from jmetal.algorithm.multiobjective.spea2 import SPEA2
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.solutions import read_solutions
from jmetal.util.termination_criterion import StoppingByEvaluations
problem = ZDT1()
problem.reference_front = read_solutions(filename='resources/reference_front/ZDT1.pf')
max_evaluations = 20000
algorithm = SPEA2(
problem=problem,
population_size=40,
offspring_population_size=40,
mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
crossover=SBXCrossover(probability=1.0, distribution_index=20),
termination_criterion=StoppingByEvaluations(max=max_evaluations)
)
algorithm.run()
front = algorithm.get_result()
from jmetal.algorithm.multiobjective.spea2 import SPEA2
from jmetal.lab.visualization import Plot, InteractivePlot
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.solutions import read_solutions
from jmetal.util.solutions.comparator import GDominanceComparator
from jmetal.util.termination_criterion import StoppingByEvaluations
problem = ZDT1()
problem.reference_front = read_solutions(filename='resources/reference_front/ZDT1.pf')
reference_point = [0.4, 0.6]
max_evaluations = 25000
algorithm = SPEA2(
problem=problem,
population_size=40,
offspring_population_size=40,
mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
crossover=SBXCrossover(probability=1.0, distribution_index=20),
termination_criterion=StoppingByEvaluations(max=max_evaluations),
dominance_comparator=GDominanceComparator(reference_point)
)
algorithm.run()
front = algorithm.get_result()
jmetal.algorithm.multiobjective.spea2.
SPEA2
(problem: jmetal.core.problem.Problem, population_size: int, offspring_population_size: int, mutation: jmetal.core.operator.Mutation, crossover: jmetal.core.operator.Crossover, termination_criterion: jmetal.util.termination_criterion.TerminationCriterion = <jmetal.util.termination_criterion.StoppingByEvaluations object>, population_generator: jmetal.util.generator.Generator = <jmetal.util.generator.RandomGenerator object>, population_evaluator: jmetal.util.evaluator.Evaluator = <jmetal.util.evaluator.SequentialEvaluator object>, dominance_comparator: jmetal.util.comparator.Comparator = <jmetal.util.comparator.DominanceComparator object>)[source]¶Bases: jmetal.algorithm.singleobjective.genetic_algorithm.GeneticAlgorithm
replacement
(population: List[S], offspring_population: List[S]) → List[List[S]][source]¶This method joins the current and offspring populations to produce the population of the next generation by applying the ranking and crowding distance selection.
population – Parent population.
offspring_population – Offspring population.
New population after ranking and crowding distance selection is applied.