from math import pi, cos, sin
from jmetal.core.problem import FloatProblem
from jmetal.core.solution import FloatSolution
"""
.. module:: DTLZ
:platform: Unix, Windows
:synopsis: DTLZ problem family of multi-objective problems.
.. moduleauthor:: Antonio J. Nebro <antonio@lcc.uma.es>
"""
[docs]class DTLZ1(FloatProblem):
""" Problem DTLZ1. Continuous problem having a flat Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 7 and 3.
"""
def __init__(self, number_of_variables: int = 7, number_of_objectives=3):
""" :param number_of_variables: number of decision variables of the problem.
"""
super(DTLZ1, self).__init__()
self.number_of_variables = number_of_variables
self.number_of_objectives = number_of_objectives
self.number_of_constraints = 0
self.obj_directions = [self.MINIMIZE] * number_of_objectives
self.obj_labels = ['$ f_{} $'.format(i) for i in range(number_of_objectives)]
self.lower_bound = self.number_of_variables * [0.0]
self.upper_bound = self.number_of_variables * [1.0]
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([(x - 0.5) * (x - 0.5) - cos(20.0 * pi * (x - 0.5))
for x in solution.variables[self.number_of_variables - k:]])
g = 100 * (k + g)
solution.objectives = [(1.0 + g) * 0.5] * self.number_of_objectives
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
solution.objectives[i] *= solution.variables[j]
if i != 0:
solution.objectives[i] *= 1 - solution.variables[self.number_of_objectives - (i + 1)]
return solution
[docs] def get_name(self):
return 'DTLZ1'
[docs]class DTLZ2(DTLZ1):
""" Problem DTLZ2. Continuous problem having a convex Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3.
"""
def __init__(self, number_of_variables: int = 12, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ2, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([(x - 0.5) * (x - 0.5) for x in solution.variables[self.number_of_variables - k:]])
solution.objectives = [1.0 + g] * self.number_of_objectives
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
solution.objectives[i] *= cos(solution.variables[j] * 0.5 * pi)
if i != 0:
solution.objectives[i] *= sin(0.5 * pi * solution.variables[self.number_of_objectives - (i + 1)])
return solution
[docs] def get_name(self):
return 'DTLZ2'
[docs]class DTLZ3(DTLZ1):
""" Problem DTLZ3. Continuous problem having a convex Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3.
"""
def __init__(self, number_of_variables: int = 12, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ3, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([(x - 0.5) ** 2 - cos(20.0 * pi * (x - 0.5)) for x in solution.variables[self.number_of_variables - k:]])
g = 100.0 * (k + g)
f = [1.0 + g for _ in range(self.number_of_objectives)]
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
f[i] *= cos(solution.variables[j] * 0.5 * pi)
if i != 0:
aux = self.number_of_objectives - (i + 1)
f[i] *= sin(solution.variables[aux] * 0.5 * pi)
solution.objectives = [f[x] for x in range(self.number_of_objectives)]
return solution
[docs] def get_name(self):
return 'DTLZ3'
[docs]class DTLZ4(DTLZ1):
""" Problem DTLZ4. Continuous problem having a convex Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3.
"""
def __init__(self, number_of_variables: int = 12, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ4, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
alpha = 100.0
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([(x - 0.5) ** 2 for x in solution.variables[self.number_of_variables - k:]])
f = [1.0 + g for _ in range(self.number_of_objectives)]
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
f[i] *= cos(pow(solution.variables[j], alpha) * pi / 2.0)
if i != 0:
aux = self.number_of_objectives - (i + 1)
f[i] *= sin(pow(solution.variables[aux], alpha) * pi / 2.0)
solution.objectives = [f[x] for x in range(self.number_of_objectives)]
return solution
[docs] def get_name(self):
return 'DTLZ4'
[docs]class DTLZ5(DTLZ1):
""" Problem DTLZ5. Continuous problem having a convex Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3.
"""
def __init__(self, number_of_variables: int = 12, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ5, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([(x - 0.5) ** 2 for x in solution.variables[self.number_of_variables - k:]])
t = pi/(4.0 * (1.0 + g))
theta = [0.0]*(self.number_of_objectives - 1)
theta[0] = solution.variables[0]*pi/2.0
theta[1:] = [t * (1.0 + 2.0 * g * solution.variables[i]) for i in range(1,self.number_of_objectives-1)]
f = [1.0 + g for _ in range(self.number_of_objectives)]
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
f[i] *= cos(theta[j])
if i != 0:
aux = self.number_of_objectives - (i + 1)
f[i] *= sin(theta[aux])
solution.objectives = [f[x] for x in range(self.number_of_objectives)]
return solution
[docs] def get_name(self):
return 'DTLZ5'
[docs]class DTLZ6(DTLZ1):
""" Problem DTLZ6. Continuous problem having a convex Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 12 and 3.
"""
def __init__(self, number_of_variables: int = 12, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ6, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([pow(x, 0.1) for x in solution.variables[self.number_of_variables - k:]])
t = pi/(4.0 * (1.0 + g))
theta = [0.0]*(self.number_of_objectives - 1)
theta[0] = solution.variables[0]*pi/2.0
theta[1:] = [t * (1.0 + 2.0 * g * solution.variables[i]) for i in range(1,self.number_of_objectives-1)]
f = [1.0 + g for _ in range(self.number_of_objectives)]
for i in range(self.number_of_objectives):
for j in range(self.number_of_objectives - (i + 1)):
f[i] *= cos(theta[j])
if i != 0:
aux = self.number_of_objectives - (i + 1)
f[i] *= sin(theta[aux])
solution.objectives = [f[x] for x in range(self.number_of_objectives)]
return solution
[docs] def get_name(self):
return 'DTLZ6'
[docs]class DTLZ7(DTLZ1):
""" Problem DTLZ6. Continuous problem having a disconnected Pareto front
.. note:: Unconstrained problem. The default number of variables and objectives are, respectively, 22 and 3.
"""
def __init__(self, number_of_variables: int = 22, number_of_objectives=3):
""":param number_of_variables: number of decision variables of the problem
"""
super(DTLZ7, self).__init__(number_of_variables, number_of_objectives)
[docs] def evaluate(self, solution: FloatSolution) -> FloatSolution:
k = self.number_of_variables - self.number_of_objectives + 1
g = sum([x for x in solution.variables[self.number_of_variables - k:]])
g = 1.0 + (9.0 * g) / k
h = sum([(x / (1.0 + g)) * (1 + sin(3.0 * pi * x)) for x in solution.variables[:self.number_of_objectives-1]])
h = self.number_of_objectives - h
solution.objectives[:self.number_of_objectives-1] = solution.variables[:self.number_of_objectives-1]
solution.objectives[-1] = (1.0 + g) * h
return solution
[docs] def get_name(self):
return 'DTLZ7'