse image

n' of n' using the short exact sequence (4).
For a prime w dividing a, the following lemma describes the action of U, on an
automorphic cycle of level a.

Lemma 1.12. For alln € CIf (o) the cycles U,-C(a,n) and W (wzt)=n C(aw,n') on
M(F)\M(A)/M (a,a’) are cohomologically equivalent, where pr : C1f(a' w) — CIf(a')

denotes the natural projection.

Proof. Let ag = val,(a’ a™!). For v dividing a put @/, = a, + 1, if v = w, and a/, = a,,
otherwise. We have the following double coset decomposition:

M(a, ) (@, )M (a,0) =[] (ww, bwoi®)M(a, o).
b (mod w)

Hence Uy, - C(a,0") = Uy - (y € A JF*U(d') = M(F) (y, (Yo, **)oja) M(a,a’)) =

= H (y € AX /FXU(U',) = M(F) (ywwagw,b(va;av)wa) M(aa Cl/)) )
b (mod w)

where &, is the idele equal to 1 + bt at w and 1 at all other places. Since
ao + ay = valy,(a’), we have &, € U(a'), hence Uy, - C(a,d’) equals:

[T wea /FU@)— MEF) (Swpymw opBom, ™ )oja) M(a,a')) .

b (mod w)
10



By the change of variable y + yww,! this is homologically equivalent to

H (y €A™ JF*U(d") — M(F) (Ew,byv (fw,bvagai’)qa) M (a, a’)> =
b (mod w)

= <y € A* JF*U(d w) — M(F) (y, (va;ag)ma) M (a, a’)) ,
which is the composition of C(w a,w a’) with the natural projection:
M(F)\M(A)/M(wa,wa’) — M(F)\M(A)/M(a,da).
U

1.3.2. Automorphic symbols for Hilbert modular varieties. Let K be any open compact
subgroup of GLa(Ay). Given integral ideals ' C a such that K contains the image

of M(a,d') = U(a') x (¢ a~! ®Z) in GLs, we denote by Cx(a,a’) the composition of
C(a,a’) with the following map coming from the natural inclusion M C GLg:
e s M(F)\M(A)/M (a,a") — GL2(F)\GLo(A)/KKL = Y.

Definition 1.13. Let ax be an integral ideal of F', such that for any a, K contains
the image of M (a,aax) in GLg, so that the map Ck(a,aax) is well defined.

For 1/ € Cl;.(d) let Ck(a,n') = i o C(a,n') be the restriction of Ck(a,a’) to 7.
As in lemma 1.6 one can prove the existence and uniqueness of a proper continuous
map Ck(a,7') : ¥ — Y extending Ck(a,n’) and define Sk (a,n') € Hy(Y i) as the

image of 1 € Hy(1') by Ck(a,n').

1.3.3. p-adic automorphic symbols. Since R7 is naturally a O[[Gal(F®*) / F)]]-algebra,
it will be useful to define automorphic symbols indexed by Cl} (p>°%) and not only by
Cl; (p>°) as in §1.2.3. For this, we fix a finite set ¥ of auxiliary primes not dividing p
and let X also denote their product.

Let K C GL2(Af) be an open compact subgroup and fix an ideal ag as in definition
1.13.

Definition 1.14. Given an integer 8 > 1, we define:
Ske= Y. Sk@'Sn)hE [[w, ) € Ha(Vk, 0)[Cli(p°S ak)]
n€CLL(pPE arc) vlp

Lemma 1.12 has the following consequence:
Corollary 1.15. The image of SIZ(:,ﬁJ,—l by the natural projection induced by pr :
Clf(p"*'Sax) — Clp(p"Sak) equals U, - S 5.

By corollary 1.15 we can define the p-adic automorphic symbol of level K:
(7) Sy = %nUp_ﬂ - Sk € s Hy(Y i, 0)[[ClE(p S ak )],
where e, denotes Hida’s ordinary idempotent on the homology.

1.4. Cohomology of Hilbert modular varieties.
11



1.4.1. Cohomological weights. The characters of the torus Resg Gm can be identified
with Z[I] as follows: for any w = »___;w,T € Z[I] and for any Q-algebra A splitting
F*, we consider the character x € (F ®qg A)* — 2" =[] ;7(z)"" € A*. The norm
character Np/ g : Resg Gm — G then corresponds to the element t =, 7 € Z[I].

Definition 1.16. (i) A weight (w,wg) € Z[I] X Z is cohomological if for all T € T
we have w; > 0 and w; = wp (mod 2).
(ii) A cohomological weight (w,wy) is critical if |wg| < min,ecr(w;). It is parallel
if w = wqt.

Remark 1.17. The correspondence with the classical notion of weight of a Hilbert
modular form is as follows. Let f be a Hilbert modular newform of weight (k;)rcr, kr >
2 of the same parity, generating a cuspidal automorphic representation 7. According
to [Da] and [Pa], the value L(f,m) is critical, if for all 7 we have fzkr 1 < m <

% — 1, where kg = max,(k;). Put wy = kg — 2m and w, = k, — 2 for 7 € I. Then

ko—wq _ ko—wq _
L(f,m)=Ln®]|-|, * 1, 1) where the automorphic representation 7 ® | - |, * !
has cohomological weight (w,wy) which is critical (see definition 2.1).

An irreducible algebraic representation of Resg GLy with central action factoring
through the norm is necessarily of the form

® Sym¥” @det{wo—wr)/2,
Tel

for some cohomological weight (w,wq) € Z[I] x Z. For an O-module A we denote by
L(w,wp; A) the corresponding A[GLz(0 ® O)]-module, where we use the fixed embed-
ding of Q in Q, to identify GL2(0® O) with GL2(O)’. It can be realized as the space
of polynomials in (X = (X;)rer, Y = (Y7)rer) which are homogeneous of degree w; in
the variables (X,,Y;).

1.4.2. Sheaf cohomology. Let (w,wp) be a cohomological weight. Then
GLa(F)\GL2(A) x L(w,wp; A)/ KK,

with KK} acting on £(w,wq; A) on the left via K, is a local system on Yk, and we
denote by Lx (w,wpy; A) the corresponding sheaf of locally constant sections.

For K’ C K, there is a natural projection pr : Y — Yx and pr* L (w,wg; A) =
Lgr(w,wo; A). We denote H* (Y, L (w, wo; A)) the corresponding singular (or Betti)
cohomology groups, and by HS(Yx, Lx (w,wp; A)) the cohomology with compact sup-
port.

1.4.3. Hecke operators. For g € GLa(Af) we define the Hecke correspondence [K gK]
on Yx by the usual diagram:

YKﬂgflKg '9) gKg—nK
Ay &
YK YK
12



We define the standard Hecke operators T, = [K, (1 0 ) ], Sy = [Ky (w” o ) K],

0wy 0 oy
for v outside a certain finite set of bad primes, and U, = [K, ({2 ) K,], for the
remaining v.
The Hecke correspondences at infinity are [K1 g K], where go is an element of
the group (4! (1))[ C GL2(Fx).
The Betti cohomology groups H*(Yx, Lx(w,wp; A)) admit a natural action of all
the Hecke correspondences and the induced endomorphisms commute with each other.

Definition 1.18. Let ey, denote the idempotent on H®*(Yx, L (w, wo; A)) which cuts
out the part fixed by all the Hecke correspondences at infinity.

1.5. Evaluation of cohomology classes on automorphic symbols. As mentioned
in the introduction, when F # Q, the evaluation of cohomology classes on modular
symbols requires special care.

By definition the cycle CIZ{, 5=Ck (pP%, pPY ak) yields a homomorphism:

CRs + HE(Yic, Lic(w,wo; O)) — HIAX [P U (p"S age), O s Lic (w, wo; O)).

The first difficulty comes from the fact that the local system Ck (a, a')* L (w, wo; O)
on AX /F*U(d’) is not trivial, because of the monodromy action of the units. Ex-
plicitely, it is given by

F*\ (AX xﬁ(w,wo;(’))) JU(d),

where u € U(a’) acts on L(w, wp; O) by ( : p (o= 1)1 )vlp) whereas F* acts trivially

(we recall that u, denotes the adele (uy),|,). In particular
CR3LK (w,wo; 0) = FX\ (A xL(w, wp; 0)) /UM S ag),

where u € U(p?S ag) acts on L(w,wp; O) by (%P (“P*i)p_ﬁ
Nevertheless, one can extract one coefficient (the critical one) as follows. We first
need to untwist this sheaf, an operation which for classical modular symbols is implicit

in the definition. The map (y,v) — (v, (é —Pl_ﬁ) - v) induces a homomorphism of
sheaves on A™ /F*U(pPY ak):

twiy ™ s C¥5LK (w, wo; 0) — FX\ (AX xL(w,wo; E)) /U(p’Sak),

where u € U(p°Y ag) acts on L(w,wo; F) simply by

) G e ) = ()

Suppose now that (w,wp) is critical, so that X (W=wot)/2y (wtwot)/2 ¢ f (4 1pq; (9)
A direct computation shows that for any 0 < j < w, (%” 1 (wtwot) /25 o)

Xw=IYJ € L{w,wg; O). In particular,

) acts by uy

(8) (“9) acts trivially on X (w=wot)/Zy (whwot)/2,
13



Therefore evaluating at the coefficient in front of X (w—wot)/2y (w+wot)/2 induces the
following homomorphism of sheaves:

crity ™ : F*\ (A% xL(w, wo; E)) /U@P S ax) — A JF*U(p’Sag) x E.
Since pﬁwizwot (X — pPY)(w—wot) 2y (wtwot)/2 ¢ £ (1, wy; ©), we have the following:
Lemma 1.19. Assume that (w,wy) is critical. Then the map pﬁwizwot critg’wO otwg’wo
takes values in A /F*U(pPS ag) x O. Further composing with CIE{TB induces

(9)  HA(Yk, Lx(w,wp; 0)) — HAAX /F*U(p’Sak), 0) = O[CI(p S ar)].

The second difficulty is related with the action of the Hecke operator U, on cycles
(see remark 1.11).

Consider the natural projection plrgJrl : Cl;;(pﬁHZ ag) — CIJI,C(pBE ag). Lemma
1.12 implies that the cycles U, - CI% 5 and CIE(’ 541 are cohomologically equivalent. This
implies the commutativity of the upper square in the following diagram:

(10)

w—wqgt

p 2 Up:US

3k
J/CKvﬁ‘i’l w—wot

|

vz (51)
HI(AX [FXU(p" S ak), Cy41 Lxc) HE (A JF*U (S ak), CRLK)
lpww“"é"‘” Crit 2110 o 110 lpﬁ T it 0 oy 0
O[CIE(P ' Eag)] 7 O[CIH (P’ ar)]
T4+1

The commutativity of the lower square follows from the matrix computation:

GG )66 )

and the fact that (? ) acts trivially on X (w—wot)/2y (wtwot)/2,

The ordinary idempotent e, acting on the cohomology of quaternionic Shimura
varieties (including Hilbert modular varieties) has been introduced by Hida in [H1]. In
parallel weight e, cuts out the maximal direct factor of the p-adic cohomology on which
Up is invertible (i.e. acts by a p-adic unit). In arbitrary cohomological weight (w,wp)
there is a shift by the lowest Hodge-Tate weight of the cohomology which is (wot —w)/2

w—wqgt
and one should consider instead the operator Ug =p 2 . U, which preserves the p-

adic integral structure in an optimal way. Usually one reserves the word ordinary for
level K1(p®) and uses the term nearly ordinary otherwise (some authors use the word
ordinary for both).
By (10) the maps
S%zlzu?ﬂ = pﬁwTwot critg’wo o twg’wo o IE(T,B o (Ug)_ﬂ
form a projective system, leading to:
14



Definition 1.20. For critical (w,wy), we consider the homomorphism:
Siewn = (Sks) |+ e HAVie, Lac(w, 005 0)) — O[[CLE ™Sl

It will be used in §2.3 to attach p-adic L-functions to Hilbert automorphic forms.
In order to attach p-adic L-functions to newforms (see theorem 2.5), it is enough to
take K = K11(p®) N Ki(n) and consider the homomorphism:

Sp = (S}?lg@ﬁm s ep HE (Yie, Lic(w, wo; 0)) — O[[CL (p™)]]

whose construction only relies on the automorphic symbols introduced in §1.2.

2. p-ADIC L-FUNCTIONS FOR NEARLY ORDINARY AUTOMORPHIC FORMS ON GLo

We will construct p-adic L-functions for various nearly ordinary Hilbert automorphic
forms encoding both the vertical and the horizontal aspects of the theory.

By global class field theory, the maximal abelian pro-p quotient Gal(F (»%) /F) of

Galpyy, is isomorphic to the maximal pro-p quotient Cl%?) (p>°X) of Cl} (p>°X) and the

1

character yw™" can be seen as character of Clg’) (p™>X).

2.1. Automorphic representations.

2.1.1. Archimedean Euler factors. Let m be a cuspidal automorphic representation of
GL2(A) and let (w,wq) € Z[I] x Z be a cohomological weight (see definition 1.16).

Definition 2.1. We say that 7 is cohomological of weight (w,wy) if for all 7 € I the
representation 7, is parabolically induced from the following character

<3 fz) — sgn(a)"™0fa| s (r 270 |g] =5 (wr £ 24wo),

In what follows we assume that 7 is cohomological of weight (w,wp). The definition
is justified by the fact that such a 7 contributes to H%(Yy, L (w,wo; C)) whenever
W? # {0}. Moreover, the Harish-Chandra parameter of 7, is given by (w + ¢, wp)
and it is known that such a 7 corresponds to a Hilbert modular newform of weight
(’UJ + 2t, w()).

One can attach to 7w a I’-factor, depending only on 7., as follows:

(11) I(m,s) =[] Te <s - “)02“’T> , where Te(s) = 2+ (2m)~°T(s).
Tel

The functional equation for 7 relates L(w,s) and L(7,1 — s) = L(m,wp + 2 — s),
hence the value of L(m,s) at s =1 is critical in the sense of Deligne if neither I'(7, s)
nor I'(m, wo + 2 — s) has a pole at s = 1.

It is straightforward to check that L(m,1) is critical in the sense of Deligne [De] if,
and only if, (w, wy) is critical in the sense of definition 1.16, that is |wg| < min,c(w;).
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2.1.2. Automorphic ordinariness. The fixed embeddings of Q in C and in @p yield
a partition [ = H,U‘p I,. Tt is a well known fact [H1, §3] that the Hecke operator

wr —wq

Ul = [lcr, wy 2 U, is a p-adically integral endomorphism of the cohomologi-
cal automorphic forms in weight (w, wp).

Definition 2.2. (i) For v dividing p, we say that m, is ordinary if, either m, is
ramified and the Ul-eigenvalue on its new vector is a p-adic unit, or it is
unramified and its new vector has a Ul-stabilization whose eigenvalue is a
p-adic unit.

(ii) For v dividing p, we say that 7, is nearly ordinary if there exists a finite order
character v, : F* — C* such that 7, ® v, ! is ordinary. If we further impose
vy(wy) = 1, then v, is unique, called the ordinary twist type of m, with respect
to wy.

2.1.3. Adelic Mellin transform. Let ¢ be a finite order Hecke character over F. If ¢ is
everywhere unramified then it is well known (see [Bu]) that L(m ® ¢,1) completed by
the Euler factors admits the following integral expression:

/ o) (1°) &y,
AX JFX

where f is a certain automorphic form in 7 and d*y denotes the Haar measure on G,,,.
For arbitrary ¢, one should consider the non-trivial additive unitary character of A /F":

§:AJF — Ag/Q — C*,
where the first map is the trace, whereas the second is the usual additive character &y on
Ag / Q characterized by ker(£o|g,) = Z for every prime number £ and §y|r = exp(2i7-).

We have ker(&,) = (w; %), where 6, is the valuation at v of the different of F.
An automorphic form f admits an adelic Fourier expansion:

(12) flg) =Y W((19)g),

yeFX

where W(g) = [, P E(@)f ((§%)g) dx is the adelic Whittaker function of f with respect

to & If f is holomorphic the above sum is in fact supported by F* N F.
Given a ramified character p, of F,*, the local Gauss sum 7, (fy, &) is given by:

< u u
(13) /F . o (Y)&o (y)d™y = /0 o (wgondwvmv) & (wgond(ﬂv)+6v> du.

Note that the local Gauss sums do not depend on the choice of the uniformizer w,.

2.2. p-adic L-functions attached to newforms. Let 7 be a cohomological cuspidal
automorphic representation of weight (w,wp). Assume that for every v dividing p, m,
is nearly ordinary and we let v, be as in definition 2.2. For every place v dividing
p denote by «, the eigenvalue of U, acting on the ordinary U,-stabilization of a new
vector in 7, ® v, 1. Since 1, ® v, ! is ordinary, «, is independent of the choice of w,.
Denote by n the prime to p part of the conductor of .
16



In addition to the idempotents e, and ey, introduced earlier, let e, be the idempotent
cutting out the m-eigenspace for the action of the Hecke operators T, and S, where v
runs over the primes of I outside a sufficiently large finite set of primes (here one can
take the primes v not dividing np).

By the theory of a new vector, for « large enough

(14) €n€ooCp Hg (YK1(n)ﬁK11(po‘)a[’K(wawO;C))

is a complex line having a basis do(fr), where d denotes the Matsushima-Shimura-
Harder isomorphism (see [H5] or [D2, §7.1]) and f; is an automorphic form in 7w which
is nearly ordinary at all places dividing p, new outside p and normalized using its adelic
Fourier expansion (12). The complex line (14) contains a natural O-line, namely the
torsion-free part of

€rCooCp Hf:l (YKl(n)ﬂKu(pa) ) EK(’U), wWo; O)) ;
and we fix a basis b, of the latter. An direct computation shows that U, acts on b, by

aly(wy) = y, if v, is the ordinary twist type for 7, with respect to ws,.

Definition 2.3. The Archimedean period Qr oo = doo(fr)/br € C* is well defined up
to an element of O*.

Definition 2.4. Assume that the weight (w,wy) is critical. The primitive (or new)
p-adic L-function Ly(7) € O[[Clgf) (p™>°)]] attached to m, is defined as the image of

S}‘éﬁg)mKll(pa)(bﬂ) € O[[C1L(p™)]] by the natural projection (see definition 1.20).

Theorem 2.5. (i) Let ¢ : CIL(p™®) — O be a p-power order character. Then
the image of Ly(m) by the resulting homomorphism O[[Clgf) (p™>)]] — O equals:

LP) (1 @ ¢, 1)I(

™, 1) .
O H Zy, where for v dividing p we have

v|p

7 _ Oy Cond(‘b“l’”)m((bvl/@,ﬁv), if oy s ramified, and
"7 o) (1= (Cude(@) Npyo(0)) ™) (1 — cudul@y)) ™", otheruise.
(i) If (w,wo—2) is critical too, the automorphism [a] — (xw™")(a)[a] ofO[[Clgf) (P>)]]
sends Ly(m) to Ly(m ® | - [aw™1).

Remark 2.6. (i) The first part of the theorem uniquely determines Ly (7), with-
out assuming Leopoldt’s conjecture.

(ii) If 7 is ordinary at all places v dividing p (that is v, = 1), the interpolation
formula has a particularly simple form since Hv‘p To(@u, &) = T(9,€) is a
global Gauss sum.

(iii) It follows from the interpolation formula that L,(7) does not depend upon
the choice of uniformizers w,, for v | p.

Proof. (i) Fix B > «a so that ¢ can be seen as a character of CI5(p%). By (8),

(@g vop" ) (5 —pf) = (%9) acts trivially on X (w=wot)/2y (wiwot)/2,
17



By unwinding the definition one sees that the specialization of L,(7) by ¢ equals

Hvlp(wv’/;z)ﬂ(’zv)av)evﬂ /AX - &) fr (y Ypp~ )dxy,

where for a character € : {+1} — {£1} we put fr(9) =2 ;e e()fx(9( 57 ))-

Put Wr(9) =3 ;e e(J)Wa (9( 757 ")) Using (12) the integral unfolds:

/AX . oY) fra (yy"p ﬁ)dxy— n d(y)Wra (gypp 5>dx

Since ¢, = 1 for all 7 € I, we have [, « ¢(y)Wr e (g yp?i_5> d*y = 0 unless e = 1. From

this and the fact that 2¢W, = >« Wr e the above integral equals

2 [ ot (g )y ﬁ%ﬁﬁ(y)w (5 ) ay,

(15)

the last equality coming from the fact that f; is holomorphic. The following decom-
position can be found in [Bu, Thm 3.5.4] (see [D2, §7] for the normalization):
wr —wq

—B +1 -3
W (5o 7) = v = e I ()
T v

and allows us to write the integral Qr - (15) as a product [[ .; Z; [[, Z, over all
places of F. The remaining part of the proof is about the computation of these local
integrals. At infinite places:

wr —wo _
(16) Zr = 2/ yr 7 e W dXy, = Te (wT 2 =+ 1) :
RY

It follows then from (11) that [[_ Z, = I'(m,1).
At a finite place v the normalization of W is such that W, ( 7 1) =0 for n < =4,

andW( 6”(1)>:1.

If v does not divide p (see [Bu] for the last equality):

17 Zy —/ ¢v yv v y’u—z¢v W, wo (1]) L, (ﬂ—v@d)v, )

ne”L

n Sy Oég ,n Z 0
Finally for v dividing p, one has W, ( 0 ?) = {O <0 hence
Ly = (avyv(wv))_evﬁ /F>< gbv(vay_evﬂ)wv (yd’ vaijevﬁ) dev =
= O‘;evﬁ /FX (Do) (Yo evﬁ)gv(yv evﬁ)(’jv_l o det -Wy) (y(;) (1)) d”yy =

= o [ (o )6 w5

n>0
18



If ¢,v, is ramified, then the latter integral is zero unless n — e, = — cond (¢, ),

yielding Z, = oy ") 7 (6,0, 6,) by (13).
If ¢,v, is unramified, since v, (w,) = 1 by definition, we have:

Zo= @)™ Y (aut@)) [ e =

n>e,f—1
= ¢u(@0) (1 = awgo(@0)) " (1 = Npyg(v) 1) = (wu(@0)) " Npygv) ™) =
= ¢v(wv)_6v(1 — (awy () NF/Q(U))_l)(l - av¢v(wv))_1-

This together with (15), (16) and (17) completes the proof of (i).

(ii) The proof relies on the interpolation formula proved in (i). Put 7/ = 7®|-|aw™!.
One has to compare the specialization of L,(m) by ¢xw ™t with the specialization of
Ly(7") by ¢. First of all, we have Qoo = Q. In fact, since K}, C K11(p), the sheaf
L (w,wp;C) on Y is canonically isomorphic to the sheaf Ly (w,wy — 2;C) twisted
by w™!, hence b, and b, are basis of the same O-line. Moreover, since the ordinary
twist type of 7/ is v,w™!, the local factors at v dividing p are the same. Finally, using
Manin’s trick (see [Ki, Lemma 4.6]), one finds the same L-functions and I'-factors. [

2.3. X-stabilized p-adic L-functions. This section is preparatory for the construc-
tion of p-adic L-functions for Hida families of Hilbert automorphic forms. The natural
parameters on those families are a residual Galois representation p (here equal to pr
mod p) and a fixed finite set ¥ of primes of F' not dividing p containing those dividing
the tame part of the conductor of .

It turns out that in order to be able to put the periods €2  in a p-adic family, one
should modify them by replacing the newform f, by a certain YX-stabilized automorphic
form f> (see [D2, §7.1]). Such forms have already been used in [W2] and [DFG] (as
well as in [Fu] for the Hilbert modular case).

2.3.1. Tame level associated to p and ¥.. We define a tame level ng = pr K, as
follows. We denote by ¢, the minimal conductor of p,. Let 7, be a minimal twist
character of p, and let d,, denote the dimension of inertia invariants in p, ® v, 1 (see
[D2, 4.1] for the terminology). For v € ¥ let

K, = ker(K; (v tdv) det, s LR 0*),

where 7, denotes the Teichmiiller lift of z,,.

To ensure the neatness of K- g,zKp we put K, = Ko(u) for place u chosen as in [D2,
Lemma 2.2] and fix a root ay, of the Hecke polynomial at u. Finally, for all v ¢ X,
v1pu we put K, = GLa(0,).

In addition to e,, ex and ey, we introduce the following idempotent.

Definition 2.7. Denote by ey is the localisation at (U, — oy, Uy;v € 3) followed by
the v,-isotypic part for the action of the Hecke operators Us = [Kv ((1) g) Kv] for every
veXandde€o).

19



Lemma 2.8. If K = Kp K, with K, D K11(p®) and a = p’S with 8 > «, then
the ideal ag from deﬁnztwn 1.13 can be chosen to divide the Artin conductor of p. In
particular Cl%)( Y ag) = Clg’)( ).

2.3.2. For every v € X, there is a canonical isomorpshism:
~ — Cv+dv
5[] ~ (m, @ by R,

and the latter contains a unique line on which U, acts as 0. It follows that for « large
enough

egeweooepH (YKp K11 (p© ),LK(w,wo;C)>

is a complex line having a basis do(f>), where 5, denotes the Matsushima-Shimura-
Harder isomorphism (see [H5] or [D2, §7.1]) and f= is an automorphic form in 7 which
is nearly ordinary at all places dividing p, ¥-stabilized, new outside p3> and normalized
using its adelic Fourier expansion (12). This complex line contains a natural O-line,
namely the torsion-free part of

egeﬂeooepH (YKp K (pe ),EK(w w0,0)>,

and we denote by b2 a basis of the latter.

Definition 2.9. The Archimedean period QF | = do(f2) /b7 € C* is well defined up
to an element of O*.

Definition 2.10. Assume that the weight (w,wg) is critical. The X-stabilized p-
adic L-function L3(m) € (’)[[Cl%p) (p>°3)]] attached to m, is defined as the image of
w,Wo > 4l
SKg,EKu(p“),i(b’T) (see definition 1.20), where
(18) = H vb | with b, = max(1, cond(,)).
vED

Let v, and «, for v dividing p be as in §2.2.

Theorem 2.11. (i) Let ¢ : CIE(p™%) — O* be a p-power order character. Then
the image of LE(T[‘) by the resulting homomorphism (9[[01;5’)(;9002)]] - O
equals:

L(pE)( ® ¢, (7, 1)
[ H Zv,
e v[pE

where for v dividing p, Z, is as in theorem 2.5 and for v dividing % we have:

7 TU(‘bUZ};{U) if Guiy is Tamified,
v —NF/Q(U)*lgby(wv)*l*‘s” otherwise.

(i) If (w,wo—2) is critical too, the automorphism [a] — (xw™')(a)[a] ofO[[Clgf) (p>

sends L3 () to Ly (7 @ |- [aw™).
20
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Proof. (i) As in the proof of theorem 2.5 the specialization of LE(?T) by ¢ equals

y ypsp PE ) d*y.
0 1

¢(§71) Hv\p(((ﬁv%)(wv)av)ievﬁ =
/AX o P(y) (

) 1
Q7r,oo

The integral naturally decomposed as a product (QZ ) ~*-T], Z- [], Z, over the places
of F' and for v ¢ ¥ the computation of the local term Z, is as in the proof of theorem
2.5. Since the automorphic form f> is Y-stabilized, the local component at v dividing
3 of its adelic Whittaker function . is given by the formula

_ 1, n=0
W= (we o) ={"
v < 0 1) {07 n#0 , hence

7, = /F Dol W (ywem) dy, = / (B0 (g ) (w0 du,
v U'U

If ¢, 1, is ramified, then b, = cond(¢,1,) and Z, = 7,(Py, &) by (13). Othewise ¢,
and 7, have to be both unramified, hence b, =1 and Z, = — NF/Q(U)*lch(wU)*l*(S”.
(ii) is proved as in theorem 2.5. O

We will see that the p-adic L-functions LE(W) behave well when 7 varies in a Hida
family.

3. EXACT CONTROL THEOREM FOR THE NEARLY ORDINARY COHOMOLOGY OF
HILBERT MODULAR VARIETIES

The main result in this section is an exact control for the nearly ordinary Betti
cohomology of a Hilbert modular variety with coefficients in O, after localization at a
certain maximal ideal of the Hecke algebra. The proofs rely on results established in
[D1, D2] on the (absence of) torsion in these cohomology groups under the assumptions
(%) and (xx), hence rely indirectly on the fact that the Hilbert modular varieties admit a
canonical model over Q allowing to interpret Betti cohomology with p-adic coefficients
as etale cohomology and further as de Rham cohomology after extending the scalars
to a Fontaine ring of periods.

Henceforth p is assumed to be odd.

3.1. Towers of Hilbert modular varieties. Since we are mostly interested in p-adic
cohomological interpolation, we will fix a tame level K? and vary the level at p.

For 7 € {0,1, 11} we denote by Y7 (p®) the Hilbert modular variety of level KP K (p®)
and by K,ad(po‘) its adjoint counterpart. By [D2, Lemmas 2.1,2.2] the groups of the
abelian coverings

Yu(p®) — Yo (0®), Yi(p®) — Y3 (0°) and Y7 (p%) — Y5(p")
are respectively isomorphic to

AT Ko(p®)/F* K1 (p), A} Ko(p®)/F* K1 (p®) and Ko(p®)/K11(p™) (0 @ Zp) ™.
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We identify the standard torus of GLy with G2, via (u,z) — (% 9). This leads to
the following identifications:

A7 Ko(p®)/F*Ki(p®) = A7 /F7 (A7 NKPKy(p)) and Ko(p®)/ K1 (p®)(0 @ Zy)™ ~ (0 /p*)”,

hence A} Ko(p®)/F* K1 (p®) =~ A} /F* (A7 NKPK1(p®)) x (0 /p*)™.

We define the following semi-local p-adic Iwasawa O-algebras:

Ar =0 | [lm A% /FX (A} NEPE1(p) | | = O Hz 2 € A} [FX(AF pr)H :
a>1
Apa = O | lim (o /p*) || = Ollwsu € (0®7Zy)*]] and Ay = Ay@Aaq.
a>1

3.2. Hida’s stabilization lemma. For a cohomological weight (w,wq) define:

Hi1(w,wp) = Home <lii)nep H? (Y11 (p®), L(w,wo; E/ O)), E/ (9) )

a>1

H1(w,wp) = Homp (h_n}lep H: (Y1 (p®), L(w,wo; E/ O)), E/ O) and
a>1

Haa(w, wo) = Homo <1Ln6p H (Y (p%), L(w, wo; B/ 0)), E/ 0) ;

a>1
where e, denotes Hida’s (nearly) ordinary idempotent. It follows from §3.1 that
Ho(w, wp) is naturally a A,-module, for 7 € {11,1,ad}.
By Hida’s stabilization lemma H-(w, wp) is independent of (w,wg) in the following
sense:

Theorem 3.1. Let (w,wg) € N[I] X Z be a cohomological weight.
(i) ([H3, (3.3)]) There is an isomorphism of A11-modules

Hn(w, ’LU()) ~ HH(O, 0) ®Ro O Yw,

wot—w

where [u,z] € A1 acts by u™ 2z x(2)"w(z)"™° on the lowest weight vector
Y¥ e L{w,wy; O).
(ii) ([H1, Thm 8.6]) There is an isomorphism of Aj-modules
Hi(w +t,wo + 1) = Hi(w, wo) ®o O,
where [2] € Ay acts Y by x(2)w(z)7L.
(iii) There is an isomorphism of A,q-modules
Had (w, wo) = Haa(|wolt, wo) @0 O Y™l

wq [t—w
0

where [u] € Auq acts on Y0~ Iwolt by g =2
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3.3. Exact control theorem. Our exact control theorem will only hold after applying
a certain idempotent e;, analogous the Mazur’s non-Eisenstein idempotent, that we
will now define. Given a finite set of primes ¥ outside p and a continuous representation
p: Galpyy — GLa(F,) we consider the following maximal ideal:

m; = (@, T, — Tr(p(Froby)), Sy — Det(p(Frob,)) Np/g(v))

of the abstract Hecke algebra T* = O[T, S, ; v ¢ ¥,v { p|, where w denotes a
uniformizer of O.

In addition to its A,-module structure, H-(w, wy) is endowed with an action of T>
and of U, and Us = [K, ((1) g) K, for every v dividing p and 0 € o}.

Definition 3.2. Assume that p satisfies (xx), so that there exists a cohomological
cuspidal automorphic representation 7 of weight (w, wg) which is nearly ordinary at v
dividing p with U%-eigenvalue oY, and such that p ~ pzp mod p.

Define e; as the idempotent corresponding to the localization at

(mp, UY — a9, Uy — g0 Totmwtwot) /2., 1y 5 € o).

Remark 3.3. The weight of 7 as in (%) is denoted (w, w) since it only depends on p.
In fact by remark 4.2 for all primes v dividing p, the nearly ordinariness of 7, implies
the reducibility of pz ,|calp, (hence of plgaiy, ) and the fact that the weights are smaller

than p — 1 allows them to be recovered from p. On the other hand, the reduction o

(mod w) cannot be retrieved from p in general, hence there is a slight abuse in the
notation ej.

Definition 3.4. For a cohomological weight (w,wg) define:

Hg'o(w,wo) = Homp (higep HY (Y11 (p?), L(w,wo; E/ O)),E/ O> ,

a>1

H%rd(w, wp) = Homgp (lii)neﬁ H (Y1(p®), L(w,wo; E/ O)), E/ O) and

a>1
ngt(w,wo) = Homp (h_r)nep He (YA (p), L(w, wo; B/ ©)), E/ (’)) .
a>1

Remark 3.5. The localization at (Us — §(@=@ot=w+wo)/2.4, | § € 0X) is superfluous
for the definition of H%rd(w, wp), but not a priori for H%et(w, wp) and H5°(w, wo).

We define the local p-adic Iwasawa O-algebra A™° = A" @At where

AT =0 HZ, z € (Af /W)p_partﬂ and A% = O [[u;u € (0 ®Zy)P~Pa]] .

By global class field theory, the character det(p) - x : Galppy — ﬁ; factors through
the prime to p-part of the class group A; /F X(A; NKP), hence its Teichmiiller lift

—_—~—

det(p)w induces a surjective homomorphism A; — A°™,
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The Teichmiiller lift of the character (0 ® Zp)* — ﬁ; Ju s (P~ Pot—wtwol) /2 in dyces
a surjective homomorphism A,gq — Adet,
From the above two surjective homomorphisms one deduces a third one:
ARO — Aord®Adet s All — A1®Aad-

The idempotent e; determines residually the eigenvalues of S, for v outside a finite
set, hence by weak approximation determines the central action residually. Moreover,
it imposes residually the action of U; for all 6 € (0 ®Z,)*. Since the residual char-
acteristic is p, it follows that the idempotent e; fixes the action of the prime to p

parts of (0 ® Z,)* and of the class group A; JF> (A;ﬁ NKP). We record this fact in the
following proposition.

Lemma 3.6. (i) The action of A1 on H%rd(w, wo) is via the above Ay — A°™9,
(ii) The action of Aaq on ngt(w, wo) is via the above Aguq — A,
(iii) The action of A1 on Hg'o(w,wo) 1s via the above A11 — A™°.

Definition 3.7. For o > 1 and ? € {n.o,ord,det} denote by P} C A’ the kernel of
the homomorphism induced by [u, z] — [u mod p*, z mod p®].

Theorem 3.8. Suppose that (x) and (%x) hold.
(i) For ? € {n.o,ord,det} and for all « > 1 we have exact control:

H;(w, wo) % A"/ P! ~ Homo (e, HA(Y2(p®), L(@,@0; E/ O)), E/ O).

(ii) For ? € {n.o,ord,det} the A’-module ’H%(u‘;, wo) is free of finite rank.
(iii) Given a cohomological weight (w,wy), for all & > 1 we have exact control:

Hg'o(w, wo) A(%?o A"°/Py° ~ Homp(ep Hd(Yn(pa), L(w,we; E/O)),E/O).

(iv) Given a cohomological weight (w,wqy) € (w,wq) + Z(t,1), for all « > 1 we
have exact control:

H%rd(w,wo) ®d Aord/Paord ~ Homop(ez Hd(Yl(pa),ﬁ(w,wo; E/0O)),E/O).
Aor

(v) If (w,wq) is a cohomological weight then for all & > 1 we have exact control:

M (w,0) © AP = Homo(eg HY(VE (), £(w,wo: B/ 0)). E/ O),

Proof. (i) follows from Hida’s exact control criterion [H6, lemma 7.1] and the fact
that the Pontryagin dual of ej HY (Yo GLa(o®2Z,)s £(W, wo; £/ O) is isomorphic to the
torsion free O-module e; H (Ve GLa(0®7,)s £(W, w05 O)) (see [D2, §2]).

(ii) follows from (i) by a commutative algebra argument as in the proof of [MT,
Thm 9]

(iii),(iv) and (v) follows from (i) together with theorem 3.1, as in the last paragraph
of the proof of [H6, Thm 7.1]. O

As a corollary we obtain the freeness of the nearly ordinary part of the cohomology
of a Hilbert modular variety without assuming that it has good reduction at p and
that the weight of the local system is p-small, thus generalizing [D2, Theorem 2.3].
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Corollary 3.9. If p satisfies (x) and (%x), then ep Hd(Yn( ), L(w, wo; O)) is a free
O-module of finite rank, whose Pontryagin dual is ez H (Y11 (p®), L(w,wo; E/ O)).

4. FREENESS AND R = T THEOREMS

4.1. Universal nearly ordinary deformation rings. Let X be a finite set of primes
outside p and let p : Galpps — GLQ( ») be a continuous irreducible representation
which is nearly ordinary and distinguished at p, meaning for every v dividing p there
exist two distinct characters ¢1 » and 1/}2 » of the absolute Galois group Galp, of F,,

such that
— “J)l, *
p|GalFU =~ ( 0 ! Q;Z_)Q v .

Let R, be Mazur’s universal O-algebra parametrizing deformations P’ of p which

*
are nearly ordinary at all v dividing p, in the sense that p\Galp ~ <¢6’” W, > , where
v 20

! is alift of 1, (i =1,2).

0,0
Denote by pr the universal deformation. For every v dividing p, by nearly ordinar-

/
sz)lv

ness, pRr|Galy, ~ ( 0 7; >, hence by local class field theory ) U{/;; 11) is a character
v 27/1) ’ b
of 0,77P*" where 15, denotes the Teichmiiller lift of 15 ,. This endows R5S with
O[[(0 ® Zy,)*P~P2!]|-algebra structure. It comes from the forgetful functor taking the
restriction to decomposition groups at primes dividing p.
The character det(pr)det(p) " tyw™! : Galp,s — RE;%X factors through Gal(F®*) /F),

hence endows R5, with O[[Gal(F F®*) / F)]]-algebra structure. It comes from the for-
getful functor taklng the determinant twisted by x.

Therefore R7, is naturally a module over the complete local Iwasawa algebra

A = O[[Gal(FP?)/F) x (0 ®Z,) P ~P*]],
which appears naturally in the class field theory of F.

Definition 4.1. An O-algebra homomorphism A — @p is algebraic if for some coho-
mological weight (w,wp) its restriction to Gal(F(®>)/F) (resp. to (0 ® Z,)*P~P¥) is
the product of a finite order character with the character x~"° (resp. = — glw—wot)/ 2.

4.2. Universal nearly ordinary Hecke rings. Following Fujiwara [Fu] we define the
universal nearly ordinary Hecke algebra as the maximal A @ T>-algebra T7s with the

following property: any homomorphism Tj3 — @p whose restriction to A is algebraic
of weight (w, wg) comes from a cuspidal automorphic representation 7 of GLg(A) which
is cohomological of weight (w,wg), nearly ordinary at all places dividing p and such
that pr, is a deformation of p.

By a theorem of Hida [H2] and Wiles [W1], for all primes v dividing p, the nearly
ordinariness of m, implies the reducibility of p,r,p]Gava. The converse is a theorem of
Saito [Sa].

25



Remark 4.2. If 7, is ordinary and unramified, then there is a more precise statement,

~ 1/)1,1)

namely, prp|caly, = ( 0 %Z): > where (via local class field theory) the restrictions
U

of (¥1,0)y|p and (2,4)y|p to inertia groups at primes dividing p are given by:

— wot+w
(¢1,v)v|p F(0®Zy)" — Z;, z—z 7t and

wot—w

Wa iy (00Z,) — Ty, i o™

Wiles” method of pseudo representations yields a deformation of p:

pr : Galpps — GL2(T53),
hence, by universal property, a surjective A-algebra homomorphism R;3, — T3 3.
Theorem 4.3. (Fujiwara [Fu]) Assume that p is distinguished and that its restric-

tion to Gal(Q/F((p)) is irreducible. Then the natural surjection Rys — Thy is an
isomorphism of algebras which are finite flat of complete intersection over A.

4.3. Nearly ordinary cohomology modules. We will give a concrete realization
of the universal nearly ordinary Hecke algebras encountered in §4.2 by the method of
p-adic cohomological interpolation described in §3.

We will first realize the groups Gal(F®>)/F) ~ Clgf) (p>°X) and (0 @ Z,,) PPt a5
groups of towers of Hilbert modular varieties (see §3.1). For this purpose we fix p as
in §4.1 and choose the tame level KP = Kg,z- In addition to the Hilbert modular

varieties Y7(p®) and Y24(p®) defined in §2.3.1, we denote by Y;x the Hilbert modular
variety of level GLa(0 ® Zp) K g s, which has good reduction at p.

Since the intersection of A? NK; (p*) K- g 5, and U(p*X) has prime to p index in each
of them, it follows that

(A7 Kop™)/F* K1 (p™))

A = O[[CIP) (p )], A = O[[(0 ® Z,)*P7P]] and A™ = ATIGAM ~ A,

There are exact sequences:

p—part
= Clgf) (p*Y), hence

— (0®Zp)"/E(Z) — CIL(p>T) — CIL(Z) — 1,
1= [[(o/v)* = ClL(p™%) — CLEE™) — 1,
vEY
that remain exact after taking pro-p parts.

Definition 4.4. Consider the idempotent e = e; - e - ex, With e, as in definition
1.18, ex as in definition 2.7 and e; as in definition 3.2. For a cohomological weight
(w,wq) define:

H5 % (w, wo) = Homp <li_n)16 H: (Y11 (p?), L(w,wo; E/ O)),E/ (9) ,

a>1

Hf{%(w,wo) = Homp (li)ne H: (Y1 (p®), L(w,wo; E/ O)), E/ (’)) and
a>1
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f(w, wo) = Homo <1i_f,n€ HE (Y1 (0%), L(w, wo; B/ 0)), E/ O) :
a>1
By lemma 3.6, for any ? € {n.o,ord, det}, H;E(w, wp) is endowed with a structure
of A’-algebra.

Definition 4.5. For a cohomological weight (w,w) and ? € {ord, det,n. o} let T?ﬁ,z (w, wyp)
denote the A’-algebra generated by T* acting on H;E (w, wp).

4.4. Freeness theorem. Put 77% = 75%,(0,0) and H;$, = H;%,(0,0).

Theorem 4.6. Assume (x) and (xx). Then HZ<, is free of rank one over T5%, and

there exist a natural isomorphism R, = T3y, of algebras which are finite flat of
complete intersection over A™°.

Proof. The proof follows the same strategy as in [Ti]. By theorems 3.1(i) and 3.8(iii)
any homomorphism 7753, — @p whose restriction to A™° is algebraic of weight (w, wq)
comes from a cuspidal automorphic representation contributing to e H (Y11 (p®), £(w, wo; O)).
It follows from the universal property of T3, defined in §4.2 that there exists A™°-linear
surjective homomorphism R7% — TFs — 7755,

The proof then proceeds by specialization to weight (w, wg). Denote by P the kernel
of the algebraic homomorphism A™° — O induces by the following character:

CIP) (3°%) x (0 @ Z,)P~PHC — O, (2,1) o (T01—D)/2 (det(pﬁ,p)d&(\p)/flxw—l) (2).

Then R;x = R5% /P R5S classifies deformations p of p of determinant det(pz,,)
whose restriction to decomposition groups at primes dividing p is as in remark 4.2.
Since for all 7 € I, w, > 0, it is then a standard fact from Fontaine’s theory that p is
cristalline at all primes dividing p.

By the control theorem 3.8 there is a Hecke equivariant isomorhism of free O-
modules:

B/ PHES ~ e HY (Yo (p), L(w,do; 0)),

where Yp(p) denotes the Hilbert modular variety of level K (p)Kg 5 It is well known
that if 7 is a cuspidal automorphic representation of cohomological weight strictly

bigger than 0 such that m, is nearly ordinary and mf( o(v) # 0, then m, is unramified.
Hence:

e HY(Yo(p), L(w, wo; 0)) ~ e HY (Y5, L(w0, wo; O)).

Then one has a commutative diagram:

RE%/PREG — T5% / PT5% — > Endyno)pano (HES / PHER)

T

R;» T ¢ Endo (e HY(Y; 5, L(w, wo; 0)))

where T denotes the image of T acting on e HY(Y; x1, L(w, wo; O)).
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Under the assumptions () and (%*), we are now in position to apply [D2, Thm
6.6] and deduce that R;x =~ T,y and that e HY(Yjx, £(w,w; O)) is free of rank
one over R;x. By the above diagram, it follows that R7% /P R7S, is isomorphic
to 755/ PT;5 and H;S /PHEY, is free of rank one. It is enough then to apply
Nakayama’s lemma to deduce the desired result (see [Ti, 3.2] for details). g

Corollary 4.7. Ezact control holds for T (w,wo), that is for all a > 1:
S, w0) @ A"/PE & T30, up),

where T (w,wy) denotes the Hecke algebra acting on e H(Y11(p®), L(w, wo; O)).
4.5. Variants. The algebraic homomorphism
Adet -0, [u] s u(wotfw)/Q

yields a surjective homomorphism A™° = Adet@Aord —, Aord yged implicitly in the
following definition:

(19) Rord((wot —w)/2) = RS, Qano A,

The A°d-algebra R?{g((wot — w)/2) parametrizes ordinary deformations of slope
(wot — w)/2 (see [H1]). In parallel weight (w, = wp for all 7) the corresponding ho-
momorphism A%t — O is the trivial one. The ring Rzrg = Rord +(0) then parametrizes
deformations which are locally reducible at all places d1v1d1ng p with unramified one

dimensional quotients. By adapting the proof of theorem 4.6 we obtain:

Corollary 4.8. Assume (%) and (xx) with an ordinary ©. Then H3 ' (w,10g) is free of
rank one over ’T‘;r%(w wo) and the natural surjection Rord((wot w)/2) —» Tgr%(w wo)

is an isomorphism of algebras which are finite flat of complete intersection over A°™d.
If w = wot then for every wg > 0 the module Hord (wot, wo) is free of rank one over

Tord s (wot, wo) and the natural surjection Rgf — Tpf (wot, wp) is an isomorphism of
algebms which are finite flat of complete intersection over A°9.

The algebraic homomorphism A" — O induced by

det(pz p)det(p)Lxw ™ : Galpyy — O
yields a surjective homomorphism A™° = A°d@Adet — Adet yged implicitly in the
following definition:

(20) Rdet Rn 2 @ An. 0Adet

The Ad¢t-algebra Rdet parametrizes nearly ordinary deformations of p with deter-
minant equal to det(pmp). Again, by adapting the proof of theorem 4.6 we obtain:

Corollary 4.9. Under (x) and (%), the module Hﬁeé(w wo) 1s free of rank one over
Tgeg(w wg) and the natural surjection Rdet — Tgeg(w wg) 18 an isomorphism of al-
gebras which are finite flat of complete mtersectzon over Adet,
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5. ANALYTIC p-ADIC L-FUNCTION FOR HIDA FAMILIES

In this last section of the article we will apply the results obtained in the previous
sections to the construction of analytic p-adic L-functions for Hida families of Hilbert
automorphic forms. Partial results in the ordinary case can be found in [DO] where
Kitagawa’s classical approach has been generalized. A different rather technical ap-
proach using p-adic Rankin-Selberg convolution has been used by [M1] in the ordinary
case, and is also expected to work in the nearly ordinary case along the lines of [H4].

5.1. Universal nearly ordinary p-adic automorphic symbol. In this section we
will describe a p-adic limit interpolation procedure that allows to extract the lowest
coefficient of the local system Lx(w,wo; E/ O) even if it is not critical.

For 8 and ~ large enough so that K, contains M (p®, pP*+7), consider the following
map defined in §1.3.2

Oy = Cx(p°S,p° S ) - A [FX U S are) — Y.

Since for all u € U(p®*'X ag) one has (%P (“P_%)pfﬁ) = ({9) (mod p) one de-

duces that the sheaf CIE(’E*E x(w,wo;p~7/ O) is trivial, yielding an evaluation map on
cohomology:

SIZ(J’,g(w’ wo) : H?(YKa EK(wv wO;p_’y/ O)) - ﬁ(wa wo;p_,y/ (’))[[Cl;(pﬁ+72 CLK)]]-
By lemma 1.12 and the fact that pw72w = (B 1) acts trivially on the lowest weight
vector Y € L (w,wo;p~ 7/ O) follows the commutativity of the diagram:
(21)

wewgt
H(Yi, Lx (w, wo;p~7/ O)) P he H(Yi, Lx (w, wo;p~7/ O))
iSIE(:Zi+1(w7w0) lsi’,},(w,wo)
L(w, wo; p~"/ O)[CL; (pP 7S ag)]) L(w, wo;p~ "/ O)[[CI(p7 S ak)]]
i | s
Prgyq

(p=7/ O)CIE (" S a)] (r77/ O)CIE(P" " ak)]

where lowlﬁu’wo is the projection to the coefficient of the lowest weight vector. If follows

that the maps lowg’w0 oS]E(%(w, wp) © (UZ(,])_/B form a projective system with respect to
B and by passing to the limit we obtain:

(22) S (w,wo) : ep HA(Yie, Lic (w, wo; p77/ O)) — p~ 7/ O[[CLE(p™ T a)]].

It is clear that (SIZ("Y(w,wO)) K,y form an inductive system with respect to v and
the maps induced by the natural projections Yy — Y, for K’ ¢ K. We are now in
position to study the variation of p-adic automorphic symbol when K, shrinks. Namely,
under a mild restrictions on K allowing to ignore ayx, we have a homomorphism

(%7 (w, wo>)m lim e HE(Yic, Lic (w, wo; E/ O)) — E/ O[[C1IE (p™ %))
’ K
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where Yx runs over a given tower of Hilbert modular varieties.

5.2. Analytic p-adic L-functions for ordinary families. Let X be a finite set of

primes outside p and p : Galp,y;, — GL2(F,) be a representation, satisfying (x) and
(%%) with ordinary 7 of parallel weight (w = wgt).

5.2.1. Construction. Let Y1(p®) be the Hilbert modular variety of level K, = Kf—:gKl (p%)
(see §2.3.1). By lemma 2.8 we have Clgf) (p>XYag) = Clgf) (p>X).

For every w € N, the universal ordinary p-adic automorphic symbol S%rd(wt, w) is
defined as the inductive limit over av and 7 of the maps (S[Z(’J(wt, W))a,~ from (22):

S (wt, w) : lim e, HA(Y (p), L (wt, wip™7/ 0)) — B/ O[[C1E (pL)]].
o,y

In the notations of §3.2 we have
S (wt, w) € Hy(wt, w)Be O[C1F (p™)]].

By corollary 4.8, H%fg = H%f%(0,0) is free of rank one over T%fg = Tgfg(0,0).
Denote by bgfg a basis. Let ngg be the image of S%4(0,0) in H%fg ®o (’)[[Clgy) (p>%)]].

Definition 5.1. We define the universal ordinary p-adic L-function

Lo = 195, %) € TP (px)]

as the coordinate of Sg’rg in the basis b%fg ® 1.

Remark 5.2. Although A°" and O[[Clg) (p>°X)]] are abstractly isomorphic, the action
of the former on R;¥ is defined using the determinant, while the action of the latter
is defined using twists.

5.2.2. Dependence on the weight. One of the main features of Hida’s theory is that
objects constructed in one given weight can be transfered to other weights. We will

now show that Lgrd has this feature too.

By theorem 3.1(ii) there is a natural isomorphism H%fg - ’H%fg (wt, w), compatible

with the isomorphism of Hecke algebras
(23) TO 5 TO (wt, w),

w

itself compatible with the algebra automorphism of A given by [z] — x(2) % w(2)™[2].
Thi image bgfg (w) of b%fg under this isomorphism is clearly a basis of ’H%’r% (wt, w) over
o (wt, w).
Denote by ngg(wt, w) the image of S¥(wt, w) in ’H%fg(wt,w)@o (’)[[Clgf) (p™2)]]
and define the p-adic L-function

Lo (w) = L9 (p, %) € TYA[CIP (p™%)]

as the coordinate of ngg(wt, w) in the basis b/‘;fg(w) ® 1.
In vertu of the above choices of basis we have:
30



Lemma 5.3. The natural isomorphism
L T4 B0 O[[CIY) (p™%)])] = T (wt, w)Bo O[[CLE (p™))]
induced by (23) sends LY™ to LY (w).

5.2.3. Proof of theorem (0.3. We are now is position to prove interpolation property in
any parallel weight. Let m be a cohomological cuspidal automorphic representation of
weight (wt,w), ordinary of level Ki(p®) at p and such that pr ), is a deformation of
p. It defines an algebra homomorphism 7° Ord(wt,w) — O extending naturally to a
homomorphism:

0 - TO% (wt, w)[[C1E) (p)]] — O[[C1 (p>x)]].

Since the constructions from §1.5 and §5.1 coincide in parallel (critical) weight
(wt,w), we have Qﬂ(Lgrd(w)) = LE(T['), hence Gw(jw(Lgrd)) = LE(W) (see lemma 5.3).

Theorem 0.3 then follows from the fact that T%fg is isomorphic to RorE as a A°rd-
algebra (see corollary 4.8).

Using theorem 2.11 one can further specialize Lgrd by a character of Clg) (p>x)
obtaining the following;:

Corollary 5.4. For any wy € Z such that |wo| < w and for any finite order character
¢ of Clg}) (p>°%), ramified at all the places dividing pX, the specialization of Lgrd by

([a] — X(a)ww(a)_wgb(a)) 00y 0 Ju equals

LOD(r @ g~ "2, 580 4 1) (i, 50
0F

) |

vlp

Hence LO‘"d Lord(p, Y)) is rightfully called a p-adic L-function, since it is uniquely
determlned by p- adlc interpolation of special values of classical L-functions, and is
also rightfully called universal, since it can be specialized to the p-adic L-function
associated to any ordinary cuspidal automorphic representation lifting p.

5.3. Analytic p-adic L-function for nearly ordinary families. Let X be a finite
set of primes outside p and p : Galp,s, — GLa(F,) be a representation satisfying (x)
and (xx). Since p is nearly ordinary and distinguished, by §4.1 there exists a universal
nearly ordinary deformation ring R7%,. Since p is odd, every deformation of p has a

twist by a character of Gal;bz’)%_part ~ Clg) (p>°X) having determinant det(pz p). Hence
we have a canonical isomorphism:

RES = RIL[CLY (p5)]].

P
Let Y3d(p®) denote the Hilbert modular variety of level K, = Kg’EK ad(p) (see

§2.3.1). By lemma 2.8 we have Clg) (p>*Yag) = Clg) (p™°3).
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The universal nearly ordinary p-adic automorphic symbol S3+° is defined as the
inductive limit over o and ~ of the maps (Sﬁj(wot, Wo))a,y from (22):

S° < lim e, HA(Y{ (p%), L (wot, wo;p ™"/ 0)) — E/ O[[CIE (p™L)]).
a,y
In the notations of §3.2 we have

SBO € Haa(wot, Wo)Bo O[[CIT (p°2))]).

Denote by ST the image of S5t in Hg%(lbgt, Wo)®o (’)[[Clgf) (p>%)]].
By corollary 4.9, Hg% (wot, wp) is free of rank one over Tg% (wot, wp) with basis bg%
and T%%(u‘)ot, Wp) is isomorphic to Rg% as a A%°-algebra.
Definition 5.5. We define the p-adic nearly ordinary L-function
L3°(5.%) € Ty (ot wo) [CF (2] = Ry,
as the coordinate of 573, in the basis bg% ® 1.

Let 7 be a nearly ordinary cuspidal automorphic representation of GLa(A) of weight
(wot, wo) such that pr, is a deformation of p with determinant det(pz ). It defines an
algebra homomorphism

0, : Tg%(ﬂ)ot,ﬁ)o) — 0.

Since the constructions from §1.5 and §5.1 coincide in weight (wgt, wy) we have

0(Lp°(p, %)) = Ly, ()

as claimed in theorem 0.2.

Hence L, = L,;°(p, ) is rightfully called a p-adic L-function, since it is uniquely
determined by p-adic interpolation of special values of classical L-functions.

Contrary to the ordinary case, we do not know whether the specialization of L) by

an arbitrary algebraic homomorphism Rg% — O yields a p-adic L-function associated
to some nearly ordinary cuspidal automorphic representation of GLy(A). We believe
that the resolution of this question should involve a new construction allowing to lift
(non-canonically) these measures to measures in 2d-variables, similarly to Shintani’s
and Deligne-Ribet’s construction of the p-adic L function of a totally real number field.
This is a subtle issue to which we hope to come back in a future work.
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