Navigation

  • index
  • modules |
  • next |
  • previous |
  • jMetalPy 1.5.3 documentation »
  • Single-objective algorithms »
jMetalPy 1.5.3 documentation
Python version of the jMetal framework

Table Of Contents

  • Getting started
  • Multi-objective algorithms
  • Single-objective algorithms
    • Evolution Strategy
    • Genetic Algorithm
    • Local Search
    • Simulated annealing
  • Operators
  • Problems
  1. Docs
  2. Single-objective algorithms
  3. Local Search

Local Search¶

class jmetal.algorithm.singleobjective.local_search.LocalSearch(problem: jmetal.core.problem.Problem[~S][S], mutation: jmetal.core.operator.Mutation, termination_criterion: jmetal.util.termination_criterion.TerminationCriterion = <jmetal.util.termination_criterion.StoppingByEvaluations object>, comparator: jmetal.util.comparator.Comparator = <jmetal.util.comparator.DominanceComparator object>)[source]¶

Bases: jmetal.core.algorithm.Algorithm, threading.Thread

create_initial_solutions() → List[S][source]¶

Creates the initial list of solutions of a metaheuristic.

evaluate(solutions: List[S]) → List[S][source]¶

Evaluates a solution list.

get_name() → str[source]¶
get_observable_data() → dict[source]¶

Get observable data, with the information that will be send to all observers each time.

get_result() → R[source]¶
init_progress() → None[source]¶

Initialize the algorithm.

step() → None[source]¶

Performs one iteration/step of the algorithm’s loop.

stopping_condition_is_met() → bool[source]¶

The stopping condition is met or not.

update_progress() → None[source]¶

Update the progress after each iteration.

← Genetic Algorithm
Simulated annealing →

Navigation

  • index
  • modules |
  • next |
  • previous |
  • jMetalPy 1.5.3 documentation »
  • Single-objective algorithms »
© Copyright 2019, Antonio Benítez-Hidalgo. Created using Sphinx.